49 research outputs found

    Seafood processing, preservation, and analytical techniques in the age of industry 4.0

    Get PDF
    Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.José S. Câmara and Rosa Perestrelo acknowledge FCT-Fundação para a Ciência e a Tecnologia through the CQM Base Fund—UIDB/00674/2020, and Programmatic Fund—UIDP/00674/2020, Madeira 14–20 Program, project PROEQUIPRAM—Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (M1420-01-0145-FEDER-000008), and ARDITI—Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, through M1420-01-0145- FEDER-000005—Centro de Química da Madeira—CQM+ (Madeira 14–20 Program) for their support. The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891); by Xunta de Galicia for supporting the program EXCELENCIAED431F 2020/12; and the pre-doctoral grant of P. Garcia-Oliveira (ED481A-2019/295); and by the program BENEFICIOS DO CONSUMO DAS ESPECIES TINTORERA-(CO-0019-2021).info:eu-repo/semantics/publishedVersio

    Identifikasi Kesegaran Ikan Menggunakan Algoritma KNN Berbasis Citra Digital

    Get PDF
    Ikan merupakan komoditas utama laut yang penting sebagai sumber makanan. Ikan perlu diketahui kesegarannya sebelum dikonsumsi manusia. Tingkat kesegaran ikan biasanya diidentifikasi dengan cara konvensional seperti analisis kimiawi atau biokimiawi ikan,  analisis kandungan mikrobiologi pada ikan, dan metode pemeriksaan sensori. Metode-metode tersebut dapat dilakukan namun membutuhkan kekuatan manusia yang cenderung mengalami kelelahan. Penelitian ini bertujuan untuk mengidentifikasi kesegaran ikan hasil tangkapan dengan menggunakan sistem komputerisasi digital. Metode yang digunakan adalah K-Nearest Neighbor dengan memanfaatkan citra mata ikan berbasis nilai fitur warna RGB. Data yang digunakan adalah 150 citra mata ikan yang diambil pada rentang waktu satu jam, lima jam, dan 10 jam. Citra mata ikan tersebut sebelumnya telah dilakukan cropping, segmentasi dan ekstraksi nilai RGB untuk kemudian diklasifikasikan berdasarkan kelas target. Data penelitian dibagi menjadi 120 citra untuk pelatihan dan 30 citra untuk pengujian. Hasil pengujian menunjukkan bahwa nilai akurasi paling tinggi menggunakan nilai K=1 yaitu sebesar 93,33%. Berdasarkan hasil akurasi tersebut maka metode KNN dapat menjadi model pengembangan identifikasi kesegaran ikan menggunakan citra digital

    Portable NIR spectroscopy: the route to green analytical chemistry

    Get PDF
    There is a growing interest for cost-effective and nondestructive analytical techniques in both research and application fields. The growing approach by near-infrared spectroscopy (NIRs) pushes to develop handheld devices devoted to be easily applied for in situ determinations. Consequently, portable NIR spectrometers actually result definitively recognized as powerful instruments, able to perform nondestructive, online, or in situ analyses, and useful tools characterized by increasingly smaller size, lower cost, higher robustness, easy-to-use by operator, portable and with ergonomic profile. Chemometrics play a fundamental role to obtain useful and meaningful results from NIR spectra. In this review, portable NIRs applications, published in the period 2019–2022, have been selected to indicate starting references. These publications have been chosen among the many examples of the most recent applications to demonstrate the potential of this analytical approach which, not having the need for extraction processes or any other pre-treatment of the sample under examination, can be considered the “true green analytical chemistry” which allows the analysis where the sample to be characterized is located. In the case of industrial processes or plant or animal samples, it is even possible to follow the variation or evolution of fundamental parameters over time. Publications of specific applications in this field continuously appear in the literature, often in unfamiliar journal or in dedicated special issues. This review aims to give starting references, sometimes not easy to be found

    Non-destructive evaluation of white striping and microbial spoilage of Broiler Breast Meat using structured-illumination reflectance imaging

    Get PDF
    Manual inspection is a prevailing practice for quality assessment of poultry meat, but it is labor-intensive, tedious, and subjective. This thesis aims to assess the efficacy of an emerging structured illumination reflectance imaging (SIRI) technique with machine learning approaches for assessing WS and microbial spoilage in broiler breast meat. Broiler breast meat samples were imaged by an in house-assembled SIRI platform under sinusoidal illumination. In first experiment, handcrafted texture features were extracted from direct component (DC, corresponding to conventional uniform illumination) and amplitude component (AC, unique to the use of sinusoidal illumination) images retrieved from raw SIRI pattern images build linear discriminant analysis (LDA) models for classifying normal and defective samples. A further validation experiment was performed using deep learning as a feature extractor followed by LDA. The third experiment was on microbial spoilage assessment of broiler meat, deep learning models were used to extract features from DC and AC images builds on classifiers. Overall, this research has demonstrated consistent improvements of AC over DC images in assessing WS and spoilage of broiler meat and that SIRI is a promising tool for poultry meat quality detection

    Characterization and identification of poultry meat by non-destructive methods

    Get PDF
    Orientador: Douglas Fernandes BarbinTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de AlimentosResumo: Atualmente a espectroscopia no infravermelho próximo (NIR) é utilizada na indústria agro-alimentar como uma técnica analítica não destrutiva, por ser rápida e dispensar a utilização de reagentes. No presente estudo, foi utilizada espectroscopia de infravermelho próximo (NIR) com um equipamento portátil e imagens hiperespectrais NIR (NIR-HSI) combinada com algoritmos de aprendizado de máquina e análise multivariada para a classificação e identificação de amostras de carnes moídas. Num primeiro trabalho, foram identificados diferentes partes de frango (peito, sobrecoxa e coxa) . As amostras de diferentes cortes de frango foram classificadas utilizando o NIR portátil combinados com algoritmos de machine learning (ML) e analises multivarida. Atributos físicos e químicos (características de cor, pH e L * a * b *) e composição química (proteína, gordura, umidade e cinzas) foram determinados para cada amostra (moidas e inteiras). Foram utilizados análise de componentes principais (PCA), algoritmos de Suport Vector Machine (SVM) e Random Forest (RF) e análises discriminantes (LDA) para a classificação das amostras. Os resultados confirmaram a possibilidade de diferenciar as amostras de peito, sobrecoxa e coxas com 97% de precisão, comprovando potencial deste método para diferenciar os cortes de frango. Num segundo trabalho, além das tecnologias mencionadas, foi usada a imagem RGB (RGB-I) para classificar três diferentes espécies de carne (frango, suína e bovina) e detectar diferentes quantidades de mistura entre elas. Os dados espectrais foram adquiridos para o NIR portátil no intervalo de comprimento de onda entre 900 e 1700 nm, enquanto para as imagens hiperespectrais no NIR foram entre 900 e 2500 nm. Para a classificação de diferentes espécies de carne moida, realizou-se PCA utilizando-se todas as varivéis e após seleção de variavéis latentes (VL), se realizou a LDA para classificar as amostras puras. Os dados brutos e pré-processados foram investigados separadamente como preditores dos modelos de regressão por mínimos quadrados parciais (PLSR). Além disso, este modelo utilizou as VL mais relevantes, com o objetivo de otimizar o processamento de dados. Os resultados de PLSR foram comparados usando coeficiente de determinação de previsão (R2p), relação do desempenho do desvio (RPD) e razão de intervalo do erro (RER). Os melhores resultados foram com NIR-HSI e RGB-I (R2p = 0,92, RPD = 3,82, RER = 15,77 e R2p = 0,86, RPD = 2,66, RER = 10,99 respectivamente). PCA e LDA aplicadas aos dados espectrais (NIR portátil e NIR-HSI) e nas VL (RGB-I) classificaram os três tipos de carne pura (frango, bovina e suína) com 100% de precisão. Finalmente, conclui-se que essas técnicas têm grande potencial para utilização na indústria de processamento de carnes e por instituições que realizam inspeções de segurança e qualidade dos alimentosAbstract: Near-infrared (NIR) spectroscopy is currently used in the agriculture and food industry as a non-destructive, fast and reagentless analytical technique. In the present study, the use of portable near-infrared (NIR) technology and NIR hyperspectral images combined with machine learning algorithms and multivariate statistical analysis were used to classify samples of different chicken cuts (breast, thigh, and drumstick). In addition to the mentioned technologies, the RGB (RGB-I) image was used to classify three different meat species (chicken, pork and beef) and to detect different amounts of mixture between them. The portable NIR spectral data were acquired in the wavelength range between 900 and 1700 nm, while the hyperspectral images were acquired between 900 and 2500 nm. The different chicken parts were classified using the portable NIR combined with machine learning algorithms (ML) and multivariate analyzes. Physical and chemical attributes (pH and L*a*b* color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample (minced and non-minced). The spectral data exploited by principal component analysis (PCA), the algorithms of support vector machine (SVM) and random forest (RF) and linear discriminant analysis (LDA) were compared for the classification of chicken meat. Results confirmed the possibility of differentiating the breast samples, thighs and drumstick with 97% accuracy. PCA and LDA applied to spectral data (portable NIR and NIR-HSI) and the latent variables (RGB-I) classified 100% of the three types of pure ground meat (chicken, beef, pork). The results showed potential to use NIR portable spectrometer to differentiate the chicken parts and to classify meats of different species together with multivariate analysis. Regarding the classification of different meat species, PCA was performed on all variables and optimized on the latent variables selected with LDA to classify pure samples. Raw and preprocessed data were investigated separately as predictors of Partial Least Squares Regression (PLSR) models. In addition, this model was performed using the most relevant latent variables with the objective of optimizing data processing. Results of PLSR obtained to authenticate the chicken samples with the three spectroscopic techniques were compared using the coefficient of determination for prediction (R2p), ratio performance to deviation (RPD) and ratio of error range (RER). The best results were obtained with NIR-HSI and RGB-I (R2p = 0.92, RPD = 3.82, RER = 15.77 and R2p = 0.86, RPD = 2.66, RER = 10.99 respectively). Based on the results, these techniques can be used on-line by the meat processing industry and by institutions carrying out food safety and quality inspectionsDoutoradoEngenharia de AlimentosDoutora em Engenharia de AlimentosCAPE

    Prediction of Carcass Composition and Meat and Fat Quality Using Sensing Technologies: A Review

    Get PDF
    Consumer demand for high-quality healthy food is increasing; therefore, meat processors require the means toassess their products rapidly, accurately, and inexpensively. Traditional methods for quality assessments are time-consum-ing, expensive, and invasive and have potential to negatively impact the environment. Consequently, emphasis has been puton finding nondestructive, fast, and accurate technologies for product composition and quality evaluation. Research in thisarea is advancing rapidly through recent developments in the areas of portability, accuracy, and machine learning.Therefore, the present review critically evaluates and summarizes developments of popular noninvasive technologies(i.e., from imaging to spectroscopic sensing technologies) for estimating beef, pork, and lamb composition and quality,which will hopefully assist in the implementation of these technologies for rapid evaluation/real-time grading of livestockproducts in the near future

    Hyperspectral Image Analysis of Food for Nutritional Intake

    Full text link
    The primary object of this dissertation is to investigate the application of hyperspectral technology to accommodate for the growing demand in the automatic dietary assessment applications. Food intake is one of the main factors that contribute to human health. In other words, it is necessary to get information about the amount of nutrition and vitamins that a human body requires through a daily diet. Manual dietary assessments are time-consuming and are also not precise enough, especially when the information is used for the care and treatment of hospitalized patients. Moreover, the data must be analyzed by nutritional experts. Therefore, researchers have developed various semiautomatic or automatic dietary assessment systems; most of them are based on the conventional color images such as RGB. The main disadvantage of such systems is their inability to differentiate foods of similar color or same ingredients in various colors, or different forms such as cooked or mixed forms. Although adding features such as shape, size and texture improve the overall performance, they are sensitive to changes in the illumination, rotation, scale, etc. A balance between quality and quantity of features representation, and system efficiency must also be considered. Hyperspectral technology combines conventional imaging technology with spectroscopy in a three-dimensional data-cube to obtain both the spatial and spectral information of the objects. However, the high dimensionality of hyperspectral data in addition to the redundancy between spectral bands limits performance, especially in online or onboard data processing applications. Thus, various features selection/extraction are also used to select the optimal feature subsets. The results are promising and verify the feasibility of using hyperspectral technology in dietary assessment applications

    Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) Spectroscopy

    Get PDF
    These days, food safety is getting more attention than in the recent past due to consumer awareness, regulations, and industrial competition to offer best quality products. Meat and meat products are very valuable but highly perishable. There is a need for reliable assessment techniques to ensure the safety and quality of these products throughout their shelf life. Classical analytical methods have been replaced with alternative, rapid, simple, and noninvasive methods to enhance productivity and profitability in the meat supply chain. Fourier-transform infrared (FTIR) spectroscopy has become a valuable analytical technique for structural or functional studies related to foods as a rapid, nondestructive, cost-efficient, and sensitive physicochemical fingerprinting method. This technique is readily applicable for routine quality control or industrial applications with a high degree of confidence. FTIR spectroscopy coupled with chemometrics has drawn attention to quality control, safety assessment, and authentication purposes in the meat and meat products domain. This review covers fundamental knowledge on FTIR spectroscopy coupled with chemometric techniques, as well as major applications of this robust method in meat science and technology for adulteration detection, monitoring biochemical and microbiological spoilage and shelf life, determining changes in chemical components such as proteins and lipids
    corecore