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Abstract

This thesis studies a class of optimisation algorithms, namely Memetic Computing Structures, and proposes

a novel set of promising algorithms that move the first step towards an implementation for the automatic

generation of optimisation algorithms for continuous domains. This thesis after a thorough review of local

search algorithms and popular meta-heuristics, focuses on Memetic Computing in terms of algorithm structures

and design philosophy. In particular, most of the design carried out during my doctoral studies is inspired by

the lex parsimoniae, aka Ockham’s Razor. It has been shown how simple algorithms, when well implemented

can outperform complex implementations. In order to achieve this aim, the design is always carried out by

attempting to identify the role of each algorithmic component/operator. In this thesis, on the basis of this logic, a

set of variants of a recently proposed algorithms are presented. Subsequently a novel memetic structure, namely

Parallel Memetic Structure is proposed and tested against modern algorithms representing the state of the art in

optimisation. Furthermore, an initial prototype of an automatic design platform is also included. This prototype

performs an analysis on separability of the optimisation problem and, on the basis of the analysis results, designs

some parts of the parallel structure. Promising results are included. Finally, an investigation of the correlation

among the variables and problem dimensionality has been performed. An extremely interesting finding of this

thesis work is that the degree of correlation among the variables decreases when the dimensionality increases.

As a direct consequence of this fact, large scale problems are to some extent easier to handle than problems in

low dimensionality since, due to the lack of correlation among the variables, they can effectively be tackled by

an algorithm that performs moves along the axes.
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Concerning tables, pseudo-code and notation

This section clarifies the notation used throughout this thesis. Regarding the use of boldface, vectors are always
indicated in boldface and represented in Cartesian coordinate. The operations of cross and scalar product are
indicated with × and ·, respectively. Sets and matrices are in boldface too. Matrix product has been left blank
while the Hadamard (element-wise) product is represented by the following symbol “◦”. For example, given
two n-by-m matrices A and B (n,m, k ∈ N
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while if A is n-by-m and B m-by-k:
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Regarding pseudo-code, matrices are initialised by means of the following methods:

- ones (i, j): returns a i-by-j all-ones matrix

- eye (i, j): returns a i-by-j identity matrix

- randomSampling (i, j,D): samples i uniformly distributed j-dimensional vectors within the hyper-

space D

The following distributions have also been used throughout this thesis:

- N (µ,C): (multivariate) Normal distribution with mean value µ and covariance matrix C (returns a

column matrix of Gaussian distributed real-valued numbers, having the same size of µ, e.g. if µ is a

scalar value then C is the variance σ2 and the distribution degenerates into a univariate Gauss function)
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- B±1 (p): modified Bernoulli distribution (returns 1 with a given probability p and −1 with probability

1− p )

- C (l, γ) Cauchy distribution with location parameter l and scale parameter γ (returns a single Cauchy

distributed value)

- U (a, b): Uniform distribution (returns a uniform distributed real number ∈ [a, b] , a, b,∈ R

- I (a, b): returns an integer number uniformly distributed in [a, b] ⊂ N

Pseudo-code refers to the implementation that has been coded and employed for my PhD. Despite the language

being mostly formal, e.g. the mathematical symbolism f (x) is meant to represent the value of f in x rather

than the evaluation of the functional call, they are fully detailed in order to allow the replication of code and

results.
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Chapter 1

Introduction

This piece of work is the outcome of a deep investigation about the algorithmic structure of a class of modern

optimisers referred as Memetic Computing (MC) algorithms, in order to understand their working principles

and be able to identify the fundamental building blocks forming them. The goal is to produce a grammar whose

syntactic elements are basic operators, which can be combined together for tackling a given problem. The aim

is to use such basic components in order to design novel memetic structures that being simple, still display high

performances, and to propose a software framework for selecting and automatically assembling them together,

so coding a first prototype for the automatic generation of optimisation algorithms for continuous domains. In

few words, the very final goal motivating this piece of research can be formulated with the following research

question:

IS IT POSSIBLE TO DETECT THE “ATOMIC UNITS” FORMING A MEMETIC STRUCTURE AND CODE A

PROTOTYPE OF A SOFTWARE THAT, GIVEN AN OPTIMISATION PROBLEM DEFINED IN A CONTINUOUS

DOMAIN, EXPLOIT THEM FOR AUTOMATICALLY GENERATING A TAILORED SOLVER?

The automatic generation of optimisation algorithms in continuous domains, is an ambitious goal that will

be fully achieved in many years of research, but still possible, by passing through a number of intermediate

objectives. This thesis proves the feasibility of this long-term research project, by partially achieving the

big picture of automatic algorithms generation. In particular, a general prototype for the automatic design of

MC algorithms has been proposed and used to tackle optimisation problems according to two main features:

separability and dimensionality. Other important features characterising an optimisation problem, such as ill-

conditioning and multi-modality, will be added in the future. The most difficult step will be to consider these

properties at the same time, rather than separately one at time.

In order to achieve this first result, my research has initially gone through an extensive literature review

(and implementation and testing) of the most widely used Local Search (LS) routines and population-based

algorithms for global optimisation, them being the foundations for building every Memetic Algorithm (MA),

and subsequently, MC structures have been taken into consideration. In particular, the Three Stage Optimal

1



Memetic Exploration (3SOME) algorithm, see (Iacca, Neri, Mininno, Ong & Lim 2012), has been thoroughly

studied and altered as a starting point for understanding MC structures and proposing novel algorithms based

on the same principle, i.e. algorithmic simplicity. As an evolution of the 3SOME algorithm, a novel

memetic structure, that is the Parallel Memetic Structure (PMS) has been presented after defining a new

notation for representing memetic structures. The same topology used in PMS has then been exploited in

the Separability Prototype for Automatic Memes (SPAM). The approach proposed for SPAM can build an

optimisation algorithm from scratch, by studying the problem and extracting information regarding its “degree

of separability”, which has been approximated via an index measuring the correlation amongst the design

variables. Finally, a study on the effect of increasing dimensionality values on the correlation index, has been

presented. A detailed breakdown, chapter by chapter, of the described research activity is provided at the end

of this introductory section.

1.1 Motivation and overview of related previous work

For about three decades (1960-1990) computer scientists investigated optimisation methods with the aim of

detecting the ultimate algorithm capable of outperforming all the others. During those years, important

computational paradigms, see for example (Eiben & Smith 2007), were defined. The search for the

best optimiser has been stopped by the publication of the No Free Lunch (NFL) theorem (Wolpert &

Macready 1997). The NFL theorem mathematically proves that the average performance of any pair of

algorithms A and B across all possible problems is the same. This fact implies that if an algorithm performs

well on a certain class of problems, then it necessarily pays for that with degraded performance on the set of all

remaining problems (as this would be the only way that all algorithms can have the same performance averaged

over all the optimisation problems). Even though the NFL theorem is not generally valid, as discussed in (Auger

& Teytaud 2010) and (Poli & Graff 2009), see Appendix B for details, the concept that there is no universal

optimiser had a significant impact on the scientific community. More specifically, since the performance of

each algorithm over all the possible problems has theoretically been proven to be the same, it was clear that

there was no longer a reason to discuss which algorithm is, in general, better or worse. On the contrary, as

the most direct consequence of NFL theorem, computer scientists started to propose algorithms which were

tailored to specific problems in order to design an optimiser that could display its highest performance for

the specific problem of interest, e.g. see (Chabuk, Reggia, Lohn & Linden 2012), (Salvatore, Caponio, Neri,

Stasi & Cascella 2010) and (Tao, Zain, Ahmed, Abdalla & Jing 2012). In real-world problems, the use of

a tailored algorithm (with its parameter setting) for each problem could be extremely impractical as it would

likely require the constant action of an optimisation expert to adjust the design to the industrial needs. In

addition, the implicit non-stationary nature of optimisation processes imposes that there is no unique most

suitable algorithm and parameter setting during run-time. In order to tackle these issues, modern optimisation

algorithms are composed of multiple search operators that are coordinated with the aim of promptly reacting

to the necessities of the optimisation processes and thus successfully address reasonable ranges of problem

features. Although a proper taxonomy cannot be easily formulated, due the overlap of the various classes, a
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possible classification of modern optimisation algorithms is given in the following subsections.

1.1.1 Adaptive and self-adaptive algorithms based on a paradigm

These algorithms are based on one single paradigm/optimisation framework, but include different variants of it.

The search operators corresponding to each variant are coordinated by means of a feedback-based criterion. For

example, in the context of Differential Evolution (DE), the algorithm proposed in (Qin, Huang & Suganthan

2009) combines multiple mutation strategies coordinated on the basis of a learning period and a randomised

success based logic. In (Mallipeddi, Mallipeddi & Suganthan 2010) a so-called ensemble of mutation and

crossover strategies, as well as the related parameters are encoded within the solutions and evolve with them.

Other harmonic self-adaptive combinations of components within the DE framework are proposed in (Brest &

Maucec 2011) and (Brest, Korosec, Silc, Zamuda, Boskovic & Maucec 2013). In (Zhu, Zhou, Ji & Shi 2011)

an adaptive memetic approach is designed in the context of Particle Swarm Optimisation (PSO) with reference

to DNA sequence compression.

1.1.2 Global optimisation frameworks that use multiple local search algorithms

These approaches, often labelled as MAs, see (Moscato & Norman 1989) and (Moscato 1989), are composed

of a global optimisation framework and multiple diverse local search LS components coordinated within this

framework, see for example (Neri, Cotta & Moscato 2011), (Ong, Lim & Chen 2010), and (Neri & Cotta

2012). An adaptive logic is supposed to select the most appropriate local search. Some famous examples

of adaptive schemes for memetic algorithms are the Meta-Lamarckian Learning (Ong & Keane 2004) that

varies the selection probability of the local search on the basis of its previous success, the self-adaptation and

coevolution, see (Krasnogor & Smith 2005), (Smith 2007), and (Smith 2012) that encode within the solution or

in a parallel population the local search activation, and the fitness diversity adaptation, see (Caponio, Cascella,

Neri, Salvatore & Sumner 2007) and (Neri, Toivanen, Cascella & Ong 2007), that balances exploration and

exploitation needs on the basis of the estimated diversity of the population. Recently, a generalisation of the

concept of MA to the broader concept of MC has been given; see (Ong et al. 2010) and (Iacca, Neri, Mininno,

Ong & Lim 2012). According to the MC notation, an algorithm is a structure without a prefixed structure and

composed of heterogeneous operators.

1.1.3 A list of multiple algorithms coordinated by a supervisor

In these frameworks, a list of multiple algorithms is coordinated by means of a heuristic rule or super-

visory/adaptive scheme. Usually these approaches are successfully used for addressing domain specific

optimisation problems, especially (but not always) combinatorial. A family of algorithms belonging to this
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class is often referred to as optimisation portfolios. Some examples of portfolios of heuristically coordinated

algorithms have been proposed in (Vrugt, Robinson & Hyman 2009) and (Peng, Tang, Chen & Yao 2010).

Another popular portfolio approach for the propositional satisfiability problem is the so-called SATzilla

platform, see (Xu, Hutter, Hoos & Leyton-Brown 2008) and (Hoos 2012). Within this platform, a study to assess

the trade-off of the search algorithms with the aim at determining an automatic coordination system is presented

in (Hutter, Hoos & Leyton-Brown 2010). A recent study that models the behaviour of optimisers and predicts

their run time is given in (Hutter, Xu, Hoos & Leyton-Brown 2014). Another famous type of algorithmic

structure composed of a list of solvers (optimisation algorithms) intelligently coordinated is the hyper-heuristic.

In hyper-heuristics the coordination amongst multiple algorithms is performed by means of a machine learning

technique. The latter acts as a supervisor structure that learns which algorithms are the most suitable for a given

problem. A famous example of hyper-heuristic implementation in the field of timetabling and rostering are

proposed in (Cowling, Kendall & Soubeiga 2000) and (Burke, Kendall & Soubeiga 2003) while two extensive

literature reviews on the topic are given in (Özcan, Bilgin & Korkmaz 2008) and (Burke, Hyde, Kendall, Ochoa,

Ozcan & Woodward 2010), respectively. In (Burke, McCollum, Meisels, Petrovic & Qu 2007) graph colouring

heuristics are coupled with a random ordering heuristic. Several attempts to perform the coordination of the

heuristics are given in the literature. A classic approach consists of assigning a score and rewarding the most

promising heuristics: the so-called choice function, see (Cowling et al. 2000). A combination of the choice

function with a randomized criterion, is also very broadly used, see e.g. (Kendall, Soubeiga & Cowling 2002).

Among many coordination schemes present in the literature, more sophisticated approaches make use of

reinforcement learning in a stand-alone or combined fashion, see e.g. (Burke et al. 2003) and (Dowsland,

Soubeiga & Burke 2007), and memory-based mechanisms, see (Burke & Bykov 2008). In (Acampora, Gaeta

& Loia 2011) and (Acampora, Cadenas, Loia & Ballester 2011) elegant learning schemes are coupled with

multiple operators (multi-agents) for addressing complex optimisation problems.

1.2 Discussion

In some cases this classification is mainly a philosophical one and cannot be easily spotted within the

implementation details. For example, some MC structures can also be adaptive, see (Caponio et al. 2007),

(Krasnogor & Smith 2005), (Nguyen & Yao 2008), (Smith 2007), and (Smith 2012). Nonetheless, this

philosophical distinction has a major impact when we consider the future trend of research in Computational

Intelligence (CI). More specifically, the first category attempts to stretch to a range of various problems single

algorithmic paradigms. The second category attempts to tackle the problem by balancing global and local

search. The third category relies on the idea that a list of algorithms is likely to contain efficient solvers. These

solvers, by means of an adaptation mechanism, become at run time those that are most likely chosen. The

topic of automatic design of optimisation algorithm is currently intensively discussed within the computational

science community, see (Meuth, M. Lim, Ong & Wunsch-II 2009) and (Zhu, Jia & Ji 2010), as well as in related

fields from slightly different perspectives, see e.g. (Hoos 2012), (Wu, McCall, Corne & Regnier-Coudert 2012)

and (Ren, Jiang, Xuan & Luo 2012). Automatic design of optimisation algorithms is thoroughly studied in

4



(Hamadi, Monfroy & Saubion 2012) from multiple perspectives. For example, in (Hoos 2012) a survey on

automatic parameter setting is given while in (Epstein & Petrovic 2012) a learning system for the coordination

of heuristics in the context of constrained optimisation is presented. In (Battiti & Campigotto 2012) the use of

reinforcement learning for online parameter tuning of stochastic local search algorithms is shown. In (Maturana,

Fialho, Saubion, Schoenauer, Lardeux & Sebag 2012) an evolutionary framework that adaptively selects its

components during the run time is presented. In (Hamadi, Jabbour & Sais 2012) an adaptation technique to

improve the performance of a component of the SATzilla platform is shown. Moreover, a software package

named FRACE, illustrated in (Birattari, Yuan, Balaprakash & Stützle 2010), employs a statistical procedure

for automatically performing the configuration of the algorithms. An extension of FRACE, namely IRACE, is

presented in (Lopez-Ibanez, Dubois-Lacoste, Stützle & Birattari 2011). These are only some of the examples

of the many studies/attempts on automatic generation of metaheuristics. Nonetheless, due to its complexity, an

efficient and generally valid solution has not been found yet and, it will require still several years of research in

mathematics and computer science. At the present stage, the above-mentioned pioneering studies on this topic

tackle the automatic design by means of success/failure criteria, i.e. those parts of the algorithms that appear

the most successful are more likely to be selected in the following stages of the optimisation. It can be argued

that this kind of approach contains three major limitations. First, a success-based criterion is a trial-and-error

strategy that requires a set of random choices before obtaining the selection of the correct solvers/operators.

Second, an optimisation run is a dynamic process. Hence, for example, a successful search move at early

stages of the optimisation may not be the most proper one in later stages. Third, this approach does not exploit

the available pieces of information about the problem. More specifically, in real-world cases, optimisation

problems very often must be tackled as a black box, i.e. the algorithmic designer may need to attempt to

optimize an objective function even when the problem details are not available. This may happen, for example,

when the objective function is the result of a measurement process within an actual experiment, see (Caponio

et al. 2007) and (Salvatore et al. 2010). Nonetheless, the algorithmic designer can study how the problem looks

like from the optimisation perspective by performing preliminary tests and extract those pieces of information

that allow an algorithmic design tailored to the problem. On the basis of these considerations this work proposes

to develop a software platform for automatically designing optimisation algorithms. This is the most general

and final aim of this piece of research. Although the automatic design of meta-heuristics can be perceived as a

meta-optimisation problem (the search of the optimal optimiser), it must be observed that, as proven in (Poli &

Graff 2009), the NFL theorem is not valid in a meta-space (of operators) such that of Genetic Programming (GP)

or Hyper-heuristics. In other words, a theoretical result guarantees that while for numerical problems (under the

hypotheses of the theorem) there is no best optimiser, some design strategies can generally outperform some

others. Thus, an automatic algorithmic designer can potentially tackle optimisation problems faster and more

accurately than any other designing system.
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1.3 Thesis structure

The results achieved during my doctoral studies cover different aspects of Computational Intelligence

Optimisation (CIO) for continuous domains. Most of the algorithms mentioned or described in this thesis

have been implemented and applied to real world applications, from Machine Learning to System Control and

Robotics. For a complete description see the list of the published material in Appendix C. For the sake of

clarity and consistency, this thesis has been restricted to the theoretical part of my research, focussing on those

incremental steps leading to presentation and implementation of a prototype for the automatic generation of

optimisers for continuous problems. The main research question opening this work has then been broken up in

Intermediate Research Questions (IRQ), and the work has then been reorganised as follow:

CHAPTER 2 provides an introduction to CIO starting with generalities about optimisation, and passing through a

thorough literature review of the most important classic local searchers. A description of their working principle

is given, as well as implementation details supported by pseudo-codes. Global optimisation is introduced, and

also the concept of meta-heuristic, with fundamental single solution examples such as Simulated Annealing

(SA). These techniques will be a part of more complex structures described in the reminder of this thesis. Their

detailed description has been placed here in order to make the reading of the experimental part of this thesis

easier and straightforward.

CHAPTER 3 is mainly focussed on a literature review of principal bedrocks of population-based optimisation.

Recent state-of-the-art variants are explained in depth, since used for comparisons with the optimisers proposed

during my PhD, or employed for the design of further optimisation algorithms in a memetic fashion.

CHAPTER 4 rounds off the literature review by introducing the concepts of MA and MC. The main differences

(and similarities) between the two categories are explained and clarified by means of examples, i.e. through

the presentations of recent algorithms belonging to the two classes (a complete taxonomy comprehending past

most relevant achievements is already present in this preface), and finally, the principle of Ockhams Razor1 in

MC is introduced by presenting the 3SOME algorithm. The importance of this principle is fundamental for

this piece of research, and represents the start point towards the study of memetic structures and the automatic

generation of optimisation algorithms from scratch, according to a bottom-up logic.

CHAPTER 5 introduces the methodologies used for designing, testing and comparing novel algorithms against

the state-of-the-art over a manifold studying board of functions in multiple dimensionality values. It clarifies the

philosophy behind the algorithmic design, the software and hardware infrastructure set-up for generating data,

and the notation adopted in tables for statistic validation. The parameters tuning procedure is also described in

order to justify the parameters setting chosen for generating data, which is reported in Appendix D in order to

allow the replication of this work.

1Well known principle in science from William of Ockham, also spelled as Occam Razor or indicated with the Latin “lex

parsimoniae”.
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CHAPTER 6 investigates memetic structures starting with a deep analysis and experimentation on the structure

of the 3SOME algorithm. 3SOME is then altered and compared with its variants: enhanced version of its

operators are proposed, the final LS routine is changed with others popular methods, and different coordination

strategies, e.g. Meta-lamarckian learning, are tested. The aim of this experiments is to better understand the

role of each meme, in order to be able to draw up a grammar whose syntactic elements are memes (see Chapter

7), and to estimate the impact of the algorithmic structure on the performances. The last issue, is fundamental

in order to get closer to the automatic design of MC optimisers, since each single meme has to be selected to

tackle a certain property of the problem, and coordinated with the others within the algorithmic structure. The

aim of this chapter can be formalised with the following intermediate research questions:

- “Is it possible to improve upon 3SOME so making its structure adapt to the problem, and able to

handle different properties of the fitness landscape?” (IRQ I)

- Beside the efficiency and the understanding of the role of each chosen operator, does the algorithmic

structure matter? What’s the impact of the algorithmic structure in MC?” (IRQ II)

- “Is the algorithmic complexity in optimisation actually supported by the results? Is the complexity, in

MC, an algorithmic feature which makes the algorithms any better? Moreover, is 3SOME’s structure

without redundancy or can be further simplified?” (IRQ III)

The answers to the first research question was achieved step by step with the following publications: (Caraffini,

Iacca, Neri & Mininno 2012b), (Neri, Weber, Caraffini & Poikolainen 2012), (Poikolainen, Caraffini, Neri

& Weber 2012) and (Poikolainen, Iacca, Caraffini & Neri 2013), which are summarised in Chapter 6.1. The

second IRQ was answered by the study in (Caraffini, Iacca, Neri & Mininno 2012a), reported in Chapter 6.2.

In order to reply to last IRQ, three seriously simple MC algorithms, (Caraffini, Neri, Gongora & Passow 2013),

(Caraffini, Neri, Passow & Iacca 2013a) and (Iacca, Caraffini, Neri & Mininno 2013) , that can be seen as an

extreme case of the of Ockhams Razor in MC, are presented in Section 6.3.

CHAPTER 7 starts with the definition of a new nomenclature for managing basic operators in elementary

structures. A novel algorithm, namely PMS, based on the elementary “parallel structure” is proposed and

experiments have been carried out in order to empirically prove its structural efficiency and the importance of

having a diverse pool of operators. The definition of a general nomenclature for tackling MC algorithms and the

idea that robust optimisers can be designed thanks to the parallel memetic structures by simply binding together

operators from a pool, is the first step towards the prototype for the automatic generation of optimisation

algorithms. These achievements are described in Chapter 7.1, and were published in (Caraffini, Neri, Iacca

& Mol 2012). This paper made an important contribution for answering to the main research question of this

thesis, but does not propose a general framework for the automatic design. Moreover, the Parallel Memetic

Structure can be seen as a general purpose optimiser with a wide range of applicability, and requires few

modifications in order to make it able to adapt to the problem at hand. This refinement has been done later, as

described in Chapter 7.2, where a general prototype for the automatic generation of optimisers is also defined
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and experimentally tested. According to the general scheme, which has been presented in (Caraffini, Neri &

Picinali 2014), the software platform for the automatic generation of optimisation algorithms is supposed to be

able to analyse multiple features of an optimisation problem, i.e. separability, multi-modality, ill-conditioning

and dimensionality, and then perform the design by coherently selecting operators from a given pool and

coordinate them together in sequential/parallel structures. It must be remarked that the first implementation

of the prototype proposed in (Caraffini et al. 2014) does not completely code the general scheme, and so

only partially answer to the main research question. The SPAM algorithm does not take into consideration

multiple features at the same time, such as ill-conditioning, dimensionality and modality, but focuses only on

the “degree of separability” of the problem at hand (indirectly evaluated in terms of correlation amongst the

design variables) . In conclusion, this chapter answers to a part of the general research question, that can be

reformulated as:

is it possible to understand the degree of separability of a given black-box continuous problem, and select

operators from a pool for automatically generating a tailored algorithm accordingly? (IRQ IV)

CHAPTER 8 extends the work in (Caraffini et al. 2014) on the evaluation of the separability coefficient,

proposing an alternative way for estimating the correlation amongst the design variables, and links the

coefficient with another important features to be taken into consideration for automatically designing an

optimisation algorithm: the dimensionality of the problem at hand. The study of the correlation between the

variables of an optimisation problem in multiple (increasing) dimensionality values, help us understand how a

solver has to be designed in order to face LSOP, which are usually more challenging that their corresponding

low dimensional versions, having only “few” design variables to be considered. As a consequence, this chapter

investigates the following research question:

What algorithmic mechanism appears promising for tackling large scale optimisation?

In order to get to this point, the research work has gone through the following intermediate research questions:

- “what are the most successful strategies for handling LSOP?” (IRQ V)

- “What do these strategies have in common? What algorithmic mechanism appears promising for

tackling LSOP? Can we give an explanation to why these approaches are working on LSOP and thus

understand when to apply them in the future?” (IRQ VI)

This study is essential in order to understand how to automatically approach a given problem. The

dimensionality of the problem, is indeed a peculiar feature, i.e. it is know a-priori, and heavily impacts on the

design of the algorithm. For this reason, the outcome of this last work is precious for the automatic generation

of optimisation algorithms.
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CHAPTER 9 summarises the final considerations and results achieved on each chapter. Moreover, ideas for

future developments are proposed and discussed.
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Chapter 2

Principles of optimisation: a literature review of classic

local and global search

Every time we have to make a decision (pick a choice) in order to achieve one or more objectives we face

an optimisation problem, that is, the search for that feasible solution which corresponds to the extreme of an

objective function. It’s evident that, according to this definition, almost every problem in the world can be

seen as an optimisation problem, since each decision is made in order to achieve a certain goal by following

some criteria of optimality. Thus, this discipline can be applied on a broad and heterogeneous variety of issues,

making optimisation interdisciplinary, and sometimes extremely complex. Common problems are, for example,

in engineering the design of an aircraft, in economics the selection of a mid-term investment, or in medicine

the design of a therapy.

Once a problem-based objective function has been obtained, the optimisation process takes place by

minimising or maximising the function according to the given necessity (Definition2.1). In this regard, the first

scientific method for optimisation can be traced to the creation of “differential calculus” by Newton and Leibniz

(17th century), who first introduced the concepts of derivative and gradient. The search for extrema followed

with the “calculus of variation” by Euler, Weierstrass and Lagrange (18th-19th century), while probably the

most important breakthrough for constraint dynamic optimisation is represented by the method of Lagrange

Multipliers. Despite the strong mathematical validity behind these methods, it is impossible to apply such

techniques to a vast set of optimisation problems. Indeed, the discontinuity of the physical phenomena, as

well as other inconveniences (e.g. a noisy objective function, lack of an analytical expression of the objective

function etc.), make the hypotheses of the exact methods unverified in the majority of the real-world cases.

Very little progress could be made in tackling such difficulties until the diffusion of powerful digital computers,

which have literally represented a turning point for modern optimisation, allowing researchers to develop new

paradigms. Many numerical methods have been coded into the digital domain between the '60s and early '70s,

see (Rosenbrock 1960), (Powell 1964), (Nelder & Mead 1965) and (Brent 1973) , but only later on, between

the '70s and '90s, powerful and robust meta-heuristics, representing the current state-of-the-art of optimisation,

have been proposed. During those years, important computational paradigms such as Simulated Annealing,

Evolutionary and Swarm Intelligence Algorithms were defined, see for example (Eiben & Smith 2007). These

10



new methods are versatile and can be used without any hypothesis on the objective function, which can even

be unknown, i.e. black box optimisation. This is possible by employing CI methods like machine learning

and neural systems, or Artificial Intelligence (AI) techniques that mimic natural processes. We can refer to the

discipline which integrates AI into algorithms for solving optimisation problems as CIO.

In order to present the most important CIO frameworks, a rigorous definition of the optimisation problem

is first given in Chapter 2.1. It is followed, Chapter 2.2, by a brief introduction and literature review of the most

important LS algorithms. Despite the fact that they are mainly from '60s, they still play a crucial role in modern

optimisation, and their description is needed in order to better understand the remainder of this thesis.

2.1 Optimisation Problem: a general definition

Regardless of the nature of the application, optimisation problems have a common mathematical statement:

Maximise/Minimise fm (x) m = 1, 2, . . . ,M

subject− to gj (x) 6 0 j = 1, 2, . . . , J

hk (x) = 0 k = 1, 2, . . . ,K

(2.1)

where f1, f2, . . . , fM is a set of M objective functions, commonly called fitness functions, fm: D −→ R.

Despite the simplicity of this formulation many different kind of problems arise from Definition 2.1. Starting

from the domain D, commonly called the decision or search space, it is possible to distinguish two main

categories of optimisation problems: if this set (D) contains a finite number of discrete solutions we deal with

combinatorial optimisation, and in the alternative, if it is a “theoretically” infinite set of real numbers we have

continuous optimisation. In this case, fm: D ∈ R
n −→ R, the decision space can be described as the Cartesian

product of the intervals (the problem’s bounds) where the design variable x (a vector of n components or design

parameters x1, x2, . . . , xi, . . . , xn) takes values from, i.e. [xL,xU].

For the sake of clarity, it must be remarked that the word “continuous” assumes a domain specific meaning

in Computer Science, where mathematics is coded into the discrete world of a machine. Even if it is impossible

to represent a strictly dense set of elements within a calculator, because of the accuracy of modern electronic

devices, it is more superior than the precision requested by several everyday life problems and engineering

applications, it is therefore fair to consider a set dense, in Computer Science, when the distance between each

pair of consecutive points is not bigger than the machine precision (Neri et al. 2011). In other words, as it is

impossible to store an infinite dense set of points, on a digital domain the need arise to consider as “dense” any

set containing the maximum amount of points allowed by the precision of the hardware technology employed.

Once one has identified the nature of the problem (discrete/continuous/hybrid), a crucial point for the

algorithmic design is the presence of multiple fitness functions. In Multi-objective Optimisation, m ≥ 1 ,

the algorithm must be designed in order to reach a trade-off between the goals (usually conflicting with each

other) rather than looking for the global minimum/maximum point of the fitness function, as happens in Single-

objective Optimisation. Regardless of the number of objectives to satisfy, another important feature of the
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problem to be taken into consideration before designing an optimisation algorithm, is the time dependency of

the fitness functions. In many cases, the problem under study does not vary its characteristics with time (static

optimisation), but there are physical processes which evolve dynamically with time, thus causing variations on

the fitness function and making its global optimum move within the search space (dynamic optimisation).

Finally, the functional gj and hk are inequality and equality constraints. Their presence (j ≥ 0/k ≥ 0)

makes the problem more or less severely constrained, otherwise the problem is said to be unconstrained.

This research focusses on a subset of CIO, namely STATIC, SINGLE-OBJECTIVE, UNCONSTRAINED and

CONTINUOUS OPTIMISATION. Without a loss of generality, in the remainder of this thesis only minimisation

problems will be considered. Maximisation problems can be indeed handled with a minimiser, and vice-versa,

by simply multiplying the fitness value by −1. A final remark must be done on how boundaries are handled.

As previously mentioned, the optimisation process takes place within a given search space D, identified with

its lower bounds, vector xL, and upper bounds, vector xU. Since most optimisers could potentially generate a

solution falling out of the search space, every newly generated solution must undergoes a check, and so must be

saturated. The most obvious and common ways of managing this scenario is to discard the infeasible solution

and generate a new one, or brutally clip it to the lowest, or highest, value admissible. An alternative approach,

that has been used for all the algorithms presented in this work, is the toroidal saturation scheme shown in

Algorithm 1, which has proven to be beneficial in many cases (Price, Storn & Lampinen 2005). Although not

Algorithm 1 Toroidal Saturation
procedure SATURATETORO(x)

for i = 0 : n do

xsat[i]← x[i]−xL[i]

xU[i]−xL[i]
⊲ Normalisation

if xsat > 1 then

xsat[i]← xsat[i]− fix (xsat[i]) ⊲ fix (x): rounds x to the nearest integer towards zero

else if xsat < 0 then

xsat [i]← 1− |xsat [i]− fix (xsat [i])|
end if

xsat [i]← xL + xsat [i] ·
(

xU[i]− xL[i]
)

⊲ Rescaling

end for

Output xsat

end procedure

mentioned in the proposed pseudo-codes, in order to keep them easy to follow, this procedure is applied after

each functional call. If a solution falls in a forbidden region, this transformation toroidally “curves” the space

in order to rescale it within D.

2.2 Local Search

LS algorithms are those routines which explore and refine, where possible, a start solution within a subset of

the search space, possibly leading to a local optimum. This kind of search plays an important role in modern

optimisation, and it is a challenging concept, difficult to introduce. In effect, many techniques originally born

as global optimisers are nowadays being used, after a proper tuning of their parameters, as local searchers. This

is for instance the case of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in (Molina, Lozano,
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Garcı́a-Martı́nez & Herrera 2010a), (1+1)-CMA-ES in (Caraffini, Iacca, Neri & Mininno 2012b), and many

others such as Tabu Search and simulated Annealing (Tirronen, Neri, Kärkkäinen, Majava & Rossi 2008).

A detailed description of these algorithms will be given in Chapter 3. In general, a local optimiser perturbs

an initial point p applying a “move operator” having an exploratory magnitude (ǫ) confined within a “small”

area surrounding p. The “move” logic adopted helps us define the boundaries of this area, by introducing the

concept of neighbourhood N(p) of a solution p. This is usually defined as the set of points from where p can be

reached in one step (or a preassigned, reasonably small, number of steps) of the search. In the continuous case

this concept is fundamental, in fact, despite what happens in discrete optimisation, it makes sense to talk about

“small” movements along preferential directions, or in other words, to talk about the gradient. As for a Cauchy-

continuous function, within N(p), all the points are expected to have similar fitness values (no discontinuities),

and the partial derivative of the fitness function f for a given generic variable xi can be evaluated as follows:

∂f (xi)

∂xi
≈ f (xi + ǫ)− f (xi)

ǫ
(2.2)

Due to this approximation, it can be noticed that a null gradient does not correspond to a critical point, as

happens in mathematics, but rather implies that N(p) is a plateau (Neri et al. 2011). Thus, gradient information

alone is not sufficient to find a local optimum, but can only be used to detect promising directions, so avoiding

unnecessary sectors of the search space. Higher derivatives (Hessian matrix) can also be used to improve

the search. If the function is not Cauchy-continuous, i.e. presence of discontinuity points, N(p) can still be

considered, but a stochastic trial-and-error search is then essential, since the gradient information in such points

becomes inconsistent. According to the information (order of derivative) employed, LS algorithms fall into

three main categories:

- Zeroth-order methods: no use of higher order property of the fitness function. Also called derivative-free

or direct search methods, they work with ordinal relations between objective function values (Trosset

1997). Methods such as Hooke-Jeeves, Nelder-Mead, Rosenbrock and Powell’s Direction Set (described

in the following sections) belong to this class, since the information coming from the fitness functional

call is not used to approximate the gradient.

- First-order methods: based on the gradient vector of the fitness function, either directly accessed, as

in Gradient Descent method (Section 2.2.1), or empirically estimated, see Simultaneous Perturbation

Stochastic Approximation (SPSA) in Section2.2.7.

- Second-order methods: in spite of a growth of the computational cost, these methods rely on the Hessian

matrix in order to improve convergence speed and accuracy. This is the case of Newton and Quasi-

Newton methods (Section 2.2.1).

For the sake of completeness, it must be said that the proposed taxonomy can be subject to variations in

the literature. Some authors, i.e. (Neri et al. 2011), consider derivative free methods as First-order methods.

Moreover, they consider Powell’s Direction Set algorithm as a Second-order method, since it implicitly makes

assumptions on the Hessian matrix (see Section 2.2.6). This fact occurs although in (Powell 1964) it is widely
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remarked that, as primary feature, this method does not require any approximation of the gradient.

Conversely, SPSA is presented in the original paper (Spall 1987) like a gradient free method, since it does

not require a direct access of the gradient vector. The operating principle of this method, see Section 2.2.7,

relies on a stochastic approximation of the gradient rather then a deterministic evaluation, but employing the

gradient information can still be argued that SPSA is actually gradient-based. The simple consideration that

the gradient will always be necessarily estimated in CIO, either thanks to Formula 2.2 or stochastically, in

fact makes all the algorithms using the concept of derivative fall within the second category, in the way it has

been defined in this thesis. In the end, it does not make much sense to discriminate between direct or indirect

access of the gradient vector, because the fundamental source of information of any optimiser is the fitness

function, and any other kind of information bound to derive from that numerical value. Despite both stochastic

and deterministic1 algorithms being able to make use of the gradient information, it is worth noticing that the

former are preferable in noisy or multi-modal environments (high exploration capabilities), while the latter for

mono-modal problems (being exploitative and sensible to the initial point). Deterministic LS is usually precise

but can be subject to numerical instability, e.g. division by zero, inversion of the Hessian matrix is not possible

and so on.

In conclusion, classification can be difficult or often even trivial and the proposed taxonomy has thus been

adopted in order to stress the fact that, whether approximated or not, the gradient gives us precious information

that can be exploited only in continuous optimisation, in order to privilege certain “lanes” and “short-cuts”,

rather than trying all the possible paths. For these reasons, this thesis will approach LS from a different point

of view, focussing on three main aspects, namely the search logic (type of move performed within the search

space), memory and time complexity. These characteristics are, in my opinion, crucial for the algorithmic

design of an optimisation algorithm and give us valuable information that can be directly exploited during

the design. Conversely, the disquisition on the way the gradient is approximated is often more philosophical

than practical. Obviously, properties such as derivative-order and configurations for mathematical convergence

(displayed in Table 2.1) have to be taken into account by the careful designer, but play only a secondary role

with respect to the move logic spanning the search space. This has to be understood and considered with special

care, in particular when combining more techniques as happens in MC. In this case, the search logic cannot

be ignored, in order to maintain a certain degree of diversity leading to a balanced algorithm (see Section 7.1)

not containing redundant operators (see Section 4.2). This theoretical reflection must also deal with applicative

aspects (since optimisation faces real-world problems) such as real-time constraints and memory limitations.

The memory footprint of each operator has been reported in Table 2.1. This special attention given to the

memory requirements, for both those algorithms from the literature and originally designed, is due to the fact

that a relevant number of the considered optimisers are meant for embedded systems with limited memory and

computational capacity. As instance, one can see (Iacca, Caraffini & Neri 2013), an interesting case where

the entire optimisation process takes place in real-time in a micro-controller with memory limitations, or also

(Iacca, Caraffini & Neri 2013) for engineering applications with devices plagued by a modest computational

power.

1Algorithm free of any form of randomisation logic, performing a predictable sequence of steps.
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It follows a detailed description of the most known Local Searchers, which have been used in this work.

The start point for the search is here indicated as x0, referring to the fact that the first value taken as input can

be an initial guess but is, more likely, a design variable x coming from another operator. The index 0 means

that the variable is about to undertake the LS process for a certain amount of iterations, e.g. n, and will be

returned with its new value xn at the end of the procedure.

2.2.1 Newton, Quasi-Newton and Gradient Descent Method

If a function f : D ∈ R
n −→ R is twice-differentiable in the neighbourhood of a point x0 ∈ D, then it can be

approximated by a quadratic model by means of the second order Taylor expansion:

f (x) ≃ f (x0) +∇f (x0) (x− x0) + (x− x0)
T 1

2
∇2f (x0) (x− x0) (2.3)

If x∗ is a critical point of f , then ∇f (x)
∣

∣

x=x∗ = ∅. This implies, by applying ∇ to both the members in

Equation 2.3 and replacing x = x∗, that:

x∗ = −∇f (x0)H
−1
f (x0) + x0 (2.4)

where, for simplifying the notation, Hf (x0) is the Hessian matrix of f (x)
∣

∣

=x0
. If Hf (x

∗) is positive definite,

x∗ is the minimum of f . Equation 2.4, leads to the iterative formula shown in Algorithm 2, where α can be tuned

according to the problem, in order to speed up the convergence process. Where Hf (x) is equal to the identity

matrix, the second order information vanishes, and Newton’s method becomes the so called gradient descent. In

addition, if Hf (x) is locally Lipschitz continuous2 , this method mathematically q-quadratically3 converges to

the local optimum. Unfortunately, this hypothesis does not hold in the majority of real-world cases. Moreover,

inverting the Hessian matrix is a computationally expensive (infeasible in some cases) operation. This drawback

is overcome by Quasi-Newton methods, such as Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-

Shanno, or the Conjugate Gradient method (Press 2007), where H−1f (x) is directly built-up by exploiting

successive gradient vectors. Howsoever, these methods are computationally expensive and their applicability is

subject to strong assumptions for uni-modal functions.

2.2.2 Nelder-Mead Method

This is a very popular LS algorithm better known as the “Simplex method”. The idea of exploring the search

space by simply linearly-combining n + 1 points, forming a simplex, was first introduced in (Spendley, Hext

& Himsworth 1962) and then completed in (Nelder & Mead 1965). In the former implementation, the simplex

could only vary in size, but not in shape, thanks to two transformations reflection and shrinkage. Conversely,

2∀x1,x2 ∈ D , ∃ C ∈ R
+ + {0}

∣

∣ ‖Hf (x1)−Hf (x2) ‖ 6 C‖x1 − x2‖
3
xk q-quadratically converge to x

∗ if ∃ C ∈ R+
∣

∣ ‖xk+1 − x
∗‖ 6 C‖xk − x

∗‖2
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Algorithm 2 Newton’s Method

procedure NEWTON(x0)

k ← 0
while stop condition not met do ⊲ usually ‖∇f (xk) ‖ or ‖xk − xk−1‖ ⋍ 0

Nk ←∇f (xk)H
−1
f

(xk) ⊲ Nk: Newton’s step at iteration k
xk+1 ← −αNk + xk ⊲ α: step control parameter

k ← k + 1
end while

Output xk

end procedure

in the latter, due to two additional stages, expansion and contraction, it can change its shape so adapting to the

local landscape and slanting towards the local optimum. At the beginning of the optimisation, for a given n-

dimensional problem, n+1 vertices are generated and ordered according to their fitness value. It is thus possible

to identify the point with the lowest fitness value xl (best point), the second worst xs and the one with the

highest value (worst point) xh. All the new vertices generated by this algorithm lie on the lines between these

points and the centroid of the simplex x̄, and are evaluated by employing the aforementioned transformations

as thoroughly reported in Algorithm 3. The proposed pseudo-code refers to a more modern implementation

than the one provided by Nelder and Mead, where two different contractions, namely “Outside” and “Inside”

Contractions (Lagarias, Reeds, Wright & Wright 1998), are being used. Despite this minor change, the main

idea is the same: each iteration tries to replace xh with a better vertex by reflecting the new point (xr) away

from the previous, or expanding a too small simplex by generating xe, or also with a contraction (xc) toward a

position confined between xr and xh . If one of these new points succeeds, then it replaces xh, otherwise the

simplex is shrunk in order to focus on a smaller area of the research space.

The transformations involved in this process are very simple and computationally cheap. Their coordina-

tion, displayed in Algorithm 3, can appear intricate at first glance, but it is based on an if/else logic that can

be easily coded. The main drawback of this method is the importance in the choice for the initial simplex. A

good configuration can lead to the optimal solution in few iterations. Conversely, an inadequate initial simplex

can compromise the entire process. Unfortunately, in many real-world applications no a-priori information is

given to know about the problem (black box system), making this choice difficult. Among the possible ways for

sampling vertices, the most commonly used generates n points around an initial guess x0 by adding a quantity

h to each dimension. In this way, the resulting simplex will surely be non degenerate, i.e. the vertices do

not belong to the same hyperspace. In this case, for a strictly convex problem in one or two dimensions, this

method has been proven to converge to a local optimum (Lagarias et al. 1998). A general proof of convergence

for higher dimensions does not exist.
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Algorithm 3 Nelder-Mead Method
procedure NELDER-MEAD(x0)

for i = 1 : n do

xi ← x0 + hiei ⊲ ei: unit vector in R
n, the size of the neighbourhood can be tuned via hi

i← i+ 1
end for

while stop condition not met do ⊲ max budget or

√

∑

i6=h

(f(xi)−f(x̄))2

n
< 10−8 (Nelder & Mead 1965)

**Ordering**

xl ← arg{minif (xi)}
xh ← arg{maxif (xi)}
xs ← arg{maxif

(

xi 6=h

)

}
**Centroid**

x̄← 1
n

∑

i6=h xi

**Transformation**

xr ← x̄+ α (x̄− xh) ⊲ Reflection: α > 0, usually set to 1
if f (xl) ≤ f (xr) < f (xs) then

xh ← xr

else if f (xr) < f (xl) then

xe ← x̄+ γ (xr − x̄) ⊲ Expansion: γ > α, usually set to 2
if f (xe) < f (xr) then

xh ← xe

else

xh ← xr

end if

else if f (xs) ≤ f (xr) ≤ f (xh) then

xc ← x̄+ β (xr − x̄) ⊲ Outside contraction: 0 < β < 1, usually set to 0.5
if f (xc) ≤ f (xr) then

xh ← xc

else

for i = 0 : n do

xi ← xl + δ (xi − xl) ⊲ Shrinkage: 0 < δ < 1, usually set to 0.5
i← i+ 1

end for

end if

else if f (xr) ≥ f (xh) then

xc ← x̄+ β (x̄− xh) ⊲ Inside contraction

if f (xc) < f (xh) then

xh ← xc

else

for i = 0 : n do

xi ← xl + δ (xi − xl) ⊲ Shrinkage

i← i+ 1
end for

end if

end if

end while

Output xl

end procedure
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2.2.3 Hooke-Jeeves Method

The Hooke-Jeeves method (Hooke & Jeeves 1961), is a single-solution deterministic procedure employing

two simple perturbation logics: “exploratory” and “pattern” move. The first one, systematically perturbs one

dimension at time by adding a certain quantity δ both onwards and, if needed, backwards. Conversely, the

latter speeds-up the search process by performing a “jump” towards the direction of the best improvement. The

pseudo-code in Algorithm 4 explains this process in a more formal way. The logic is as simple as it is efficient:

Algorithm 4 Hooke-Jeeves Method
procedure HOOKE-JEEVES(x0)

xhj ← x0

xold ← x0

while stop condition not met do ⊲ max budget or f does not decrease

**Exploratory move**

for i = 1 : n do

xtrial[i]← xhj[i]− δ ⊲ δ is a percentage of the search space size

if f (xtrial) ≤ f
(

(xhj

)

then

xhj ← xtrial

else

xtrial[i]← xhj[i] + δ
if f (xtrial) ≤ f

(

xhj

)

then

xhj ← xtrial

end if

end if

i← i+ 1
end for

if f
(

xhj

)

== f (xold) then

δ ← δ
d

⊲ d > 0, decreasing factor

else

**pattern move**

xtrial = xhj + α
(

xhj − xold

)

⊲ α > 0, speed-up factor

if f (xtrial) ≤ f
(

xhj

)

then

xhj ← xtrial

xold ← xhj

end if

end if

end while

Output xhj

end procedure

if the exploratory move fails δ is decreased, otherwise a pattern search is performed and, if successful, the

newly generated point is the new start point for the next iteration. The magnitude for the pattern search move

can be tuned via a parameter alpha: the higher its value, the longer the step performed along the line between

the previous solution and the current (best) point. Being purely deterministic, the main drawback is the risk of

getting stuck on a local optimum. If the problem is multi-modal, its performance highly relies on the initial

solution.

2.2.4 Short Distance Exploration (S)

First introduced in (Tseng & Chen 2008) and then readjusted in (Iacca, Neri, Mininno, Ong & Lim 2012)

with the name “Short Distance Exploration”, or simply S, this operator is a powerful greedy-descent method
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employing a perturbation logic derived from Hooke-Jeeves (Section 2.2.3). As shown in Algorithm 5, it

executes an asymmetric sequence of steps along the axes: for each dimension (i = 0, 1, . . . n) a full step

δ[i] is taken, if it does not bring any improvement then a half step is performed on the opposite direction. Not

employing the “pattern” move, as happens in Hook-Jeeves, this unbalanced search minimises the risk of visiting

the same point twice. This mechanism is continued until the computational budget allocated expires. According

Algorithm 5 Short Distance Exploration
procedure S(x0)

xs ← x0

xold ← x0

for i = 1 : n do

δ[i] = α
(

xU[i]− xL[i]
)

⊲ α ∈ ]0, 1], suggested value: 0.4 (Tseng & Chen 2008)

i← i+ 1
end for

while stop condition not met do ⊲ Condition on budget or equation 2.5

for i = 1 : n do

xtrial[i]← xs[i]− δ[i]
if f (xtrial) ≤ f (xs) then

xs ← xtrial

else

xtrial[i] = xs[i] +
δ
2

if f (xtrial) ≤ f (xs) then

xs ← xtrial

end if

end if

i← i+ 1
end for

if f (xs) == f (xold) then

δ ← δ
2

end if

end while

Output xs

end procedure

to (Iacca, Neri, Mininno, Ong & Lim 2012) 150 iterations of the aforementioned procedure are sufficient to

reach a good precision, then the exploratory radius has to be reinitialised (Algorithm 5 has to be restarted)

because the search would not lead to significant improvements. For this reason , a different stop criterion

has been adopted in (Caraffini, Neri, Passow & Iacca 2013a), where the search along the axes (depicted in

Figure 2.1) is interrupted only when the exploratory radius δ becomes too small. More formally, the operator is

stopped and restarted when the 2-norm of δ, normalized per each element by the corresponding search interval,

is smaller than a prefixed threshold, as follows:

1√
n
·

√

√

√

√

n
∑

i=1

(

δ[i]

xU[i]− xL[i]

)2

< ε (2.5)

In this way, the hyper-rectangular search space (employed in the majority of the benchmarks), the threshold

ε can be seen as a scale factor for the search space width. S search logic has shown to be generally valid,

see Section 4.2, and particularly efficient in dealing with separable and LSOP, see Chapter 7.2 and Chapter 8

respectively.
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Figure. 2.1. Graphical representation of S search logic.

2.2.5 Rosenbrock Method

The Rosenbrock algorithm is a classical deterministic local search proposed in (Rosenbrock 1960) which, under

specific conditions, has been proven to always converge to a local optimum (Bazaraa, Sherali & Shetty 2006).It

works on a set of n orthogonal directions ξ1, ξ2 . . . , ξn which are rotated at each major step, so that at least one

of the new directions is more closely conformed to the local behaviour of the function to be optimised. At the

beginning of the optimisation ξ is an n× n identity matrix, thus performing steps along the n axes as follows:

xr = xk + d[i]ξi i = 1, 2, . . . , n (2.6)

where d is an n-dimensional vector which is updated after every perturbation. If the search along the i-th

direction has been successful, d[i] is amplified by a factor α > 0 (bigger step forwards), conversely is multiplied

by −β ∈]0, 1[ (step backward). All the successful coefficients d[i] are summed up and stored in vector λ into

the corresponding position λ[i]. At least one direction has to bring an improvement to restart this process, which

is on the contrary interrupted. In this case, if d has reached a too small magnitude to make an improvement,

or the distance between the old and the newly found solution is not relevant, a restart is needed (min(|d|) >

ε OR min(|xs − x0|) > ε, Line 25 in Algorithm 6). The algorithm goes back to the initial prefixed value of

d, updates ξ, and explores the new set of direction through 2.6. This time, due to a change of the coordinate

system, a diagonal move is performed within the search space, as shown in Figure 2.2. The rotation, according

to the original method proposed by Rosenbrock, takes place in two steps. First, a matrix A must be filled

with n vectors Ai =
n
∑

k=i

λ[k]ξk, then the new direction can be found with ξnew
i = Bi

|Bi| , where Bi = Ai −
n−1
∑

j=1

(

Aiξ
new
j

)

ξnew
j . Since the last formula can lead to numerical instability in many problems, an improved

version proposed in (Palmer 1969) has been used in this thesis, whose detailed implementation can be found in

Algorithm 6.
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Algorithm 6 Rosenbrock Method
procedure ROSENBROCK(x0)

xk ← x0

d← 1
10

ones(n) ⊲ n-dimensional vector of 0.1

λ← ∅
ξ← eye (n, n) ⊲ n× n identity matrix

y
′′ ← f (xr)

while stop condition not met do

y ← y
′′

do

y
′ ← y

for i = 0 : n do

xr ← xk + d[i]ξi
if f (xr) ≤ y then

λ[i]← λ[i] + d[i]
d[i]← α · d[i] ⊲ α = 3 in (Rosenbrock 1960), 2 in (Caraffini, Iacca, Neri & Mininno 2012a)

xk ← xr

y ← f (xr)
else

d[i]← −β · d[i] ⊲ β = 0.5 (Rosenbrock 1960)

end if

i← i+ 1
end for

while y < y
′

if y < y
′′

then

if min(|d|) > ε OR min(|xs − x0|) > ε then ⊲ ε = 10−5 (Rosenbrock 1960)

An ← λ ◦ ξn
for k=n-1:1 do

Ak ← Ak+1 + λ ◦ ξk
k ← k − 1

end for

t[n]← λ[n]2

for i=n-1:1 do

t[i]← t[i+ 1] + λ[i]2

i← i− 1
end for

for i=n:2 do
(

ξi ← λi−1 ◦Ai − ξi−1 ◦ t
)

/
√

t[i− 1]t[i]
i← i− 1

end for

ξ1 ← A1/
√

t[1]
x0 ← xk

λ← ∅
d← 1

10
ones(n)

y
′′ ← y

end if

end if

end while

Output xr

end procedure
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Figure. 2.2. Graphical representation of Rosenbrock search logic.

2.2.6 Powell’s Direction Set Method

The conjugate direction set Powell algorithm is a derivative-free local searcher based on the idea of using a

set of non-interfering directions (ξ = [ξ1, ξ2, . . . , ξn]) to search for a minimum in ill-conditioned functions.

The procedure proposed by Powell in (Powell 1964), makes use of a generic search method to minimise the

function along a single direction, e.g. common choices are the Brent or the Golden Section Search (GSS)

methods (Press 2007). According to the original description, ξ can be initialised as an n × n identity matrix,

P0 denotes the initial guess, and the basic procedures to be iterated consist of the following steps:

1. ∀i = 1, 2, . . . , n Pi = λ+ ξi with λ
∣

∣ f (Pi−1 + λξi) is minimised.

2. ∀i = 1, 2, . . . , n− 1 ξi = ξi+1, ξn = Pn −P0.

3. Replace P0 with Pn − λξn with λ
∣

∣ f (Pi−1 + λξi) is minimised.

Powell introduced this method in 1964 for quadratic forms, since in this case k iterations of the above basic

procedure produce a set of directions whose last k members are mutually conjugate. Therefore, after n iterations

(equivalent to n (n+ 1) line minimisations) it exactly minimises a quadratic form. Unfortunately, it has been

noticed that this procedure of replacing ξ0 at each iteration could eventually lead to a set of linear dependent

vectors, thus exploring the same direction multiple times and converging to the wrong solution. This flaw is

likely to happen when the dimensionality of the problem is bigger than 5 variables (this is a strong limitation

considering the complexity of current real-world problems). Algorithm 7 refers to a second version that,

despite giving up to the quadratic convergence property, improves upon the first framework by decreasing

the probability of having linearly dependent directions. As a consequence, the resulting algorithm is more

robust and applicable to a vast set of problems. The directions can adapt to the fitness function, so allowing the

search through diversified landscapes, not necessarily quadratic forms. The ξ matrix is here updated by means

of a heuristic that discards the old direction along which f made its largest decrease (∆f ). This is the most
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Algorithm 7 Powell’s Direction Set method
procedure POWELL(x0)

P0 ← x0

fret ← (x0)
xp ← x0

ξ← eye(n)
while stop condition not met do ⊲ Until f stops decreasing

f0 ← fret
∆f ← 0
i∆ ← 0
for i = 1 : n do

fptt ← fret)
P← lineMin (Pi−1, ξi)
fret ← f (P)
if fret < f (xp) then

xp ← P

end if

if fptt − fret > ∆f then

∆f ← fptt − fret
iDelta ← i

end if

i← i+ 1
end for

fE ← (2P−P0)
if fE < f (xp) then

xp ← 2P−P0

end if

if fE < f0 then

if 2 · (f0 − 2 · fret) · (f0 − fret)
2 −∆f · (f0 − fE)2 < 0 then

P← lineMin (P,P−P0)
fret ← f (P)
if fret < f (xp) then

xp ← P

end if

ξi∆ ← ξn
ξn ← P−P0

end if

end if

end while

Output xp

end procedure

23



promising among the directions, and dismissing it could seem inappropriate, but for this reason it is most likely

to lead to premature convergence. In addition, two more conditions, see Algorithm 7 line 27 and 28, prevent the

matrix from being unnecessarily updated. For the sake of convenience, the generic line minimisation method

generating the new point Pi by moving Pi−1 along ξi will be addressed via the routine lineMin (Pi−1, ξi),

which returns the local minimum Pi. A detailed implementation of this algorithm is given in Algorithm 7. Line

Search techniques can be found in (Press 2007).

2.2.7 Simultaneous perturbation stochastic approximation

SPSA is a gradient based optimiser where the standard finite-difference gradient approximation is replaced with

a stochastic equivalent (Spall 1987), thus making it computationally less expensive than deterministic derivative

based methods and numerically stable. The main idea is to make an estimate of the gradient by simultaneously

and randomly varying all of the variables of the problem under study, rather than perturbing one dimension at

time as it happens in finite-difference based algorithms. Only two fitness functional calls are required in one

iteration. The new point is generated via a perturbation vector ∆k whose component must be sampled from a

zero-mean distribution, e.g. Bernoulli ± 1 with probability 0.5. If f and all the elements of ∆k satisfy all the

conditions in (Spall 1992), then the procedure converges to the local optimum, otherwise return a sub-optimal

point. For the sake of clarity, it must be remarked that the Bernoulli ± 1 distribution is the one suggested

by James Spall in the original implementation, but many other can be chosen. Anyway, normal and uniform

distribution should be avoided as they have infinite inverse moment, i.e. inversion could lead to numerical

instability. The perturbation vector is used to approximate the gradient as shown in Algorithm 8. The proposed

pseudo-code follows the implementation given in (Spall 1998). This is one of the most widely used stochastic

Algorithm 8 SPSA
procedure SPSA(x0)

k ← 0
θk ← x0

while stop condition not met do ⊲ Max budget or f does not significantly decrease

ck ← c
(k+1)γ

⊲ γ = 0.101 in(Spall 1998)

ak ← a
(k+A+1)α

⊲ α = 0.602, “Stability factor” A = 10% of allowed iterations (Spall 1998)

for i=1:n do

∆k[i]← B±1 (0.5) ⊲ i.e. Prob(±1) = 0.5
end for

θ
+
k ← θk + ck∆k

θ
−

k ← θk − ck∆k

ĝk ←
f
(

θ
+
k

)

−f
(

θ
−

k

)

2ck











1/∆k[1]
1/∆k[2]

.

.

.

1/∆k[n]











⊲ Stochastic gradient

k ← k + 1
θk ← θk−1 − akĝk

end while

Output θk
end procedure

gradient-based heuristics. For further details and a comprehensive report on stochastic gradient approximation

one can consider (S. Bhatnagar & Prashanth. 2003).
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2.2.8 Solis-Wets Method

Solis and Wets algorithm is a randomised hill-climber making use of a framework proposed in (Solis & Wets

1981). The main idea is to generate points by sampling them from a multivariate normal distribution centred

close to the current best solution with covariance matrix ρI. ρ acts as an exploratory radius, determining the

diameter of the neighbourhood in which the new point ξ can fall. The exploratory radius can be expanded or

contracted according to the number of successive successful or unsuccessful samplings. This logic, has been

theoretically proven to provide a sequence that, if not stopped (infinite budget), leads to a local optimum (see

original paper). With reference to Algorithm 9, it can be notice that ξ is the linear composition of three vectors.

Algorithm 9 Solis-Wets Method
procedure SOLIS-WETS(x0)

xsw ← x0

ρ← 1
#S ← 0 ⊲ Number of successive successes

#F ← 0 ⊲ Number of successive failures

b← ∅
while stop condition not met do ⊲ Fixed computational budget or ρ smaller than a threshold (accuracy)

ξ← xsw + b+N (0, ρI)
if f (ξ) < f (xsw) then

b← 0.4 (ξ − xsw) + 0.2b
xsw ← ξ

#S ← #S + 1
#F ← 0

else if f (2xsw − ξ) < f (xsw) then

b← b− 0.4 (ξ − xsw)
xsw ← 2xsw − ξ
#S ← #S + 1
#F ← 0

else

#S ← 0
#F ← #F + 1

end if

if #S > Sex then ⊲ Threshold Sex: 5 in (Solis & Wets 1981)

ρ← ex · ρ ⊲ “expand” factor ex: 2 in (Solis & Wets 1981)

else if #F > Fct then ⊲ Threshold Fct: 3 in (Solis & Wets 1981)

ρ← ct · ρ ⊲ “contract” factor ct: 0.5 in (Solis & Wets 1981)

end if

end while

Output xsw

end procedure

The last one is a sample from a normal distribution whose mean value consists of a shifted version, due to

the bias vector b, of the current solution being processed. Once ξ has been generated, if unsuccessful, a step

in the opposite direction is taken (2xsw − ξ) and evaluated. Then, the bias factor is accordingly updated in

order to drive the next sampling in favour of the most promising directions. This method relies on a simple

logic, with a low memory footprint (there is no need to store the whole covariance matrix, but only ρ) and low

computational cost. All the design variables are simultaneously perturbed, i.e. the functional call is performed

after n sampling, thus making this method suitable for non-separable landscapes.

The Solis and Wets’ performances decrease when the dimensionality of the problem grows. Due to the need

of employing fast and light algorithms in tackling LSOP, an improved “large-scale” variant called Sub-grouping

Solis-Wets has been proposed in (Molina, Lozano & Herrera 2010). This version features the simplicity of the
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classical Solis-Wets combined with a mechanism that splits the problem under study into sub-problems. As

shown in Algorithm 10, a subset of design variables is stochastically chosen and grouped before being optimised

by Solis-Wets. In this way, the resulting optimiser (Algorithm 11) faces only low dimensional sub-problems.

Algorithm 10 SetSubSet
procedure SETSUBSET(maxVars)

iniV ar ← I (1, n) ⊲ Random integer number uniformly distributed in [0, n] ⊂ N

numV ars← 0.2 · n
subSet← ∅

if numV ars ≥ maxV ars then

numV ars← maxV ars
end if

for i = iniV ar : (iniV ar + numV ars− 1) do

subSet [i%n]← 1
end for

Output subSet

end procedure

Algorithm 11 Subgrouping-Solis-Wets Method
procedure SSW(x0)

xsw ← x0

ρ← 1
#S ← 0 ⊲ Number of successive successes

#F ← 0 ⊲ Number of successive failures

b← ∅
while j < budget do

change← ∅

if j%maxEvalSubSet then ⊲ maxEvalSubSet = total budget
10

(Molina, Lozano & Herrera 2010)

change←SETSUBSET(maxV ars) ⊲ Algorithm 10, maxV ars = 50 (Molina, Lozano & Herrera 2010)

end if

for i = 1 : n do

if change [i] then

ξ [i]← xsw [i] + b [i] +N (0, ρ)
end if

i← i+ 1
end for

j ← j + 1
if f (ξ) < f (xsw) then

b← 0.4 (ξ − xsw) + 0.2b
xsw ← ξ

#S ← #S + 1
#F ← 0

else if f (2xsw − ξ) < f (xsw) then

b← b− 0.4 (ξ − xsw)
xsw ← 2xsw − ξ
#S ← #S + 1
#F ← 0

else

#S ← 0
#F ← #F + 1

end if

if #S > Sex then ⊲ Threshold Sex: 5 in (Solis & Wets 1981)

ρ← ex · ρ ⊲ “expand” factor ex: 2 in (Solis & Wets 1981)

else if #F > Fct then ⊲ Threshold Fct: 3 in (Solis & Wets 1981)

ρ← ct · ρ ⊲ “contract” factor ct: 0.5 in (Solis & Wets 1981)

end if

end while

Output xsw

end procedure

Table 2.1 highlights the main properties of the proposed methods in terms of their search logic and memory

requirement. Each one of them can be used in a strategic way according to the problem: stochastic methods,
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Table 2.1. Local Searchers main properties (n refers to the dimensionality of the problem).

LS algorithm Search Logic Derivatives Memory Footprint Processed Points Convergence

NEWTON
Deterministic

1st and 2nd order
O

(

n2
)

Single-solution q-quadraticallya

(gradient descent) (Hessian matrix)

HOOK-JEEVES Deterministic Derivative free O (n) Single-solution No proof

S
Deterministic

Derivative free O (n) single-solution No proof
(along the axis)

NELDER-MEAD Deterministic Derivative free
O

(

n2
)

Multiple-solution Convergenceb

(simplex vertices)

ROSENBROCK
Deterministic

Derivative free
O

(

n2
)

Single-solution Convergencec

(diagonal move) (rotation matrix)

POWELL
Deterministic

Derivative free
O

(

n2
)

Single-solution n (n+ 1) stepsd

(diagonal move) (directions matrix)

SOLIS-WETS
Stochastic

Derivative free O (n) Single-solutions Convergencee

(diagonal move)

SPSA
Stochastic

1st order O (n) Single-solutions Convergencef

(gradient descent)

aOnly for uni-modal and locally twice Lipschitz continuously differentiable functions.
bFor convex functions in 1 and 2 dimensions.
cUnder hypothesis on the fitness, such as differentiability, and on the line search method (Rinaldi 2012)
dUsing the classic method in (Powell 1964) on quadratic forms.
eIf f quasi-convex and inf-compact, converges in a neighbourhood of the local minimum. (Solis & Wets 1981).
fUnder conditions on f and the distribution of probability used as in (Spall 1992)

for instance, are more robust in the presence of noise, on the other hand deterministic gradient based methods

converge much quicker and with a higher accuracy in uni-modal problems. Deterministic evaluation of the

gradient (and Hessian matrix) could lead to numerical instability beyond being computationally expensive.

Stochastic approximation usually overcomes this problem but once again, the memory occupation issue and the

temporal overhead introduced during the Hessian matrix processing still persist. For these reasons LS methods

must be carefully chosen also taking into account external additional considerations. An example is the case of

Engineering, where one could have a simple quadratic mono-modal problem but not be able to use algorithms

such as Newton, Rosenbrock or Powell’s method, because the project specifications require the optimiser to

be plugged into an embedded system, or the optimisation process to be undertaken in real-time. A trade-off

must always be taken in selecting a component during the algorithmic design phase. With reference to the last

column of Table 2.1, must be said that the presence of theoretical proof of convergence could also be useful

information in order to pick the right algorithm, e.g. if a problem satisfies all the hypothesis for the Newton

method, then that one could be the best choice. Anyway, in the majority of cases, such mathematical conditions

don’t hold in the real world, or not much is known about the problem under study. So, the presence of a proof

of convergence does not necessary imply that the algorithm is better or preferable with respect to the others in

any case. Other issues in combining more LS algorithms or LS+Global Search (GS) together will be discussed

in Chapter 4.
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2.3 Global Search

The main goal of global optimisation is to find the extreme of a function regardless of its number of local

optima. Unlike LS, it is in this case essential to explore the search space as much as possible rather than exploit

an initial guess toward the direction of maximum decrease. Therefore, a good global optimiser should not

only rely on the gradient information, but be able to sift the search space “jumping” out from local critical

points. The simplest logic one can think of is based on a brute force approach, known as enumeration. A

grid of Kn points is built within D, e.g. each dimension is digitalised in n equally spaced values, and their

fitness is evaluated. The bigger the number of points, the higher the reliability (as well the computational

cost). A stochastic counterpart has also been proposed in (Gross & Harris 1985) with the name Random Walk.

It simply consists of sampling randomly generated numbers within D and recording each improvement that

occurs. These two examples, representing the first attempts of global optimisation, feature the following issues.

The former needs a seriously high amount of functional calls in order to reach a reasonable accuracy, resulting in

a computationally expensive and, at the same time, inefficient method. Due to the theoretically infinite number

of points forming a continuous problem, this “greedy” approach is indeed weak and useless in many cases. On

the other hand, the latter performs a completely randomised search which is good in handling noisy and highly

multi-modal landscapes, but requires too much time in order to converge. Modern real world applications

have become mightily complex and connected, e.g. networks sensors, telecommunications and neural systems,

thus requiring real-time processing, robustness and reliability. The aforementioned techniques can no longer

be used. In this light, the need of “putting intelligence” into algorithms arises. Modern global optimisers,

as further discussed in section 2.4, are operators drawing their inspiration from intelligent and self-organising

systems present in nature. The same way primates have evolved, DNA fragments persist in new generations,

storms of animals organise themselves without a central coordination, or an atomic cluster reshapes itself in

a lower energetic configuration when cooling down, so CIO methods evolve and refine a set of promising

solutions. By mimicking these processes, CIO provides robust and versatile tools, displaying a good balance

between exploration and exploitation of the search space. These techniques have been mainly developed during

the last few decades, but are still the object of research.

2.4 Meta-Heuristics

The need to optimise a black-box system led computer scientists to develop versatile algorithms which do not

require any assumption on the fitness function f . These general-purpose techniques are usually addressed with

the term meta-heuristics, a Greek expression which literally means “beyond the search”. Indeed, the search

takes place on a higher level, where a master strategy inspired by natural phenomena, rules sub-operators

in order to solve a given problem. The strength of meta-heuristics is their vast applicability. Regardless of

the nature of the fitness function, which cannot even have an analytical expression (e.g. row data coming

from a sensor), they work on an abstract level requiring only fitness evaluations. According to this definition,
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methods like Rosenbrock, S, Nelder-Mead, Solis-Wets and Hooke-Jeeves can be considered meta-heuristics,

since they don’t make any hypothesis on f , thus not needing to know the problem under study. It must be said

that nowadays this word is assuming a stronger meaning, referring mainly to a general framework for global

optimisation, dealing with non-linear and multi-modal problems.

There exists a vast literature about meta-heuristics for global optimisation, spanning from Bee or Ant

Colony Optimisation to Bacterial Foraging, Quantum Algorithms and many others metaphors and variations.

All in all, most of them are diversifications of the same core concepts, and can be grouped under 4 big families:

Evolutionary Algorithm (EA), Swarm Intelligence (SI) in Optimisation, DE and MA/MC. Among the huge

variety of algorithms belonging to EA and SI, those which historically made a turning point will be briefly

described in Chapter 3. A literature review presenting some recent advances in these fields will be given, in

order to present in detail some modern versions which have been implemented and employed as comparison

algorithms in this piece of research. MC will be extensively treated. Chapter 4 provides an introduction to the

topic, explains the rationale behind this approach and also presents recent advances in the field. Chapter 6 and

7 include further investigations in MC, describing the majority of the findings that have been achieved during

my doctoral studies.

It must be said that Chapter 3 will mainly focus on a class of meta-heuristic methods called population based

algorithms, i.e. algorithms handling a set of multiple solutions. This class has been intensively studied since

having “population of solutions” has been proven to carry a number of beneficial aspects (Prügel-Bennett 2010).

For instance, the initial random sampling for generating the population performs an exploratory random walk

within the search space. The population also acts as a filter which averages the landscape, so being able to

handle small basins of attraction and small spikes present in the fitness. Evolving more solutions also improves

the stability of the algorithm, i.e. standard deviation of the final values is reasonably small. For these reasons,

population based approaches are usually preferred to single-solution methods. On the other hand, single-

solution algorithms have a simpler structure with a lower memory footprint and, usually, a lower computational

overhead. This makes them suitable for real-time applications and easy to embed in a hardware platform with

memory limitations. In addition, it has recently been shown how (with some algorithmic precautions) they

can display a similar (if not better) performance of consolidated population-based algorithms. In this regard,

see (Caraffini, Neri, Iacca & Mol 2013), (Caraffini, Neri, Passow & Iacca 2013a), (Iacca, Neri, Mininno,

Ong & Lim 2012) or in this work, Section 4.2, Section 6.2 and Chapter 7.1. Among popular single-solution

meta-heuristic for global optimisation, it is worth mentioning SA (Kirkpatrick, Gelatt & Vecchi 1983) and its

improved variant (Xinchao 2011). The latter has been used for comparison in this thesis, therefore, a brief

description is given in the following subsection.

2.4.1 Simulated Annealing

SA is a stochastic meta-heuristic for global optimisation inspired from metallurgy, where metal is heated and

subsequently cooled down in order to increase its crystal and reduce its defects. In effect, at high temperatures,
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atoms are not confined within the crystal structure but free to move chaotically (exploration), while they settle

down as soon as the temperature decreases (exploitation). By controlling the cooling, atoms are placed in a

minimum energy configuration within the new crystal. This position cannot be achieved by dropping down

the temperature immediately. Intermediate steps, with poor configurations occur. In the same way, SA

stochastically move a solution within D, initially covering big steps, and then converging by reducing the

exploratory move. A good solution could be discarded during the convergence process in favour of worse

configurations that can randomly occur. This process can be seen as a local search enhanced with a restart

system for avoiding local minima. The risk of getting stuck on a local minimum is reduced by accepting poor

configurations, with a probability which decreases exponentially e
− f(xk)−f(xk−1)

Tk . Many versions exist in the

literature, Algorithm 12 presents the general framework. The typical perturbations strategy for SA makes use

of a random number generator (usually Gaussian or Cauchy) to sample a new point xh, while the temperature

is commonly updated with the following:

Tk =
T0

ln (1 + k)
(2.7)

where T0 is the initial (or maximum) temperature. This algorithm were first proposed for combinatorial

optimisation in (Kirkpatrick et al. 1983), but has then also been largely used in continuous optimisation. Among

the implementations for continuous problems, a recent version called Non uniform Simulated Annealing

(nuSA) has shown to be promising in both toy-problems (Xinchao 2011) and robotic applications (Iacca,

Caraffini & Neri 2013). This variant improves upon SA thanks to a non-uniform perturbation

xk[i] =

{

xk−1[i] + ∆
(

k,xU[i]− xk[i]
)

if U (0, 1) > 0.5

xk−1[i]−∆
(

k,xk[i]− xL[i]
)

otherwise
i = 1, 2, . . . , n (2.8)

acting as a classic Cauchy perturbation at early stages, i.e. global moves are taken within D, and subsequently

as a Gaussian perturbation, i.e. locally distributed around its mean value, when k is close to maximum amount

of fitness functional calls K. This behaviour is guaranteed by ∆(k, y) = y ·
(

1− U (0, 1)(1−
k
K )

b
)

, which

returns a value approaching to zero as k increases. The b parameter is problem dependent and takes integers

values, e.g. b = 5 in (Xinchao 2011). Regarding the cooling procedure, the following geometric progression is

used:

Tk = α · Tk−1 (2.9)

with α ∈ [0.9, 0.99]. It must be noted that in this case, the initial temperature T0 is not allocated in advance, but

estimated on the problem under investigation. A set of (e.g. 10) randomly sampled points must be generated

and the best one xbest, as well as the worst one (xworst), are collected to evaluate T0 = − f(xworst)−f(xbest)
ln(ξ) ,

where ξ is the initial acceptance rate for the worse solution. A value of ξ = 0.9 assures a good ability to explore

the landscape at the beginning of the optimisation process.
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Algorithm 12 Simulated Annealing
k ← 0
xk ← randomSampling (1, N,D)
xsa ← xsa

while budget condition do

k ← k + 1
xk ← createNeighborSolution (k) ⊲ e.g. Equation 2.8 in nuSA

Tk ← cooling (k) ⊲ e.g. Equation 2.7 and 2.9 for SA ans nuSA respectively

if f (xk) ≤ f (xk−1) || e
−

f(xk)−f(xk−1)
Tk < U (0, 1) then

if f (xk) ≤ f (xsa) then

xsa ← xk

end if

else

xk ← xk−1

end if

end while

Output xsa
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Chapter 3

Modern meta-heuristics: literature review and ad-

vances of the most popular families

This chapter is a compendium of the most important “milestones” in modern optimisation. A detailed

description of existing optimisation methods would fall outside the scope of this thesis. Nonetheless, a brief

description of the outlines of the main techniques is needed in this thesis as it introduces methods that are

modified, combined, and reinterpreted in the following chapters. Meta-heuristics presented in the 1980s and

1990s are classified into two main categories, EA and SI algorithms, respectively. In addition, DE is an

optimisation framework displaying intermediate features between EA and SI algorithms. For the indicated

decades, these algorithms were originally designed aiming to find a “universal algorithm”, capable of global

problem solving and outperforming all the others. The common thought that meta-heuristics could potentially

be used to exactly solve every problem and thus the search of the best optimiser radically changed in 1997 when

Wolpert and Macready theoretically disproved (under some hypotheses) this belief. This theoretical result has

as a consequence the fact that algorithmic versatility offsets by a loss of performance. In other words, the wider

the range of applicability, the lower the the performance in tackling a specific problem. For example, EA are

not globally better than SI, but only better over a class of problems and vice-versa. To some extent, a basic

Random Walk is not worse than EA over some specific problems, and according to (Wolpert & Macready 1997)

the average performance of all meta-heuristics over all the possible problems is the same (see Appendix B for

further details). This finding did not stop research in optimisation, but stressed the point that general purpose

techniques, e.g. a random walk, must only be used when no knowledge of the problem is available (Black-

box). On the other hand, an algorithm specifically tailored to the problem would provide a better solution, as

graphically shown in Figure 3.1. It must be finally said that optimisation algorithms must be designed while

taking into account practical aspects of real-world problems. For example, in some situations, a trade-off

between algorithm’s flexibility and specific performance must be found.

32



Figure. 3.1. Algorithms performance.

3.1 Evolutionary Algorithms

The idea of exploiting Evolution as a way of optimisation dates back to 1948 with Alan Turing. Even though

he first proposed an “evolutionary approach”, extensive experiments could be run only later on in the '60s

(Bremermann 1962). In those years, computer scientists started designing algorithms inspired by Genetics and

Darwinian Evolution, which have afterwards been grouped together under the umbrella name EA, a subset of a

big branch of computer science commonly named Evolutionary Computing (EC). Regardless of the metaphor

adopted, every EA is based on the same basic concept, and all of them share the same general structure as

shown in Algorithm 13. First of all, EAs evolve a population of individuals, that is a set of solutions in D,

whose size has to be tuned according to the problem (noisy, mono-modal, multi-modal, etc.). During one

iteration of the algorithm (generation) one or more new individuals are generated. The external force which

Algorithm 13 Evolutionary Algorithm
Initialisation ⊲ Randomly sample initial population

while condition on budget or fitness do

Selection

Recombination

Mutation

Replacement

end while

Output best individual

guides the evolution by awarding promising (fitter, from which comes the name fitness function) solutions is

the Selection operator. Usually two “parents” are selected according to their fitness, the lower the better, but

a certain probability of selecting bad individuals is always present in order to avoid premature convergence.

A new point commonly called “offspring”, expecting to have a fitness whose quality is at least as good as the

one of its parents, is generated by mixing the previously selected points (Recombination). This exploration is

somehow limited within the surrounding of the parents, therefore, by means of Mutation a further move attempts

to keep population’s diversity high, looking for unexplored sectors. Finally, with the Replacement operator it

is decided whether or not new individuals can get a place within the population. The main idea is that better

individuals go on, while bad ones are discarded (survival of the fittest), so forcing the population to adapt to

the environment as happens in nature. This simple trial-and-error procedure does not make any assumption

33



on the fitness landscape and it is thus generally applicable to any kind of problem. Even in the presence of

discontinuities, the population would be able to gradually reshape and conform to the fitness landscape.

3.1.1 Genetic Algorithm

The first instance of implementation of this popular algorithm, given in (Holland 1975), was meant to be applied

in combinatorial problems and search logic, but has been then widely employed in mixed and continuous

optimisation, producing a vast literature which could be treated apart as a separate topic, rather than as a

dialect of EAs. The Genetic Algorithm (GA) without any doubt deserves to be mentioned, despite currently

having a marginal role. Unlike other frameworks, when used for continuous optimisation, GA can encode

individuals, often referred to as “chromosomes”, by means of both real-valued numbers and binary strings

(usually processed with Gray Code). According to the population representation adopted, recombination and

mutation must be opportunely chosen. Recombination, takes here the name of “Cross-Over”, and consists of

randomly mixing two parents by swapping, copying or scrambling a portion of their components, commonly

called “genes”. In the real-value case, also a linear combination of the components of the parents can

be performed (Herrera, Lozano & Sánchez 2003). Consequently, the offspring undergoes mutation, and

with a certain probability one or more dimensions are flipped (or randomly perturbed with a Gaussian or

Cauchy number within the bounds when real coding is used). This is the most exploratory moment, that

allows us to reach sectors of D that would be contrarily uncovered. The last, but not least important stage,

namely “replacement” or “survivor selection”, eventually performs the logic for creating a new population by

keeping/rejecting some new and old individuals. This step can be implemented in many different ways, since

during a single iteration of a GA, cross-over and mutation can be used one or multiple times in order to generate

offspring from a parental pool of selected chromosomes. In detail, by following a well known nomenclature,

let µ be the population size and λ the number of newly “born” solutions. Then, µ points must be taken out

from a set of µ old plus λ new solutions. In the simple GA, also called generational GA, a mating pool of size

µ is considered (the full population) and λ = µ sons are reproduced in a single iteration. Only when a new

generation is ready, from which comes the name “generational”, does the old population face extinction, being

brutally replaced by the new one. This replacement strategy is technically named (µ, µ) survivor selection.

On the other hand, λ strictly less than µ, we talk about steady-state GA. Usually, a mating pool of only two

individual is used and, according to the employed cross-over, λ = 1 or λ = 2 dual individuals are generated.

These offspring can simply replace the oldest solutions in the current population (aged-based replacement), or

replace the worst between the parents (regardless of whether their fitness is worse or better than one of the

removed solutions), or the best µ solutions out of µ+ 1/2 are taken as the new generation ((µ+ 1/2) survivor

selection). It must be noted that the last method guarantees the prevention of the fittest element’s presence onto

the new generations. All the algorithms preserving the best ever found solution in the population are said to

be elitist. Elitism is an important feature that could be required in some cases, e.g. in hybrid algorithms it

assures that promising solutions coming from an LS, or other algorithms, are then not brutally discarded by a

generational approach or an aged-based replacement.
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Many different schemes exist for parent selection. A peculiarity of GA is that parents are selected in a

stochastic way, so that the same individual can be chosen multiple times for breeding. The main idea is that

fitter solutions have a higher probability to be selected in order to guide the evolution, since they are potentially

able to generate a promising offspring. At the same time, a small probability of accepting mediocre individuals

has to be present, otherwise population diversity would wane and the algorithm could get stuck on a local

minimum. This goal was firstly achieved via Fitness Proportional Selection (FPS). As suggested by the name,

a direct use of the fitness value is made to process the probability for each individual to be selected for mating,

and this probability has to be proportional to its fitness value (Prob (xselected = xi) = f (xi) /
M
∑

j=1
f (xj)).

Common routines for FPS, are for instance the Roulette Wheel Selection (RWS) and the Stochastic Universal

Sampling (SUS), see (Eiben & Smith 2007) for implementation. Since the first method does not give a good

sample of the fitness distribution probability, the second way is usually preferred when multiple points have to

be consecutively drawn from the distribution, while the first is preferred whenever only one sample is required.

Algorithm 14 reports a routine for performing a single sampling with RWS. Both the methods mimic the

functioning of an unconventional roulette wheel, having different sizes for each sector, i.e. sectors represent

individuals of the population. While RWS needs a spin for each selection, SUS works on a single spin of the

roulette wheel, then the desired number of individuals to be selected, let it be nind, is sampled by proceeding

clockwise, from the start individual, with an angular step of 2·π
nind

radians. This procedure guarantees that

individuals selections are in line with the expected frequencies. In a nutshell, if a solution occupies 2.5% of

the wheel, after 100 samplings it would be selected no less than 2 times and no more than 3. These methods

rely on a direct access on the fitness function value of each point in the population. Moreover, it has been

noticed that this approach becomes inconsistent for steady landscapes, where individuals tend to have similar

fitness values (It would result in a uniform random selection). This issue can be tackled by also taking into

account an extra information on top of the absolute fitness value, i.e. population average fitness and standard

deviation, as in the Sigma Scaling method proposed by Goldberg (Goldberg 1989). An alternative way to avoid

this problem, is given by Rank-based selection: the actual fitness value is assessed to assign a score to each

individual, then the probability is generated according to the rank so obtaining a diverse set of values. In case

of large population size or where no global knowledge of the population is given, the k−Fitness Tournament

Selection scheme can be also used, where k elements are randomly picked from the population, and the one

with the best fitness among them is then selected. Finally, it is worth mentioning the Negative Assortative

Mating selection procedure, originally introduced in (Fernandes & Rosa 2001), which has been found to be

suitable in hybrid algorithms, see (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010a) described in Chapter

4, in order to maintain a high the fitness diversity in the population of solutions. In order to achieve this

goal, the first parent is simply sampled via RWS, while the second is chosen as the most distant individual

from the first parent belonging to a set of k points (that can be sampled via RWS as well). This selection

scheme was first introduced for binary encoding, employing the Hamming distance in order to measure the

diversity between individuals. A real-valued version has been also proposed in (Molina, Lozano, Garcı́a-

Martı́nez & Herrera 2010a), where the Euclidean distance has replaced the Hamming distance and all the

individuals involved are randomly drawn from a uniform distribution, so avoiding ranking procedures and RWS.

It must be said that Positive Assortative Mating also exists, i.e. the closest individual is selected rather than the

farthest, and can be used to pursue a quicker convergence. As for cross-over and mutation, a plethora of variants
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exist in the literature. In (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010a), the BLend X-over (BLX) cross-

over operator (Eshelman & Schaffer 1992), and the Breeder Genetic Algorithm (BGA) mutation (Mühlenbein

& Schlierkamp-Voosen 1993) have been suggested as a good combination to enhance the exploration of the

fitness landscape. Given two individuals x1 and x2 and a parameter α ≥ 0, 0.5 in this case, BLX-α generates

an offspring xoffspring by means of the following:

xoffspring [i] = U (mini − δi · α,maxi − δi · α) i = 0, 1, ..., N (3.1)

where mini and maxi are the maximum and the minimum value between the i− th component of x1 and x2

respectively, and δi is the interval maxi − mini. A value of 0.5 for α is sufficient to spread the distribution

of the chromosome during the evolution, while BLX-0 is needed where the aim is to shrink the population

distribution. BGA mutation then takes place on the newly generated offspring by altering only some of its

genes according to:

xmut
offspring[i] = xoffspring[i] + B±1 (0.5) · rangei ·

15
∑

k=0

αk · 2−k i = 0, 1, ..., N (3.2)

with rangei = 0.1 ·
(

xU[i]− xL[i]
)

, and αk randomly sampled in {0, 1} with a probability p (αk = 1) =
1
16 . Such probability implies the mutation is expected to occur 1 time on each gene, since the sum-

mation in Formula 3.2 iterates 16 times (k = 0, 1, ..., 15), so generating a mutated gene within the interval
[

xoffspring[i]− rangei,xoffspring[i]− rangei · 2−15
]

∪
[

xoffspring[i] + rangei · 2−15,xoffspring[i] + rangei
]

. This

generated solution, is then immediately inserted in the population in the fashion of steady-state elitist GAs,

since this combination of operators was thought to be used together with an LS, see (Molina, Lozano, Garcı́a-

Martı́nez & Herrera 2010a), whose beneficial effects could be spoilt by a non-elitist approach.

Algorithm 14 Roulette Wheel Selection Algorithm

procedure RWS(Values) ⊲ Values: in GAs contains population’s fitness values

treshold← 0
s← 0
I ← size of Values

for i = 1 : I do

s← s+Values[i]
end for

r ← U (0, s)
for i = 0 : I do

treshold← treshold+Values[i]
if r ≤ treshold then

Break

end if

end for

Output i
end procedure
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3.1.2 Evolution Strategy

In Evolution Strategy (ES) the concept of self-adaptive parameters, i.e. the parameters automatically

tune themselves during the optimisation process, was introduced for the first time, (Schwefel 1965)1 and

(Rechenberg 1971). ESs are completely randomised algorithms, where individuals are sampled “run-time”

from a distribution which identifies the population, and so it makes sense to talk about parent-population and

offspring-population rather than parents and offspring. The distribution of probability, usually a multivariate

Gaussian function, is constantly updated using the best individuals and the self-adapting parameters which have

lead to them. For this reason, a great amount of information must be stored in memory. In the most general

situation, an individual is a compound of three vectors: 〈x, σ, α〉. The first one encodes the coordinates of a

point in D, the remaining are strategy parameters for the mutation operator. The idea is that better individuals

also contain a better parameters set that, if used in order to adapt the parental distribution to the problem, can

potentially lead to the generation of promising new solutions. Both object variable and strategy parameters are

mutated, evolution is then mainly driven by the mutation operator.

Recombination plays only a minor rule in ES but it is still present under two principal variants: discrete

and intermediary. In the first scheme, two points are drawn and for each dimension, the offspring has a 50%

probability to inherit a gene from the first or second parent. In the latter variant, each gene of the offspring is

the average of the corresponding genes coming from the parents. For the sake of completeness, it must be said

that beside the described pairwise (or local) scheme, a multi-parent procedure (or global) also exists, where the

whole population or just a subset of its most promising solutions are considered, and for instance, averaged with

random weights in order to produce a new point. Both the recombination strategies can be applied at the same

time on a single individual, e.g. local-discrete recombination is preferred for the object variables part, while

global-intermediary is preferred for strategy parameters. The best choice among these methods, as always,

depends on the specific problem. It must be noted that there is no particular selection rule, points are simply

randomly drawn when needed.

The mutated version x
′

of a generic child x is then obtained from a Gaussian distribution centred in x

with covariance matrix C. Simply x
′ ∼ N (x,C), where C is constructed after σ = σ1, σ2, ..., σnσ and

α = α1, α2, ..., αnα being updated. For the sake of clarity, σ represents the standard deviation vector (also

called step sizes vector), i.e. used to work out the variance on the diagonal of C, while α contains the angles of

the rotation matrix for the Normal distribution, which therefore can be used to calculate the cross-correlation

between two variables in C. By updating these parameters the normal distribution can rotate, vary in size and

shape so adapting to the landscape. This peculiarity makes ES suitable for ill-conditioned problems. It must be

said that this is the most general scheme. One can also use uncorrelated mutations, for example in uncorrelated

mutation with n step sizes α vanishes, preventing rotation and allowing only changes in shape along the axes.

In uncorrelated mutation with 1 step size instead, σ degenerates into a scalar value σ (⇒ C = σI where I is

the identity matrix), resulting in the circular shape (for a 2-dimensional problem) shown in Figure 3.2 that can

only move and change in size.

A set of λ new points are sampled via mutation, and then evaluated for replacement. There are two widely

1A description in English is given in (Schwefel 1981).
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Figure. 3.2. Graphical representation of ES mutation operators. Uncorrelated mutation with 1 step size (left),

uncorrelated mutation with n step sizes (middle) and correlated mutation (right). The oval represents the

distribution from which points are sampled.

used strategies: (µ, λ) survivor selection or “comma” selection, and (µ+ λ) survivor selection or “plus”

selection. Unlike what happens in GA, the first strategy can also have λ > µ, and the old population is

replaced by choosing the µ out of λ fittest individuals. The second method, preserves old dated solutions (good

in dynamic environments) by selecting the best µ individuals out of a complete set of all µ+ λ solutions.

Among ESs, CMA-ES is probably the most important and efficient. A more detailed description of this

framework and some of its variants are reported below.

3.1.2.1 Covariance Matrix Adaptation Evolutionary Strategy

The Covariance Matrix Adaptation ES (Hansen & Ostermeier 1996) is one of the most elegant and powerful

meta-heuristic optimisers, based on a solid mathematical background and featuring several desirable properties,

i.e. lack of problem dependent parameters and invariance to many transformations. CMA-ES is a completely

randomised framework evolving a multivariate normal distribution whose mean and covariance matrix are

adaptively updated from a subset of promising solutions, making it suitable for ill-conditioned landscapes. Due

to the necessity of evaluating and storing in memory the covariance matrix at each iteration, this solver is

difficult to apply in LSOP, for memory consumption and time complexity issues. Despite these flaws, this is

one of the most efficient frameworks for general-purpose optimisation, especially when applied on mono-modal

problems.

Referring to the standard CMA-ES with rank-µ-update and weighted (or global) recombination, as

presented in (Nikolaus & Stefan 2004), the basic step, that is the sampling of an individual xk (k = 1, 2, ..., λ)

in a generic generation g + 1, is given by:

x
(g+1)
k

∼ N
(

〈x〉gw, (σg)2Cg
)

(3.3)
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where N
(

m,σ2C
)

is a multivariate normal distribution of mean m, step-size σ, and estimated covariance

matrix C. The mean vector 〈x〉gw is a weighted sum of the µ candidate solutions (µ ≤ λ, with λ = 4 +
floor2 (3 · n)) displaying the best performance in term of fitness in the generation g. This vector corresponds

to a recombination result 〈x〉gw =
∑µ

i=1 wix
g
i:λ, where x

g
i:λ denotes the ith best individuals at the generation g

amongst the λ available and wi are weight factors, see (Nikolaus & Stefan 2004) for details. Step-size σ and
covariance matrix are progressively updated in each generation as follows:

Cg+1 = (1− ccov)C
g + ccov ·

1

µcov
pc

g+1
(

pc
g+1

)T
+ ccov ·

(

1− 1

µcov

) µ
∑

i=1

(

x
g+1
i:λ − 〈x〉

g
w

)(

x
g+1
i:λ − 〈x〉

g
w

)T
(3.4)

where ccov is a parameter determining the learning rate for the estimated covariance matrix C, and pc is a

vector namely evolution path that determines the adaptation of the covariance matrix. The update formula is

given by:

pc
g+1 = (1− cc)pc

g +Hg+1
σ

√

cc · (2− cc) ·
√
µeff

σg

(

〈x〉g+1
w − 〈x〉gw

)

(3.5)

where µeff = 1
∑µ

1 w2
i

, cc is a parameter, Hg+1
σ is a function defined by cases that can take values 0 or 1. Also

the step-size σg+1 is iteratively updated. Details about CMA-ES different implementations can be found e.g. in

(Hansen & Ostermeier 2001), (Hansen, Müller & Koumoutsakos 2003) and in the tutorial (Nikolaus 2005). At

the end of each generation the µ individuals displaying the best performance are selected and used to compute

〈x〉g+1
w . After a certain amount of generations, the matrix C evolves and reliably approximates the (theoretical)

covariance matrix.

Subsequently, enhanced versions of CMA-ES have been proposed to tackle specific problems. One of the

main issue with CMA-ES is the deterioration of its performances when dealing with multi-modal functions.

This flaw has been overcome in (Auger & Hansen 2005), proposing a multi-start system which resizes the

population size after each restart (G-CMA-ES).

An interesting version for tackling separable problems has been also proposed in (Ros & Hansen 2008) with

the name sep-CMA-ES. This variant simply makes use of a diagonal covariance matrix (uncorrelated mutation),

thus performing stochastic moves along the axes, as in Figure 3.3, which are preferable for solving separable

problems. It was noticed that this algorithmic scheme improves upon the classic CMA-ES in high dimensional

problems (n larger than 100), even on non-separable objective functions. In other words, it was shown that

while the interaction among variables is very important in low dimensions, it appears not so important when

the dimensionality grows. This phenomenon will be examined and discussed in detail in Chapter 8.

3.1.2.2 (1 + 1)-Covariance Matrix Adaptation Evolution Strategy

A significant and computationally efficient single solution variant of CMA-ES, namely the (1 + 1) Covariance

Matrix Adaptation Evolution Strategy ((1+1)-CMA-ES) algorithm, was presented in (Igel, Suttorp & Hansen

2006). It combines a classic (1 + 1)-ES scheme, i.e. elitist single-solution algorithm, with an improved

mechanism for building the covariance matrix which replaces the computationally onerous Covariance Matrix

2maps a real-valued number to the largest previous integer.
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Figure. 3.3. Graphical representation of the sep-CMA-ES strategy for separable and large scale problems. The

oval represents the distribution from which points are sampled.

decomposition (O
(

n3
)

operations) with an incremental update of the Cholesky factors (O
(

n2
)

operations).

Even though (1+1)-CMA-ES does not employ a population of solutions, it needs to store the covariance matrix,

thus requiring an amount of memory that grows quadratically with the dimensionality of the problem as it

happens in CMA-ES. On the other hand, (1+1)-CMA-ES is numerically less demanding than CMA-ES, still

being able to equal it on non-separable problems. For the sake of clarity, it must be said that in the original

Algorithm 15 (1 + 1)-Covariance Matrix Adaptation Evolution Strategy

procedure (1 + 1)-CMA-ES(x0)

xparent ← x0

I← eye (n)
A← I

xparent ← x0

p̄succ ← ptargetsucc ⊲ p̄succ : averaged success rate, ptargetsucc = 2
11

(Igel et al. 2006)

pc ← ∅

while condition on budget do

z← N (∅, I)
xoffspring ← xparent + σA × z ⊲ The initial value for σ is problem dependent, typical value is 1
if f

(

xoffspring

)

≤ f (xparent) then

xparent ← xoffspring

λ← 1
else

λ← 0
end if

p̄succ ← (1− cp) p̄succ + cpλ ⊲ 0 < cp ≤ 1, cp = 1
12

in (Igel et al. 2006)

σ ← σe
1

d

(

p̄succ− p
target
succ

1−p
target
succ

(1−p̄succ)

)

⊲ d = 1 + n
2

(Igel et al. 2006)

if f
(

xoffspring

)

≤ f (xparent) && p̄succ < pthresh then ⊲ pthresh = 0.44 (Igel et al. 2006)

A← √1− ccovA+
√
1−ccov
‖z‖2 ·

(

√

1 +
ccov‖z‖2
1−ccov

− 1

)

(A× z) zT ⊲ ccov = 2
n2+6

(Igel et al. 2006)

end if

end while

Output xparent

end procedure
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paper Hansen proposes two algorithms based on the (1 + 1) recombination. While the first one processes

the covariance matrix in the fashion of CMA-ES (slow processing), the second version never computes the

covariance matrix explicitly, since operating with the Cholesky factors only (quick processing). Since the

second version has the advantage of saving precious computational operations, it seemed fair to report the

implementation (Algorithm 15) referring to the “quick” variant. In order to avoid confusion, it must be noted

that this implementation is the one that will be addressed in the remainder of this thesis (Section 6.2), with the

name (1+1)-CMA-ES.

3.1.3 Evolutionary Programming

Evolutionary Programming (EP) is an historical member of EC, see (Fogel, Owens & Walsh 1966), which

encodes individuals within a real-valued vector containing either a description of the candidate solution x, and

a set of self-adapting parameters σ called meta-EP. These parameters adapt to the environment, and guide

mutation in order to mimic how new features are revealed in living beings. Each individual consists of:

〈x,σ〉 = 〈x1, . . . , xn, σ1, . . . , σn〉 (3.6)

At every iteration all the individuals in the current population, Pop of size µ, are systematically mutated (no

recombination is needed!) by means of a Gaussian perturbation in order to create a temporary population Pop
′
:

{

σ
′
i = σi (1 + α · N (0, 1))

x
′
i = xi + σ

′
i · N (0, 1)

i = 1, 2, . . . , n ∀ 〈x,σ〉 ∈ Pop (3.7)

where α is a control parameter usually set equal to 0.2. Replacement takes place via a variant of the (µ+ µ)-

survivor selection: each 〈x,σ〉 ∈ Pop ∪ Pop
′

is compared according to its fitness value against µ randomly

sampled individuals. Only the µ tuples which have won more comparisons are stored in the new population.

Apart from the lack of recombination, EP still follows the general scheme in Algorithm 13.

3.1.4 Genetic Programming

GP can be seen as an extension of GA, proposed by Koza (Koza 1992), where a model is evolved rather than a

set of solutions. Individuals in this case are not vectors, but data structures encoded as a parse tree. Their internal

nodes can encapsulate a mathematical formula, a symbolic expression or a fragment of code. External leaves

represent variables and constant that can be used as input. By following the basic steps in algorithm 13, this

population is evolved in order to obtain an individual carrying the mathematical model, or software procedure

with maximum quality. The fitness function is indeed used to express how well the evolutionary generated

model or the software performs. Parents are commonly selected according to their fitness value in order to

proceed with recombination, where sub-trees are swapped between parents in order to generate two sons. The
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original framework did not contemplate mutation, but it has then been proved in (Luke & Spector 1997) that

some random changes in the offspring are of help in the evolutionary process. The population is updated by

following the generational scheme so, at each generation, the old population is completely replaced with new

individuals.

3.2 Swarm Intelligence Optimisation

SI is a very broad and interdisciplinary subject AI. The main idea behind SI comes from the observation of

groups of animals, e.g. a flock of birds crossing the sky or school of fish turning together in the sea, displaying

a remarkable self-organisation despite the fact there is no central intelligence or coordination. The principle

that, by following simple rules, a collective intelligence can arise from apparently non intelligent units, has

attracted the attention of researchers who encoded this behaviour in artificial systems. The expression “Swarm

Intelligence” appeared for the first time in Robotics (Beni & Wang 1989), but telecommunication systems and

optimisation algorithms quickly adopted this concept.

In optimisation, a set of solutions shape a swarm exploring D. Each one of them is singularly moved

by following simple behavioural rules, e.g. follow the swarm leader or adapt your velocity to those of

yours neighbours and consequently update the current position (and/or others physical quantities). In terms

of structure and implementation SI optimisation algorithms are not so different from EA. Even though the

underlying metaphor envisages a swarm rather than a population, spacial coordinates instead of genes, position

perturbation with respect to mating and mutation of individuals, the same concept of moving a set of points

within the search space is encoded. Nonetheless, they have a more rigid scheme for selecting and updating

points in the swarm, characterising this subclass of optimisers. With reference to Algorithm 16, it can be seen

that solutions are cyclically perturbed one at time, and updated right after the perturbation if the new point

outperforms the current solution being considered. This mechanism, commonly called “1-to-1 spawning”,

distinguishes SI and makes sure that every perturbation (usually involving the best point or neighbour points

in the swarm) works on an updated set of solutions. Not employing any fitness-based selection of the point

to be perturbed (all of them are sequentially considered), replacement has to come right after the move, since

the optimisation is guided by making the worse elements in the swarm follow the better ones, rather than

breeding promising individuals allowed in a mating pool. The described procedure follow the same scheme of

steady state (µ+1)-EAs employing and age-based replacement strategy. Many optimisers have been designed

Algorithm 16 Swarm Intelligence Optimisation

Initialisation ⊲ Randomly sample initial swarm

while Condition on budget do

for each x ∈ Swarm do

Update perturbation parameters and apply perturbation: x =⇒ x
′

Update swarm

end for

end while

Output Best Individual

after SI philosophy. Among them, Ant Colony Optimisation (Colorni, Dorigo, Maniezzo et al. 1991) which
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mimics the food-seeking behaviour of ants, and Bacterial Foraging Optimisation (Passino 2002), which models

the foraging and reproductive behaviour of the Escherichia coli bacteria, are worth mentioning and amongst

the most successful and widely used PSO. Regardless of the metaphor adopted, most of these algorithms

implements the same ideas. For instance, both Ant Colony and Bacterial Foraging Optimisation algorithms

implements a similar working principle from Estimation of Distribution Algorithm (EDA), while PSO shares

similarities with (µ+1)-EAs.

3.2.1 Particle Swarm Optimisation

PSO was originally designed by J. Kennedy and R. C. Eberhart for simulating social behaviour, and

subsequently simplified and readjusted for dealing with optimisation (Kennedy & Eberhart 1995). A set of P

solutions, the “particles”, in the parameter space, the swarm, are perturbed taking into consideration the history

of the swarm. A simple entity like a particle, can interact with its neighbour by sharing basic information

about its past motion, and from this social interaction a global capability of problem solving arises from non

intelligent units. In order to do this, each particle xp, p = 1, 2, . . . , P , is encoded as a real-valued vector

containing its position within D. On top of that, two more vectors are associated to each point so storing the

best and the worst position occupied so far from the particle (xb
p and xw

p respectively). Finally, a third array,

called velocity3 vp is required for the perturbation scheme. A particle can thus be seen as a quartet (in the most

general case, xw
p is not usually needed)

〈

xp,x
b
p,x

w
p ,vp

〉

. The vector xb
p, with p so that its fitness value is the

highest in the swarm (highest fitness in minimisation is the lowest objective function value), must be constantly

detected and stored as global best xgb. The standard perturbation consists of updating vp:

v
′
p = φ1vp + φ2

(

xb
p − xp

)

+ φ3 (xgb − xp) (3.8)

and evaluating:

x
′
p = xp + vp (3.9)

where φ1, φ2, and φ3 are three weights which need to be chosen carefully on the problem, since performances

heavily depend on their values (Yuhui & Eberhart 1998), and the superscript represents the new updated value

to be used. Normally, these weights contain a random component, as in (Clerc & Kennedy 2002), but many

other strategies can be adopted for their tuning. In (Zheng, Ma, Zhang & Qian 2003), for instance, a dynamic

time-increasing inertia weight φ1 is employed. It can be said that there are two moves embedded in Formula

3.8: a first one towards the best position by far explored by the current particle, and a second towards the

global best solution. These two forces, together with the old velocity, are weighted and summed up in order

to generate a new velocity vector. In turn, the new velocity change the current position of the particle as in

Formula 3.9. It can be observed that in the case φ2 equal to zero, then PSO behaves like an ES where the

second parent chosen for recombination is the fittest, and the mutation operator is the addition of vp. The

replacement procedure, “survivor selection”, then compare the fitness value of the newly generated particle,

3It must not be confused with the physical meaning of this term, strictly speaking it is a displacement rather than a velocity
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and in case of improvement replaces the local best particle accordingly. The global best point has to be checked

as well. This simple, but extremely efficient logic has been applied on a vast set of problems and real-world

applications of a different nature (Poli 2008). Many variants exist in the literature, and many new perturbation

schemes have been proposed. Multiple perturbation strategies have also been grouped and combined within

a single optimiser, see for example Frankenstein’s PSO (Montes de Oca, Stutzle, Birattari & Dorigo 2009).

Among recent advances in PSO, three significant examples are reported here. These examples are selected

on the basis of considerations of their peculiar features and performances (numerical results can be found in

Appendix E).

An efficient and relatively simple PSO algorithm, Comprehensive Learning Particle Swarm Optimiser

(CLPSO), has been proposed in (Liang, Qin, Suganthan & Baskar 2006). In CLPSO velocity is updated with a

particular formula considering all the best ever explored positions of each particle:

vp = φ1vp + φ2U×
(

xrb
p − xp

)

(3.10)

where U is a n × n matrix of uniform distributed random numbers, xrb
p is a vector built up by randomly

sampling components from all the local bests vectors xb
p. The sampling procedure makes use of a threshold,

Pc, which has to be generated for each dimension i = 1, 2, . . . , n:

Pc−i = 0.05 + 0.45 · e
10(i−1)
P−1 − 1

e10 − 1
(3.11)

where P is swarm size (number of particles). A random number is then drawn and, if higher than Pc, the i− th

component of the corresponding local best particle is followed. Otherwise, two randomly selected local best

particles are compared according to their fitness value. The fittest of the two donates the i − th component to

xrb
p . This scheme as shown to be versatile and efficient in particular up to 50 design variables.

A single solution variant has also been considered in this thesis. The Intelligent Single Particle Optimisation

(ISPO) algorithm features the basic PSO perturbation strategy albeit employing a swarm degenerately narrowed

to one particle. As described in (Zhen, Jiarui, Huilian & Qing-Hua 2010), the single particle is perturbed for

each of the n design variables H times. Social interaction is not possible, so velocity cannot be evaluated

according to the standard way. For h = 1, 2, . . . ,H every i− th variable is then evaluated as follows:

vh+1
i =

A

(h+ 1)P
· U (−0.5, 0.5) +B · Lh (3.12)

where A, P , and B are three problem dependent parameters called acceleration, acceleration power factor,

and learning coefficient. The learning factor L is instead initially set to zero and then updated after each

perturbation, i.e. x [i]t+1 = x [i]t + v[i]t+1. If the new particle improves upon or equals the old one then

Lh+1 = vh+1[i], otherwise (if L 6= 0) Lh+1 = Lh

SF
, where SF is a shrinking factor. L is reinitialised to zero

whether its absolute value is too small, i.e |L| < E = 10−5, due to a number of unsuccessful perturbations .

This mechanism ensures a randomised search along each dimension, whose exploratory radius is larger at the
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Figure. 3.4. Graphical representation of CCPSO2 strategy for large scale optimisation. N is the number of

variables, S is the number of variables per sub-particle, and K is the number of sub-particles.

beginning of the optimisation process and progressively shrinks as h is increased. Despite the lack of a swarm

causing a loss of performance in some class of problems, this algorithm is characterised by a minimalistic

memory footprint, making it easy to plug in embedded systems, see (Iacca, Caraffini & Neri 2013). In addition,

since performing optimisation on each coordinate axis at a time, it has been proven to perform as well as

population based algorithms on separable objective functions, as well as on LSOP.

A recent implementation specifically tailored for LSOP is given in (Li & Yao 2012). The proposed

algorithm, namely Cooperatively Coevolving Particle Swarms for Large Scale Optimisation (CCPSO2), faces

high dimensional problems by decomposing them in lower-dimensional sub-problems, which can be optimised

easier by a simplified and completely randomised PSO variant. As can be seen in Appendix E, numerical results

are competitive with those of other state-of-the-art algorithms in both low and high dimensional functions,

proving also that a simple perturbation can provide accurate solutions if the coordination logic is well structured

and designed. According to the dimensionality of the problem under study, a set of admissible divisors must be

pre-allotted. As graphically showed in Figure 3.4 a divisor S is randomly drawn from this set in order to split

the original N -dimensional swarm in K = N
S S-dimensional sub-swarms. Each sub-swarm is then processed

one at time, and for each sub-swarm only one perturbation is applied to each sub-particle. If this process does

not lead to any fitness minimisation, another divisor is drawn and different sub-swarms are initialised, on the

contrary the successful configuration is kept for the next iteration. No velocity vector is needed, perturbation

adopts a simplified scheme employing Gaussian and Cauchy random moves:

xi =

{

xb
i + C (0, 1) |xb

i − xgb
i| if U (0, 1) < p

xgb
i +N (0, 1) |xb

i − xgb
i| otherwise

i = 1, 2, . . . , S (3.13)

where xb and xgb refer to the personal best and the global best of the current sub-swarm. Fitness functional

calls are performed by reconstructing the design vector concatenating all the components coming from sub-

swarms. It can be seen like a local perturbation on a sub-set of design variables while keeping the others

constant. To some extent, this approach is the population-based counterpart of the modified Solis and Wets
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method for LSOP in Algorithm 11, also employing dimensionality reduction and stochastic Gaussian moves.

3.3 Differential Evolution

DE was designed by Rainer Storn and Kenneth Price in 1995 in an attempt to implement a simple optimiser

for solving a fitting problem. The main idea was to use the scaled version of the difference vector between

two randomly selected individuals of a population, from which comes the name “Differential” Evolution, in

order to create a new point within D. Two basic combinations of difference vectors were originally defined in a

technical report (Storn & Price 1995), then due to its versatility and efficiency this method has been formalised

in (Rainer & Kenneth 1997) and further developed and applied to various problems during the following years,

see (Storn 1996), (Storn 1999), (Storn 2005) and (Price et al. 2005), thus becoming a proper stand-alone

optimisation framework. It is indeed difficult to categorise since sharing, as well as the innovative perturbation

scheme, some features in common with EAs, such as the population of individuals and the cross-over operator in

the fashion of GAs, but also employs the 1-to-1 spawning selection of SI optimisers. In more detail, the structure

of any DE based algorithm follows the schematic in Algorithm 17. After sampling an initial population of M

individuals, each one of them is sequentially perturbed from the first one to the last (generation cycle). Despite

performing 1-to-1 spawning, unlike PSO in case the new individual displays a better fitness value it will get

a place into the population only after a complete generation cycle, and not right after the perturbation. This

generational approach has shown to be more efficient and also allows parallelisation (Rainer & Kenneth 1997),

since each mutation is independent of the others. According to the very first version, assuming to process the

j-th target vector, three random individuals need to be randomly picked from the population: xr1 , xr2 and

xr3 , with r3 6= r2 6= r1 6= j (j = 1, 2, ...,M ). The difference vector can so be evaluated and a mutant vector

obtained from Equation 3.14, where the scale factor F must be chosen in [0, 2]. Mutation is basically a linear

combination of individuals, the reason behind this logic is that this approach guarantees large moves in the

early stages of the optimisation, becoming smaller and smaller, and so more precise around the optimum, as

soon as the population converges, i.e. if individuals are converging in a neighbourhood of the optimum the

magnitude of the difference vector decreases and the new generated point (xm also called mutant vector) falls

in the surroundings of the minimum. In order to assure a certain amount of diversity, the current target vector

and the mutant vector undergo cross-over (originally binary cross-over as in Algorithm 18), so generating an

offspring (xoff ) which compete with its parent ( xj) for survival. If it improves upon its parent, then the new

point will replace the target vector in the new population, when starting a new generation cycle. The presented

algorithm is also known as DE/rand/1/bin, but many other combinations can be used employing some of the

most, by this time, common mutations:

- rand/1:

xm = xr1 + F (xr2 − xr3) (3.14)
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Algorithm 17 Differential Evolution
g ← 1 ⊲ First generation

Popg = randomSampling (M,n,D)
xbest ← fittest individual ∈ Popg

while Condition on budget do

for each xj ∈ Popg do ⊲ j = 0, 1, 2, ...,M
xm ←Mutation ⊲ e.g. Equations 3.14-3.18 in (Storn & Price 1995), Equation 3.17 in (Rainer & Kenneth 1997)

xoff ←CrossOver
(

xj,xm

)

⊲ e.g. Agorithm 18 in (Storn & Price 1995)

if f (xoff ) ≤ f
(

xj

)

then

Popg+1[j]← xoff

else

Popg+1[j]← xj

end if

end for

g ← g + 1 ⊲ Replace the old with the new generation

xbest ← fittest individual ∈ Popg ⊲ update best individual

end while

Output Best Individual xbest

- best/1:

xm = xbest + F (xr1 − xr2) (3.15)

- rand/2:

xm = xr1 + F (xr2 − xr3) + F (xr4 − xr5) (3.16)

- best/2:

xm = xbest + F (xr1 − xr2) + F (xr3 − xr4) (3.17)

- current-to-best/1:

xm = xj + F (xbest − xj) + F (xr1 − xr2) (3.18)

- current-to-rand/1:

xm = xj +K (xr1 − xj) + F
′
(xr2 − xr3) (3.19)

- rand-to-best/1:

xm = xr1 + F (xbest − xj) + F (xr2 − xr3) (3.20)

- rand-to-best/2:

xm = xr1 + F (xbest − xj) + F (xr2 − xr3) + F (xr4 − xr5) (3.21)

together with different cross-over operators, e.g. binary or exponential (Algorithm 18 and 19 respectively).

A particular scheme can be identified by means of the DE/x/y/z notation, where x refers to the vector being

mutated (namely the one to which difference vectors are added), y is the number of difference vectors used

and z indicates the cross-over. For example, x could be “rand” (Equations 3.14 and 3.16), “best” ((Equations

3.15) and 3.17) or even two vectors as in “current-to-best”, “current-to-rand” and “rand-to-best” (Equations

3.18, 3.19, 3.20 and 3.21). The above listed mutations provide a set of different moves across D and can be

chosen according to the problem. The current-to-best/1 strategy, for instance, can be of help in speeding up the

convergence when dealing with non-critical fitness functions, but could be inadequate for highly multi-modal
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functions since privileging the direction toward the current best solution (a basic rand/1 would be preferred

in this case). The current-to-rand/1 mutation (Equation 3.19 with K = U (0, 1) and F
′
= K · F ) is instead

preferable in problems having a strong linkage among variables (e.g. rotated functions). It is worth mentioning

that the latter scheme does not require cross-over, since already contains a built-in arithmetic cross-over and so

features the advantage of being rotational invariant, as showed (Takahama & Sakai 2010). In effect, it can be

easily seen that arithmetic cross-over, i.e. Xoffspring = rxparent1 + (1− r)xparent2 with r = U (0, 1), since

performing a simple linear combination of two points, keeps the same symmetry for the offspring no matter

whether it is applied before or after a rotation of the parents. Conversely, the rotation-invariance property does

not hold in those cross-over operators placing offspring on the available vertices of the hyper-rectangle built

by considering parents as opposite vertices along one of its diagonals, including binary and exponential cross-

over. With reference to Algorithms18 and 19, it can be seen that they operate in substantially different ways.

In the former scheme, the probability of inheriting the i− th gene from the first parent is exactly CR (1−CR

from the second parent). The latter copies a burst of genes from the first parent into a copy of the second parent

starting from a random position, by iterating on the condition U (0, 1) ≤ CR (probability follows the geometric

progression and decays exponentially, from which comes the name). In both cases, the expected percentage of

genes to be exchanged can be fixed by setting the cross-over rate CR. While this can be trivial in the binomial

version, when using the exponential scheme one needs to pay attention to the dimensionality of the problem

and evaluate CR accordingly. This can be automatically achieved by establishing the amount of variable to be

replaced ne and expressing CR in terms of problem dimensionality n as:

CR =
1

nα
√
2

(3.22)

with “inheritance factor” α = ne
n , like shown in (Iacca, Neri, Mininno, Ong & Lim 2012).

Algorithm 18 Binary Cross-Over
procedure XOVERBIN(x1,x2)

Index← I (1, n) ⊲ Random integer number uniformly distributed in [0, n] ⊂ N

for i = 1 : n do

if U (0, 1) ≤ CR || i == Index then

xoff [i]← x1[i]
else

xoff [i]← x2[i]
end if

end for

Output xoff

end procedure

DE performances depend on the choice of F and CR. If this small number of parameters to be tuned

is a strength of DE, on the other hand they play an important role and should be chosen on the specific

problem in order achieve the desired goal. This is obviously not a trivial issue, and many DE variants have

been designed with the aim of making these parameters self-adaptive. Some of the most important versions

are briefly described below, for an extensive literature review and survey see (Neri & Tirronen 2010) and (Das

& Suganthan 2011). Originally, F was allowed in [0, 2] and CR, being a probability, in [0, 1]. After further

experiment and research these ranges have been narrowed, and common values assuring best performances

should be picked in F ∈ [0.5, 1] and CR ∈ [0.8, 1] (Liu & Lampinen 2005). In the same study a population
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Algorithm 19 Exponential Cross-Over
procedure XOVEREXP(x1,x2)

xoff ← x2

Index← I (1, n) ⊲ Random integer number uniformly distributed in [0, n] ⊂ N

xoff [Index]← x2[Index]
i← Index+ 1
while U (0, 1) ≤ CR || i 6= Index do

xoff [i]← x1[i]
i← i+ 1
if i > n then

i← 1
end if

end while

Output xoff

end procedure

size of about ten times the dimensionality of the problem is also suggested. Determining the right population

size is the first difficulty in any population-based algorithm. Obviously, a big size is preferable in highly multi-

modal problems, but it requires more time to converge, conversely a small population tends to come together

quicker, so carrying other advantages and issues. Premature convergence can also happen with a high number

of individuals. For instance, in GAs, when the fitness landscape does not change significantly within D, the

lack of diversity can make selection fruitless. Despite the fact that DE does not follow a fitness-based parent

selection scheme this phenomenon is also present due to the fact that the number of moves is limited. Even

if increasing M , one can increase the number of difference vectors, the kind of move performed by mutation

is basically the same. Premature convergence or inability to reach convergence can be handled by employing

multiple mutations, hybridisation with LSs and other expedients, see (Caraffini, Neri, Cheng, Zhang, Picinali

& G. Iacca 2013), (Caraffini, Neri & Poikolainen 2013) and (Iacca, Neri, Caraffini, & Suganthan 2014). A

more challenging problem, still under investigation, is instead the so called “stagnation”, which occurs when

the algorithm is not able to improve upon any individual in the population, being impossible to converge

towards a promising (sub-)optimal solution even though chromosomes diversity is still high. It has also been

observed that in DE also a small population in some cases can provide good results, even when smaller than

the dimensionality of the problem (Neri & Tirronen 2008), and that stagnation may also occur in this case.

Some modern DE variants are reported here in order to show how self-adapting parameters setting and multiple

mutation schemes can be included within the optimiser.

In Self-adaptive Differential Evolution Algorithm for Numerical Optimisation (SADE), parameters are

automatically adjusted on the strength of successful and failed past attempts, performed in a temporal window

containing a fraction of the total number of generations. A set of multiple mutations is similarly adapted, so

promoting those strategies which have performed better during the so called “Learning Period” LP . For each

individual, a personal F value is drawn from a normal distribution with fixed mean (0.5) and standard deviation

(0.3). Conversely, as for CR only the standard deviation (equal to 0.1) is kept fixed during the optimisation

process while the mean value CRm, initially set to 0.5, is constantly subject to refinement. With reference

to the original implementation (Qin & Suganthan 2005), every 5 generations a new tuple 〈F,CR〉 has to be

refreshed by means of the aforementioned distributions. After every functional call, if the relative CR value

has lead to an improvement then has to be stored in a dedicated memory stack. After a cycle of 25 generations

the median value of the obtained CR-distribution replaces CRm, and the memory stack is emptied. This
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mechanism assures an automatic tuning of CR on the problem even without having any previous source of

information about it. Two well known DE schemes can be applied: DE/rand/1/bin (Equation 3.14, completely

randomised) and DE/current-to-Best/2/bin (Equation 3.19, move towards the best individual). The same cross-

over is applied in both cases, but mutations are stochastically chosen. At the beginning, the two strategies

“1” and “2” have the same probability p = 50% to be applied, i.e. for each individual if U (0, 1) < p then

“1” is performed, otherwise “2”. The mutation probability p is changed at the end of a learning period of

LP generations (suggested value 50), where the counters ns1 and nf1 are incremented whether “1” makes an

improvement or a failure respectively. In the same way, nf1 and nf2 have to be updated for “2”, so that p

evaluated:

p =
ns1 · (ns2 + nf2)

ns2 · (ns1 + nf1) + ns1 · (ns2 + nf2)
(3.23)

For the sake of completeness, a modern implementation of the SADE algorithm has been released in(Qin

et al. 2009). The original algorithm has been equipped here with two additional mutations, namely DE/rand/2

(Equation 3.16) and DE/current-to-rand/1 (Equation 3.19), in order to be able to perform a more diverse set of

moves within D. This version has shown to be more versatile and is the one tested in this thesis.

As simple as efficient, Self-Adapting Control Parameters in Differential Evolution (jDE) is a basic

DE/rand/1/bin which has been opportunely modified in order to evolve and auto-tune scale factor and cross-over

rate (Brest, Greiner, Bošković, Mernik & Žumer 2006). Each individual in the population is associated with

its personal parameters, and can be seen as a triple 〈x, F, CR〉. The main idea is that if a good combination

of parameters has led to a better individual, after survivor selection not only the genetic patrimony but also

F and CR are transmitted into the new generations. In this way parameters are automatically tuned and to

some extent evolved. Values for F and CR are chosen randomly and are refreshed after a certain amount of

functional calls according to a given probability τ1, for scale factor, and τ2 for cross-over rate. More formally,

before each mutation if U (0, 1) < τ1 then F = Fl + U (0, 1) · Fu, if U (0, 1) < τ2 then CR = U (0, 1).

Suggested values for the lower and the upper limits are Fl = 0.1 and Fu = 0.9. It could seem that this

optimiser requires a manual tuning of two parameters, τ1 and τ2, as it happens in the classic DE for F and CR.

Anyway, it must be said that jDE performances are less sensitive to variations of τ1 and τ2, which can both be

set, according to the experimental tuning performed by the author, equal to 0.1. Despite the simplicity, jDE

has shown to be competitive with modern and complex optimisers, both on benchmark problems and machine

learning applications (Iacca, Caraffini & Neri 2014).

Another successful adaptive DE variant is the Adaptive Differential Evolution with Optional External

Archive (JADE), based on a novel mutation strategy called DE/current-to-pbest/1 (Zhang & Sanderson 2009).

This mutation scheme can be seen as a generalisation of Equation 3.18 (current-to-best), where the best

individual xbest is replaced with a point randomly selected among the top p% best individuals in the population

P of size M , as follow:

xm = xj + Fj

(

x
p%
best
− xj

)

+ Fj (xr1 − xr2) (3.24)

where xr1 is randomly sampled from P and xr2 from P ∪A (xr1 6= xr2 6= xrj). A is an auxiliary external

archive that can either be A = ∅ or contain M individuals. The additional archive can be used to preserve
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population diversity. In case there are no memory constraints, A (initially empty) can be filled with those

points failing the survivor selection procedure, meaning that at most, M individuals can be stored in a single

generation cycle. In order to maintain constant size, after every generation |A| −M solutions are randomly

deleted in case |A| > M . One more peculiarity is on the scale factor and cross-over rate (binary cross-over is

adopted) which are, also in this case, self-adaptive. For each j− th individual in P a correspondent scale factor

Fj and cross-over rate CRj are generated from two distributions of probability whose mean value is adapted

to the problem under study. Since Fj could potentially span on a bigger range than CRj , a Cauchy distribution

Fj = C (µF , 0.1) is preferred, while a Gaussian is more suitable for the second parameter CRj = N (µCR, 0.1)

(µF = µCR = 0.5 for the first iteration). After being drawn, parameters undergo a check in order to avoid

invalid values, i.e. Fj = 0 and CRj /∈ [0, 1], then mutation and cross-over take place. In case of improvement

upon the old parent, both the parameters are stored in dedicated memory stacks, SF and SCR, for successful

Fj and CRj respectively. At the and of every generation cycle, the Cauchy and Gaussian distributions can so

be updated by means of the followings:

µF = (1− c) · µF + c ·

∑

F∈SF

F 2

∑

F∈SF

F
µCR = (1− c) · µCR + c ·

∑

CR∈SCR

CR

|SCR|
(3.25)

with c ∈ [0, 1].

A different approach has been used in Ensemble of Parameters and Mutation Strategies Differential

Evolution (EPSDE), where as an alternative to adaptation, F and CR are not drawn from Gaussian or Cauchy

distributions but rather randomly picked up from a pool of promising values. According to the original paper

(Mallipeddi et al. 2010) optimal pools are {0.5, 0.9} and {0.1, 0.5, 0.9} for F and CR respectively. The same

logic is applied for mutation and cross-over: during each generation for each individual, a perturbation logic is

randomly selected from a pool containing DE/current-to-pbest/1 and DE/current-to-rand/1 in order to generate

a mutant vector. Subsequently one between binary and exponential cross-over is selected from a third pool for

mating, and finally they are combined together and applied by using the previously picked values for F and

CR. Once again, it is worthwhile noting that in case of DE/current-to-rand/1 no cross-over has to be performed

since it is implicitly present in the mutation strategy.

In the wake of JADE, a recent publication (Islam, Das, Ghosh, Roy & Suganthan 2012) has introduced a

novel mutation namely DE/current-to-gr best/1 and a new “p-best” cross-over, in order to enhance exploration

of the search space. For each j-th individual (j = 1, 2, 3, ...,M ) of the population the following scheme is

applied: first a mutant vector has to be generated by means of

xm = xj + Fj (xq best − xj) + Fj (xr1 − xr2) (3.26)

with xq best the best point of a set containing a percentage q of randomly selected individuals from the

population. Then, a binary crossover is applied to the mutant vector and a second vector that has to be

randomly sampled among the best p individuals in the population. Unlike q, which is a pre-established value,
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p is updated run-time depending on the numbers of passed generations g: p = ceil
[

n
2 ·

(

1− g−1
gmax

)]

(gmax

is the maximum number of allowed generations). Scale factor and cross-over rate are drawn from Cauchy and

Gaussian distributions with variable mean value µF and location parameter µCR. As in JADE, two memory

stacks containing successful values for Fj and CRj are needed (SF and SCR respectively). Updating formulas

differ from the former proposed for JADE:

µF = WF · µF + (1−WF ) ·
∑

F∈SF

(

F z

|SF|

) 1
z

(3.27)

µCR = WCR · µCR + (1−WCR) ·
∑

F∈SCR

(

CRz

|SCR|

) 1
z

(3.28)

with z = 1.5, Wf = 0.8 + 0.2 · U (0, 1) and Wf = 0.9 + 0.1 · U (0, 1). The use of power mean for µF , plus

Cauchy distribution, leads to large perturbations, thus minimising the risk of premature convergence. Gaussian

distribution is preferable for CRm since confined in a smaller range, and the long tail of Cauchy distribution

could be inadequate, generating too many values out of [0, 1] thus requiring multiple saturation. This algorithm,

named Modified Differential Evolution with p-Best Crossover (MDE-pBX), performs well in low dimensions,

e.g. see Appendix E, and has been used for comparison in this work.

Before concluding this literature review, an interesting DE-based variant of a class of algorithms called

EDA, is briefly described since involved in the experiment set-up of this thesis. This algorithm, namely compact

Differential Evolution (cDE), in the fashion of popular EDA algorithms such as (Baluja 1994), makes use of an

explicit probabilistic models for sampling promising candidate solutions, see (Pelikan, Goldberg & Lobo 2000),

which replaces the population of individuals. Evolution is stochastically driven by building and progressively

updating the probabilistic model starting with a uniform distribution, encoding al the possible solutions in

the search space, and ending with the model generating only (sub)optimal solutions. In cDE (Mininno, Neri,

Cupertino & Naso 2011), this principle is adopted in order to mimic the behaviour of a DE despite not having

the burden of storing in memory the actual population, which is indeed replaced with a Probability Density

Function (PDF). This approach attempts to reproduce the beneficial aspects of a population based method

while dealing with strict memory constraint.

The expression “compact” algorithm was first introduced in (Harik, Lobo & Goldberg 1999) for the compact

Genetic Algorithm (cGA), which was then improved in (Harik, Lobo & Sastry 2006), and finally provided

with a real-valued chromosome representation, from which comes the name Real-Coded Compact Genetic

Algorithm (rcGA), in (Mininno, Cupertino & Naso 2008a). The real-valued encoding together with a novel

representation for a population’s PDF via polynomial approximation of truncated Gaussian distribution, has

been then taken from rcGA and extended to other optimisation families such as cDE, but also compact Bacterial

Foraging Optimisation (cBFO) and compact Particle Swarm Optimisation (cPSO), see (Iacca, Neri & Mininno

2012) and (Neri, Mininno & Iacca 2013) respectively.

In cDE the optimisation process takes place in a normalised domain [−1, 1], thus the initial solution need to

be scaled into this interval and then the final output must be re-sized into the original bounds. A (2× n)-matrix,
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namely perturbation vector PV = [µ,σ], must be pre-allocated with µ = ∅ and σ = 10ones (n). Such a

high value for σ makes the PV distribution behave, at the early stage of the optimisation process, as a uniform

distribution (plotted in Figure 3.5 for a single dimension). A solution xe, “elite”, initially sampled from PV,

must be kept up to date with the best individual ever found during the search, which takes place by working

out a mutant vector via a classic DE/rand/1 mutation scheme. In order to apply the scheme, at each generic

iteration t three solutions, xr, xs and xt, are drawn from the distribution. The replacement procedure cannot

obviously happen in the classic way, since the population is lacking, but 1-to-1 survivor selection still occurs

and the information coming from this comparison is used to update PV. For each i-th design variable forming

a generic vector to be sampled, a truncated Gaussian PDF, i.e. tails are taken off and then resized in [−1, 1] so

keeping its area unitary, is defined making use of µ [i] and σ [i] from PV = [µ,σ]:

PDF (truncNorm (x[i])) =
e
− (x−µ[i])2

2σ[i]2 ·
√

2
π

σ [i] ·
(

erf
(

µ[i]+1√
2σ[i]

)

− erf
(

µ[i]−1√
2σ[i]

)) (3.29)

where erf is the error function, see (Gautschi 1972). The corresponding Cumulative Distribution Function

(CDF) is derived by means of Chebyshev polynomials by following the procedure in (Cody 1969). It must be

observed that the co-domain of CDF is [0, 1], so, in order to draw the design variable xr[i] from PV the inverse

function of CDF must first be calculated, and then evaluated in correspondence of a uniformly distributed

random number in that interval: U (0, 1), as shown in Figure 3.6. As mentioned above, in order to obtain

the phenotype value in the original interval [a, b] here indicated with xphen, the following operation must be

performed:

xphen[i] = xr[i] ·
(b− a)

2
+ a. (3.30)

Once all the required points have been drawn, they undergo mutation so generating a mutant vector xm, that

can be mated via either binary or exponential cross-over with the elite solution xe. The produced offspring

xoff is expected to outperform, in term of fitness value, the elite solution. If this happen the elite solution

must be replaced with the new point, while regardless of the outcome of this comparison two vectors: xwinner

and xloser have to be filled, with the best and worst value respectively, after each iteration for updating PV

components:

µ(t+1) = µ(t) +
1

Np
· (xwinner − xloser) , (3.31)

where Np is a parameter called virtual population size, and subsequently σ2:

σ2 (t+1)
= σ2 (t)

+ µ ◦ µ (t) − µ ◦ µ (t+1) +
1

Np
(xwinner ◦ xwinner − xloser ◦ xloser) (3.32)

These operations are repeated over time for a given budget. For parameters setting see Appendix D, referring

to the perturbation DE/rand/1/exp proposed in (Mininno et al. 2008a). The main disadvantage of cDE lies on

the sampling procedure, which introduces a certain temporal over-head since individuals have to be sampled

rather than simply accessed from the population. Where possible, the number of samplings must be kept

minimum. This is the idea behind its light version, compact Differential Evolution light (cDE-light), which has

been proposed in (Iacca, Caraffini & Neri 2012) to address not only the memory saving necessities, but also
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Figure. 3.5. Truncated Gaussian PDF at the beginning (top) and during (bottom) of the optimisation process.
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Figure. 3.6. PDF, CDF and sampling mechanism.

real-time requirements without a performance loss. Both mutation and cross-over have been modified ad-hoc

as follows.

Since the Chebyshev polynomials are computationally expensive to use, in the so-called “Mutation Light”

the truncated Gaussian PDF has been intentionally confused with a Gaussian PDF (N (µ,C), where C is a

diagonal covariance matrix containing σ2 as its diagonal). In this light, the three solutions xr, xs and xt can

be seen as stochastic variables:

xr

xs

xt











∼ N (µ,C) . (3.33)

By applying the properties of normally distributed variables, it can be easily shown that applying the DE/rand/1

scheme is equivalent to sample xm[i] (∀i = 1, 2, . . . , n) from:

xm[i] ∼ N
(

µ[i], (1 + 2 · F 2) · σ2[i]
)

(3.34)

In fact, considering without a loss of generality a mono-dimensional case, a linear combination of M Gaussian

independent random variables, each one having mean value equal to µm and variance equal to σm
2 (m =

1, 2, . . . ,M ), is still a Gaussian random variable with average µ′ = α1 · µ1 + α2 · µ2 + · · · + αM · µM =
M
∑

m=1
αm · µm and variance σ′2 = α2

1 · σ2
1 + α2

2 · σ2
2 + · · · + α2

M · σ2
M =

M
∑

m=1
α2
m · σ2

m. The same reasoning
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applied to Formula 3.14 implies:

{

µ′[i] = µ[i] + F · µ[i] − F · µ[i] = µ[i]

σ′2[i] = σ2[i] + F 2 · σ2[i] + (−F )2 · σ2[i] + F 2 =
(

1 + 2 · F 2
)

· σ2[i]
(3.35)

It must be highlighted that this is true only under the hypothesis of statistic independence among the variables.

For the sake of clarity this result is proven below by evaluating the first and the second order moment of the

stochastic variable xm (in order to avoid confusion with vector matrices angle brackets are use for the expected

value E 〈·〉). The mean value can be easily found:

E 〈xt[i] + F (xr[i]− xs[i])〉 = E 〈xt[i]〉+ F · E 〈xr[i]〉 − F · E 〈xs[i]〉 = µ[i] (3.36)

C requires a bit more processing. Every i-th element in its diagonal σ can be worked out in two steps, by

decomposing the problem in two terms. First, let us consider the random variable y = xr − xs, as follows:

µy[i] = E 〈xr[i]− xs[i]〉 = 0 (3.37)

and

σy
2[i] = E

〈

(y[i] − µy[i])
2
〉

= E
〈

(xr[i]− xs[i])
2
〉

=

= E
〈

xr[i]
2 − 2 · xr[i] · xs[i]− xs[i]

2
〉

=

= E
〈

xr[i]
2
〉

− 2 · E 〈xr[i] · xs[i]〉 + E
〈

xs[i]
2
〉

(3.38)

Now, since the two variables are independent:

E 〈xr[i] · xs[i]〉 = E 〈xr[i]〉 ·E 〈xs[i]〉 = µ[i]2 (3.39)

Moreover, considering the definition of variance, the following relations hold:

E
〈

xr[i]
2
〉

= V ar 〈xr[i]〉 +E 〈xr[i]〉2 = σ2[i] + µ[i]2 (3.40)

Replacing 3.39 and 3.40 in the equation 3.38, we have:

E
〈

(xr[i]− xs[i])
2
〉

= σ2[i] + µ[i]2 + σ2[i] + µ[i]2 − 2 · µ[i]2 = 2σ2[i] (3.41)

Summarizing, we obtain the following condition:

y ∼
{

µy = ∅

σy
2 = 2σ2

(3.42)

Finally, the variance vector for xoff can then be calculated as:

E
〈

(xt[i]− µ[i])2·
〉

+ F 2E
〈

y[i]2
〉

+ 2 · F ·E 〈y[i] · (xt[i]− µ[i])〉 =
σ2[i] + F 2 · (2 · σ2[i]) + 2 · F ·E 〈y[i]〉 · E 〈(xt[i]− µ[i])〉 = (1 + 2 · F 2) · σ2[i]

(3.43)

It must be said that this operation is not fully equivalent to sampling three solutions from a truncated Gaussian
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Figure. 3.7. Truncated Gaussian distributions displaying virtual population (solid line) and modified distribution

(dashed line) for provisional offspring sampling during mutation light

distribution, but is an approximation which neglects the tails of the distribution outside the interval [−1, 1].
In other words, while the representation of the population and their update, see formulas (3.31) and (3.32), is

performed by means of truncated Gaussian distributions, the generation of new candidate solutions by means of

mutation light is done considering that the population is encoded by means of actual (non-truncated) Gaussian

distributions. In order to better understand what happens by transforming the original distribution, the outcome

of this transformation is graphically depicted in Figure 3.7. In addition, it must be noted that the PV matrix

itself is not a distribution, but only an useful way of storing, for each i-th axis, µ[i] and σ[i] so that the

realisation of each design variable x[i] can be drawn.

Exponential cross-over has been replaced as well with its computational saving version: Cross-Over Light,

Algorithm 20 Exponential Cross-Over Light
procedure XOVEREXPLIGHT(x1,x2)

istart = I (1, n)
xoffspring ← x1

xoffspring[istart]← x2[istart]

xoverL← round
(

log(rand(0,1))
log(CR)

)

i← istart + 1
j ← 1
while i 6= istart && j ≤ xoverL+ 1 do

xoff [i]← x1[i]
i← i+ 1
j ← j + 1
if i == n then

i← 1
end if

end while

Output xoffspring

end procedure

see Algorithm 20, with the aim of reducing the algorithmic time overhead. When the exponential cross-over

is applied, the probability that the first gene is inherited from the provisional offspring is 1. Subsequently, the

adjacent gene of the provisional offspring has a probability equal to CR to be transmitted to the offspring. The
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third gene has a probability of CR2. The generic m − th gene is associated with a probability CRm−1. In

order to simplify the notation, let us consider the deterministic copy of the first gene and the probabilistic copy

of the other genes as independent events. The probability that m genes, on the top of the first one, are copied

from the provisional offspring to the actual offspring is CRm. More formally the discrete probability Pr that

the crossover length xoverL is equal to m is known as geometric distribution and is given by:

Pr (xoverL = m) = CRm (3.44)

where m = 1, 2, . . . , n − 1. In order to extract the number of genes m to be copied, it is enough to apply the

inverse formulas and obtain:

xoverL ∼ round (logCR (U (0, 1))) = round

(

log (U (0, 1))

log (CR)

)

(3.45)

where the last equality is due to the change of base of a logarithm. In other words, crossover light consists of

performing the deterministic copy and subsequently the copy of xoverL genes, where xoverL is determined

by formula (3.45). For the sake of clarity, the pseudo-code of cDE-light (employing persistent elitism strategy),

together with the one relative to cDE, are united in Algorithm 21. cDE-light has proven to perform similarly

to its predecessor cDE despite working remarkably faster, see (Iacca, Caraffini & Neri 2012), in particular

when the dimensionality of the problem grows. Thanks to their minimalistic memory footprint, both these

DE variants have been successfully used for embedded engineering applications, such as trajectory planning

optimisation for robotic arms(Iacca, Caraffini, Neri & Mininno 2012). The light variant in particular, has shown

to be useful when implemented on-board a micro-controller for real-time optimisation robotic applications, see

(Iacca, Caraffini & Neri 2013).

Many others population based optimisers have been designed during the last decade, and also their

“compact” version have been implemented as previously mentioned. Nonetheless, a detailed inspection of

all the existing techniques would fall out of the scope of this thesis. A recapitulatory overview of the mentioned

algorithms is given in Table 3.1
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Table 3.1. General-purpose algorithms overview (t and m refer to time and space complexity respectively).

Algorithm
Solutions Generation Variation

Comments
Representation cycle operators

SIMULATED ANNEALING

SA Real-valued Non Elitist Stochastic perturbation Single-Solution

nuSA '' '' Non-uniform Perturbation ''

EVOLUTIONARY ALGORITHMS

GA
-Binary String -Generational

Cross-Over & Mutation
Variety of replacement

-Real-valued Vector -Steady state schemes

ES
Real-valued

“Comma” or “Plus” Recombination & Mutation self-adaptiveX
Triplets 〈x, σ, α〉

CMA-ES x, σ, C comma (λ, µ) Intermediary-Gaussian t ∼ O
(

n3
)

m ∼ O
(

n2
)

(1 + 1)-CMA-ES x, σ, A elitist single-solution Gaussian mutation t ∼ O
(

n2
)

m ∼ O
(

n2
)

sep-CMA-ES Tuple 〈x, σ〉 comma (λ, µ) Intermediary-Gaussian t ∼ O (n)m ∼ O (n) X

EP Tuple 〈x, σ〉 plus (µ+ µ) Gaussian Perturbation self-adaptive X

GP Parse Trees Generational Cross-Over & Mutation Evolves a model X

SWARM INTELLIGENCE

PSO
Real-valued

1-to-1 Spawning
Velocity update & Replacement occurs

〈

xp,xb
p,x

w
p ,vp

〉

Position perturbation immediately

CLPSO Swarm '' '' Build xrb
p vector

ISPO Single-Particle '' '' Moves along the axes

CCPSO2
Sub-swarms

''
Cauchy/Gaussian

Large Scale X
(no velocity vp) move on sub-positions

DIFFERENTIAL EVOLUTION

DE Real-valued 1-to-1 Spawning Mutation & Cross-Over
Replacement occurs

at the end

SADE
〈x, F,CR〉

''
Multiple mutations &

Self-adaptive (F,CR) X
Binary Cross-Over

jDE '' '' rand/1/bin Self-adaptive (F,CR) X

JADE '' '' current-to-pbest/1/bin
Self-adaptive (F,CR) X

& archive A

EPSDE '' ''
Multiple Pools of parameters

mutations & Cross-Over F and CRX

MDE-pBX '' '' current-to-gr best/1/pBX Self-adaptive (F,CR) X

cDE
real-valued Elitist rand/1/exp

Memory FootprintX
PV PDF (also non Elitist) (any scheme is applicable)

cDE-light
real-valued Elitist Mutation Light Memory FootprintX

PV PDF (also non Elitist) Cross-Over Light Real-timeX
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Algorithm 21 Compact Differential Evolution/Light
t = 1
boldsymbolµt ← ∅

σt ← λones (n) ⊲ e.g. λ = 10
xelite ∼ PV

while Budget available do

*** for implementing cDE ***

xr

xs

xt







∼ PV(t)

xm ← xrr + F (xrs − xrt) ⊲ DE/rand/1, Equation 3.14

xoffspring ←XOVEREXP(xelite,xm) ⊲ Algorithm 19

*** for implementing cDE Light ***

prepare PVlight
(t) from PV(t) and apply mutation light:

xm ∼ PVlight
(t) =

[

µ(t) [1] µ2 [2] . . . µ(t) [n]
(

1 + 2 · F 2
)

· σ2(t)
[1]

(

1 + 2 · F 2
)

· σ2(t)
[2] . . .

(

1 + 2 · F 2
)

· σ2(t)
[n]

]

xoffspring ←XOVEREXPLIGHT(xelite,xm) ⊲ Algorithm 20

*** common part ***

if thenf
(

xoffspring

)

≤ f (xelite)
xloser ← xelite

xelite ← xoffspring

xwinner ← xoffspring

else

xwinner ← xelite

xloser ← xoffspring

end if

µ(t+1) = µ(t) + 1
Np

(xwinner − xloser) ⊲ Equation 3.31

σ2 (t+1)
= σ2 (t)

+ µ ◦ µ (t) − µ ◦ µ (t+1) + 1
Np

(xwinner ◦ xwinner − xloser ◦ xloser) ⊲ Equation 3.32

t← t+ 1 ⊲ PV(t+1) becomes the current PV

PV(t) = [µ(t),σ(t)] ⊲ Update next generation PV

end while

Output xelite
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Chapter 4

Memetic Algorithms & Memetic Computing

This chapter is entirely devoted to the category of those optimisers which, rather than employing a stand-alone

logic, make use of hybridisation, connection and interaction of multiple techniques and structures in order to

optimise a specific given problem. These algorithms cover an important role in CIO, having great potential

and being the subject of growing research. Most hybrid algorithms, designed by adding to general-purpose

evolutionary frameworks (see Chapter 3.1), a fine refinement routine (see Chapter 2.2), can all be referred to

as different manifestations of a more general class called MA. A further generalisation can be also made, by

grouping any possible combination of different operators under the umbrella name MC.

The former term, MA, was introduced for the first time in CIO by Pablo Moscato in 1989 (Moscato 1989),

referring to the concept of “meme” coined by Richard Dawkins as the basic unit of cultural transmission, or

imitation (Dawkins 1976). Thus, the main metaphor behind MA, does not rely on biological evolution, but

extends this concept, making use of Dawkins’ Universal Darwinism theory, where evolution also exists in

all those complex systems exhibiting the processes of inheritance, variation and selection, as it happens with

elements of culture that pass on to new generations. As an idea, a promising meme can be shared, exchanged

within a community, adapted or refined. Regardless of the underlying metaphor, the concept of exchanging

information between different operators has been developed by researchers and MAs have become more and

more popular. MA can now be considered as an independent discipline within CIO and this term has assumed

a widely accepted meaning referring to a population-based optimiser composed by an EA and a list of LS

algorithms activated within the evolutionary framework (Hart, Krasnogor & Smith 2004). For instance, Genetic

Local Search Algorithms (GLSA) falls in this category, since processing some solutions in the population of

a standard GA via hill-climber routines, or evolving micro-populations, i.e. small population sizes of about

5 individuals behave like a LS, see (Garcı́a-Martı́nez & Lozano 2008). Similarly, Lamarckian-EAs make use

of classic local searchers in order to modify the genotype of some individuals in the population so driving the

evolution towards promising points, while in Baldwinian-EAs only the phenotype gets modified, see (Geoffry

E. Hinton and 1987) and (Whitley, Gordon & Mathias 1994). To some extent, the Cultural Algorithm (CA) can

also be seen as an MA. In this case the population space, e.g. of a GA, is flanked by a further “belief” space

which is updated after each iteration by considering the best individuals in the population. The belief space

is used to alter, by means of an “influence” function, the genotype of each offspring in order to speed up the
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evolutionary process. The pattern EA + LS is not difficult to understand: general purpose algorithms are good

at exploring the search space, but not precise in refining a solution, and vice-versa. Thus, the combination of

these two components is beneficial. The local search algorithms help to find “super-fit” individuals that can

enhance and speed-up the evolutionary mechanism, and at the same time round off the final solution with small

adjustments in the surroundings of the optimum. In some ways, the presence of the local searchers brings some

useful knowledge, which is employed for specialising the EA part to tackle the problem under study. How

to balance the budget between exploratory and exploitative search is one of the difficulties to deal with while

using this approach. Coordination plays an important role.

MC further extends the previous scheme. Generally speaking MC represents a broad slice of Computer

Science dealing with different aspects of AI, through multiple interacting operators whose interaction actualises

intelligent systems. In CIO, these interacting entities (memes) can be seen as units of information encoded in

computational representations for the purpose of problem solving (Ong et al. 2010).

As an example of MA, in (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010a) a powerful optimiser is

introduced by combining two popular algorithms, namely GA and CMA-ES. The resulting algorithm performs

excellently on low-dimensional problems. The main task of the GA is obviously exploration, while CMA-ES

is used here for LS. It must be noticed that CMA-ES provides best results over mono-modal functions and by

setting the initial step-size σ to a small value, it can indeed be seen as a proper LS routine. In order to guarantee

a good exploration of the search space, the Steady State GA has been equipped with the negative assortative

mating selection strategy described in Chapter 3.1.1, the BLX-α cross-over operator (Equation 3.1) and the

BGA mutation (Equation 3.2). Cyclically, GA is run for nfrec fitness functional calls and then temporarily

arrested in order to fill a set, SLS, with all those individuals that either have never been refined by CMA-ES or

have gone through LS refinement obtaining a fitness improvement bigger than a predefined value δmin
LS . The best

individual from SLS (or from the steady-state GA population in case SLS = ∅) becomes at this stage the mean

value for the CMA-ES Gaussian distribution, while the distance between the mean value and its closest point in

the steady-state GA population gives the step-size σ, and the LS can take place by running over Istr (Intensity

stretch factor) fitness evaluations. Istr is worked out according the following formula: nfrec = Istr · 1−rL/G

rL/G
.

A good balance among exploration/exploitation can be reached by setting the Local/Global evaluations ratio

(rL/G) equal to 0.5, which gives the same amount of fitness evaluations to both the parts. In case the LS is

applied on a new point, i.e. never being processed in the past generations, strategy parameter values and internal

variables for CMA-ES have to be initialised as in (Hansen & Ostermeier 2001). This scenario is not likely to

happen many times, since the steady-state configuration tends to keep good solutions in the population for a long

time. It is therefore more probable that a promising solution, which has already shown an improvement greater

than δmin
LS , is selected to undergo refinement. In this case, the authors proposed to use the so called “LS chain”

process, in which the final configuration reached by CMA-ES is used as the initial configuration for the next

application. Despite its effectiveness, this approach is both computationally and memory expensive, since for

each solution being processed an n×n covariance matrix must be evaluated and stored in memory. In LSOP this

implementation could be too slow or even not applicable. For this reason, a second variant has been designed

for handling large scale problems (Molina, Lozano & Herrera 2010), i.e. problem dimensionality bigger than
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100, by simply replacing CMA-ES with a lighter Sub-grouping Solis Wets (Algorithm 11, Chapter 2.2.8).

Potentially, this algorithm can be equipped with any LS routine and regardless of the chosen one, the generic

framework can be addressed with the name Memetic Algorithm with Local Search Chain (MA-LSCh). For

parameters setting of the two variants, refer to MA-LSCh-CMA and MA-LSCh-SSW (see Appendix D). Since

MA-LSCh-CMA does not perform well on LSOP, and vice-versa MA-LSCh-SSW degrades its performances in

low dimensional problems, in this thesis the first variant has been tested up to 100 dimensions, while the second

for higher dimensionality. Numerical results have been then merged together and reported, see Appendix E,

under the generic name MA-LSCh.

A borderline case is represented by Micro-Differential Evolution with extra moves along the Axes (µDEA),

a computationally light and memory saving optimiser proposed in (Caraffini, Neri & Poikolainen 2013). Even

though DE does not belong to the EA class, and so strictly speaking does not literally fulfil the former definition,

it can still be seen as an MA since having a population based core hybridised with a LS. It must be said that the

very first attempts of combining EAs with LS have been made when DE, PSO and other nowadays consolidated

optimisers were still under development. As a consequence, the concept of MA has then implicitly been

broadened assuming a more general meaning, and many memetic DEs and PSOs have been designed, see (Neri

& Tirronen 2008) and (Wang, Moon, Yang & Wang 2012) respectively.

In the fashion of MAs, µDEA implements a classic DE/rand/1/exp with a population size narrowed to

M = 5 individuals, equipped with the S operator, see Chapter 2.2.4, in order to provide a further move along

the axis on the top to the one carried out by the DE scheme. After every generation, there is a certain (small)

probability η that a pivot individual xp, i.e. the current best point in the population, is selected to undergo

the additional move. For a given number Iter of iterations, the selected point is perturbed along the n axes

according to the S operator logic, i.e. step forward and in case of failure backward for each design variable. At

the beginning of the optimisation the exploratory radius δ, used to perform the deterministic search, is set to

40% of the search space size (basically it covers the entire search space), so acting more like a deterministic GS

rather than a LS. As the optimisation process goes ahead , δ is subject to a shrinking procedure, see Algorithm

22 for implementation details, and the search gets limited in a smaller and smaller neighbourhood of the current

pivot solution. After every execution of the extra move, the current value reached by δ is stored in memory,

as it happens in the LS Chain method, and then reloaded and used during the next step. It can be noticed

that µDEA does not implement a proper LS Chain strategy, since the pivot individual can change and S is

never reinitialised. In this way, during the optimisation process the extra move along the axis becomes more

exploitative, so avoiding undesired stagnation, when the pivot solution is more likely to be close to optimal

position. It must be noted that if such a small population size could lead to premature convergence in GAs, it

has been conversely observed that the lack of a proper section strategy in DE keeps a certain degree of diversity

also in µ-populations, see (Parsopoulos 2009). Since stagnation can anyway occur regardless of the population

diversity level, the LS is mainly used for overcoming this problem. Moreover, even though a big population

size has proven to provide a number of desirable features (Prügel-Bennett 2010), on the other hand a small

one is preferable in the presence of memory limitations and so µDEs have been widely used in engineering

applications (Rahnamayan & Tizhoosh 2008). for this reason, micro-population based algorithms are still

being used, and is then worth improving their performances with light LS as in this case.
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Algorithm 22 Micro-Differential Evolution with extra moves along the Axes

µPop← randomSampling (M,n,D)
δ ← α

(

xU − xL
)

⊲ α = 0.4
while Condition on budget do

for j = 1 : M do

select xr, xs, and xt from µPop
xoff ← xt + F (xr − xs) ⊲ Equation 3.14

xoff ← XoverExp
(

xj,xoff

)

⊲ Algorithm 19

if f
(

xoff

)

≤ f
(

xj

)

then

xj ← xoff

end if

end for

if U (0, 1) < η then

extract the pivot individual xp from µPop
xs ← xp

for k = 1 : Iter do

improved← false
for i = 1 : n do

xs [i]← xp [i]− δ [i]
if f (xs) ≤ f (xp) then

xp ← xs

improved← true
else

xs[i] = xp[i] +
δ[i]
2

if f (xs) ≤ f (xp) then

xp ← xs

improved← true
end if

end if

i← i+ 1
end for

if improved == false then

δ ← δ
2

end if

k ← k + 1
end for

end if

end while

Output Best Individual
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Table 4.1. Memetic Algorithms overview.

Algorithm
Population-based Local Search

Comments
Meta-heuristic Routines

MA-LSCH-CMA Steady-State GA CMA-ES
-Lamarckian MA employing the LS Chain method.

-Evolves several covariance matrices having m ∼ O
(

n2
)

.

MA-LSCH-SSW Steady-State GA
Subgrouping -Lamarckian MA employing the LS Chain method.

Solis-Wets -Suitable for Large Scale Optimisation.

µDEA Micro-DE S
-Simple and light Lamarckian MA.

-LS never restarted. -Small memory footprint. X

EPSDE-LS EPSDE

-Simplex -Lamarckian MA applying multiple LS operators forming a pool

-Powell for a given computational budget.

-Rosenbrock -Operators are reinitialised at any application.

Numerical results in (Caraffini, Neri & Poikolainen 2013) have shown the beneficial effect of S in µDEA,

that has proven to improve upon ordinary µDEs and be competitive against powerful population-based state-

of-the-art DEs, such as SADE, MDE-pBX and JADE. It is interesting to highlight that thanks to the extra move

along the axes, a significant boost on the performance has been registered in particular on large scale problems,

i.e. functions in 1000 dimensions from the suites Congress on Evolutionary Computation (CEC) 2008 and

2010. An explanation to this phenomenon will be given in Chapter 8.

Also multiple LS logics can be integrated in an MA. For instance, in (Iacca, Neri, Caraffini, &

Suganthan 2014) another DE-based memetic optimiser is proposed by extending the EPSDE algorithm,

described in Chapter 3.3, with an additional pool PLS of diverse local search routines: Nelder-Mead simplex

method (Algorithm 3, Chapter 2.2.2), Powell’s conjugate direction method (Algorith 7, Chapter 2.2.6) and

Rosenbrock’s algorithm (Algorithm 2.2.5, Chapter 2.2.5). The main motivation behind this choice is that

multiple and diverse LS help a general purpose algorithm deal with specific features such as ill-conditioning

and separability, see (Caraffini, Neri, Iacca & Mol 2013) and (Iacca, Neri, Mininno, Ong & Lim 2012). Nelder-

Mead contains, to some extent, global search features and thus has the potential of jumping outside a basin of

attraction while Powell’s and Rosenbrock’s algorithms deterministically exploit the starting solution towards

the closest optimum. Although the last two methods share a similar search, they differ since Rosenbrock

performs a single diagonal move while Powell detects n conjugate direction where the fitness is optimised by

means of a line-search method. With reference to Algorithm 23 it can be seen that after every FLS generations

of a standard EPSDE, one among the three LS methods is randomly selected from PLS and applied to the best

current individual in the population for BLS fitness evaluations (in case of simplex algorithm being selected

the best solution in the population takes the place of the first point of a randomly generated polytope). The

proposed pseudo-code refers to a general scheme with desired mutations, parameters and local searchers,

since this framework can be indeed easily extended with novel perturbation logic in order to fulfil the given

necessities. The resulting algorithm, Ensemble of Parameters and Strategies Differential Evolution empowered

by Local Search (EPSDE-LS), improves upon its early version, i.e. EPSDE described in Chapter 3.3, and also

outperforms state-of-the-art algorithms such as MDE-pBX, CCPSO2 and CMA-ES, see (Iacca, Neri, Caraffini,

& Suganthan 2014).

Table 4.1 summarises the presented examples. It can be noticed that despite the common pattern, MAs can

be quite different and display either extremely heavy structures, as in MA-LSCh-CMA, or light as for µDEA,
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Algorithm 23 Ensemble of Parameters and Strategies Differential Evolution empowered by Local Search
initialize a pool of mutation strategies Pmut and crossover strategies Pcross

initialize a pool of scale factors PF and crossover probabilities PCR

generate Np individuals of the initial population pseudo-randomly

for i = 1 : Np do

assign to xi random strategies/parameters from {Pmut , Pcross, PF, PCR}
compute f (xi)

end for

g = 1
while budget condition do

for i = 1 : Np do

generate xm through mutation strategy/parameter associated to xi

generate xoff through crossover strategy/parameter associated to xi

if f
(

xoff

)

6 f (xi) then

save index i for replacing xi ← xoff (including mutation, crossover strategies as well as parameters)

else

assign to xi new random strategies/parameters from the pools

end if

end for

perform replacements

g = g + 1
if (g mod FLS) = 0 then

select a local search algorithm from the pool PLS

apply it to xbest, until the budget condition BLS

end if

end while

Figure. 4.1. MC cloud of generic operators.

employ multiple search as in EPSDE-LS or just minimal number of operators such as GA and Subgrouping

Solis-Wets in MA-LSCh-SSW. All these algorithms can be also referred to in a more generic way as MC

optimisers. Obviously the other way around would not be correct. MC has a very broad sense, including

hybrid schemes, or multi-operator structures. To some extent, every single algorithm can be seen as an MC

approach, as long as possible to disassemble and isolate its very basic operators, e.g. cross-over, perturbation,

replacement, variable decomposition etc., and extract their coordination logic. So, this definition is very global

and can be used to address all those techniques born during the last decades under different names, in a fairly

young and still germinal discipline, which is becoming wider, more structured and consolidated. Since MC

does not fix/specify any structure before an algorithmic analysis of the problem is performed, an evolutionary

framework is not mandatory, as an efficient algorithm (for a given problem) can be based on multiple subsequent

local searches (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010b) or even by operators perturbing a single

solution, see next section, thus not limiting the designer with standard choices. Figure 4.1 shows the most

general scheme, consisting of m operators which potentially can have diverse structure and complexity.
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For instance, the Multi-Strategy Coevolving Aging Particle (MS-CAP) algorithm (Iacca, Caraffini & Neri

2014) is an MC approach not employing a direct LS routine. Its structure can be seen as a simple two operators

state machine, sharing and working on the same set of solutions, in this case addressed as a swarm of M “aging”

particles. When the first operator stops improving, the second comes into help providing an alternative search

move. The two operators complement each other, and can be seen as two separate algorithms, one deriving

from the PSO family (Algorithm 25) and the second from DE (Algorithm 26). The main procedure is shown

in Algorithm 24: the entire swarm is initialised with the same initial solution xinit, each j-th particle xj is

associated to a lifetime life [j] = lifej (initially zero), and a velocity vector (vj ∈ R
n). The main generational

loop consists in alternating the two strategies in order to co-evolve the particles by dispersing and attracting

them towards xbest. The first logic starts as default operator, and performs random perturbation on each design

variable, biased toward the best solution (see Line 7 and 6 in Algorithm 25), before evaluating the fitness

value. The latter is activated when the first one fails at improving upon the best solution (update condition) by

applying multiple DE-like mutations, i.e. diagonal move though liner combination of particles, and cross-over

strategies. In particular DE/rand/1 (Equation 3.14) and DE/rad/2 (Equation 3.16) provides with an exploratory

search through D, while DE/rand-to-best/2 (Equation 3.21) and cur-to-best/1 Equation 3.18) perform a biased

move heading toward xbest. As can be seen from Line 6 in Algorithm 25, unlike in classic PSO, the attraction

Algorithm 24 Multy-Strategy Coevolving Aging Particle

xinit ← randomSampling (1, n,D)
neval ← 1 ⊲ Mmust be updated after evaluating the fitness value of every new generated point

life← ∅

best← 1 ⊲ Index of the best particle

for j = 1 : M do

xj ← xinit

for i = 1 : n do

vj [i]← U (−1/2, 1/2) ·
(

xU [i]− xL [i]
)

i← i+ 1
end for

Swarm←
〈

xj, life [j] ,vj

〉

j ← j + 1
end for

while neval ≤ maxeval do ⊲ maxeval: maximum computational budget allowed

update←CAP(Swarm,xbest, neval) ⊲ Algorithms 25

if not update then

MSMR(Swarm,xbest, neval) ⊲ Algorithm 26

end if

end while

Output Best Individual xbest

force toward the global best particle is not constant but progressively increases during the optimisation process.

Thus, at the beginning the attraction is weak, i.e. large exploration pressure, whereas in later stages it gets

stronger, i.e. local exploitation. Moreover, an “aging” logic considers the particle’s lifetime to be set to zero

after every improvement, or increased by one conversely. An exponential decay = e−lifei is then evaluated

and, if smaller than a given threshold ε, the particle is replaced with another particle randomly chosen from

the swarm, its lifetime is set to zero, and its velocity is reinitialised. If the decay is still larger ε, the perturbed

particle xj is instead reset to the old value xold. In this case, if mod(lifei, 2) = 0 holds true (i.e. the lifetime

is even), the velocity is shrunk via the decay factor in the opposite direction (vj ← vj (−decay)), otherwise

(i.e. the lifetime is odd), velocity’s magnitude is retained but its direction is changed (vj ← −vj). The aging

mechanism plays an important role as it allows a natural refreshment of the particles, so avoiding undesired
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stagnation, and it has been already successfully applied in PSO, see (Chen, Zhang, Lin, Chen, Zhan, Chung, Li

& Shi 2013), for replacing unpromising solutions. In this case, it aims at refreshing the entire swarm while it

is perturbed by two concurrent sets of perturbation rules, by acting like a sort of restart mechanism. Whenever

Algorithm 25 Coevolving Aging Particle
procedure CAP(Swarm, best, neval) ⊲ Swarm contains particles, life-times and velocity vectors

update← false
for j = 1 : M do

xold
j
← xj

for i = 1 : n do

vj [i]← vj [i] + U (0, 1) · neval
maxeval

·
(

xbest [i]− xj [i]
)

⊲ Line 6: velocity update

xj [i]← xj [i] + vj [i] ⊲ Line 7: position update

i← i+ 1
end for

neval ← neval + 1
if f

(

xj

)

< f (xbest) then

update← true
best← j

end if

if f
(

xj

)

< f
(

xold
j

)

then

lifei ← 0
else

lifei ← lifei + 1
decay ← e−lifei

if decay < ε then ⊲ ε = 10−6 in (Iacca, Caraffini & Neri 2014)⇒ a maximum lifetime equal to 14
lifej ← 0
r ← I (0,M) , r 6= j
xj ← xr ⊲ Reset to a random particle

for i = 1 : n do

vj [i]← U (−1/2, 1/2) ·
(

xU [i]− xL [i]
)

i← i+ 1
end for

else

xj ← xold
j

if mod(lifej , 2) == 0 then

vj ← vj (−decay)
else

vj ← −vj

end if

end if

end if

j ← j + 1
end for

Output update
end procedure

the Coevolving Aging Particles fails at improving upon xbest, Algorithm 26 is executed. As in EPSDE, it can

execute four (previously mentioned) different mutation schemes, combined with two possible kind of cross-

over: exponential (Algorithm 19) and binary (Algorithm 18). As for scale factor and cross-over rate for each

j-th particle are drawn from random uniform distribution in [0.1, 1) and [0, 1) respectively. Also mutation

and cross-over are randomly selected from two respective pools (Pmut = {mut1,mut1,mut3,mut4} and

Pxover = {xover1, xover2}). An offspring xxover can thus be generated, compared with its parent xi and, in

case of improvement, inserted in the swarm according to the DE one-to-one spawning logic. After L repetitions

of this sequence of operations, the particles which were updated are assigned a new velocity and lifetime.

Beyond outstanding results on test-bed problems, also available on line1, MS-CAP has been successfully used

for training neural networks with multiple configurations (Iacca, Caraffini & Neri 2014).

1http://sites.google.com/site/facaraff/home/Downloads/MS-CAP_Detailed_Results.pdf

68



Algorithm 26 Multi-Strategy Mutation and Recombination

procedure MSMR(Swarm, best, neval)

for i = 1 : M do

changedi ← false
end for

for l = 1 : L do

for j = 1 : M do

xold ← xj

j ← j + 1
end for

for j = 1 : M do

Fj = U (0.1, 1)
CRj = U (0, 1)
m← I (1, 4)
x← I (1, 2)
generate xoffspring by applying mutm + xoverx to xj with Fj and CRj

neval ← neval + 1

if f
(

xoffspring

)

< f
(

xold
j

)

then

xj ← xoffspring

changedi ← true
end if

j ← j + 1
end for

update best
l← l+ 1

end for

for j = 1 : M do

if changedj then

for i = 1 : n do

vj [i]← U (−1/2, 1/2) ·
(

xU [i]− xL [i]
)

end for

end if

end for

end procedure

4.1 The rationale behind MC

As previously discussed in Chapter 3, the search for the best optimiser has been stopped by the publication of

the NFL theorem (Wolpert & Macready 1997), see Appendix B, which has had a significant impact on the CIO

scientific community. Since then, it was clear that there was no longer a reason to argue which algorithm is

universally better or worse, because the highest performance on a specific problem is given by the optimiser

entirely designed around it. This concept is graphically represented in Figure 4.2: the sharp peak reaches

the highest performance possible, and pays off its specialisation in dealing with a particular problem being

unable to optimise any other different scenario. In this light, MAs/MC find their motivation, since allowing the

designer to bend the flat line (general-purpose algorithm) towards a peak of interest. By adding a specific LS

to the general optimisation framework, is it possible to “train” the algorithm so making it able to focus on a

specific problem. Usually, see for example numerical results for µDEA in the previous section, once enhanced

with LS routines the resulting algorithm globally improves upon their predecessor version (there is inevitably

a loss of performance over some problems, see the ends of the thick grey line in Figure 4.2). Unfortunately, all

the information required to designed a problem tailored algorithm is not always given. A more realistic scenario

is the one where only a limited piece of information is available. Where it is not possible to design a specific

solver, it is still possible to decompose the problem in multiple sub-problems, falling into well-known classes

not depending on the nature of the application, but only on the fitness function modelling the optimisation
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Figure. 4.2. Average performance for general-purpose meta-heuristics enriched with knowledge

problem. MA is the tool which gives us a way of handling such classes, e.g. is the problem separable?, is

the fitness function ill-conditioned?, is it Multi-modal?, also dimensionality plays a crucial role (see Chapter

8), by adding specialised operators. It is known that some LS routines can better refine certain functions than

others, e.g. S over separable functions or CMA-ES on ill-conditioned problems. Moreover, in many real-

world problems, the use of a tailored algorithm for each problem could be extremely impractical as it would

likely require the constant action of an optimisation expert to adjust the design and parameters to the industrial

needs. In addition, the implicit non-stationary nature of optimisation processes imposes that there is no unique

most suitable algorithm and parameter setting during the run-time. In order to tackle these issues, modern

optimisation make use of multiple search operators that are coordinated with the aim of promptly reacting to

the necessities of the optimisation processes and thus successfully addressing reasonable ranges of problem

features. For this reason, MC has emerged and attracted a growing interest during the last years. It is so

important to add operators so maintaining a diverse set of different moves (perturbation logics), and be able to

address multiple scenarios. If adding many LS techniques can seem an easy way for handling all the problems,

it must be also noted that this procedure could potentially lead to uselessly complex structures, difficult to

coordinate and suffering of the opposite phenomen, i.e. performance decree. It must in fact be remembered

that when applying optimisers to real-word problems, a prefixed (and usually restrictive) computational budget

is allotted for the entire optimisation process, and the algorithm must perform in the best way without exceeding

it: too complex would not work appropriately, and the design procedure has to be carried out carefully (see next

section Chapter 4.2).

As a final consideration, it can be noted that the philosophy behind MC contains a visionary potential

for the future in optimisation, see (Ong, Lim & Chen 2009) and (Ong et al. 2010). More specifically, if the

design of an optimisation algorithm consists of selecting its suitable operators from a pool, as well as their

interaction relationship, i.e. the links between the operators, this bottom-up design allows a straightforward

implementation within a computational device, without relying on human experience, see Chapter 7.2. The

idea of having a self-designing algorithm is not new in MC, for example (Meuth et al. 2009), but it has not

been formalised in technical terms yet. The main aim of this thesis is to present a prototype framework for

“automatic design” of optimisation algorithms. The proposed scheme, fully embraces the MC philosophy,

70



making use of a pool of operators which are selected only after a preliminary analysis of the fitness landscape,

in terms of its fundamental features (such as separability), and tuned accordingly. In the following sections all

the steps leading to the formulation of the proposed method are reported.

4.2 Ockham’s Razor in MC: simple VS complex structures

A great deal of research has recently gone into the direction of MC, mostly combining and improving existing

optimisers. The aforementioned algorithms are only a few examples of a plethora of designed variants. It

is worth noting that after hybridisation, there is usually an increase on the performance of the algorithm

accompanied by a growth of the complexity of the structure, that makes the application of the optimiser on

real-world problems often infeasible, due to limited hardware resources, time restrictions and computational

budget availability. EPSDE-LS is a good example of complex structure employing a high numbers of operators.

MS-CAP as well relies on two operators which are de facto two stand-alone algorithms. By using the same

logic even more complex structures have been designed in the past, having either many population based

algorithm hybridised together or perturbation schemes grouped in a single framework, see (Peng et al. 2010)

and (Montes de Oca et al. 2009) as significant examples but also Multicriteria Adaptive Differential Evolution

(MADE) and Super-fit Multicriteria Adaptive Differential Evolution (SMADE). MA-LSCh-CMA is a different

case of a performing algorithm, with no complex but rather heavy structure evolving a sub-population of

covariance matrices. This feature makes it inapplicable over several problems, in particular LSOP. In a nutshell,

if it is true that population based complex hybrid structures seem to be efficient, on the other hand simpler

algorithms are preferable for a number of others reasons (i.e. allowing the designer to better understand

which operator is actually working, inferior memory footprint and computational overhead etc.), and there

is no theoretical proof they cannot compete with tangle optimisers. There is a number of successful simple

implementations, e.g. jDE and µDEA, providing solutions as good as those of highly elaborate algorithms.

More formally, in (Iacca, Neri, Mininno, Ong & Lim 2012) the following research question has been

raised and investigated:“Is the algorithmic complexity in optimisation actually supported by the results? Is the

complexity, in MC, an algorithmic feature which makes the algorithms any better?”. This question, which will

be further investigated and extended in the remainder of this thesis (Chapter 6), has been here addressed by

designing a minimalistic algorithm, consisting of three basic memes. Each one of them has been specifically

thought to deal with a particular phase of the optimisation process, so having a complete structure where every

operator is as essential as the others, and free of redundancy. The proposed algorithm, 3SOME, relies on a

simple bottom-up combination of the three entities based on a natural trial and error logic, by following the

well-known Ockhams Razor principle2. Though the Keep it Simple, Stupid (KISS) principle is very common

in Computer Science, the authors have re-adapted the Ockhams Razor concepts to shift the attention to another

level. In fact, in CIO algorithms are sometimes inevitably complex due to the particular task to address or to

the underlying idea and mathematical concept they are based on, but the design should be done so minimising

2“Pluralitas non est ponenda sine neccesitate” (plurality must not be considered without necessity), in other words there is no need

to make things complex, when can be kept as simple as possible to reach the same goal.
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Figure. 4.3. Bottom-up design strategy.

the impact on their structure. In other words, unnecessary memes shouldn’t be added if it makes the optimiser

slower, heavier (memory-wise) and makes it perform redundant operations. An interesting consideration upon

this principle is that, if well designed, there should be no need to add more components to the existing algorithm,

but whether there is always a margin for improving by adding new features, what it should not be possible to

do is to take operators off without performance loss. According to this reflection, the novel memetic structures

proposed in this piece of research, and described in the next chapter, have been designed by invoking the

Ockham’s Razor principle for MC, making sure to have the least structure able to guarantee and reach a certain

goal. In order to prove it, experiments have been carried out, so bringing evidence with numerical results on

how simpler schemes would not work any better, see Chapter 7.1.1 and 7.2.5 for details.

The 3SOME algorithm is based on the idea that a satisfactory solution can be achieved by proceeding

through 3 simple steps, focussing the search on progressively more exploitative levels. The algorithm is built

from scratch, starting with a global search which ends up in an intermediate stage before undergoing local

refinements. The operators are sequentially activated by means of a set of deterministic conditions, according

to their exploratory/exploitative features: during the first stage “Long Distance Exploration” (Algorithm 28)

no knowledge of the problem is known and a new random point is generated in D until an improvement upon

the initial solution occurs. During the second stage, “Middle Distance Exploration” (Algorithm 29) the most

promising basin of attraction is exploited in its neighbourhood until it is possible to improve upon it. As soon

as the the second stage does no longer succeed at improving the passed solution, the resulting output is refined

via the S operator (Algorithm 2.2.4) in the last stage: “short Distance Exploration”. If S succeeds, the middle

distance exploration is newly activated (the first stage is simply skipped) to further achieve improvements.

Conversely, if the short distance exploration fails at improving the solution, the optimisation is started over

with the long distance exploration. This logic, reported in Algorithm 27 is repeated until the computational

budget expires. It can be noted that the three memes are not able to accurately optimise a given problem on

their own, each one is specified at handling a given necessity and this bottom-up strategy, graphically explained

in Figure 4.3, leads to the final goal. While S has been widely introduced in Chapter 2.2.4, the other two stages

need further explanation, since both were designed ad-hoc for covering stage number 1 and 2 in (Iacca, Neri,

Mininno, Ong & Lim 2012). Going into detail, during the Long distance exploration (L), a new trial solution

xtrial is sampled within the entire decision space, and mated by means of the exponential crossover with the

current elite solution xelite. As mentioned in the previous chapter, the elite solution is the one corresponding

to the best fitness value found by the algorithm. In this case, xelite is basically the only solution undergoing

the optimisation process and, during the first stage, donates α% of its design variables to each newly generated
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Algorithm 27 Three Stage Optimal Memetic Exploration

xelite ← randomSampling (1, n,D)
while budget condition do

/**STAGE 1**/

xelite ←L(xelite) ⊲ algorithm 28

/**STAGE 2**/

xelite ←M(xelite) ⊲ algorithm 29

/**STAGE 3**/

xelite ←S(xelite) ⊲ algorithm 5

if xelite has improved then

skip next STAGE 1

end if

end while

Output xelite

solution. In this way, on the top of performing the search within the entire decision space and thus attempting

to detect unexplored promising basins of attraction, this operator also promotes retention of a small section

of promising design variables. This kind of inheritance of some genes appears to be extremely beneficial

in terms of performance with respect to a stochastic blind search. If the trial solution outperforms the elite, a

replacement occurs. A replacement is performed also if the newly generated solution has the same performance

of the elite. This is to promote the exploration of unexplored area and to prevent plateaus from jeopardising

the search. In the middle distance exploration stage, a hyper-cube whose edge has a side width equal to δ is

Algorithm 28 Long Distance Exploration
procedure L(xl)

while xl has not improved do

xtrial ← randomSampling (1, n,D)
xtrial ←XOVEREXP(xtrial,xl) ⊲ Algorithm 19, CR calculated as in Formula 3.22 (inheritance factor α)

if f (xtrial) ≤ f (xl) then

xl ← xtrial

end if

end while

end procedure

Output xl

constructed around the elite solution xelite. Within this region, k × n trial points are stochastically generated

by randomly perturbing the elite along a limited number of dimensions, thus making a randomised exploitation

of the current elite solution. In other words, this stage attempts to focus the search around promising solutions

in order to determine whether the current elite deserves further computational budget or other unexplored areas

of the decision space must be explored. If the elite is outperformed, it is replaced. A replacement occurs also

if one of the newly generated solutions has the same performance of the elite, in order to prevent the search

getting trapped in some plateaus of the decision space. At the end of this stage, if the elite has been updated

a new hypercube is constructed around the new elite and this mechanism is repeated. On the other hand, if

the middle distance exploration does not lead to an improvement, an alternative search logic is applied, that is

the deterministic logic of the short distance exploration. This algorithm has proven to be competitive against

complex and powerful optimisers, such as JADE, MDE-pBX, CLPSO , MA-LSCh and cDE (see Table 7.5

and 6.4), and extremely versatile and suitable for implementation in embedded systems (Iacca, Caraffini &

Neri 2013). As well as a low algorithmic computational overhead, see Figure 6.15, 3SOME requires a small

amount of memory to be executed, since working only over two memory slots, one for the elite and one for trial

solution. These features make it appropriate for both embedded and real-time applications.
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Algorithm 29 Middle Distance Exploration
procedure M(xm)

do

generate an hypercubeHC centred in xm with size width ∆
for j = 1 : k · n do

xtrial ← randomSampling (1, n,HC)
xtrial ←XOVEREXP(xtrial,xm) ⊲ Algorithm 19, CR calculated as in Formula 3.22 (but α

′

= 1− α)

if f (xtrial) ≤ f (xm) then

xm ← xtrial

end if

j ← j + 1
end for

while xm improves

end procedure

Output xm
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Chapter 5

Technical research methods: experimental set-up and

data presentation

In order to address and answer to the research questions motivating this piece of work, extensive experiments

have been performed. Statistic tests have also been reported in detailed tables, accompanied with comments

and interpretations. Real-world applications have been omitted for avoiding an excessive length of this thesis1,

but results from a significantly wide range of benchmark problems are displayed to support, with numerical

evidence, every step taken and achievement claimed. The research methodologies adopted are summarised

here before going into the “experimentation” part of this work. The experimental set-up used for addressing

the research questions is also described on a separate section (Chapter 5.1). A clarification on the methodology

used for finding the suggested set of parameters of the proposed algorithms is given in Chapter 5.2. For the sake

of clarity, a list reporting the complete parameters setting for all the algorithms ran in this piece of research can

be found in Appendix D, in order to allow the reproduction of the presented conclusions.

Intense experiments over a large set of problems have been performed in order to be able to know the

general behaviour of the proposed optimisers, and also find out both potentialities and limitations. This

approach guarantees a good understanding of what the real achievements are, and allows to spot flaws and

undesired scenarios for a given class of problems. Anyway, ad-hoc experimentations have also been set-up

in order to prove specific points (see for examples the Lennard-Jones Potential (LJP) application in Chapter

7.2.6 and 8.4.1). Moreover, in order to perform a fair comparison with the already existing optimisers, a set

of 14 algorithms, representing the actual state-of-the-art, have been considered to compare with. Comparisons

against the proposed algorithms and some of their variants, or against their predecessor algorithms, have also

been included in order to show that the proposed version is the one that actually presents better performances.

Numerical data have been obtained by using well-known benchmark suites in the filed, such as those realised

for the Congress on Evolutionary Computation, but also the Black-Box Optimisation Benchmark (BBOB) 2010

suite. The set of functions used in this work is vary, and has been kept constant apart from small variations

due to new annual releases of newer versions for the CEC benchmarks, and due to the requests made by

the reviewers during the peer-review process. It must be remarked that the numerical data presented in this

1One can read the original papers listed in Appendix C for details regarding the real-world engineering applications.
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thesis, apart from those displayed in the last chapter (Chapter 8) have been published in the papers listed in

Appendix C. Finally, the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and other

Metaheuristics for Large Scale Continuous Optimisation (SISC) 2010 test suite has been also considered in

Chapter 8. Obviously, this choice was justified by the fact that the latter benchmark is fully scalable, and

extremely suitable for studying the same problem in increasing dimensionality values. For the same reason, the

test-bed problem number 2 (LJP) from CEC2011 (Swagatam & Suganthan 2010) has been used in Chapter 7

and 8.

More formally, the experimental set-up used in this thesis consist of:

• The CEC2005 benchmark (25 test problems) described in (Suganthan, Hansen, Liang, Deb, Chen, Auger

& Tiwari 2005) in 30 dimensions;

• The CEC2008 benchmark (7 test problems) described in (Tang, Yao, Suganthan, MacNish, Chen, Chen

& Yang 2007) in 1000 dimensions

• The BBOB2010 benchmark (24 test problems) described in (Hansen, Auger, Finck, Ros et al. 2010) in

10, 20, 40 and 100 dimensions;

• The SISC2010 benchmark (19 test problems) described in (Lozano, Molina & Herrera 2011) in 10, 30,

50, 100, 500 and 1000 dimensions;

• The CEC2010 benchmark (20 test problems) described in (Hansen, Auger, Finck & Ros 2010) in 1000

dimensions ;

• The CEC2013 benchmark (28 test problems) described in (Liang, Qu, Suganthan & Hernndez-Daz 2013)

in 10, 30 and 50 dimensions.

Thus, a diverse set of test-bed functions, having different and multiple features, have been considered in this

work. For each algorithm considered 100 runs have been performed, each one continued for 5000 × n fitness

evaluations.

All the results were reported in tables, mainly grouped in Appendix E, showing data in terms of average

fitness or average fitness error (with respect to the target fitness) and its standard deviation. Furthermore,

in order to perform a fair comparison, the statistical significance of the results has been strengthened thanks

to the Wilcoxon Rank-Sum test, see Appendix A.1, displayed with the following notation: the symbol “=”

indicates a statistically equivalent performance of the reference algorithm when compared, in terms of Wilcoxon

Rank-Sum test, with the algorithm in the column label. Conversely, since the two algorithms have a different

statistic behaviour, a “+” is used to point out an average better performance of the reference algorithm with

respect to the comparison algorithm, while a “-” if the comparison algorithm average performance has not

been outperformed. A further statistic test, the Holm-Bonferroni procedure described in Appendix A.2, was

reported on a separate table. The use of these two statistic tests, together with other information such as

median, mean value and standard deviation of multiple runs, represents the most modern and more appropriate

way of comparing optimisation algorithms, see (Garcı́a, Molina, Lozano & Herrera 2009). Numerical results
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were displayed in scientific notation and worked out with double precision. For the sake of readability, tables

show an approximation for the mantissa limited to 3 decimal places, but comparisons take place before the

approximation. In order to effectively display the highest performance for each problem and each algorithm,

the best average fitness values are highlighted in boldface.

5.1 Hardware and software setup: MemeNet

Extensive testing over complete benchmarks, especially in high dimensionality values, requires particular

software/hardware resources to be carried out in a reasonable amount of time. The large amount of numerical

data produced during my PhD could have not been achieved without an appropriate “infrastructure” for testing

optimisation algorithms. Moreover, also the algorithmic design involves a number of revisions and refinements,

implying experiments over diverse fitness landscapes. In order to face this issues, huge experiments can be split

up into sub-experiments, i.e. single run (single algorithm over a single problem), and executed in parallel if

multiple computational cores are available. Since high performance multiprocessors systems are too expensive,

a high performance computational cluster was set-up at the first stage of my PhD, by making use of existing

computational resources at De Montfort Univeristy.

Figure. 5.1. The MemeNet cluster of computers map.

In details, all the required software, i.e. algorithms, benchmarks problems, and even the software for

collecting data coming from the cluster, applying statistic tests and eventually displaying results as LATEX tables,

has been coded in Java and then integrated within the software platform Kimeme (Cyber Dyne Srl Home

Page 2012). Thanks to this tool, a cluster of 182 computers all over the university campus has been “carved”

from the resources already available for solving optimisation problems. Kimeme has a modular structure so that

each component can be placed on a different machine, and via few settings they can easily establish a network

communication. Every machine involved has to be kept up-to-date with a package containing algorithms and
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problems, and has to be remotely monitored in order to avoid either a loss of computational cores available

during heavy experiments or an excessive use of the computational power when they are used for didactic

purposes. In fact, in order to optimise the usage of the available hardware resources, the same machines used

by the students are at the same time exploited for research. The optimisation process runs in background,

i.e. the students don’t realise that the machine they are using is producing a little portion of data for a bigger

experiment, and thanks to a set of bash scripts the number of employed computational cores can be reduced

during laboratory activities. The impact of this processing on the activity of the students has been tested

and estimated to be fairly low so as to not compromise teaching activities. In the same way, the machines

forming the remote nodes of the cluster, named “MemeNet”, can be remotely updated, and reinserted into the

“optimisation network”, e.g. some students may need to restart the machine so dropping down the available

computational power. With reference to Figure 5.1, it can be seen that presently, MemeNet reaches out of

4 buildings of the campus. Experiments are launched from a working station in Gateway House (building

number 1 in Figure 5.1), that is arranged to receive back, store and process a large amount of data. An xml

file, containing for each algorithm parameters setting, problems to be optimised, and the number of repetitions

and allotted computational budget, is first sent towards a central node located in Eric Wood (Building number

2) before being partitioned in sub-experiments, which are despatched to the remote nodes according their

number of available cores. MemeNet is so configured as a star network, managed by a head-node handling the

communication with the remote nodes, collecting and sending back to the working station partial results from

every single core. Remote nodes are mostly located in different laboratories, i.e. different sub-networks of De

Montfort Univeristy’s network, in Queens and Clephan buildings (number 3 and 4 in Figure 5.1), but some

of them also belong to a private network accessible only through the head-node, i.e. thus explaining why this

specific machine has to be used as the central node. The head-node can offer 8 computational cores, and is able

to access 32 more quad-core processors in the private network. The latter share a single file-system, together

with the head-node, so this machine can actually be used as a single supercomputer running 136 computational

cores. Machines in the Queens building have to be linked one by one, for a total of 21 remote nodes with 8

cores each (168 cores), as well as those in Clephan. Resource in the last building comes from multiple labs

featuring 19 12-core machines, plus 97 8-core and 33 dual-core computers (682 computational cores). Thus,

MemeNet provides a peak computational power of 986 cores, or, in other words, can potentially optimise 986

test-bed problems at the same time.

5.2 Algorithmic design and parameters tuning

The use of MemeNet had a major impact also during the algorithmic design. With the aforementioned

hardware/software set-up was possible to test multiple variants of the same algorithm in a short amount of time.

Tables containing statistic tests come automatically once the data are ready and the most promising variant cab

be easily chosen while the other discarded, and then further refined with successive rounds. The algorithmic

design takes usually place through a series of intermediate steps, where little modifications are maid and need

to be tasted in order to understand which one is the most suitable and whether the designer is going toward
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the right direction or not. Being able to perform these steps over many problems simultaneously, in a seriously

short amount of time, is an advance that prevent from successive meaningless experimentations. In this study,

all the problems from CEC2005 in 10 and 30 dimensions and BBOB2010 in 100 have been considered during

the algorithmic design, since 100 runs over this two benchmark configuration only requires few minutes. Thus,

was possible to empirically study the behaviour of prototypes on diverse problems, e.g. separable, mono-modal,

etc., in different dimension values.

A similar strategy has been adopted also for the tuning of the parameters suggested for the optimiser

introduced in this work. It is worth noting that the optimal tuning of parameters is a problematic procedure

that has been investigated by researchers and it is still under study. The computational cluster for testing

optimisation algorithms built during my doctoral studies represents a precious tool for addressing this problem.

In effect, amongst the issues for performing the tuning, the first concern regards the time consuming aspect

of testing multiple combinations of parameters, that are supposed to be optimised at the same time since a

bed choice of the first one could affect the value of the last one, see (Eiben, Michalewicz, Schoenauer &

Smith 2007). According to (Eiben et al. 2007), also neglecting the linkages among the parameters, i.e. tuning

them separately one at time, would be too time consuming, and for this reason also on-the-fly tuning methods

were proposed . Anyway, this issue can be easily overtaken thanks to the computational speed of MemeNet.

Furthermore, a more interesting observation is that the optimal set of parameters exists for a specific

problem, while is impossible to find the set of parameters guaranteeing best results over all the possible

problems (Nannen, Smit & Eiben 2008). This can be seen as a consequence of the NFL theorem for

optimisation. So, while tuning the parameters on a single real-world problem could make sense, it would

be worthless for tests over complete benchmark suites. Moreover, trying to change the parameters for each

specific benchmark function, will turn into an unfair comparison against the comparison algorithms, which

should be appropriately tuned as well. For this reason, in this thesis, the suggested set of parameters for the

newly designed algorithms has been obtained by always using the same set of functions, i.e. CEC2005 in 10

and 30 and BBOB2010 in 100 dimensions, trying to find a good set of value that keep the algorithm quite

versatile and general purpose. Ad-hoc tuning has to be made, obviously, in real world specific scenarios, see

(Davis et al. 1991) and (Eiben, Hinterding & Michalewicz 1999), but in order to perform a fair comparison no

particular tuning has been carried out on selected functions, and no cherry-picked problem has been used for

testing. Conversely, a very diverse and large set of functions, up to 132 problems at time, have been optimised

on each experiment, and most of them were not used for the parameters tuning and vice-versa. Finally, it must

be said that parameters for comparison algorithm came from the suggestions made from the authors in the

original publications.
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Chapter 6

Again on Ockham’s Razor for MC: further investiga-

tions

This chapter contains all the preliminary studies laying the foundations for the “Novel Memetic Structures”

presented in the remainder of this thesis. Starting with a study on 3SOME’s bottom-up structure, the importance

of each operator’s role within the algorithmic structure of a MC approach, as well as the importance of the

coordination logic of its memes, are discussed and investigated. Novel simple, but competitive, algorithms are

then proposed and tested on several benchmark problems in order to show their efficiency, also when compared

against complex well-known algorithms. This investigation has been organised in three consecutive sections,

each one addressing IRQ I, IRQ II and IRQ III respectively.

6.1 Studying and altering 3SOME’s structure

As soon as the very first implementation of 3SOME was published, slightly different variants have followed,

invoking the same principle and attempting to enhance the former framework, which indeed presents a general-

purpose scheme that can be easily made more specific in order to improve upon a specific class of problems.

As a first attempt, is worth mentioning the Meta-Lamarckian-3SOME (ML-3SOME), where the trial-and-error

coordination for the 3 memes has been replaced with the well-known Meta-Lamarckian Learning method (Ong

& Keane 2004), as described in (Neri et al. 2012). It must be stated that this variant does not modify any of the

memes, but only affects their coordination by exchange the old deterministic logic with a probabilistic selection

scheme, considering the performance history of each operator during its previous activations. The advantages

of the adaptive coordination are evident for low dimensional problems, n up to 40 as shown in detail in Table

E.1(a) and E.1(b) (Appendix E). Conversely, this logic is not able to improve upon the classic 3SOME on higher

dimensions, apart from few cases as shown in Figure 6.1 and 6.2 for f10 and f15 from the suite CEC2010.

Conversely, in (Poikolainen et al. 2013) a novel operator for the second stage is introduced, comporting a
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Figure. 6.1. Average fitness trend for ML-3SOME

against 3SOME on f10 from CEC2010 in 1000
dimensions.

Figure. 6.2. Average fitness trend for ML-3SOME

against 3SOME on f15 from CEC2010 in 1000
dimensions.

significant improvement on the performance over large scale problems, see Table 6.1. The proposed algorithm,

Shrinking-3SOME (S-3SOME), keeps the same coordination logic of its predecessor 3SOME while replacing

the middle distance operator with a more exploitative meme, see Algorithm 30. This exploration move attempts

Algorithm 30 Stochastic Short Distance Exploration
procedure SHRINKING(xs)

generate a hypercube HC around xs with a hyper-volume 20% of that of D
while the hyper-volume is bigger than 0.0001% of D do

for j = 1 : n do

xtrial ← randomSampling (1, n,HC)
if f (xtrial) ≤ f (xs) then

xs ← xtrial;

centre the hypercube around xs

end if

j ← j + 1
end for

if no elite update occurred then

halve the hyper-volume

end if

end while

end procedure

Output xs

to detect promising areas of the decision space by making use of a stochastic logic, in contrast with the

deterministic search performed by S during the last stage. In a nutshell, when the long distance exploration

detects a new promising solution, the stochastic short distance exploration generates a hypercube centred in

the newly detected solution having a hyper-volume which is 20% of the decision space D. This exploration

samples a trial solution for n times (n being the dimensionality of the problem), attempting to outperform

previous point. If an improvement occurs, the initial solution is updated and the hyper-volume is generated. If,

after n comparisons, at least one replacement occurred, n new attempts are scheduled in the same hyper-volume,

and comparisons performed accordingly. On the contrary, if all the n comparisons led to no improvements, the

n new samplings are scheduled in a new hyper-volume, obtained by halving the current one. This shrinking

mechanism is repeated until the hyper-volume is smaller than 0.0001% of the total hyper-volume. When this
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Table 6.1. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the Fitness (reference = S-3SOME) for S-3SOME

against 3SOME on CEC2010 in 1000 dimensions.

S3SOME 3SOME

f1 6.03e− 04 ± 4.71e− 04 2.15e− 02± 6.88e− 02 +

f2 3.99e− 02 ± 9.13e− 03 1.36e+ 01± 1.91e+ 01 +

f3 7.56e− 03 ± 6.83e− 04 4.81e− 01± 4.94e− 01 +

f4 2.08e+ 13 ± 6.90e+ 12 8.08e+ 12±3.04e+ 12 -

f5 4.27e+ 08 ± 1.16e+ 08 7.26e+ 08± 1.38e+ 08 +

f6 1.54e+ 07 ± 5.39e+ 06 1.98e+ 07± 9.20e+ 04 +

f7 1.07e+ 10 ± 2.83e+ 09 1.48e+ 09±3.73e+ 08 -

f8 1.78e+ 09 ± 2.68e+ 09 8.68e+ 08±2.62e+ 09 -

f9 3.54e+ 08 ± 7.89e+ 07 4.24e+ 08± 6.35e+ 07 +

f10 5.12e+ 03 ± 2.63e+ 02 6.75e+ 03± 3.69e+ 02 +

f11 1.97e+ 02 ± 4.27e+ 00 1.99e+ 02± 5.28e− 01 +

f12 8.74e+ 04 ± 2.12e+ 04 1.57e+ 05± 7.74e+ 04 +

f13 5.61e+ 05 ± 7.34e+ 05 1.48e+ 04±6.61e+ 03 -

f14 8.79e+ 07 ± 2.66e+ 06 1.12e+ 08± 2.13e+ 07 +

f15 1.33e+ 04 ± 2.40e+ 03 1.37e+ 04± 6.36e+ 02 =

f16 1.60e+ 02 ± 1.14e+ 02 3.81e+ 02± 6.13e+ 01 +

f17 6.31e+ 04 ± 8.74e+ 03 2.78e+ 05± 2.26e+ 05 +

f18 3.88e+ 03 ± 4.66e+ 03 2.27e+ 04± 1.47e+ 04 +

f19 1.16e+ 06 ± 8.91e+ 04 1.44e+ 05±1.83e+ 04 -

f20 1.20e+ 03 ± 1.93e+ 02 1.14e+ 03±1.51e+ 02 =

condition occurs, the current value of xs is passed to the following operator (S) for further improvements.

The difference between the original implementation in 3SOME is that edge length of the hypercube created

is not fixed value but also shrinks over time. This modification allows scaling along the dimensionality of the

problem and being more exploratory at the start and turning into a more exploitative search operator towards

the end. Numerical results in (Poikolainen et al. 2013) show that S-3SOME is equivalent to its predecessor in

low dimension value and significantly better for high dimensions, being able to overtake also powerful single

solution and compact algorithms already in 100 dimensions, as well as more complex popular population-based

algorithms, see Figure 6.3 and 6.4. Its strength in tackling LSOP in 1000 dimensions it is even more evident,

see Figure 6.5 and 6.6, but also detailed results on the full suite CEC2010 reported in Table E.2 E.3.
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The main drawback of the 3SOME algorithm is that the non-separability is no explicitly addressed and thus

the algorithm displayed a not so good performance in some cases. A first effort in order to tackle this problem

has been taken in (Poikolainen et al. 2012), where the exponential cross-over in Algorithm 29 has been replaced
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with the rotational invariant DE/current-to-rand/1 perturbation scheme (Equation 3.19), thus the name Rotation

Invariant-3SOME (RI-3SOME). As soon as the algorithm gets in to the second stage, the trial solution is not

longer randomly generated but obtained via a linear combination of three points xr, xs, and xv, respectively

randomly sampled withinD and then combined according to the popular DE scheme. Since an improvement on

the performance of the modified algorithm, on those non-separable benchmark functions affected by rotations,

was noted, this concept has then been further investigated in (Caraffini, Iacca, Neri & Mininno 2012b).

In particular, three variants for handling non-separability, with increasing algorithmic complexity, were

designed, tested and compared. A careful analysis of the 3SOME structure suggests that the long and the short

distance operators are somehow algorithmically necessary to properly balance exploration and exploitation.

Thus, the simpler idea in order to improve upon 3SOME is to slightly modify its original structure by replacing

the middle search operator with an operator specifically tailored for handling non-separability. In this light, the

first two modifications involve the second stage only. The first variant, extends what has already been done

with RI-3SOME by mixing its logic with the shrinking operator (Algorithm 30) of S-3SOME. In this case the

trial solution is also generated via DE/current-to-rand/1 but xr, xs, and xv are sampled within an hypercube

collapsing toward a promising basin of attraction, see Algorithm 31. This operator provides a LS diagonal

move which, being stochastic still contains a certain degree of inheritance, i.e. the three randomly sampled

points are linearly combined with the elite solution. The coordination logic for the operators in Rotation

Invariant Shrinking-3SOME (RIS-3SOME) is graphically given by Figure 6.7, where the algorithm is described

as a composition of states, each one corresponding to a single meme processing and returning the (hopefully

improved) elite solution. The operator can be said to “succeed” if it is able to improve upon the incoming elite,

otherwise it can be said to “fail”. With reference to figure 6.7, the arrows represent the interaction amongst

memes. The “S” and “F”, represent success and failure, respectively, of the meme, while the condition on

the search volume in the shrinking component is labelled explicitly. The rotational invariant perturbation

in Equation 3.19 is still used on the second variant, but applied in a more classical way by replacing the

original middle distance exploration with a micro-population Differential Evolution. The operating principle

of this algorithm, named Micro-population Differential Evolution-3SOME (µDE-3SOME), is the following.

Whenever the long (or short) distance exploration returns a new elite, a micro-population of M = 5 individuals

is sampled within a hypercube centred around xelite, whose volume has been empirically set equal to 40% of the

volume of the entire search space. The worst individual of the micro-population is then replaced with the current
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Algorithm 31 Stochastic Diagonal Short Distance Exploration
procedure DIAG-SHRINKING(xscr)

generate a hypercube HC around xscr with a hyper-volume 20% of that of D
while the hyper-volume is bigger than 0.0001% of D do

for j = 1 : n do

xr ← randomSampling (1, n,HC)
xv ← randomSampling (1, n,HC)
xs ← randomSampling (1, n,HC)
xtrial = xscr +K (xv − xscr) + F

′

(xr − xs) ⊲ Equation 3.19

if f (xtrial) ≤ f (xscr) then

xscr ← xtrial;

centre the hypercube around xs

end if

j ← j + 1
end for

if no elite update occurred then

halve the hyper-volume

end if

end while

end procedure

Output xscr

Figure. 6.7. Coordination of the operators for RIS-3SOME.

elite. Subsequently, for a fixed number of iterations, a run of DE/current-to-rand/1 with exponential crossover

is executed over the micro-population. When the given budget allotted to the µDE operator is reached, if an

improvement is found, a new hypercube is constructed around the new elite and µDE is repeated. Otherwise,

the short distance exploration is activated. Compared to 3SOME and RIS-3SOME, the only difference in the

inter-operator coordination logics is that, in order to force a more frequent activation of the µDE operator, thus

guaranteeing its convergence, a budget limit equal to 5% of the total budget (in terms of fitness evaluations) is

imposed over each activation of the long distance exploration, see figure 6.8. After this limit is reached, µDE is

activated regardless of whether the long distance exploration has improved upon the current elite or not. This

additional control also guarantees a balance in the activation of each of the three operators similar to that one

of 3SOME and RIS-3SOME. It should be noted that, similar to RIS-3SOME, the µDE meme naturally embeds

a form of “shrinking” over the most promising search region. However, compared to 3SOME and RIS-3SOME

this variant is slightly more expensive on a memory viewpoint, because it needs M additional memory slots

to store the micro-population. On the other hand, the computational cost is comparable to the two previous

algorithms. Conversely, the third scheme relies on a different and heavier approach, since employing (1+1)-

CMA-ES (Algorithm 15 described in Chapter 3.1.2.2) during the second stage. The resulting combination of

3SOME with (1 + 1) Covariance Matrix Adaptation Evolution Strategy ((1+1)-CMA-ES-3SOME) makes use
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Figure. 6.8. Coordination of the operators for µDE-3SOME

Figure. 6.9. Coordination of the operators for (1+1)-CMA-ES-3SOME

of the same coordination scheme of 3SOME, in which a run of (1+1)-CMA-ES is executed in place of the

middle distance search operator, for a fixed budget (see Figure 6.9). Similarly to µDE-3SOME, each activation

of the long distance stage is given a maximum budget equal to 5% of the total budget of the algorithm. It must

be said that, due to the covariance matrix, this approach becomes more memory consuming with respect to the

first two strategies. In order to understand the algorithmic contribution provided by each of the three variants

described above, they have been compared with the original implementation of 3SOME on the entire noiseless

BBOB2010, consisting of 24 test functions with different properties in terms of modality, separability, and ill-

conditioning. To test the scalability of the proposed approaches, the whole benchmark has been run in 10, 20,

40 and 100 dimensions, thus considering 24×4 = 96 functions in total. Numerical results have been displayed

in detailed tables grouped in Appendix E.1. In 10 dimensions, see Table E.9, RIS-3SOME is able to improve

upon 3SOME in 10 out of 24 functions, while in 11 cases they are statistically equivalent, and only in 3 cases

RIS-3SOME degrades the original performance of 3SOME: two of these three functions, namely f3 and f4, are

indeed separable. In general, RIS-3SOME seems to performs better than 3SOME especially on non-separable

multi-modal functions, in particularly the group of functions f15-f19. As for µDE-3SOME, it outperforms

3SOME in 15 cases, it is outperformed only in 3 uni-modal cases (f3, f10, and f12), and it shows a similar

performance in the remaining 6 cases. Thus µDE-3SOME seems to consistently and regularly improve upon

3SOME, especially on non-separable multi-modal functions. Similarly, (1+1)-CMA-ES-3SOME outperforms

3SOME in 15 cases, it is outperformed in 4 cases (2 separable functions), and it is equivalent in 5 cases. In

this case the improvement provided by the CMA-ES scheme seems to be less focused on a specific group of

functions, but rather “structural”, since it displays a better performance both on separable (e.g. f1 and f2) and
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non-separable functions, particularly uni-modal (f11, f12, f14). With reference to Table E.10, in 20 dimensions,

a similar trend emerges. RIS-3SOME improves upon 3SOME in 11 cases (again on non-separable multi-modal

functions with global structure), while it is outperformed in 6 cases and it equals 3SOME in the remaining 7

cases. Similarly, µDE-3SOME outperforms 3SOME in 11 cases, it is outperformed on 5 functions, and it shows

the same performance as 3SOME on 8 cases. In general µDE-3SOME seems to be indeed better suited than

3SOME for non-separable functions (both uni-modal and multi-modal, especially with global structure). Also

(1+1)-CMA-ES-3SOME clearly outperforms 3SOME: in 17 cases out of 24 it obtains a better result, while it

degrades the 3SOME performance only in 4 cases. Again, (1+1)-CMA-ES-3SOME seems to be globally better

than 3SOME, although it seems to be extremely good especially on uni-modal functions, both separable and

non-separable (e.g. f1, f2 and the function group f10-f14). Similar results were also obtained in 40 dimensions

(Table E.11). RIS-3SOME displays a better performance than 3SOME in 12 cases (especially non-separable

multi-modal functions with global structure), and a worse performance in only 4 cases (among which again f3

and f4). µDE-3SOME outperforms 3SOME in 11 cases, while it is outperformed in 6 cases: once again it seems

to obtain better results especially on non-separable functions, both uni-modal and multi-modal. (1+1)-CMA-

ES-3SOME instead outperforms 3SOME on 15 test functions, with different properties in terms of modality

and separability, and it is outperformed in 6 cases (either separable, see f3 and f4, or not, see f8 and f9). These

results are confirmed even in 100 dimensions, although in this case the advantages obtained modifying the

original structure of 3SOME appear less prominent, see Table E.12. In particular, RIS-3SOME outperforms

3SOME in 9 cases, it is outperformed in 7 cases, and it equals 3SOME in the remaining 8 cases: similarly to

lower dimensions, the improvements are more evident on non-separable multi-modal functions, but in this case

only on those having an adequate global structure (function group f15-f19). µDE-3SOME performs better than

3SOME in 11 cases, while it is outperformed in 8 cases. Also in this case the pattern suggests the µDE-3SOME

is better suited for non-separable multi-modal functions with global structure. Finally, (1+1)-CMA-ES-3SOME

displays a better performance than 3SOME in 13 cases (either separable or non-separable), while 3SOME is

more promising in 9 other cases. However, in this case there is no clear evidence of a global scheme, except

that (1+1)-CMA-ES-3SOME seems to outperform 3SOME especially on non-separable uni-modal functions

(f10-f14).

From the numerical results summarised above a few conclusions can be drawn. First of all, it is quite evident

that the three 3SOME variants proposed here are all able to improve, sometimes remarkably, upon 3SOME.

This is specially true for non-separable functions at low dimensions (from 10 to 40), while on semi-large

scale problems (100 dimensions) the performance improvement is relatively limited. On lower dimensions,

the results obtained in this study also show some more specific trends. Referring to the property taxonomy

used to structure the BBOB2010 benchmark, it seems that the two variants based on DE/current-to-rand/1,

namely RIS-3SOME and µDE-3SOME, are able to better exploit the global structure of some landscapes, and

in general they show similar performances on the whole benchmark from 10 to 40 dimensions, tending to

outperform 3SOME on non-separable functions, especially multi-modal. In a nutshell, these two variants can

be considered equivalent in terms of global performance: this can be explained considering that, although their

coordination scheme is different, both RIS-3SOME and µDE-3SOME rely on the same DE/current-to-rand/1

mutation scheme. On the other hand, the combination of 3SOME with the (1+1)-CMA-ES structure seems to

produce the best global results on lower dimensions, both on separable and non-separable functions. However,
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compared to the first two simpler schemes, it leads to minor improvements. A possible interpretation of these

results is that, even though its robustness and mathematical elegance, (1+1)-CMA-ES is still prone to converge

to local optima, especially on highly multi-modal problems. Thus its application within the 3SOME structure

appears to be beneficial only on those landscapes whose number of optima does not grow with the problem

dimension. In other words, especially on high dimensional problems, simpler approaches like 3SOME or RIS-

3SOME are already successful without adding more complexity. This finding is in line with the Ockham’s

Razor (Iacca, Neri, Mininno, Ong & Lim 2012) .

Moreover, the fact that the three variants have similar performances raises the point that not only the choice

of the operator makes the difference in MC, but also the algorithmic structure plays an important role, see next

section (Chapter 6.2) for a deep investigation on this topic.

6.2 The importance of being structured

In order to formalise what is suggested in (Neri et al. 2012) and (Caraffini, Iacca, Neri & Mininno 2012b) is

reported here an analysis on the structure of 3SOME (Caraffini, Iacca, Neri & Mininno 2012a). This analysis

can be generalised to all the other MC optimisers and allows one to observe that, besides the components of

an algorithm, the structure combining them also plays a crucially important role. On the contrary, most of the

memetic design focuses on the components while the structure is unfortunately often overlooked. This tendency

sometimes turns into a poor understanding of the algorithmic behaviour, and misleads the interpretation of

results and algorithm potentials. A first attempt to analyse the rationales behind the choice of the algorithmic

structure in MC has already been done in (Iacca, Neri, Mininno, Ong & Lim 2012) by introducing a bottom-up

approach, i.e. the algorithm is designed from scratch, adding the minimum amount of as simple as possible

components, each one with a well-defined algorithmic role. The main idea is that if each role is clear, a proper

operator can be chosen accordingly within a certain class of operators, that regardless of their complexity,

will provide similar global performances once integrated into the main algorithm. This idea also suggests that

operators can be grouped into classes in order to address specific aspects, and automatically selected to build

a structure displaying a better performance, see Chapter 7.2. Regarding 3SOME, further experiments on the

coordination of the memes has been carried out in (Neri et al. 2012), and the second stage has been used to

handle non-separable problems in (Caraffini, Iacca, Neri & Mininno 2012b), but little has been done for the

final stage.

In order to demonstrate that a memetic structure is important and that the 3SOME structure is well-designed,

the algorithmic operators have been modified within the same structure. More specifically, 3SOME versions

where S is replaced by the Rosenbrock method (Algorithm 6, as described in Chapter 2.2.5 and Powell’s

Direction Set Method (Algorithm 7) with the GSS line minimisation method, see Chapter 2.2.6, have been

tested and compared. In order to evaluate both the versions, 3SOME equipped with Rosenbrock local search

(3SOME-Rosenbrock) and 3SOME equipped with Powell local search (3SOME-Powell), upon the original

version, the three algorithms have been run over two complete benchmarks, i.e. BBOB2010 (in 10, 40 and 100

dimensions) and CEC2010 (in 1000 dimensions).
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Numerical results show that, regardless of the choice of the specific memes, as long as the 3SOME structure

contains memes which perform long, middle, and short distance explorations a similar performance is achieved.

In 10, 20 and 40 dimensions, Table E.4, E.5 and E.6, in particular all the variants act the same way. As

the problem dimension grows however, see Table E.7 for 100 dimensions results and Table E.8 for 1000,

3SOME outperforms its Powell-based variant, while 3SOME-Rosenbrock seems to offer a slightly better global

behaviour. In general, the use of the Powell method appears beneficial especially on non-separable multi-modal

functions with weak or adequate global structure and low dimensionality, while it can be detrimental in large

scale problems. 3SOME-Rosenbrock shows better performances on separable uni modal functions and non-

separable problems in 100 dimensions. It must be noted that these three LS methods perform different moves

through D, so small variations over different kind of problems are to be expected.

A careful analysis of the dynamic behaviour of the three algorithms with different problem dimensions

was also performed. Tables 6.2(a)-6.2(c) display the memes activation, in terms of percentage of the total

budget consumed by each meme, averaged over 100 runs on a subset of the BBOB2010 test functions in 10,

40 and 100 dimensions. In order to assess if the algorithmic dynamics depends on the optimisation problem,

the subset was chosen selecting the first functions of each of the five subgroups of the BBOB2010, which

differ in terms of separability, multi-modality, and ill-conditioning. It can be seen that, for each algorithm, the

coordination scheme scales up nicely with the problem dimensionality, since the activation percentages seem

to be almost constant (apart from natural stochastic fluctuations) as the number of dimensions grows. This

behaviour is likely to be a consequence of the serial nature of the 3SOME structure (and its variants), which

guarantees the same budget allocation regardless of the dimensionality. On the other hand, the comparison

among the three algorithms shows that their behaviour is very similar (see f1, f10 apart from 3SOME-Powell in

10 dimensions, and f15). Two interesting exceptions are f6 and f20, where the three algorithms show different

trends, especially in larger dimensions. In particular, while 3SOME and 3SOME-Rosenbrock seem to have

similar dynamics, 3SOME-Powell uses a longer budget in the long exploration stage. A possible explanation

of this phenomenon is that on some peculiar non-separable multi-modal landscapes the short distance search

and the Rosenbrock method tend to consume more budget than the Powell algorithm, thus guaranteeing a better

budget balance. The same analysis was also performed on theCEC2010 benchmark, with similar results. For

the sake of brevity, numerical results on memes activation have not been reported for this test suite. The fitness

trends on two of the test functions from the benchmark, see Figure 6.10 and 6.11, are instead reported. It is

interesting to notice that, except f11 and f16 where the three algorithms show remarkably different dynamics

(with 3SOME outperforming its two variants), in the other cases the fitness trends are specular. Apart from

these two cases, similar trends were obtained in all the remaining 18 functions of the CEC2010 benchmark.

In summary, these results confirm that, despite the three algorithms use different exploitative components

(with different budget conditions), their global behaviour is almost completely ruled by the structure, that is the

coordination scheme.
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Figure. 6.10. Average fitness trend for 3SOME,

3SOME-Powell and 3SOME-Rosenbrock on f11
from CEC2010 in 1000 dimensions.
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Table 6.2. Memes activation on BBOB2010 in 10 (a), 40 (b) and 100 (c) dimensions.

(a)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 STAGE-1 = 90.85% STAGE-1 = 97.36% STAGE-1 = 90.53%

STAGE-2 = 0.91% STAGE-2 = 1.04% STAGE-2 = 1.34%

STAGE-3 = 8.24% STAGE-3 = 1.6% STAGE-3 = 8.13%

f6 STAGE-1 = 14.19% STAGE-1 = 83.97% STAGE-1 = 0.005%

STAGE-2 = 2.59% STAGE-2 = 4.88% STAGE-2 = 3.593%

STAGE = 83.22% STAGE = 11.15% STAGE = 96.402%

f10 STAGE-1 = 0.01% STAGE-1 = 23.24% STAGE-1 = 0.008%

STAGE-2 = 2.15% STAGE-2 = 5.33% STAGE-2 = 1.624%

STAGE-3 = 97.84% STAGE-3 = 71.43% STAGE-3 = 98.368%

f15 STAGE-1 = 74.77% STAGE-1 = 82.22% STAGE-1 = 80.01%

STAGE-2 = 0.95% STAGE-2 = 1.84% STAGE-2 = 1.64%

STAGE-3 = 24.28% STAGE-3 = 15.94% STAGE-3 = 18.35%

f20 STAGE-1 = 75.36% STAGE-1 = 90.63% STAGE-1 = 54.47%

STAGE-2 = 1.25% STAGE-2 = 2.17% STAGE-2 = 2.38%

STAGE-3 = 23.39% STAGE-3 = 7.2% STAGE-3 = 43.15%

(b)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 STAGE-1 = 85.31% STAGE-1 = 95.36% STAGE-1= 95.96%

STAGE-2 =1.64% STAGE-2 = 2.24% STAGE-2 = 1.52%

STAGE-3 = 13.05% STAGE-3 = 2.4% STAGE-3 = 2.52%

f6 STAGE-1 = 29.08% STAGE-1 = 80.67% STAGE-1 = 0.002%

STAGE-2 =3.74% STAGE-2 = 3.93% STAGE-2 = 2.624%

STAGE-3 = 67.18% STAGE-3 = 15.4% STAGE-3 = 97.374%

f10 STAGE-1 = 0.01% STAGE-1 = 0.001% STAGE-1 = 0.001%

STAGE-2 = 4.1% STAGE-2 = 4.72% STAGE-2 = 2.032%

STAGE-3 = 95.89% STAGE-3 = 95.279% STAGE-3 = 97.967%

f15 STAGE-1 = 64.64% STAGE-1 = 63.85% STAGE-1 = 78.65%

STAGE-2 = 1.99% STAGE-2 = 7,69% STAGE-2 = 3.01%

STAGE-3 = 33.37% STAGE-3 = 28.46% STAGE-3 = 18.34%

f20 STAGE-1 = 47.81% STAGE-1 = 82.8% STAGE-1= 42.07%

STAGE-2 = 2.45% STAGE-2 = 5.2% STAGE-2 = 3.36%

STAGE-3 = 49.74% STAGE-3 = 12% STAGE-3 = 54.57%

(c)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 STAGE-1 = 85.31% STAGE-1 = 95.36% STAGE-1 = 95.96%

STAGE-2 =1.64% STAGE-2 = 2.24% STAGE-2 = 1.52%

STAGE-3 = 13.05% STAGE-3 = 2.4% STAGE-3 = 2.52%

f6 STAGE-1= 29.08% STAGE-1 = 80.67% STAGE-1 = 0.002%

STAGE-2 =3.74% STAGE-2 = 3.93% STAGE-2 = 2.624%

STAGE-3 = 67.18% STAGE-3 = 15.4% STAGE-3 = 97.374%

f10 STAGE-1 = 0.01% STAGE-1 = 0.001% STAGE-1 = 0.001%

STAGE-2 = 4.1% STAGE-2 = 4.72% STAGE-2 = 2.032%

STAGE-3 = 95.89% STAGE-3 = 95.279% STAGE-3 = 97.967%

f15 STAGE-1 = 64.64% STAGE-1 = 63.85% STAGE-1 = 78.65%

STAGE-2 = 1.99% STAGE-2 = 7,69% STAGE-2 = 3.01%

STAGE-3 = 33.37% STAGE-3 = 28.46% STAGE-3 = 18.34%

f20 STAGE-1 = 47.81% STAGE-1 = 82.8% STAGE-1 = 42.07%

STAGE-2 = 2.45% STAGE-2 = 5.2% STAGE-2 = 3.36%

STAGE-3 = 49.74% STAGE-3 = 12% STAGE-3 = 54.57%
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6.3 Seriously simple MC structures with high performances

As previously mentioned, 3SOME’s structure appears to have two main irreplaceable stages, i.e. long and

short distance exploration, plus an intermediate search to help adjust the final move, taking the most out

of the deterministic LS. Considering the study in (Caraffini, Iacca, Neri & Mininno 2012a), re-proposed in

Chapter 6.2, the middle distance exploration seems to be of help in few cases, while it is activated only for a

small portion of the total computational budget over the majority of the problems under study. The numerous

variants described in this thesis tried and enhanced this stage, e.g. making it able to address non-separability or

performing over LSOP. On the other hand, the successful use of 3SOME in real-world memory restrictive and

real-time applications (Iacca, Caraffini & Neri 2013) originated the idea that in many real-world cases a further

simplification (instead of potentiating the old operators) could be beneficial, and that in the real-world case

simpler structure are preferable and a trade-off can be accepted. Keeping this in mind, a minimalistic optimiser

has been proposed in (Caraffini, Neri, Gongora & Passow 2013) by removing the middle search stage, and

simplifying the long distance search to the essential. The resulting algorithm, Re-sampled Search (RS) turned

out to be not only seriously simple and light, but also extremely efficient over a large set of test-bed functions,

displaying astonishing results improving upon the regular 3SOME implementation (Table 6.4).

This optimiser makes use of only two operators that progressively perturb a single point, the elite solution.

The first operator implements a re-sampling mechanism which is supposed to generate a solution far away from

the current elite, while the second implements a LS that exploits the area of the decision space suggested by the

re-sampling operator. In this sense, RS is only a simple, but performing, implementation of a multi-start local

search. However, the proposed scheme is thought as a global optimisation algorithm in the fashion of MC, as

a degenerative case of the 3SOME algorithm. In fact, the LS is committed to the S operator, as in Algorithm

5, since showing to be able to perform well over a wide range of problems. The re-sampling, in its simplicity,

plays a crucial role since the lack of the Long distance search could turn in premature convergence due to the

poor exploration of the landscape. Moreover, it helps improve S performances, since as well as the others LS

deterministic techniques, its search strongly depends on the choice of the initial point. Despite this scheme has

shown to be promising, it has then been further tested and improved thanks to a slight modification (Caraffini,

Neri, Passow & Iacca 2013a), which has been justified empirically though a large series of experiments. Going

into details, it has been observed that adding to random restart procedure appears to beneficially affect the

performance of the RS algorithm. The resulting Re-sampled Inheritance Search (RIS) performs better in high

dimensions, but has also been proved to be at least as good as its variant without inheritance and, in some cases,

significantly more promising also in low dimensional problems (see Table 6.3 for results in 30 dimensions on

CEC2005). The inheritance mechanism assures that a part of the genotype of the most promising candidate

solution is used to enhance its performance via exponential cross-over (as in Algorithm 19) between the newly

sampled point and the current best solution, i.e. the elite solution, being a single solution algorithm. Thanks

to this mechanism, a trial solution xt is generated, and its fitness instantly compared with that of the elite. If

the newly generated solution outperforms the elite, an elite replacement occurs, but regardless off its fitness

value the trial solution is then passed as input for the S operator, for local refinements. The working principle

of RIS is shown in algorithm 32. It can be observed that after the LS procedure, a second comparison is
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Table 6.3. Average Fitness ± Standard Deviation and Wilcoxon rank-sum test on the Fitness (reference = RIS) for RIS against its

variant without inheritance, RS, on CEC2005 in 30 dimensions

RIS RS

f1 −4.50e+ 02 ± 1.31e− 13 −4.50e+ 02± 1.54e− 13 +

f2 −4.50e+ 02 ± 1.23e− 10 −4.50e+ 02±1.29e− 10 =

f3 2.03e+ 05 ± 1.25e+ 05 2.30e+ 05± 1.39e+ 05 =

f4 1.88e+ 04 ± 5.57e+ 03 3.42e+ 04± 6.04e+ 03 +

f5 3.48e+ 03 ± 7.70e+ 02 4.04e+ 03± 8.22e+ 02 +

f6 6.91e+ 02 ± 4.39e+ 02 6.45e+ 02±6.52e+ 02 =

f7 −1.80e+ 02 ± 3.38e− 03 −1.80e+ 02±3.00e− 03 =

f8 −1.20e+ 02 ± 4.05e− 04 −1.20e+ 02± 7.51e− 03 =

f9 −1.18e+ 02 ± 1.63e− 05 −1.17e+ 02± 3.69e− 01 +

f10 2.14e+ 02 ± 1.52e+ 01 2.15e+ 02± 1.49e+ 01 =

f11 1.09e+ 02 ± 1.90e+ 00 1.10e+ 02± 1.76e+ 00 =

f12 1.90e+ 02 ± 1.41e+ 03 1.25e+ 02±1.20e+ 03 =

f13 −1.21e+ 02 ± 1.92e+ 00 −1.22e+ 02±1.76e+ 00 =

f14 −2.86e+ 02 ± 2.79e− 01 −2.86e+ 02±3.43e− 01 =

f15 1.44e+ 03 ± 3.89e− 01 1.45e+ 03± 5.00e− 01 +

f16 1.55e+ 03 ± 7.51e+ 00 1.55e+ 03± 6.53e+ 00 +

f17 1.66e+ 03 ± 1.54e+ 01 1.70e+ 03± 1.30e+ 01 +

f18 9.10e+ 02 ± 4.58e− 10 9.10e+ 02± 4.47e− 10 =

f19 9.10e+ 02 ± 4.52e− 10 9.10e+ 02±4.72e− 10 =

f20 9.10e+ 02 ± 4.29e− 10 9.10e+ 02± 4.79e− 10 =

f21 1.69e+ 03 ± 4.33e+ 00 1.70e+ 03± 4.06e+ 00 +

f22 2.42e+ 03 ± 2.92e+ 01 2.45e+ 03± 2.98e+ 01 +

f23 1.72e+ 03 ± 6.16e+ 00 1.73e+ 03± 5.51e+ 00 +

f24 1.68e+ 03 ± 6.83e+ 00 1.68e+ 03± 6.59e+ 00 +

f25 1.43e+ 03 ± 3.74e+ 02 1.44e+ 03± 2.64e+ 02 +

needed to verify whether the new point has to replace the current elite solution or not. In case of failure, this

point is just discarded and another sampling occurs. For the sake of completeness, it must be said that the S

operator is here used (for both RS and RIS) with the stop criterion given in Equation 2.5, and not continued

for a fixed budget. In this way, the local refinement is continued as long as the exploratory radius does not

allow any improvements. Although the re-sampling is an operation that is performed only occasionally, and

thus basically leaving all the budget to the LS, the transmission of some variables from the most promising

solution to a newly sampled point appears to have a certain impact on the global performance of the algorithm,

so being able to successfully replace the more budget requiring long distance operator of 3SOME. A graphic

representation of RIS sequential structures, i.e. two states passing a single solution to each other, is given in

Figure 7.5 (Chapter 7). Both the variants, RS and RIS have been tested over 76 test problems from CEC2005 (30

Algorithm 32 Re-sampled Inheritance Search

xelite ← randomSampling (1, n,D)
while budget condition do

xtrial ← randomSampling (1, n,D)
xtrial ←XOVEREXP(xtrial,xelite) ⊲ Algorithm 19

if f (xtrial) < f (xelite) then

xelite ← xtrial

end if

xtrial ←S(xtrial) ⊲ Algorithm 5 with Equation 2.5

if f (xtrial) < f (xelite) then

xelite ← xtrial

end if

end while

Output xelite

dimensions), BBOB2010 (100 dimensions), CEC2008 and CEC2010 (1000 dimensions), and compared against
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Table 6.4. Holm-Bonferroni procedure on the algorithms under consideration (reference algorithm: RIS, Rank= 6.46e + 00 ).

j Optimizer Rank zj pj δ/j Hypothesis

1 PMS 6.58e+00 2.67e-01 6.05e-01 5.00e-02 Accepted

2 CCPSO2 6.58e+00 2.67e-01 6.05e-01 2.50e-02 Accepted

3 RS 6.09e+00 -8.29e-01 2.03e-01 1.67e-02 Accepted

4 MA-LSCh 5.74e+00 -1.63e+00 5.17e-02 1.25e-02 Accepted

5 MDE-pBX 5.74e+00 -1.63e+00 5.17e-02 1.00e-02 Accepted

6 3SOME 5.70e+00 -1.72e+00 4.29e-02 8.33e-03 Accepted

7 CLPSO 5.64e+00 -1.84e+00 3.32e-02 7.14e-03 Accepted

8 JADE 4.62e+00 -4.15e+00 1.69e-05 6.25e-03 Rejected

9 cDE 1.79e+00 -1.05e+01 3.72e-26 5.56e-03 Rejected

8 performing algorithms as listed in Table 6.4, displaying the overall results in term or Holm-Bonferroni test.

Since RIS has proven to provide better results than RS (also the rank value in Table 6.4 is slightly higher),

extended numerical results on each single problem functions, see Appendix E.2, have been referenced to

RIS while RS has not been reported in this work. For the sake of brevity, the tables for the PMS algorithm

(displaying the highest rank over this test-bed), have also not been reported. Moreover, PMS has not been

described yet in this work, as it deserves a specific attention, Chapter 7.1. For a comparison of RIS against

PMS and RS one can read (Caraffini, Neri, Passow & Iacca 2013a). As shown in Table 6.4, RIS is ranked third

amongst all the algorithms considered in this study. In accordance with the Ockham’s Razor in MC, this is

one further confirmation that the performance of simple, properly designed algorithms can be as good as (or

even better than) the performance of modern complex algorithms, composed of multiple and computationally

expensive components, such as MA-LSCh, MDE-pBX, JADE, 3SOME and CLPSO. A full set of detailed

tables have been placed in Appendix E.2 in order to be able to draw more precise conclusions on specific

functions, with different properties and dimensions. These results have been divided into groups. Tables E.13,

E.14, E.15, and E.16 show the comparison against popular meta-heuristic, i.e. 3SOME, CLPSO, andJADE,

for the four benchmarks under consideration. Tables E.17, E.18, E.19, and E.20 show the comparison against

recent (state-of-the-art) algorithms, i.e. CCPSO2, MA-LSCh and MDE-pBX. Despite its simple structure, the

RIS algorithm outperforms both the popular meta-heuristics under consideration. In particular, RIS overtakes

CLPSO and JADE in 30 and 100 dimensions, while in 1000 dimensions CLPSO is competitive over the test-bed

CEC2010. With reference to Table E.13, it can be seen that for the full set of benchmark under consideration,

RIS is outperformed by all the other algorithms only in function f4, which, being subjected to a Gaussian noise

(N (0, 1)), is more suited to a population-based algorithm. It can also be observed that RIS achieves the best

performance in 9 cases, 3SOME also in 9 cases, JADE in 8 case while CLPSO in only one case. Nonetheless,

regarding problems f1, f2, f9, f18, f19, and f20, despite the fact that 3SOME is possibly slightly more robust,

RIS and 3SOME detect very similar solutions. On the contrary, in most of the cases where the RIS algorithm

appears to be promising against the 3SOME scheme, there is an important margin of difference in terms of final

fitness value. Equally relevant results are displayed in Table E.14, for BBOB2010 in 100 dimensions, and in

Table E.15 for CEC2008 in 1000 dimensions. In particular, Table E.15 highlights an extremely good behaviour

of the proposed algorithm over large-scale separable problems. In fact, RIS widely outperforms JADE on a

regular basis and is significantly outperformed by CLPSO in only one case (see function f4). The comparison

against MDE-pBX shows that RIS displays a better performance for all the groups of dimensionality values

92



considered in this article. Regarding the comparison against CCPSO2, RIS tends to outperform it at 30 and

100 dimension. For large scale problems, CCPSO2 displays a good performance and slightly outperforms RIS.

A reversed situation occurs for the MA-LSCh-CMA algorithm. The latter algorithm is very efficient in 30

and 100 dimensions, where it clearly outperforms RIS. On the other hand, this trend is not confirmed in high

dimensions, since RIS statistically outperforms MA-LSCh-SSW for all the problems in 1000 dimensions. With

respect to the 3SOME algorithm, RIS appears to detect better solutions in most of the analysed cases. For the

sake of brevity extended results against PMS and cDE are not reported in Appendix E, since the PMS algorithm

will be extensively treated in the next chapter and cDE does not perform well against RIS (see Holm-Bonferroni

procedure in Table 6.4). These numerical data can be found in (Caraffini, Neri, Passow & Iacca 2013a), while

for the sake of completeness, Figure 6.12 (f25 of CEC2005 in 30 dimensions), 6.13 (f24 of BBOB2010 in

100 dimensions) and 6.14 (f11 of CEC2010 in 1000 dimensions) have been reported to graphically show the

average (over 100 runs) performance trends for three significant optimisation problems amongst the 76 under

consideration.

All in all, it can be noted that RIS appears to be especially efficient in tackling large scale problems. This

can be seen as a consequence of exploitative approaches being likely to be more successful than exploratory

ones in high dimensions. Moreover, it once again suggests that LSOP can be tackled with moves along the

axis, see Chapter 8. As a final remark, the fact must be stressed that among the algorithms tested in this

study, RIS is one of the most suitable for engineering applications, since its negligible computational overhead

(Figure 6.15) and memory footprint make it compatible for integration in embedded systems. As instance,

a real world application, i.e. optimal tuning of a Proportional Integral Derivative (PID) regulator, has also

been successfully optimised in (Caraffini, Neri, Passow & Iacca 2013a). Furthermore, it must be said that the

concept of restarting the search is not new in optimisation, see for example the Population-based Iterated Local

Search (Thierens 2004) for combinatorial domains, or more recent CMA-ES restart variants for continuous

problems (Loshchilov, Schoenauer & Sebag 2012). Nonetheless, the implementation proposed in this study

presents features, such as modest algorithmic temporal overhead, minimal memory footprint and the capability

of providing high quality solutions, which make it preferable to modern complex multi-start algorithms in many

scenarios.

More in detail, Figure 6.15 displays the average (over 30 runs) computational overhead, i.e. time of a run

without the time required to perform the fitness evaluations, depending on the problem dimensionality n of

the algorithms under examination. Each run has been continued until 10000 fitness evaluations. It must be

mentioned that an enhanced version of RIS also exists (Caraffini, Iacca, Neri, Picinali & Mininno 2013). This

algorithm, employs a super-fit scheme by first applying the CMA-ES framework in order to find a promising

initial solution for starting the re-sampled search (RIS). This variant, CMA-ES super-fit scheme for the re-

sampled inheritance search (CMA-ES-RIS), has shown good results on complex test functions, but on the other

hand the use of CMA-ES for the preliminary search for the super-fit initial point, makes it inappropriate for

many real-time real-world applications.

A further confirmation of the fact that simple structures employing a simple perturbation logic, e.g.

exploration of each design variable at time, can be as good as complex structures, especially in LSOP, is
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Figure. 6.12. Average fitness trend for RIS against

popular meta-heuristics on f25 from CEC2005 in

30 dimensions.

Figure. 6.13. Average fitness trend for RIS against

popular meta-heuristics on f24 from BBOB2005

in 100 dimensions.

Figure. 6.14. Average fitness trend for RIS against

popular meta-heuristics on f11 from CEC2010 in

1000 dimensions.

Figure. 6.15. Average computational complexity

(overhead vs dimensionality) for RIS against

other popular meta-heuristics.
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given in (Iacca, Caraffini, Neri & Mininno 2013). The ISPO algorithm described in Chapter 3.2.1, is enhanced

here with a “learning mechanism” and, in the fashion of MC, with one more operator implementing a “restart

procedure”. The learning process has been here introduced in order to estimate the level of separability of the

optimisation problem at hand and change the perturbation order of the variables accordingly, so improving the

old scheme ISPO that presents some flaws in dealing with non separable problems. The re-start procedure is

instead activated in case a full iteration of the basic perturbation scheme, i.e. all of the n design variables must

be scanned and perturbed, has been unsuccessful. In this case some of the design variables of the processed

particle are randomly chosen within D with the aim of providing the next iteration of the algorithm with a new

starting particle, hopefully located in a better zone of the search space. It must be noted, see Algorithm 33, that

the restart routine actually replaces the old design variable only if the newly sampled bring an improvement,

otherwise the old value is restored. Moreover, the number of design variables affected by the restart procedure

depends on the progress of the optimisation process, i.e. higher (exploration) at the beginning and lower towards

the end (exploitation), since the CR factor in Algorithm 33 is dynamically allocated considering the number of

the elapsed functional calls. These two new modifications add to the old Intelligent Single Particle Optimisation

the ability of adapting to the problem and jumping out from an unfavourable basin of attraction and so making

it, to some extent, smarter than its predecessor, thus the name Very Intelligent Single Solution Optimisation

(VISPO). Going into detail, with reference to Algorithm 34, it can be seen that during each macro-iteration

Algorithm 33 VISPO Restart Routine

procedure RESTART((x, Neval, neval))

CR←
(

Neval−neval
Neval

)2

for i = 1 : n do

if U (0, 1) < CR then

x∗[i]← U
(

xL[i],xU[i]
)

else

x∗[i]← x[i]
end if

i← i+ 1
end for

if f (x∗) < f (x) then

x∗ ← x

end if

Output x

end procedure

each i-th variable is perturbed H times, where H is a parameter of the algorithm. The velocity update has been

simplified with respect to the one used in ISPO as follows:

v = A[i] · U (−0.5, 0.5) , i = 1, 2 . . . , n (6.1)

The velocity v must be thus calculated at each i-th step and then added to the i-th variable x at time and

then evaluated. In case the particle prior to the perturbation was better than the perturbed one, v is halved.

This way incrementally smaller perturbations are attempted. On the other hand, if the perturbation produces

a fitness improvement, the same velocity is used for the next perturbation and a counter s (“success”), which

is initialized to zero at the beginning of the optimisation, is incremented. The counter s is used, after LP

(learning period) “macro-iterations” (consisting of n×H trials), to learn, empirically, the level of separability
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of the fitness function. More specifically, if the quantity s/(n · LP ) is smaller than a given threshold, the

number of perturbations H , which will be applied in the next stages of the algorithm, is set to one, otherwise

the initial value of H is retained. This mechanism can be explained as follows. If the percentage of successful

perturbations, averaged over the problem dimension n and the number of learning periods LP , is smaller than

a threshold, then the problem can be considered, with some degree of approximation, non-separable. In this

case, it makes sense to attempt, in later stages of the algorithm, a single perturbation for each dimension. On

the other hand, if this percentage is bigger than the given threshold (meaning that during the learning periods

an averagely high number of successful perturbations was obtained per each variable) the level of separability

of the problem can be considered higher. Thus it is worthwhile to keep on trying multiple perturbations per

dimension, aiming at exploiting the separability of the fitness function. This mechanism is rather minimalistic,

and based on empirical rules. It represents a simple attempt to implement a learning rule which is able to

determine the level of separability of a given fitness function. More complex and rigorous methods can be

envisioned and are currently under investigation, with the final goal of creating an intelligent agent capable of

automatically designing an algorithm based on the characteristics of the optimization problem at hand. Still,

despite the simplicity of the mechanism implemented in VISPO, numerical results show that it provides a

performance improvement with respect to ISPO (Iacca, Caraffini, Neri & Mininno 2013). From the MC point

of view, this algorithm can be seen as a deterministic sequential repetition of two logics. The first one (referred

as VISPO Perturbation Scheme, VPS, in Table 7.12), further simplifies the old ISPO perturbation scheme, but

acts in a more performing way, being able to dynamically change the number of consecutive perturbations on

the same design variable relying on the “learning mechanism”. The second performs a restart procedure which

randomly samples a portion of the design variables of the particle within D.

From the numerical data, extended table are grouped in Appendix E.3, it can be immediately see that

the proposed optimiser aoutper ISPO on a regular basis, in both low dimensional problems, e.g. function from

CEC2005 and BBOB2010 in 30 and 100 dimension values respectively, and LSOP as those in CEC2010. Figure

6.16 graphically depict this situation for f4 from BBOB2010 in 100 dimensions. A general overview across

the three aforementioned test suites can be see in Table 6.5, where ISPO displays, in terms of Holm-Bonferroni

procedure, the worst rank and the comparison against VISPO presents the rejection of the null-hypothesis.

Moreover, comparisons with CLPSO and JADE on the CEC2005 benchmark in 30 dimensions, display a

respectable performance for VISPO, see Table E.21. Especially against CLPSO, which is a rather complex

PSO algorithm, VISPO shows that its simple structure is superior in 15 cases out of 25. On the other hand,

the comparison with JADE shows a substantially equivalent performance (12 “+” and 13 “-”). This situation

is reversed when the problem dimensionality increases, especially on BBOB in 100 dimensions, where VISPO

performs better than JADE, particularly on separable and uni-modal functions, and shows the same performance

as CLPSO (Table E.22). A similar trend can also be observed in 1000 dimensions for the CEC2010 benchmark,

Table E.23, where once again VISPO is able to deal with the curse of dimensionality at least as well as CLPSO

and JADE, see for example the trend for the “Shifted Elliptic” function in Figure 6.17.
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Algorithm 34 Very Intelligent Single Particle Optimisation

x← randomSampling (1, n,D)
for i = 1 : n do

A[i]←
(

xU[i]− xL[i]
)

i← i+ 1
end for

s← 0
k ← 0
while neval ≤ Neval do

x∗ ← x

xold ← x

for i = 1 : n do

v ← A[i] · U (−0.5, 0.5) ⊲ Equation 6.1

for j = 1 : H do

xold[i]← x[i]
x[i]← x[i] + v
if f (x) < f (xold) then

s← s+ 1
else

v ← v
2

x[i]← xold[i]
end if

j ← j + 1
end for

i← i+ 1
neval ← neval + 1

end for

if k == LP then

if s/(n · LP ) < threshold then

H ← 1
end if

end if

if f (x∗) == f (x) then

x←RESTART(x, Neval, neval) ⊲ Algorithm33

end if

k ← k + 1
end while

Output x

Table 6.5. Holm-Bonferroni procedure on the algorithms under consideration (reference algorithm: VISPO, Rank= 2.68e + 00).

j Optimizer Rank zj pj δ/j Hypothesis

1 CLPSO 2.75e+00 4.26e-01 6.65e-01 5.00e-02 Accepted

2 JADE 2.43e+00 -1.45e+00 7.39e-02 2.50e-02 Accepted

3 ISPO 2.12e+00 -3.32e+00 4.50e-04 1.67e-02 Rejected

6.4 Chapter remarks

This chapter answered to all the intermediate research questions IRQ I, IRQ II and IRQ III.

In particular, multiple 3SOME variants have been first proposed in order to address IRQ I (Chapter 6.1).

Amongst them, S-3SOME has proven to be particularly efficient on LSOP, rising the point that in large

scale optimisation, algorithm employing exploitative operators are to be preferred, but also the idea that the

use of operators perturbing the design variables along the axes are suitable for high-dimensional problems.

Moreover, the fact that the efficiency of the three 3SOME variants for handling non separability decreases

while the problem dimensionality grows, open a new interrogative. This behaviour makes one think that at

high dimensions, non separable functions can be optimised with simple operators like S. This result represents

a turning point, and has to be taken into consideration while addressing a precise problem with an optimisation

97



Figure. 6.16. Average fitness trend for VISPO

against ISPO on f4 from BBOB2010 in 100
dimensions.

0 1 2 3 4 5
x 10

6

0

0.5

1

1.5

2

2.5x 10
11

Fitness functional call

F
it

n
es

s 
va

lu
e

 

 

VISPO
JADE
CLPSO

4.8 5
x 10

6

0

2

4
x 10

6

 

 

2.79635958016E−10

6.145766795E+05

Figure. 6.17. Average fitness trend for VISPO

against popular meta-heuristics on f1 from

CEC2010 in 100 dimensions.

algorithm. To some extent, this outcome suggests us that in large scale optimisation, also non-separable

functions can be success fully addressed by simply perturbing one design variable at a time (in contrast with

the definition of non-separable function).

This observation is also confirmed by the numerical results obtained with RIS and VISPO. Both of them

have shown good performances on LSOP, and both of them are simple structures performing move along the

axes. In this light, the study reported in Chapter 6.3 not only answers to IRQ III, but also empirically shows

that simple and exploitative algorithms, with a search logic operating along the axes, perform well on LSOP .

Chapter 8 will get back to this phenomenon, tying to give a formal explanation for it.

The (IRQ II is also addressed in a study focusing on the importance of the algorithmic structure with

respect to the choice of the single component, see Chapter 6.2), which has been conducted by testing three

different LS routines within the 3SOME framework. Numerical data have shown that in a well designed

optimiser, the algorithmic structure is as important as the components forming it. This concept will be extended

and formally generalised in Chapter 7.
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Chapter 7

Novel memetic structures

While the study of coordination schemes in MAs is nowadays quite a mature research area, see for example the

excellent tutorial (Krasnogor & Smith 2005), the taxonomy proposed in (Ong, Lim, Zhu & Wong 2006) and the

theoretical analysis performed in (Sudholt 2009), almost no work has been done on the structures used in MC.

Although some of the ideas successfully applied in MAs can also be extended to modern MC, this research

line still presents many unresolved issues. MC being a much broader (and more recent) area than MAs, it is

not trivial to perform a general, conceptual analysis of all possible coordination schemes, and their influence

on the algorithmic performance. In other words, the definition of a grammar of structures (whose syntactic

elements are memes) is yet to come. In order to tackle IRQ IV, a re-organisation of the concept of the

optimisation algorithm and “algorithmic structure” is here given, proposing a general notation to address all the

existing algorithms from a MC point of view. The proposed notation introduces the concept of sequence/parallel

structure, that will be then implemented in Chapter 7.1 with the name PMS. This implementation provide the

software framework for the prototype for the automatic design of optimisers in Chapter 7.2.

Optimisation algorithms can be seen, at an abstract level, as mathematical procedures that address

optimisation problems by combining operations of two kinds: search operations where one or more solutions

(a population) are generated/computed within the search space, and selection operations, when one or more

solutions are selected and retained, see (Neri et al. 2013). This definition is valid regardless of whether the

algorithm is an exact or a heuristic method. In general, we can consider all the algorithms as population-based

where single-solution algorithms are a special case of them (population size 1). At the generic step t, a set of

candidate solutions are stored into a memory structure, namely population Popt, which contains the current

solutions. In order to improve upon the available candidate solutions, a sub-operator ℧ processes the population

Popt, by applying one/multiple strategies from a given pool, and returns a new population of (trial) candidate

solutions Trials after having applied the search logic of the algorithm:

Trials = ℧
(

Popt
)

. (7.1)

Subsequently, the selection sub-operator S processes both the populations Popt and Trials and returns a new
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Figure. 7.1. Graphical representation of Sequential Memetic Structure.

current population for the step t+ 1:

Popt+1 = S
(

Popt,Trials
)

. (7.2)

The selection sub-operator S obviously requires the fitness evaluation of the candidate solutions. For

evolutionary algorithms, the above-mentioned formulas are already explicitly formulated as ℧ is the application

of variation operators (cross-over and mutation) while S is the selection strategy which can be, for example,

the selection of parents and generational replacement for classical GAs or the so called “plus” strategy in ESs.

Within an MC view, paired sub-operators ℧ and S (for a certain amount of steps t) compose an algorithmic

operator, while optimisation algorithms are seen as connected structures of operators. For the sake of clarity, it

must be said that most of the Modern optimisation algorithms employ multiple perturbation logics that could

be seen as multiple operators, e.g. EPSDE or MDE-pBX. In order to avoid ambiguity, it is worth stressing

that according to the proposed notation, all the basic strategies performed with the aim of providing a new

population to be evaluated, are implemented within the ℧ sub-operator. In this light, algorithms such EPSDE

or MDE-pBX would be forming a single meme, consisting of a single sequence ℧→ S . LS methods also form

a single operator. Even though they often require intermediate steps to work out a new solution, also performing

fitness evaluations, all the processing within a single iteration is carried out by ℧. Each operator is associated

with an input and output Pop, and iterates for a given number of iterations until a stop condition is verified. MC

structures can be complex and composed of multiple basic entities, Elementary Memetic Structure (EMS). The

first EMS is called Sequential Memetic Structure and consists of multiple operators that sequentially process a

population Pop, i.e. the output of an operator is univocally the input of the following operator, e.g µDEA, RS,

and RIS. Figure 7.1 gives a graphical representation of a sequential structure. Instead of having an unequivocal

path, the output population from an operator could be further processed by a decisional component that selects

the subsequent operator which will attempt to improve upon Pop. The selection criteria can be based on a

probability or a fitness-based rule (e.g. the success of the previous operator). This decisional component is
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Figure. 7.2. Graphical representation of Memetic Node

Figure. 7.3. Graphical representation of Parallel Memetic Structure

called Memetic Node (MN) and is defined as a decisional mechanism that allows the selection of one meme

(operator) amongst multiple choices, see (Caraffini, Neri, Iacca & Mol 2013). A graphical representation of

MN is given in Figure 7.2. Analogous to an electrical node, an MN can be seen as the connection of at least

three memes/operators; one is the operator that has just been activated, and two (or more) of them represent the

list of memes from which the subsequent operator should be selected. Operators that concur to the same MN

are said to be in parallel. A sub-structure containing only one MN is here called Parallel Memetic Structure,

and this is the second EMS here taken into account. Figure 7.3 shows a graphical representation of a Parallel

Memetic Structure where operators 2, 3, and 4 are in parallel, and the sub-structure composed of the MN,

operators 2, 3, 4 and respective links is a parallel structure. It must be said that the concepts of parallel

structure reported here from (Caraffini, Neri, Iacca & Mol 2013), does not refer to the parallel execution of

the memes, which are started one at time, but only to the uniqueness of the path, that can be graphically

represented like an electric circuit. As in a circuit, where a higher percentage of electrons flow thorough the

resistor with the lower resistance, Popt is more likely to undergo a meme rather than another. At the end of

the optimisation process the overall flow of functional calls is then re-parted with a different proportion on each

branch of the parallel path, but in contrast with electricity the two parallel branches are not run at the same
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time, unless the algorithm has specifically been designed for parallel-computing systems (Tan & Zhou 2011).

In this light, it is not possible to forecast which meme would next be applied in the optimisation sequence, but

it is only possible to draw a static on the activation of each meme (as for example has been done in Chapter

6.2). Circuit-like graphical representation helps us to understand that some structures intrinsically perform an

adaptive mechanism, e.g. in 3SOME the last two memes are more likely to be selected over a certain problem

due to the improvement made to the fitness, while others systems, allot a fixed probability for activating each

branch, thus guaranteeing versatility (e.g. EPSDE-LS). This methodology of representing algorithms has been

first defined in (Caraffini, Neri, Iacca & Mol 2013), while proposing a novel algorithm consisting of a single

MN, thus the name PMS, which is described in the next section (Chapter 7.1). This optimiser can be seen as

an evolution of the 3SOME algorithm deprived of its second stage, which has shown to cover a marginal role

(see Chapter 6.2), but empowered with a new component and a new “probabilistic” meme selection strategy,

in contrast with the deterministic way that 3SOME uses to sequentially apply each meme. For the sake of

clarity, it must be said that the definitions given in (Caraffini, Neri, Iacca & Mol 2013) have then been better

formalised in (Caraffini et al. 2014) for every possible MC algorithm, and here further refined with respect to

the early studies in a new and more coherent manner. In this light, despite some substantial differences (further

details in Chapter 7.1) both 3SOME and PMS share a parallel structure. In fact, see Figure 7.4, 3SOME makes

use of a single MN for deciding, according to the actual value of the fitness function after local refinement,

which one is the best stage to get in to. Despite the deterministic condition on the decision, is not possible

to know the exact sequence of memes activation in advance, since it is not possible to know whether S will

improve. In addition, S i more likely to improve upon a certain class of problems, and its performance heavily

depends on the initial point. This is provided by a stochastic move performed by the middle exploration stage,

so, by looking at the graphical representation it is possible to understand why 3SOME performances are biased

on a class of problems. Even though 3SOME intrinsically adapt to the problem, the MN will be able to

supervise successfully those problems where M and S perform well, while it won’t be able to handle other

landscapes, since it is forced to restart over from the first and the second stage, whose exploration is mainly

global. Conversely, PMS employs a probabilistic criterion (equal probability for each branch) for selecting a

specific LS, making it more robust (in accordance with the NFL theorem). The main difference between the

two approaches is that while 3SOME behaviour cannot be altered without changing its structure, those systems

relying on a stochastic selection of the operators can be tuned by simply varying a threshold in the MN.

Figure. 7.4. Graphical representation of 3SOME (left) and EPSDE-LS (right) Parallel Memetic Structures.
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Figure. 7.5. Graphical representation of RIS (left), CMA-ES-RIS (middle) and MA-LSCh (right) Sequential

Memetic Structures.

Similarly to PMS, EPSDE-LS also includes a parallel structure, see Figure 7.4. As a counter example, RIS,

CMA-ES-RIS and MA-LSCh, Figure 7.5, displays a sequential structure. As a final remark is interesting to

notice that a complex algorithm such as MS-CAP also employs a simple sequential structure. This algorithm

is in fact based on two rather complex EMS, based on PSO based perturbations (the first one) and multiple

DE schemes (the second) but still executed sequentially. In particular, the first meme is executed for a pre-

fixed number of functional calls (depending on the dimensionality of the problems) and then further continued

according to the stop criterion, i.e. either no improvement has occurred or the maximum budget allowed has

expired. So, the current population Popt is being updated with the same sub-operators for a certain amount

of time, and then where the computational budget allows a transition, the second meme is run for a given

amount of functional calls. There is no ambiguity in the path for this optimiser, which will always alternate

two different memes. The same explanation holds for µDEA and VISPO, with the only difference is that while

µDEA switches on a simple condition on the budget, VISPO (and MS-CAP) makes its “decision” according

to the success on improving upon the fitness value. If an improvement has occurred the same operator keeps

iterating, otherwise (stop criterion) there is a transition to the next one. There is no ambiguity on the path and

the succession of the operators forms a deterministic sequence. A complete taxonomy considering all the MC

approaches presented in this thesis, Chapters 4 and 7, is given in Table 7.12.

7.1 The Parallel Memetic Structure algorithm

The PMS algorithm shares the same motivation explained in (Iacca, Neri, Mininno, Ong & Lim 2012), i.e. the

design of a simple MC approach that can compete with the complex population-based algorithms presented

in the literature and the definition of an algorithmic structure that can be easily integrated within an automatic

designer. The proposed algorithm (as well as that in the following section) have a pure single-solution structure,

hence there is no population of solutions involved in the algorithm. Moreover, unlike the EDAs, PMS does not

103



make use of any explicit probabilistic model of the population. However, it must remarked that as all the

meta-heuristics, PMS can be seen as a sample and test procedure. At the machine level, PMS samples points

from a probability distribution function which are then improved by deterministic strategies and further tested

when their fitness value is calculated. This general scheme is valid all the optimisation algorithm, regardless

they are population-based, single-solution, or EDAs. While in 3SOME the attention was mostly focused on

the bottom-up logic, so tackling optimisation problems through specialised stages, in PMS a particular care

has been given to providing the algorithm with a rich set of diverse search logics, maintaining, at the same

time, the algorithmic structure as minimal as possible. As a result, the PMS algorithm still makes use of three

memes, but only two stages are considered: the long and short exploration. If in 3SOME the short exploration

can be followed by another local refinement, starting from the middle operator, PMS similarly to RIS always

performs the two stages sequentially, i.e. the long search is necessarily followed by a local search and then

back to the first stage. However, an MC node is here used to switch among two possible LS strategies, leaving

the possibility of changing a perturbation move within the neighbourhood of the elite solution, which is refined

by the joint action of two operators exchanging xelite with each other.

In detail, PMS is a combination of the Long Distance Exploration (Algorithm 28, Chapter 4.2), or simply

L, the Short Distance Exploration S (Algorithm 5, Chapter 2.2.4) and the Rosenbrock method (Algorithm

6, Chapter 2.2.5), here addressed as R. Briefly, L is a stochastic global search which has the role of detecting

interesting areas of the decision space. On the contrary S and R are both exploitative components which attempt

to locally improve upon the elite solution. However S and R present very different features. While S performs

movements along the axes, R by means of its rotation matrix, performs diagonal perturbations and attempts to

follow the gradient of the fitness landscape. In this sense, L can be seen as a global search algorithm while

S and R are local search algorithms which cooperatively/competitively exploit the results achieved by L. The

two local search logics characterising S and R can be graphically visualised by means of a metaphor: S and R

locally explore portions of the decision space like different pieces on a chess board. However, while S behaves

like a rook as it performs vertical and horizontal moves, R behaves like a bishop as it moves diagonally. A

graphical representation of this metaphor is shown in Figure 7.6. The alternated activation of the two local

search logics is supposed to offer a globally robust behaviour, since S and R complete and compensate each

other. More specifically, the vertical and horizontal S moves are likely to be an efficient strategy for separable

and moderately non-separable functions as they correspond to perturbation along each axis separately. The R

action, by exploiting the local gradient can be efficient as a local optimiser on problems that are locally non-

separable with high conditioning. However, it must be noted that a strict characterisation of the role of a meme

is in practice not always valid. For example, S (or another approach that perturbs the function along the axes

separately) can in some cases be more efficient than R on non-separable problems, see e.g. f15 in Table 7.2.

In consideration of the roles of the memes, the proposed algorithmic structure is organized in the following

way. An initial solution is randomly sampled within the decision space D and given as input for L. According

to the description given in Chapter 4.2, the perturbation by L continues until a trial solution outperforms the

elite xelite. In order to avoid using all the budget on L an additional stop criterion is included: if L uses 5%

of the budget without improving upon xelite, L is stopped and the optimisation is continued by another meme.

The elite resulting from L is then processed by an MN to select the subsequent meme. After the MN, S and R

have been structured in parallel. In accordance with the Ockham’s Razor in MC, the simplest possible MN has
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Figure. 7.6. A graphical representation of the roles of the memes in PMS.

been implemented: the solution xelite is processed either by S or R with an equal probability 0.5. The solution

processed by one of the memes in parallel (S or R) is then processed by L anew and the operations above

are repeated until the allocated computational budget is used. The structure of PMS is represented by means

of pseudo-code in Algorithm 35 and graphically in Figure 7.7. In the graphical representation, the solid line

represents the fact that the data flow has only one possible path while the dashed line represents that multiple

options are offered to the data flow.

It must be remarked that the proposed PMS could be seen as similar to hyper-heuristics (Burke et al. 2010)

as it uses multiple search algorithms coordinated by a (simple) supervisor. However, PMS design does not share

with hyper-heuristic the design philosophy. While hyper-heuristics are thought as collections of heterogeneous

algorithms selected from a list, PMS, as MC structure, is built up by applying a bottom up logic, see . The PMS

algorithm can also be seen as a related structure with respect to the variable neighbourhood search, see (Hansen

& Mladenović 2001), (Pérez, Hansen & Mladenovic 2004) and (Hansen, Mladenovi & Moreno Prez 2008) .

However, the latter has been specifically designed for combinatorial problem as the concept of neighbourhood

take in the discrete space a radically different meaning with respect to what happens in the continuous domain.

One specific implementation of variable neighbourhood search for continuous problems exist but it is ultimately

a very different algorithm with respect to PMS. Finally, as a member of the MC group, PMS could be seen as

a specific implementation of broader concepts and more specifically can be seen as a multimemetic algorithm

with population size one and mutation rate 0.5 (Krasnogor & Smith 2005). Nonetheless, the context of PMS

is different and its important lays on the fact that it attempts to think of algorithms as structures composed

of elementary structures (the parallel would be an elementary structure). This is a fundamental fact to move

towards the automatic design of optimisation algorithms.

The PMS algorithm has been run over four whole sets of test problems, namely CEC2005 (30 dimensions),

BBOB2010 (100 dimensions), CEC2008 and CEC2010 (both in 1000 dimensions), for a total of 76 test

problems considered in this study, as well as being compared against several popular and recent (state-of-
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Figure. 7.7. A graphical representation of the PMS algorithms highlighting the parallel structure.

Algorithm 35 Parallel Memetic Structure

xelite ← randomSampling (1, n,D)
while budget condition do

/**STAGE 1**/

xelite ←L(xelite) ⊲ Algorithm 28 with consecutive functional calls limit (5% of the budget)

/**STAGE 2**/

if U (0, 1) < 0.5 then

xelite ←S(xelite) ⊲ Algorithm 5

else

xelite ←R(xelite) ⊲ Algorithm 6

end if

end while

Output xelite

the-art) algorithms. Before commenting on the numerical results, a further test is reported, performed to show

the benefits of the parallel structure and the advantages of having two different local components.

7.1.1 The importance of diversity on the chessboard

In this subsection, the intuition that a meme diversity is required to have a high performance is experimentally

justified. This aim is pursued by comparing the PMS algorithm with two “degenerate” variants of it: one

where MN allows the data flow exclusively to S, let us call it LS, and one where MN allows the data flow

exclusively to R, namely LR. Tables 7.1, 7.2, 7.3, and 7.4 show the numerical results of this experiment over

the four benchmarks under consideration. Numerical results show that the advantages due to the employment

of diverse local search components are not so obvious for the low dimensional problems in this study. On

the other hand, PMS appears to offer higher quality performance for large scale problems with respect to

its simple variants. More specifically, in 30 dimensions, Table 7.1 shows that performance values are very

similar to each other. However, it can be observed that PMS appears more promising than LR and displays

a performance similar to that of LS. It must be observed that PMS displays a good performance for highly

conditioned functions, such as f3. Table 7.2 shows that for the 100-dimensional test-bed, PMS confirms its

capability to handle functions with a high degree of conditioning (106 for f11 and f12) and outperforms LS on

106



Table 7.1. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against LS and LR on

CEC2005 in 30 dimensions.

PMS LS LR

f1 −4.50e+ 02 ± 6.97e− 14 −4.50e+ 02± 7.97e− 14 = −4.50e+ 02± 3.52e− 11 +

f2 −4.50e+ 02 ± 3.79e− 10 −4.50e+ 02±2.45e− 12 = −4.50e+ 02± 6.62e− 08 +

f3 1.97e+ 05 ± 1.50e+ 05 2.15e+ 05± 1.36e+ 05 + 2.10e+ 05± 1.23e+ 05 +

f4 2.16e+ 04 ± 7.94e+ 03 2.58e+ 04± 9.76e+ 03 + 9.79e+ 03±3.24e+ 03 -

f5 1.08e+ 04 ± 6.01e+ 03 7.20e+ 03±2.33e+ 03 - 1.55e+ 04± 3.72e+ 03 +

f6 5.28e+ 02 ± 2.71e+ 02 7.04e+ 02± 4.77e+ 02 + 6.59e+ 02± 3.75e+ 02 +

f7 −1.80e+ 02 ± 1.43e− 02 −1.80e+ 02±1.26e− 02 = −1.80e+ 02± 1.39e− 02 =

f8 −1.20e+ 02 ± 1.88e− 03 −1.20e+ 02±9.89e− 04 = −1.20e+ 02± 6.91e− 03 =

f9 −1.18e+ 02 ± 5.17e− 01 −1.18e+ 02± 7.73e− 01 = −1.18e+ 02±2.51e− 01 =

f10 2.76e+ 02 ± 2.45e+ 01 2.69e+ 02±2.89e+ 01 - 2.91e+ 02± 2.81e+ 01 +

f11 1.23e+ 02 ± 5.69e+ 00 1.19e+ 02±4.36e+ 00 - 1.25e+ 02± 3.64e+ 00 +

f12 1.02e+ 03 ± 2.18e+ 03 6.76e+ 02±1.53e+ 03 - 1.53e+ 03± 2.97e+ 03 +

f13 −1.19e+ 02 ± 4.66e+ 00 −1.24e+ 02±1.09e+ 00 - −1.15e+ 02± 4.63e+ 00 +

f14 −2.86e+ 02 ± 5.60e− 01 −2.87e+ 02±3.06e− 01 = −2.85e+ 02± 2.58e− 01 =

f15 1.44e+ 03 ± 8.47e− 01 1.44e+ 03± 1.36e+ 00 = 1.44e+ 03±5.27e− 01 =

f16 1.60e+ 03 ± 2.52e+ 01 1.59e+ 03±1.52e+ 01 = 1.62e+ 03± 2.13e+ 01 +

f17 1.67e+ 03 ± 1.90e+ 01 1.68e+ 03± 1.80e+ 01 + 1.64e+ 03±1.60e+ 01 -

f18 9.10e+ 02 ± 5.70e− 12 9.10e+ 02±5.75e− 12 = 9.10e+ 02± 3.40e− 10 +

f19 9.10e+ 02 ± 5.63e− 12 9.10e+ 02±5.24e− 12 = 9.10e+ 02± 2.62e− 10 +

f20 9.10e+ 02 ± 5.52e− 12 9.10e+ 02±5.12e− 12 = 9.10e+ 02± 2.02e− 10 +

f21 1.72e+ 03 ± 1.51e+ 01 1.72e+ 03±1.27e+ 01 = 1.73e+ 03± 9.11e+ 00 +

f22 2.62e+ 03 ± 8.11e+ 01 2.63e+ 03± 7.93e+ 01 = 2.62e+ 03±6.85e+ 01 =

f23 1.72e+ 03 ± 1.07e+ 01 1.73e+ 03± 1.21e+ 01 + 1.72e+ 03± 1.11e+ 01 =

f24 1.72e+ 03 ± 1.39e+ 01 1.71e+ 03± 1.32e+ 01 = 1.71e+ 03±1.17e+ 01 =

f25 1.65e+ 03 ± 2.55e+ 02 1.61e+ 03±2.65e+ 02 - 1.72e+ 03± 1.92e+ 02 +

Table 7.2. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against LS and LR on

BBOB2010 in 100 dimensions.

PMS LS LR

f1 7.95e+ 01 ± 3.65e− 14 7.95e+ 01± 3.90e− 14 = 7.95e+ 01± 8.14e− 13 =

f2 −2.10e+ 02 ± 7.13e− 14 −2.10e+ 02±5.37e− 14 = −2.10e+ 02± 2.21e− 09 +

f3 −3.67e+ 02 ± 1.66e+ 01 −3.50e+ 02± 1.89e+ 01 + −1.62e+ 02± 6.15e+ 01 +

f4 −3.40e+ 02 ± 2.05e+ 01 −3.20e+ 02± 2.13e+ 01 + −8.42e+ 01± 7.15e+ 01 +

f5 −9.21e+ 00 ± 3.51e− 12 −9.21e+ 00± 4.39e− 12 = −9.21e+ 00± 5.94e− 12 =

f6 4.05e+ 01 ± 4.61e+ 00 3.59e+ 01±1.29e− 07 - 4.40e+ 01± 6.60e+ 00 +

f7 3.70e+ 02 ± 8.80e+ 01 3.88e+ 02± 1.10e+ 02 + 1.09e+ 03± 2.08e+ 02 +

f8 2.21e+ 02 ± 5.96e+ 01 1.82e+ 02±3.96e+ 01 - 2.15e+ 02± 6.08e+ 01 -

f9 1.72e+ 02 ± 2.30e+ 01 1.86e+ 02± 3.16e+ 01 + 1.74e+ 02± 1.29e+ 01 =

f10 2.37e+ 03 ± 6.64e+ 02 3.22e+ 03± 6.91e+ 02 + 2.17e+ 03±6.19e+ 02 -

f11 6.51e+ 02 ± 8.17e+ 01 7.32e+ 02± 8.70e+ 01 + 6.83e+ 02± 7.76e+ 01 +

f12 −6.11e+ 02 ± 1.52e+ 01 −6.18e+ 02±4.24e+ 00 - −6.08e+ 02± 2.23e+ 01 =

f13 3.60e+ 01 ± 6.01e+ 00 3.64e+ 01± 4.68e+ 00 = 3.37e+ 01±5.08e+ 00 -

f14 −5.23e+ 01 ± 1.80e− 05 −5.23e+ 01± 5.39e− 05 = −5.23e+ 01±1.65e− 05 =

f15 2.39e+ 03 ± 6.32e+ 02 2.22e+ 03±2.38e+ 02 = 4.36e+ 03± 4.36e+ 02 +

f16 9.23e+ 01 ± 9.50e+ 00 8.83e+ 01±3.55e+ 00 = 1.31e+ 02± 7.97e+ 00 +

f17 −1.96e+ 00 ± 9.61e+ 00 −8.79e+ 00±1.60e+ 00 - 1.08e+ 02± 4.63e+ 00 +

f18 4.89e+ 01 ± 4.41e+ 01 1.58e+ 01±6.48e+ 00 - 8.17e+ 01± 3.15e+ 01 +

f19 −5.08e+ 01 ± 4.81e+ 01 −9.30e+ 01±2.21e+ 00 - 3.21e+ 00± 2.18e+ 01 +

f20 −5.45e+ 02 ± 1.28e− 01 −5.45e+ 02±1.03e− 01 = −5.45e+ 02± 1.28e− 01 =

f21 5.05e+ 01 ± 1.12e+ 01 5.10e+ 01± 8.90e+ 00 = 5.44e+ 01± 1.42e+ 01 +

f22 −9.83e+ 02 ± 1.29e+ 01 −9.85e+ 02±1.45e+ 01 = −9.83e+ 02± 1.35e+ 01 =

f23 8.70e+ 00 ± 8.16e− 01 8.27e+ 00±5.46e− 01 - 9.32e+ 00± 6.52e− 01 +

f24 2.14e+ 03 ± 6.37e+ 02 1.75e+ 03±3.83e+ 02 - 2.63e+ 03± 2.85e+ 02 +

separable functions (f1 to f5). Conversely, LS appears to be more effective on multi-modal problems with a

weak global structure. In 1000 dimensions, PMS appears to outperform both its variants.

In addition, PMS has been compared with its predecessor 3SOME and two popular population based

meta-heuristics, namely CLPSO and JADE. Moreover, a final comparison has been carried out against recent
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Table 7.3. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference= PMS) for PMS against LR and LR on

CEC2008 in 1000 dimensions.

PMS LS LR

f1 −4.50e+ 02 ± 4.20e− 13 −4.50e+ 02± 2.64e− 07 + −4.50e+ 02± 6.64e− 13 +

f2 −3.88e+ 02 ± 5.17e+ 01 −4.50e+ 02±4.46e− 02 - −2.82e+ 02± 3.58e+ 00 +

f3 1.34e+ 03 ± 5.37e+ 02 1.40e+ 03± 1.02e+ 02 + 1.40e+ 03± 5.46e+ 02 +

f4 −3.30e+ 02 ± 1.33e− 12 −3.30e+ 02± 1.52e− 05 + 1.03e+ 04± 4.45e+ 02 +

f5 1.80e+ 02 ± 1.50e− 02 −1.80e+ 02±8.07e− 03 = −1.80e+ 02± 3.55e− 02 =

f6 −1.38e+ 02 ± 6.36e+ 00 −1.40e+ 02±5.90e− 06 - −1.20e+ 02± 1.82e− 02 +

f7 −1.37e+ 04 ± 2.80e+ 02 −1.40e+ 04±4.82e+ 01 - −1.22e+ 04± 1.19e+ 02 +

Table 7.4. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against LS an LR on

CEC2010 in 1000 dimensions.

PMS LS LR

f1 0.00e+ 00 ± 0.00e+ 00 2.45e− 12± 2.21e− 12 + 4.84e− 12± 2.54e− 11 +

f2 1.48e− 13 ± 2.79e− 13 4.05e− 05± 2.99e− 05 + 1.00e+ 04± 4.24e+ 02 +

f3 4.52e− 01 ± 2.76e+ 00 5.89e− 05±7.43e− 06 - 1.98e+ 01± 1.65e− 02 +

f4 5.27e+ 11 ± 2.72e+ 11 7.73e+ 13± 2.63e+ 13 + 4.39e+ 11±2.61e+ 11 -

f5 4.78e+ 08 ± 1.40e+ 08 4.13e+ 08±9.35e+ 07 - 6.15e+ 08± 1.38e+ 08 +

f6 1.92e+ 07 ± 2.24e+ 06 7.15e+ 06±6.04e+ 06 - 1.98e+ 07± 9.29e+ 04 +

f7 1.02e+ 08 ± 2.57e+ 08 1.85e+ 10± 6.71e+ 09 + 9.01e+ 07±2.28e+ 08 -

f8 1.17e+ 08 ± 1.30e+ 08 1.91e+ 09± 1.89e+ 09 + 1.08e+ 08±1.23e+ 08 -

f9 6.19e+ 06 ± 2.80e+ 06 1.93e+ 08± 2.92e+ 07 + 4.55e+ 06±8.03e+ 05 -

f10 5.25e+ 03 ± 2.09e+ 03 3.52e+ 03±2.09e+ 02 - 1.31e+ 04± 4.74e+ 02 +

f11 1.85e+ 02 ± 3.03e+ 01 1.29e+ 02±5.17e+ 01 - 2.18e+ 02± 2.40e− 01 +

f12 1.06e+ 03 ± 7.23e+ 02 4.37e+ 04± 1.03e+ 04 + 1.39e+ 03± 7.74e+ 02 +

f13 1.18e+ 03 ± 6.33e+ 02 3.73e+ 03± 2.62e+ 03 + 1.42e+ 03± 6.37e+ 02 +

f14 1.44e+ 07 ± 5.47e+ 06 5.95e+ 07± 2.60e+ 06 + 9.41e+ 06±9.85e+ 05 -

f15 1.20e+ 04 ± 3.87e+ 03 7.33e+ 03±3.41e+ 02 - 1.52e+ 04± 5.14e+ 02 +

f16 3.27e+ 02 ± 9.13e+ 01 1.14e+ 02±4.67e+ 01 - 3.97e+ 02± 3.07e− 01 +

f17 1.37e+ 03 ± 8.23e+ 02 3.33e+ 04± 6.64e+ 03 + 1.36e+ 03±1.17e+ 03 =

f18 2.41e+ 03 ± 1.00e+ 03 2.07e+ 03±3.08e+ 03 - 2.64e+ 03± 8.21e+ 02 +

f19 1.47e+ 05 ± 4.93e+ 04 2.31e+ 06± 2.24e+ 05 + 1.25e+ 05±1.98e+ 04 -

f20 9.57e+ 02 ± 5.37e+ 02 1.05e+ 03± 1.69e+ 02 + 1.07e+ 03± 5.41e+ 02 +

algorithms, representing the state-of-the-art of modern optimisation:CCPSO2, MA-LSCh and MDE-pBX. Due

to limitations with space, large tables have been reported in Appendix E.4. Numerical results against popular

algorithms show that in 30, Table E.24, and 100 dimensions, Table E.25, PMS offers a competitive performance

with respect to 3SOME, CLPSO and JADE. More specifically, PMS for both these two dimensionality values

displays a performance whose quality is very similar to that of 3SOME. The comparison with CLPSO shows

that PMS is slightly more promising over CEC2005 and slightly less promising on BBOB2010. Conversely,

PMS tends to be slightly outperformed by JADE for the problems in CEC2005 while it outperforms JADE

for those in BBOB2010. It must be said that both CLPSO and JADE were originally designed and tested

to tackle problems similar to those in the two test-beds considered in Tables E.24 and E.25. For the high

dimensional problems, PMS seems to be slightly outperformed by 3SOME for the test problems in Table E.26.

In all the other cases (i.e. the majority) PMS appears to offer an extraordinarily high performance. This

fact can be seen from Tables E.26 and E.27, where it is shown that PMS tends to regularly outperform the

popular meta-heuristics used for comparison in this study. Numerical results obtained with the state-of-the-art

algorithms show that for low dimensional problems (Table E.28 in 30 and Table E.29 for 100 dimensions), PMS

is competitive with CCPSO2 and MDE-pBX. On the contrary, for these benchmarks MA-LSCh-CMA appears

to have a superior performance with respect to the other algorithms considered in this paper. The fact that

CCPSO2 does not show a very high performance in low dimensions was expected as it was specifically designed
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Table 7.5. Holm-Bonferroni procedure on the algorithms under consideration (reference algorithm: PMS, Rank= 5.75).

j Optimizer Rank zj pj δ/j Hypothesis

1 CCPSO2 5.8 1.18e-01 5.47e-01 5.00e-02 Accepted

2 LS 5.71 -8.89e-02 4.65e-01 2.50e-02 Accepted

3 3SOME 5.26 -1.10e+00 1.37e-01 1.67e-02 Accepted

4 MA-LSCh 5.22 -1.18e+00 1.18e-01 1.25e-02 Accepted

5 MDE-pBX 4.78 -2.19e+00 1.42e-02 1.00e-02 Accepted

6 LR 4.32 -3.23e+00 6.23e-04 8.33e-03 Rejected

7 CLPSO 4.28 -3.32e+00 4.55e-04 7.14e-03 Rejected

8 JADE 3.9 -4.21e+00 1.30e-05 6.25e-03 Rejected

for large scale problems. On the contrary, MDE-pBX and MA-LSCh-CMA were designed for relatively low

dimensional problems. As a consequence, the latter two algorithms (especially MA-LSCh-CMA) display a

good performance. For the set of large scale problems, the ranking among these algorithms dramatically

changes. In 1000 dimensions MDE-pBX and MA-LSCh-SSW display a performance that is not so good when

compared to that of PMS and CCPSO2. The comparison between PMS and CCPSO2 shows that these two

algorithms perform equally well over the set of problems of CEC2008 while, in the other test-bed, CEC2010,

PMS outperforms all the algorithms including CCPSO2. According to these results, the two local search

components contained in the PMS exploit the decision space and achieve, by means of different search logics,

interesting areas of multi-variate fitness landscapes. The benefit of these components is evident in large scale

problems as an exploitative action that allows fast improvement of the candidate solutions. On the other hand,

for low dimensional problems, population-based systems appear to better explore the decision space and thus

allow a more efficient detection of solutions that are located close to the optimum. Finally, this study confirms

that, while as a general rule population-based systems containing multiple local search activations are capable

of efficiently tackling optimisation problems, seeing their implementation in high dimensions may require an

excessive effort in terms of computational resources and computational budget before high quality solutions are

detected. With reference to Table 7.5, it is possible to have a more global view over the full set of 76 problems

considered in this study thanks to the Holm-Bonferroni procedure. A first consideration is that PMS displays

a better rank than LR and LS. This fact confirms the intuition about diversity of local search moves in parallel

structures with multiple memes (diversity of pieces on a chessboard) as represented in Figure 7.6. At a general

level, the idea that a proper combination of diverse memes can outperform each of the single memes making up

this combination has already been mentioned in the literature, e.g. in (Krasnogor 2004) and (Hart, Krasnogor

& Smith 2005). This case study shows how the combination of clearly different search strategies can lead to a

robust structure displaying a high performance. As shown, PMS, despite its simplicity, is ranked as the second

best algorithm in this study. It must be observed that PMS displays an overall better performance with respect to

both classical and state-of-the-art algorithms. Although PMS statistically outperforms only CLPSO and JADE,

it appears to be more promising than the modern and complex algorithms based on populations and multiple

local search activations, such as MA-LSCh and MDE-pBX. The comparison between PMS and CCPSO2 shows

interesting discussion potentials. CCPSO2 is ranked slightly better than PMS. However, CCPSO2 tends to have

a slightly better performance than PMS in low dimensions and slightly worse in high dimensions. This finding

is important because the variable decomposition of CCPSO2 was originally designed for large scale problems to

decompose the dimensionality of the problem. Although efficient in high dimensions, this operation is likely to

be suboptimal since it can be outperformed by a much simpler single solution structure. On the other hand, this
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operation appears to be efficient in low dimensions. Further study could consider a meme that decomposes the

dimensionality of the problem. The success of PMS for large scale problems can be justified when considering

that the size of a search space grows exponentially with the amount of variables, see (Caponio, Kononova &

Neri 2010). In other words, in a high dimensional space, given an initial candidate solution, the chance of

improving upon this solution is much higher than low dimensional cases. In this light, exploitative schemes

tend to be more efficient in high dimensions than algorithms that attempt to perform an extensive exploration.

Since PMS perturbs only a single solution, it can be seen as an exploitative search. On the other hand, small

populations (and thus also single solution algorithms) suffer from premature convergence, or, more generally,

are likely to be unable to detect new promising solutions after an initial success. This effect is usually evident

for large scale problems where the high dimensionality can be a challenge for the search operators. The power

of PMS is the employment of two diverse operators for exploring the landscapes from different perspectives,

see Figure 7.6, together with a global search that essentially restarts the search without a massive exploration.

The features of high exploitation, diversity of operators, and a non-destructive restarting mechanism (part of

the old solution is inherited by the output of L) seem to be the key-points for an algorithmic success in high

dimensions.

In general, the numerical results reported for the 76 test problems belonging to four popular test beds,

as well as the real-world application in (Caraffini, Neri, Iacca & Mol 2013), show that PMS is an extremely

simple structure (in accordance with Ockham’s Razor in MC) that can display a performance that is as good,

if not better, than complex modern algorithms. This preliminary set of results on parallel structures opens a

perspective for further studies, where other memes are considered, as well as adaptive data flow distribution

within an MN. The latter aspect is investigated in the following section.

7.2 Towards an automatic design: an analysis on separability

The topic of automatic design of optimisation algorithms is currently intensively discussed within the MC

community, see (Meuth et al. 2009) and (Zhu et al. 2010), as well as in related fields where similar concepts

and issues are analysed from slightly different perspectives, see e.g. (Wu et al. 2012) and (Ren et al. 2012)

in the field of hyper-heuristics. However, due to its complexity, an efficient and generally valid solution has

not yet been found and, perhaps, will still require several years of research in mathematics and computer

science. As discussed in Chapter 4, and in the previous sections, MC appears to be particularly prone, because

of its methodology of combining operators in memetic structures capable of problem solving, to providing

a potential tool for the automatic design of optimisation algorithms. To some extent, some of the works

previously described in this thesis, such as (Iacca, Neri, Mininno, Ong & Lim 2012) and (Caraffini, Neri,

Iacca & Mol 2013), represent the first trial steps in this direction. The latest, more significant, step was then

made in (Caraffini et al. 2014), providing the implementation of a fully functional computational prototype for

continuous optimisation problems. The general proposed procedure consists of two phases. At first a problem

analyser detects the features of the problem. Subsequently these features are used to select the operators and
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Figure. 7.8. Graphical representation of the general idea of automatic design platform with problem analyser

their links, thus performing the algorithmic design automatically. The implemented problem analyser estimates

the separability of the problem and extracts an index indicating the so-called degree of separability, see Chapter

7.2.1. This index is then used to balance the action of an operator that moves along the axes with respect to

another operator that performs diagonal moves by estimating the local gradient. The proposed implementation

will be referred to here as the SPAM. Being a prototype, only one feature (separability) amongst other important

landscape properties, e.g. dimensionality, ill-conditioning, multi-modality, has been investigated. Nonetheless,

more testing is already in progress, and considering the results obtained in (Caraffini et al. 2014), this framework

seems to be promising and easily extendible. Finally, it must be said that this topic has a major impact within

the entire AI field in the mid and long term. More specifically, a machine that is able to “understand” what is

the suitable solver in every circumstance is a machine capable of critically making decisions. In other words,

since intelligence can be seen as the talent of performing the “right” choice on a regular basis, a machine that

builds up the reasoning to perform the best choice by itself has a level of automation superior to that currently

present in computational machines.

Before entering into the implementation details of the SPAM algorithm, a more detailed description of the

general idea and software platform is given. The algorithmic design is automatically performed by the machine

after a problem analysis. More specifically, an initial portion of the budget is used to analyse the problem and

extract its features. For each feature, an index will be assigned. These indices will then be used for selecting

and combining those operators that, according to the algorithmic designer, perform an action that addresses the

problem features detected during the problem analysis. A graphical representation of the general idea of the

automatic design platform is given in Figure 7.8. The present implementation is a prototype restricted to the

separability, forming the first component of the problem analyser.

7.2.1 Separability Analysis

A function f of n independent variables is said to be separable if it can be expressed as a sum of n functions,

each of them depending on one variable only. This definition implies that, from an optimisation point of view,

separable functions are relatively easy to handle as the optimisation problem in n variables can be tackled
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efficiently by separately perturbing each variable. However, real-world applications are often (if not always)

characterized by non-separable fitness functions, i.e. functions in which there is some degree of non-linear

inter-variable interaction. In contrast, non-separable problems cannot be solved by performing moves along

the axes, but require simultaneous perturbations of multiple variables (diagonal moves). Whilst, according to

rigorous mathematics, an interaction between a pair of variables only is enough to make the problem non-

separable, in computational science this is not entirely true. According to the number of interacting variables,

a function (and thus the associated problem) can be considered separable to a certain degree, being e.g. fully

separable, moderately separable, moderately non-separable, or fully non-separable. Modern test beds tend to

classify test problems according to similar criteria, e.g. see (Hansen, Auger, Finck, Ros et al. 2010). On the

basis of this consideration, an estimation of the degree of separability (in a fuzzy logic fashion) has been defined

here. A set of λ candidate solutions is sampled within D. For a limited portion of the budget the CMA-ES

with rank-µ-update and weighted recombination, see (Hansen et al. 2003), is applied. A detailed description of

this optimiser has been given in Chapter 3.1.2.1, providing the mathematical background and implementation

details. For the sake of clarity, a brief reminder is given here about the working principle of CMA-ES. The

main idea behind this algorithm is to sample λ points from a multivariate distribution, compute their fitness

values and update the shape of the distribution in order to (locally) progressively adapt to the problem. After

a certain amount of generations, the matrix C evolves and reliably approximates the (theoretical) covariance

matrix. A covariance matrix is a correlation matrix, i.e. a matrix that describes the correlation between pairs of

variables. For the estimated covariance matrix C, indicating the generic term of the matrix Ci,j , the following

matrix transformation is applied:

ρi,j =
Ci,j

√

Ci,iCj,j

. (7.3)

The operation in Equation 8.2 describes the Pearson correlation coefficient and the matrix ρ is the Pearson

correlation matrix. These coefficients vary between −1 and 1 and measure the linear correlation between pairs

of variables. When ρi,j = 0 there is no correlation at all between the ith and jth variables. When |ρi,j| = 1

there is a perfect correlation between the variables. More specifically, when ρi,j = 1 it means that an increase

of the ith variable corresponds to the same (linear) increase of the jth variable, when ρi,j = −1, it means

that an increase of the ith variable corresponds to the same (linear) decrease of the jth variable. The Pearson

correlation matrix has been chosen instead of the covariance matrix directly because its elements are limited

and normalized within the [−1, 1] interval, and thus allow an immediate interpretation for the purposes of

this problem analyser. If there is no correlation between any pair of variables, the corresponding optimisation

problem can be solved by perturbing each variable separately. Conversely, if the variables are correlated,

search moves in optimisation require a simultaneous perturbation of multiple variables. Thus, as shown in (Lin

& Cheng 2011), although there is no rigorous mathematical equivalence, the Pearson correlation matrix ρ can

be viewed as a description of the separability of the optimisation problem. In order to use this description with

the aim of designing an algorithm, the absolute value of the Pearson correlation matrix |ρ| is computed, as there

is no interest in distinguishing between positive and negative correlation, since they would both result in the

application of a simultaneous perturbation of the variables. The resulting matrix is symmetrical and exhibits
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Figure. 7.9. Rounding procedure of the correlation coefficients

ones on the diagonal:
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Thus, only
(n2−n)

2 elements of the matrix |ρ| are of interest for evaluating the degree of separability of the

problem. In order to extract an index that estimates the separability of a problem, an average of the elements

of the matrix |ρ| is computed. However, since the initial budget to evolve the matrix C is limited, the Pearson

correlation matrix normally contains approximation errors. These errors could jeopardise the reliability of

the separability index. In order to mitigate this effect, the matrix |ρ| is processed by a rounding procedure

that approximates a value |ρi,j | ∈ [0, 0.2[ with 0, |ρi,j| ∈ [0.2, 0.4[ with 0.3, |ρi,j| ∈ [0.4, 0.6[ with 0.5 ,

|ρi,j| ∈ [0.6, 0.8[ with 0.7, and |ρi,j| ∈ [0.8, 1] with 1. The discrete values resulting from this process are

indicated as ρdi,j . A graphical scheme representing this rounding procedure is shown in Figure 7.9. Finally, the

average of these values is calculated:

ς =
2

(n2 − n)

n−1
∑

i=1

n
∑

j=i+1

ρdi,j. (7.4)

Thus, the separability index ς is an estimation of the degree of separability of the optimisation problem under

examination. When this index ς = 0, the problem is considered fully separable; when ς = 1, the problem is

considered fully non-separable. In the remaining cases the problem is considered to have intermediate features.

In order to experimentally demonstrate the validity of the proposed approach. The popular CEC2005 test-bed
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Table 7.6. Separability Index (ς) for CEC2005 in 30 dimensions.

Separability Index (ς) Separable

f1 0.043 YES

f2 0.080 −
f3 0.399 −
f4 0.189 −
f5 0.226 −
f6 0.104 −
f7 0.067 −
f8 0.195 −
f9 0.058 YES

f10 0.257 −
f11 0.183 −
f12 0.672 −
f13 0.404 −
f14 0.510 −
f15 0.046 YES

f16 0.121 −
f17 0.186 −
f18 0.164 −
f19 0.143 −
f20 0.165 −
f21 0.073 −
f22 0.175 −
f23 0.155 −
f24 0.050 −
f25 0.190 −

in 30 dimensions, see (Suganthan et al. 2005), has been considered. For each problem contained in the test-bed,

the problem analysis described above has been performed and the separability index ς has been calculated.

Table 7.6 displays, for each optimisation problem, the corresponding ς value and the indication on separability

originally reported in (Suganthan et al. 2005). As shown in Table 7.6, the proposed coefficient ς reliably

estimates the separability of problems f1, f9, and f15. In the remaining cases, the value of the index ς is on

average larger than in the separable cases. In addition it can be seen that the separability degree varies over

the problem. While in the case of a sphere (f1) the problem is clearly separable and thus the index ς ≈ 0, in

other cases, such as f2 the problem (Shifted Schwefels Problem 1.2) is only weakly non-separable. It can be

observed that in f2 it is mathematically non-separable, but can still be optimised by taking into consideration

the variables one-by-one. More specifically, the mathematical expression of f2 is (apart from shift and bias)

of the form
∑n

i=1

(

∑i
j=1 xj

)2
. Although being non-separable, this problem can be solved by optimising at

first x21 (and obtaining 0), then substituting in x21 + x22 and solving with respect to x2 and so on. If we are

under the hypothesis that the problem is a black box and thus we ignore its analytical properties, this problem

greatly benefits from an algorithm that perturbs the variables one by one. In other words, from an optimisation

perspective this problem is “almost separable”. Another interesting case is f24, that albeit being a complex

composition function, it appears to be nearly separable. While it is not easy to show that this function can be

optimised by considering the variables separately, numerical results will show that the application of search

moves along the axes lead to an excellent performance.

In order to formalise the notation used, the analysis of separability can be seen as an operator, a meme,

whose stop condition is set to 20% of the entire computational budget. In term of software implementation,
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it can be seen as a routine, SEPARABILITYANALYSER(), returning the elite solution xelite (this portion of the

budget is not taken off the optimisation process, the analyser also performs optimisation) and the separability

index ς . At this stage of this study, the SEPARABILITYANALYSER() routine implements a CMA-ES, since

it is one of the most elegant (and based on a solid mathematical background) way to estimate a covariance

matrix, while performing an efficient optimisation. However, this routine is kept general on purpose, since it

could be subject to variation in the future. In particular, some research is already trying to replace CMA-ES

with a lighter method. A potential replacement could be represented by a Linkage-Learning mechanism, see

(Chen 2012). However, despite CMA-ES being the bottleneck of SPAM in term of algorithmic complexity, i.e.

inadequate temporal overhead and memory footprint, its excellent performance and accuracy on approximating

the theoretical covariance matrix make it difficult to replace.

7.2.2 The pool of operators

The SPAM algorithm makes use of a pool of two operators. The same operators used in (Caraffini, Neri, Iacca

& Mol 2013) for the PMS algorithm have also been considered in this work. In accordance with the Ockham’s

Razor in MC, the old memes have been selected in order not to complicate the first implementation with

unnecessary operators, before having tested the prototype. So, as already done for PMS, in the next session

Algorithm 5 will be referred to, as usual, with the name S, while Algorithm 6 with R. As widely discussed

before, S moves along the axes and attempts to search for fitness improvements by perturbing the variables

one by one, R perturbs all the variables at the same time by following the local gradient. Clearly, S and R

are here employed for handling separable and non-separable problems, respectively. For this reason, they are

particularly suitable for SPAM. Nonetheless, the pool of operators is a part of the landscape analyser depicted

in Figure 7.8, and so is supposed to be enriched with more operators in the future, chosen ad-hoc in order to

tackle other features, e.g. ill-conditioning.

7.2.3 Automatic Memetic Design

When the index ς is available, the automatic design is performed. The SPAM algorithm makes use of a Parallel

Memetic Structure where two operators in parallel alternatively perturb a single solution. The best solution

ever found after the application of each operator is here indicated as elite xelite. In spite of PMS, in this

case the elite does not necessarily undergo refinement through each meme. So, with reference to the general

notation given in this chapter, a generic solution xs plays the role of the population Pop (a population of only

one individual at this stage, while the separability analysis requires a proper population), while the Trials is

the trial solution internally generated within S and R in order to improve upon xs. The initial solution is the

best solution detected during the problem analysis, i.e. the best solution obtained by CMA-ES with a limited

budget. The index ς is used to assign, for each problem, an activation probability within the MN. If ς = 0,

the problem is considered separable and only S is repeatedly used to optimise the function. If ς is high (i.e.
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Figure. 7.10. Activation probabilities of the operators.

ς > 0.5 according to the observations of the coefficient in preliminary experiments using CEC2005 in 10, 30

and 50 dimensionality values), the problem is considered fully non-separable and only R is repeatedly used to

optimise the problem. In the remaining cases, the problem is considered to have intermediate features and the

two operators coexist (or compete and collaborate). In the latter case, the assignment of the two probabilities

are given by a linear trend. Figure 7.10 illustrates the activation probabilities of the two trends, which can be

simply modelled by two functions of ς , namely ΨS : [0, 1] −→ [0, 1] and ΨR : [0, 1] −→ [0, 1], returning the

corresponding probability as follow:

ΨR (ς) = 1−ΨS (ς) =

{

2 · ς if ς ∈ [0, 0.5]

1 if ς ∈ (0.5, 1]
(7.5)

Finally, due to the deterministic nature of both S and R, in order to avoid that operator is called to perform

the same steps in vain, a control has been implemented. In particular, LS deterministic routines performance

heavily depends on the applied start point, and so, a restart procedure (similar to that one successfully used

in RIS, Chapter 4) represents the best option to introduce a certain degree of randomness on the choice of

the initial point. This is essential in those undesired cases where the same operator that has failed to improve

upon a given solution, is selected again. This scenario is to avoid, in particular when ς = 1 or 0, since the

same logic would be iteratively necessarily selected over the same starting point, getting stuck in potential

suboptimal solutions. For this reason, xs holds the same value of the elite solution until the first failure on the

application of the LS, i.e. xs undergoes local refinement without any improvement on its fitness value, and in

this case is regenerated according the logic in Algorithm 36. More specifically, at first a new trial solution xr

is randomly sampled within D, and then mated with the elite solution via exponential cross-over, Algorithm

19. The newly generated point becomes the new solution, i.e. xs
t+1 = S

(

xs
t,xtrial

)

, and, if its fitness

value outperforms that one of the elite, xelite, is accordingly updated. This mechanism can be seen as a third

meme using only 1 functional call, i.e. one random sampling followed by the exponential cross-over, which is

activated by a second MN only when no improvement upon xs has been detected. It must be noted that this
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Algorithm 36 Separability Prototype for Automatic Memes

[ς,xelite]←SEPARABILITYANALYSER() ⊲ 20% of the total computation budget

xs ← xelite

while remaining budget available do

P ← U (0, 1)
if P > ΨR then ⊲ Equation 7.5

xs ←S(xs) ⊲ Algorithm 5

else

xs ←R(xs) ⊲ Algorithm 6

end if

end while

if if LS has not improved upon xs then

xs ← randomSampling (1, n,D)
xs ←XOVEREXP(xelite,xs) ⊲ Algorithm 19, CR calculated as in Formula 3.22

end if

if f (xs) < f (xelite) then

xelite ← xs

end if

Output xelite

graphical representation is also very close to the actual software implementation. The three blocks in Figure

7.11 can be seen as software objects, derived from an abstract class “operators”, that can be easily declared and

initialised by a software, namely the problem analyser, which is able to run them with a certain logic coming

from the information obtained during the analysis phase. SPAM algorithm has been intentionally tested over

a large number of problems (132 in total) in order to be able to justify how the algorithm adapts to different

fitness landscapes being able to tackle them. In order to add different problems in different dimensions, from

10 up to the large scale 1000-dimensional problems in CEC2008 and 2010, 28 more problems from CEC2010

have been considered, in both 10 and 50, on top of the usual experimental set-up. CEC2005 and BBOB2010

have been again tested in 30 and 100 dimensions respectively. All the numerical results for this algorithm are

represented in terms of error, since the theoretical minimum of the f7 problem of CEC2008 is unknown, so in

order to avoid confusion, its result is not displayed, but is included in the Holm-Bonferroni procedure in Table

7.10.

Figure. 7.11. Graphical representation of SPAM parallel structure.
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7.2.4 Does the automatic design actually work? An experimental test

In order to experimentally demonstrate the effectiveness of the automatic design, SPAM has been compared

with an algorithm composed of the same operators, which performs the analysis (thus detecting the initial

solution xelite), but then forces the activation probabilities of S and R to 0.5. This algorithm, namely SPAM0.5

is a version of SPAM without the automatic design based on separability analysis. In this way, SPAM0.5 is

a control algorithm that has all the components of SPAM except the adaptation resulting from the problem

analysis.

Table 7.7. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against SPAM0.5 on

CEC2013 and CEC2005 in 10 and 30 dimensions respectively.

(a) CEC2013 in 10 dimensions

SPAM SPAM0.5

f1 0.00e+ 00 ± 0.00e+ 00 0.00e+ 00± 0.00e+ 00 =

f2 0.00e+ 00 ± 0.00e+ 00 0.00e+ 00± 0.00e+ 00 =

f3 4.45e+ 01 ± 2.61e+ 02 8.36e+ 02± 7.47e+ 03 =

f4 0.00e+ 00 ± 0.00e+ 00 0.00e+ 00± 0.00e+ 00 =

f5 2.36e− 08 ± 2.77e− 08 5.21e− 08± 8.76e− 08 +

f6 3.94e+ 00 ± 4.67e+ 00 6.70e+ 00± 6.80e+ 00 +

f7 6.67e+ 01 ± 5.65e+ 01 2.22e+ 09± 1.94e+ 10 =

f8 2.03e+ 01 ± 1.88e− 01 2.05e+ 01± 1.28e− 01 +

f9 6.09e+ 00 ± 3.38e+ 00 1.17e+ 01± 4.19e+ 00 +

f10 1.49e− 02 ± 1.24e− 02 1.68e− 02± 1.90e− 02 =

f11 4.17e+ 00 ± 1.67e+ 00 5.39e+ 01± 1.21e+ 02 +

f12 1.44e+ 01 ± 6.82e+ 00 1.19e+ 02± 2.23e+ 02 +

f13 8.02e+ 01 ± 9.29e+ 01 1.35e+ 02± 2.35e+ 02 =

f14 1.33e+ 02 ± 9.00e+ 01 1.28e+ 03± 7.00e+ 02 +

f15 7.14e+ 02 ± 1.99e+ 02 1.63e+ 03± 4.24e+ 02 +

f16 3.19e− 01 ± 2.33e− 01 4.24e− 01± 3.88e− 01 =

f17 1.12e+ 01 ± 3.79e+ 00 4.22e+ 02± 5.16e+ 02 +

f18 6.83e+ 01 ± 8.47e+ 01 4.28e+ 02± 4.65e+ 02 +

f19 9.05e− 01 ± 3.26e− 01 1.03e+ 00± 4.25e− 01 =

f20 3.92e+ 00 ± 4.48e− 01 4.34e+ 00± 5.07e− 01 +

f21 2.43e+ 02 ± 1.19e+ 02 3.62e+ 02± 8.81e+ 01 +

f22 2.70e+ 02 ± 2.26e+ 02 1.52e+ 03± 8.56e+ 02 +

f23 9.97e+ 02 ± 3.34e+ 02 2.24e+ 03± 4.17e+ 02 +

f24 1.37e+ 02 ± 3.81e+ 01 3.00e+ 02± 1.16e+ 02 +

f25 1.99e+ 02 ± 3.06e+ 01 2.43e+ 02± 5.09e+ 01 +

f26 1.48e+ 02 ± 4.29e+ 01 2.45e+ 02± 1.12e+ 02 +

f27 3.56e+ 02 ± 8.99e+ 01 4.06e+ 02± 1.20e+ 02 +

f28 2.38e+ 02 ± 9.25e+ 01 1.03e+ 03± 1.08e+ 03 +

(b) CEC2005 in 30 dimensions

SPAM SPAM0.5

f1 0.00e+ 00 ± 4.96e− 14 0.00e+ 00± 5.18e− 14 =

f2 0.00e+ 00 ± 5.45e− 14 5.68e− 14± 1.61e− 14 =

f3 1.87e+ 03 ± 1.39e+ 03 1.75e+ 03±1.64e+ 03 =

f4 2.47e+ 04 ± 9.22e+ 03 1.87e+ 05± 4.34e+ 05 +

f5 8.21e+ 02 ± 4.69e+ 02 8.26e+ 02± 4.37e+ 02 =

f6 4.69e+ 01 ± 9.38e+ 01 4.73e+ 01± 8.79e+ 01 +

f7 6.41e− 04 ± 2.19e− 03 4.80e+ 03± 1.21e+ 02 +

f8 2.00e+ 01 ± 8.76e− 04 2.03e+ 01± 3.63e− 01 +

f9 2.13e− 10 ± 5.06e− 11 1.66e+ 02± 1.93e+ 02 +

f10 6.83e+ 01 ± 3.22e+ 01 2.09e+ 02± 3.08e+ 02 =

f11 1.35e+ 01 ± 5.15e+ 00 1.59e+ 01± 9.74e+ 00 =

f12 4.29e+ 02 ± 7.94e+ 02 1.24e+ 03± 2.04e+ 03 +

f13 2.79e+ 00 ± 6.01e− 01 3.24e+ 00± 7.94e− 01 +

f14 4.39e+ 01 ± 2.75e− 01 4.43e+ 01± 4.60e− 01 +

f15 1.28e+ 02 ± 1.13e+ 02 4.26e+ 02± 2.54e+ 02 +

f16 1.36e+ 02 ± 5.52e+ 01 3.14e+ 02± 2.87e+ 02 +

f17 2.22e+ 02 ± 5.44e+ 01 5.36e+ 02± 2.79e+ 02 +

f18 9.03e+ 02 ± 3.04e+ 01 9.38e+ 02± 7.71e+ 01 +

f19 8.95e+ 02 ± 4.00e+ 01 9.38e+ 02± 8.13e+ 01 +

f20 9.00e+ 02 ± 5.68e+ 01 9.45e+ 02± 1.17e+ 02 +

f21 4.99e+ 02 ± 9.02e+ 00 5.77e+ 02± 1.89e+ 02 =

f22 9.04e+ 02 ± 2.92e+ 01 9.00e+ 02±2.83e+ 01 =

f23 5.32e+ 02 ± 2.00e+ 01 6.45e+ 02± 2.11e+ 02 +

f24 2.00e+ 02 ± 3.80e− 11 2.21e+ 02± 1.17e+ 02 =

f25 1.24e+ 03 ± 4.43e+ 02 1.67e+ 03± 1.24e+ 01 +
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Table 7.8. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against SPAM0.5 on

CEC2013 and BBOB2010 in 50 and 100 dimensions respectively.

(a) CEC2013 in 50 dimensions

SPAM SPAM0.5

f1 2.27e− 13 ± 2.27e− 14 2.27e− 13±0.00e+ 00 =

f2 3.76e+ 04 ± 1.97e+ 04 3.35e+ 04±1.63e+ 04 =

f3 7.86e+ 06 ± 1.32e+ 07 9.00e+ 06± 1.51e+ 07 =

f4 1.20e+ 03 ± 4.28e+ 03 5.84e+ 02±4.99e+ 02 =

f5 4.29e− 07 ± 5.98e− 08 2.11e− 05± 2.10e− 05 +

f6 2.61e+ 01 ± 1.90e+ 01 4.14e+ 01± 9.74e+ 00 +

f7 4.78e+ 01 ± 2.15e+ 01 3.20e+ 04± 3.18e+ 05 =

f8 2.11e+ 01 ± 6.29e− 02 2.12e+ 01± 4.92e− 02 +

f9 4.77e+ 01 ± 3.86e+ 00 7.23e+ 01± 1.22e+ 01 +

f10 1.08e− 02 ± 7.37e− 03 2.42e− 02± 1.64e− 02 +

f11 5.03e+ 01 ± 1.03e+ 01 1.76e+ 02± 4.36e+ 02 +

f12 3.17e+ 02 ± 1.21e+ 02 1.32e+ 03± 1.39e+ 03 +

f13 4.88e+ 02 ± 8.32e+ 01 1.98e+ 03± 1.65e+ 03 +

f14 1.28e+ 03 ± 2.81e+ 02 5.11e+ 03± 3.24e+ 03 +

f15 6.48e+ 03 ± 5.37e+ 02 8.86e+ 03± 1.08e+ 03 +

f16 8.59e− 02 ± 3.78e− 02 8.53e− 02±5.09e− 02 =

f17 9.42e+ 01 ± 9.78e+ 00 3.97e+ 03± 3.34e+ 03 +

f18 5.08e+ 02 ± 8.68e+ 01 4.06e+ 03± 3.21e+ 03 +

f19 5.05e+ 00 ± 9.04e− 01 5.62e+ 00± 1.32e+ 00 +

f20 2.43e+ 01 ± 5.55e− 01 2.47e+ 01± 4.44e− 01 +

f21 4.37e+ 02 ± 3.36e+ 02 7.58e+ 02± 3.69e+ 02 +

f22 1.93e+ 03 ± 4.31e+ 02 8.10e+ 03± 4.44e+ 03 +

f23 8.78e+ 03 ± 1.26e+ 03 1.17e+ 04± 1.13e+ 03 +

f24 3.25e+ 02 ± 2.43e+ 01 1.47e+ 03± 1.06e+ 03 +

f25 3.68e+ 02 ± 1.34e+ 01 4.68e+ 02± 1.72e+ 02 +

f26 2.24e+ 02 ± 6.92e+ 01 6.05e+ 02± 7.20e+ 02 +

f27 1.28e+ 03 ± 1.97e+ 02 1.29e+ 03± 3.51e+ 02 =

f28 1.42e+ 03 ± 1.96e+ 03 3.73e+ 03± 5.80e+ 03 =

(b) BBOB2010 in 100 dimensions

SPAM SPAM0.5

f1 2.42e− 13 ± 2.13e− 13 2.42e− 13± 2.13e− 13 =

f2 3.21e− 07 ± 7.33e− 08 2.82e+ 02± 3.48e+ 02 =

f3 9.60e+ 01 ± 1.24e+ 01 1.84e+ 02± 8.30e+ 01 +

f4 1.28e+ 02 ± 1.86e+ 01 2.79e+ 02± 1.30e+ 02 +

f5 1.31e− 04 ± 1.27e− 05 1.18e+ 02± 1.05e+ 02 =

f6 3.93e− 08 ± 3.87e− 08 5.05e− 08± 6.71e− 08 =

f7 5.07e+ 01 ± 1.35e+ 01 5.45e+ 01± 1.40e+ 01 +

f8 3.45e+ 01 ± 1.31e+ 01 5.41e+ 01± 2.28e+ 01 +

f9 4.70e+ 01 ± 1.14e+ 01 5.87e+ 01± 1.80e+ 01 +

f10 6.98e+ 02 ± 2.21e+ 02 6.11e+ 02±2.04e+ 02 -

f11 8.15e+ 01 ± 2.76e+ 01 1.01e+ 02± 3.72e+ 01 +

f12 1.97e− 02 ± 6.48e− 02 2.01e− 02± 8.77e− 02 =

f13 7.74e− 01 ± 9.16e− 01 1.63e+ 00± 3.10e+ 00 =

f14 4.21e− 05 ± 8.74e− 06 3.99e− 05±8.28e− 06 =

f15 2.68e+ 02 ± 3.86e+ 01 2.78e+ 02± 4.35e+ 01 =

f16 2.35e+ 00 ± 8.17e− 01 2.37e+ 00± 9.12e− 01 =

f17 7.93e+ 00 ± 3.86e+ 00 1.01e+ 01± 4.78e+ 00 +

f18 1.65e+ 01 ± 9.86e+ 00 1.91e+ 01± 1.36e+ 01 =

f19 1.66e+ 00 ± 3.11e− 01 2.18e+ 00± 1.20e+ 00 +

f20 1.27e+ 00 ± 1.47e− 01 1.65e+ 00± 2.29e− 01 +

f21 3.42e+ 00 ± 3.50e+ 00 1.23e+ 01± 1.27e+ 01 +

f22 6.27e+ 00 ± 7.42e+ 00 1.56e+ 01± 1.18e+ 01 +

f23 6.62e− 01 ± 2.75e− 01 1.42e+ 00± 8.45e− 01 +

f24 3.11e+ 02 ± 5.78e+ 01 3.24e+ 02± 7.46e+ 01 =

Numerical results of this test are shown in Tables 7.7(a), 7.7(b), 7.8(a), 7.8(b), 7.9(a), and 7.9(b), clearly

showing that the probability setting, based on the analysis of separability leads to a performance equally high

or higher than the equally distributed one. SPAM and SPAM0.5 display a similar performance when the

separability analysis leads to a 0.5 and 0.5 setting of S and R probabilities, i.e. when the two algorithms

coincide. If we consider that this experiment has been carried on a diverse test-bed containing 132 problems,

the success in the totality of comparison gives a convincing indication that the proposed framework is versatile

and efficient.
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Table 7.9. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against SPAM0.5 on

CEC2008 and CEC2010 in 1000 dimensions.

(a) CEC2008 in 1000 dimensions

SPAM SPAM0.5

f1 5.12e− 13 ± 6.32e− 13 5.12e− 13±6.31e− 13 =

f2 1.32e− 01 ± 3.27e− 02 1.17e+ 01± 1.17e+ 01 +

f3 8.97e+ 02 ± 2.83e+ 01 9.28e+ 02± 4.42e+ 01 +

f4 7.17e+ 01 ± 1.16e+ 01 5.39e+ 03± 5.28e+ 03 +

f5 7.56e− 05 ± 7.36e− 04 6.65e− 04± 2.51e− 03 =

f6 1.22e+ 01 ± 9.51e+ 00 1.73e+ 01± 6.53e+ 00 +

(b) BBOB2010 in 100 dimensions

SPAM SPAM0.5

f1 1.92e− 06 ± 1.33e− 07 3.12e+ 06± 3.07e+ 06 =

f2 6.15e+ 01 ± 1.28e+ 01 4.58e+ 03± 4.95e+ 03 +

f3 8.06e+ 00 ± 9.49e+ 00 1.75e+ 01± 6.33e+ 00 +

f4 1.14e+ 11 ± 4.32e+ 10 2.89e+ 11± 2.00e+ 11 +

f5 6.78e+ 08 ± 9.14e+ 07 6.64e+ 08±1.01e+ 08 =

f6 1.98e+ 07 ± 7.24e+ 04 1.98e+ 07± 6.30e+ 04 =

f7 4.17e+ 05 ± 5.05e+ 05 3.06e+ 06± 3.04e+ 06 +

f8 3.17e+ 06 ± 2.82e+ 06 9.62e+ 06± 1.24e+ 07 +

f9 3.21e+ 06 ± 3.48e+ 05 5.13e+ 06± 2.18e+ 06 +

f10 5.37e+ 03 ± 3.84e+ 02 7.80e+ 03± 2.46e+ 03 +

f11 2.00e+ 02 ± 2.22e+ 01 2.12e+ 02± 1.83e+ 01 +

f12 3.76e− 03 ± 1.40e− 03 8.17e− 02± 8.90e− 02 +

f13 1.22e+ 03 ± 8.23e+ 02 1.42e+ 03± 8.84e+ 02 =

f14 4.65e+ 06 ± 4.18e+ 05 7.20e+ 06± 2.10e+ 06 +

f15 1.00e+ 04 ± 1.04e+ 03 1.03e+ 04± 6.44e+ 02 =

f16 2.64e+ 02 ± 1.26e+ 02 3.70e+ 02± 7.64e+ 01 +

f17 4.36e− 01 ± 1.13e− 01 1.03e+ 01± 1.19e+ 01 +

f18 1.71e+ 03 ± 1.09e+ 03 2.19e+ 03± 1.05e+ 03 +

f19 3.32e+ 05 ± 3.25e+ 04 5.56e+ 05± 2.27e+ 05 +

f20 8.92e+ 02 ± 3.28e+ 01 9.31e+ 02± 4.52e+ 01 +

7.2.5 Comparison with the state-of-the-art

In order to test the potentials of SPAM with respect to modern algorithms in literature, it has also been compared

against 11 more optimisers belonging to different optimisation families, as listed in Table 7.10. The pool of

comparison algorithms incorporates many frameworks described in this thesis, plus the Cultural Algorithms

with Iterated Local Search (CA-ILS) algorithm, belonging to the class of “Cultural Algorithms” and described

in (Nguyen & Yao 2008). Powerful implementations of EAs and PSO have also been considered, i.e. G-CMA-

ES (Auger & Hansen 2005) and cPSO (Neri et al. 2013). Due to the excessive number of tables, detailed

numerical results of all the 9 comparison algorithms over the 132 tested problems has been avoided in order

to facilitate the reading of this thesis, but can be found on a dedicated file available on the internet1. However,

as a summary of the experiments, Table 7.10 reports the result of the Holm-Bonferroni procedure applied to

the entire data set. The difference in performance between SPAM and SPAM0.5 highlights the effect of the

proposed analysis on separability. The comparison of SPAM0.5, PMS, and other algorithms clearly shows

how two simple but diverse operators can be competitive with complex algorithms such as JADE and CLPSO.

It can be easily seen that SPAM significantly outperforms CA-ILS and cPSO, while G-CMA-ES seems to

behave better on the chosen set of optimisation problems, but not enough to equal SPAM performances. The

null-hypothesis is indeed rejected. In a nutshell, Table 7.10 shows that according to the Holm-Bonferroni

procedure SPAM by far outperforms all the other algorithms contained in this study. For coherence with the

1http://sites.google.com/site/facaraff/home/Downloads/SPAM_Detailed_Results.pdf
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experimental set-up used in this thesis, the usual set of modern and complex meta-heuristics, representing the

actual cutting edge developments for the three families DE, PSO, and MA, has also been reported and discussed.

In particular, detailed tables displaying results for SPAM against MDE-pBX, CCPSO2 and MA-LSCh, have

been grouped in Appendix E.5. Tables E.32 (10 dimensions), E.33 (30 dimensions), E.34 (50 dimensions), E.35

Table 7.10. Holm-Bonferroni procedure on the algorithms under consideration (reference algorithm: SPAM, Rank= 9.60e + 00

j Optimizer Rank zj pj δ/j Hypothesis

1 SADE 7.43e+00 -5.31e+00 5.57e-08 5.00e-02 Rejected

2 MDE-pBX 7.38e+00 -5.44e+00 2.71e-08 2.50e-02 Rejected

3 CCPSO2 7.24e+00 -5.77e+00 3.94e-09 1.67e-02 Rejected

4 PMS 7.08e+00 -6.16e+00 3.62e-10 1.25e-02 Rejected

5 CLPSO 6.92e+00 -6.57e+00 2.53e-11 1.00e-02 Rejected

6 MA-LSCh 6.84e+00 -6.75e+00 7.16e-12 8.33e-03 Rejected

7 G-CMA-ES 6.52e+00 -7.53e+00 2.46e-14 7.14e-03 Rejected

8 SPAM0.5 6.46e+00 -7.68e+00 7.80e-15 6.25e-03 Rejected

9 JADE 6.20e+00 -8.33e+00 3.98e-17 5.56e-03 Rejected

10 cPSO 3.70e+00 -1.45e+01 1.15e-47 5.00e-03 Rejected

11 CA-ILS 2.40e+00 -1.76e+01 7.39e-70 4.55e-03 Rejected

(100 dimensions), E.36 and E.37 (1000 dimensions) completely confirm the previous achievement, since in

terms of Wilcoxon Rank-Sum test SPAM significantly outperforms MDE-pBX in 88 cases out of 132, CCPSO2

over 94 problems and MA-LSCh 81 times. It must be observed that while the other cutting edge developments

tend to be specialised to solve some classes of functions, SPAM appears to efficiently tackle a large range of

problems. For example, while MA-LSCh displays a very good performance in low dimensions, this is offset by

a less than good performance in LSOP. On the contrary, SPAM, thanks to its problem analyser, coordinates its

component in a versatile way, thus offering a robust performance.

7.2.6 Lennard-Jones potential minimisation

In order to prove the viability of SPAM and the efficiency of the analysis on separability for real-world

problems, the previously chosen algorithms have been run against SPAM for the LJP problem. The LJP is

widely used in physics for representing the interaction energy between non-bonding particles in a fluid. In

this case, according to the description given in CEC2011 (Swagatam & Suganthan 2010), it refers to the

minimisation problem of the potential energy of a set of atoms by locating them within three-dimensional

space. In order to determine their position and evaluate the relative LJP, 3 parameters, i.e. coordinates along

the axes x, y and z, for each atom needs to be stored in the fitness function. In this study, an atomic cluster of

40 atoms has been considered, resulting in a 120-dimensional problem. Each algorithm under examination has

been run 10 times with a computational budget of 150000 functional calls (in accordance with the description

given in (Swagatam & Suganthan 2010)). It must be said that in order to allow the sub-swarm decomposition

in CCPSO2 for this problem, the original divisors have been changed and set to 30 and 60 variables. Numerical

results are given in Table 7.11 and Figure 7.12, respectively. Also in this case SPAM can reliably detect

solutions characterised by a high performance, outperforming the other meta-heuristics.
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Table 7.11. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on LJP problem in 120 dimensions.

SPAM −9.29e+ 01 ± 8.54e+ 00

MDE-pBX −8.25e + 01 ± 6.12e + 00 =

CPSO2 −2.35e + 01 ± 1.43e + 00 +

MA-LSCh −1.16e + 01 ± 1.72e + 00 +

Figure. 7.12. Average fitness trend of SPAM, MDE-pBX, CCPSO2 and MA-LSCh on the LJP problem
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7.3 Chapter remarks

This work must be interpreted as a first step towards a complete software platform for the automatic design

of optimisation algorithms. Future work on separability (IRQ IV) will consider other ways to measure the

correlation between pairs of variables. More importantly, it will also extend the analysis to other problem

properties, such as ill-conditioning and multi-modality. In addition, future work will investigate broader

databases of operators and other design criteria.

As a final summary, Table 7.12 highlights the main characteristics of the MC algorithms presented in

Chapter 4 and Chapter 7, extending Table 4.1 of Chapter 4. As for memetic algorithms, each components has

been listed in the table. Moreover, a particular attention has been given to the memory requirements for each

meme. In this regard, it must be noted that despite some operators requiring the same amount of memory,

i.e. CMA-ES, (1 + 1)-CMA-ES, Rosenbrock and Powell’s memory footprint increases with the square of the

dimensionality of the problem, they need a different amount of time to process a new solution. In this regard,

CMA-ES represents the slowest meme and can slow down the entire optimisation process of algorithms which

would be, otherwise, very light. This is the case of CMA-ES-RIS; an increase on the performance is offset by

an increase on the algorithm computational overhead. To some extent, SPAM also suffers from these problems,

but as previously explained, this procedure is necessary to perform the analysis on separability and then returns

useful information to build up a new algorithm. Future research will also aim at replacing the analyser with a

lighter one, still guaranteeing the same accuracy.
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Table 7.12. Memetic Computing algorithms overview.

Algorithm Solutions Memes Structure Comments

MS-CAP Population based
-CAP

Sequential
-Versatile -Employing multiple DE and

-MPRS PSO based perturbations

3SOME Single solution

-L
Parallel

-Memory savingX-Real-time applicationsX

-M
(deterministic)

-Bottom-up exploration strategy

-S -Versatile (not in case of non-separability)

ML-3SOME Single solution

-L
Parallel

-Memory savingX-real-time applicationsX

-M
(probabilistic)

-Meta-Lamarckian learning

-S -Outperforms 3SOME in low dimensions

S-3SOME Single solution

-L
Parallel

-Memory savingX

-SHRINKING
(deterministic)

-Real-time applications X

-S -Outperforms 3SOME on LSOP

RI-3SOME Single solution

-L
Parallel

-Memory savingX-Real-time applicationsX

-DIAG-M
(deterministic)

-Re-adapts DE/current-to-rand/1 move

-S -Non separable problems ∼

RIS-3SOME Single solution

-L
Parallel

-Memory saving X-Real-time applicationsX

-DIAG-SHRINKING
(deterministic)

-Re-adapts DE/current-to-rand/1 move

-S -Non separable problemsX

µDE-3SOME µ-population

-L
Parallel

-Memory saving ∼ -Real-time X

µDE
(deterministic)

-Single solution but needs a µ-population

-S -Non-separable problems X

(1+1)-CMA-ES-3SOME Single solution

-L
Parallel

t ∼ O
(

n2
)

m ∼ O
(

n2
)

-M
(deterministic)

-Uni-modal ill-conditioned problemsX

-(1+1)-CMA-ES -Non separable problems X

3SOME-ROSENBROCK Single solution

-L
Parallel

-Rotation matrix: m ∼ O
(

n2
)

-M
(deterministic)

-Outperforms 3SOME in uni-modal and

-ROSENBROCK non separable problems (in low dimensions)

3SOME-POWELL Single solution

-L
Parallel

-Directions matrix: m ∼ O
(

n2
)

-M
(deterministic)

-employed GSS for line minimisation

-POWELL -Non separable problems (low dimensions) X

RS Single solution
-RE-SAMPLING

Sequential
-Memory saving X-Real-time X

-S -Pure random sampling (no inheritance)

RIS Single solution
-RE-SAMPLING

Sequential
-Memory savingX-Real-time applicationsX

-S -Inheritance mechanism (exponential x-over)

CMA-ES-RIS population-based
-CMA-ES

Sequential
t ∼ O

(

n3
)

m ∼ O
(

n2
)

-RIS -Super-fit scheme

VISPO Single solution
VPS

Sequential
-Memory saving X-Real-time X

RESTART -Learning period (non-separability detection)

PMS Single solution

-L
Parallel

Rotation matrix: m ∼ O
(

n2
)

-S
(probabilistic)

-General purpose (2 complementary LSs)

-R -Robust and versatile

SPAM

-Population based -CMAES
Parallel

-Landscape analysis: t ∼ O
(

n3
)

(Analysis) -RE-SAMPLING
(probabilistic)

-Automatically tailored to the problemsX

-Single solution -R -Covariance/Rotation matrix: m ∼ O
(

n2
)

(optimisation) -S -Robust and versatile
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Chapter 8

The blessing of dimensionality

This chapter extends the work in (Caraffini et al. 2014) on the evaluation of an index carrying useful information

on the correlation amongst the variables of a given objective function. Specifically, two independent tests

based on Pearson and Spearman coefficients have been set up and run for a study on dimensionality and

scalability of optimisation problems. Numerical results confirmed that, in low dimensions, separable problems

are characterised by a weak (or null) correlation amongst the variables, while the variables of complex non-

separable problems can be strongly correlated. The main finding of this study is that correlation amongst

the variables appears to decrease while the dimensionality increases regardless of the nature of the problem.

This achievement derives from an investigation summed up with the last two IRQ. After a clarifying section

on the motivations behind this study, Chapter 8.1, IRQ V is answered in Chapter 8.2. IRQ VI is instead

experimentally addressed employing two different tests, as described in the remainder of this chapter. Both

the tests confirm the intuition arose during the testing of the optimiser in this thesis on LSOP, that in high

dimensional problems the correlation between is weak, thus justifying the good performances obtained with

optimisation algorithm perturbing a single design variable at time.

8.1 Motivations

The motivation behind this work and potential future developments in this direction are obviously related

to the difficulties in tackling LSOP. Without any doubt, dimensionality plays a crucial role when facing an

optimisation problem, for multiple reasons.

As a first consideration, let us consider a unidimensional decision space D. LetD be a set composed of 100

points. Let us consider now a function f defined over the set D. Without a loss of generality let us assume that

there exists a solution x∗ ∈ D such that f (x∗) is minimal. Hence, in order to find the global minimum x∗ an

optimisation algorithm needs at most 100 fitness evaluations. This problem would be very easy for a modern

computer. On the other hand, if the problem is scaled up to two dimensions, there will be one optimum x∗

in a space composed of 1002 = 10000 candidate solutions. If the problem is scaled up to 1000 dimensions,
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the optimum will be only one point in a space of 1001000 solutions. With an exhaustive search, the latter

problem would be extremely hard to solve in a viable amount of time. Thus a specifically designed algorithm

will be required to tackle it. In other words, since the decision space grows exponentially with the problem

dimensionality, the detection of the optimal solution in high dimensions is like the search for a needle in a

haystack and requires some specific strategies.

In addition to that, the problem dimensionality affects not only the number of candidate solutions in the

search space, but also other intrinsic features of the search space itself. For example, a unitary radius sphere in

a 3-dimensional Euclidean space has surface area S2 = 4π and volume V3 =
4
3π. In the generic n-dimensional

space, it can be easily proved that the ratio between volume and surface is 1
n . This means that if we consider

a unitary radius sphere in high dimensions and randomly sample some points within it, most of them will be

located on its surface as its volume is a small fraction of it.

Moreover, LSOP can be hard to solve with general-purpose algorithms, as some optimisers that easily

solve a problem in e.g. 30 dimensions can display a poor performance to solving the same problem scaled up

to e.g. 300 dimensions. The deterioration in the performance of optimisation algorithms as the dimensionality

of the search space increases, is commonly called the “curse of dimensionality”, see (Van den Bergh &

Engelbrecht 2004), and generally affects every kind of search logic. For example, several studies show that

DE and PSO can easily display a poor performance when applied to solve large scale optimisation problems,

see e.g. (Neri & Tirronen 2010) and (Van den Bergh & Engelbrecht 2004).

Furthermore, dimensionality has a direct impact on the computational cost of the optimisation. In general,

this is true because, due to the large decision space, a large budget is usually necessary to detect a solution

with a high performance. Moreover, due to high dimensionality, algorithms which perform a search within the

neighbourhood of a candidate solution (e.g. Hooke-Jeeves, Algorithm 4 of Chapter 2.2.3) might require a very

large number of fitness evaluations at each step of the search, while population based algorithms are likely to

either prematurely converge to suboptimal solutions, or stagnate due to an inability to generate new promising

search directions. Other approaches that inspect the interaction between pairs or variables in order to perform

an exploratory move, see e.g. (Auger & Hansen 2005), can be computationally onerous and in some cases, see

e.g. (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010b), unacceptably expensive for modern computers.

8.2 Identification of successful strategies for handling LSOP

Albeit difficult, in many real-world cases LSOP must be tackled in order to achieve a solution with a high

performance, e.g. in scheduling see (Marchiori & Steenbeek 2000), in chemical engineering see (Kononova,

Hughes, Pourkashanian & Ingham 2007) and in engineering design, see (Akay & Karaboga 2012). Thus,

in recent years, several modern meta-heuristics have been proposed in order to tackle LSOP. For example,

modified versions of Ant Colony Optimiser (Korošec & Šilc 2008) and a memetic version of Ant Bee Colony

Algorithm (Fister, Jr., Brest & Zumer 2012) have been proposed for addressing large scale optimisation

problems. Within the plethora of methods to tackle LSOP, a division into the following two macro-categories

is proposed here.
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• Methods that intensively exploit promising search directions. These algorithms with an apparently

counter-intuitive action, instead of exploring the large decision space, give up the search for the global

optimum and use an intensive exploitation to improve upon a set of initial solutions to detect a solution

with a high quality (regardless of its optimality). Two popular ways to implement this approach have

been proposed in the literature. The first way to achieve this aim is by using population based algorithms

with very small populations, see (Parsopoulos 2009), and (Dasgupta, Das, Biswas & Abraham 2009), or

with a population that shrinks during the run, see (Brest & Maučec 2008), (Zamuda, Brest, Bošković &

Žumer 2008a) and (Iacca, Mallipeddi, Mininno, Neri & Suganthan 2011). The second way to achieve

this aim is by using highly exploitative local search algorithms by combining them with other algorithms

and integrating them within population based structures. Specifically, a coordination of multiple local

search components is used to tackle LSOP in (Tseng & Chen 2008). A part or a modification of this

logic has been coupled and integrated within other algorithmic frameworks in µDEA (Caraffini, Neri &

Poikolainen 2013), 3SOME (Iacca, Neri, Mininno, Ong & Lim 2012), PMS (Caraffini, Neri, Iacca &

Mol 2013) and RIS (Caraffini, Neri, Passow & Iacca 2013a). It must be said that these algorithms tend to

use a simple local search component that exploits the decision space by perturbing the candidate solution

along the axes.

• Methods that decompose the search space. Some other papers propose a technique, namely cooperative

co-evolution, originally defined in (Potter & De Jong 1994) and subsequently developed in other works,

see e.g. (Sofge, De Jong & Schultz 2002). The concept of the cooperative co-evolution is to decompose

LSOP into a set of low dimensional problems, which can be separately solved and then recombined

in order to compose the solution of the original problem. It is obvious that if the objective function

(fitness function) is separable then the problem decomposition can be trivial, while for non-separable

functions the problem decomposition can turn out to be a very difficult task. However, some techniques

for performing the decomposition of non-separable functions have been developed, see (Potter & De

Jong 2000). Recently, cooperative co-evolution procedures have been successfully integrated within DE

frameworks for solving LSOP, see e.g. (Shi, Teng & Li 2005), (Yang, Tang & Yao 2007), (Zamuda, Brest,

Bošković & Žumer 2008b), (Olorunda & Engelbrecht 2007) and (Yang, Tang & Yao 2008). Recently, a

very successful implementation of cooperative co-evolution has been integrated within a PSO framework,

i.e. CCPSO2, in (Li & Yao 2012).

An interesting study related to LSOP has been presented in (Ros & Hansen 2008) where a modified version

of CMA-ES has been proposed for tackling separable problems. In this case, the proposed algorithm makes use

of a diagonal matrix to determine the newly sampled points and then the search directions. Hence, this modified

variant performs stochastic perturbation on each design variable to solve separable problems, as is shown in

Figure 3.3 of Chapter 3.1.2.1. Regardless of the implementation details (for details see Chapter 3.1.2.1), it is

highlighted here that the basic search strategy of this algorithm, namely sep-CMA-ES, consists of performing

moves along the axes and progressively adapting the search radii along each of the axes. On the contrary, the

original CMA-ES, see e.g. (Hansen et al. 2003), considers a full covariance matrix i.e. considers the interaction

between each pair of variables and performs diagonal search moves. As expected, sep-CMA-ES appears to be
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Figure. 8.1. Graphical representation of the first successful strategy for LSOPs.

efficient for separable problems, but is outperformed by CMA-ES on non-separable problems where diagonal

moves are beneficial and often necessary. It was furthermore observed in (Ros & Hansen 2008) that sep-CMA-

ES outperforms CMA-ES in high dimensions (larger than 100) even for non-separable problems. In other

words, it was shown that while the interaction among variables is very important in low dimensions, it does not

appear as important when the dimensionality grows. This stochastic perturbation along the axis represents a

successful implementation for dealing with LSOP.

Another search logic for large scale optimisation is the one presented in CCPSO2 (Li & Yao 2012). Despite

its simplicity, it is probably one of the most successful representatives of this class of algorithms. In (Li

& Yao 2012), according to some predetermined division coefficients and a simple random selection, some

variables are kept constant while others are perturbed following a simplified PSO logic. This strategy, although

it does not correspond exactly to moves along the axes, is strictly related to it, as it keeps most of the variables

constant and simultaneously moves along the remaining ones (e.g. groups of 5 variables in a 1000 dimensional

space). For implementation details see Chapter 3.2.1 and the related Figure 3.4 shows an example of its working

principle.

The last strategy for handling high dimensional problems is represented by the S operator (Algorithm 5).

This optimiser has been widely used and described in this work and so does not require further explanation.

For the sake of clarity, in Figure 8.1 an example is reported of its deterministic search logic along the axis.

On the basis of the short descriptions of successful strategies for LSOP, the following research question

arises: What do these strategies have in common? or, in other words, What algorithmic mechanism appears

promising for tackling LSOP? (IRQ V) . According to the previous taxonomy, the answer to this question is that

the winning strategy appears to be an exploitative search that separately perturbs the variables or small groups

of them while the other ones are kept constant. This consideration leads to the more intriguing IRQ VI: Is
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there a way to relate the dimensionality to the success of the strategies that perturb the variables separately? or

in other words Can we give an explanation to why these approaches are working on LSOP and thus understand

when to apply them in the future?

8.3 Two tests for estimating the correlation between pairs of variables

As will become clear in the following sections, to give an answer to the second research question two numerical

tests have been used to make an estimation of the correlation between pairs of variable. Both the tests make

use of the following pre-phase. As a preliminary step, a set of λ candidate solutions is sampled within the

decision space D. Then, the CMA-ES with rank-µ-update and weighted recombination, is applied for n×1000

fitness evaluations. According the philosophy of CMA-ES, the matrix C evolves and reliably approximates

the theoretical covariance matrix. A covariance matrix is a correlation matrix, i.e. a matrix that describes the

correlation between pairs of variables and, at the same time, approximates the shape of the basins of attraction,

i.e. those regions of the fitness landscape that have the best performance. In this way, CMA-ES samples new

points from a distribution that adapts to the fitness landscape itself. Once the estimated covariance matrix

C has been computed (according to the allotted computational budget), the pairwise correlation among the

decision variables can be evaluated in two ways. The first test considered in this work, namely the Pearson test

(Pearson 1903), takes into account each element of the matrix Ci,j as previously described in Chapter 7.2.1.

Given the covariance matrix, Equation 8.2 is applied in order to work out the Pearson correlation coefficient

(ρ) for each pair of variable. Thus, the corresponding Pearson correlation matrix can be stored (only
(n2−n)

2

elements of the matrix are needed, since the diagonal is a vector of ones and the matrix is symmetric), and

for the same reasons explained for the analysis of separability in SPAM, the absolute value of each element is

considered. Finally, the following index is computed by averaging the elements of the matrix |ρ|:

ς =
2

n2 − n
·
n−1
∑

i=1

n
∑

j=i+1

|ρi,j|. (8.1)

and applies the following transformation:

ρi,j =
Ci,j

√

Ci,iCj,j

. (8.2)

The second test used, i.e. the Spearman test (Spearman 1904), requires an introduction. By means of

the covariance matrix C, m points are sampled within the decision space. Considering that each point

x = (x1, x2, . . . , xn) is a vector having n elements, these m points compose the following m× n matrix:

X =













x1,1 x1,2 x1,3 ... x1,n

x2,1 x2,2 x2,3 ... x2,n

... ... ... ... ...

xm,1 xm,2 xm,3 ... xm,n












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that can be represented as

X =
(

X1,X2, . . . ,Xn
)

where Xj is the generic jth column vector of the matrix X. For each column vector, the elements are substituted

with their ranking. More specifically, for the generic column vector Xj, the lowest value is replaced with the

its ranking 1, the second lowest with 2, and so on until the highest value is replaced with m. If l elements have

the same value, an average ranking is assigned. For example, if three elements corresponding to the rank 3, 4,

and 5 have the same value, the ranking 4 is assigned to all of them. This procedure can be seen as a matrix

transformation that associates to the matrix X composed of the points a new rank matrix R where the element

xi,j is replaced with its rank ri,j:

R =













r1,1 r1,2 r1,3 ... r1,n

r2,1 r2,2 r2,3 ... r2,n

... ... ... ... ...

rm,1 rm,2 rm,3 ... rm,n













=
(

R1,R2, . . . ,Rn
)

.

From the rank matrix R, a new matrix T is calculated by computing the Pearson correlation coefficients of the

ranks. More specifically, the correlation between the ith and jth variables is given by:

τi,j =

∑m
k=1

(

rk,i − R̄i
)

·
(

rk,j − R̄j
)

√

∑m
k=1

(

rk,i − R̄i
)2 ·∑m

k=1

(

rk,j − R̄j
)2

(8.3)

where R̄i and R̄j are the mean values of the ith and jth column vectors, respectively. Considering that ∀i, j, then

τi,i = 1 and τi,j = τj,i, the matrix T is symmetric and displays unitary diagonal elements. Since, analogous

to the Pearson test, we are not interested in the sign of the correlation, the absolute value of the matrix T is

calculated:

|T| =

















1 |τ1,2| |τ1,3| ... |τ1,n|
X 1 |τ2,3| ... |τ2,n|
X X 1 ... |τ3,n|
... ... ... ... ...

X X X X 1

















.

The average Spearman correlation coefficient ϕ is computed as the average value of the
(n2−n)

2 elements of the

matrix T, under consideration:

ϕ =
2

n2 − n
·
n−1
∑

i=1

n
∑

j=i+1

|τi,j|. (8.4)

Both the tests have been considered since each one of them has advantages and disadvantages with respect to

the other. As explained in (Hauke & Kossowski 2011) the Spearman coefficient, unlike the Pearson coefficient,

is not a measure of the linear correlation between two variables but is a measure of the generic correlation.

The Spearman coefficient does not require any assumption on the statistical process, thus being non-parametric

(distribution free). On the other hand, besides being less computationally expensive, the Pearson coefficient
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is more accurate if the correlation can be approximated to be linear. This circumstance realistically occurs in

several cases making the Pearson coefficient very reliable in some cases, see (Cox & Hinkley 1974).

8.4 Experimental set-up and results

The two tests illustrated above have been performed over the 19 test problems introduced in the Test Suite

for the SISC2010 problems (Lozano et al. 2011). Hence, both Pearson and Spearman correlation coefficients

have been calculated over these 19 test problems in 10, 30, 50, 100, 500 and 1000 dimensions. In order

to find the optimal number of samples to be drawn from the distribution and apply the statistic procedure, a

preliminary experiment has been performed for both the statistic tests with SISC2010 in the aforementioned

dimensionality values. In detail, a number of samples proportional to the dimensionality of the problem (i.e.

the following configurations have been tested: 1 · n, 5 · n, 10 · n and 100 · n) have been considered and the

corresponding index value compared against the one obtained with fixed number of samples, regardless of the

growing dimensionality of the problem (3 sets of samples have been used in this case with sizes 10, 100, and

1000 points). It has been observed that a set of 100 points, for Pearson, and 1000, for Spearman, provides a

coefficient as stable and reliable as the one obtained with a higher fixed number of points, or a number of points

increasing with the dimensionality of the problem. In this light, and in order to keep the experimental set-up

simple and light, the population size for CMA-ES has been set equal to 100, and in case of Spearman test,

the final population has been sampled 10 times. Due to the stochastic nature of the tests, in order to properly

visualise and present the two indices, each index has been calculated 50 times per problem. Tables 8.1 and

Table 8.2 display average and standard deviation for the correlation coefficient indices.

Table 8.1. Mean value and standard deviation for the Pearson correlation index ς for SISC2010 over multiple dimensionality values.

ς10D ς30D ς50D ς100D ς500D ς1000D Separable

f1 0.054 ± 0.006 0.032 ± 0.001 0.025 ± 0.001 0.015 ± 0.001 0.002 ± 0.000 0.001 ± 0.000 Y ES
f2 0.068 ± 0.008 0.043 ± 0.002 0.034 ± 0.001 0.021 ± 0.001 0.014 ± 0.0015 0.021 ± 0.001 −
f3 0.178 ± 0.077 0.072 ± .0190 0.035 ± 0.002 0.020 ± 0.002 0.002 ± 0.000 0.001 ± 0.000 −
f4 0.058 ± 0.014 0.036 ± 0.005 0.026 ± 0.001 0.019 ± 0.002 0.004 ± 0.000 0.002 ± 0.000 Y ES
f5 0.053 ± 0.007 0.033 ± 0.001 0.026 ± 0.001 0.017 ± 0.000 0.003 ± 0.000 0.001 ± 0.000 −
f6 0.058 ± 0.010 0.038 ± 0.002 0.030 ± 0.008 0.017 ± 0.004 0.003 ± 0.001 0.002 ± 0.000 Y ES
f7 0.059 ± 0.018 0.033 ± 0.001 0.035 ± 0.001 0.019 ± 0.001 0.003 ± 0.000 0.001 ± 0.000 Y ES
f8 0.146 ± 0.008 0.069 ± 0.002 0.067 ± 0.002 0.053 ± 0.004 0.007 ± 0.002 0.003 ± 0.000 −
f9 0.508 ± 0.428 0.073 ± 0.084 0.069 ± 0.064 0.094 ± 0.039 0.040 ± 0.015 0.025 ± 0.003 −
f10 0.051 ± 0.004 0.033 ± 0.001 0.024 ± 0.001 0.016 ± 0.003 0.004 ± 0.000 0.002 ± 0.000 −
f11 0.276 ± 0.272 0.092 ± 0.056 0.097 ± 0.066 0.068 ± 0.040 0.037 ± 0.0031 0.021 ± 0.006 −
f12 0.109 ± 0.029 0.055 ± 0.008 0.041 ± 0.006 0.032 ± 0.009 0.008 ± 0.0006 0.005 ± 0.001 −
f13 0.241 ± 0.077 0.075 ± 0.021 0.058 ± 0.003 0.046 ± 0.004 0.014 ± 0.0006 0.010 ± 0.001 −
f14 0.091 ± 0.010 0.055 ± 0.005 0.040 ± 0.004 0.031 ± 0.007 0.010 ± 0.0015 0.007 ± 0.001 −
f15 0.056 ± 0.008 0.040 ± 0.002 0.029 ± 0.000 0.025 ± 0.010 0.008 ± 0.0017 0.006 ± 0.001 −
f16 0.094 ± 0.011 0.092 ± 0.024 0.084 ± 0.028 0.048 ± 0.013 0.017 ± 0.0021 0.013 ± 0.004 −
f17 0.206 ± 0.121 0.144 ± 0.050 0.078 ± 0.011 0.061 ± 0.013 0.024 ± 0.0021 0.015 ± 0.002 −
f18 0.226 ± 0.224 0.074 ± 0.024 0.049 ± 0.021 0.053 ± 0.034 0.036 ± 0.0099 0.022 ± 0.001 −
f19 0.066 ± 0.006 0.063 ± 0.007 0.045 ± 0.007 0.027 ± 0.012 0.006 ± 0.0006 0.004 ± 0.001 −

As can immediately be observed, both the proposed coefficients appear to be closely related to the problem

dimensionality. More specifically, regardless of the nature of the problem, the correlation amongst variables

appear to decay with the dimensionality. All the problems display the maximum values of Pearson and

Spearman coefficients in low dimensions, while these coefficients tend to take small values in large scale cases,
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Table 8.2. Mean value and standard deviation for the Spearman correlation index ϕ for SISC2010 over multiple dimensionality values.

ϕ10D ϕ30D ϕ50D ϕ100D ϕ500D ϕ1000D Separable

f1 0.093 ± 0.011 0.085 ± 0.003 0.084 ± 0.002 0.082 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES
f2 0.099 ± 0.010 0.091 ± 0.003 0.089 ± 0.002 0.083 ± 0.001 0.082 ± 0.001 0.016 ± 0.001 −
f3 0.219 ± 0.062 0.113 ± 0.018 0.092 ± 0.005 0.084 ± 0.002 0.081 ± 0.002 0.014 ± 0.000 −
f4 0.127 ± 0.017 0.091 ± 0.004 0.085 ± 0.003 0.083 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES
f5 0.103 ± 0.012 0.086 ± 0.002 0.083 ± 0.001 0.081 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 −
f6 0.096 ± 0.009 0.089 ± 0.004 0.085 ± 0.004 0.082 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES
f7 0.103 ± 0.018 0.086 ± 0.004 0.086 ± 0.002 0.083 ± 0.001 0.080 ± 0.001 0.014 ± 0.000 Y ES
f8 0.186 ± 0.019 0.116 ± 0.002 0.116 ± 0.003 0.097 ± 0.003 0.081 ± 0.003 0.014 ± 0.000 −
f9 0.675 ± 0.417 0.128 ± 0.061 0.112 ± 0.046 0.127 ± 0.029 0.096 ± 0.029 0.022 ± 0.002 −
f10 0.097 ± 0.010 0.088 ± 0.004 0.084 ± 0.002 0.082 ± 0.001 0.081 ± 0.001 0.014 ± 0.000 −
f11 0.577 ± 0.404 0.187 ± 0.101 0.112 ± 0.057 0.115 ± 0.010 0.098 ± 0.030 0.022 ± 0.001 −
f12 0.160 ± 0.020 0.102 ± 0.007 0.096 ± 0.005 0.093 ± 0.007 0.084 ± 0.007 0.017 ± 0.001 −
f13 0.237 ± 0.069 0.130 ± 0.014 0.130 ± 0.006 0.085 ± 0.004 0.089 ± 0.004 0.019 ± 0.001 −
f14 0.123 ± 0.011 0.101 ± 0.008 0.098 ± 0.005 0.093 ± 0.004 0.087 ± 0.004 0.018 ± 0.002 −
f15 0.105 ± 0.015 0.089 ± 0.036 0.089 ± 0.003 0.084 ± 0.003 0.081 ± 0.003 0.022 ± 0.000 −
f16 0.132 ± 0.014 0.142 ± 0.030 0.128 ± 0.021 0.105 ± 0.008 0.089 ± 0.008 0.020 ± 0.003 −
f17 0.210 ± 0.138 0.189 ± 0.067 0.123 ± 0.014 0.109 ± 0.011 0.088 ± 0.011 0.018 ± 0.001 −
f18 0.386 ± 0.229 0.134 ± 0.067 0.098 ± 0.015 0.106 ± 0.025 0.096 ± 0.025 0.020 ± 0.002 −
f19 0.108 ± 0.011 0.102 ± 0.009 0.102 ± 0.004 0.085 ± 0.009 0.081 ± 0.009 0.014 ± 0.001 −

being nearly null in 1000 dimensions. Moreover, it can be observed that the concept of correlation between

pairs of variables and the concept of separability, albeit not coincident, are logically related. For this reason,

the separable functions are marked in the presented Tables. Since separable functions in n variables can be

expressed as the sum of n functions in one variable, the optimisation of a separable function can be solved by

optimising each variable separately, i.e. by perturbing the axes one by one until the optimum along the axis

under consideration is detected. An optimisation problem of this kind is definitely characterised by uncorrelated

variables. On the other hand, non-separable problems require a simultaneous perturbation of multiple variables

to be tackled, as CMA-ES proposes, see e.g. (Hansen et al. 2003). Focussing on the 10 dimensional problems,

we can see that both Pearson and Spearman coefficients appear to have, in the majority of the cases, their lowest

values (and close to zero) in connection to the separable problems. Although some non-separable problems are

still characterised by low correlation coefficients, separable problems always show a low correlation amongst

the variable. Moreover, while the problems f1 − f8 are basis functions, test problems f9 − f11 are shifted

functions, and f12− f19 are composition functions resulting from the combination of multiple functions. It can

be easily observed that correlations coefficients tend to be fairly small in connection to the problems belonging

to the first block, and higher in the other two blocks, especially for composition functions. For example, test

problem f1 is the sphere problem, which is obviously separable. In the case of f1, the correlation coefficients

are already nearly zero in 10 dimensions. The functions belonging to the third group are clearly non-separable

(because they have been built to be so). In these cases, the correlation coefficients tend to take bigger values in

low dimensions. The trend of the coefficients with respect to the dimensionality values decreases monotonously

(except for little oscillations, in isolated cases, due to the stochastic nature of the tests), regardless of the nature

of the problem (e.g. supposed separability) and the correlation indices in 10 dimensions. This fact occurs

for both the indices considered in this study despite the fact that they use a different strategy to measures the

correlation among the variables (e.g. Pearson’s index measure only the linear correlation). An interpretation

is that, the monotonous decay of the correlation indices with respect to the problem dimensionality means that

every LSOP is characterised, to some extent, by uncorrelated variables. Hence, the problem can be tackled

by operators that perturb the axes separately or that consider at each exploratory move only small groups of

variables (i.e., keeping most of the variables constant). Thus, one can conclude that if on the one hand high
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dimensionality increases the difficulty of the problem, on the other hand it makes the optimisation easier, since

a search strategy that perturbs the axes separately is likely to return satisfactory results. This analysis explains

why the three search strategies illustrated at the beginning of this chapter appear successful in approaching

LSOP. In this sense the dimensionality is not only a “curse” but also a “blessing”. In order to confirm that the

obtained results are not biased by the chosen test-bed, the same tests have also been run over the CEC2013 test-

bed, see (Liang et al. 2013). Since this test-bed is scalable for a limited amount of dimensionality values, we

performed the tests over all the available dimensionality values, that is 10, 30, and 50 dimensions. Numerical

results are given in Tables 8.3 and 8.4. Finally, the BBOB2010 test-bed, see (Hansen, Auger, Finck, Ros

Table 8.3. Mean value and standard deviation for the Pearson correlation index ς for CEC2013 over increasing dimensionality values.

ς10D ς30D ς50D Separable

f1 0.054 ± 0.007 0.032± 0.001 0.027 ± 0.001 Y ES
f2 0.563 ± 0.036 0.256± 0.025 0.238 ± 0.024 −
f3 0.271 ± 0.147 0.116± 0.019 0.059 ± 0.025 −
f4 0.110 ± 0.028 0.085± 0.011 0.091 ± 0.009 −
f5 0.072± 0.0101 0.058± 0.008 0.045 ± 0.004 Y ES
f6 0.601 ± 0.222 0.315± 0.045 0.164 ± 0.010 −
f7 0.303 ± 0.208 0.100± 0.019 0.060 ± 0.006 −
f8 0.413 ± 0.061 0.142± 0.011 0.076 ± 0.004 −
f9 0.325 ± 0.106 0.119± 0.020 0.076 ± 0.013 −
f10 0.187 ± 0.010 0.093± 0.001 0.065 ± 0.001 −
f11 0.081 ± 0.047 0.038± 0.007 0.028 ± 0.002 Y ES
f12 0.277 ± 0.075 0.085± 0.004 0.055 ± 0.001 −
f13 0.235 ± 0.068 0.113± 0.029 0.066 ± 0.009 −
f14 0.057 ± 0.011 0.037± 0.010 0.036 ± 0.010 −
f15 0.194 ± 0.025 0.091± 0.005 0.065 ± 0.006 −
f16 0.435 ± 0.110 0.345± 0.137 0.273 ± 0.162 −
f17 0.210 ± 0.062 0.099± 0.015 0.051 ± 0.009 −
f18 0.283 ± 0.032 0.120± 0.016 0.082 ± 0.021 −
f19 0.255 ± 0.043 0.094± 0.011 0.073 ± 0.019 −
f20 0.360 ± 0.127 0.140± 0.006 0.076 ± 0.003 −
f21 0.075 ± 0.011 0.032± 0.002 0.031 ± 0.008 −
f22 0.058 ± 0.011 0.046± 0.017 0.045 ± 0.010 Y ES
f23 0.252 ± 0.147 0.097± 0.011 0.087 ± 0.052 −
f24 0.224 ± 0.074 0.067± 0.016 0.057 ± 0.013 −
f25 0.218 ± 0.122 0.115± 0.010 0.065 ± 0.008 −
f26 0.253 ± 0.087 0.068± 0.009 0.082 ± 0.069 −
f27 0.142 ± 0.093 0.082± 0.032 0.065 ± 0.021 −
f28 0.084 ± 0.063 0.033± 0.001 0.028 ± 0.013 −

et al. 2010), has been considered for the available dimensionality values, i.e. 10, 30, 50 and 100 variables.

Numerical results confirming the same trend seen for SISC2010 and CEC2013 are reported in Tables 8.5 and

8.6 for Pearson and Spearman coefficients, respectively. For all 71 problems considered in this study, it appears

clear that the correlation amongst variables (for both the ways it has been measured) tends to decay when the

dimensionality increases. If one analyses the results related to the CEC2013, ς50D is often smaller that the

half of ς10D. In addition, the decay in the correlation coefficient for those problems characterised by a strong

correlation in 10 dimensions, e.g. f8, tends to be steeper than that associated with problems that display a weak

correlation in low dimensions, such as f5. The test on the BBOB2010 functions shows that these functions

are characterised by a weak correlation for all the dimensionality values. However, the study on scalability

confirms that, also in this case, the correlation decreases with the increase in dimensions.
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Table 8.4. Mean value and standard deviation for the Spearman correlation Index (ϕ) for CEC2013 over increasing dimensionality

values.

ϕ10D ϕ30D ϕ50D Separable

f1 0.099± 0.010 0.085 ± 0.005 0.084 ± 0.001 Y ES
f2 0.543± 0.053 0.293 ± 0.038 0.242 ± 0.030 −
f3 0.267± 0.108 0.127 ± 0.023 0.112 ± 0.027 −
f4 0.154± 0.061 0.121 ± 0.006 0.121 ± 0.013 −
f5 0.113± 0.015 0.100 ± 0.006 0.091 ± 0.007 Y ES
f6 0.543± 0.224 0.305 ± 0.075 0.187 ± 0.015 −
f7 0.176± 0.268 0.117 ± 0.013 0.098 ± 0.005 −
f8 0.409± 0.086 0.158 ± 0.010 0.108 ± 0.005 −
f9 0.372± 0.178 0.150 ± 0.0201 0.107 ± 0.003 −
f10 0.201± 0.021 0.120 ± 0.003 0.103 ± 0.004 −
f11 0.132± 0.044 0.087 ± 0.003 0.084 ± 0.002 Y ES
f12 0.257± 0.051 0.115 ± 0.007 0.097 ± 0.004 −
f13 0.261± 0.066 0.121 ± 0.025 0.106 ± 0.005 −
f14 0.093± 0.011 0.090 ± 0.013 0.092 ± 0.006 −
f15 0.205± 0.031 0.119 ± 0.011 0.100 ± 0.010 −
f16 0.354± 0.145 0.285 ± 0.022 0.245 ± 0.093 −
f17 0.197± 0.069 0.117 ± 0.014 0.094 ± 0.005 −
f18 0.264± 0.038 0.150 ± 0.019 0.115 ± 0.015 −
f19 0.288± 0.059 0.124 ± 0.006 0.105 ± 0.010 −
f20 0.319± 0.046 0.156 ± 0.008 0.109 ± 0.006 −
f21 0.107± 0.012 0.088 ± 0.004 0.085 ± 0.002 −
f22 0.100± 0.014 0.089 ± 0.009 0.091 ± 0.005 Y ES
f23 0.219± 0.062 0.130 ± 0.029 0.122 ± 0.011 −
f24 0.262± 0.131 0.110 ± 0.018 0.094 ± 0.010 −
f25 0.197± 0.048 0.138 ± 0.010 0.102 ± 0.004 −
f26 0.301± 0.010 0.152 ± 0.011 0.150 ± 0.075 −
f27 0.138± 0.077 0.118 ± 0.032 0.105 ± 0.011 −
f28 0.118± 0.012 0.086 ± 0.003 0.085 ± 0.002 −

As a general trend, optimisation problems with at least 100 dimensions seem characterised by a weak

correlation. Optimisation problems in 500 and 1000 dimensions show a nearly null correlation amongst the

variables. Regardless the dimensionality of the problem, can also be observed that the standard deviation for

each function is nearly zero. This confirms the stability and reliability of the proposed coefficient, that is not

affected by considerable fluctuations from the corresponding mean value. It is worth noticing that the standard

deviation, rounded to 3 numerical places in tables, gets significantly small , i.e. ≃ 10−3 or even zero, already

in 100 dimension for most functions in SISC2010 (see Table 8.1 and 8.2) and all the functions in BBOB2010

(see Table 8.5 and 8.6).

As a practical consequence, if the variables of a problem are uncorrelated, the problem can be solved by

perturbing each axis separately or, in an equivalent way, by decomposing the problem into many problems with

low dimensions. These strategies are essentially the successful search moves used e.g. in (Tseng & Chen 2008),

(Caraffini, Neri & Poikolainen 2013), (Caraffini, Neri, Iacca & Mol 2013),(Caraffini, Neri, Passow & Iacca

2013a), (Ros & Hansen 2008), and (Li & Yao 2012). On the basis of these results, it is possible to conclude

that large scale problems on the one hand are more complex than low dimensional ones because the optimum

lays in a very large space. On the other hand, they appear to be easier to solve than low dimensional problems

as simple operators perturbing the variables separately can already detect solutions with a high performance.

The phenomenon of the decrease of the correlation coefficients when the dimensionality increases is depicted

in Fig.s 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7. For each benchmark, two test problems have been selected, one being

separable and the other being non-separable. It can be observed that all the trends are monotonically decreasing
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Table 8.5. Mean value and standard deviation for the Pearson correlation index ς for BBOB2010 over increasing dimensionality values.

ς10D ς30D ς50D ς100D Separable

f1 0.054± 0.004 0.045± 0.035 0.028 ± 0.001 0.015 ± 0.000 Y ES
f2 0.051± 0.006 0.034± 0.002 0.028 ± 0.001 0.015 ± 0.000 Y ES
f3 0.054± 0.007 0.045± 0.040 0.030 ± 0.012 0.015 ± 0.000 Y ES
f4 0.055± 0.007 0.045± 0.002 0.027 ± 0.001 0.015 ± 0.000 Y ES
f5 0.058± 0.004 0.035± 0.002 0.027 ± 0.001 0.015 ± 0.000 Y ES
f6 0.051± 0.006 0.042± 0.030 0.031 ± 0.015 0.015 ± 0.000 −
f7 0.053± 0.005 0.033± 0.002 0.027 ± 0.001 0.015 ± 0.000 −
f8 0.055± 0.006 0.034± 0.002 0.028 ± 0.001 0.015 ± 0.000 −
f9 0.054± 0.005 0.039± 0.015 0.027 ± 0.001 0.015 ± 0.000 −
f10 0.055± 0.007 0.034± 0.001 0.028 ± 0.001 0.015 ± 0.000 −
f11 0.051± 0.005 0.043± 0.034 0.029 ± 0.008 0.015 ± 0.000 −
f12 0.053± 0.005 0.034± 0.002 0.028 ± 0.001 0.015 ± 0.000 −
f13 0.055± 0.007 0.035± 0.002 0.027 ± 0.001 0.015 ± 0.000 −
f14 0.054± 0.007 0.034± 0.002 0.027 ± 0.001 0.015 ± 0.000 −
f15 0.053± 0.007 0.035± 0.001 0.028 ± 0.001 0.015 ± 0.000 −
f16 0.051± 0.004 0.054± 0.046 0.027 ± 0.001 0.015 ± 0.000 −
f17 0.051± 0.004 0.035± 0.002 0.027 ± 0.001 0.015 ± 0.000 −
f18 0.052± 0.006 0.039± 0.012 0.028 ± 0.001 0.015 ± 0.000 −
f19 0.052± 0.006 0.034± 0.001 0.028 ± 0.001 0.015 ± 0.000 −
f20 0.051± 0.006 0.034± 0.001 0.028 ± 0.001 0.015 ± 0.000 −
f21 0.052± 0.006 0.034± 0.001 0.027 ± 0.001 0.015 ± 0.000 −
f22 0.051± 0.004 0.038± 0.013 0.027 ± 0.001 0.015 ± 0.000 −
f23 0.054± 0.007 0.035± 0.001 0.027 ± 0.001 0.015 ± 0.000 −
f24 0.053± 0.005 0.033± 0.002 0.027 ± 0.001 0.015 ± 0.000 −

(except ς in Figure 8.3). In addition, it is shown that, while for separable functions the coefficients have low

values already in 10 dimensions and further drop their values with the increase of dimensionality, see Figures

8.2, 8.5, and 8.6, non-separable functions are characterised by a major drop in the correlation coefficients when

the dimensionality increases, see Figures 8.3, 8.4, and 8.7. Most importantly, it appears that, regardless of

their values in 10 dimensions, both correlation coefficients tend towards zero in large scale cases. This fact can

be seen, for example, by observing initial and final values of the trends in Figures 8.2 and 8.3 as well as the

values in 10 and 1000 dimensions in Tables 8.1 and 8.2. More specifically while the values in 10 dimensions

are diverse and range from about 0.05 to over 0.6, in 1000 dimensions the correlation coefficients are very

similar to each other and all below 0.025. Similar considerations can be done for the two other benchmarks.

Thus, the proposed experimental study suggests that large scale optimisation problems are all the same in terms

of correlation among the variables and that all the LSOP are characterised by uncorrelated variables. Hence,

LSOP do not necessarily require diagonal moves, i.e. search moves that involve the simultaneous perturbation

of all the variables. On the contrary, LSOP can be solved by separately perturbing the variables independently,

i.e. performing search moves along the axes.

8.4.1 Real world application case: Lennard-Jones Potential

In order to strengthen the validity of this study, the Pearson and Spearman correlation indices are here evaluated

for a real world application, that is the LJP problem, filed as the problem number 2 of the CEC2011 test-bed,

see (Swagatam & Suganthan 2010), and already presented in Chapter 7.2.6 for testing the SPAM algorithm.
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Figure. 8.2. Correlation coefficients for f1 of

SISC2010 over increasing dimensions.

Figure. 8.3. Correlation coefficients for f13 of

SISC2010 over increasing dimensions.

Figure. 8.4. Correlation coefficients for f8 of

CEC2013 over increasing dimensions.

Figure. 8.5. Correlation coefficients for f11 of

CEC2013 over increasing dimensions.

Figure. 8.6. Correlation coefficients for f1 of

BBOB2010 over increasing dimensions.

Figure. 8.7. Correlation coefficients for f10 of

BBOB2010 over increasing dimensions.
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Table 8.6. Meanvalue and standard deviation for the Spearman correlation index ϕ for BBOB2010 over increasing dimensionality

values.

ϕ10D ϕ30D ϕ50D ϕ100D Separable

f1 0.095± 0.009 0.087± 0.003 0.084 ± 0.002 0.082 ± 0.001 Y ES
f2 0.096± 0.008 0.087± 0.004 0.084 ± 0.002 0.081 ± 0.001 Y ES
f3 0.096± 0.009 0.087± 0.003 0.084 ± 0.001 0.082 ± 0.001 Y ES
f4 0.090± 0.008 0.087± 0.004 0.085 ± 0.002 0.081 ± 0.001 Y ES
f5 0.092± 0.011 0.086± 0.003 0.084 ± 0.002 0.082 ± 0.001 Y ES
f6 0.099± 0.016 0.084± 0.004 0.083 ± 0.002 0.082 ± 0.001 −
f7 0.099± 0.013 0.087± 0.004 0.086 ± 0.001 0.081 ± 0.001 −
f8 0.094± 0.010 0.086± 0.003 0.085 ± 0.002 0.081 ± 0.001 −
f9 0.099± 0.010 0.089± 0.004 0.085 ± 0.001 0.082 ± 0.000 −
f10 0.102± 0.018 0.087± 0.003 0.087 ± 0.008 0.082 ± 0.001 −
f11 0.094± 0.011 0.087± 0.003 0.085 ± 0.001 0.082 ± 0.001 −
f12 0.093± 0.014 0.088± 0.003 0.085 ± 0.002 0.082 ± 0.001 −
f13 0.095± 0.011 0.086± 0.004 0.083 ± 0.002 0.081 ± 0.001 −
f14 0.097± 0.009 0.088± 0.004 0.084 ± 0.001 0.082 ± 0.001 −
f15 0.097± 0.008 0.086± 0.003 0.085 ± 0.001 0.082 ± 0.001 −
f16 0.093± 0.013 0.085± 0.003 0.084 ± 0.002 0.082 ± 0.001 −
f17 0.092± 0.013 0.087± 0.004 0.084 ± 0.003 0.082 ± 0.001 −
f18 0.100± 0.012 0.089± 0.004 0.085 ± 0.003 0.082 ± 0.001 −
f19 0.097± 0.008 0.087± 0.002 0.085 ± 0.002 0.082 ± 0.001 −
f20 0.093± 0.009 0.086± 0.003 0.084 ± 0.001 0.082 ± 0.001 −
f21 0.088± 0.008 0.087± 0.004 0.084 ± 0.002 0.082 ± 0.001 −
f22 0.098± 0.010 0.086± 0.003 0.083 ± 0.002 0.082 ± 0.001 −
f23 0.092± 0.011 0.091± 0.009 0.084 ± 0.003 0.082 ± 0.001 −
f24 0.096± 0.008 0.086± 0.003 0.084 ± 0.002 0.082 ± 0.001 −

Table 8.7. Mean value and standard deviation for the Pearson and Spearman correlation indices for the Lennard-Jones Potential problem

over increasing cluster size.

2 atoms 12 atoms 22 atoms 32 atoms 42 atoms

(6D) (36D) (66D) (96D) (126D)

ς 0.562± 0.081 0.152 ± 0.052 0.114± 0.050 0.053± 0.022 0.046 ± 0.026
ϕ 0.448± 0.096 0.171 ± 0.075 0.121± 0.024 0.111± 0.031 0.091 ± 0.006

The size of the atomic cluster determines the dimensionality of the problem (that is therefore scalable).

For each added atom the dimensionality of the fitness function grows by 3 parameters. In this study, five

configurations have been considered, i.e. 2, 12, 22, 32, and 42 atoms, corresponding to the dimensionality

values of 6, 36, 66, 96, and 126 dimensions, respectively. The two presented tests have also been applied in this

real-world case. Table 8.7 shows the correlation coefficients for the dimensionality values mentioned above

and Fig. 8.8 illustrates the trends of the coefficients depending on the dimensionality. Numerical results

show that, also in this case, the correlation coefficient decreases when the dimensionality increases. Thus, the

large scale version of this real-world problem also appears characterised by uncorrelated variables. This result

further confirms the finding obtained on the test problems, i.e. that large scale problems, regardless of their

formulation, nature, and details, appear to have uncorrelated variables.

137



6 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Problem dimension

C
o

rr
el

at
io

n
 in

d
ex

 

 

ς
φ

Figure. 8.8. Average correlation indices trends for the Lennard-Jones Potential problem of CEC2011 over

increasing cluster size.

8.5 Chapter remarks

To summarise: 1) separable problems, unlike non-separable problems (especially in the case of composition

functions) are characterised by low correlation indices; 2) regardless of the nature of the optimisation problem,

the correlation decreases when the dimensionality of the problem increases; 3) for all the optimisation problems,

the correlation appears to approach zero (i.e., there is no correlation among the variables) in large scale cases. In

other words, numerical results of this study show that all the large scale optimisation problems are characterised

by uncorrelated variables.

The scientific community can benefit from this study by considering that there is no use, in large scale

optimisation, of complex operators that simultaneously perturb all the variables. On the contrary, simple

operators that perturb small groups of variables or even the variables one-by-one can be efficient strategies to

tackle large scale optimisation problems. Hence, high dimensionality is not only a “curse” but also a “blessing”.

This piece of information is also relevant for the studies on automatic design of optimisation algorithms, as it

allows us to extract some indications on the search strategy to implement, on the basis of the dimensionality of

the problem.
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Chapter 9

Conclusions and future developments

This work introduced novel optimisation algorithms designed by following the Ockham’s Razor principle in

MC, that despite their simplicity, see (Caraffini, Neri, Passow & Iacca 2013b), (Caraffini, Neri, Gongora &

Passow 2013) and (Iacca, Caraffini, Neri & Mininno 2013), displayed remarkable performances on a vary

set of benchmark problems (as well as on real-world engineering applications). A great deal of attention

has been given to the concept of algorithmic structure, and a new methodology for designing optimisation

algorithm by combining elementary (atomic) structures has been formulated. Simple optimisers consisting

of the combinations of basic operators in elementary structures, i.e. sequential and parallel (Caraffini, Neri,

Iacca & Mol 2012), have been tested and proven to be promising and efficient for tackling specific aspects

characterising an optimisation problem, such as separability of the objective function, dimensionality of the

problem or ill-conditioned function landscapes. Numerical data have confirmed the point that the presented

approach can provide similar, or even better solutions with respect of those obtained by applying complex

popular optimisation algorithms. In this light, it is possible to conclude that the algorithmic complexity in

optimisation can be kept low, since extremely complex structures are not necessarily supported by extremely

good results. The most significant examples supporting this point are given in Chapter 6. The RIS and RS

algorithms in particular showed competitive performances and successfully addressed IRQ I-III. The parallel

structure described in Chapter 7.1, also showed good results on a very set of problems. The proposed PMS

algorithm presents a more robust structure with respect to the RIS, making it more versatile and reliable for

general purpose optimisation.

Another significant outcome of this piece of work, in terms of potential future impact in the field, is

represented by the presentation of a general framework for automatically combining elementary structures

in order to tackle optimisation problems defined in continuous domains (Caraffini et al. 2014). The general

framework considered a set of interacting software components, able to analyse the landscape of the problem

at hand, selects the required operators from a pool accordingly, builds the connections between the operators

(algorithm design) and solves the given problem. The actual implementation can only analyse the problem in

terms of dimensionality and separability/non-separability of the landscape, thus addressing IRQ IV. Three

operators were initially considered in the pool and combined for building elementary structures forming the
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optimisation algorithm. Numerical results confirmed the efficiency of the proposed framework, which however

needs further improvements in order to reach the big picture of a generic automatic solvers designer, able to

handle multiple features at the same time. The combination of more features can indeed make the choice of the

right component (or interacting components) quite difficult.

The last interesting achievement of this piece of research is a more theoretical finding regarding the

correlation of linked design variables in large scale optimisation problems. The fact that a large scale

optimisation problem presents a low interconnection degree between the design variables, at least for the test

suits used in this work, is an essential information to bear in mind while facing a real-world problem in many

dimensionality values. In effect, this piece of information suggested the conclusion that these problems can be

efficiently addressed with the same simple operators used for separable problems in low dimensions, such as

S. It also explained why successful strategies for handling large scale optimisation make use of perturbation of

a single design variable at time, or anyway of a subgroup of few variables (IRQ IV-VI). The study on the

correlation among the variables still requires improvements, but appears to be promising and essential also for

the realisation of the platform for the automatic design of optimisation algorithms. Future developments in this

direction will have to take this last aspect into consideration.

The innovative nature of this project within the subject is contained in the approach itself, since this would

be the first software platform for optimisation that designs algorithms on the basis of an analysis on the problem.

The vast majority of current adaptive approaches for building up meta-heuristics are oriented towards discrete

optimisation problems, such as in the case of hyper-heuristics, SATzilla etc.

On the contrary, automatic design for real-valued (continuous) optimisation problems has not been

intensively studied yet, and a platform for automatically designing algorithms to tackle real-valued optimisation

problems does not yet exist.

9.1 Future work

In order to pursue this aim, the proposed framework needs to be further and extensively improved. A

preliminary study on multi-modal landscapes has already been done and will be more investigated. The

following four points, containing new implementations and testing, but also the replacement of some limitations

of the actual presented work, will be addressed in the near future:

1. To investigate and design fast tests that can measure or reliably estimate the important features that

characterize optimisation problems and must be taken into account when an algorithm is designed

(Problem Analyser). Not only separability and problem dimensionality, but also multi-modality and

ill-conditioning must be considered. Moreover, the current employment of the CMA-ES algorithm, even

though efficient, results in a huge algorithmic temporal overhead, which could be reduced. Possible

future methodologies for extracting information about inter-linkages among the design variables will

consider other techniques, e.g. the principal component analysis, the fourier transform and linkage
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learning methods.

2. To prepare a database of algorithmic operators and identify their role/appropriateness within the context

of the selected features (Pool of Operators). The current pool of operator must be obviously extended.

Potential operators that can be easily tested and inserted in the pool are the LS routine in Chapter 2, but

further operators will be both taken from the literature and implemented ad-hoc.

3. To design a criterion for selection of the operators based on cross labelling between multiple problem

features and operator action (Operator Selector). This point will be faced by means of the MemeNet

network (Chapter 5.1), with extensive testing of the considered operators in order to be able to understand

their behaviour over a variety of problems.

4. To develop an Algorithmic Builder that connects operators grouped within elementary structures.

While some of these points can be easily obtained by extending the proposed framework, the last one seems to

be more challenging and will have to be carefully and intensively addressed, both theoretically and empirically.

The Automatic Builder will have to be able to consider all the extracted features at the same time, and this part

has not been covered in the presented piece of researcher.

The creation of a fully general purpose software platform is obviously an extraordinarily broad and

ambitious project, that would certainly require years of work and investigation in several fields of computer

science and software engineering. The potential impact of this research is high and the preliminary carried out

work, presented in this thesis, makes think that if further studied and extended in the future, this project can

guarantee ground-breaking results.
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Appendix A

Statistical methods for comparing algorithms

In order to strengthen the interpretation of the numerical results, in this work, two statistic tests namely

Wilcoxon Rank-Sum Test (Wilcoxon 1945) and Holm Bonferroni Procedure (Holm 1979) have been used to

compare between the algorithms. An optimisation algorithm acts as a stochastic process whose realisation for a

certain problem is a number expected to be as close as possible to the optimal solution. Thus, an adequate and

rigorous analysis of its performance must be given statistically. The aforementioned methods refer to two non-

parametric (distribution free) statistical procedures, since no assumption of Normality can be made, operating

in different ways: the former performs a single hypothesis test (a single optimisation problem is considered)

between each pair of algorithms, while the latter handles multiple hypotheses simultaneously.

In particular, the so called null-hypothesis is examined and then accepted if a relationship between data

from two different algorithms exists. More formally, suppose to have the final values distribution1 of two

algorithms A and B, containing nA and nB run respectively. The null-hypothesis H0 : A = B is verified when

the elements of A and B are independent samples of similar continuous distributions having the same means

(see Figure A). Otherwise, the two distributions differ and H0 is rejected against the alternative-hypothesis

which can either be H1 : A ≥ B or H1 : A ≤ B (or simply H1 : A 6= B when it is not clear which sample has

the lowest mean).

It must be said that these tests have been chosen since they are non-parametric, meaning that they do not

require any specific form or assumption for the distribution of the numeric values. When all the conditions for

parametric tests are met, non parametric tests are less effective, but the opposite situation occurs in presence

of outliers2 or non Gaussian distributions, thus making the proposed tests more reliable for what concerns this

piece of work. They are indeed suitable for evaluating the performance of algorithms, as stated in (Garcı́a,

Fernández, Luengo & Herrera 2008). Both of them belong to the class of statistical ranking methods, where

scores (ranks) are assigned and then used instead of the actual numerical data in order to estimate and analyse

their distribution. A brief description of these methods is provided in the following sections.

1Set containing the best value provided by the algorithm on each run.
2Observation which is numerically distant from the rest of the data.
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Figure. A.1. Graphical representation of the Null-hypothesis H0 : A = B VS H1 : A ≥ B accepted (top) or

rejected (bottom)
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A.1 Wilcoxon Rank-Sum Test

The Wilcoxon Rank-Sum test and the Mann-Whitney U test (Mann, Whitney et al. 1947), are the non-

parametric counterpart of the popular two-sample unpaired t-test used to check for a difference between two

samples. Even though the Wilcoxon Rank-Sum and the Mann-Whitney U tests are often confused, it must

be noted that the original version of the first one makes use of means, as a measure of the centre of location

between the two distributions, while the second uses medians. Apart from this clarification, both the tests share

the same idea and it is indeed possible to use any index of central location arbitrarily. The median for instance

is reliable in the presence of outliers but, for the sake of coherence, in this work we adopted the mean. All

the numerical results of this thesis are in effect displayed in terms of average value and standard deviation, and

outliers have been averaged on purpose in order to consider the reliability of stable and robust algorithms with

respect to those whose performance highly depends on the initial solution or other initial conditions.

The Rank-Sum procedure tests the null-hypothesis against the alternative-hypothesis by performing the

following steps. Starting from two samples A and B, assumed to be independent, a second set of N = nA+nB

elements is sorted in order to assign to each observation a rank: the smallest value has rank 1, the second

smallest has rank 2 and so on until rank N . In case of ties3, the rank of the tied values can be handled by

replacing their ranks with their average rank (e.g. if four observations have ordinal ranks 4, 5, 6, 7 but they have

equal values, they are assigned the same rank (4 + 5 + 6 + 7)/4 = 5.5). Without a loss of generality let us

consider the first set A as reference, the corresponding sum wA of the ranks for this sample is called “Wilcoxon

rank sum statistic” while the relative random variable will be denoted with WA. It now possible to calculate the

3Observations with equal numerical value in the data set.
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P-value and decide whether or not to accept the null-hypothesis, but it is necessary to distinguish between two

cases. In the case of the “One-Sided” Wilcoxon Runk-Sum test there are two possible alternative-hypotheses:

H1 : A ≥ B or H1 : A ≤ B so the associated P-value can be defined as P-value = prob{WA ≥ wA} or P-

value = prob{WA ≤ wA} respectively. Conversely, for a “Two-Sided” test, i.e. testing H0 : A = B versus the

alternative H1 : A 6= B, the P-value is double the probability of falling into the tail of the distribution closest to

wA. Thus, if wA is in the lower tail then P-value = prob{WA ≤ wA}, otherwise P-value = prob{WA ≥ wA}.
A high P-value gives no evidence against the null-hypothesis, while a small one suggests that two distributions

are somehow shifted and if it is small enough, H0 has no validity. More precisely, null-hypothesis is rejected

when the P-value is smaller than a certain significance level α usually set to 0.05.

In order to calculate the P-value, the distribution of WA must be considered. For small sample size (up to

10-20), this probability distribution is tabulated, otherwise it can be approximated using the normal distribution

N (µA, σA) where:

µA =
nA · (N + 1)

2
and σA =

√

nA · nB · (N + 1()

12
(A.1)

The probability can then be easily evaluated via numerical integration.

A.2 Holm-Bonferroni Test

The second statistical method employed in this work, called Holm-Bonferroni, is a non-parametric test proposed

by Sture Holm (Holm 1979) in order to face the problem of multiple hypotheses. The name of this procedure

is due to the fact that Holm decided to employ the “Bonferroni correction” in order to adjust the P-values, see

(Abdi 2010), so controlling the Familywise Error Rate (FWER)4. It is in fact important to keep the FWER as low

as possible while considering a set of multiple statistical inferences simultaneously. The higher the number of

hypotheses considered, the higher the probability of misinterpreting the null-hypothesis. The Holm-Bonferroni

procedure improves upon the old Bonferroni procedure on this issue, and has been shown to be reliable even

with many hypotheses, i.e. at least 76 problems were tested simultaneously in each paper in appendix C.

The Holm-Bonferroni procedure consists of the following. Given the final values of each run of a set of NA

algorithms over a set of NTP test functions, the algorithms are ranked on the basis of their average performance

calculated over each problem. More specifically, a rank Rk,i is assigned for each algorithm (i = 1, . . . , NA) in

the following way: for each problem k = 1, . . . , NTP , a score of NA is given to the algorithm displaying the

best mean value, NA−1 is attributed to the second best, NA−2 to the third and so on. The algorithm displaying

the worst performance scores 1. For each algorithm, the scores obtained on the problems are summed up and

averaged over the amount of test problems (NTP ) obtaining Ri:

Ri =

∑NTP
k=1 Rk,i

NTP
∀i ∈ {1, . . . , NA} (A.2)

4In statistics, familywise error rate refers to the probability of making one or more false discoveries among all the hypotheses under

consideration.
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On the basis of these scores the values zj can be calculated. In order to compute this operation it is first

necessary to select one of the NA algorithms as a reference and rename its score to R0. Obviously, the remaining

algorithms must be re-sorted from best to worst and renamed accordingly: Rj for j = 1, . . . , NA − 1. zj can

be calculated as:

zj =
Rj −R0

√

NA·(NA+1)
6·NTP

(A.3)

By means of the zj values, the corresponding cumulative normal distribution values pj are calculated. These pj

values are then compared with the corresponding δ/j where δ is the significance level, usually set to 0.05. As

long as the condition pi < δ/(NA−j) holds, the null-hypothesis (that the two algorithms have indistinguishable

performances) is rejected, i.e. the reference algorithm statistically outperforms the selected j-th algorithm. This

repeated check stops as soon as the above condition fails, meaning that the j-th null-hypothesis is accepted, i.e.

the two algorithms statistically have the same performance. At the end of this procedure, it is then possible

to compare between the algorithms looking at the null-hypothesis, accepted/rejected, and at the rank. In case

of rejection, the position of an algorithm (in terms of rank) is useful to understand whether the reference has

slightly, significantly or evidently outperformed the comparison algorithm.
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Appendix B

No Free Lunch Theorem

The NFL theorem for optimisation problems, first introduced in 1997 by David Wolpert and William G.

Macready (Wolpert & Macready 1997), was a turning point in CIO. During the '80s and the '90s researchers

used to believe that meta-heuristics, and in particular EAs, were better than all the other algorithms and

that the research in this field would have led to an universal algorithm able to outperform the others for all

possible problems. Conversely, being a general-purpose framework, their average performance for all possible

optimisation problems cannot be otherwise than the same for every arbitrary pair of optimisers. In more detail,

the bigger the size of applicability the lesser the efficiency in solving a specific problem. This interesting

trade-off implies that the best optimiser for a given problem is the one specifically designed for that problem.

Obviously, an algorithm can be tailored to face a single problem only when a priori knowledge is available,

otherwise only a general-purpose scheme can be employed. More formally, assuming that algorithm never re-

evaluates a candidate solution and that all objective functions f are equally likely to be used as input for each

arbitrary pair of algorithms A and B, the theorem can be formulated as follow:
∑

f

P (xm

∣

∣m, f,A) =
∑

f

P (xm

∣

∣m, f,B) (B.1)

where the performance of the algorithm A/B is expressed in terms of probability of detecting the optimal

solution xm when iterated m times. For the sake of completeness it must be said that this formula, also called

1st NFL theorem, describes the case of static optimisation, i.e. the fitness function does not vary during the

optimisation process, but there even exists a second formulation for dynamic optimisation. As with every

theorem, NFL’s validity largely depends on the validity of its hypotheses. It has been pointed out that for

continuous optimisation the aforementioned hypotheses are too stringent, and in particular the assumption of

the non-revisiting nature of the algorithms does not always hold, breaking the reliability of this theorem (Auger

& Teytaud 2010). In actual fact, to make an algorithm non-revisiting is quite straightforward, i.e. an archive

containing all the generated solutions must be kept updated in order to be able to check whether a solution must

be discarded and regenerated. However, as a side effect this would make the algorithm unusable due to the high

time and memory overhead. Auger and Teytaud have then mathematically proven that for continuous domains

“continuous free lunches exist”. On the other hand, it can be argued that in Computer Science continuous

problems do not exist since is impossible to store an infinitely dense set within a digital device, and the NFL

theorem for discrete problems has not yet been disproved.
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Appendix C

Complete list of publications produced during my PhD

During my doctoral studies 7 scientific articles have been published in peer reviewed journals and 11 in

international conference proceedings. The complete list of articles is reported below:

[1] Caraffini, F., Iacca, G., Neri, F. & Mininno, E. (2012a), The importance of being structured: A

comparative study on multi stage memetic approaches, in ‘Computational Intelligence (UKCI), 2012

12th UK Workshop on’, pp. 1-8.

[2] Caraffini, F., Iacca, G., Neri, F. & Mininno, E. (2012b), Three variants of three stage optimal memetic

exploration for handling non-separable fitness lscapes, in ‘Computational Intelligence (UKCI), 2012 12th

UK Workshop on’, pp. 1-8.

[3] Caraffini, F., Iacca, G., Neri, F., Picinali, L. & Mininno, E. (2013), A cma-es super-fit scheme for the

re-sampled inheritance search, in ‘Evolutionary Computation (CEC), 2013 IEEE Congress on’, pp. 1123-

1130.

[4] Caraffini, F., Neri, F., Cheng, J., Zhang, G., Picinali, L. & G. Iacca, E. M. (2013), Super-fit multicriteria

adaptive differential evolution, in ‘Evolutionary Computation (CEC), 2013 IEEE Congress on’, pp. 1678-

1685.

[5] Caraffini, F., Neri, F., Gongora, M. & Passow, B. (2013), Re-sampling search: A seriously simple

memetic approach with a high performance, in ‘IEEE Symposium Series on Computational Intelligence,

Workshop on Memetic Computing’, pp. 52-59.

[6] Caraffini, F., Neri, F., Iacca, G. & Mol, A. (2013), ‘Parallel memetic structures’, Information Sciences

227(0), 60-82.

[7] Caraffini, F., Neri, F., Passow, B. N. & Iacca, G. (2013), ‘Re-sampled inheritance search: high

performance despite the simplicity’, Soft Computing pp. 1-22.

[8] Caraffini, F., Neri, F. & Picinali, L. (2014), ‘An analysis on separability for memetic computing automatic

design’, Information Sciences 265(0), 1-22.
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[9] Caraffini, F., Neri, F. & Poikolainen, I. (2013), Micro-differential evolution with extra moves along the

axes, in ‘IEEE Symposium Series on Computational Intelligence, Symposium on Differential Evolution’,

pp. 46-53.

[10] Iacca, G., Caraffini, F. & Neri, F. (2012), ‘Compact differential evolution light: high performance despite

limited memory requirement modest computational overhead’, Journal of Computer Science Technology

27(5), 1056-1076.

[11] Iacca, G., Caraffini, F. & Neri, F. (2013), ‘Memory-saving memetic computing for path-following mobile

robots’, Applied Soft Computing 13(4), 2003-2016.

[12] Iacca, G., Caraffini, F. & Neri, F. (2014), ‘Multy-strategy coevolving aging particle optimisation’,

International Journal of Neural Systems 24(01), 1450008.

[13] Iacca, G., Caraffini, F., Neri, F. & Mininno, E. (2012), Robot base disturbance optimisation with compact

differential evolution light, in ‘EvoApplications’, pp. 285-294.

[14] Iacca, G., Caraffini, F., Neri, F. & Mininno, E. (2013), Single particle algorithms for continuous

optimisation, in ‘Evolutionary Computation (CEC), 2013 IEEE Congress on’, pp. 1610-1617.

[15] Iacca, G., Neri, F., Caraffini, F., & Suganthan, P. N. (2014), A differential evolution framework with

ensemble of parameters strategies pool of local search algorithms, in ‘EvoApplications’, p. To appear.

[16] Neri, F., Weber, M., Caraffini, F. & Poikolainen, I. (2012), Meta-lamarckian learning in three stage

optimal memetic exploration, in ‘Computational Intelligence (UKCI), 2012 12th UK Workshop on’, pp.

1-8.

[17] Poikolainen, I., Caraffini, F., Neri, F. & Weber, M. (2012), Handling non-separability in three stage

memetic exploration, in ‘Proceedings of the Fifth International Conference on Bioinspired Optimisation

Methods their Applications’, pp. 195-205.

[18] Poikolainen, I., Iacca, G., Caraffini, F. & Neri, F. (2013), Focusing the search: a progressively shrinking

memetic computing framework’, International Journal of Innovative Computing Applications 5(3), 127-

142.
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Appendix D

Parameters setting

In this appendix is reported the complete list of parameters values used for generating the numerical results

presented in this thesis. By strictly following the implementation proposed in the pseudo-codes together with

this parameters setting, it is possible to reproduce similar results and so drawing the same conclusions achieved

in this piece of work. For the sake of clarity, it must be said that the same exact numerical values cannot be

replicated due to the stochastic nature of meta-heuristic approaches.

• Brent’s line search (Brent 1973) implemented and configured as in (Press 2007). : CGOLD = 0.381966,

myZeps = 10−3, tol = 3 · 10−8 and xmin = fmin = 0.

• Nelder-Mead (Nelder & Mead 1965),with reflection coefficient α = 1, contraction coefficient β = 0.5,

expansion coefficient γ = 2 and shrinkage coefficient δ = 0.5.

• Rosenbrock (Rosenbrock 1960), with positive perturbation factor α = 2, negative perturbation factor

β = −0.5 and threshold for coordinate system rotation ǫ = 10−5.

• G-CMA-ES (Auger & Hansen 2005), with initial population λstart = 10 and factor for increasing the

population size equal to 2.

• cGA (Mininno, Cupertino & Naso 2008b), with virtual population size equal to 300.

• ISPO (Zhen et al. 2010), with acceleration A = 1, acceleration power factor P = 10, learning coefficient

B = 2, learning factor reduction ratio S = 4, minimum threshold on learning factor E = 1e − 5, and

particle learning steps PartLoop = 30.

• CLPSO (Liang et al. 2006), with population size equal to 60 individuals.

• CCPSO2 (Li & Yao 2012), with population size equal to 30 individuals, Cauchy/Gaussian-sampling

selection probability p = 0.5 and set of potential group sizes S = {2, 5, 10}, S = {2, 5, 10, 50, 100},
S = {2, 5, 10, 50, 100, 250} for experiments in 30, 100 and 1000 dimensions, respectively.
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• cPSO (Neri et al. 2013), with virtual population size of 300 individuals, φ1 = −0.2, φ2 = −0.07,

φ3 = 3.74, γ1 = 1, and γ2 = 1.

• SADE (Qin et al. 2009), with Learning Period LP = 20 and population size Np = 50.

• JADE (Zhang & Sanderson 2009), with population size equal to 60 individuals, group size factor p =

0.05 and parameters adaptation rate factor c = 0.1.

• jDE (Brest et al. 2006), with Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1 and population size Np = 50.

• MDE-pBX (Islam et al. 2012), with population size equal to 100 individuals and group size q equal to

15% of the population size.

• cDE (Mininno et al. 2011) and cDE-light (Iacca, Caraffini & Neri 2012), with virtual population size

Np = 300, scale factor F = 0.5, and αm = 0.25.

• MA-LSCh-CMA (Molina, Lozano, Garcı́a-Martı́nez & Herrera 2010a) with population size equal to 60

individuals, probability of updating a chromosome by mutation equal to 0.125, local/global search ratio

r L
G
= 0.5, BLX-α crossover with α = 0.5, nass parameter for Negative Assortative Mating set to 3, LS

intensity stretch Istr = 500 and threshold δmin
LS = 10−8.

• MA-LSCh-SSW (Molina, Lozano & Herrera 2010), with population size equal to 100 individuals,

probability of updating a chromosome by mutation equal to 0.125, local/global search ratio r L
G

= 0.5,

BLX-α crossover with α = 0.5, nass parameter for Negative Assortative Mating set to 3, LS intensity

stretch Istr = 500 and threshold δmin
LS = 0.

• 3SOME (Iacca, Neri, Mininno, Ong & Lim 2012), with inheritance factor α = 0.05, middle distance

exploration hyper-cube size ∆ equal to 20% of the total decision space width, coefficient of generated

points at each activation of the middle distance exploration k = 4, short distance exploration radius

δ = 0.4 and local budget fixed to 150 iterations.

• RIS-3SOME (Caraffini, Iacca, Neri & Mininno 2012b), was executed with the same parameter setting

of 3SOME, while the DE/current-to-rand/1 mutation was applied with scale factor F = 0.4, and the

threshold ε was set equal to 1e− 4.

• µDE-3SOME (Caraffini, Iacca, Neri & Mininno 2012b), was executed with the same values of 3SOME,

plus m = 5 individuals, scale factor F = 0.75, and number of DE iterations equal to the problem

dimension n.

• (1+1)-CMA-ES-3SOME (Caraffini, Iacca, Neri & Mininno 2012b), The same values of αe and ρ where

used also in . As for (1+1)-CMA-ES, the standard values used in its original Java implementation

available on (Hansen 2012) and suggested in the original paper were used, namely cp = 1/12,

ptargetsucc = 2/11, pthresh = 0.44 and σ0 = 1. The budget for each activation of (1+1)-CMA-ES was

set to 10× n.
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• RS (Caraffini, Neri, Gongora & Passow 2013), with initial search radius δ[i] set equal to the 40% of the

domain width along each variable i, and the stop-threshold ε set equal to 10−6.

• RIS (Caraffini, Neri, Passow & Iacca 2013a), with inheritance factor α, eq. (3.22), has been equal to 0.5.

Regarding the local searcher, the initial search radius δ[i], has been set equal to the 40% of the domain

width along each variable i, while the stop-threshold ε has been set equal to 10−6.

• VISPO (Iacca, Caraffini, Neri & Mininno 2013), with learning period LP = 10, number of perturbations

for each design variable H = 30 and learning threshold 0.65.

• 3SOME-Rosenbrock (Caraffini, Iacca, Neri & Mininno 2012a), with inheritance factor α = 0.05, middle

distance exploration hyper-cube size ∆ equal to 20% of the total decision space width, coefficient of

generated points at each activation of the middle distance exploration k = 4. As for Rosenbrock the

following parameters are required: initial step size h = 0.1, threshold ε = 10−8, forward factor α = 2

and backward factor β = 0.5.

• 3SOME-Powell (Caraffini, Iacca, Neri & Mininno 2012a), with inheritance factor α = 0.05, middle

distance exploration hyper-cube size ∆ equal to 20% of the total decision space width, coefficient of

generated points at each activation of the middle distance exploration k = 4. As for Powell the fitness

tolerance ftol is set equal to 10−5, while GSS is applied with bounds [−100, 100] and a local budget of

20 fitness evaluations.

• PMS (Caraffini, Neri, Iacca & Mol 2013), with inheritance factor α set equal to 0.95, initial search radius

δ equal to 0.4 and computational budget for the first local searcher set to 150 iterations. Regarding

Rosenbrock, see above, the original setting has been kept: α = 2, β = 0.5 and ε = 10−5.

• SPAM (Caraffini et al. 2014), with inheritance factor α = 0.5 for performing the re-sampling procedure,

while for the local search, R has been used with α = 2, β = 0.5, ε = 10−5 and h initialised as a vector

of 0.1. Regarding S, the initial search radius δ, it has been set equal to 40% and the local budget to 150

functional calls.

• CA-ILS (Nguyen & Yao 2008), with population size µ = 3, maximum moves per individual η = 5,

acceptance rate ρ = 0.3, initial move length proportion τ = 0.02, and move length constraint s = 0. The

reduction rate β for the global temperature T have been set equal to 0.838 and 100 respectively. As local

search, in this study we made use of SPSA (Spall 1987), with a = 0.5, A = 1, α = 0.602, c = 0.032,

γ = 0.1 and ǫ = 0.01.
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Appendix E

Numerical Results

For the sake of readability, extended tables are grouped in this appendix and organised in subsections. Data

are displayed as explained in the foreword of this thesis, and obtained according to the experimental set-up in

Chapter 5 and parameters setting in Appendix D.

E.1 Extended numerical results for 3SOME variants

Table E.1. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = ML-3SOME) for ML-3SOME against

3SOME on BBOB2010 in 10 (a) and 40 (b) dimensions.

(a) BBOB2010 in 10 dimensions

ML3SOME 3SOME

f1 7.95e+ 01 ± 1.22e− 14 7.95e+ 01±1.21e− 14 =

f2 −2.10e+ 02 ± 1.58e− 14 −2.10e+ 02±1.63e− 14 =

f3 −4.61e+ 02 ± 2.77e+ 00 −4.61e+ 02± 1.18e+ 00 +

f4 −4.60e+ 02 ± 4.22e+ 00 −4.60e+ 02± 1.39e+ 00 +

f5 −9.21e+ 00 ± 5.42e− 14 5.33e+ 00± 2.91e+ 01 +

f6 3.59e+ 01 ± 3.81e− 03 8.25e+ 01± 2.83e+ 02 =

f7 1.03e+ 02 ± 7.31e+ 00 1.05e+ 02± 1.23e+ 01 =

f8 1.49e+ 02 ± 1.89e− 01 1.49e+ 02±1.86e− 01 -

f9 1.24e+ 02 ± 9.47e− 01 1.25e+ 02± 1.69e+ 00 +

f10 3.13e+ 02 ± 1.64e+ 02 3.95e+ 03± 2.63e+ 04 +

f11 1.60e+ 02 ± 3.21e+ 01 1.57e+ 02±3.36e+ 01 =

f12 −6.02e+ 02 ± 2.32e+ 01 −6.12e+ 02±1.33e+ 01 -

f13 4.08e+ 01 ± 9.36e+ 00 4.26e+ 01± 1.28e+ 01 =

f14 −5.23e+ 01 ± 2.41e− 05 −5.23e+ 01±3.05e− 05 -

f15 1.07e+ 03 ± 4.10e+ 01 1.10e+ 03± 6.38e+ 01 +

f16 7.83e+ 01 ± 4.25e+ 00 7.97e+ 01± 4.63e+ 00 +

f17 −1.31e+ 01 ± 2.74e+ 00 −1.03e+ 01± 6.57e+ 00 +

f18 −3.60e+ 00 ± 1.06e+ 01 5.80e+ 00± 2.56e+ 01 +

f19 −9.93e+ 01 ± 1.72e+ 00 −9.80e+ 01± 2.98e+ 00 +

f20 −5.46e+ 02 ± 2.99e− 01 −5.46e+ 02±2.59e− 01 =

f21 5.05e+ 01 ± 1.14e+ 01 5.36e+ 01± 1.34e+ 01 =

f22 −9.90e+ 02 ± 1.33e+ 01 −9.88e+ 02± 1.55e+ 01 =

f23 7.80e+ 00 ± 4.53e− 01 7.86e+ 00± 4.95e− 01 =

f24 1.71e+ 02 ± 2.80e+ 01 1.92e+ 02± 4.46e+ 01 +

(b) BBOB2010 in 40 dimensions

ML3SOME 3SOME

f1 7.95e+ 01 ± 1.96e− 14 7.95e+ 01±2.56e− 14 =

f2 −2.10e+ 02 ± 3.18e− 14 −2.10e+ 02±3.28e− 14 =

f3 −4.56e+ 02 ± 9.98e+ 00 −4.54e+ 02± 3.44e+ 00 +

f4 −4.53e+ 02 ± 8.17e+ 00 −4.51e+ 02± 4.06e+ 00 +

f5 −9.21e+ 00 ± 8.63e− 13 5.63e+ 01± 1.78e+ 02 +

f6 3.59e+ 01 ± 3.02e− 06 3.59e+ 01±9.31e− 07 =

f7 1.60e+ 02 ± 2.50e+ 01 2.10e+ 02± 6.39e+ 01 +

f8 1.50e+ 02 ± 8.20e+ 00 1.53e+ 02± 1.69e+ 01 =

f9 1.26e+ 02 ± 7.77e+ 00 1.25e+ 02±1.53e+ 00 -

f10 1.00e+ 03 ± 3.53e+ 02 1.95e+ 05± 1.40e+ 06 =

f11 4.20e+ 02 ± 7.64e+ 01 3.80e+ 02±6.30e+ 01 -

f12 −6.16e+ 02 ± 6.25e+ 00 −6.11e+ 02± 8.98e+ 00 +

f13 4.37e+ 01 ± 1.25e+ 01 4.19e+ 01±1.28e+ 01 =

f14 −5.23e+ 01 ± 5.44e− 05 −5.23e+ 01±7.18e− 05 -

f15 1.40e+ 03 ± 1.71e+ 02 2.06e+ 03± 4.04e+ 02 +

f16 8.63e+ 01 ± 5.03e+ 00 8.87e+ 01± 5.44e+ 00 +

f17 −9.70e+ 00 ± 2.00e+ 00 −5.52e+ 00± 3.25e+ 00 +

f18 1.13e+ 01 ± 8.67e+ 00 2.56e+ 01± 1.47e+ 01 +

f19 −9.62e+ 01 ± 2.43e+ 00 −9.33e+ 01± 3.68e+ 00 +

f20 −5.45e+ 02 ± 1.98e− 01 −5.46e+ 02±1.28e− 01 -

f21 5.06e+ 01 ± 1.47e+ 01 5.28e+ 01± 1.62e+ 01 =

f22 −9.87e+ 02 ± 1.12e+ 01 −9.85e+ 02± 1.31e+ 01 =

f23 8.06e+ 00 ± 5.71e− 01 8.10e+ 00± 5.26e− 01 =

f24 6.06e+ 02 ± 1.98e+ 02 9.44e+ 02± 2.79e+ 02 +
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Table E.2. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) for S-3SOME against cGA,

cDE and ISPO on CEC2010 in 1000 dimensions.

S-3SOME cDE cGA ISPO

f1 6.03e− 04 ± 4.71e− 04 1.70e+ 11± 1.67e+ 10 + 1.08e+ 11± 1.60e+ 10 + 0.00e+ 00±0.00e+ 00 -

f2 3.99e− 02 ± 9.13e− 03 1.49e+ 04± 3.51e+ 02 + 2.02e+ 04± 4.59e+ 02 + 1.38e+ 04± 4.22e+ 02 +

f3 7.56e− 03 ± 6.83e− 04 2.08e+ 01± 4.19e− 02 + 2.12e+ 01± 4.14e− 02 + 1.99e+ 01± 1.38e− 02 +

f4 2.08e+ 13 ± 6.90e+ 12 9.51e+ 13± 4.02e+ 13 + 2.02e+ 14± 6.92e+ 13 + 8.49e+ 12±2.60e+ 12 -

f5 4.27e+ 08 ± 1.16e+ 08 3.79e+ 08± 7.46e+ 07 = 2.75e+ 08±6.82e+ 07 - 8.84e+ 08± 1.48e+ 08 +

f6 1.54e+ 07 ± 5.39e+ 06 1.76e+ 07± 2.17e+ 06 = 1.30e+ 07±3.27e+ 06 = 1.98e+ 07± 4.88e+ 04 +

f7 1.07e+ 10 ± 2.83e+ 09 3.99e+ 10± 1.23e+ 10 + 6.69e+ 10± 1.70e+ 10 + 3.85e+ 10± 1.81e+ 10 +

f8 1.78e+ 09 ± 2.68e+ 09 4.56e+ 11± 6.70e+ 11 + 5.82e+ 13± 5.83e+ 13 + 1.33e+ 09±2.12e+ 09 -

f9 3.54e+ 08 ± 7.89e+ 07 7.44e+ 10± 7.07e+ 09 + 1.10e+ 11± 1.54e+ 10 + 8.55e+ 07±9.80e+ 06 -

f10 5.12e+ 03 ± 2.63e+ 02 1.80e+ 04± 5.19e+ 02 + 2.02e+ 04± 4.75e+ 02 + 1.49e+ 04± 4.90e+ 02 +

f11 1.97e+ 02 ± 4.27e+ 00 2.31e+ 02± 4.61e− 01 + 2.31e+ 02± 3.94e− 01 + 2.18e+ 02± 2.25e− 01 +

f12 8.74e+ 04 ± 2.12e+ 04 6.18e+ 06± 4.44e+ 05 + 8.88e+ 06± 6.73e+ 05 + 2.21e+ 05± 2.84e+ 04 +

f13 5.61e+ 05 ± 7.34e+ 05 6.88e+ 11± 7.25e+ 10 + 1.53e+ 12± 1.93e+ 11 + 5.98e+ 03±4.10e+ 03 -

f14 8.79e+ 07 ± 2.66e+ 06 6.76e+ 10± 6.23e+ 09 + 1.05e+ 11± 1.53e+ 10 + 1.97e+ 08± 1.41e+ 07 +

f15 1.33e+ 04 ± 2.40e+ 03 1.91e+ 04± 4.61e+ 02 + 1.99e+ 04± 3.09e+ 02 + 1.58e+ 04± 5.33e+ 02 +

f16 1.60e+ 02 ± 1.14e+ 02 4.22e+ 02± 6.53e− 01 + 4.23e+ 02± 5.48e− 01 + 3.97e+ 02± 2.63e− 01 +

f17 6.31e+ 04 ± 8.74e+ 03 1.05e+ 07± 9.29e+ 05 + 1.46e+ 07± 1.84e+ 06 + 4.84e+ 05± 6.56e+ 04 +

f18 3.88e+ 03 ± 4.66e+ 03 2.47e+ 12± 1.65e+ 11 + 4.65e+ 12± 2.42e+ 11 + 1.79e+ 04± 7.91e+ 03 +

f19 1.16e+ 06 ± 8.91e+ 04 1.10e+ 07± 1.21e+ 06 + 3.54e+ 07± 5.03e+ 06 + 5.57e+ 07± 1.41e+ 07 +

f20 1.20e+ 03 ± 1.93e+ 02 2.81e+ 12± 1.65e+ 11 + 5.25e+ 12± 2.10e+ 11 + 1.19e+ 03±3.07e+ 02 =

Table E.3. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = S-3SOME) for S-3SOME against G-

CMA-ES, SADE and CCPSO2 on CEC2010 in 1000 dimensions.

S-3SOME G-CMA-ES SADE CCPSO2

f1 6.03e− 04 ± 4.71e− 04 4.75e+ 05± 4.02e+ 04 + 2.52e+ 07± 4.74e+ 07 + 5.12e− 05±7.94e− 05 -

f2 3.99e− 02 ± 9.13e− 03 1.02e+ 04± 4.45e+ 02 + 5.70e+ 03± 3.34e+ 02 + 1.33e+ 02± 1.26e+ 02 +

f3 7.56e− 03 ± 6.83e− 04 1.99e+ 01± 1.08e− 02 + 1.90e+ 01± 2.17e− 01 + 2.13e− 06±3.52e− 06 -

f4 2.08e+ 13 ± 6.90e+ 12 1.54e+ 11±2.13e+ 10 - 3.44e+ 12± 2.41e+ 12 - 3.80e+ 12± 2.29e+ 12 -

f5 4.27e+ 08 ± 1.16e+ 08 6.73e+ 08± 9.20e+ 07 + 1.05e+ 08±1.78e+ 07 - 4.08e+ 08± 1.10e+ 08 =

f6 1.54e+ 07 ± 5.39e+ 06 1.98e+ 07± 6.46e+ 04 + 5.52e+ 05±8.13e+ 05 - 1.67e+ 07± 4.94e+ 06 =

f7 1.07e+ 10 ± 2.83e+ 09 5.46e+ 06±3.41e+ 05 - 2.35e+ 08± 4.41e+ 08 - 1.33e+ 10± 1.33e+ 10 =

f8 1.78e+ 09 ± 2.68e+ 09 5.62e+ 06±1.88e+ 05 - 8.28e+ 07± 3.25e+ 07 - 7.40e+ 07± 4.88e+ 07 -

f9 3.54e+ 08 ± 7.89e+ 07 5.04e+ 05±4.39e+ 04 - 3.90e+ 08± 3.22e+ 08 - 8.51e+ 07± 1.25e+ 07 -

f10 5.12e+ 03 ± 2.63e+ 02 1.04e+ 04± 3.99e+ 02 + 6.37e+ 03± 2.69e+ 02 + 4.55e+ 03±2.93e+ 02 -

f11 1.97e+ 02 ± 4.27e+ 00 2.18e+ 02± 2.14e− 01 + 2.05e+ 02± 3.33e+ 00 + 2.01e+ 02± 6.51e+ 00 =

f12 8.74e+ 04 ± 2.12e+ 04 1.04e− 12±8.83e− 14 - 4.85e+ 05± 1.82e+ 05 + 1.38e+ 05± 1.27e+ 05 +

f13 5.61e+ 05 ± 7.34e+ 05 2.20e+ 02±3.37e+ 02 - 1.32e+ 07± 3.61e+ 07 - 1.36e+ 03± 3.96e+ 02 -

f14 8.79e+ 07 ± 2.66e+ 06 5.52e+ 05±5.43e+ 04 - 6.30e+ 08± 2.98e+ 08 + 2.93e+ 08± 5.53e+ 07 +

f15 1.33e+ 04 ± 2.40e+ 03 1.03e+ 04± 5.24e+ 02 - 6.58e+ 03±4.22e+ 02 - 9.27e+ 03± 6.90e+ 02 -

f16 1.60e+ 02 ± 1.14e+ 02 3.97e+ 02± 3.14e− 01 + 3.83e+ 02± 1.82e+ 00 + 3.94e+ 02± 1.40e+ 00 +

f17 6.31e+ 04 ± 8.74e+ 03 1.97e− 11±8.02e− 12 - 9.23e+ 05± 1.67e+ 05 + 2.68e+ 05± 1.38e+ 05 +

f18 3.88e+ 03 ± 4.66e+ 03 4.47e+ 02±3.88e+ 02 - 1.98e+ 09± 4.20e+ 09 + 8.02e+ 03± 6.53e+ 03 +

f19 1.16e+ 06 ± 8.91e+ 04 1.48e+ 04±3.07e+ 03 - 2.69e+ 06± 1.96e+ 05 + 4.38e+ 06± 7.34e+ 06 =

f20 1.20e+ 03 ± 1.93e+ 02 8.33e+ 02±6.48e+ 01 - 2.29e+ 09± 2.93e+ 09 + 1.52e+ 03± 1.36e+ 02 +
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Table E.4. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum test (reference = 3SOME) for 3SOME against 3SOME-

Rosenbrock and 3SOME-Powell on BBOB2010 in 10 dimensions

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 1.21e− 14 7.95e+ 01± 8.94e− 05 + 7.95e+ 01±0.00e+ 00 -

f2 −2.10e+ 02 ± 1.63e− 14 −1.86e+ 02± 4.48e+ 01 + −2.10e+ 02± 4.17e− 13 +

f3 −4.61e+ 02 ± 1.18e+ 00 −4.61e+ 02± 5.03e− 01 - −4.62e+ 02±2.54e− 01 -

f4 −4.60e+ 02 ± 1.39e+ 00 −4.61e+ 02± 8.10e− 01 - −4.62e+ 02±7.35e− 01 -

f5 5.33e+ 00 ± 2.91e+ 01 −8.56e+ 00± 2.49e− 01 - −9.21e+ 00±6.35e− 09 -

f6 8.25e+ 01 ± 2.83e+ 02 4.66e+ 01± 1.05e+ 01 - 3.63e+ 01±6.31e− 01 -

f7 1.05e+ 02 ± 1.23e+ 01 1.02e+ 02±5.88e+ 00 = 1.03e+ 02± 7.60e+ 00 =

f8 1.49e+ 02 ± 1.86e− 01 1.52e+ 02± 2.47e+ 00 + 1.51e+ 02± 2.09e+ 00 +

f9 1.25e+ 02 ± 1.69e+ 00 1.47e+ 02± 4.28e+ 01 + 1.26e+ 02± 1.10e+ 01 +

f10 3.95e+ 03 ± 2.63e+ 04 6.42e+ 03± 5.41e+ 03 + 2.01e+ 02±2.13e+ 02 -

f11 1.57e+ 02 ± 3.36e+ 01 1.01e+ 02±9.08e+ 00 - 1.66e+ 02± 3.20e+ 01 =

f12 −6.12e+ 02 ± 1.33e+ 01 −2.40e+ 02± 3.93e+ 02 + −6.12e+ 02± 1.50e+ 01 =

f13 4.26e+ 01 ± 1.28e+ 01 4.62e+ 01± 1.29e+ 01 + 4.28e+ 01± 1.17e+ 01 =

f14 −5.23e+ 01 ± 3.05e− 05 −5.23e+ 01± 2.06e− 03 + −5.23e+ 01±6.52e− 05 -

f15 1.10e+ 03 ± 6.38e+ 01 1.06e+ 03±2.23e+ 01 - 1.06e+ 03± 2.51e+ 01 -

f16 7.97e+ 01 ± 4.63e+ 00 7.58e+ 01±2.03e+ 00 - 7.67e+ 01± 3.80e+ 00 -

f17 −1.03e+ 01 ± 6.57e+ 00 −1.51e+ 01±9.11e− 01 - −2.32e+ 00± 1.09e+ 01 +

f18 5.80e+ 00 ± 2.56e+ 01 −1.17e+ 01±3.09e+ 00 - 3.96e+ 01± 5.28e+ 01 +

f19 −9.80e+ 01 ± 2.98e+ 00 −9.93e+ 01±7.62e− 01 - −9.44e+ 01± 4.24e+ 00 +

f20 −5.46e+ 02 ± 2.59e− 01 −5.46e+ 02±2.17e− 01 - −5.46e+ 02± 2.44e− 01 -

f21 5.36e+ 01 ± 1.34e+ 01 4.46e+ 01±3.62e+ 00 - 4.51e+ 01± 4.16e+ 00 -

f22 −9.88e+ 02 ± 1.55e+ 01 −9.96e+ 02±4.73e+ 00 - −9.96e+ 02± 7.80e+ 00 -

f23 7.86e+ 00 ± 4.95e− 01 7.92e+ 00± 2.46e− 01 = 7.54e+ 00±2.98e− 01 -

f24 1.92e+ 02 ± 4.46e+ 01 1.56e+ 02±1.43e+ 01 - 1.67e+ 02± 2.06e+ 01 -

Table E.5. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum test (reference = 3SOME) for 3SOME against 3SOME-

Rosenbrock and 3SOME-Powell on BBOB2010 in 20 dimensions

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 1.70e− 14 7.95e+ 01± 8.12e− 04 + 7.95e+ 01±1.41e− 14 =

f2 −2.10e+ 02 ± 1.99e− 14 −1.54e+ 02± 9.96e+ 01 - −2.10e+ 02± 2.96e− 13 =

f3 −4.59e+ 02 ± 1.86e+ 00 −4.60e+ 02± 8.59e− 01 = −4.62e+ 02±7.91e− 01 =

f4 −4.57e+ 02 ± 2.53e+ 00 −4.58e+ 02± 1.40e+ 00 = −4.61e+ 02±1.02e+ 00 =

f5 2.05e+ 01 ± 7.73e+ 01 −7.66e+ 00± 4.55e− 01 - −9.21e+ 00±3.07e− 10 -

f6 3.59e+ 01 ± 5.12e− 06 6.33e+ 01± 3.51e+ 01 + 3.67e+ 01± 4.15e+ 00 +

f7 1.16e+ 02 ± 1.60e+ 01 1.15e+ 02± 1.17e+ 01 = 1.15e+ 02±1.29e+ 01 =

f8 1.49e+ 02 ± 5.28e− 01 1.91e+ 02± 3.48e+ 01 + 1.51e+ 02± 2.05e+ 00 +

f9 1.25e+ 02 ± 1.68e+ 00 1.53e+ 02± 3.13e+ 01 + 1.25e+ 02±1.65e+ 00 +

f10 2.90e+ 02 ± 2.34e+ 02 1.39e+ 04± 7.53e+ 03 + 3.99e+ 02± 2.98e+ 02 +

f11 2.55e+ 02 ± 8.50e+ 01 1.47e+ 02±1.88e+ 01 - 2.32e+ 02± 4.90e+ 01 -

f12 6.89e+ 06 ± 4.84e+ 07 2.75e+ 02± 6.83e+ 02 + −6.15e+ 02±1.02e+ 01 =

f13 3.78e+ 01 ± 1.01e+ 01 4.73e+ 01± 1.16e+ 01 + 3.75e+ 01±1.07e+ 01 =

f14 −5.23e+ 01 ± 8.13e− 05 −5.23e+ 01± 3.95e− 03 = −5.23e+ 01± 3.56e− 04 =

f15 1.27e+ 03 ± 1.58e+ 02 1.21e+ 03±6.02e+ 01 = 1.24e+ 03± 7.42e+ 01 =

f16 8.37e+ 01 ± 5.89e+ 00 8.26e+ 01±3.33e+ 00 = 8.31e+ 01± 3.88e+ 00 =

f17 −7.05e+ 00 ± 5.64e+ 00 −1.19e+ 01±1.34e+ 00 - −2.99e+ 00± 6.88e+ 00 -

f18 2.08e+ 01 ± 2.63e+ 01 9.27e− 01±5.23e+ 00 - 4.11e+ 01± 3.07e+ 01 +

f19 −9.60e+ 01 ± 3.34e+ 00 −9.65e+ 01±9.30e− 01 = −9.19e+ 01± 5.08e+ 00 =

f20 −5.46e+ 02 ± 1.91e− 01 −5.46e+ 02±1.58e− 01 = −5.46e+ 02± 1.71e− 01 =

f21 5.97e+ 01 ± 1.80e+ 01 5.53e+ 01± 1.35e+ 01 = 5.21e+ 01±1.10e+ 01 -

f22 −9.84e+ 02 ± 1.50e+ 01 −9.86e+ 02±1.39e+ 01 = −9.85e+ 02± 1.30e+ 01 =

f23 7.94e+ 00 ± 6.06e− 01 8.41e+ 00± 3.63e− 01 + 8.04e+ 00± 4.72e− 01 +

f24 3.69e+ 02 ± 1.16e+ 02 2.88e+ 02±3.96e+ 01 - 3.22e+ 02± 5.90e+ 01 -
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Table E.6. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum test (reference = 3SOME) for 3SOME against 3SOME-

Rosenbrock and 3SOME-Powell on BBOB2010 in 40 dimensions

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 2.56e− 14 7.95e+ 01± 2.89e− 03 + 7.95e+ 01±1.99e− 14 =

f2 −2.10e+ 02 ± 3.28e− 14 −8.97e+ 01± 1.09e+ 02 + −2.10e+ 02± 2.07e− 13 +

f3 −4.54e+ 02 ± 3.44e+ 00 −4.57e+ 02± 1.51e+ 00 - −4.59e+ 02±1.86e+ 00 -

f4 −4.51e+ 02 ± 4.06e+ 00 −4.52e+ 02± 2.64e+ 00 - −4.57e+ 02±2.56e+ 00 -

f5 5.63e+ 01 ± 1.78e+ 02 −5.43e+ 00± 7.20e− 01 - −9.21e+ 00±6.81e− 12 -

f6 3.59e+ 01 ± 9.31e− 07 1.13e+ 02± 1.04e+ 02 + 3.66e+ 01± 1.07e+ 00 +

f7 2.10e+ 02 ± 6.39e+ 01 2.30e+ 02± 5.20e+ 01 + 2.26e+ 02± 5.19e+ 01 +

f8 1.53e+ 02 ± 1.69e+ 01 2.31e+ 02± 3.64e+ 01 + 1.83e+ 02± 3.56e+ 01 +

f9 1.25e+ 02 ± 1.53e+ 00 1.77e+ 02± 3.46e+ 01 + 1.27e+ 02± 1.54e+ 00 +

f10 1.95e+ 05 ± 1.40e+ 06 2.62e+ 04± 1.25e+ 04 - 7.73e+ 02±3.58e+ 02 -

f11 3.80e+ 02 ± 6.30e+ 01 2.26e+ 02±3.43e+ 01 - 3.78e+ 02± 6.60e+ 01 =

f12 −6.11e+ 02 ± 8.98e+ 00 5.07e+ 03± 7.43e+ 03 + −6.10e+ 02± 8.73e+ 00 =

f13 4.19e+ 01 ± 1.28e+ 01 5.63e+ 01± 1.56e+ 01 + 4.32e+ 01± 1.38e+ 01 =

f14 −5.23e+ 01 ± 7.18e− 05 −5.23e+ 01± 4.10e− 03 + −5.23e+ 01±2.29e− 05 -

f15 2.06e+ 03 ± 4.04e+ 02 1.69e+ 03±1.82e+ 02 - 1.80e+ 03± 1.59e+ 02 -

f16 8.87e+ 01 ± 5.44e+ 00 9.17e+ 01± 4.68e+ 00 + 9.12e+ 01± 4.82e+ 00 +

f17 −5.52e+ 00 ± 3.25e+ 00 −8.89e+ 00±1.52e+ 00 - −5.94e+ 00± 2.91e+ 00 =

f18 2.56e+ 01 ± 1.47e+ 01 1.34e+ 01±4.92e+ 00 - 2.55e+ 01± 1.33e+ 01 =

f19 −9.33e+ 01 ± 3.68e+ 00 −9.32e+ 01± 1.28e+ 00 = −8.96e+ 01± 4.60e+ 00 +

f20 −5.46e+ 02 ± 1.28e− 01 −5.46e+ 02±1.08e− 01 - −5.46e+ 02± 1.19e− 01 -

f21 5.28e+ 01 ± 1.62e+ 01 4.79e+ 01±9.75e+ 00 = 4.94e+ 01± 1.19e+ 01 =

f22 −9.85e+ 02 ± 1.31e+ 01 −9.83e+ 02± 1.48e+ 01 + −9.87e+ 02±1.07e+ 01 =

f23 8.10e+ 00 ± 5.26e− 01 9.38e+ 00± 4.72e− 01 + 8.70e+ 00± 6.40e− 01 +

f24 9.44e+ 02 ± 2.79e+ 02 6.97e+ 02±1.18e+ 02 - 8.06e+ 02± 1.18e+ 02 -

Table E.7. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum test (reference = 3SOME) for 3SOME against 3SOME-

Rosenbrock and 3SOME-Powell on BBOB2010 in 100 dimensions

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 3.29e− 14 7.95e+ 01± 7.05e− 03 + 7.95e+ 01± 2.86e− 14 +

f2 −2.10e+ 02 ± 5.69e− 14 4.80e+ 02± 5.03e+ 02 + −2.10e+ 02± 1.75e− 13 +

f3 −4.39e+ 02 ± 7.28e+ 00 −4.43e+ 02± 4.04e+ 00 - −4.45e+ 02±5.80e+ 00 -

f4 −4.27e+ 02 ± 8.70e+ 00 −4.28e+ 02± 5.07e+ 00 = −4.36e+ 02±7.52e+ 00 -

f5 7.40e+ 00 ± 1.65e+ 02 3.31e+ 00± 1.71e+ 00 - −9.21e+ 00±6.33e− 12 -

f6 3.59e+ 01 ± 8.86e− 08 4.43e+ 02± 2.11e+ 02 + 4.31e+ 01± 5.29e+ 00 +

f7 5.97e+ 02 ± 2.83e+ 02 9.36e+ 02± 2.65e+ 02 + 8.45e+ 02± 2.19e+ 02 +

f8 1.83e+ 02 ± 3.31e+ 01 3.19e+ 02± 6.10e+ 01 + 2.31e+ 02± 4.62e+ 01 +

f9 1.76e+ 02 ± 1.36e+ 01 2.53e+ 02± 4.53e+ 01 + 1.77e+ 02± 1.76e+ 01 =

f10 2.68e+ 03 ± 6.96e+ 02 6.31e+ 04± 1.78e+ 04 + 2.10e+ 03±5.99e+ 02 -

f11 3.83e+ 02 ± 8.22e+ 01 3.45e+ 02±7.84e+ 01 - 5.51e+ 02± 1.14e+ 02 +

f12 −6.09e+ 02 ± 1.83e+ 01 6.00e+ 03± 4.95e+ 03 + −6.12e+ 02±1.64e+ 01 =

f13 3.35e+ 01 ± 4.87e+ 00 5.79e+ 01± 9.02e+ 00 + 3.32e+ 01±4.16e+ 00 =

f14 −5.23e+ 01 ± 5.47e− 05 −5.23e+ 01± 4.90e− 03 + −5.23e+ 01±1.67e− 05 -

f15 4.53e+ 03 ± 5.89e+ 02 4.08e+ 03±5.10e+ 02 - 4.20e+ 03± 5.26e+ 02 -

f16 9.51e+ 01 ± 6.11e+ 00 1.03e+ 02± 4.79e+ 00 + 1.02e+ 02± 5.54e+ 00 +

f17 −2.63e− 02 ± 3.97e+ 00 −2.60e+ 00±2.97e+ 00 - −1.32e+ 00± 3.44e+ 00 -

f18 4.55e+ 01 ± 1.54e+ 01 3.57e+ 01±1.04e+ 01 - 4.02e+ 01± 1.27e+ 01 -

f19 −9.08e+ 01 ± 3.39e+ 00 −8.80e+ 01± 2.19e+ 00 + −8.90e+ 01± 3.92e+ 00 +

f20 −5.46e+ 02 ± 9.61e− 02 −5.46e+ 02±7.49e− 02 - −5.46e+ 02± 1.17e− 01 =

f21 5.19e+ 01 ± 1.21e+ 01 5.17e+ 01± 1.29e+ 01 = 5.02e+ 01±1.11e+ 01 =

f22 −9.82e+ 02 ± 1.47e+ 01 −9.80e+ 02± 1.54e+ 01 + −9.84e+ 02±1.30e+ 01 =

f23 8.21e+ 00 ± 4.93e− 01 1.02e+ 01± 4.95e− 01 + 9.13e+ 00± 5.39e− 01 +

f24 2.79e+ 03 ± 4.75e+ 02 2.65e+ 03±2.50e+ 02 - 2.68e+ 03± 3.15e+ 02 -
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Table E.8. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum test (reference = 3SOME) for 3SOME against 3SOME-

Rosenbrock and 3SOME-Powell on CEC2010 in 1000 dimensions

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 8.81e− 03 ± 1.72e− 02 7.12e+ 07± 1.59e+ 07 + 0.00e+ 00±0.00e+ 00 -

f2 1.48e+ 01 ± 2.05e+ 01 3.97e+ 02± 2.73e+ 01 + 1.16e+ 03± 2.11e+ 02 +

f3 3.36e− 01 ± 3.36e− 01 3.01e+ 00± 1.32e− 01 + 2.23e+ 00± 2.29e− 01 +

f4 8.65e+ 12 ± 2.50e+ 12 9.40e+ 12± 2.99e+ 12 = 8.47e+ 12±2.56e+ 12 =

f5 6.89e+ 08 ± 1.11e+ 08 6.18e+ 08±1.25e+ 08 - 6.54e+ 08± 1.19e+ 08 =

f6 1.98e+ 07 ± 8.83e+ 04 1.98e+ 07± 1.06e+ 05 = 1.98e+ 07±1.31e+ 05 -

f7 1.50e+ 09 ± 3.67e+ 08 1.51e+ 09± 3.91e+ 08 = 1.54e+ 09± 4.38e+ 08 =

f8 3.65e+ 08 ± 1.47e+ 09 2.69e+ 08±1.04e+ 09 = 2.94e+ 08± 1.27e+ 09 -

f9 3.76e+ 08 ± 7.12e+ 07 4.67e+ 08± 4.37e+ 07 + 5.42e+ 07±1.09e+ 08 -

f10 6.79e+ 03 ± 3.75e+ 02 7.15e+ 03± 3.69e+ 02 + 8.19e+ 03± 4.36e+ 02 +

f11 1.99e+ 02 ± 5.33e− 01 2.08e+ 02± 6.47e− 01 + 2.18e+ 02± 3.59e− 01 +

f12 1.53e+ 05 ± 6.80e+ 04 3.92e+ 05± 2.43e+ 04 + 1.33e+ 04±5.65e+ 04 -

f13 1.54e+ 04 ± 5.67e+ 03 4.37e+ 04± 9.84e+ 03 + 1.23e+ 03±6.24e+ 02 -

f14 1.19e+ 08 ± 2.71e+ 07 1.27e+ 09± 8.65e+ 07 + 2.95e+ 07±9.98e+ 06 -

f15 1.38e+ 04 ± 5.64e+ 02 1.42e+ 04± 5.31e+ 02 + 1.39e+ 04± 5.20e+ 02 =

f16 3.71e+ 02 ± 7.75e+ 01 4.18e+ 02± 3.63e+ 00 + 3.97e+ 02± 3.16e− 01 +

f17 2.85e+ 05 ± 2.41e+ 05 9.27e+ 05± 3.92e+ 04 + 1.51e+ 05±3.15e+ 05 -

f18 2.71e+ 04 ± 1.43e+ 04 5.64e+ 05± 1.45e+ 05 + 2.22e+ 03±8.48e+ 02 -

f19 1.47e+ 05 ± 2.19e+ 04 1.87e+ 05± 2.86e+ 04 + 9.20e+ 04±1.69e+ 04 -

f20 1.14e+ 03 ± 1.40e+ 02 5.55e+ 05± 1.64e+ 05 + 9.22e+ 02±4.21e+ 02 -

Table E.9. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = 3SOME) for 3SOME against its rotation

invariant versions RIS-3SOME, µDE-3SOME and (1+1)-CMA-ES on BBOB2010 in 10 dimensions.

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e+ 01 ± 1.21e− 14 7.95e+ 01±0.00e+ 00 - 7.95e+ 01± 1.06e− 14 = 7.95e+ 01± 1.03e− 14 =

f2 −2.10e+ 02 ± 1.63e− 14 −2.10e+ 02±0.00e+ 00 - −2.10e+ 02± 1.52e− 14 = −2.10e+ 02± 1.35e− 14 =

f3 −4.61e+ 02 ± 1.18e+ 00 −4.56e+ 02± 2.69e+ 00 + −4.60e+ 02± 9.81e− 01 + −4.54e+ 02± 4.41e+ 00 +

f4 −4.60e+ 02 ± 1.39e+ 00 −4.55e+ 02± 3.12e+ 00 + −4.60e+ 02± 1.54e+ 00 = −4.51e+ 02± 6.80e+ 00 +

f5 5.33e+ 00 ± 2.91e+ 01 6.41e+ 00± 3.04e+ 01 = −4.99e+ 00± 8.59e+ 00 - −7.56e+ 00±9.86e+ 00 -

f6 8.25e+ 01 ± 2.83e+ 02 1.50e+ 02± 7.66e+ 02 + 3.70e+ 01± 1.13e+ 01 - 3.59e+ 01±1.71e− 03 =

f7 1.05e+ 02 ± 1.23e+ 01 9.32e+ 01±4.00e− 01 - 1.01e+ 02± 4.58e+ 00 - 1.03e+ 02± 9.01e+ 00 =

f8 1.49e+ 02 ± 1.86e− 01 1.49e+ 02±0.00e+ 00 - 1.49e+ 02± 1.51e− 01 = 1.49e+ 02± 1.49e− 01 =

f9 1.25e+ 02 ± 1.69e+ 00 1.25e+ 02± 1.50e+ 00 - 1.24e+ 02±9.47e− 01 - 1.26e+ 02± 1.01e+ 01 =

f10 3.95e+ 03 ± 2.63e+ 04 2.26e+ 03± 2.31e+ 04 - 4.03e+ 03± 1.10e+ 04 + 2.60e+ 02±1.60e+ 02 =

f11 1.57e+ 02 ± 3.36e+ 01 7.63e+ 01±0.00e+ 00 - 1.29e+ 02± 2.62e+ 01 - 1.36e+ 02± 2.72e+ 01 -

f12 −6.12e+ 02 ± 1.33e+ 01 −6.21e+ 02±1.02e+ 00 - −6.00e+ 02± 2.19e+ 01 + −6.08e+ 02± 1.63e+ 01 =

f13 4.26e+ 01 ± 1.28e+ 01 4.06e+ 01± 1.08e+ 01 = 3.83e+ 01±8.89e+ 00 = 4.09e+ 01± 1.11e+ 01 =

f14 −5.23e+ 01 ± 3.05e− 05 −5.23e+ 01±1.94e− 11 - −5.23e+ 01± 2.01e− 05 - −5.23e+ 01± 2.40e− 05 =

f15 1.10e+ 03 ± 6.38e+ 01 1.08e+ 03± 4.71e+ 01 = 1.06e+ 03± 2.48e+ 01 - 1.06e+ 03±2.92e+ 01 -

f16 7.97e+ 01 ± 4.63e+ 00 7.83e+ 01± 3.91e+ 00 - 7.59e+ 01±2.19e+ 00 - 7.71e+ 01± 3.53e+ 00 -

f17 −1.03e+ 01 ± 6.57e+ 00 −1.28e+ 01± 2.39e+ 00 - −1.32e+ 01± 3.40e+ 00 - −1.45e+ 01±1.50e+ 00 -

f18 5.80e+ 00 ± 2.56e+ 01 −2.47e+ 00± 9.57e+ 00 = −4.37e− 01± 1.65e+ 01 = −9.02e+ 00±4.48e+ 00 -

f19 −9.80e+ 01 ± 2.98e+ 00 −9.94e+ 01± 1.81e+ 00 - −1.00e+ 02±1.49e+ 00 - −1.00e+ 02± 1.38e+ 00 -

f20 −5.46e+ 02 ± 2.59e− 01 −5.45e+ 02± 3.69e− 01 + −5.46e+ 02±2.64e− 01 - −5.45e+ 02± 3.02e− 01 +

f21 5.36e+ 01 ± 1.34e+ 01 4.82e+ 01± 7.15e+ 00 - 4.46e+ 01±4.07e+ 00 - 4.73e+ 01± 6.24e+ 00 -

f22 −9.88e+ 02 ± 1.55e+ 01 −9.91e+ 02± 1.29e+ 01 - −9.98e+ 02±3.03e+ 00 - −9.94e+ 02± 8.23e+ 00 -

f23 7.86e+ 00 ± 4.95e− 01 7.86e+ 00± 5.54e− 01 = 7.60e+ 00±3.09e− 01 - 7.88e+ 00± 5.66e− 01 =

f24 1.92e+ 02 ± 4.46e+ 01 1.72e+ 02± 2.72e+ 01 - 1.57e+ 02±1.57e+ 01 - 1.61e+ 02± 2.03e+ 01 -
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Table E.10. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = 3SOME) for 3SOME against its rotation

invariant versions RIS-3SOME, µDE-3SOME and (1+1)-CMA-ES on BBOB2010 in 20 dimensions.

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e+ 01 ± 1.70e− 14 7.95e+ 01±0.00e+ 00 - 7.95e+ 01± 1.77e− 14 = 7.95e+ 01± 1.68e− 14 =

f2 −2.10e+ 02 ± 1.99e− 14 −2.10e+ 02±1.07e− 14 - −2.10e+ 02± 2.33e− 14 = −2.10e+ 02± 2.07e− 14 =

f3 −4.59e+ 02 ± 1.86e+ 00 −4.40e+ 02± 7.82e+ 00 + −4.56e+ 02± 2.50e+ 00 + −4.39e+ 02± 7.33e+ 00 +

f4 −4.57e+ 02 ± 2.53e+ 00 −4.37e+ 02± 7.92e+ 00 + −4.53e+ 02± 3.25e+ 00 + −4.37e+ 02± 8.66e+ 00 +

f5 2.05e+ 01 ± 7.73e+ 01 4.88e+ 00± 5.59e+ 01 - 9.27e+ 00± 3.66e+ 01 = −9.21e+ 00±2.07e− 13 -

f6 3.59e+ 01 ± 5.12e− 06 3.59e+ 01±0.00e+ 00 - 1.94e+ 02± 1.12e+ 03 + 3.59e+ 01± 6.08e− 07 =

f7 1.16e+ 02 ± 1.60e+ 01 9.85e+ 01±4.74e+ 00 - 1.11e+ 02± 1.06e+ 01 = 1.16e+ 02± 1.40e+ 01 =

f8 1.49e+ 02 ± 5.28e− 01 1.49e+ 02±1.02e− 04 - 1.50e+ 02± 7.77e+ 00 = 1.50e+ 02± 6.82e− 01 +

f9 1.25e+ 02 ± 1.68e+ 00 1.25e+ 02±1.59e+ 00 - 1.26e+ 02± 1.95e+ 00 = 1.27e+ 02± 7.63e+ 00 +

f10 2.90e+ 02 ± 2.34e+ 02 −4.12e+ 01±8.58e+ 01 - 2.04e+ 04± 8.55e+ 04 + 3.12e+ 02± 2.70e+ 02 =

f11 2.55e+ 02 ± 8.50e+ 01 9.35e+ 01±1.22e+ 02 - 2.01e+ 02± 4.94e+ 01 - 1.97e+ 02± 3.28e+ 01 -

f12 6.89e+ 06 ± 4.84e+ 07 −6.20e+ 02±1.96e+ 00 - −5.95e+ 02± 2.71e+ 01 - −6.05e+ 02± 2.32e+ 01 -

f13 3.78e+ 01 ± 1.01e+ 01 3.88e+ 01± 1.24e+ 01 = 5.07e+ 01± 1.66e+ 01 + 4.35e+ 01± 1.36e+ 01 +

f14 −5.23e+ 01 ± 8.13e− 05 −5.23e+ 01±4.98e− 08 - −5.23e+ 01± 7.97e− 05 - −5.23e+ 01± 9.11e− 05 =

f15 1.27e+ 03 ± 1.58e+ 02 1.24e+ 03± 9.68e+ 01 = 1.17e+ 03±6.42e+ 01 - 1.17e+ 03± 7.33e+ 01 -

f16 8.37e+ 01 ± 5.89e+ 00 8.28e+ 01± 4.97e+ 00 = 8.12e+ 01± 3.85e+ 00 - 8.02e+ 01±4.29e+ 00 -

f17 −7.05e+ 00 ± 5.64e+ 00 −9.84e+ 00± 2.66e+ 00 - −1.15e+ 01± 2.19e+ 00 - −1.22e+ 01±1.90e+ 00 -

f18 2.08e+ 01 ± 2.63e+ 01 8.62e+ 00± 1.18e+ 01 - 6.08e+ 00± 1.20e+ 01 - 2.35e+ 00±7.42e+ 00 -

f19 −9.60e+ 01 ± 3.34e+ 00 −9.82e+ 01± 2.14e+ 00 - −9.93e+ 01±1.48e+ 00 - −9.89e+ 01± 1.43e+ 00 -

f20 −5.46e+ 02 ± 1.91e− 01 −5.45e+ 02± 2.23e− 01 + −5.46e+ 02±2.07e− 01 - −5.45e+ 02± 2.27e− 01 +

f21 5.97e+ 01 ± 1.80e+ 01 5.32e+ 01± 1.36e+ 01 - 5.19e+ 01± 1.19e+ 01 - 5.00e+ 01±1.04e+ 01 -

f22 −9.84e+ 02 ± 1.50e+ 01 −9.87e+ 02± 1.44e+ 01 - −9.89e+ 02± 1.15e+ 01 = −9.90e+ 02±1.11e+ 01 -

f23 7.94e+ 00 ± 6.06e− 01 8.08e+ 00± 5.71e− 01 + 7.89e+ 00±4.42e− 01 = 7.95e+ 00± 5.39e− 01 =

f24 3.69e+ 02 ± 1.16e+ 02 3.16e+ 02± 6.29e+ 01 - 2.72e+ 02± 4.16e+ 01 - 2.69e+ 02±5.46e+ 01 -

Table E.11. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = 3SOME) for 3SOME against its rotation

invariant versions RIS-3SOME, µDE-3SOME and (1+1)-CMA-ES on BBOB2010 in 40 dimensions.

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e+ 01 ± 2.56e− 14 7.95e+ 01±0.00e+ 00 - 7.95e+ 01± 2.18e− 14 = 7.95e+ 01± 2.62e− 14 =

f2 −2.10e+ 02 ± 3.28e− 14 −2.10e+ 02±1.45e− 14 - −2.10e+ 02± 3.13e− 14 = −2.10e+ 02± 3.44e− 14 =

f3 −4.54e+ 02 ± 3.44e+ 00 −4.16e+ 02± 1.21e+ 01 + −4.39e+ 02± 4.92e+ 00 + −4.15e+ 02± 1.05e+ 01 +

f4 −4.51e+ 02 ± 4.06e+ 00 −4.08e+ 02± 1.43e+ 01 + −4.31e+ 02± 6.85e+ 00 + −4.05e+ 02± 1.43e+ 01 +

f5 5.63e+ 01 ± 1.78e+ 02 1.23e+ 01± 1.05e+ 02 - 7.67e+ 01± 1.42e+ 02 + −9.21e+ 00±8.58e− 13 -

f6 3.59e+ 01 ± 9.31e− 07 3.59e+ 01±0.00e+ 00 - 3.59e+ 01± 4.52e− 06 = 3.59e+ 01± 8.18e− 08 =

f7 2.10e+ 02 ± 6.39e+ 01 1.25e+ 02±1.06e+ 01 - 1.63e+ 02± 3.21e+ 01 - 1.76e+ 02± 3.20e+ 01 -

f8 1.53e+ 02 ± 1.69e+ 01 1.53e+ 02± 3.53e+ 00 + 1.52e+ 02± 1.36e+ 01 = 1.49e+ 02±5.23e− 01 =

f9 1.25e+ 02 ± 1.53e+ 00 1.31e+ 02± 3.32e+ 00 + 1.25e+ 02±1.07e+ 00 = 1.25e+ 02± 1.48e+ 00 +

f10 1.95e+ 05 ± 1.40e+ 06 9.23e+ 01±6.56e+ 01 - 1.62e+ 05± 4.48e+ 05 - 8.93e+ 02± 2.94e+ 02 =

f11 3.80e+ 02 ± 6.30e+ 01 8.16e+ 01±5.16e+ 01 - 3.13e+ 02± 5.82e+ 01 - 3.24e+ 02± 4.72e+ 01 -

f12 −6.11e+ 02 ± 8.98e+ 00 −6.11e+ 02± 8.50e+ 00 = −6.16e+ 02±6.47e+ 00 - −6.15e+ 02± 6.46e+ 00 -

f13 4.19e+ 01 ± 1.28e+ 01 4.07e+ 01±1.35e+ 01 = 4.39e+ 01± 1.06e+ 01 + 4.20e+ 01± 1.05e+ 01 =

f14 −5.23e+ 01 ± 7.18e− 05 −5.23e+ 01±6.31e− 07 - −5.22e+ 01± 1.88e+ 00 + −5.23e+ 01± 5.67e− 05 =

f15 2.06e+ 03 ± 4.04e+ 02 1.75e+ 03± 2.12e+ 02 - 1.37e+ 03±1.21e+ 02 - 1.45e+ 03± 1.57e+ 02 -

f16 8.87e+ 01 ± 5.44e+ 00 8.95e+ 01± 5.53e+ 00 = 8.72e+ 01± 5.46e+ 00 - 8.45e+ 01±4.71e+ 00 -

f17 −5.52e+ 00 ± 3.25e+ 00 −9.42e+ 00± 1.41e+ 00 - −1.07e+ 01±1.53e+ 00 - −1.05e+ 01± 1.27e+ 00 -

f18 2.56e+ 01 ± 1.47e+ 01 1.14e+ 01± 5.42e+ 00 - 7.91e+ 00± 5.93e+ 00 - 7.21e+ 00±4.66e+ 00 -

f19 −9.33e+ 01 ± 3.68e+ 00 −9.54e+ 01± 2.38e+ 00 - −9.80e+ 01±2.12e+ 00 - −9.68e+ 01± 1.94e+ 00 -

f20 −5.46e+ 02 ± 1.28e− 01 −5.45e+ 02± 1.61e− 01 + −5.46e+ 02± 1.97e− 01 + −5.45e+ 02± 1.59e− 01 +

f21 5.28e+ 01 ± 1.62e+ 01 4.96e+ 01± 1.22e+ 01 - 4.44e+ 01±6.26e+ 00 - 4.54e+ 01± 8.39e+ 00 -

f22 −9.85e+ 02 ± 1.31e+ 01 −9.88e+ 02± 8.83e+ 00 - −9.87e+ 02± 7.35e+ 00 = −9.90e+ 02±9.58e+ 00 -

f23 8.10e+ 00 ± 5.26e− 01 8.42e+ 00± 6.70e− 01 + 8.10e+ 00± 5.52e− 01 = 8.16e+ 00± 5.76e− 01 =

f24 9.44e+ 02 ± 2.79e+ 02 6.49e+ 02± 1.43e+ 02 - 5.17e+ 02±7.50e+ 01 - 5.80e+ 02± 1.18e+ 02 -
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Table E.12. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = 3SOME) for 3SOME against its rotation

invariant versions RIS-3SOME, µDE-3SOME and (1+1)-CMA-ES on BBOB2010 in 100 dimensions.

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-S3SOME

f1 7.95e+ 01 ± 3.29e− 14 7.95e+ 01±0.00e+ 00 - 7.95e+ 01± 3.96e− 14 = 7.95e+ 01± 4.10e− 14 =

f2 −2.10e+ 02 ± 5.69e− 14 −2.10e+ 02±2.45e− 14 - −2.10e+ 02± 5.49e− 14 = −2.10e+ 02± 5.72e− 14 =

f3 −4.39e+ 02 ± 7.28e+ 00 −3.34e+ 02± 2.37e+ 01 + −3.64e+ 02± 1.64e+ 01 + −3.34e+ 02± 2.09e+ 01 +

f4 −4.27e+ 02 ± 8.70e+ 00 −3.07e+ 02± 2.66e+ 01 + −3.36e+ 02± 2.14e+ 01 + −2.96e+ 02± 2.48e+ 01 +

f5 7.40e+ 00 ± 1.65e+ 02 −8.18e+ 00± 3.02e− 01 - 2.43e+ 02± 4.90e+ 02 + −9.21e+ 00±4.28e− 12 -

f6 3.59e+ 01 ± 8.86e− 08 3.59e+ 01± 1.48e− 03 + 1.33e+ 04± 1.32e+ 05 + 3.59e+ 01±3.89e− 08 =

f7 5.97e+ 02 ± 2.83e+ 02 2.90e+ 02±7.06e+ 01 - 3.90e+ 02± 1.06e+ 02 - 3.96e+ 02± 1.03e+ 02 -

f8 1.83e+ 02 ± 3.31e+ 01 2.13e+ 02± 1.99e+ 01 + 1.84e+ 02± 4.08e+ 01 = 1.89e+ 02± 4.24e+ 01 =

f9 1.76e+ 02 ± 1.36e+ 01 1.89e+ 02± 1.36e+ 01 + 1.78e+ 02± 2.38e+ 01 = 1.78e+ 02± 1.34e+ 01 +

f10 2.68e+ 03 ± 6.96e+ 02 1.59e+ 03±4.52e+ 02 - 6.99e+ 04± 5.83e+ 05 + 2.97e+ 03± 6.44e+ 02 +

f11 3.83e+ 02 ± 8.22e+ 01 7.63e+ 01±5.83e− 03 - 6.82e+ 02± 1.21e+ 02 + 7.26e+ 02± 8.46e+ 01 +

f12 −6.09e+ 02 ± 1.83e+ 01 −6.12e+ 02± 1.65e+ 01 = −6.17e+ 02± 6.31e+ 00 - −6.17e+ 02±9.12e+ 00 -

f13 3.35e+ 01 ± 4.87e+ 00 3.30e+ 01±4.63e+ 00 = 3.64e+ 01± 5.08e+ 00 + 3.61e+ 01± 4.80e+ 00 +

f14 −5.23e+ 01 ± 5.47e− 05 −5.23e+ 01±2.08e− 06 - −5.23e+ 01± 5.56e− 05 - −5.23e+ 01± 5.89e− 05 =

f15 4.53e+ 03 ± 5.89e+ 02 3.65e+ 03± 4.54e+ 02 - 2.26e+ 03±2.81e+ 02 - 2.49e+ 03± 4.94e+ 02 -

f16 9.51e+ 01 ± 6.11e+ 00 9.90e+ 01± 4.38e+ 00 + 9.28e+ 01± 8.46e+ 00 - 8.94e+ 01±3.94e+ 00 -

f17 −2.63e− 02 ± 3.97e+ 00 −6.72e+ 00± 1.91e+ 00 - −8.67e+ 00±1.82e+ 00 - −7.28e+ 00± 1.79e+ 00 -

f18 4.55e+ 01 ± 1.54e+ 01 2.34e+ 01± 7.42e+ 00 - 1.44e+ 01±7.27e+ 00 - 1.91e+ 01± 6.52e+ 00 -

f19 −9.08e+ 01 ± 3.39e+ 00 −8.89e+ 01± 3.68e+ 00 + −9.39e+ 01±2.07e+ 00 - −9.27e+ 01± 3.76e+ 00 -

f20 −5.46e+ 02 ± 9.61e− 02 −5.45e+ 02± 1.04e− 01 + −5.45e+ 02± 1.01e− 01 + −5.45e+ 02± 9.12e− 02 +

f21 5.19e+ 01 ± 1.21e+ 01 4.95e+ 01± 9.21e+ 00 - 4.81e+ 01±6.53e+ 00 - 4.94e+ 01± 8.84e+ 00 =

f22 −9.82e+ 02 ± 1.47e+ 01 −9.84e+ 02± 1.38e+ 01 - −9.87e+ 02±1.04e+ 01 - −9.87e+ 02± 1.06e+ 01 =

f23 8.21e+ 00 ± 4.93e− 01 8.75e+ 00± 5.79e− 01 + 8.30e+ 00± 5.67e− 01 = 8.24e+ 00± 4.56e− 01 =

f24 2.79e+ 03 ± 4.75e+ 02 1.86e+ 03± 2.86e+ 02 - 1.30e+ 03±1.44e+ 02 - 1.82e+ 03± 3.01e+ 02 -

E.2 Extended numerical results for RIS

Table E.13. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against its predecessor

3SOME and popular meta-heuristics on CEC2005 in 30 dimensions.

RIS 3SOME CLPSO JADE

f1 −4.50e+ 02 ± 1.31e− 13 −4.50e+ 02±7.59e− 14 - −4.50e+ 02± 6.12e− 05 + −3.51e+ 02± 1.99e+ 02 +

f2 −4.50e+ 02 ± 1.23e− 10 −4.50e+ 02±2.23e− 12 - 6.44e+ 03± 9.22e+ 02 + 3.08e+ 02± 7.32e+ 02 +

f3 2.03e+ 05 ± 1.25e+ 05 2.80e+ 05± 1.70e+ 05 + 2.55e+ 07± 6.25e+ 06 + 3.71e+ 06± 1.77e+ 06 +

f4 1.88e+ 04 ± 5.57e+ 03 2.27e+ 04± 1.13e+ 04 + 1.43e+ 04± 1.70e+ 03 - 2.27e+ 03±1.68e+ 03 -

f5 3.48e+ 03 ± 7.70e+ 02 1.08e+ 04± 3.27e+ 03 + 7.14e+ 03± 5.68e+ 02 + 3.91e+ 03± 9.18e+ 02 +

f6 6.91e+ 02 ± 4.39e+ 02 5.43e+ 02±2.64e+ 02 - 6.08e+ 02± 4.97e+ 01 - 5.07e+ 06± 1.53e+ 07 +

f7 −1.80e+ 02 ± 3.38e− 03 −1.80e+ 02± 1.13e− 02 + 1.41e+ 11± 7.45e+ 10 + 1.69e+ 13± 1.78e+ 13 +

f8 −1.20e+ 02 ± 4.05e− 04 −1.20e+ 02± 7.40e− 04 + −1.19e+ 02± 5.05e− 02 + −1.19e+ 02± 5.75e− 02 +

f9 −1.18e+ 02 ± 1.63e− 05 −1.18e+ 02±7.73e− 14 - −1.15e+ 02± 8.97e− 01 + −1.17e+ 02± 1.22e+ 00 +

f10 2.14e+ 02 ± 1.52e+ 01 2.87e+ 02± 2.99e+ 01 + 2.73e+ 02± 1.22e+ 01 + 2.02e+ 02±2.20e+ 01 -

f11 1.09e+ 02 ± 1.90e+ 00 1.22e+ 02± 4.59e+ 00 + 1.19e+ 02± 1.69e+ 00 + 1.16e+ 02± 4.48e+ 00 +

f12 1.90e+ 02 ± 1.41e+ 03 1.27e+ 03± 3.33e+ 03 + 4.46e+ 04± 9.39e+ 03 + 1.72e+ 04± 1.54e+ 04 +

f13 −1.21e+ 02 ± 1.92e+ 00 −1.25e+ 02± 1.19e+ 00 - −1.20e+ 02± 8.21e− 01 + −1.26e+ 02±9.64e− 01 -

f14 −2.86e+ 02 ± 2.79e− 01 −2.86e+ 02± 3.31e− 01 - −2.87e+ 02±1.65e− 01 - −2.87e+ 02± 2.02e− 01 -

f15 1.44e+ 03 ± 3.89e− 01 1.44e+ 03± 8.77e− 01 = 1.46e+ 03± 2.18e+ 00 + 1.45e+ 03± 3.45e+ 00 +

f16 1.55e+ 03 ± 7.51e+ 00 1.62e+ 03± 2.78e+ 01 + 1.61e+ 03± 4.94e+ 00 + 1.56e+ 03± 6.50e+ 00 +

f17 1.66e+ 03 ± 1.54e+ 01 1.67e+ 03± 1.88e+ 01 + 1.67e+ 03± 6.15e+ 00 + 1.59e+ 03±7.53e+ 00 -

f18 9.10e+ 02 ± 4.58e− 10 9.10e+ 02±5.90e− 12 - 9.10e+ 02± 3.54e− 05 + 9.10e+ 02± 2.62e− 01 +

f19 9.10e+ 02 ± 4.52e− 10 9.10e+ 02±5.17e− 12 - 9.10e+ 02± 3.06e− 05 + 9.10e+ 02± 1.31e− 01 +

f20 9.10e+ 02 ± 4.29e− 10 9.10e+ 02±4.76e− 12 - 9.10e+ 02± 3.09e− 05 + 9.10e+ 02± 1.40e− 01 +

f21 1.69e+ 03 ± 4.33e+ 00 1.73e+ 03± 1.27e+ 01 + 1.72e+ 03± 3.69e+ 00 + 1.69e+ 03±4.32e+ 00 =

f22 2.42e+ 03 ± 2.92e+ 01 2.66e+ 03± 8.39e+ 01 + 2.55e+ 03± 1.91e+ 01 + 2.29e+ 03±3.44e+ 01 -

f23 1.72e+ 03 ± 6.16e+ 00 1.72e+ 03± 9.82e+ 00 = 1.77e+ 03± 5.94e+ 00 + 1.70e+ 03±4.48e+ 00 -

f24 1.68e+ 03 ± 6.83e+ 00 1.72e+ 03± 1.13e+ 01 + 1.70e+ 03± 6.21e+ 00 + 1.66e+ 03±1.40e+ 01 -

f25 1.43e+ 03 ± 3.74e+ 02 1.66e+ 03± 3.97e+ 02 + 1.89e+ 03± 8.46e+ 01 + 1.86e+ 03± 4.65e+ 01 +
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Table E.14. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against its predecessor

3SOME and popular meta-heuristics on BBOB2010 in 100 dimensions.

RIS 3SOME CLPSO JADE

f1 7.95e+ 01 ± 1.59e− 12 7.95e+ 01±3.29e− 14 - 7.95e+ 01± 4.12e− 10 + 8.77e+ 01± 7.64e+ 00 +

f2 −2.10e+ 02 ± 7.48e− 08 −2.10e+ 02±5.69e− 14 - −2.10e+ 02± 9.39e− 07 + 5.73e+ 04± 8.69e+ 04 +

f3 −3.35e+ 02 ± 2.15e+ 01 −4.39e+ 02± 7.28e+ 00 - −4.62e+ 02±4.45e− 01 - −3.11e+ 02± 4.95e+ 01 +

f4 −2.85e+ 02 ± 3.40e+ 01 −4.27e+ 02± 8.70e+ 00 - −4.55e+ 02±1.50e+ 00 - −1.43e+ 02± 9.83e+ 01 +

f5 −9.21e+ 00 ± 1.83e− 05 7.40e+ 00± 1.65e+ 02 + 2.58e+ 02± 1.17e+ 01 + 1.24e+ 02± 5.08e+ 01 +

f6 3.59e+ 01 ± 3.75e− 07 3.59e+ 01±8.86e− 08 - 4.25e+ 02± 2.65e+ 01 + 3.92e+ 02± 1.18e+ 02 +

f7 2.09e+ 02 ± 1.93e+ 01 5.97e+ 02± 2.83e+ 02 + 2.25e+ 02± 1.07e+ 01 + 3.08e+ 02± 6.50e+ 01 +

f8 2.30e+ 02 ± 4.51e+ 01 1.83e+ 02±3.31e+ 01 - 2.82e+ 02± 3.53e+ 01 + 7.24e+ 03± 6.15e+ 03 +

f9 1.77e+ 02 ± 2.64e+ 01 1.76e+ 02±1.36e+ 01 - 2.21e+ 02± 5.45e− 01 + 1.78e+ 03± 1.33e+ 03 +

f10 2.44e+ 03 ± 5.46e+ 02 2.68e+ 03± 6.96e+ 02 + 5.32e+ 05± 6.46e+ 04 + 1.94e+ 05± 8.87e+ 04 +

f11 9.47e+ 02 ± 1.10e+ 02 3.83e+ 02± 8.22e+ 01 - 3.18e+ 02± 1.67e+ 01 - 2.11e+ 02±2.76e+ 01 -

f12 −6.18e+ 02 ± 4.16e+ 00 −6.09e+ 02± 1.83e+ 01 + −6.03e+ 02± 5.15e+ 00 + 2.22e+ 07± 2.13e+ 07 +

f13 3.21e+ 01 ± 1.68e+ 00 3.35e+ 01± 4.87e+ 00 = 5.08e+ 01± 2.08e+ 00 + 7.69e+ 02± 2.46e+ 02 +

f14 −5.23e+ 01 ± 4.89e− 05 −5.23e+ 01± 5.47e− 05 + −5.23e+ 01± 2.77e− 03 + −4.65e+ 01± 3.89e+ 00 +

f15 1.95e+ 03 ± 1.18e+ 02 4.53e+ 03± 5.89e+ 02 + 2.10e+ 03± 3.63e+ 01 + 1.59e+ 03±8.67e+ 01 -

f16 8.25e+ 01 ± 1.56e+ 00 9.51e+ 01± 6.11e+ 00 + 9.53e+ 01± 2.04e+ 00 + 1.01e+ 02± 3.46e+ 00 +

f17 −8.97e+ 00 ± 1.62e+ 00 −2.63e− 02± 3.97e+ 00 + −1.21e+ 01± 2.96e− 01 - −1.45e+ 01±5.96e− 01 -

f18 1.56e+ 01 ± 6.47e+ 00 4.55e+ 01± 1.54e+ 01 + 1.12e+ 00± 1.09e+ 00 - −8.79e+ 00±2.11e+ 00 -

f19 −9.32e+ 01 ± 2.16e+ 00 −9.08e+ 01± 3.39e+ 00 + −9.48e+ 01± 2.29e− 01 - −9.50e+ 01±2.26e− 01 -

f20 −5.45e+ 02 ± 1.17e− 01 −5.46e+ 02±9.61e− 02 - −5.45e+ 02± 6.24e− 02 + −5.12e+ 02± 9.92e+ 01 +

f21 4.32e+ 01 ± 2.63e+ 00 5.19e+ 01± 1.21e+ 01 + 4.17e+ 01±1.21e+ 00 - 4.93e+ 01± 6.25e+ 00 +

f22 −9.96e+ 02 ± 5.45e+ 00 −9.82e+ 02± 1.47e+ 01 + −9.98e+ 02±5.95e− 01 - −9.94e+ 02± 6.66e+ 00 +

f23 7.52e+ 00 ± 1.07e− 01 8.21e+ 00± 4.93e− 01 + 1.03e+ 01± 2.74e− 01 + 1.07e+ 01± 3.78e− 01 +

f24 1.26e+ 03 ± 1.41e+ 02 2.79e+ 03± 4.75e+ 02 + 1.21e+ 03± 4.50e+ 01 - 1.03e+ 03±4.44e+ 01 -

Table E.15. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference= RIS) for RIS against its predecessor

3SOME and popular meta-heuristics on CEC2008 in 1000 dimensions.

RIS 3SOME CLPSO JADE

f1 −4.50e+ 02 ± 1.33e− 09 −4.50e+ 02± 4.03e− 08 + −2.98e+ 02± 3.50e+ 01 + 1.00e+ 06± 3.23e+ 05 +

f2 −4.50e+ 02 ± 2.43e− 02 −4.50e+ 02± 3.17e− 02 + −3.72e+ 02± 6.49e− 01 + −3.21e+ 02± 8.63e+ 00 +

f3 1.51e+ 03 ± 8.53e+ 01 1.38e+ 03±8.37e+ 01 - 4.02e+ 03± 2.64e+ 02 + 4.26e+ 11± 2.13e+ 11 +

f4 5.83e+ 03 ± 3.67e+ 02 −3.30e+ 02±4.11e− 04 - −7.28e+ 01± 1.44e+ 01 - 4.45e+ 03± 1.00e+ 03 -

f5 −1.80e+ 02 ± 1.89e− 03 −1.80e+ 02± 8.46e− 03 + −1.78e+ 02± 2.17e− 01 + 8.45e+ 03± 3.11e+ 03 +

f6 −1.40e+ 02 ± 5.02e− 07 −1.40e+ 02± 4.49e− 04 + −1.40e+ 02± 9.84e− 05 + −1.22e+ 02± 6.01e− 01 +

f7 −1.35e+ 04 ± 1.08e+ 02 −1.39e+ 04±6.56e+ 01 - −1.33e+ 04± 4.19e+ 01 + −1.19e+ 04± 4.24e+ 02 +
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Table E.16. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against its predecessor

3SOME and popular meta-heuristics on CEC2010 in 1000 dimensions.

RIS 3SOME CLPSO JADE

f1 4.16e− 06 ± 5.82e− 07 1.88e− 02± 5.82e− 02 + 6.15e+ 05± 1.42e+ 05 + 1.40e+ 10± 6.91e+ 09 +

f2 5.80e+ 03 ± 4.17e+ 02 1.97e+ 01±2.87e+ 01 - 1.99e+ 02± 1.27e+ 01 - 4.56e+ 03± 1.04e+ 03 -

f3 4.84e− 06 ± 5.21e− 07 3.93e− 01± 3.61e− 01 + 9.04e− 01± 1.06e− 01 + 1.76e+ 01± 6.75e− 01 +

f4 2.13e+ 13 ± 4.05e+ 12 8.57e+ 12± 2.82e+ 12 - 1.22e+ 13± 2.82e+ 12 - 2.62e+ 12±1.03e+ 12 -

f5 4.62e+ 08 ± 1.11e+ 08 7.17e+ 08± 1.22e+ 08 + 1.93e+ 08± 2.20e+ 07 - 8.58e+ 07±1.77e+ 07 -

f6 1.95e+ 07 ± 2.27e+ 06 1.98e+ 07± 1.16e+ 05 = 9.51e+ 03±2.09e+ 04 - 3.48e+ 06± 1.40e+ 06 -

f7 1.89e+ 10 ± 4.23e+ 09 1.57e+ 09± 4.02e+ 08 - 5.53e+ 08±1.30e+ 08 - 3.37e+ 09± 3.66e+ 09 -

f8 2.39e+ 10 ± 1.33e+ 10 4.80e+ 08± 1.78e+ 09 - 7.53e+ 07±2.77e+ 07 - 6.31e+ 13± 1.80e+ 14 +

f9 1.69e+ 08 ± 6.69e+ 06 4.01e+ 08± 6.95e+ 07 + 9.54e+ 08± 5.86e+ 07 + 1.67e+ 10± 5.87e+ 09 +

f10 7.22e+ 03 ± 2.90e+ 02 6.75e+ 03± 3.73e+ 02 - 6.36e+ 03±1.92e+ 02 - 7.50e+ 03± 1.07e+ 03 +

f11 1.34e+ 02 ± 3.80e+ 01 1.99e+ 02± 7.14e− 01 + 9.71e+ 01±7.27e+ 00 - 1.94e+ 02± 7.49e+ 00 +

f12 1.26e+ 04 ± 3.41e+ 03 1.59e+ 05± 7.73e+ 04 + 7.77e+ 05± 3.78e+ 04 + 2.32e+ 06± 4.55e+ 05 +

f13 2.54e+ 05 ± 4.03e+ 04 1.49e+ 04± 5.82e+ 03 - 9.09e+ 03±2.13e+ 03 - 8.02e+ 10± 4.76e+ 10 +

f14 4.47e+ 07 ± 1.44e+ 06 1.22e+ 08± 3.18e+ 07 + 1.45e+ 09± 9.35e+ 07 + 1.31e+ 10± 4.64e+ 09 +

f15 7.26e+ 03 ± 3.80e+ 02 1.38e+ 04± 5.34e+ 02 + 1.25e+ 04± 3.21e+ 02 + 8.51e+ 03± 1.03e+ 03 +

f16 1.58e+ 02 ± 3.61e+ 01 3.71e+ 02± 7.82e+ 01 + 2.42e+ 02± 1.61e+ 01 + 3.83e+ 02± 1.19e+ 01 +

f17 2.13e+ 04 ± 4.35e+ 03 2.77e+ 05± 2.15e+ 05 + 1.80e+ 06± 6.51e+ 04 + 2.63e+ 06± 7.56e+ 05 +

f18 1.55e+ 03 ± 1.27e+ 03 2.68e+ 04± 1.42e+ 04 + 7.08e+ 04± 1.22e+ 04 + 4.42e+ 11± 1.91e+ 11 +

f19 2.47e+ 06 ± 2.79e+ 05 1.44e+ 05±1.73e+ 04 - 5.82e+ 06± 2.81e+ 05 + 3.59e+ 06± 7.17e+ 05 +

f20 1.18e+ 03 ± 1.64e+ 02 1.13e+ 03±1.26e+ 02 - 3.65e+ 04± 7.28e+ 03 + 5.48e+ 11± 2.10e+ 11 +

Table E.17. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against state-of-the-art

algorithms on CEC2005 in 30 dimensions.

RIS CCPSO2 MA-CMA-Chains MDE-pBX

f1 −4.50e+ 02 ± 1.31e− 13 −4.50e+ 02± 6.40e− 13 + −4.50e+ 02± 8.36e− 10 + −4.50e+ 02±1.52e− 13 -

f2 −4.50e+ 02 ± 1.23e− 10 −4.38e+ 02± 3.92e+ 01 + −4.50e+ 02± 1.47e− 02 + −4.50e+ 02± 2.54e− 03 +

f3 2.03e+ 05 ± 1.25e+ 05 1.56e+ 06± 9.03e+ 05 + 1.45e+ 05±4.32e+ 05 - 2.81e+ 05± 1.99e+ 05 +

f4 1.88e+ 04 ± 5.57e+ 03 1.81e+ 04± 3.74e+ 03 = 3.21e+ 02± 5.06e+ 02 - −1.29e+ 02±9.67e+ 02 -

f5 3.48e+ 03 ± 7.70e+ 02 9.18e+ 03± 1.59e+ 03 + 5.60e+ 02±5.63e+ 02 - 2.74e+ 03± 6.34e+ 02 -

f6 6.91e+ 02 ± 4.39e+ 02 4.63e+ 02± 5.05e+ 01 = 4.00e+ 02±3.07e+ 01 - 4.33e+ 02± 4.81e+ 01 -

f7 −1.80e+ 02 ± 3.38e− 03 −1.80e+ 02± 1.86e− 02 + −1.41e+ 02± 1.16e+ 02 + 2.03e+ 06± 1.88e+ 07 +

f8 −1.20e+ 02 ± 4.05e− 04 −1.19e+ 02± 5.34e− 02 + −1.20e+ 02± 9.08e− 03 + −1.19e+ 02± 4.23e− 01 +

f9 −1.18e+ 02 ± 1.63e− 05 −1.18e+ 02± 1.98e− 01 + −3.30e+ 02±7.35e− 01 - −1.17e+ 02± 1.14e+ 00 +

f10 2.14e+ 02 ± 1.52e+ 01 2.55e+ 02± 1.98e+ 01 + −2.96e+ 02±2.17e+ 01 - 2.23e+ 02± 2.44e+ 01 +

f11 1.09e+ 02 ± 1.90e+ 00 1.18e+ 02± 2.48e+ 00 + 1.14e+ 02± 3.18e+ 00 + 1.11e+ 02± 4.59e+ 00 +

f12 1.90e+ 02 ± 1.41e+ 03 3.36e+ 03± 4.99e+ 03 + 2.46e+ 02± 1.07e+ 03 = 3.77e+ 03± 3.87e+ 03 +

f13 −1.21e+ 02 ± 1.92e+ 00 −1.27e+ 02±1.90e− 01 - −1.27e+ 02± 1.96e+ 00 - −1.19e+ 02± 2.28e+ 00 +

f14 −2.86e+ 02 ± 2.79e− 01 −2.87e+ 02± 2.89e− 01 - −2.87e+ 02± 3.18e− 01 - −2.87e+ 02±4.50e− 01 -

f15 1.44e+ 03 ± 3.89e− 01 1.44e+ 03± 1.25e− 01 - 4.27e+ 02±2.92e+ 01 - 1.46e+ 03± 6.43e+ 00 +

f16 1.55e+ 03 ± 7.51e+ 00 1.58e+ 03± 9.17e+ 00 + 2.61e+ 02±1.62e+ 02 - 1.58e+ 03± 1.11e+ 01 +

f17 1.66e+ 03 ± 1.54e+ 01 1.70e+ 03± 1.29e+ 01 + 3.05e+ 02±1.68e+ 02 - 1.62e+ 03± 9.04e+ 00 -

f18 9.10e+ 02 ± 4.58e− 10 9.10e+ 02±1.58e− 12 - 9.11e+ 02± 3.88e+ 01 + 9.10e+ 02± 8.31e− 11 -

f19 9.10e+ 02 ± 4.52e− 10 9.10e+ 02± 1.41e− 12 - 9.07e+ 02±4.09e+ 01 - 9.10e+ 02± 2.42e− 10 -

f20 9.10e+ 02 ± 4.29e− 10 9.10e+ 02± 1.65e− 12 - 9.09e+ 02±3.94e+ 01 - 9.10e+ 02± 3.41e− 11 -

f21 1.69e+ 03 ± 4.33e+ 00 1.71e+ 03± 5.62e+ 00 + 8.82e+ 02±1.13e+ 02 - 1.70e+ 03± 5.51e+ 00 +

f22 2.42e+ 03 ± 2.92e+ 01 2.49e+ 03± 2.85e+ 01 + 1.25e+ 03±1.31e+ 01 - 2.41e+ 03± 4.97e+ 01 =

f23 1.72e+ 03 ± 6.16e+ 00 1.71e+ 03± 4.86e+ 00 - 9.00e+ 02±6.27e+ 01 - 1.70e+ 03± 5.28e+ 00 -

f24 1.68e+ 03 ± 6.83e+ 00 1.70e+ 03± 7.97e+ 00 + 4.60e+ 02±0.00e+ 00 - 1.67e+ 03± 1.55e+ 01 -

f25 1.43e+ 03 ± 3.74e+ 02 1.85e+ 03± 9.19e+ 01 + 1.89e+ 03± 8.19e+ 00 + 1.83e+ 03± 1.55e+ 02 +
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Table E.18. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against state-of-the-art

algorithms onBBOB2010 in 100 dimensions.

RIS CCPSO2 MA-CMA-Chains MDE-pBX

f1 7.95e+ 01 ± 1.59e− 12 7.95e+ 01±1.81e− 13 - 7.95e+ 01± 6.55e− 10 + 7.95e+ 01± 7.60e− 05 +

f2 −2.10e+ 02 ± 7.48e− 08 −2.10e+ 02±1.76e− 12 - −2.10e+ 02± 5.31e− 06 + −2.10e+ 02± 6.06e− 03 +

f3 −3.35e+ 02 ± 2.15e+ 01 −4.54e+ 02±8.40e+ 00 - −4.14e+ 02± 9.03e+ 00 - 3.29e+ 01± 7.94e+ 01 +

f4 −2.85e+ 02 ± 3.40e+ 01 −4.40e+ 02±1.31e+ 01 - −3.82e+ 02± 1.14e+ 01 - 4.03e+ 02± 1.31e+ 02 +

f5 −9.21e+ 00 ± 1.83e− 05 −9.21e+ 00± 1.20e− 03 + −9.21e+ 00±0.00e+ 00 - −3.09e− 02± 1.27e+ 01 +

f6 3.59e+ 01 ± 3.75e− 07 1.25e+ 02± 4.02e+ 01 + 3.59e+ 01± 1.60e− 03 + 8.03e+ 01± 3.32e+ 01 +

f7 2.09e+ 02 ± 1.93e+ 01 4.38e+ 02± 4.90e+ 01 + 1.33e+ 02±7.77e+ 00 - 3.70e+ 02± 7.43e+ 01 +

f8 2.30e+ 02 ± 4.51e+ 01 2.70e+ 02± 3.42e+ 01 + 1.59e+ 02±1.45e+ 01 - 3.40e+ 02± 6.77e+ 01 +

f9 1.77e+ 02 ± 2.64e+ 01 2.30e+ 02± 2.78e+ 01 + 1.80e+ 02± 8.49e+ 00 + 2.52e+ 02± 3.75e+ 01 +

f10 2.44e+ 03 ± 5.46e+ 02 2.61e+ 04± 6.64e+ 03 + 2.40e+ 03±1.44e+ 03 = 1.64e+ 04± 7.99e+ 03 +

f11 9.47e+ 02 ± 1.10e+ 02 6.21e+ 02± 1.95e+ 02 - 1.85e+ 02± 1.85e+ 01 - 9.16e+ 01±7.45e+ 00 -

f12 −6.18e+ 02 ± 4.16e+ 00 −6.13e+ 02± 1.20e+ 01 + −6.21e+ 02±6.95e− 01 - −5.99e+ 02± 7.07e+ 01 +

f13 3.21e+ 01 ± 1.68e+ 00 3.31e+ 01± 4.20e+ 00 = 3.11e+ 01±1.76e+ 00 - 3.47e+ 01± 6.70e+ 00 =

f14 −5.23e+ 01 ± 4.89e− 05 −5.23e+ 01± 2.34e− 04 + −5.23e+ 01±6.00e− 05 - −5.23e+ 01± 2.55e− 03 +

f15 1.95e+ 03 ± 1.18e+ 02 2.33e+ 03± 2.32e+ 02 + 1.41e+ 03±1.88e+ 02 - 1.66e+ 03± 1.10e+ 02 -

f16 8.25e+ 01 ± 1.56e+ 00 9.88e+ 01± 4.27e+ 00 + 8.38e+ 01± 1.79e+ 00 + 8.85e+ 01± 4.46e+ 00 +

f17 −8.97e+ 00 ± 1.62e+ 00 −8.29e+ 00± 1.62e+ 00 + −1.69e+ 01±4.95e− 02 - −1.35e+ 01± 4.83e− 01 -

f18 1.56e+ 01 ± 6.47e+ 00 1.61e+ 01± 6.61e+ 00 = −1.64e+ 01±1.89e− 01 - −4.84e+ 00± 1.68e+ 00 -

f19 −9.32e+ 01 ± 2.16e+ 00 −9.46e+ 01± 1.29e+ 00 - −1.00e+ 02±1.17e+ 00 - −1.00e+ 02± 7.13e− 01 -

f20 −5.45e+ 02 ± 1.17e− 01 −5.46e+ 02±6.73e− 02 - −5.45e+ 02± 9.48e− 02 + −5.44e+ 02± 1.14e− 01 +

f21 4.32e+ 01 ± 2.63e+ 00 4.41e+ 01± 3.38e+ 00 + 4.55e+ 01± 7.35e+ 00 + 4.49e+ 01± 5.88e+ 00 +

f22 −9.96e+ 02 ± 5.45e+ 00 −9.95e+ 02± 5.83e+ 00 + −9.92e+ 02± 8.63e+ 00 + −9.92e+ 02± 9.11e+ 00 +

f23 7.52e+ 00 ± 1.07e− 01 9.39e+ 00± 4.22e− 01 + 7.66e+ 00± 2.66e− 01 + 9.34e+ 00± 7.99e− 01 +

f24 1.26e+ 03 ± 1.41e+ 02 1.19e+ 03± 1.53e+ 02 - 4.15e+ 02±1.12e+ 02 - 4.75e+ 02± 4.72e+ 01 -

Table E.19. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against state-of-the-art

algorithms on CEC2008 in 1000 dimensions.

RIS CCPSO2 MA-SSW-Chains MDE-pBX

f1 −4.50e+ 02 ± 1.33e− 09 −4.50e+ 02±3.54e− 12 - 6.18e+ 04± 6.12e+ 05 + 1.20e+ 05± 4.41e+ 04 +

f2 −4.50e+ 02 ± 2.43e− 02 −4.09e+ 02± 2.46e+ 01 + −2.66e+ 02± 1.81e+ 00 + −3.33e+ 02± 4.09e+ 00 +

f3 1.51e+ 03 ± 8.53e+ 01 1.80e+ 03± 1.12e+ 02 + 1.45e+ 11± 1.01e+ 12 + 3.13e+ 10± 1.65e+ 10 +

f4 5.83e+ 03 ± 3.67e+ 02 −2.00e+ 02±1.07e+ 02 - 1.53e+ 04± 1.02e+ 03 + 7.60e+ 03± 2.55e+ 02 +

f5 −1.80e+ 02 ± 1.89e− 03 −1.80e+ 02± 2.98e− 03 + −1.72e+ 02± 1.09e+ 01 + 1.08e+ 03± 4.60e+ 02 +

f6 −1.40e+ 02 ± 5.02e− 07 −1.40e+ 02±9.34e− 11 - −1.20e+ 02± 3.19e− 01 + −1.21e+ 02± 5.10e− 02 +

f7 −1.35e+ 04 ± 1.08e+ 02 −1.44e+ 04±7.46e+ 01 - −9.97e+ 03± 8.06e+ 02 + −1.11e+ 04± 1.63e+ 02 +
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Table E.20. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against state-of-the-art

algorithms on CEC2010 in 1000 dimensions.

RIS CCPSO2 MA-SSW-Chains MDE-pBX

f1 4.16e− 06 ± 5.82e− 07 6.47e− 14±1.41e− 13 - 2.45e+ 11± 4.07e+ 10 + 1.05e+ 09± 6.58e+ 08 +

f2 5.80e+ 03 ± 4.17e+ 02 1.36e+ 02±1.11e+ 02 - 1.97e+ 04± 1.74e+ 03 + 7.02e+ 03± 2.38e+ 02 +

f3 4.84e− 06 ± 5.21e− 07 7.34e− 11±1.05e− 10 - 2.02e+ 01± 4.21e− 01 + 1.93e+ 01± 4.76e− 02 +

f4 2.13e+ 13 ± 4.05e+ 12 2.14e+ 12±1.27e+ 12 - 1.24e+ 15± 5.69e+ 14 + 3.21e+ 12± 9.76e+ 11 -

f5 4.62e+ 08 ± 1.11e+ 08 3.92e+ 08± 7.98e+ 07 - 8.09e+ 08± 6.58e+ 07 + 1.54e+ 08±2.77e+ 07 -

f6 1.95e+ 07 ± 2.27e+ 06 1.71e+ 07± 4.45e+ 06 - 2.03e+ 07± 2.24e+ 05 + 3.65e+ 06±1.75e+ 06 -

f7 1.89e+ 10 ± 4.23e+ 09 7.60e+ 09± 9.72e+ 09 - 7.64e+ 11± 5.09e+ 11 + 6.79e+ 06±1.01e+ 07 -

f8 2.39e+ 10 ± 1.33e+ 10 5.46e+ 07±4.16e+ 07 - 5.34e+ 16± 3.07e+ 16 + 2.03e+ 08± 1.63e+ 08 -

f9 1.69e+ 08 ± 6.69e+ 06 5.01e+ 07±7.68e+ 06 - 2.81e+ 11± 4.08e+ 10 + 1.68e+ 09± 1.00e+ 09 +

f10 7.22e+ 03 ± 2.90e+ 02 4.57e+ 03±2.75e+ 02 - 1.85e+ 04± 1.76e+ 03 + 7.33e+ 03± 2.55e+ 02 +

f11 1.34e+ 02 ± 3.80e+ 01 2.00e+ 02± 5.98e+ 00 + 2.20e+ 02± 3.44e+ 00 + 2.06e+ 02± 2.40e+ 00 +

f12 1.26e+ 04 ± 3.41e+ 03 6.12e+ 04± 8.14e+ 04 + 1.69e+ 07± 4.07e+ 06 + 2.92e+ 05± 6.60e+ 04 +

f13 2.54e+ 05 ± 4.03e+ 04 1.14e+ 03±5.42e+ 02 - 1.27e+ 12± 5.77e+ 11 + 2.88e+ 09± 3.17e+ 09 +

f14 4.47e+ 07 ± 1.44e+ 06 1.60e+ 08± 3.35e+ 07 + 3.23e+ 11± 3.62e+ 10 + 1.04e+ 09± 1.97e+ 08 +

f15 7.26e+ 03 ± 3.80e+ 02 9.31e+ 03± 5.52e+ 02 + 1.86e+ 04± 1.58e+ 03 + 7.44e+ 03± 2.80e+ 02 +

f16 1.58e+ 02 ± 3.61e+ 01 3.95e+ 02± 1.45e+ 00 + 4.00e+ 02± 7.55e+ 00 + 3.84e+ 02± 1.22e+ 00 +

f17 2.13e+ 04 ± 4.35e+ 03 1.41e+ 05± 1.44e+ 05 + 4.64e+ 07± 1.30e+ 07 + 4.35e+ 05± 8.33e+ 04 +

f18 1.55e+ 03 ± 1.27e+ 03 5.62e+ 03± 4.13e+ 03 + 5.38e+ 12± 7.78e+ 11 + 3.73e+ 10± 1.95e+ 10 +

f19 2.47e+ 06 ± 2.79e+ 05 1.14e+ 06± 1.22e+ 06 - 1.24e+ 08± 3.39e+ 07 + 9.22e+ 05±1.06e+ 05 -

f20 1.18e+ 03 ± 1.64e+ 02 1.42e+ 03± 1.19e+ 02 + 6.07e+ 12± 8.88e+ 11 + 4.18e+ 10± 2.02e+ 10 +

E.3 Extended numerical results for VISPO

Table E.21. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = VISPO) for VISPO against population-

based algorithms on CEC2005 in 30 dimensions

VISPO ISPO CLPSO JADE

f1 −4.50e+ 02 ± 6.31e− 02 −4.50e+ 02±6.12e− 14 - −4.50e+ 02± 6.54e− 05 - −3.60e+ 02± 1.92e+ 02 +

f2 1.18e+ 03 ± 2.05e+ 03 −4.25e+ 02±1.28e+ 01 - 6.63e+ 03± 8.47e+ 02 + 2.52e+ 02± 6.76e+ 02 =

f3 7.85e+ 06 ± 7.90e+ 06 2.47e+ 06±1.13e+ 06 - 2.62e+ 07± 6.38e+ 06 + 3.64e+ 06± 1.96e+ 06 -

f4 9.63e+ 03 ± 3.30e+ 03 2.79e+ 06± 2.88e+ 06 + 1.46e+ 04± 1.86e+ 03 + 2.03e+ 03±1.45e+ 03 -

f5 1.44e+ 04 ± 4.79e+ 03 2.44e+ 04± 6.53e+ 03 + 7.16e+ 03± 5.92e+ 02 - 3.86e+ 03±8.52e+ 02 -

f6 1.29e+ 03 ± 2.59e+ 03 1.35e+ 03± 1.93e+ 03 = 6.01e+ 02±5.17e+ 01 - 3.99e+ 06± 1.47e+ 07 +

f7 4.50e+ 10 ± 1.85e+ 11 −1.80e+ 02±1.25e− 02 - 1.65e+ 11± 9.18e+ 10 + 1.81e+ 13± 2.16e+ 13 +

f8 −1.19e+ 02 ± 1.04e− 01 −1.20e+ 02±6.52e− 02 - −1.19e+ 02± 5.59e− 02 + −1.19e+ 02± 5.38e− 02 +

f9 −1.14e+ 02 ± 6.34e+ 00 −9.12e+ 01± 1.24e+ 01 + −3.30e+ 02±3.03e− 01 - −3.20e+ 02± 3.76e+ 00 -

f10 2.92e+ 02 ± 2.76e+ 01 3.07e+ 02± 3.09e+ 01 + −1.46e+ 02± 1.66e+ 01 - −2.66e+ 02±1.80e+ 01 -

f11 1.24e+ 02 ± 2.92e+ 00 1.29e+ 02± 4.12e+ 00 + 1.19e+ 02± 1.56e+ 00 - 1.16e+ 02±4.46e+ 00 -

f12 6.22e+ 04 ± 6.29e+ 04 1.28e+ 05± 1.38e+ 05 + 4.39e+ 04± 9.90e+ 03 = 1.69e+ 04±9.96e+ 03 -

f13 −1.27e+ 02 ± 4.85e− 01 −1.27e+ 02± 5.72e− 01 + −1.27e+ 02±6.29e− 01 - −1.25e+ 02± 7.15e+ 00 =

f14 −2.87e+ 02 ± 3.48e− 01 −2.85e+ 02± 2.14e− 01 + −2.87e+ 02±2.10e− 01 = −2.87e+ 02± 2.76e− 01 +

f15 1.44e+ 03 ± 2.82e+ 00 1.45e+ 03± 5.22e+ 00 + 2.61e+ 02±6.41e+ 01 - 4.44e+ 02± 5.92e+ 01 -

f16 1.60e+ 03 ± 1.80e+ 01 1.62e+ 03± 3.60e+ 01 + 3.78e+ 02± 3.08e+ 01 - 2.43e+ 02±6.41e+ 01 -

f17 1.59e+ 03 ± 1.31e+ 01 1.74e+ 03± 3.52e+ 01 + 4.35e+ 02± 2.95e+ 01 - 2.83e+ 02±8.37e+ 01 -

f18 9.10e+ 02 ± 1.14e− 10 9.10e+ 02± 1.76e− 10 + 9.56e+ 02± 2.06e+ 01 + 9.41e+ 02± 8.99e+ 00 +

f19 9.10e+ 02 ± 9.02e− 11 9.10e+ 02± 9.76e− 11 + 9.50e+ 02± 2.46e+ 01 + 9.40e+ 02± 1.61e+ 01 +

f20 9.10e+ 02 ± 1.52e− 10 9.10e+ 02± 1.42e− 10 + 9.53e+ 02± 2.55e+ 01 + 9.37e+ 02± 2.42e+ 01 +

f21 1.73e+ 03 ± 1.25e+ 01 1.75e+ 03± 2.04e+ 01 + 8.62e+ 02±1.08e+ 01 - 9.53e+ 02± 1.65e+ 02 -

f22 2.64e+ 03 ± 8.82e+ 01 3.02e+ 03± 1.79e+ 02 + 1.43e+ 03± 1.63e+ 01 - 1.30e+ 03±1.87e+ 01 -

f23 1.70e+ 03 ± 6.58e+ 00 1.75e+ 03± 2.10e+ 01 + 8.94e+ 02±3.01e− 01 - 1.09e+ 03± 1.72e+ 02 -

f24 1.69e+ 03 ± 1.37e+ 01 1.74e+ 03± 1.31e+ 01 + 4.64e+ 02±5.88e+ 00 - 5.31e+ 02± 1.44e+ 02 -

f25 1.80e+ 03 ± 3.89e+ 02 3.03e+ 04± 9.29e+ 04 + 1.89e+ 03± 6.79e+ 01 + 1.86e+ 03± 5.21e+ 01 +
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Table E.22. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = VISPO) for VISPO against population-

based algorithms on BBOB2010 in 100 dimensions

VISPO ISPO CLPSO JADE

f1 7.95e+ 01 ± 3.98e− 04 7.95e+ 01±1.34e− 13 - 7.95e+ 01± 4.12e− 10 - 8.77e+ 01± 7.64e+ 00 +

f2 −2.10e+ 02 ± 6.25e− 13 −2.10e+ 02±2.30e− 14 - −2.10e+ 02± 9.39e− 07 + 5.73e+ 04± 8.69e+ 04 +

f3 −4.62e+ 02 ± 2.54e− 01 6.38e+ 01± 1.12e+ 02 + −4.62e+ 02± 4.45e− 01 + −3.11e+ 02± 4.95e+ 01 +

f4 −4.61e+ 02 ± 8.19e− 01 2.49e+ 02± 1.60e+ 02 + −4.55e+ 02± 1.50e+ 00 + −1.43e+ 02± 9.83e+ 01 +

f5 −9.21e+ 00 ± 0.00e+ 00 −9.21e+ 00± 0.00e+ 00 = 2.58e+ 02± 1.17e+ 01 + 1.24e+ 02± 5.08e+ 01 +

f6 1.40e+ 02 ± 4.95e+ 01 2.58e+ 02± 1.02e+ 02 + 4.25e+ 02± 2.65e+ 01 + 3.92e+ 02± 1.18e+ 02 +

f7 4.80e+ 02 ± 8.21e+ 01 2.03e+ 03± 5.20e+ 02 + 2.25e+ 02±1.07e+ 01 - 3.08e+ 02± 6.50e+ 01 -

f8 2.02e+ 02 ± 5.27e+ 01 2.41e+ 02± 5.11e+ 01 + 2.82e+ 02± 3.53e+ 01 + 7.24e+ 03± 6.15e+ 03 +

f9 2.36e+ 02 ± 3.63e+ 01 2.24e+ 02± 2.30e+ 01 - 2.21e+ 02±5.45e− 01 - 1.78e+ 03± 1.33e+ 03 +

f10 3.66e+ 04 ± 8.76e+ 03 3.13e+ 04±8.42e+ 03 - 5.32e+ 05± 6.46e+ 04 + 1.94e+ 05± 8.87e+ 04 +

f11 6.16e+ 02 ± 4.08e+ 02 1.20e+ 03± 1.34e+ 02 + 3.18e+ 02± 1.67e+ 01 - 2.11e+ 02±2.76e+ 01 -

f12 −6.11e+ 02 ± 1.60e+ 01 −6.08e+ 02± 2.07e+ 01 = −6.03e+ 02± 5.15e+ 00 + 2.22e+ 07± 2.13e+ 07 +

f13 3.29e+ 01 ± 4.88e+ 00 3.31e+ 01± 3.79e+ 00 = 5.08e+ 01± 2.08e+ 00 + 7.69e+ 02± 2.46e+ 02 +

f14 −5.23e+ 01 ± 2.85e− 04 −5.23e+ 01± 5.54e− 04 + −5.23e+ 01± 2.77e− 03 + −4.65e+ 01± 3.89e+ 00 +

f15 2.43e+ 03 ± 3.42e+ 02 8.24e+ 03± 1.16e+ 03 + 2.10e+ 03± 3.63e+ 01 - 1.59e+ 03±8.67e+ 01 -

f16 1.10e+ 02 ± 7.29e+ 00 1.20e+ 02± 7.73e+ 00 + 9.53e+ 01±2.04e+ 00 - 1.01e+ 02± 3.46e+ 00 -

f17 −8.18e+ 00 ± 1.46e+ 00 2.56e+ 01± 2.46e+ 01 + −1.21e+ 01± 2.96e− 01 - −1.45e+ 01±5.96e− 01 -

f18 1.51e+ 01 ± 5.02e+ 00 1.72e+ 02± 1.43e+ 02 + 1.12e+ 00± 1.09e+ 00 - −8.79e+ 00±2.11e+ 00 -

f19 −8.42e+ 01 ± 1.26e+ 01 1.54e+ 01± 2.22e+ 01 + −9.48e+ 01± 2.29e− 01 - −9.50e+ 01±2.26e− 01 -

f20 −5.46e+ 02 ± 7.07e− 02 −5.45e+ 02± 8.56e− 02 + −5.45e+ 02± 6.24e− 02 + −5.12e+ 02± 9.92e+ 01 +

f21 5.24e+ 01 ± 1.38e+ 01 5.28e+ 01± 1.40e+ 01 = 4.17e+ 01±1.21e+ 00 - 4.93e+ 01± 6.25e+ 00 =

f22 −9.80e+ 02 ± 1.58e+ 01 −9.84e+ 02± 1.18e+ 01 - −9.98e+ 02±5.95e− 01 - −9.94e+ 02± 6.66e+ 00 -

f23 9.77e+ 00 ± 6.17e− 01 1.06e+ 01± 7.08e− 01 + 1.03e+ 01± 2.74e− 01 + 1.07e+ 01± 3.78e− 01 +

f24 1.42e+ 03 ± 2.04e+ 02 3.71e+ 03± 3.63e+ 02 + 1.21e+ 03± 4.50e+ 01 - 1.03e+ 03±4.44e+ 01 -

Table E.23. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = VISPO) for VISPO against population-

based algorithms on CEC2010 in 1000 dimensions

VISPO ISPO CLPSO JADE

f1 2.80e− 10 ± 5.24e− 11 7.26e− 32±7.23e− 31 - 6.15e+ 05± 1.42e+ 05 + 1.40e+ 10± 6.91e+ 09 +

f2 6.75e− 02 ± 2.45e− 01 1.39e+ 04± 4.51e+ 02 + 1.99e+ 02± 1.27e+ 01 + 4.56e+ 03± 1.04e+ 03 +

f3 2.98e− 09 ± 1.35e− 10 1.99e+ 01± 1.19e− 02 + 9.04e− 01± 1.06e− 01 + 1.76e+ 01± 6.75e− 01 +

f4 7.43e+ 12 ± 2.61e+ 12 5.18e+ 12± 1.72e+ 12 - 1.22e+ 13± 2.82e+ 12 + 2.62e+ 12±1.03e+ 12 -

f5 7.95e+ 08 ± 1.23e+ 08 8.50e+ 08± 1.30e+ 08 + 1.93e+ 08± 2.20e+ 07 - 8.58e+ 07±1.77e+ 07 -

f6 1.98e+ 07 ± 6.21e+ 04 1.98e+ 07± 6.80e+ 04 = 9.51e+ 03±2.09e+ 04 - 3.48e+ 06± 1.40e+ 06 -

f7 2.03e+ 10 ± 9.63e+ 09 2.53e+ 10± 1.57e+ 10 + 5.53e+ 08±1.30e+ 08 - 3.37e+ 09± 3.66e+ 09 -

f8 1.11e+ 09 ± 2.28e+ 09 4.97e+ 08± 6.14e+ 08 = 7.53e+ 07±2.77e+ 07 - 6.31e+ 13± 1.80e+ 14 +

f9 6.51e+ 07 ± 6.82e+ 06 5.06e+ 07±5.40e+ 06 - 9.54e+ 08± 5.86e+ 07 + 1.67e+ 10± 5.87e+ 09 +

f10 7.88e+ 03 ± 3.42e+ 02 1.49e+ 04± 5.59e+ 02 + 6.36e+ 03±1.92e+ 02 - 7.50e+ 03± 1.07e+ 03 -

f11 1.99e+ 02 ± 2.31e− 01 2.18e+ 02± 1.84e− 01 + 9.71e+ 01±7.27e+ 00 - 1.94e+ 02± 7.49e+ 00 -

f12 1.19e+ 05 ± 1.93e+ 04 1.57e+ 05± 2.76e+ 04 + 7.77e+ 05± 3.78e+ 04 + 2.32e+ 06± 4.55e+ 05 +

f13 4.03e+ 03 ± 4.28e+ 03 2.06e+ 03±1.98e+ 03 = 9.09e+ 03± 2.13e+ 03 + 8.02e+ 10± 4.76e+ 10 +

f14 1.47e+ 08 ± 1.06e+ 07 1.14e+ 08±8.85e+ 06 - 1.45e+ 09± 9.35e+ 07 + 1.31e+ 10± 4.64e+ 09 +

f15 1.54e+ 04 ± 4.97e+ 02 1.55e+ 04± 4.72e+ 02 = 1.25e+ 04± 3.21e+ 02 - 8.51e+ 03±1.03e+ 03 -

f16 3.98e+ 02 ± 3.21e− 01 3.97e+ 02± 2.62e− 01 - 2.42e+ 02±1.61e+ 01 - 3.83e+ 02± 1.19e+ 01 -

f17 2.45e+ 05 ± 3.44e+ 04 3.53e+ 05± 4.34e+ 04 + 1.80e+ 06± 6.51e+ 04 + 2.63e+ 06± 7.56e+ 05 +

f18 1.85e+ 04 ± 1.16e+ 04 1.05e+ 04±5.02e+ 03 - 7.08e+ 04± 1.22e+ 04 + 4.42e+ 11± 1.91e+ 11 +

f19 6.21e+ 06 ± 5.17e+ 05 3.82e+ 07± 6.30e+ 06 + 5.82e+ 06± 2.81e+ 05 - 3.59e+ 06±7.17e+ 05 -

f20 6.58e+ 02 ± 1.75e+ 02 7.61e+ 02± 2.30e+ 02 + 3.65e+ 04± 7.28e+ 03 + 5.48e+ 11± 2.10e+ 11 +
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E.4 Extended numerical results for PMS

Table E.24. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against popular meta-

heuristics on CEC2005 in 30 dimensions.

PMS 3SOME CLPSO JADE

f1 −4.50e+ 02 ± 6.97e− 14 −4.50e+ 02± 7.59e− 14 = −4.50e+ 02± 6.12e− 05 + −3.51e+ 02± 1.99e+ 02 +

f2 −4.50e+ 02 ± 3.79e− 10 −4.50e+ 02±2.23e− 12 = 6.44e+ 03± 9.22e+ 02 + 3.08e+ 02± 7.32e+ 02 +

f3 1.97e+ 05 ± 1.50e+ 05 2.80e+ 05± 1.70e+ 05 + 2.55e+ 07± 6.25e+ 06 + 3.71e+ 06± 1.77e+ 06 +

f4 2.16e+ 04 ± 7.94e+ 03 2.27e+ 04± 1.13e+ 04 + 1.43e+ 04± 1.70e+ 03 - 2.27e+ 03±1.68e+ 03 -

f5 1.08e+ 04 ± 6.01e+ 03 1.08e+ 04± 3.27e+ 03 = 7.14e+ 03± 5.68e+ 02 - 3.91e+ 03±9.18e+ 02 -

f6 5.28e+ 02 ± 2.71e+ 02 5.43e+ 02± 2.64e+ 02 = 6.08e+ 02± 4.97e+ 01 + 5.07e+ 06± 1.53e+ 07 +

f7 −1.80e+ 02 ± 1.43e− 02 −1.80e+ 02±1.13e− 02 = 1.41e+ 11± 7.45e+ 10 + 1.69e+ 13± 1.78e+ 13 +

f8 −1.20e+ 02 ± 1.88e− 03 −1.20e+ 02±7.40e− 04 = −1.19e+ 02± 5.05e− 02 = −1.19e+ 02± 5.75e− 02 =

f9 −1.18e+ 02 ± 5.17e− 01 −1.18e+ 02±7.73e− 14 - −1.15e+ 02± 8.97e− 01 + −1.17e+ 02± 1.22e+ 00 +

f10 2.76e+ 02 ± 2.45e+ 01 2.87e+ 02± 2.99e+ 01 + 2.73e+ 02± 1.22e+ 01 = 2.02e+ 02±2.20e+ 01 -

f11 1.23e+ 02 ± 5.69e+ 00 1.22e+ 02± 4.59e+ 00 = 1.19e+ 02± 1.69e+ 00 - 1.16e+ 02±4.48e+ 00 -

f12 1.02e+ 03 ± 2.18e+ 03 1.27e+ 03± 3.33e+ 03 = 4.46e+ 04± 9.39e+ 03 + 1.72e+ 04± 1.54e+ 04 +

f13 −1.19e+ 02 ± 4.66e+ 00 −1.25e+ 02± 1.19e+ 00 - −1.20e+ 02± 8.21e− 01 = −1.26e+ 02±9.64e− 01 -

f14 −2.86e+ 02 ± 5.60e− 01 −2.86e+ 02± 3.31e− 01 = −2.87e+ 02±1.65e− 01 = −2.87e+ 02± 2.02e− 01 =

f15 1.44e+ 03 ± 8.47e− 01 1.44e+ 03± 8.77e− 01 = 1.46e+ 03± 2.18e+ 00 + 1.45e+ 03± 3.45e+ 00 +

f16 1.60e+ 03 ± 2.52e+ 01 1.62e+ 03± 2.78e+ 01 + 1.61e+ 03± 4.94e+ 00 + 1.56e+ 03±6.50e+ 00 -

f17 1.67e+ 03 ± 1.90e+ 01 1.67e+ 03± 1.88e+ 01 = 1.67e+ 03± 6.15e+ 00 = 1.59e+ 03±7.53e+ 00 -

f18 9.10e+ 02 ± 5.70e− 12 9.10e+ 02± 5.90e− 12 = 9.10e+ 02± 3.54e− 05 = 9.10e+ 02± 2.62e− 01 =

f19 9.10e+ 02 ± 5.63e− 12 9.10e+ 02±5.17e− 12 = 9.10e+ 02± 3.06e− 05 = 9.10e+ 02± 1.31e− 01 =

f20 9.10e+ 02 ± 5.52e− 12 9.10e+ 02±4.76e− 12 = 9.10e+ 02± 3.09e− 05 = 9.10e+ 02± 1.40e− 01 =

f21 1.72e+ 03 ± 1.51e+ 01 1.73e+ 03± 1.27e+ 01 + 1.72e+ 03± 3.69e+ 00 = 1.69e+ 03±4.32e+ 00 -

f22 2.62e+ 03 ± 8.11e+ 01 2.66e+ 03± 8.39e+ 01 + 2.55e+ 03± 1.91e+ 01 - 2.29e+ 03±3.44e+ 01 -

f23 1.72e+ 03 ± 1.07e+ 01 1.72e+ 03± 9.82e+ 00 = 1.77e+ 03± 5.94e+ 00 + 1.70e+ 03±4.48e+ 00 -

f24 1.72e+ 03 ± 1.39e+ 01 1.72e+ 03± 1.13e+ 01 = 1.70e+ 03± 6.21e+ 00 - 1.66e+ 03±1.40e+ 01 -

f25 1.65e+ 03 ± 2.55e+ 02 1.66e+ 03± 3.97e+ 02 = 1.89e+ 03± 8.46e+ 01 + 1.86e+ 03± 4.65e+ 01 +

Table E.25. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against popular meta-

heuristics on BBOB2010 in 100 dimensions.

PMS 3SOME CLPSO JADE

f1 7.95e+ 01 ± 3.65e− 14 7.95e+ 01±3.29e− 14 = 7.95e+ 01± 4.12e− 10 = 8.77e+ 01± 7.64e+ 00 +

f2 −2.10e+ 02 ± 7.13e− 14 −2.10e+ 02±5.69e− 14 - −2.10e+ 02± 9.39e− 07 = 5.73e+ 04± 8.69e+ 04 +

f3 −3.67e+ 02 ± 1.66e+ 01 −4.39e+ 02± 7.28e+ 00 - −4.62e+ 02±4.45e− 01 - −3.11e+ 02± 4.95e+ 01 +

f4 −3.40e+ 02 ± 2.05e+ 01 −4.27e+ 02± 8.70e+ 00 - −4.55e+ 02±1.50e+ 00 - −1.43e+ 02± 9.83e+ 01 +

f5 −9.21e+ 00 ± 3.51e− 12 7.40e+ 00± 1.65e+ 02 + 2.58e+ 02± 1.17e+ 01 + 1.24e+ 02± 5.08e+ 01 +

f6 4.05e+ 01 ± 4.61e+ 00 3.59e+ 01±8.86e− 08 - 4.25e+ 02± 2.65e+ 01 + 3.92e+ 02± 1.18e+ 02 +

f7 3.70e+ 02 ± 8.80e+ 01 5.97e+ 02± 2.83e+ 02 + 2.25e+ 02±1.07e+ 01 - 3.08e+ 02± 6.50e+ 01 -

f8 2.21e+ 02 ± 5.96e+ 01 1.83e+ 02±3.31e+ 01 - 2.82e+ 02± 3.53e+ 01 + 7.24e+ 03± 6.15e+ 03 +

f9 1.72e+ 02 ± 2.30e+ 01 1.76e+ 02± 1.36e+ 01 = 2.21e+ 02± 5.45e− 01 + 1.78e+ 03± 1.33e+ 03 +

f10 2.37e+ 03 ± 6.64e+ 02 2.68e+ 03± 6.96e+ 02 + 5.32e+ 05± 6.46e+ 04 + 1.94e+ 05± 8.87e+ 04 +

f11 6.51e+ 02 ± 8.17e+ 01 3.83e+ 02± 8.22e+ 01 - 3.18e+ 02± 1.67e+ 01 - 2.11e+ 02±2.76e+ 01 -

f12 −6.11e+ 02 ± 1.52e+ 01 −6.09e+ 02± 1.83e+ 01 = −6.03e+ 02± 5.15e+ 00 + 2.22e+ 07± 2.13e+ 07 +

f13 3.60e+ 01 ± 6.01e+ 00 3.35e+ 01±4.87e+ 00 = 5.08e+ 01± 2.08e+ 00 + 7.69e+ 02± 2.46e+ 02 +

f14 −5.23e+ 01 ± 1.80e− 05 −5.23e+ 01± 5.47e− 05 = −5.23e+ 01± 2.77e− 03 = −4.65e+ 01± 3.89e+ 00 +

f15 2.39e+ 03 ± 6.32e+ 02 4.53e+ 03± 5.89e+ 02 + 2.10e+ 03± 3.63e+ 01 - 1.59e+ 03±8.67e+ 01 -

f16 9.23e+ 01 ± 9.50e+ 00 9.51e+ 01± 6.11e+ 00 = 9.53e+ 01± 2.04e+ 00 = 1.01e+ 02± 3.46e+ 00 =

f17 −1.96e+ 00 ± 9.61e+ 00 −2.63e− 02± 3.97e+ 00 + −1.21e+ 01± 2.96e− 01 - −1.45e+ 01±5.96e− 01 -

f18 4.89e+ 01 ± 4.41e+ 01 4.55e+ 01± 1.54e+ 01 = 1.12e+ 00± 1.09e+ 00 - −8.79e+ 00±2.11e+ 00 -

f19 −5.08e+ 01 ± 4.81e+ 01 −9.08e+ 01± 3.39e+ 00 = −9.48e+ 01± 2.29e− 01 - −9.50e+ 01±2.26e− 01 -

f20 −5.45e+ 02 ± 1.28e− 01 −5.46e+ 02±9.61e− 02 - −5.45e+ 02± 6.24e− 02 + −5.12e+ 02± 9.92e+ 01 +

f21 5.05e+ 01 ± 1.12e+ 01 5.19e+ 01± 1.21e+ 01 = 4.17e+ 01±1.21e+ 00 - 4.93e+ 01± 6.25e+ 00 =

f22 −9.83e+ 02 ± 1.29e+ 01 −9.82e+ 02± 1.47e+ 01 = −9.98e+ 02±5.95e− 01 - −9.94e+ 02± 6.66e+ 00 -

f23 8.70e+ 00 ± 8.16e− 01 8.21e+ 00±4.93e− 01 = 1.03e+ 01± 2.74e− 01 + 1.07e+ 01± 3.78e− 01 +

f24 2.14e+ 03 ± 6.37e+ 02 2.79e+ 03± 4.75e+ 02 + 1.21e+ 03± 4.50e+ 01 - 1.03e+ 03±4.44e+ 01 -
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Table E.26. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against popular meta-

heuristics on CEC2008 in 1000 dimensions.

PMS 3SOME CLPSO JADE

f1 −4.50e+ 02 ± 4.20e− 13 −4.50e+ 02± 5.54e− 08 = −2.98e+ 02± 3.50e+ 01 + 1.00e+ 06± 3.23e+ 05 +

f2 −3.88e+ 02 ± 5.17e+ 01 −4.50e+ 02±3.04e− 02 - −3.72e+ 02± 6.49e− 01 = −3.21e+ 02± 8.63e+ 00 +

f3 1.34e+ 03 ± 5.37e+ 02 1.38e+ 03± 8.44e+ 01 = 4.02e+ 03± 2.64e+ 02 + 4.26e+ 11± 2.13e+ 11 +

f4 −3.30e+ 02 ± 1.33e− 12 −3.30e+ 02± 3.35e− 04 + −7.28e+ 01± 1.44e+ 01 + 4.45e+ 03± 1.00e+ 03 +

f5 −1.80e+ 02 ± 1.50e− 02 −1.80e+ 02±7.92e− 03 = −1.78e+ 02± 2.17e− 01 + 8.45e+ 03± 3.11e+ 03 +

f6 −1.38e+ 02 ± 6.36e+ 00 −1.40e+ 02±5.50e− 04 - −1.40e+ 02± 9.84e− 05 - −1.22e+ 02± 6.01e− 01 +

f7 −1.37e+ 04 ± 2.80e+ 02 −1.39e+ 04±6.56e+ 01 - −1.33e+ 04± 4.19e+ 01 + −1.19e+ 04± 4.24e+ 02 +

Table E.27. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against popular meta-

heuristics on CEC2010 in 1000 dimensions.

PMS 3SOME CLPSO JADE

f1 0.00e+ 00 ± 0.00e+ 00 1.88e− 02± 5.82e− 02 + 6.15e+ 05± 1.42e+ 05 + 1.40e+ 10± 6.91e+ 09 +

f2 1.48e− 13 ± 2.79e− 13 1.97e+ 01± 2.87e+ 01 + 1.99e+ 02± 1.27e+ 01 + 4.56e+ 03± 1.04e+ 03 +

f3 4.52e− 01 ± 2.76e+ 00 3.93e− 01±3.61e− 01 - 9.04e− 01± 1.06e− 01 + 1.76e+ 01± 6.75e− 01 +

f4 5.27e+ 11 ± 2.72e+ 11 8.57e+ 12± 2.82e+ 12 + 1.22e+ 13± 2.82e+ 12 + 2.62e+ 12± 1.03e+ 12 +

f5 4.78e+ 08 ± 1.40e+ 08 7.17e+ 08± 1.22e+ 08 + 1.93e+ 08± 2.20e+ 07 - 8.58e+ 07±1.77e+ 07 -

f6 1.92e+ 07 ± 2.24e+ 06 1.98e+ 07± 1.16e+ 05 + 9.51e+ 03±2.09e+ 04 - 3.48e+ 06± 1.40e+ 06 -

f7 1.02e+ 08 ± 2.57e+ 08 1.57e+ 09± 4.02e+ 08 + 5.53e+ 08± 1.30e+ 08 + 3.37e+ 09± 3.66e+ 09 +

f8 1.17e+ 08 ± 1.30e+ 08 4.80e+ 08± 1.78e+ 09 + 7.53e+ 07±2.77e+ 07 = 6.31e+ 13± 1.80e+ 14 +

f9 6.19e+ 06 ± 2.80e+ 06 4.01e+ 08± 6.95e+ 07 + 9.54e+ 08± 5.86e+ 07 + 1.67e+ 10± 5.87e+ 09 +

f10 5.25e+ 03 ± 2.09e+ 03 6.75e+ 03± 3.73e+ 02 + 6.36e+ 03± 1.92e+ 02 = 7.50e+ 03± 1.07e+ 03 +

f11 1.85e+ 02 ± 3.03e+ 01 1.99e+ 02± 7.14e− 01 + 9.71e+ 01±7.27e+ 00 - 1.94e+ 02± 7.49e+ 00 =

f12 1.06e+ 03 ± 7.23e+ 02 1.59e+ 05± 7.73e+ 04 + 7.77e+ 05± 3.78e+ 04 + 2.32e+ 06± 4.55e+ 05 +

f13 1.18e+ 03 ± 6.33e+ 02 1.49e+ 04± 5.82e+ 03 + 9.09e+ 03± 2.13e+ 03 + 8.02e+ 10± 4.76e+ 10 +

f14 1.44e+ 07 ± 5.47e+ 06 1.22e+ 08± 3.18e+ 07 + 1.45e+ 09± 9.35e+ 07 + 1.31e+ 10± 4.64e+ 09 +

f15 1.20e+ 04 ± 3.87e+ 03 1.38e+ 04± 5.34e+ 02 = 1.25e+ 04± 3.21e+ 02 + 8.51e+ 03±1.03e+ 03 -

f16 3.27e+ 02 ± 9.13e+ 01 3.71e+ 02± 7.82e+ 01 + 2.42e+ 02±1.61e+ 01 - 3.83e+ 02± 1.19e+ 01 =

f17 1.37e+ 03 ± 8.23e+ 02 2.77e+ 05± 2.15e+ 05 + 1.80e+ 06± 6.51e+ 04 + 2.63e+ 06± 7.56e+ 05 +

f18 2.41e+ 03 ± 1.00e+ 03 2.68e+ 04± 1.42e+ 04 + 7.08e+ 04± 1.22e+ 04 + 4.42e+ 11± 1.91e+ 11 +

f19 1.47e+ 05 ± 4.93e+ 04 1.44e+ 05±1.73e+ 04 = 5.82e+ 06± 2.81e+ 05 + 3.59e+ 06± 7.17e+ 05 +

f20 9.57e+ 02 ± 5.37e+ 02 1.13e+ 03± 1.26e+ 02 = 3.65e+ 04± 7.28e+ 03 + 5.48e+ 11± 2.10e+ 11 +
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Table E.28. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against state-of-the-art

algorithms on CEC2005 in 30 dimensions.

PMS CCPSO2 MA-LSCh-CMA MDE-pBX

f1 −4.50e+ 02 ± 6.97e− 14 −4.50e+ 02± 6.40e− 13 + −4.50e+ 02± 8.36e− 10 + −4.50e+ 02±1.52e− 13 -

f2 −4.50e+ 02 ± 3.79e− 10 −4.38e+ 02± 3.92e+ 01 + −4.50e+ 02± 1.47e− 02 + −4.50e+ 02± 2.54e− 03 +

f3 1.97e+ 05 ± 1.50e+ 05 1.56e+ 06± 9.03e+ 05 + 1.45e+ 05±4.32e+ 05 - 2.81e+ 05± 1.99e+ 05 +

f4 2.16e+ 04 ± 7.94e+ 03 1.81e+ 04± 3.74e+ 03 - 3.21e+ 02± 5.06e+ 02 - −1.29e+ 02±9.67e+ 02 -

f5 1.08e+ 04 ± 6.01e+ 03 9.18e+ 03± 1.59e+ 03 = 5.60e+ 02±5.63e+ 02 - 2.74e+ 03± 6.34e+ 02 -

f6 5.28e+ 02 ± 2.71e+ 02 4.63e+ 02± 5.05e+ 01 - 4.00e+ 02±3.07e+ 01 - 4.33e+ 02± 4.81e+ 01 -

f7 −1.80e+ 02 ± 1.43e− 02 −1.80e+ 02± 1.86e− 02 + −1.41e+ 02± 1.16e+ 02 = 2.03e+ 06± 1.88e+ 07 +

f8 −1.20e+ 02 ± 1.88e− 03 −1.19e+ 02± 5.34e− 02 + −1.20e+ 02± 9.08e− 03 + −1.19e+ 02± 4.23e− 01 +

f9 −1.18e+ 02 ± 5.17e− 01 −1.18e+ 02± 1.98e− 01 = −3.30e+ 02±7.35e− 01 - −1.17e+ 02± 1.14e+ 00 +

f10 2.76e+ 02 ± 2.45e+ 01 2.55e+ 02± 1.98e+ 01 - −2.96e+ 02±2.17e+ 01 - 2.23e+ 02± 2.44e+ 01 -

f11 1.23e+ 02 ± 5.69e+ 00 1.18e+ 02± 2.48e+ 00 - 1.14e+ 02± 3.18e+ 00 - 1.11e+ 02±4.59e+ 00 -

f12 1.02e+ 03 ± 2.18e+ 03 3.36e+ 03± 4.99e+ 03 + 2.46e+ 02±1.07e+ 03 - 3.77e+ 03± 3.87e+ 03 +

f13 −1.19e+ 02 ± 4.66e+ 00 −1.27e+ 02±1.90e− 01 - −1.27e+ 02± 1.96e+ 00 - −1.19e+ 02± 2.28e+ 00 =

f14 −2.86e+ 02 ± 5.60e− 01 −2.87e+ 02± 2.89e− 01 - −2.87e+ 02± 3.18e− 01 - −2.87e+ 02±4.50e− 01 -

f15 1.44e+ 03 ± 8.47e− 01 1.44e+ 03± 1.25e− 01 = 4.27e+ 02±2.92e+ 01 - 1.46e+ 03± 6.43e+ 00 +

f16 1.60e+ 03 ± 2.52e+ 01 1.58e+ 03± 9.17e+ 00 - 2.61e+ 02±1.62e+ 02 - 1.58e+ 03± 1.11e+ 01 -

f17 1.67e+ 03 ± 1.90e+ 01 1.70e+ 03± 1.29e+ 01 + 3.05e+ 02±1.68e+ 02 - 1.62e+ 03± 9.04e+ 00 -

f18 9.10e+ 02 ± 5.70e− 12 9.10e+ 02±1.58e− 12 = 9.11e+ 02± 3.88e+ 01 + 9.10e+ 02± 8.31e− 11 +

f19 9.10e+ 02 ± 5.63e− 12 9.10e+ 02± 1.41e− 12 = 9.07e+ 02±4.09e+ 01 - 9.10e+ 02± 2.42e− 10 +

f20 9.10e+ 02 ± 5.52e− 12 9.10e+ 02± 1.65e− 12 = 9.09e+ 02±3.94e+ 01 - 9.10e+ 02± 3.41e− 11 +

f21 1.72e+ 03 ± 1.51e+ 01 1.71e+ 03± 5.62e+ 00 = 8.82e+ 02±1.13e+ 02 - 1.70e+ 03± 5.51e+ 00 -

f22 2.62e+ 03 ± 8.11e+ 01 2.49e+ 03± 2.85e+ 01 - 1.25e+ 03±1.31e+ 01 - 2.41e+ 03± 4.97e+ 01 -

f23 1.72e+ 03 ± 1.07e+ 01 1.71e+ 03± 4.86e+ 00 = 9.00e+ 02±6.27e+ 01 - 1.70e+ 03± 5.28e+ 00 -

f24 1.72e+ 03 ± 1.39e+ 01 1.70e+ 03± 7.97e+ 00 - 4.60e+ 02±0.00e+ 00 - 1.67e+ 03± 1.55e+ 01 -

f25 1.65e+ 03 ± 2.55e+ 02 1.85e+ 03± 9.19e+ 01 + 1.89e+ 03± 8.19e+ 00 + 1.83e+ 03± 1.55e+ 02 +

Table E.29. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against state-of-the-art

algorithms on BBOB2010 in 100 dimensions.

PMS CCPSO2 MA-LSCh-CMA MDE-pBX

f1 7.95e+ 01 ± 3.65e− 14 7.95e+ 01± 1.81e− 13 = 7.95e+ 01± 6.55e− 10 + 7.95e+ 01± 7.60e− 05 +

f2 −2.10e+ 02 ± 7.13e− 14 −2.10e+ 02± 1.77e− 12 + −2.10e+ 02± 5.31e− 06 + −2.10e+ 02± 6.06e− 03 +

f3 −3.67e+ 02 ± 1.66e+ 01 −4.54e+ 02±8.40e+ 00 - −4.14e+ 02± 9.03e+ 00 - 3.29e+ 01± 7.94e+ 01 +

f4 −3.40e+ 02 ± 2.05e+ 01 −4.40e+ 02±1.31e+ 01 - −3.82e+ 02± 1.14e+ 01 - 4.03e+ 02± 1.31e+ 02 +

f5 −9.21e+ 00 ± 3.51e− 12 −9.21e+ 00± 1.20e− 03 + −9.21e+ 00±0.00e+ 00 - −3.09e− 02± 1.27e+ 01 +

f6 4.05e+ 01 ± 4.61e+ 00 1.25e+ 02± 4.02e+ 01 + 3.59e+ 01±1.60e− 03 - 8.03e+ 01± 3.32e+ 01 +

f7 3.70e+ 02 ± 8.80e+ 01 4.38e+ 02± 4.90e+ 01 + 1.33e+ 02±7.77e+ 00 - 3.70e+ 02± 7.43e+ 01 =

f8 2.21e+ 02 ± 5.96e+ 01 2.70e+ 02± 3.42e+ 01 + 1.59e+ 02±1.45e+ 01 - 3.40e+ 02± 6.77e+ 01 +

f9 1.72e+ 02 ± 2.30e+ 01 2.30e+ 02± 2.78e+ 01 + 1.80e+ 02± 8.49e+ 00 + 2.52e+ 02± 3.75e+ 01 +

f10 2.37e+ 03 ± 6.64e+ 02 2.61e+ 04± 6.64e+ 03 + 2.40e+ 03± 1.44e+ 03 = 1.64e+ 04± 7.99e+ 03 +

f11 6.51e+ 02 ± 8.17e+ 01 6.21e+ 02± 1.95e+ 02 - 1.85e+ 02± 1.85e+ 01 - 9.16e+ 01±7.45e+ 00 -

f12 −6.11e+ 02 ± 1.52e+ 01 −6.13e+ 02± 1.20e+ 01 = −6.21e+ 02±6.95e− 01 - −5.99e+ 02± 7.07e+ 01 +

f13 3.60e+ 01 ± 6.01e+ 00 3.31e+ 01± 4.20e+ 00 - 3.11e+ 01±1.76e+ 00 - 3.47e+ 01± 6.70e+ 00 -

f14 −5.23e+ 01 ± 1.80e− 05 −5.23e+ 01± 2.34e− 04 + −5.23e+ 01±6.00e− 05 - −5.23e+ 01± 2.55e− 03 +

f15 2.39e+ 03 ± 6.32e+ 02 2.33e+ 03± 2.32e+ 02 - 1.41e+ 03±1.88e+ 02 - 1.66e+ 03± 1.10e+ 02 -

f16 9.23e+ 01 ± 9.50e+ 00 9.88e+ 01± 4.27e+ 00 + 8.38e+ 01±1.79e+ 00 - 8.85e+ 01± 4.46e+ 00 -

f17 −1.96e+ 00 ± 9.61e+ 00 −8.29e+ 00± 1.62e+ 00 - −1.69e+ 01±4.95e− 02 - −1.35e+ 01± 4.83e− 01 -

f18 4.89e+ 01 ± 4.41e+ 01 1.61e+ 01± 6.61e+ 00 - −1.64e+ 01±1.89e− 01 - −4.84e+ 00± 1.68e+ 00 -

f19 −5.08e+ 01 ± 4.81e+ 01 −9.46e+ 01± 1.29e+ 00 - −1.00e+ 02±1.17e+ 00 - −1.00e+ 02± 7.13e− 01 -

f20 −5.45e+ 02 ± 1.28e− 01 −5.46e+ 02±6.73e− 02 - −5.45e+ 02± 9.48e− 02 + −5.44e+ 02± 1.14e− 01 +

f21 5.05e+ 01 ± 1.12e+ 01 4.41e+ 01±3.38e+ 00 - 4.55e+ 01± 7.35e+ 00 - 4.49e+ 01± 5.88e+ 00 -

f22 −9.83e+ 02 ± 1.29e+ 01 −9.95e+ 02±5.83e+ 00 - −9.92e+ 02± 8.63e+ 00 - −9.92e+ 02± 9.11e+ 00 -

f23 8.70e+ 00 ± 8.16e− 01 9.39e+ 00± 4.22e− 01 + 7.66e+ 00±2.66e− 01 - 9.34e+ 00± 7.99e− 01 +

f24 2.14e+ 03 ± 6.37e+ 02 1.19e+ 03± 1.53e+ 02 - 4.15e+ 02±1.12e+ 02 - 4.75e+ 02± 4.72e+ 01 -

166



Table E.30. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against state-of-the-art

algorithms on CEC2008 in 1000 dimensions.

PMS CCPSO2 MA-LSCh-SSW MDE-pBX

f1 −4.50e+ 02 ± 4.20e− 13 −4.50e+ 02± 3.54e− 12 + 6.18e+ 04± 6.12e+ 05 + 1.20e+ 05± 4.41e+ 04 +

f2 −3.88e+ 02 ± 5.17e+ 01 −4.09e+ 02±2.46e+ 01 - −2.66e+ 02± 1.81e+ 00 + −3.33e+ 02± 4.09e+ 00 +

f3 1.34e+ 03 ± 5.37e+ 02 1.80e+ 03± 1.12e+ 02 + 1.45e+ 11± 1.01e+ 12 + 3.13e+ 10± 1.65e+ 10 +

f4 −3.30e+ 02 ± 1.33e− 12 −2.00e+ 02± 1.07e+ 02 + 1.53e+ 04± 1.02e+ 03 + 7.60e+ 03± 2.55e+ 02 +

f5 −1.80e+ 02 ± 1.50e− 02 −1.80e+ 02±2.98e− 03 = −1.72e+ 02± 1.09e+ 01 + 1.08e+ 03± 4.60e+ 02 +

f6 −1.38e+ 02 ± 6.36e+ 00 −1.40e+ 02±9.34e− 11 - −1.20e+ 02± 3.19e− 01 + −1.21e+ 02± 5.10e− 02 +

f7 −1.37e+ 04 ± 2.80e+ 02 −1.44e+ 04±7.46e+ 01 - −9.97e+ 03± 8.06e+ 02 + −1.11e+ 04± 1.63e+ 02 +

Table E.31. Average Fitness ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = PMS) for PMS against state-of-the-art

algorithms on CEC2010 in 1000 dimensions.

PMS CCPSO2 MA-LSCh-SSW MDE-pBX

f1 0.00e+ 00 ± 0.00e+ 00 6.47e− 14± 1.41e− 13 + 1.39e+ 11± 3.63e+ 10 + 1.05e+ 09± 6.58e+ 08 +

f2 1.48e− 13 ± 2.79e− 13 1.36e+ 02± 1.11e+ 02 + 1.46e+ 04± 1.15e+ 03 + 7.02e+ 03± 2.38e+ 02 +

f3 4.52e− 01 ± 2.76e+ 00 7.34e− 11±1.05e− 10 - 2.00e+ 01± 3.56e− 01 + 1.93e+ 01± 4.76e− 02 +

f4 5.27e+ 11 ± 2.72e+ 11 2.14e+ 12± 1.27e+ 12 + 5.91e+ 14± 6.23e+ 14 + 3.21e+ 12± 9.76e+ 11 +

f5 4.78e+ 08 ± 1.40e+ 08 3.92e+ 08± 7.98e+ 07 - 7.76e+ 08± 6.82e+ 07 + 1.54e+ 08±2.77e+ 07 -

f6 1.92e+ 07 ± 2.24e+ 06 1.71e+ 07± 4.45e+ 06 - 2.03e+ 07± 2.27e+ 05 + 3.65e+ 06±1.75e+ 06 -

f7 1.02e+ 08 ± 2.57e+ 08 7.60e+ 09± 9.72e+ 09 + 2.81e+ 11± 4.11e+ 11 + 6.79e+ 06±1.01e+ 07 -

f8 1.17e+ 08 ± 1.30e+ 08 5.46e+ 07±4.16e+ 07 - 2.34e+ 16± 2.01e+ 16 + 2.03e+ 08± 1.63e+ 08 +

f9 6.19e+ 06 ± 2.80e+ 06 5.01e+ 07± 7.68e+ 06 + 7.94e+ 09± 5.14e+ 10 + 1.68e+ 09± 1.00e+ 09 +

f10 5.25e+ 03 ± 2.09e+ 03 4.57e+ 03±2.75e+ 02 = 1.47e+ 04± 2.77e+ 02 + 7.33e+ 03± 2.55e+ 02 +

f11 1.85e+ 02 ± 3.03e+ 01 2.00e+ 02± 5.98e+ 00 = 2.19e+ 02± 1.96e+ 00 + 2.06e+ 02± 2.40e+ 00 +

f12 1.06e+ 03 ± 7.23e+ 02 6.12e+ 04± 8.14e+ 04 + 2.54e+ 05± 9.03e+ 04 + 2.92e+ 05± 6.60e+ 04 +

f13 1.18e+ 03 ± 6.33e+ 02 1.14e+ 03±5.42e+ 02 = 3.43e+ 10± 3.34e+ 11 + 2.88e+ 09± 3.17e+ 09 +

f14 1.44e+ 07 ± 5.47e+ 06 1.60e+ 08± 3.35e+ 07 + 8.71e+ 09± 5.52e+ 10 + 1.04e+ 09± 1.97e+ 08 +

f15 1.20e+ 04 ± 3.87e+ 03 9.31e+ 03± 5.52e+ 02 - 1.48e+ 04± 1.02e+ 03 = 7.44e+ 03±2.80e+ 02 -

f16 3.27e+ 02 ± 9.13e+ 01 3.95e+ 02± 1.45e+ 00 = 3.97e+ 02± 3.26e+ 00 + 3.84e+ 02± 1.22e+ 00 =

f17 1.37e+ 03 ± 8.23e+ 02 1.41e+ 05± 1.44e+ 05 + 1.63e+ 06± 8.92e+ 06 + 4.35e+ 05± 8.33e+ 04 +

f18 2.41e+ 03 ± 1.00e+ 03 5.62e+ 03± 4.13e+ 03 + 1.15e+ 10± 8.80e+ 10 + 3.73e+ 10± 1.95e+ 10 +

f19 1.47e+ 05 ± 4.93e+ 04 1.14e+ 06± 1.22e+ 06 + 1.50e+ 07± 9.29e+ 06 + 9.22e+ 05± 1.06e+ 05 +

f20 9.57e+ 02 ± 5.37e+ 02 1.42e+ 03± 1.19e+ 02 + 9.68e+ 10± 8.63e+ 11 + 4.18e+ 10± 2.02e+ 10 +
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E.5 Extended numerical results for SPAM

Table E.32. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on CEC2013 in 10 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 0.00e+ 00 ± 0.00e+ 00 0.00e+ 00± 0.00e+ 00 = 3.37e− 03± 2.16e− 02 + 0.00e+ 00± 0.00e+ 00 =

f2 0.00e+ 00 ± 0.00e+ 00 2.06e+ 03± 4.90e+ 03 + 1.61e+ 06± 1.21e+ 06 + 4.39e+ 02± 4.16e+ 03 +

f3 4.45e+ 01 ± 2.61e+ 02 9.43e+ 04± 4.32e+ 05 + 6.19e+ 07± 1.02e+ 08 + 3.19e+ 04± 1.94e+ 05 =

f4 0.00e+ 00 ± 0.00e+ 00 1.38e+ 00± 7.24e+ 00 + 1.05e+ 04± 2.93e+ 03 + 6.06e+ 01± 4.97e+ 02 +

f5 2.36e− 08 ± 2.77e− 08 0.00e+ 00±8.73e− 14 - 1.25e− 02± 2.41e− 02 + 8.59e− 09± 4.44e− 08 -

f6 3.94e+ 00 ± 4.67e+ 00 5.71e+ 00± 4.83e+ 00 = 4.56e+ 00± 4.46e+ 00 + 5.14e− 02±4.11e− 01 -

f7 6.67e+ 01 ± 5.65e+ 01 7.99e+ 00± 1.04e+ 01 - 4.16e+ 01± 1.25e+ 01 - 1.86e+ 00±3.52e+ 00 -

f8 2.03e+ 01 ± 1.88e− 01 2.05e+ 01± 1.07e− 01 + 2.04e+ 01± 8.82e− 02 + 2.04e+ 01± 1.01e− 01 +

f9 6.09e+ 00 ± 3.38e+ 00 2.11e+ 00± 1.47e+ 00 - 5.58e+ 00± 1.01e+ 00 - 1.78e+ 00±9.45e− 01 -

f10 1.49e− 02 ± 1.24e− 02 1.16e− 01± 9.01e− 02 + 2.08e+ 00± 1.15e+ 00 + 1.47e− 01± 1.68e− 01 +

f11 4.17e+ 00 ± 1.67e+ 00 2.86e+ 00± 1.86e+ 00 - 3.44e+ 00± 2.02e+ 00 - 1.96e+ 00±1.16e+ 00 -

f12 1.44e+ 01 ± 6.82e+ 00 1.13e+ 01± 4.99e+ 00 - 3.18e+ 01± 9.05e+ 00 + 5.25e+ 00±3.31e+ 00 -

f13 8.02e+ 01 ± 9.29e+ 01 1.89e+ 01± 9.18e+ 00 - 4.05e+ 01± 8.05e+ 00 = 7.75e+ 00±4.15e+ 00 -

f14 1.33e+ 02 ± 9.00e+ 01 1.09e+ 02± 1.07e+ 02 - 8.02e+ 01± 5.47e+ 01 - 4.22e+ 01±6.04e+ 01 -

f15 7.14e+ 02 ± 1.99e+ 02 7.42e+ 02± 2.77e+ 02 = 1.02e+ 03± 2.89e+ 02 + 5.78e+ 02±2.04e+ 02 -

f16 3.19e− 01 ± 2.33e− 01 5.80e− 01± 4.09e− 01 + 1.31e+ 00± 2.81e− 01 + 4.88e+ 00± 1.13e+ 00 +

f17 1.12e+ 01 ± 3.79e+ 00 1.32e+ 01± 1.82e+ 00 + 1.74e+ 01± 2.48e+ 00 + 2.62e+ 02± 3.30e+ 01 +

f18 6.83e+ 01 ± 8.47e+ 01 2.01e+ 01±5.56e+ 00 - 5.92e+ 01± 8.00e+ 00 - 3.43e+ 02± 4.64e+ 01 +

f19 9.05e− 01 ± 3.26e− 01 6.09e− 01±2.13e− 01 - 1.01e+ 00± 3.27e− 01 + 2.76e+ 02± 1.37e+ 02 +

f20 3.92e+ 00 ± 4.48e− 01 2.87e+ 00±6.22e− 01 - 3.60e+ 00± 2.21e− 01 - 4.99e+ 00± 5.33e− 02 +

f21 2.43e+ 02 ± 1.19e+ 02 3.98e+ 02± 1.99e+ 01 + 3.88e+ 02± 3.73e+ 01 + 6.36e+ 02± 4.30e+ 01 +

f22 2.70e+ 02 ± 2.26e+ 02 1.79e+ 02± 1.41e+ 02 - 1.13e+ 02±6.86e+ 01 - 7.07e+ 02± 2.14e+ 02 +

f23 9.97e+ 02 ± 3.34e+ 02 9.21e+ 02± 3.68e+ 02 = 1.31e+ 03± 2.94e+ 02 + 8.83e+ 02±9.94e+ 01 -

f24 1.37e+ 02 ± 3.81e+ 01 2.03e+ 02± 1.05e+ 01 + 2.08e+ 02± 1.99e+ 01 + 2.56e+ 02± 1.08e+ 01 +

f25 1.99e+ 02 ± 3.06e+ 01 2.01e+ 02± 8.76e+ 00 + 2.15e+ 02± 8.90e+ 00 + 2.48e+ 02± 5.43e+ 00 +

f26 1.48e+ 02 ± 4.29e+ 01 1.55e+ 02± 4.37e+ 01 = 1.69e+ 02± 2.62e+ 01 + 3.35e+ 02± 4.65e+ 01 +

f27 3.56e+ 02 ± 8.99e+ 01 3.13e+ 02±4.68e+ 01 - 4.46e+ 02± 6.43e+ 01 + 1.03e+ 03± 1.27e+ 02 +

f28 2.38e+ 02 ± 9.25e+ 01 3.01e+ 02± 6.82e+ 01 + 3.87e+ 02± 1.80e+ 02 + 1.30e+ 03± 7.99e+ 01 +
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Table E.33. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on CEC2005 in 30 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 0.00e+ 00 ± 4.96e− 14 5.68e− 14± 4.13e− 13 + 1.71e− 13± 4.62e− 13 + 8.90e− 09± 8.36e− 10 +

f2 0.00e+ 00 ± 5.45e− 14 9.75e− 04± 4.18e− 03 + 9.47e+ 00± 1.66e+ 01 + 1.57e− 03± 1.47e− 02 +

f3 1.87e+ 03 ± 1.39e+ 03 3.23e+ 05± 2.14e+ 05 + 1.53e+ 06± 6.74e+ 05 + 1.46e+ 05± 4.32e+ 05 +

f4 2.47e+ 04 ± 9.22e+ 03 2.31e+ 02±6.07e+ 02 - 1.80e+ 04± 4.47e+ 03 - 7.71e+ 02± 5.06e+ 02 -

f5 8.21e+ 02 ± 4.69e+ 02 2.99e+ 03± 5.85e+ 02 + 9.44e+ 03± 1.72e+ 03 + 8.70e+ 02± 5.63e+ 02 =

f6 4.69e+ 01 ± 9.38e+ 01 3.38e+ 01± 3.37e+ 01 - 6.99e+ 01± 5.60e+ 01 + 9.54e+ 00±3.07e+ 01 -

f7 6.41e− 04 ± 2.19e− 03 3.16e+ 04± 2.04e+ 05 + 2.49e− 02± 2.10e− 02 + 3.86e+ 01± 1.16e+ 02 +

f8 2.00e+ 01 ± 8.76e− 04 2.07e+ 01± 4.12e− 01 + 2.10e+ 01± 6.31e− 02 + 2.00e+ 01± 9.08e− 03 +

f9 2.13e− 10 ± 5.06e− 11 4.02e+ 01± 1.09e+ 01 + 5.67e− 01± 6.74e− 01 + 2.09e− 01± 7.35e− 01 +

f10 6.83e+ 01 ± 3.22e+ 01 7.31e+ 01± 1.88e+ 01 + 2.01e+ 02± 5.34e+ 01 + 3.36e+ 01±2.17e+ 01 -

f11 1.35e+ 01 ± 5.15e+ 00 2.10e+ 01± 4.91e+ 00 + 2.80e+ 01± 2.36e+ 00 + 2.36e+ 01± 3.18e+ 00 +

f12 4.29e+ 02 ± 7.94e+ 02 3.95e+ 03± 3.90e+ 03 + 3.51e+ 03± 3.78e+ 03 + 7.06e+ 02± 1.07e+ 03 =

f13 2.79e+ 00 ± 6.01e− 01 3.49e+ 00± 1.16e+ 00 + 8.97e− 01±1.83e− 01 - 3.07e+ 00± 1.96e+ 00 =

f14 4.39e+ 01 ± 2.75e− 01 4.28e+ 01±4.14e− 01 - 4.30e+ 01± 2.93e− 01 - 4.29e+ 01± 3.18e− 01 -

f15 1.28e+ 02 ± 1.13e+ 02 3.55e+ 02± 7.82e+ 01 + 2.44e+ 02± 1.45e+ 02 + 3.07e+ 02± 2.92e+ 01 +

f16 1.36e+ 02 ± 5.52e+ 01 1.79e+ 02± 1.40e+ 02 = 2.88e+ 02± 1.05e+ 02 + 1.41e+ 02± 1.62e+ 02 +

f17 2.22e+ 02 ± 5.44e+ 01 1.81e+ 02±1.38e+ 02 - 3.77e+ 02± 7.25e+ 01 + 1.85e+ 02± 1.68e+ 02 -

f18 9.03e+ 02 ± 3.04e+ 01 8.99e+ 02±5.98e+ 01 - 9.30e+ 02± 1.31e+ 01 + 9.01e+ 02± 3.88e+ 01 -

f19 8.95e+ 02 ± 4.00e+ 01 8.99e+ 02± 5.81e+ 01 + 9.28e+ 02± 1.41e+ 01 + 8.97e+ 02± 4.09e+ 01 +

f20 9.00e+ 02 ± 5.68e+ 01 8.97e+ 02±5.96e+ 01 - 9.24e+ 02± 2.88e+ 01 + 8.99e+ 02± 3.94e+ 01 -

f21 4.99e+ 02 ± 9.02e+ 00 5.63e+ 02± 1.91e+ 02 + 5.04e+ 02± 3.07e+ 01 + 5.22e+ 02± 1.13e+ 02 +

f22 9.04e+ 02 ± 2.92e+ 01 9.74e+ 02± 2.88e+ 01 + 1.06e+ 03± 2.97e+ 01 + 8.89e+ 02±1.31e+ 01 -

f23 5.32e+ 02 ± 2.00e+ 01 5.91e+ 02± 1.48e+ 02 + 5.32e+ 02± 2.00e+ 01 + 5.40e+ 02± 6.27e+ 01 =

f24 2.00e+ 02 ± 3.80e− 11 2.10e+ 02± 9.81e+ 01 + 2.00e+ 02± 1.67e− 06 + 2.00e+ 02±0.00e+ 00 -

f25 1.24e+ 03 ± 4.43e+ 02 1.59e+ 03± 1.32e+ 02 + 1.59e+ 03± 6.89e+ 01 + 1.63e+ 03± 8.19e+ 00 +

Table E.34. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on CEC2013 in 50 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 2.27e− 13 ± 2.27e− 14 5.58e− 10± 4.68e− 09 + 1.36e− 12± 3.64e− 12 + 0.00e+ 00±0.00e+ 00 -

f2 3.76e+ 04 ± 1.97e+ 04 8.12e+ 05± 4.07e+ 05 + 4.43e+ 06± 2.70e+ 06 + 4.14e+ 05± 4.67e+ 05 +

f3 7.86e+ 06 ± 1.32e+ 07 1.63e+ 08± 2.00e+ 08 + 3.47e+ 09± 3.70e+ 09 + 3.91e+ 06±1.07e+ 07 -

f4 1.20e+ 03 ± 4.28e+ 03 9.70e+ 02±7.38e+ 02 - 1.08e+ 05± 3.85e+ 04 + 2.85e+ 04± 8.23e+ 03 +

f5 4.29e− 07 ± 5.98e− 08 2.11e− 06± 1.97e− 05 + 5.73e− 05± 5.68e− 04 + 1.19e− 06± 4.52e− 06 +

f6 2.61e+ 01 ± 1.90e+ 01 5.81e+ 01± 2.32e+ 01 + 4.86e+ 01± 1.64e+ 01 + 3.77e+ 01± 1.14e+ 01 +

f7 4.78e+ 01 ± 2.15e+ 01 6.94e+ 01± 1.27e+ 01 + 1.44e+ 02± 2.81e+ 01 + 1.42e+ 01±5.65e+ 00 -

f8 2.11e+ 01 ± 6.29e− 02 2.12e+ 01± 4.66e− 02 + 2.12e+ 01± 3.78e− 02 + 2.12e+ 01± 3.48e− 02 +

f9 4.77e+ 01 ± 3.86e+ 00 4.42e+ 01± 8.00e+ 00 - 5.88e+ 01± 3.72e+ 00 + 2.48e+ 01±1.27e+ 01 -

f10 1.08e− 02 ± 7.37e− 03 4.03e− 01± 5.14e− 01 + 2.08e− 01± 2.82e− 01 + 1.58e− 01± 1.41e− 01 +

f11 5.03e+ 01 ± 1.03e+ 01 1.23e+ 02± 2.63e+ 01 + 9.48e− 01±8.55e− 01 - 1.86e+ 01± 6.22e+ 00 -

f12 3.17e+ 02 ± 1.21e+ 02 1.59e+ 02± 3.72e+ 01 - 4.63e+ 02± 9.91e+ 01 + 1.39e+ 02±8.05e+ 01 -

f13 4.88e+ 02 ± 8.32e+ 01 3.18e+ 02± 5.58e+ 01 - 5.70e+ 02± 8.52e+ 01 + 1.83e+ 02±5.41e+ 01 -

f14 1.28e+ 03 ± 2.81e+ 02 2.74e+ 03± 8.02e+ 02 + 6.98e+ 00±3.64e+ 00 - 1.97e+ 03± 2.41e+ 03 +

f15 6.48e+ 03 ± 5.37e+ 02 7.58e+ 03± 8.91e+ 02 + 8.25e+ 03± 8.01e+ 02 + 7.62e+ 03± 9.47e+ 02 +

f16 8.59e− 02 ± 3.78e− 02 1.85e+ 00± 8.03e− 01 + 2.71e+ 00± 5.64e− 01 + 7.43e+ 00± 9.69e− 01 +

f17 9.42e+ 01 ± 9.78e+ 00 1.76e+ 02± 3.52e+ 01 + 5.17e+ 01±4.23e− 01 - 2.79e+ 02± 7.07e+ 01 +

f18 5.08e+ 02 ± 8.68e+ 01 1.94e+ 02±3.77e+ 01 - 5.08e+ 02± 1.03e+ 02 = 3.95e+ 02± 5.05e+ 00 -

f19 5.05e+ 00 ± 9.04e− 01 4.27e+ 01± 2.78e+ 01 + 1.46e+ 00±2.30e− 01 - 4.71e+ 02± 5.91e+ 01 +

f20 2.43e+ 01 ± 5.55e− 01 2.00e+ 01±1.03e+ 00 - 2.32e+ 01± 7.70e− 01 - 2.50e+ 01± 1.34e− 05 +

f21 4.37e+ 02 ± 3.36e+ 02 8.54e+ 02± 3.66e+ 02 + 4.06e+ 02±3.22e+ 02 = 9.64e+ 02± 1.81e+ 02 +

f22 1.93e+ 03 ± 4.31e+ 02 3.09e+ 03± 9.77e+ 02 + 9.40e+ 01±9.52e+ 01 - 7.62e+ 02± 2.05e+ 02 -

f23 8.78e+ 03 ± 1.26e+ 03 9.03e+ 03± 1.29e+ 03 = 1.07e+ 04± 1.17e+ 03 + 8.88e+ 03± 1.67e+ 03 =

f24 3.25e+ 02 ± 2.43e+ 01 2.85e+ 02±1.44e+ 01 - 3.61e+ 02± 1.04e+ 01 + 8.62e+ 02± 1.08e+ 02 +

f25 3.68e+ 02 ± 1.34e+ 01 3.68e+ 02± 1.45e+ 01 = 4.00e+ 02± 1.07e+ 01 + 6.79e+ 02± 3.82e+ 01 +

f26 2.24e+ 02 ± 6.92e+ 01 3.48e+ 02± 8.03e+ 01 + 2.22e+ 02±6.42e+ 01 - 5.98e+ 02± 7.45e+ 01 +

f27 1.28e+ 03 ± 1.97e+ 02 1.24e+ 03± 1.37e+ 02 = 1.82e+ 03± 1.67e+ 02 + 1.18e+ 03±3.70e+ 02 =

f28 1.42e+ 03 ± 1.96e+ 03 7.52e+ 02± 1.06e+ 03 - 5.77e+ 02±7.84e+ 02 - 1.40e+ 03± 3.98e+ 02 -
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Table E.35. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on BBOB2010 in 100 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 2.42e− 13 ± 2.13e− 13 7.73e− 06± 7.60e− 05 + 4.12e− 13± 1.97e− 13 + 9.30e− 09± 6.55e− 10 +

f2 3.21e− 07 ± 7.33e− 08 1.11e− 03± 6.06e− 03 + 9.66e− 13±1.77e− 12 - 1.44e− 06± 5.31e− 06 +

f3 9.60e+ 01 ± 1.24e+ 01 4.95e+ 02± 7.94e+ 01 + 8.09e+ 00±8.40e+ 00 - 4.86e+ 01± 9.03e+ 00 -

f4 1.28e+ 02 ± 1.86e+ 01 8.65e+ 02± 1.31e+ 02 + 2.24e+ 01±1.31e+ 01 - 8.02e+ 01± 1.14e+ 01 -

f5 1.31e− 04 ± 1.27e− 05 9.18e+ 00± 1.27e+ 01 + 2.41e− 04± 1.20e− 03 + 1.90e− 13±0.00e+ 00 -

f6 3.93e− 08 ± 3.87e− 08 4.44e+ 01± 3.32e+ 01 + 8.94e+ 01± 4.02e+ 01 + 3.25e− 04± 1.60e− 03 =

f7 5.07e+ 01 ± 1.35e+ 01 2.77e+ 02± 7.43e+ 01 + 3.45e+ 02± 4.90e+ 01 + 4.04e+ 01±7.77e+ 00 -

f8 3.45e+ 01 ± 1.31e+ 01 1.91e+ 02± 6.77e+ 01 + 1.20e+ 02± 3.42e+ 01 + 9.41e+ 00±1.45e+ 01 -

f9 4.70e+ 01 ± 1.14e+ 01 1.28e+ 02± 3.75e+ 01 + 1.06e+ 02± 2.78e+ 01 + 5.57e+ 01± 8.49e+ 00 +

f10 6.98e+ 02 ± 2.21e+ 02 1.65e+ 04± 7.99e+ 03 + 2.62e+ 04± 6.64e+ 03 + 2.45e+ 03± 1.44e+ 03 +

f11 8.15e+ 01 ± 2.76e+ 01 1.54e+ 01±7.45e+ 00 - 5.45e+ 02± 1.95e+ 02 + 1.09e+ 02± 1.85e+ 01 +

f12 1.97e− 02 ± 6.48e− 02 2.21e+ 01± 7.07e+ 01 + 7.95e+ 00± 1.20e+ 01 + 1.43e− 01± 6.95e− 01 =

f13 7.74e− 01 ± 9.16e− 01 4.76e+ 00± 6.70e+ 00 + 3.16e+ 00± 4.20e+ 00 + 1.12e+ 00± 1.76e+ 00 =

f14 4.21e− 05 ± 8.74e− 06 2.73e− 03± 2.55e− 03 + 1.32e− 03± 2.34e− 04 + 3.74e− 05±6.00e− 05 -

f15 2.68e+ 02 ± 3.86e+ 01 6.57e+ 02± 1.10e+ 02 + 1.33e+ 03± 2.32e+ 02 + 4.14e+ 02± 1.88e+ 02 +

f16 2.35e+ 00 ± 8.17e− 01 1.71e+ 01± 4.46e+ 00 + 2.74e+ 01± 4.27e+ 00 + 1.25e+ 01± 1.79e+ 00 +

f17 7.93e+ 00 ± 3.86e+ 00 3.42e+ 00± 4.83e− 01 - 8.65e+ 00± 1.62e+ 00 + 7.23e− 02±4.95e− 02 -

f18 1.65e+ 01 ± 9.86e+ 00 1.21e+ 01± 1.68e+ 00 - 3.30e+ 01± 6.61e+ 00 + 5.77e− 01±1.89e− 01 -

f19 1.66e+ 00 ± 3.11e− 01 2.42e+ 00± 7.13e− 01 + 7.90e+ 00± 1.29e+ 00 + 2.16e+ 00± 1.17e+ 00 =

f20 1.27e+ 00 ± 1.47e− 01 2.11e+ 00± 1.14e− 01 + 4.95e− 01±6.73e− 02 - 1.54e+ 00± 9.48e− 02 +

f21 3.42e+ 00 ± 3.50e+ 00 4.15e+ 00± 5.88e+ 00 = 3.36e+ 00±3.38e+ 00 = 4.76e+ 00± 7.35e+ 00 =

f22 6.27e+ 00 ± 7.42e+ 00 7.94e+ 00± 9.11e+ 00 + 5.11e+ 00±5.83e+ 00 - 7.58e+ 00± 8.63e+ 00 +

f23 6.62e− 01 ± 2.75e− 01 2.47e+ 00± 7.99e− 01 + 2.52e+ 00± 4.22e− 01 + 7.85e− 01± 2.66e− 01 +

f24 3.11e+ 02 ± 5.78e+ 01 3.72e+ 02± 4.72e+ 01 + 1.08e+ 03± 1.53e+ 02 + 3.13e+ 02± 1.12e+ 02 +

Table E.36. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on CEC2008 in 1000 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 5.12e− 13 ± 6.32e− 13 1.21e+ 05± 4.41e+ 04 + 1.01e− 11± 3.57e− 12 + 6.23e+ 04± 6.12e+ 05 +

f2 1.32e− 01 ± 3.27e− 02 1.17e+ 02± 4.09e+ 00 + 4.10e+ 01± 2.46e+ 01 + 1.84e+ 02± 1.81e+ 00 +

f3 8.97e+ 02 ± 2.83e+ 01 3.13e+ 10± 1.65e+ 10 + 1.41e+ 03± 1.12e+ 02 + 1.45e+ 11± 1.01e+ 12 +

f4 7.17e+ 01 ± 1.16e+ 01 7.93e+ 03± 2.55e+ 02 + 1.30e+ 02± 1.07e+ 02 + 1.56e+ 04± 1.02e+ 03 +

f5 7.56e− 05 ± 7.36e− 04 1.26e+ 03± 4.60e+ 02 + 8.59e− 04± 2.98e− 03 + 8.17e+ 00± 1.09e+ 01 +

f6 1.22e+ 01 ± 9.51e+ 00 1.93e+ 01± 5.10e− 02 + 7.23e− 11±9.34e− 11 - 1.99e+ 01± 3.19e− 01 +
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Table E.37. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference = SPAM) for SPAM against MDE-pBX,

CCPSO2 and MA-LSCh on CEC2010 in 1000 dimensions.

SPAM MDE-pBX CCPSO2 MA-LSCh

f1 1.92e− 06 ± 1.33e− 07 1.05e+ 09± 6.58e+ 08 + 6.47e− 14±1.41e− 13 - 2.45e+ 11± 4.07e+ 10 +

f2 6.15e+ 01 ± 1.28e+ 01 7.02e+ 03± 2.38e+ 02 + 1.36e+ 02± 1.11e+ 02 + 1.97e+ 04± 1.74e+ 03 +

f3 8.06e+ 00 ± 9.49e+ 00 1.93e+ 01± 4.76e− 02 + 7.34e− 11±1.05e− 10 - 2.02e+ 01± 4.21e− 01 +

f4 1.14e+ 11 ± 4.32e+ 10 3.21e+ 12± 9.76e+ 11 + 2.14e+ 12± 1.27e+ 12 + 1.24e+ 15± 5.69e+ 14 +

f5 6.78e+ 08 ± 9.14e+ 07 1.54e+ 08±2.77e+ 07 - 3.92e+ 08± 7.98e+ 07 - 8.09e+ 08± 6.58e+ 07 +

f6 1.98e+ 07 ± 7.24e+ 04 3.65e+ 06±1.75e+ 06 - 1.71e+ 07± 4.45e+ 06 - 2.03e+ 07± 2.24e+ 05 +

f7 4.17e+ 05 ± 5.05e+ 05 6.79e+ 06± 1.01e+ 07 + 7.60e+ 09± 9.72e+ 09 + 7.64e+ 11± 5.09e+ 11 +

f8 3.17e+ 06 ± 2.82e+ 06 2.03e+ 08± 1.63e+ 08 + 5.46e+ 07± 4.16e+ 07 + 5.34e+ 16± 3.07e+ 16 +

f9 3.21e+ 06 ± 3.48e+ 05 1.68e+ 09± 1.00e+ 09 + 5.01e+ 07± 7.68e+ 06 + 2.81e+ 11± 4.08e+ 10 +

f10 5.37e+ 03 ± 3.84e+ 02 7.33e+ 03± 2.55e+ 02 + 4.57e+ 03±2.75e+ 02 - 1.85e+ 04± 1.76e+ 03 +

f11 2.00e+ 02 ± 2.22e+ 01 2.06e+ 02± 2.40e+ 00 + 2.00e+ 02±5.98e+ 00 - 2.20e+ 02± 3.44e+ 00 +

f12 3.76e− 03 ± 1.40e− 03 2.92e+ 05± 6.60e+ 04 + 6.12e+ 04± 8.14e+ 04 + 1.69e+ 07± 4.07e+ 06 +

f13 1.22e+ 03 ± 8.23e+ 02 2.88e+ 09± 3.17e+ 09 + 1.14e+ 03±5.42e+ 02 = 1.27e+ 12± 5.77e+ 11 +

f14 4.65e+ 06 ± 4.18e+ 05 1.04e+ 09± 1.97e+ 08 + 1.60e+ 08± 3.35e+ 07 + 3.23e+ 11± 3.62e+ 10 +

f15 1.00e+ 04 ± 1.04e+ 03 7.44e+ 03±2.80e+ 02 - 9.31e+ 03± 5.52e+ 02 - 1.86e+ 04± 1.58e+ 03 +

f16 2.64e+ 02 ± 1.26e+ 02 3.84e+ 02± 1.22e+ 00 = 3.95e+ 02± 1.45e+ 00 = 4.00e+ 02± 7.55e+ 00 +

f17 4.36e− 01 ± 1.13e− 01 4.35e+ 05± 8.33e+ 04 + 1.41e+ 05± 1.44e+ 05 + 4.64e+ 07± 1.30e+ 07 +

f18 1.71e+ 03 ± 1.09e+ 03 3.73e+ 10± 1.95e+ 10 + 5.62e+ 03± 4.13e+ 03 + 5.38e+ 12± 7.78e+ 11 +

f19 3.32e+ 05 ± 3.25e+ 04 9.22e+ 05± 1.06e+ 05 + 1.14e+ 06± 1.22e+ 06 + 1.24e+ 08± 3.39e+ 07 +

f20 8.92e+ 02 ± 3.28e+ 01 4.18e+ 10± 2.02e+ 10 + 1.42e+ 03± 1.19e+ 02 + 6.07e+ 12± 8.88e+ 11 +
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