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Abstract: Protein structure prediction is one of the important aspects while dealing with critical
diseases. An early prediction of protein folding helps in clinical diagnosis. In recent years, applications
of metaheuristic algorithms have been substantially increased due to the fact that this problem is
computationally complex and time-consuming. Metaheuristics are proven to be an adequate tool for
dealing with complex problems with higher computational efficiency than conventional tools. The
work presented in this paper is the development and testing of the Ingenious Crow Search Algorithm
(ICSA). First, the algorithm is tested on standard mathematical functions with known properties.
Then, the application of newly developed ICSA is explored on protein structure prediction. The
efficacy of this algorithm is tested on a bench of artificial proteins and real proteins of medium length.
The comparative analysis of the optimization performance is carried out with some of the leading
variants of the crow search algorithm (CSA). The statistical comparison of the results shows the
supremacy of the ICSA for almost all protein sequences.

Keywords: protein structure; prediction; swarm intelligence; crow search algorithm; numerical
optimization

1. Introduction

Proteins are one of the essential macromolecules of human organisms. Due to their
complicated structure and importance in bioinformatics, protein structure prediction at-
tracts diverse researchers. Proteins are combinations of different types of chains of amino
acids and can fold into various states. These folding structures are known as 3D structures
of protein and play different important roles, including as catalysts in various reactions,
as structural units, in the reporting of signals and as transport channels in living organ-
isms. Understanding the 3D structure is also helpful in treating various diseases, such as
Alzheimer’s disease and cystic fibrosis.

The basic methods of detecting protein structure are X-ray crystallography and NMR
spectroscopy. However, these methods require an excessive amount of money and time and,
hence, are less adopted. The prediction of protein structure via the relation between the
linear sequence of amino acids and the protein’s 3D structure was conducted in [1,2]. In later
years, the prediction of protein structure based on the fact that the most stable folding of
protein is one which has minimum free energy [2–5]. In mathematical terms, the free energy
reflects different types of bonding between protein molecules, such as hydrophilic, solvent,
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hydrogen and entropic effects. As this function is nonconvex, protein structure prediction
can be considered a global optimization problem. This prediction method is performed
in two stages: firstly, a physical form of protein is assumed, and secondly, the energy
function is calculated through any optimization algorithm. The HP model [3] and AB-off
lattice model [4] are two physical models widely used for the first stage. Recently, protein
structure prediction has been converted into an optimization problem from a bioinformatics
problem and has been solved using various nature-inspired algorithms [5–8].

An algorithm selection process based on fitness landscape is presented in [5]. The
artificial bee colony (ABC) algorithm and its different improved versions have been applied
to this protein folding structure problem [6–8] and prove that metaheuristic approaches are
good alternative ways of solving this np-hard optimization problem. Different variants
of the DE algorithm were applied to PSP in [9–11]. Along with this, the list of successful
metaheuristic algorithms applied to PSP also includes the improved harmony search [12],
gradient gravitational search algorithm [13], particle search algorithm [14], ant colony algo-
rithm [15], genetic tabu search [16], an adaptive differential evolution algorithm [17], chaotic
grasshopper algorithm [18] and many more. This literature review indicates the importance
of the protein structure problem and also promotes the fact that other newly developed
algorithms can be applied to discover some new results. Recently, algorithms inspired
by nature and animal behavior have revolutionized the world with their problem-solving
capabilities [5–8]. The crow search algorithm is one of them and has been successfully ap-
plied to many problems, such as the frequency modulation synthesis problem, model order
reduction and other design problems [19]. Furthermore, some recent applications and facts
reported in references [20–24] motivated the authors to conduct detailed investigations of
the development of new bridging in existing CSA. Some interesting approaches regarding
the integration of neural networks and real-life problems, such as bidding strategy planning
and response prediction, have been demonstrated very prominently in references [25–27].
Similarly, a deep-learning-based approach was employed for protein structure prediction
in reference [28]. Likewise, the gradient-based gravitational search algorithm has been
employed for conformational searches of the basic building blocks of proteins [29]. In
reference [30], the identification of essential proteins using chemical reaction optimization
and machine learning has been performed. Inspired by these possibilities, we propose
an ingenious crow search algorithm (ICSA) to solve the aforementioned protein folding
problem. This work is an extension of the work reported previously by the authors as
we change the cosine function with the exponential function. The following are the main
contributions of this manuscript:

1. The protein folding problem has been discussed, and the problem is formulated by
keeping the AB-off lattice model in consideration.

2. An application of the newly proposed ICSA has been explored on a predefined
bench of mathematical functions and proteins, and evaluation of the algorithm has
been conducted.

3. A meaningful comparison between the performance of various crow search variants
and crow search itself has been conducted on the basis of statistical attribute analysis,
box plot analysis and execution time analysis.

The remaining part of the paper is organized into several sections: Section 2 presents
the problem formulation of protein structure prediction with energy minimization. Section 3
depicts the development steps of the ICSA and the basic details of the implemented
algorithm. Section 4 presents the results of the simulation on the conventional benchmark
functions and protein benches. Section 5 concludes the research work in this paper with
suggestions for the future direction of research work.

2. Problem Formulation

In this paper, we have used the AB-off lattice model, which is a generalized form of
the HP model. According to this model, particles are connected to each other with chemical
bonds of unit length and then fold into a 3D structure. The model which possesses the
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lowest energy is the most stable among all possible structures. This energy is formed
by two types of interactions: one is intermolecular (between protein and other solvent
molecules) and the other is intramolecular (between any two protein molecules). In this
way, the AB-off lattice model considers atomic interactions in calculating energy function,
which are left over in the HP model. Instead of 20 different types of amino acids, this model
only considers two residues named A (hydrophobic) and B (hydrophilic). Any protein
sequence of length r consists of total (r − 2) bend angles φ2, φ3, . . . , φr−1. A bend angle is
an angle between any two amino acids, whose direction can be random, i.e., clockwise as
well as anticlockwise. The energy and other terms of the protein structure problem can be
mathematically given by the following equations:

E =
r−1

∑
i=2

(1− cos φi)

4
+ 4

r−2

∑
i=1

r

∑
j=i+2

[
d−12

ij − I
(
τi, τj

)
d−6

ij

]
(1)

dij =

√√√√[1 +
j−1

∑
k=i+1

cos

(
k

∑
l=i+1

φl

)]2

+

[
j−1

∑
k=i+1

sin

(
k

∑
l=i+1

φl

)]2

(2)

I
(
τi, τj

)
=

1
8
[
1 + τi + τj + 5τiτj

]
(3)

where E is the energy function to be minimized, and dij is the corresponding distance
between residue i and j. I

(
τi, τj

)
is the value representing the bonding between residues,

such as for the AA bond I
(
τi, τj

)
= 1, for the BB bond I

(
τi, τj

)
= 0.5 and for the AB or BA

bonds I
(
τi, τj

)
= −0.5.

3. Ingenious Crow Search Algorithm

The crow is considered as a genius bird among other species. The study in [20] shows
that its brain size is bigger in comparison to other birds of its size. A crow shows its
superior behavior in hiding and stealing its food, mimicking voices and in the mirror test.
Crows live in a flock and present a natural example of the optimization process in searching
for food, hiding it from others and following each other to know the location of food.
Askarzadeh proposed the crow search algorithm (CSA) inspired by these characteristics,
which became very popular due to its simple structure and a smaller number of parameters.
Many researchers presented improved variants of CSA and applied them to solve real
engineering problems [19,22,24]. Authors proposed chaotic variants of CSA to solve the
feature selection problem in [21]. A modified version of CSA has been applied in [22] to
solve the economic load dispatch problem. In [23], the authors employ improved crow
search algorithm (ImCSA) for energy problems. The best selection of conductors in a radial
distribution network has been addressed in [24]. In [19], the authors present an intelligent
CSA inculcating two modifications in CSA, namely opposition-based learning and the
cosine position updation rule. The proposed variant has also been verified in some real
engineering problems, such as model order reduction and structural design problems.
Furthermore, an exponential function-based mechanism is introduced in this version to
make it the exponential function-based ingenious crow search algorithm (ICSA):

1. The first is opposition-based learning, which is used in the initialization phase, when
the crows generate their positions. Out of the total crows, half of the crows gen-
erate their position randomly, and the remaining half generate it according to the
following definition.

Definition 1: Let z = (z1, z2, . . . , zr) is a point in a space of R dimensions where zi is a real number
for i ∈ {1, 2, . . . , r} and i ∈ [a, b] then opposite points set of z is given as z = (z1, z2, . . . , zr) or
we can also write
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zi = [ai + bi − zi] (4)

2. The second modification is an acceleration factor based on exponential function, which
acts as a bridging mechanism between the exploration and exploitation stages of the
optimization process. In comparison with a linear function, a cosine function provides
better results as it has a high gradient in the exploration stage, which means that
it explores a bigger area which helps in finding the solution. Later on, when the
gradient is low, the area shrunk during the second half and led to the avoidance of
local minima trapping. This acceleration factor can be given mathematically as

AF = 1− exp(t/T) (5)

Let us consider the total number of crows in a flock as N, and the location of hidden
food is given by H j

i , which is considered as the best position of crow i, for i = {1, . . . , N}.
U j

i is the ith crow position at jth iteration. Initially, half of the population of crows generates
their position randomly and the other half by Equation (4). Suppose a crow i follows crow
y at iteration j, then two cases are possible: either crow y knows that crow i is following
it and it tries to fool it by changing its position swiftly or crow y does not know that it is
being followed. These two cases inculcated with the abovementioned modifications can be
represented mathematically as

U j+1
i =

{
U j

i + (AF)RiLi

(
H j

i −U j
i

)
i f Ri ≥ APi,j

a random number otherwise
(6)

where Li = flight length of ith crow, Ri = a random number such that Ri = [0, 1], and
APi,j = awareness probability of the crow, which helps to create a balance between the
exploitation and exploration stages.

In every iteration, the crow updates the location of its food by the following equation:

H j+1
i =

{
U j+1

i , f n
(

U j+1
i

)
is better than f n

(
H j

i

)
H j

i otherwise
(7)

For the easy understanding of readers, a flow chart of the ICSA [19] is given in Figure 1.
Furthermore, the implementation details of the ICSA have been depicted in the fol-

lowing algorithm.

1. For implementing any real-life optimization problem, the designer requires the iden-
tification of variable composition. In this structure prediction problem, we have
to calculate the dimension of the variables as per the sequence length. Hence, the
dimension of the solution string is calculated as per size of the sequence.

2. As it is a known fact that the folding can be conducted between [−180,180], the
upper and lower bounds of the variables have been assigned as per these boundary
conditions. From this, it can be observed that the initialization of the number of crows
along with their research directions can be finalized with the help of sequence size
and range of bend angles.

3. For further implementation of the algorithm, the energy function has been evaluated
with every iteration of the ICSA, and the values of memory as well fitness function
are stacked in an array. Then, the optimal values are retained, and further processing
in order to improve the solution quality has been started with the help of the position
update equation.

Furthermore, as per the stopping criterion of the ICSA, this process is stopped, and
optimal values of energy function and corresponding angle values are stored.
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4. Simulation and Results

For proving the efficacy of the proposed ICSA, a detailed investigation has been con-
ducted in this section. First, the performance is evaluated for some standard functions, and
then, the performance is evaluated for some artificial protein benches for the determination
of the optimal structure.

4.1. Evaluation of ICSA on Conventional Benchmark Functions

Table 1 shows the diverse characteristics of various functions, along with dimensions
and bounds. From this table, it is observed that the functions used in this experimentation
have two characteristics, i.e., unimodal (with one minima) and multimodal (with multiple
minima, including global and local), and possess complex landscapes. For the evaluation of
the exploration and exploitation virtues, both of these landscape evaluations are required.
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Table 1. Definition of standard benchmark functions.

Function Dim Range Min.
Value

F1(x) =
n
∑

i=1
x2

i 30 [−100,100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10,10] 0

F3(x) =
n
∑

i=1
(

i
∑

j−1
xj)

2
30 [−100,100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤n} 30 [−100,100] 0

F5(x) =
n−1
∑

i=1
[100(xi+1−x2

i )
2 + (xi−1)2] 30 [−30,30] 0

F6(x) =
n−1
∑

i=1

(
xi+0.5)2 30 [−100,100] 0

F7(x) =
n−1
∑

i=1
ix4

i + random[0, 1] 30 [−1.28,1.28] 0

F8(x) =
n
∑

i=1
−xisin(

√
|xi|
)

30 [−500,500] −418.9829 × 5

F9(x) =
n
∑

i=1

[
x2

i −10cos(2πxi + 10
)
] 30 [−5.12,5.12] 0

F10(x) = −20exp( −0.2

√
1
n

n
∑

i=1
x2

i )

−exp( 1
n

n
∑

i=1
cos(2πxi)) + 20

+e

30 [−32,32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 30 [−600,600] 0

F12(x) =
π
n

{
10sin(πyi) + ∑n−1

i=1
(
yi−1)2 [1 + 10sin2(πyi+1) +

(
yn − 1)2]}+

∑n
i=1 u(xi,10, 100, 4)yi = 1 + xi+1

4

u(xi, a, k, m) =


k(xi − a)m x > a

0 −a < xi < a
k(−xi − a)m xi − a


30 [−50,50] 0

As we know, metaheuristics are based on the generation of random numbers in
between the bounds for given variables, and they explore the search space in a very effective
manner; hence, the results obtained from these algorithms always differ from run to run.
Hence, for reporting the results of these algorithms, statistical attribute depiction is acutely
required. Hence, in this experimentation, our aim is to run various improved versions
of the crow search algorithm along with the proposed one and conduct the evaluation of
the optimization properties on the basis of statistical attribute depiction. The following
attributes are chosen for depiction of the optimization results.

• Mean of the fitness values obtained from 20 independent runs.
• Maximum fitness values obtained from 20 independent runs (Worst value as mini-

mization is performed).
• Minimum fitness values obtained from 20 independent runs (Best value as minimiza-

tion is performed).
• Standard Deviation of the fitness values obtained from 20 independent runs.

Some of the crow search variants have been taken in the analysis, in this experimenta-
tion all optimization algorithms are run for minimization purpose. For the optimization
environment, search agent no. (30), maximum iteration (500) and total no. of independent
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runs (20) are kept constant for all the algorithms. Figure 2 shows the convergence property
analysis of these algorithms. It can be observed from these plots that with the exponential
modification, the convergence of the ICSA is higher as compared to the parent algorithm
and other prominent variants of the CSA.
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The results of the statistics attribute analysis have been showcased in Table 2. The
following points are observed from this analysis.

1. From this table, it has been observed that for unimodal functions (F1–F7), the ICSA
is performs well and the proposed exponential function-based mechanism helps the
algorithm in convergence. Unimodal functions are those functions that possess only
one minimum in a given search space. Hence, it can be concluded that the proposed
exponential-driven mechanism helps the algorithm to find the minima very efficiently
and helps the algorithm in convergence.

2. In addition, in a few of multimodal functions, such as F8 to F12, the performance is not
compromised. Hence, it can be observed that the exploration and exploitation virtues
of the ICSA have been enhanced with the inculcation of opposition-based learning
and the proposed exponential-driven function. The results of standard deviation and
their optimal values for the ICSA have been showcased in boldface and depict the
superior quality of the optimization by the proposed ICSA. The proposed mechanisms
help the ICSA to avoid local minima stagnation and provide a big leap in the position
updation phase (due to exponential function).

4.2. Application of ICSA to Protein Structure Prediction

In this section, simulation and the results of the ICSA are discussed in relation to
the protein bench, showcased in the previous subsection. In reference, it has already
been shown by the authors in the previous subsection that the ICSA outperforms the
original CSA and some of the leading variants of CSA on standard benchmark functions.
Furthermore, to test the efficacy of the algorithm, benches of protein are considered here.
The characteristics of these protein benches are shown in Table 3.



Processes 2023, 11, 1655 8 of 15

Table 2. Statistical attribute analysis on conventional benchmark functions.

Function Parameter CCSA
[21] ICSA ImCSA

[23] CSA Function Parameter CCSA
[21] ICSA ImCSA

[23] CSA

F1

Mean 6.862046 0.031499 371.7069 5.606232

F7

Mean 0.058742 0.058667 0.00209 0.031414
Max 13.02088 0.603666 2978.315 12.38207 Max 0.098207 0.109524 0.006988 0.074844
Min 2.310426 1.68E−08 2.01E−06 1.688793 Min 0.023507 0.021947 7.16E−05 0.003457
SD 3.340716 0.134802 806.7395 2.928814 SD 0.020186 0.025329 0.001671 0.017421

F2

Mean 3.170929 0.068385 0.286378 2.62875

F8

Mean −6709.28 −3805.25 −4814.16 −6657.98
Max 4.810244 0.575082 3.658114 3.987891 Max −5012.01 −3140.88 −2626.53 −5498.49
Min 1.405213 4.61E−05 0.00042 1.515934 Min −8371.41 −4417.09 −9016.28 −7919.51
SD 0.910725 0.173323 0.844995 0.740529 SD 907.5612 453.158 2107.081 650.6592

F3

Mean 323.0571 797.5047 5011.694 260.3749

F9

Mean 33.98402 0.340106 48.68747 19.87135
Max 531.1665 1733.91 10026.44 541.7801 Max 54.01139 4.837234 158.7266 40.31614
Min 196.5237 256.5388 649.7462 77.18435 Min 19.8377 8.43E−09 0.000102 0.500648
SD 99.44027 408.3196 2623.501 122.8966 SD 10.06463 1.113659 48.36721 9.957675

F4

Mean 6.308253 0.188467 0.002976 4.844995

F10

Mean 4.300276 0.033443 0.720454 3.476109
Max 8.140264 1.737154 0.018445 7.114288 Max 7.323363 0.621233 9.006787 4.978548
Min 3.981577 7.91E−05 8.24E−05 1.400564 Min 2.893833 2.89E−05 0.002134 1.547676
SD 1.160448 0.482095 0.004275 1.564157 SD 1.218795 0.138743 2.051522 0.861077

F5

Mean 324.046 2903.36 642.9959 247.6814

F11

Mean 1.076878 0.097822 2.082308 1.032996
Max 555.5641 12040.52 5802.284 638.3758 Max 1.138195 0.52547 8.259849 1.08654
Min 188.2174 271.7245 28.7011 28.65027 Min 1.024521 0.007396 1.68E−06 0.938069
SD 89.8575 3460.403 1538.028 127.9758 SD 0.033668 0.14415 2.304979 0.045092

F6

Mean 8.512082 0.180113 242.2761 5.755481

F12

Mean 4.95529 3.21E−10 10.17759 2.026635
Max 18.40242 1.703808 1797.644 13.4591 Max 10.47527 1.97E−09 19.87467 4.821795
Min 3.876712 2.59E−08 2.48E−06 1.820985 Min 1.112488 4.59E−11 5.52E−06 0.161102
SD 3.538109 0.412308 465.7808 2.824979 SD 2.547375 4.63E−10 5.21975 1.325975

Table 3. Evaluation bench for PSP problem.

S. No. Name Length Sequence

1 Asm1 4 ABAB

2 Asm2 4 AAAA

3 As1 5 AAAAB

4 As2 5 AAAAA

5 Am1 13 ABBABBABABBAB

6 Am2 17 ABABBAABBBAAABABA

7 Rs1 (1BXP) 13 ABBBBBBABBBAB

A. Statistical Attribute Analysis (SAA)
As we know that metaheuristics instill some degree of uncertainty in producing the

results of the optimization process, it is an established practice to report the results in
terms of mean values, maximum values, minimum values and standard deviation values of
independent runs. To adhere to the same practice, these statistical attributes are exhibited
in Table 4.

1. The results depicted in Table 3 are calculated by taking 20 independent runs into
consideration. To make the competition fair, the maximum no. of function evaluations
has been kept constant for all participating algorithms. The following points can be
observed from these results:

2. The bench of protein is divided into three major parts, namely very small, small and
medium length. Along with this, a real sequence has also been considered. From
the observation table, we can conclude that the algorithms gave almost the same
values of free energy for Asm1 and Asm2 when compared; however, the values of
standard deviation of the results are optimal for the ICSA. These results are depicted
in boldface.
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3. Inspecting the values of mean As1 and As2, it can be clearly observed that these
values are optimal for the ICSA. Along with this fact, in As2, standard deviation is
also optimal. These results are considered as affirmative, and it can be concluded that
the ICSA works well for these proteins.

Table 4. Statistical attribute analysis.

PS SA CSA CCSA ImCSA ICSA

Asm1

Mean −0.64938 −0.64876 −0.64935 −0.64938
Minimum −0.64938 −0.64934 −0.64938 −0.64938
Maximum −0.64938 −0.64628 −0.64885 −0.64938

Standard Deviation 1.99E−16 0.000693 0.000117 1.92E−16

Asm2

Mean −1.67633 −1.67219 −1.67178 −1.67633
Minimum −1.67633 −1.67597 −1.67633 −1.67633
Maximum −1.67633 −1.66024 −1.58531 −1.67633

Standard Deviation 4.86E−16 0.004327 0.020352 4.61E−16

As1

Mean −1.57712 −1.51277 −1.54829 −1.57822
Minimum −1.58944 −1.57024 −1.58944 −1.58944
Maximum −1.4772 −1.46993 −1.32764 −1.4772

Standard Deviation 0.034475 0.028738 0.071696 0.034547

As2

Mean −2.76032 −2.71044 −2.78057 −2.80884
Minimum −2.84828 −2.83731 −2.84828 −2.84828
Maximum −2.46639 −2.59715 −2.45111 −2.46639

Standard Deviation 0.112435 0.063695 0.093985 0.090723

Am1

Mean −0.76309 0.284905 −0.6902 −1.11339
Minimum −2.1577 −0.14584 −1.56744 −1.69817
Maximum −0.01221 0.589463 −0.01221 −0.40284

Standard Deviation 0.664084 0.250181 0.504168 0.522875

Am2

Mean −2.987 0.90737 −2.58315 −3.23951
Minimum −4.61511 0.030558 −4.52953 −4.99724
Maximum −1.19216 1.910105 −0.79697 −1.15554

Standard Deviation 1.107474 0.482412 1.029253 1.064372

Rs1

Mean −0.6866 0.204919 −0.7064 −0.94874
Minimum −1.62337 −0.0458 −1.45093 −1.68243
Maximum −0.09148 0.432196 −0.09148 −0.09148

Standard Deviation 0.480141 0.145814 0.475126 0.577632

On further inspection, for the medium-size and real protein sequence, we have ob-
served that the mean values are optimal in case of the ICSA, and the algorithm shows
promising results. Hence, it can be concluded that acceleration factor-driven bridging and
opposition-based learning substantially enhance the performance of the algorithm.

B. Iterative Time Analysis (ITA)
It is a known fact that the execution time of the algorithm is quite important while

dealing with complex engineering problems. Unlike classical problems, protein structure
prediction is a complex problem, and the execution time for the identification of protein
structure is an essential requirement to judge the performance of the algorithm. Taking this
fact into consideration, the execution times for independent runs have been calculated, and
mean values for the algorithms are depicted in Table 5.

By inspecting the values of mean execution time, it can be easily concluded that the
ICSA gives fast and optimal results. The execution time for different protein sequences is
optimal for the ICSA and depicted in boldface in Table 5.
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Table 5. Iterative Time Analysis.

PS CSA CCSA ImCSA ICSA

Asm1 0.001632 0.002855 0.008275 0.001577
Asm2 0.001651 0.002378 0.008295 0.001604
As1 0.00268 0.00323 0.009296 0.0026
As2 0.00274 0.003219 0.009372 0.002648
Am1 0.040414 0.040534 0.047735 0.040257
Am2 0.086517 0.087693 0.093003 0.086233
Rs1 0.040848 0.041592 0.047092 0.040451

C. Box Plot Analysis (BPA)
To compare the optimization performance of the competitors, BPA is also conducted.

Diagrams are plotted for the Am1, Am2 and Rs1 sequences. These are depicted in
Figures 3–5. From these, one can observe that the mean values are optimal and the in-
terquartile range of the ICSA is satisfactory as compared to other participating algorithms.
From this analysis, the supremacy of the proposed variant over the CSA and other variants
is confirmed.
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D. Rank-sum Test Analysis
Figure 6 shows rank-sum test analysis results in terms of p-values to compare the

ICSA with competitors. The Wilcoxon rank-sum test is conducted to find the statistical
significance of the algorithm as compared to other as metaheuristics instill uncertainty in
producing results.
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From the figure, it can be seen that the CCSA is totally different from the ICSA as the
p-values associated with this comparison are less than 0.05 for all the sequences. It is also
worth mentioning here that a significance difference exists between the CSA for some of
the sequences. However, in the case of the ImCSA, the performance of ICSA is comparable
with ImCSA.

E. Extended Experiments on Real Protein Sequences
To extend the analysis of the proposed algorithm, we tested the algorithm for predic-

tion of the structure of the following real proteins. The details of these proteins are shown
in Table 6; these are taken from [31], and more details are available at Protein Data Bank
(PDB, http://www.rcsb.org/pdb/home/home.do, the access date 15 April 2023) [32].

http://www.rcsb.org/pdb/home/home.do
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Table 6. Bench of real proteins.

S.No. Nomenclature of Protein [31]
(Length of Sequence) Sequence Considered

RP-1. 2ZNF (18) ABABBAABBABAABBABA
RP-2. 1CB3 (13) BABBBAABBAAAB
RP-3. 1BX1 (16) ABAABBAAAAABBABB
RP-4. 1EDP (17) ABABBAABBBAABBABA
RP-5. 1EDN (21) ABABBAABBBAABBABABAAB
RP-6. 1SP7 (24) AAAAAAAABAAABAABBAAAABBB
RP-7. 2H3S (25) AABBAABBBBBABBBABAABBBBBB
RP-8. 1FYG (25) ABAAABAABBAABBAABABABBABA
RP-9. 1T2Y (25) ABAAABAABBABAABAABABBAABB

RP-10. 2KPA (26) ABABABBBAAAABBBBABABBBBBBA
RP-11. 1ARE (29) BBBAABAABBABABBBAABBBBBBBBBBB
RP-12. 1K48 (29) BAAAAAABBAAAABABBAAABABBAAABB

For evaluating the performance of the ICSA, statistical attributes (SA), such as mean,
maximum, minimum and standard deviation, of the fitness function over 29 independent
runs are reported in Table 7. The optimal values of the fitness function mean have been
shown in boldface in the table. It is observed that the fitness values of the proposed
ICSA are optimal for many proteins. Since the mean value of the optimization run is
an important parameter to depict the algorithm performance, this has been chosen to
showcase the efficacy of the ICSA. It is worth mentioning here that while dealing with
long-length protein sequences, the algorithm showed sluggish behavior and took more
time for convergence. Hence, a convergence improvement scheme may be employed in
the future.

From Table 7, it has been observed that the proposed ICSA exhibits a better response
in terms of mean values of SA. Hence, to verify this, convergence curves of RP-2, RP-5,
RP-6, RP-7, RP-8 and RP-9 are plotted in Figure 7. From the figure, it has been observed that
the ICSA exhibits a slightly better convergence property as compared with other variants
of the CSA and the CSA itself. From this point of view, the proposed modification appears
more meaningful for the PSP problem.
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Table 7. Evaluation of ICSA on real protein bench.

Sequence SA CSA CCSA ImCSA ICSA Sequence SA CSA CCSA ImCSA ICSA

RP-1

Mean −2.3791931 −0.7886972 −1.7198855 −2.4001344

RP-7

Mean −1.3065694 −0.3117043 −0.5407107 −1.4724554
Max 0.0267368 0.2064326 −0.6176313 0.0267386 Max 0.0064462 0.4984838 0.0063101 0.0063656
Min −5.0663166 −2.6839571 −3.4270418 −4.3176683 Min −3.5274819 −1.7353797 −2.0208762 −2.8963254
SD 1.3375592 0.855751 0.7766258 1.2731138 SD 1.3601746 0.7018831 0.6578956 1.0617478

RP-2

Mean −0.9197507 −0.1272179 −0.5434708 −1.1124384

RP-8

Mean −3.6225088 −2.2060117 −2.5448055 −3.6272946
Max 0.1393805 0.235523 0.1393802 0.1393803 Max −0.5703019 −1.1118433 −1.554185 −1.1893901
Min −3.1515092 −1.7230257 −2.9664274 −3.027823 Min −5.730837 −3.6879032 −3.6678783 −5.5395026
SD 1.2288456 0.457233 0.938032 1.1736009 SD 1.1702585 0.8962653 0.6790631 1.5134546

RP-3

Mean −4.061345 −2.0771745 −2.6960923 −4.073643

RP-9

Mean −3.9554999 −1.5579017 −1.9065653 −3.9567796
Max −1.3752103 −0.9003451 −1.010259 −2.391513 Max 0.0042479 0.5740143 0.0039736 0.0040509
Min −6.2571965 −3.4880659 −6.3372388 −5.9779379 Min −6.7932439 −3.7696626 −5.0893686 −6.1911524
SD 1.3004085 0.7643066 1.2378757 0.881331 SD 1.5168258 1.3738249 1.0519291 1.6046706

RP-4

Mean −1.6090671 −0.3213995 −1.0254915 −1.277614

RP-10

Mean −3.2471186 −1.0720838 −2.4729678 −2.8468528
Max −0.4528852 0.3969437 −0.159538 0.1053464 Max −0.8728514 −0.0972439 −1.070647 −0.3651848
Min −3.1296681 −1.408081 −1.9635722 −3.2492808 Min −5.1931067 −2.1187554 −4.9041739 −5.848072
SD 0.9139286 0.5580195 0.5432835 1.0252792 SD 1.1630649 0.6546535 1.0042202 1.2853246

RP-5

Mean −1.5179187 −0.472523 −1.4763197 −1.6676075

RP-11

Mean −1.7560662 −0.3524027 −1.3875453 −1.3565324
Max 0.0745548 0.4167209 0.0745165 0.0745474 Max −0.1602364 0.2812715 −0.1905263 −0.1585026
Min −3.9066747 −3.0887209 −4.3472688 −4.7164015 Min −3.3050487 −1.662606 −2.931173 −3.3910932
SD 1.2562795 0.9778551 0.9856835 1.4249971 SD 1.0160831 0.6426634 0.7622098 1.2438222

RP-6

Mean −8.9429712 −4.9479063 −6.4622347 −9.0543114

RP-12

Mean −5.8367209 −2.8724377 −3.7033946 −4.8984339
Max −5.9611104 −1.285182 −3.7284173 −5.4037268 Max −2.5869554 −0.4310465 −0.2096519 −0.2091465
Min −11.30546 −9.0011959 −10.247179 −13.325058 Min −8.8135235 −4.9994968 −6.6499219 −7.9420245
SD 1.4720603 1.7702774 1.688918 1.8708891 SD 2.0337375 1.4132917 1.878015 1.765799
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5. Conclusions

The ingenious crow search algorithm (ICSA) is proposed with a new bridging expo-
nential operator for carrying out the protein structure prediction problem. Opposition
theory has been implemented in the initialization phase, along with the exponential-driven
position update mechanism. The ICSA has been tested on some of the standard benchmark
functions and applied to the protein structure prediction problem. The following are the
major conclusions of this work:

1. Before experimenting on the complex protein sequence, the ICSA has been tested
over some of the conventional benchmark functions. These functions are known
functions, i.e., the minima and search range are priorly known. The comparative
analysis with some of the published versions of the CSA shows that the algorithm is
substantially improved with the application of a new exponential-driven factor and
opposition-based learning. A detailed investigation in terms of statistical analysis of
the fitness has been carried out to exhibit the efficacy of the proposed ICSA.

2. A bench of various protein sequences is considered for testing the efficacy of the ICSA
and some of the leading versions of the crow search algorithm and its variants. The
bench consists of real and artificial sequences of protein.

3. An extended analysis of the algorithm has been conducted with the help of a real
protein bench. The bench consists of a real protein sequence of medium length. The
algorithm is evaluated with other opponents on the basis of convergence and SA.

4. Optimization performance has been compared with the help of various analyses, such
as SAA, ETA and statistical significance evaluation with the help of the rank-sum test.
We observed that the ICSA provides the optimal solution in less computation time,
and in some cases, a degree of uniqueness exists in the obtained results.

5. Convergence curves for different conventional functions have been plotted to show-
case the optimization efficacy of the ICSA.

For future experimentation, a local search algorithm for enhancing the accuracy of the
prediction will be proposed and tested on artificial as well as real protein sequences. In
addition, rigorous analysis of some long-length sequences will be executed in the future by
the authors.
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