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Abstract
These days, food safety is getting more attention than in the recent past due to consumer awareness, regulations, and industrial
competition to offer best quality products. Meat and meat products are very valuable but highly perishable. There is a need for
reliable assessment techniques to ensure the safety and quality of these products throughout their shelf life. Classical analytical
methods have been replaced with alternative, rapid, simple, and noninvasive methods to enhance productivity and profitability in
the meat supply chain. Fourier-transform infrared (FTIR) spectroscopy has become a valuable analytical technique for structural
or functional studies related to foods as a rapid, nondestructive, cost-efficient, and sensitive physicochemical fingerprinting
method. This technique is readily applicable for routine quality control or industrial applications with a high degree of confi-
dence. FTIR spectroscopy coupled with chemometrics has drawn attention to quality control, safety assessment, and authenti-
cation purposes in the meat and meat products domain. This review covers fundamental knowledge on FTIR spectroscopy
coupled with chemometric techniques, as well as major applications of this robust method in meat science and technology for
adulteration detection, monitoring biochemical and microbiological spoilage and shelf life, determining changes in chemical
components such as proteins and lipids.

Keywords Fourier-transform infrared (FTIR) spectroscopy . Chemometrics . Adulteration . Meat quality . Compositional
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Introduction

Meat is an essential food product for a wholesome diet and is
highly appreciated by consumers due to its nutritional value
and palatability. The global meat supply is expected to in-
crease over the next decade with an outgrowth of demand

contingent on changes in food choice regarding health, nutri-
tion, and diet. An increase of 1.2% in global meat consump-
tion by 2028 compared with the base period (2016–2018) is
expected where the demand for valuable meats, like beef, and
sheep meats will grow more than others [1]. In order to meet
increasing consumer expectations towards manufacturing
safe, high quality, sustainable, and cost-effective products,
the meat industry and scientists are seeking alternative ways
to ensure certain meat quality attributes with extended shelf
life and storage stability [2, 3].

Although physical characteristics such as appearance, tex-
ture, and color are important quality factors at the time of
purchase of meat products; chemical composition and micro-
biological aspects play a significant role in the eating quality
and safety of these products [4, 5, 6]. Authenticity is also an
important quality factor for compliance with particular criteria
or standard [7, 8]. A number of traditional methods are avail-
able for quality and safety evaluation in meat products.
Manual controls with experienced inspectors; techniques for
evaluating microbial population; significant amount of me-
chanical, chemical, biochemical, and immunological
methods; and sensory analyses are among the classical
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approaches to assess meat quality and safety [3, 9]. These
traditional methods have some drawbacks such as being
time-consuming, destructive, expensive, and involving so-
phisticated laboratory procedures with tedious sample prepa-
ration. Alternative rapid and noninvasive methods are ex-
plored for this purpose to enhance productivity and profitabil-
ity in the meat supply chain [3, 4, 10, 11], to meet consumer
demand for superior quality meat products [3, 12].

Vibrational spectroscopy has been one of the most fre-
quently used analytical techniques for assessing quality of
meat and meat products for years, as well as for other foods
[13–15]. Fourier-transform infrared (FTIR) spectroscopy,
which detects molecular vibrations and generates narrow
and sharp peaks in the mid-infrared region, has emerged as a
nondestructive, rapid, and simple technique for evaluating bi-
ological processes due to its ability to carry out multi-analyte
assays and to obtain a broad spectrum of information [14,
16–20]. Because it is rapid, simple, and accurate, FTIR spec-
troscopy, as a physicochemical fingerprinting technique, has
been used along with chemometrics in a variety of food prod-
ucts for various purposes. In meat and meat products, FTIR
spectroscopy has been used for detection of adulteration
(Rodriguez-Saona and Allendorf 2011; [21–25]), monitoring
microbiological safety and shelf life [12, 26–29] and also to
study the changes in chemical components including proteins
and lipids [30–35]. Figure 1 summarizes the applications of
FTIR spectroscopy for the analyses in meat and meat prod-
ucts. This review deals with recent research on the possible
use of FTIR spectroscopy in detecting and evaluating quality
and safety of meat products. Detection of adulteration, spoil-
age evaluation, and predicting chemical composition are em-
phasized in particular.

Fundamental Aspects of FTIR Spectroscopy

Infrared spectroscopy is a vibrational spectroscopy technique
based on the relationship between the interactions of infrared
(IR) radiation with matter. The IR region is divided into three
regions, i.e., near infrared (near-IR, 13,500–4000 cm−1, 780–
2500 nm), mid-infrared (mid-IR, 4000–400 cm−1; 2500–
25,000 nm), and far-infrared (far-IR, 400–10 cm−1; 25,000–
1,000,000 nm) [17]. In practice, both near-infrared (NIR) and
mid-infrared (MIR) regions are used for the analysis of food,
and there are a number of commercial instruments operating
in these regions [36, 37]. Fourier-transform, a mathematical
process which allows multiplexing the wavelengths in one
measurement when used with an interferometer, accelerates
the analyses making these approaches quite useful. As men-
tioned, this transformation has been commonly used in com-
mercially available spectrometers operating in MIR region
whereas dispersive spectroscopy has been usually utilized in
NIR region [36]. Because of this, the abbreviation FTIR gen-
erally refers to FT-MIR in the specialized literature like in this
review [38]. It is the case that recently commercial FT-NIR
instruments have become available for food analyses. Both
methods, NIR and MIR, have advantages and disadvantages
but they will not be addressed in this review. The selection of
onemethod or the other would be based on the performance of
them in different regions for a specific sample type, so their
advantage depends on the sample type and should be assessed
case by case [36, 37, 39].

Fourier-transform infrared spectroscopy is a widely used
type of vibrational spectroscopy and one of the oldest ap-
proaches for the analysis of various molecules. One of the
key parts of an FTIR spectrometer is the interferometer, which

Fig. 1 FTIR spectroscopy
applications in meats and meat
products
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generates an interferogram converted into a typical spectrum
by Fourier-transform [16, 37, 40]. In FTIR, IR radiation is
absorbed by functional groups in the analyte, which causes
vibration of the atoms bonded with covalent bonds.
Vibrational excitations that result in a change of the bond
dipole produce rising peaks in the IR spectrum. Bond vibra-
tional modes occur in molecules with two or more atoms and
can involve changes in bond length (stretching, e.g., symmet-
rical, asymmetrical) or bond angle (bending, e.g., deforma-
tion, rocking, wagging, and twisting) [15, 16, 20, 37, 40–43].

The noninvasive and nondestructive nature of IR radiation
makes it a suitable method to analyze biological samples such
as tissues, cells, and biological fluids. For this reason, FTIR
spectroscopy has become a popular tool in biological analyses
in recent years, allowing the extraction of biomolecular infor-
mation in a rapid and label-free way [16, 19, 44–46]. When IR
radiation passes through the sample, each specific vibrational
mode absorbs IR at its characteristic frequency, so that each
molecule will have its own distinct peak combination resulting
in a unique molecular fingerprint of the sample [16, 20, 43,
46–49].

There are three main sampling techniques in FTIR spec-
troscopy: transmission, transflection (reflection), and attenu-
ated total reflectance (ATR). These methods can be used for
both liquid and solid samples [16, 19, 20, 37, 40, 41].
Moreover, gases can also be studied in transmission mode
with a special gas cell [50]. In the analysis of meat and meat
products, a solid sample prepared from the meat itself or from
the extracts of meat such as lipids and proteins is generally
needed [8, 21, 24, 51–53]. In transmission spectroscopy, spe-
cial IR transparent windows separated by a spacer are used for
liquids. Solid samples must be in a homogenous powder form
(e.g., lyophilized) for transmission. Such samples are general-
ly mixed with IR-transparent matrices such as potassium bro-
mide (KBr) powder. In transflection mode, the analyte is
placed on a special IR-reflecting surface (e.g., low-
emissivity slides). In ATR, both liquid and solid samples are
directly spotted or placed onto the ATR crystal, and pressure
is applied to the solid samples with the help of a manifold. A
beam of radiation enters the crystal and undergoes total inter-
nal reflection. During this process, the analyte absorbs IR at its
contact surface with the crystal, resulting in an IR spectrum
[16, 19, 20, 37, 40]. One important peculiarity of using ATR is
its capability of measuring small dehydrated tissue pieces,
which is a useful application for analyzing meat samples,
while this is not the case with the KBr pellet method [16,
20, 45].

Adjusting sample thickness prior to the measurement is
also one of the important issues in IR spectroscopy, especially
in transmission and reflection modes. The sample on the sup-
port matrix should be sufficiently thick for obtaining enough
intensity and achieving good signal-to-noise ratio. However,
too thick samples may result in the nonlinear detector

response whichmight cause problems in quantitative and clas-
sification analyses. Also in ATR, the sample loaded on the
crystal must have an appropriate thickness providing enough
depth of penetration, ideally should be thicker than the pene-
tration depth [16]. Moreover, sample thickness must be stan-
dardized to provide the same infrared path length in the sam-
ple for avoiding great technical variation and obtaining repro-
ducible spectra [54].

FTIR Spectroscopic Data Analysis in Meat
Science

Interpretation and Pre-processing of the FTIR Spectra
of Meat Samples

In a typical FTIR absorbance spectrum of any meat sample,
the main two parameters are wavenumber (location, frequen-
cy) and area/intensity of the peaks. Bandwidth is also useful in
providing structural state of the molecules. Based on the rele-
vant literature, it can be determined from which vibration type
each peak originates. This information can further be used for
assigning peaks to particular chemical groups of the major
biomolecules in meat samples such as lipids, proteins, carbo-
hydrates, and nucleic acids [19, 44, 49]. According to the
Beer-Lambert law, the area or intensity of an IR absorption
peak is proportional to the concentration of associated mole-
cule. Once the peaks are assigned to biomolecules, their alter-
ations can be compared between samples. There is no need to
perform absolute quantitation in relative analyses, but it is also
possible to determine the amount of a particular compound
using one of the appropriate calibration models [19, 20, 40]
which are mentioned in the “Statistical Analyses and
Chemometrics Applied in FTIR Spectroscopic Analyses of
Meat Samples” section.

Before performing statistical tests and chemometric analy-
ses, it is useful to conduct some spectral pre-processing steps
[46]. Some of these steps are (1) smoothing, e.g., Savitzky-
Golay and wavelet denoising methods ([16, 20, 46, 55]); (2)
spectral subtraction [56]; (3) baseline correction, e.g.,
rubberband method [20, 46]; (4) normalization, e.g., min-
max with respect to Amide I band and vector normalization
[20, 46]); (5) derivatization [20, 40, 57]; and (6) scatter cor-
rections, e.g., standard normal variate and multiplicative [57].
As pre-processing steps such as baseline correction and nor-
malization alter the resulting peak intensities, caution should
be taken and standardization should be ensured when analyz-
ing FTIR spectra [16, 19, 58].

Representative FTIR absorbance spectra of raw beef,
pork, and chicken meats in the mid-IR region are shown
in Fig. 2; assignments of typical FTIR bands in meat sam-
ples are given in Table 1 gathered from Stuart [40];
Naumann [45]; Movasaghi et al. [44]; Rohman et al.
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[23]; Severcan et al. [20]; Kurniawati et al. [51]; Igci et al.
[61]; Pebriana et al. [52]; Deniz et al. [21]; Fengou et al.
[59]; Fengou et al. [60]. As it can be observed in Fig. 2,
there are three main regions in the FTIR spectrum. In the
first region, between ~ 3600 and 2550 cm−1 wavenumbers,
bands mostly originating from lipids, and some protein
peaks are observable (e.g., C–H, N–H, O–H, CH2, CH3

stretching vibrations). The second region between 1700

and 1500 cm−1 is the protein region with Amide I and
Amide II bands. Amide I band arises from C=O and C–N
stretching and N–H bending of proteins while Amide II
mainly originates from C–N stretching and N–H bending
of peptide bonds (amide groups). The third region between
1450 and 600 cm−1 together with protein region is referred
to as the fingerprint region which contains many charac-
teristic bands arising from various biomolecules such as

Table 1 Typical FTIR band assignments of meat samples from different species based on relevant literature [20, 21, 23, 40, 44, 45, 51, 52, 59–61]

Wavenumber
(cm−1)

Definition of the spectral assignment Related bioorganic molecule in meat sample

3287–3290 Amide A: mainly N–H stretching of proteins, with contribution from O–H
stretching of polysaccharides

Proteins, carbohydrates

3068 Amide B: N–H stretching Proteins

3005–3007 cis-olefinic C=H Lipids

2970 CH3 asymmetric stretching Lipids (mainly), proteins

2957–2953 CH3 asymmetric stretching Lipids (mainly), proteins

2925–2916 CH2 asymmetric stretching Lipids

2875–2870 CH3 symmetric stretching Lipids, proteins

2853–2850 CH2 symmetric stretching Lipids

1745–1744 C=O carbonyl stretching Cholesterol esters, triglyceride esters

1715–1711 C=O carbonyl stretching Fatty acids

1728 Aromatic C=O stretching Esters

1674 C=C stretching (disubstituted trans-olefin) Lipids

1659 C=C stretching (disubstituted cis-olefin) Lipids

1655–1645 Amide I: 80% C=O stretching, 10% N–H bending, 10% C–N stretching Proteins (mainly)

1543–1540 Amide II: 60% N–H bending, 40% C–N stretching Proteins (mainly)

1462–1466 CH2 bending Lipids

1456–1455 C–O–H, bending modes of methyl groups Proteins, lipids

1418–1420 C=H rocking (disubstituted cis-olefin) Lipids

1413–1412 C–N stretching of amides, N–H deformation, C–H deformation Proteins

1392–1390 COO- symmetric stretching Fatty acids

1377–1375 CH3 bending Lipids

1340 CH2 side chain vibrations Collagen

1314–1205 Amide III: C–N stretching (30%), N–H bending (30%), C=O stretching
(10%), O=C–N bending (10%), other (20%)

Proteins

1265 PO2
- asymmetric stretching (phosphate I) Nucleic acids, phospholipids

1246–1238 PO2
- asymmetric stretching (non H-bonded) Nucleic acids (mainly), phospholipids, phosphorylated

proteins

1236–1232 C–O stretching Esters of lipids

1222–1220 PO2
- asymmetric stretching Nucleic acids, phospholipids

1196–1195 C–O stretching Lipids

1176–1166 CO stretching vibration of C–OH groups of serine, threonine, and tyrosine
residues; C–O stretching of carbohydrates

Proteins, carbohydrates

1161–1159 C–O stretching Esters of lipids

11171113 P–O–C symmetric stretching; C–H bending; C–O stretching Nucleic acids, fatty acids, esters of lipids

1098–1082 PO2
- symmetric stretching (fully H-bonded, phosphate 2); C–O stretching; C–

H deformation
Nucleic acids, phospholipids, polysaccharides

(glycogen), fatty acids, esters of lipids

1060 C–O stretching Nucleic acids, polysaccharides (glycogen)

1031 C–O stretching Nucleic acids, lipids

721 CH2 rocking, C=H bending (cis disubstituted olefin) Lipids
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proteins, lipids, phospholipids, and nucleic acids ([16, 20,
21, 40, 44, 45, 46, 49, 61]).

In addition to peak assignments of the absorbance spec-
trum, information on the secondary structures of proteins in
meat samples can be obtained from the second derivative (and
sometimes fourth derivative) spectrum of the Amide I–II re-
gion (mainly Amide I band) between 1700 and 1500 cm−1 that
arise from proteins [20, 40, 56, 62–66]. Absorption maxima
appear as minima in the second derivative spectrum. Specific
sub-bands in the Amide I region indicate specific secondary
structures. Similar to the absorbance spectrum, intensity
values of these sub-bands or area values obtained by curve-
fitting can be used for relative quantitation [20, 49].
Representative second derivative FTIR spectrum of raw beef
in Amide I region is presented in Fig. 3 and corresponding
band assignments are given in Table 2.

Statistical Analyses and Chemometrics Applied in FTIR
Spectroscopic Analyses of Meat Samples

Although FTIR spectroscopy is a relatively rapid technique
regarding sample preparation and measurement time, spectral

analyses and chemometrics generally take some time. The most
basic statistical analyses that can be used to compare the mean
values of two different classes are univariate parametric (e.g.,
student’s t test) and non-parametric tests (e.g., Mann-Whitney
U test). For more than two groups, analysis of variance
(ANOVA) in combination with post hoc comparison tests can
be used in order to test statistical significance. Calculated band
area, intensity, or wavenumber values can be used for these
kinds of univariate analyses and they have been used in many
published IR spectroscopy-based papers ([20, 46, 68, ]).

For the classification and discrimination of the spectra in-
dependently from their classes, especially using large data sets
or to predict the amount of a compound in complex matrices,
multivariate analyses, which are often referred to as
chemometrics can be used [15, 16, 19, 20, 46, 69, 70]). This
approach has effectively been applied for FTIR spectroscopic
analysis and classification of microorganisms [19, 45], plants,
gallstones, foods including meat products [15, 21, 42, 69], and
pharmaceutical products [71], as well as to discriminate
healthy tissues and cells from samples with various diseases
such as cancer, diabetes, and other metabolic diseases [19, 45,
61, 67, 72, 73].

Fig. 2 Representative spectra of chicken, pork, and beef meats (obtained from the longissimus dorsimuscle) in the mid-IR region between 4500 and 850
cm−1 wavenumbers, showing band assignments for important bioorganic molecules

Table 2 Characteristic FTIR
bands arising from protein
secondary structural elements in
Amide I region (strong peak
between 1700 and 1600 cm−1)
based on relevant literature [40,
56, 61, 62, 64, 67]

Wavenumber (cm−1) Assignment (secondary structure)

1610–1620 Aggregated β-sheet

1621–1640 β-sheet

1641–1647 Random coil/unordered (sometimes overlaps with ɑ-helical structure)

1648–1657 ɑ-helix

1671–1696 β-sheet

1660–1696 Turns and bends, e.g., β-turns
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Various multivariate analyses with different mathematical
models are available and can be divided into two classes:
multivariate classification (pattern recognition) and multivar-
iate regression. Multivariate classification can be further di-
vided into unsupervised and supervised techniques [15, 70,
74]. The most frequently used spectral chemometric methods
to process FTIR data are listed in Table 3; however, available
methods are not limited to those mentioned here [20, 46, 69,
70, 74, 75]). Some of these methods, in particular those used
in meat analysis, are briefly described.

In principal component analysis (PCA), one of the unsu-
pervised multivariate classification methods, combinations of
variables that vary most between individual samples, is iden-
tified by evaluating the total variances within a data set and
visualization of the data can be obtained on a x-y coordinate
system. As a powerful data-reduction technique, PCA reduces
a large number of initial variables to a smaller data set by
choosing the ones with the largest variance. These smaller
data sets are called principal components (PCs) and the
scatterplot diagrams obtained by PCA are useful for the visu-
alization of the results [16, 20, 70]. This method is widely
applied in meat analysis for the classification of meat species,
and the detection of spoilage and adulteration (see Tables 4
and 5).

Linear discriminant analysis (LDA) is a frequently used
supervised multivariate classification method in FTIR spec-
troscopic analysis of meat samples with similar purposes as in
PCA (see Tables 4 and 5). In LDA, a linear discriminant
function of variables (canonical variates) is established based
on the differences between the classes in the data set aiming to
achieve the maximum separation between classes. LDA con-
siders both within- and between-class variances. LDA can be
used in combination with PCA, which is called as PCA-LDA.
This analysis is simply an LDA that uses PCs as an input.
Partial least squares-discriminant analysis (PLS-DA) is also
another discrimination method derived from PLS regression

models (PLS is described in more detail below) [20, 69, 70,
74].

Moreover, the use of artificial neural networks (ANNs) has
emerged as an alternative supervised pattern recognition che-
mometric tool since it can be applied to non-linear
biospectroscopic data. Being a type of machine learning clas-
sifier, ANNs can handle a large amount of data and is espe-
cially useful when there is no linear relationship between data
sets [20, 46, 70]. This method is useful in both spectroscopy
and hyperspectral imaging for classification and can be ap-
plied in meat analyses [85, 91]. A comprehensive description
of the theory of ANNs is beyond the scope of this review.
Briefly, information propagates along interconnected process-
ing units (so-called neurons). Each processing unit has its own
weighted input and associated non-linear transfer function to
be used for transforming input data into an output [70, 77–79].
In a back propagation ANNs approach composed of the three
layers (input, hidden, and output), the output signal can be
obtained using the following equation;

Yk ¼ f ∑
i
WijX i−θ j

� �
ð1Þ

where Yk is the output signal at node k, which is equal to a
function of the algebraic sum of the weighted inputs whereWij

is the weight between the node i and j, Xi is the input signal at
node i, and h is the bias at node j [79]. Once the output signal
is produced, the associated error is sent backwards, and
weights are adjusted to minimize the aforementioned error.
Training (teaching), internal validation, and external valida-
tion should be performed to obtain a good model for ANNs
[70, 76–79].

Sensitivity, specificity, and precision are important param-
eters for classification or discriminationmodels such as cluster
analysis (CA), LDA, and PLS-DA to evaluate the perfor-
mance of the diagnosis. For each region analyzed, these values
can be calculated as described below for a hypothetical

Fig. 3 Representative second
derivative spectrum of beef
showing sub-bands in the Amide I
region (between 1710 and 1580
cm−1). Absorption maxima ap-
pear as minima and each sub-
band was assigned to particular
protein secondary structures
based on relevant literature (see
Table 2)
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experiment with one positive/adulterated meat (1) and one
control/authentic meat (2) group [73, 97];

Sensitivity ¼ TP= TPþ FNð Þ ð2Þ

where TP is the number of samples belonging to group 1
(adulterated) classified in its own cluster (true positive), and
FN is the number adulterated samples (group 1) clustered in
an authentic group (false negative);

Specificity ¼ TN= FPþ TNð Þ ð3Þ
where FP is the number of authentic samples belonging to
group 2 clustered in adulterated group (false positive) and

TN is the number of authentic samples classified in its own
cluster (true negative);

Precision ¼ TP= TPþ FPð Þ ð4Þ

Multivariate regression/calibration models are suitable to
predict the concentration levels of specific compounds in un-
known samples based on the calibration model constructed
with a training data set consisting of the spectra of the com-
pound of interest with known concentrations. The information
coming from one or more than one peak can be combined in
the same model, which makes this approach a suitable and
commonly used tool for the detection of adulteration in a meat
product (refer to Tables 4 and 5). The most popular

Table 3 The most common chemometric tools used in spectral analyses

Method Features and remarks References

Unsupervised multivariate classification (pattern recognition) methods

Hierarchical cluster analysis (HCA) Does not require an assumption about the number of
classes; samples are classified based on similarity
and results are demonstrated as dendrograms;
different algorithms are available (e.g., Ward s
algorithm); qualitative

([70]; [73]; [20]; [16]; [61])

K-means cluster analysis (KMCA) Requires an assumption about the number of classes;
qualitative

([70]; [20]; [16])

Fussy c-means cluster analysis (FCA) Requires an assumption about the number of classes;
qualitative

([70]; [20]; [16])

Principal component analysis (PCA) A data (dimension) reduction method that reduces the
initial number of variables by choosing those with
the largest variances (i.e., principal
components-PCs); scatterplot diagrams can be plot-
ted; qualitative

([70]; [20]; [75]; [16]; [21])

Supervised multivariate classification (pattern recognition) methods

Linear discriminant analysis (LDA) Establishes a linear discriminant function of variables
based on differences between classes; qualitative

([70]; [20]; [69]; [74])

Partial least square-discriminant analysis (PLS-DA) A discriminant analysis that uses PLS models (linear
regression); qualitative

([70]; [20]; [69])

PCA-LDA An LDA that uses PCs as input data; qualitative ([70]; [20]; [69])

Soft independent modelling of class analogy (SIMCA) A class modelling method that generates PCA models
separately for each class in a calibration set and
unknown samples are compared with these models;
useful for data sets with high within-class variability;
qualitative

([70]; [75]; [69]; [74])

Artificial neural networks (ANNs) A machine learning method that can be applied to both
linear and nonlinear data; can handle large amount of
data but needs excessive training data; qualitative
and quantitative

([76]; [70]; [20]; [77]; [78]; [79])

Support vector machine (SVM) Requires large data set and low within-class variance
like ANN

([80]; [81])

Multivariate regression methods

Partial least squares regression (PLS-R) A widely used supervised linear regression method that
uses a priori defined classes to build calibration
model; applies data reduction to both x and y values;
quantitative

([82]; [70]; [69]; [52]; [74])

Principal component regression (PCR) A supervised method that uses a priori defined classes
to build calibration model; applies PCA for data
reduction to only x values and PCs are used in
training set; quantitative

([70]; [69]; [74])
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Table 4 Relevant examples of FTIR spectroscopy applications on meat adulteration

Matrix/adulterant/
sample type

Sampling method /analyzed
wavenumber range

Pre-processing method Chemometrics Remarks Reference

Beef
meatball/pork/-
extracted fat

ATR/4000–650 cm−1 No preprocessing PLS-R - PLS regression with selected
fingerprint regions of 1200–1000
cm−1 was an efficient tool in
quantifying the level of adulter-
ant pork in meatballs.

- R2 and RMSEC values of 0.999
and 0.128 for actual pork fat
value and FTIR predicted values,
respectively.

[23]

Ham sausage/pork/direct
sausage samples

Transmission (KBr pellet)
4000–400 cm−1

Smoothing, SNV, 1st-order
derivative and 2nd derivative

PLS-DA,
LS-SVM

- PLSDA with SNV spectra and
LS-SVM with second derivative
spectra were the best discrimi-
nating models with prediction
sensitivity of 0.913 and 0.957,
and specificity of 0.929 and
0.929, respectively.

[24]

Minced beef/turkey
meat/direct meat sam-
ples

ATR/4000–700 cm−1 SNV alone or coupled with 1st

derivative, Savitzky–Golay
derivatization (1st derivative
with 11 smoothing points)

PCA, LDA,
PLS-R

- Three spectroscopic methods
(UV-visible, FT-NIR, and FTIR)
were compared with detect
turkey meat in minced beef.

- FT-NIR and FTIR showed the best
performance in prediction with
PLS models.

- For FTIR data RMSEC ranged
from 4.62 to 7.88 and RMSEP
from 6.19 to 12.37.

[83]

Fresh and frozen-then
thawed beef
burger/beef offals (the
heart, liver, kidney,
and lung)/direct meat
samples

ATR/4000–800 cm−1 MSC, SNV transformation and
Savitzky–Golay derivatiza-
tion (1st derivative with 9
smoothing points, 2nd deriv-
ative with 11 points)

PCA, PLS-R,
PLS-DA,
SIMCA

- Spectra from 900–1800 cm−1

wavenumber range were used for
chemometrics.

- PLS provided 100% correct
classification accuracies
separately for fresh and
frozen-then-thawed samples.

- High sensitivities (0.94 to 1.0) in
separate class-models for fresh
and thawed samples, lower spec-
ificities (0.33–0.80) for fresh and
0.41–0.87 for thawed burgers.

- Sensitivity 1.0, specificity
0.29–0.91 when both sample
types were modeled together.

[25]

Beef jerky/pork
/powdered samples

ATR/4000–700 cm−1 Baseline correction,
normalization by value,
smoothing (13-points)

LDA, SIMCA
and SVM

- For detection of adulteration, in
chemometric analysis, the best
model was LDA on the data
obtained from the whole spectra
with 100% accuracy of
classifying and predicting of the
sample.

[84]

Beef meatball/rat meat/-
extracted fat

ATR/4000–400 cm−1 No preprocessing PCA, PLS-R - The 750–1000 cm−1 wavenumber
range was employed for quanti-
tative analysis.

- For quantification using PLS, R2

and RMSEC values were 0.993
and 1.79%, respectively.

- PCA was efficient in the
classification of rat meat and beef
in meatball formulation.

[22]

Raw chicken
meat/frozen-thawed
chicken meat/dried
“press juice”

HTS-XT microplate
adapter/4000–500 cm−1

Second derivatives of the
original spectra with a
9-point Savitzky-Golay fil-
ter; vector normalization

HCA, ANN Significant differences at
1660–1628 cm−1 (protein region)
between raw and frozen-thawed
samples related to α-helical
(1651 cm−1) and β-plated sheet
(1639 cm−1, 1633 cm−1) protein
secondary structures.

[85]
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Table 4 (continued)

Matrix/adulterant/
sample type

Sampling method /analyzed
wavenumber range

Pre-processing method Chemometrics Remarks Reference

- ANN exhibited more correct
classification than HCA for
samples subjected to shorter
periods of frozen storage.

Bovine meat/injected
non-meat ingredients
(NaCl, phosphates,
carrageenan,
maltodextrin)/direct
meat samples

ATR/4000–525 cm−1 Savitzky-Golay smoothing (15
points in filter and second
order polynomial fit), MSC
and class centroid centering

PCA, the main
focus on
PLS-DA,
low-, and
medium
level data
fusion

- With data fusion model, 91% of
the adulterated meats was
accurately detected.

- Existence of NaCl,
tripolyphosphate, and
carrageenan was associated to
certain infrared bands.

- For NaCl addition to bovine meat,
the band at about 1690 cm−1 with
the highest VIP scores due to
NaCl effect on specific
aggregated β-sheets vibrations of
proteins.

[86]

Beef sausage/rat meat/-
extracted fat with
Bligh and Dyer,
Folch, and Soxhlet
methods

ATR/4000–450 cm−1 No preprocessing PLS-R and
PCA

- PCA was effective in classifying
rat meat and beef lipids extracted
using the three methods.

- In PLS-R, R2 andRMSEC for lipid
from beef–rat meat sausages ex-
tracted by Bligh and Dyer, Folch,
and Soxhlet methods were 0.945
and 2.73%; 0.991 and 1.73%;
0.992 and 1.69%, respectively.

[52]

Restructured
tilapia/alginate

attenuated transmission and an
internal reflection accessory
made of composite zinc
selenide (ZnSe) and dia-
mond crystals/400–4000
cm−1

Polynomial subtraction and
Gaussian smoothing

PLS, PCA - With both PLS and PCA, it was
possible to quantitative analyze
different concentrations of
sodium alginate.

- For quantification, R2 and RMSEC
values were 0.998 and 2.00%,
respectively.

- For the classification of lower and
higher concentrations of sodium
alginate, PCA was successful.

[87]

Beef mixtures/chicken,
turkey/lyophilized
samples

ATR/4000–850 cm−1 2nd derivatization; 2nd

derivatization + vector
normalization; 1st

derivatization; 1st

derivatization + vector
normalization; vector
normalization

PCA, HCA - Effective differentiation with the
following regions:

- In HCA, 2980–2800 cm−1 and
1140–1020 cm−1 for chicken;
1290–1210 cm−1 and 2880–2800
cm−1 for turkey.

- In PCA, whole spectrum,
1500–900 cm−1, 1290–1210
cm−1, and 1480–1425 cm−1 for
both turkey and chicken;
1760–1710 cm−1 particularly for
chicken.

[21]

Beef
meatballs/pork/-
extracted fat

ATR/4000–650 cm−1 No preprocessing PLS-R, PCA - In PLS, 1022–833 cm−1 wave-
number resulted in a successful
quantification of pork in meatball
formulation with R2 and RMSEC
values of 0.9984 and 1.09%.

[88]

Beef meatballs/dog
meat/extracted fat

with Bligh-Dyer, and
Folch methods

HATR/4000–500 cm−1 No preprocessing PLS-R, PCA - In PCA, 1700–700 cm−1 region
was successful in identification
of dog meat in meatball.

- In PLS, using Folch method (R2 =
0.9906; RMESC = 1.80%)
resulted in better prediction
model than Bligh-Dyer method
(R2 = 0.9860; RMESC = 2.01%)
for dog meat.

[89]

Game meat (wild fallow
deer)/goat meat

ATR/4000–500 cm−1 Savitzky–Golay smoothing,
SNV

PCA, PLS-DA - PCA was successful in
discriminating the adulteration

[90]
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multivariate regression methods are PLS regression (PLS-R)
and principle component regression (PCR). These are super-
vised methods that use a priori defined classes for each spec-
trum to obtain a teaching data-set to build models (machine-
learning approach). These multivariate regression models are

later used to predict the class of an unknown spectrum or
concentration of a compound. Separate training, testing, and
validation sample groups must be used to build quantitative
calibrationmodels and the size of these data sets are optimized
case-by-case [16, 20, 42, 52, 70].

Table 4 (continued)

Matrix/adulterant/
sample type

Sampling method /analyzed
wavenumber range

Pre-processing method Chemometrics Remarks Reference

level of the fallow deer in the
wavelength range from 2,000 to
900 cm−1.

- PLS-DA model is capable of clas-
sifying real samples with 100%
accuracy; goodness-of-fit value
of R2Y = 0.62,
goodness-of-prediction value of
Q2 = 0.51, and p value = 0.0027.

Beef/textured soy
protein/dried samples

ATR/4000–400 cm−1 Savitzki-Golay smoothing,
SNV, MSC, and Min–Max
normalization

PCA, PLS-R,
ANN

- Wavenumber range of
1700–1071 cm−1 was used for
data analysis.

- Pure beef and beef with soy
protein samples were
successfully discriminated with
PCA.

- ANN exhibited an accurate model
for discrimination of beef from
soy protein with 100%
classification accuracy.

- For detection of soy protein in beef
mixtures, PLS-R provided good
results with high R2 (0.9761) and
low RMSECV (0.78%) values.

[91]

Beef/chicken meat/dried
samples

ATR and
transmittance/4000–400
cm−1

Savitzki-Golay smoothing,
SNV, MSC, and min–max
normalization

PCA, PLS-R,
ANN

- PCA was successful in
classification of the adulterated
samples even without spectral
preprocessing when transmission
mode was used.

- With preprocessed ATR-FTIR
spectrum, ANN showed better
results than PLS-R for predicting
presence and percentage of
chicken meat in the beef meat
mixture with an R2 of 0.999.

[92]

Beef mixtures/pork,
horse, and donkey
meats/lyophilized

samples

ATR/4000–850 cm−1 2nd derivatization; 2nd

derivatization + vector
normalization; 1st

derivatization; MSC; SNV;
normalization by max and
range

PCA, HCA - Effective differentiation for
adulterated samples within the
following regions:

- In HCA; 1480–1425 cm−1 for
donkey meat; 2980–2880 cm−1,
whole spectrum (WS) and fin-
gerprint region (1500–900) for
horse meat; 1760–1710 and
1210–1190 cm−1 for pork.

- In PCA, fingerprint region gave
good results in all groups.

[93]

ATR attenuated total reflectance, HATR horizontal attenuated total reflectance, R2 coefficient of determination, RMSEC root mean square error of
calibration, RMSECV root mean square error of cross-validation, RMSEP root mean square error of prediction, LS-SVM least squares support vector
machine, PLS partial least squares, PLSR partial least squares regression, PLS-DA partial least squares discriminant analysis, PCA principal component
analysis, LDA linear discriminant analysis, MSC multiplicative scatter correction, SIMCA soft independent modelling of class analogy, VIP variable
importance in the projection, SVM support vector machine, SNV standard normal variate, ANN artificial neuronal network
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Table 5 Relevant examples of FTIR spectroscopy applications on microbiological spoilage or quality of meat and meat products

Product Sampling method/
analyzed wave-
number range

Pre-processing method Chemometrics Remarks Reference

Chicken
salami

HATR/4000–600
cm−1

Baseline correction PLS, GA, GP - GP was used to derive rules showing that at levels of
107 bacteria/g.

- For both GAs and GP, the region 1088 to 1096 cm−1

was the most significant area of the FTIR spectra for
the prediction of spoilage of chicken.

- FTIR provided a metabolic snapshot and
determination of the microbial loads of food samples
in 60 s, directly from the sample surface.

- This technique may aid in hazard analysis critical
control point process for assessment of the
microbiological safety of food.

[26]

Minced
beef

ATR/4000–650
cm−1

SNV transformation - Both FT-IR and Raman calibration models gave sat-
isfying results for TVC, LAB, and
Enterobacteriaceae.

- The GA-GP model was better from other programs in
predicting the sensory scores using the FT-IR data,
but the GA-ANN model performed better in
predicting the sensory scores using the Raman data.

- Raman spectroscopy and FT-IR spectroscopy were
offered as being reliably and accurate method for as-
sessment of meat spoilage.

[94]

Poultry
meat

ATR/4000–375
cm−1

SNV transformation PCA,
PLS-DA,
SIMCA

- The most acceptable classification results for SIMCA
and PLSDA were achieved between 1800 and 1200
cm-1. This spectral window also demonstrated
potential for 100% correct classification of chicken
salami samples contaminated with S. enteritidis and
P. ludensis from control using SIMCA.

- PLS models had better R values for classification (R =
0.984) than predicting various concentration levels (R
= 0.939) of poultry specific bacteria.

- 800–1200 cm−1 wavenumber range yielded few mis-
classifications using PLS-DA approach.

[95]

Salmon ATR/2000–900
cm−1

Smoothing based on the
Savitzky-Golay algorithm

PCA, PLS-R - TVC and psychrotrophs, lactic acid bacteria, molds
and yeasts, Brochothrix thermosphacta,
Enterobacteriaceae, Pseudomonas spp. could be
estimated by PLS from the infrared spectral data.

- For TVC, the predicted RMSE value was 0.78 log cfu
g−1 for an external set of samples.

- FTIR is declared as a reliable, accurate, and fast
method for real-time freshness evaluation of salmon
fillets stored under different temperatures and pack-
aging atmospheres.

[28]

Dear and
goat meat

ATR/2000–900
cm−1

Smoothing based on the
Savitzky-Golay algorithm

PCA, LDA,
PLS-R

- PCA analysis showed that wavenumber from 1656 to
1002 cm−1 is related to alterations during storage.

- LDA data was applied to sustain SA data.
- For fallow deer, the RMSE of prediction values were

0.75, 0.61, 0.81, and 0.73 log cfu g−1, for TVC,
psychrotrophs, LAB, and Enterobacteriaceae,
respectively.

- For goat, the corresponding values of RMSE were
0.74, 0.68, 0.78, and 0.79 log cfu g−1.

[90]

Ham slices ATR/4000–650
cm−1

SNV transformation PLS-R - Spectral data based on sensory evaluation, classified
samples in three quality classes, fresh, semi-fresh,
and spoiled.

- Bias and accuracy factors were found acceptable for
both microbial groups tested for samples without
HPP, while for HPP treated samples, values of these
indices ranged from 0.963 to 1.332.

- FTIR was declared reliable for rapid assessment of
sliced ham shelf life.

[96]
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In PCR, PCA is used for data reduction and PCs are gen-
erated using the spectra in the training set. Unknowns are
predicted based on score vectors derived from their spectra.
Unlike PCR and PCA, PLS applies data reduction not only to
x values (e.g., wavenumber, frequency), but also to y data
(e.g., absorbance intensities) [20, 70, 74]. PLS regression
(PLS-R) is the most frequently used multivariate calibration
analysis in spectroscopy-based meat identification that uses
the two-block predictive PLS model to estimate the relation-
ship between x and y values [15, 82]. Root mean square error
(RMSE) of calibration curve (RMSEC), prediction (RMSEP),
and coefficient of determination (R2) values are important pa-
rameters which assess the predictive power of a PLS calibra-
tion model. RMSE of the cross-validation (RMSECV) is also
calculated frequently. Higher predictive power is represented
with higher R2 and lower RMSEC and RMSEP [42, 52]. For

PLS calibration models developed to predict the amount of the
adulterated meat species, RMSEC and RMSEP can be calcu-
lated using the following equations where Yi and Ŷi are the
actual and predicted values of an adulterated meat in main
species (external validation sample i), respectively; M and N
are the number of data in calibration and validation set, re-
spectively [52, 69];

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1
bYi−Yi� �2

M−1

vuut
ð5Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1
bYi−Yi� �2

N

vuut
ð6Þ

Table 5 (continued)

Product Sampling method/
analyzed wave-
number range

Pre-processing method Chemometrics Remarks Reference

Chicken
meat

ATR/3000–800
cm−1

Baseline correction PCA, PLS-R - Results of total plate count (3.04–8.20 CFU/cm2) and
Enterobacteriaceae counts (2.39–6.33 CFU/cm2)
obtained from traditional methods were compared
with FTIR spectral data.

- ANOVA was applied on data obtained through
microbial analyses and results revealed significant
changes (p < 0:05) in values of microbial load during
the storage.

- PLS regression analysis permitted estimates of
microbial spoilage from spectra with a fit of R2 = 0.66
for total plate count, R2 = 0.52 for
Enterobacteriaceae numbers.

[12]

Minced
pork
patties

HATR,
MSI/4000–400
cm−1

Savitzky-Golay smoothing
with 9-points, SNV, Image
pre-processing

PLS-R - The region between 1800 and 900 cm−1 was used for
chemometric analysis.

- RMSE, log CFU/g for prediction of the test dataset for
FTIR and MSI models was 0.915 and 1.173,
respectively, while corresponding values of R2 were
0.834 and 0.727. All methods coupled with PLSR
exhibited good potential (better results for FTIR) for
prediction of microbiological quality of minced pork.

[59]

Farmed sea
bream
(Skin or
flesh)

HATR,
MSI/4000–400
cm−1

Savitzky-Golay 2nd
derivatization with 9
smoothing points, image
pre-processing

PLS-R - The region between 1800 and 900 cm−1 was used for
chemometric analysis.

- PLSR models provided quantitative estimations of
microbiological quality of fish based on spectral data,
in a temperature-independent manner.

- The PLSR model based on FTIR data of fish skin
showed good performance with R2 and RMSE values
of 0.727 and 0.717, respectively.

[60]

ANN artificial neuronal network, ATR attenuated total reflectance, CFU colony forming unit, GA genetic algorithm, GP genetic programming, HATR
horizontal attenuated total reflectance, R2 coefficient of determination, RMSEC root mean square error of calibration,RMSECV root mean square error of
cross-validation, RMSEP root mean square error of prediction, LS-SVM least squares support vector machine, PLS partial least squares, PLS-DA partial
least squares-discriminant analysis, PCA principal component analysis, LAB lactic acid bacteria, LDA linear discriminant analysis,MSC multiplicative
scatter correction, MSI multispectral imaging, SIMCA soft independent modelling of class analogy, VIP variable importance in the projection, SVM
support vector machine, SNV standard normal variate, TVC total viable count
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In order to achieve the best results in a FTIR spectroscopic
study of meat samples, all the steps from sample preparation
to measurement and data analysis should be planned well and
appropriate methods should be chosen. Figure 4 demonstrates
a summary of FTIR spectroscopy analyses steps applied for
evaluation of the quality of meat and meat products.

Applications of FTIR Spectroscopy in Meat
and Meat Products

FTIR Spectroscopy for Detecting Adulteration in Meat
and Meat Products

One of the most important food quality and safety issues
worldwide is food fraud or economically motivated adultera-
tion which has been defined by the FDA as “the fraudulent,
intentional substitution, or addition of a substance in a product
for the purpose of increasing the apparent value of the product
or reducing the cost of its production, i.e., for economic gain”
[98]). Some common types of food fraud are unapproved en-
hancement, dilution, tampering, mislabeling, counterfeiting,
substitution, and concealment. These fraudulent practices neg-
atively affect the reputation and fair trade of food businesses
and consumer rights, posing a significant problem for individ-
uals with ethical or religious concerns, and jeopardize the
authenticity of the products. There are also several issues re-
lated to food fraud from the legal point of view [7, 84, 86, 99,
100]. Although food fraud has existed since the beginning of
the food trade, it has reemerged throughout the world after

some recent scandals and has been becoming a threat along
the supply chain. Food fraud is estimated to cause more than $
40 billion losses per year [101].

The most common fraudulent practices applied in meat
products are as follows: intentional substitution of premium-
quality meats by different types of low-cost meat species; and
substitution of ingredients and additives in formulations for
financial gain and for improving the sensory and physical
characteristics of the end product [7, 8, 102]. Cavin et al.
[102] noted several vulnerabilities in raw meat materials and
meat products such as substitution of species origin, substitu-
tion of meat tissues, substitution of premium meat with lower
quality raw meat materials, enhancement of meat protein lev-
el, addition of adulterants to increase weight, and concealment
using additives. Assessing meat authenticity focusing on de-
termination of species and undesirable ingredients has become
a crucial issue in the meat supply chain for regulators and
producers as well as for meat scientists and technologists
[103, 104]. A variety of standard analytical methods such as
histological tests, electrophoretic separation of proteins, im-
munological procedure, DNA-based techniques, chromatog-
raphy, and spectroscopic methods are available for identifica-
tion and authentication in meat and meat products. However,
most of them are characterized by being time-consuming, in-
vasive and expensive, and requiring sophisticated laboratory
procedures with tedious sample preparation steps. Therefore,
research on vibrational spectroscopic methods is now gaining
priority due to rapidness and minimum sample preparation
requirements. Among these methods, FTIR spectroscopy in
meat authentication has gained importance due to its proper-
ties as a fingerprint technique, which can be used for

Fig. 4 Schematic diagram of FTIR spectroscopy analyses steps applied for meat and meat products
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qualitative and quantitative analyses [7, 8, 15, 21, 23, 35, 53,
86, 88, 89, 92]. Table 4 shows some selected research studies
focusing on the detection of meat adulteration by using FTIR
spectroscopy.

FTIR Spectroscopy for Identification of Meat Species

Intentional substitution of valuable meats with certain low-
cost meat species is a major fraud found in the meat industry.
Controlling this type of adulteration is very important for the
meat sector and for regulatory agencies in order to protect
consumers and verify product authenticity. Several studies
using FTIR spectroscopy have been performed for identifica-
tion and quantification of these fraudulent meat species
(Table 4).

Rohman et al. [23] used FTIR spectroscopy and PLS cali-
bration to determine and quantify pork in meatball formula-
tions for halal verification purposes, and noted that it is pos-
sible to monitor the adulteration of beef meatballs with pork
with FTIR-ATR spectroscopy technique and to quantify the
level of pork adulterant successfully at the fingerprint region
between 1200 and 1000 cm−1. Xu et al. [24] efficiently dis-
criminated halal and non-halal Chinese ham sausages contain-
ing pork using FTIR spectroscopy coupled with chemometric
data analysis, i.e., PLS-DA and least squares-support vector
machine (LS-SVM).

Rat and dog meats are among the meat types which are not
allowed in Muslim and Jewish communities. Rahmania et al.
[22] investigated the possibility of using FTIR spectroscopy
coupled with PCA and PLS in classification and quantifica-
tion of rat meat adulterant in beef meatball formulations and
reported that FTIR spectroscopywith PLS and PCA data anal-
yses is a robust tool for quantitative analysis of rat meat in beef
meatballs at wavenumbers of 1000–750 cm−1. In another
study, Rahayu et al. [89] evaluated the feasibility of
employing FTIR spectroscopy combined with PLS-R and
PCA in qualitative and quantitative analyses of dog meat in
beef meatball formulations. Lipid fractions extracted by Foch
or Bligh-Dyer method were used for the FTIR analyses. For
the product with dog meat and beef, at the wavenumber re-
gions of 1700–700 cm−1, PCA rendered a good classification
and PLS-R was a suitable prediction model for quantification.
In predicting dog meat adulteration in beef meatball, Folch
extraction method yielded a better model with greater R2,
and lower RMSEC and RMSEP values in comparison with
Bligh-Dyer method.

One of the most common fraudulent practices in the
manufacturing of meat products is to partially substitute the
declared ingredients by cheaper ones. Very commonly beef, a
premium-quality meat, is substituted with low-priced species
such as poultry meat, offal, and mechanically deboned meat.
This type of adulteration is a major problem for the traceability
in the food supply chain. Alamprese et al. [83] compared

FTIR, UV-visible, and NIR spectroscopy combined with
chemometrics namely, PCA, LDA, and PLS regression to
detect turkey meat adulteration in minced beef. In
distinguishing turkey meat from beef, NIR and MIR spectros-
copy resulted in the best results. Deniz et al. [21] applied FTIR
coupled with hierarchical cluster analysis (HCA) and PCA to
detect chicken and turkey meat adulteration. Six characteristic
regions were observed for this purpose. Noticeable differences
were observed between beef and turkey or chicken meat mix-
tures based on the distinctive bands from major meat compo-
nents, particularly related to lipids. A similar study was con-
ducted aiming to detect pork, horse, or donkey meat adulter-
ation in beef-based formulations [93]. Fingerprint region
(1500-900 cm−1) and some other spectral regions were found
to be useful to differentiate adulterated samples when coupled
with PCA andHCA analyses. Mechanically debonedmeat is a
low-cost and poor quality co-product of the meat industry and
may be used as a source of fraudulent substitution [105].
There have been incidences of undeclared utilization of these
meats in meat product formulations. Deniz et al. [106] per-
formed a study to detect adulteration of chicken or turkeymeat
mixtures with mechanically deboned chicken meat (MDCM)
by means of FTIR spectroscopy. In secondary structures of
proteins, lower relative intensity of α-helix and antiparallel β-
sheet structures, and higher relative intensity of β-sheet struc-
tures were determined with increasing concentration of
MDCM in both chicken and turkey meat mixtures.

FTIR Spectroscopy for Detection of Non-meat Ingredient
Substitution

Another common source of adulteration in meat and meat
products is addition of non-meat proteins, carbohydrates such
as hydrocolloids, cellulose, and starch, or exogenous salts
such as phosphates, vegetable fat-based materials which are
used to increase water holding capacity and thus, the weight of
meat [86, 102]. Concerns about meat authenticity are growing
in an exponential fashion due to recent and quite significant
fraud scandals. Nunes et al. [86] determined by FTIR-ATR
spectroscopy fraud occurred by injecting aqueous solutions of
non-meat ingredients (NaCl, phosphates, carrageenan, malto-
dextrin, collagen) in bovine meat. This study was conducted
because of a famous adulteration case in Brazil that developed
uproar worldwide because of its consequences in the interna-
tional meat trade community. Existence of adulterants NaCl,
tripolyphosphate, and carrageenan was specifically related to
the peaks at 1717–1677 cm−1, 930–890 cm−1, and 1220 cm−1,
respectively. The same group of researchers [107] also applied
FTIR-ATR spectroscopy to identify frauds in the purge of
beef injected with sodium chloride, carrageenan, and
tripolyphosphate to increase water retention. The two-class
PLS-DA model with around 94–95% reliability rates exhibit-
ed the best results when compared with the multi class model
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approach in detecting the frauds with the three ingredients.
The researchers also applied a soft PLS-DA model together
with outlier detection using a set of meat (20 samples) injected
with maltodextrin as non-trained adulterant and obtained
100% accurate detection.

Hydrocolloids are generally used in the formulation of
processed meat products to increase water retention. In some
cases, uncontrolled and intentional addition of these com-
pounds, particularly into the ready-to-eat meats by injection,
to make profit results in excessive water content within the
product. This type of adulteration, in general, cannot be dis-
tinguished by consumers at the time of purchase. Huang et al.
[87] investigated the possibility of employing FTIR spectros-
copy coupled with PLS and PCA to directly measure sodium
alginate used in restructured tilapia fish product at 0, 0.5%,
1.0%, 2.0%, and 5.0% levels. This group developed quantita-
tive and qualitative models for this purpose. PCA based on the
wavenumber range between 2000 and 800 cm−1 was able to
classify lower and higher levels of sodium alginate efficiently.
For quantification, R2 and RMSEC values were 0.998 and
2.00%, respectively, in PLS. Therefore, this method could
be applied to differentiate various hydrocolloid incorporations
into meat formulations.

Substituting muscle proteins with vegetable proteins such
as soy or other bean proteins together with water has also been
a common adulteration strategy. Soy proteins are used in the
meat industry as meat extenders to increase the water reten-
tion, improve texture, and at the same time maintain the total
nitrogen content [108]. Excessive amount of addition of these
vegetable proteins in the formulations of meat products with-
out declaring in the label is considered a type of adulteration.
Keshavarzi et al. [91] investigated the possibility of FTIR-
ATR spectroscopy combined with multivariate data analysis
for detecting and quantifying textured soy protein in beef mix-
tures. PCA, ANN, and PLS-R were used for classification and
discrimination of the spectra at 1700–1071 cm−1 wavenumber
range. It was noted that PCA and ANN were successful for
accurate differentiation of pure beef from beef containing soy
protein. In PLS-R model, a good correlation was obtained
with high R2 value (0.976) and low RMSECV value
(0.78%) indicating that FTIR spectroscopy can be used for
rapid detection of soy proteins in beef mixtures.

FTIR Spectroscopy for Differentiation of Fresh
and Frozen/Thawed Meats

Since quality characteristics of meats are influenced by chem-
ical and physical changes during freezing and thawing, selling
meats previously frozen and then thawed without declaring
that on the label is considered an economically motivated
adulteration. Whether the meat is refrigerated (fresh) or frozen
and then thawed prior to sale must be indicated on the label as
“defrosted” according to EU Regulation 1169/2011. This

situation cannot be perceived at the time of purchasing [85,
109]. Hence, there is a need for rapid and reliable methods to
distinguish fresh, and frozen and then thawed meats.

A few studies on discriminating fresh/frozen meat products
using FTIR spectroscopy have been conducted. In one of
these studies, Zhao et al. [25] investigated the possibility of
using FTIR spectroscopy coupled with chemometry (PCA,
PLS, PLS-DA, SIMCA-Soft Independent Modelling of
Class Analogy) to detect adulteration in fresh and frozen beef
burgers by four types of beef offals (the heart, lungs, kidney,
and liver). Adulterated samples in fresh and frozen-then-
thawed groups were classified using PLS-DA with 100% ac-
curacies. In another study, Alamprese and Casiraghi [110]
used FT-NIR and FT-MIR spectroscopy to determine substi-
tution of valuable red mullet and plaice species with low-cost
Atlantic mullet and flounder and to evaluate the capability of
these methods in discriminating fresh and frozen-thawed fish
(Atlantic mullet fillets). FTIR spectroscopy coupled with che-
mometric tools such as LDA and SIMCA exhibited better
results for discrimination of low-cost Atlantic mullet and
flounder fillets from those valuable red mullet and plaice fil-
lets, respectively, and also for recognition of fresh and frozen-
thawed Atlantic mullet filets. In the prediction attained by
using SIMCA, the best results for distinguishing fresh and
frozen Atlantic mullet fillets were obtained using the FTIR
spectra treated with the multiplicative scatter correction pre-
processing. In this analysis, a specificity higher than 95% was
determined and sensitivity values were greater than 60%
[110].

Grunert et al. [85] employed FTIR spectroscopy to differ-
entiate refrigerated (stored at 4 °C) and frozen/thawed (frozen
and stored at − 20 °C for 2, 5, 15, 30, 60, 70, and 85 days)
chicken meat in combination with HCA and ANN analyses.
HCAwas able to differentiate fresh chickenmeats from frozen
chicken meats for longer periods, while ANN provides iden-
tification of frozen samples within even shorter storage pe-
riods, i.e., from 2 to 5 days, as well as long storage times for
up to 85 days. The results of the aforementioned studies on
distinguishing fresh and frozen meat moieties suggest that
FTIR spectroscopy in combination with appropriate
chemometrics tools could be an alternative rapid and reliable
method; however, the performance of the technique needs to
be enhanced by employing of improved supervised pattern
recognition trained with a larger data set [85, 110].

FTIR Spectroscopy to Assess Chemical Components in
Meats

Chemical characteristics of muscle are affected by several
ante- and post-mortem factors which determine the ultimate
quality of meat and meat products. The major determinants of
muscle food quality are proteins, moisture, and lipids which
have significant impact on the development of specific
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sensorial, nutritional, and physical characteristics such as pH,
color, texture, and flavor. Therefore, assessment of these ma-
jor meat constituents is essential to render possible effects on
ultimate product quality [111–113]. FTIR spectroscopy has
been applied mainly in determining the levels and changes
in two of the major components of meat based products, i.e.,
proteins [32, 34] and lipids [30, 31, 33].

FTIR Spectroscopy for the Assessment of Proteins

One of the most prevailing applications of FTIR spectroscopy
is to monitor the changes in the structure of proteins, particu-
larly in protein secondary structure for better understanding of
proteolysis phenomena and thermal behavior of meat proteins
[32]. IR spectroscopy has been successfully used for many
years to analyze conformational changes and secondary struc-
tures of polypeptides and proteins in various states, different
concentrations, and diverse environments to assess protein
denaturation and protein-protein interactions. Although up to
nine characteristic bands can be obtained from IR spectra of
polypeptides, the most conspicuous ones are the Amide I and
Amide II bands [40]. The Amide I band (1700 − 1600 cm−1),
which is extensively used for quantification of the secondary
structure and for determining conformational changes in pro-
teins and peptides, mostly arises from the C=O stretching
vibrations. The Amide I band takes minor contribution from
C − N stretching and N − H bending of the peptide linkages,
while the Amide II band, which originates from in-plane N −
H bending and C − N stretching vibrations, exhibits less pro-
tein conformational sensitivity, but still is useful especially for
monitoring side chains [40, 66, 114, 115].

Larrea-Wachtendorff et al. [32] used FTIR spectroscopy to
determine the impact of high hydrostatic pressure (HPP) treat-
ments (450 and 550 MPa for 3 and 4 min) on the conformations
of the protein secondary structure of palm ruff muscle proteins in
prerigor and postrigor states. In the FTIR spectra of secondary
structure of prerigor palm ruff proteins, greaterα-helix and lower
β-sheet structures were detected in comparison with postrigor
proteins. On the other hand, no influence of rigor state was de-
termined in the antiparallel β-sheet structure. The HPP treatment
affected conformational changes in the secondary structure of
palm ruff proteins due to alterations in hydrophobic interactions,
hydrogen bonds, and ionic interactions, which was confirmed by
FTIR spectra where intramolecular and intermolecular β-sheet
conformations showed increases and α-helix and turn structures
decrease due to HPP applications.

Sazonova et al. [116] also determined HPP induced chang-
es in protein structure of vacuum packed pork chop samples
with FTIR spectroscopy. HPP treated (at 300, 600 MPa for 1
or 15 min) meat and released juice samples, and raw (control)
and cooked meats were analyzed with FTIR high-throughput
screening. In FTIR spectra of pork muscle, the peak height
intensity values of vector normalized spectra indicated that

there were decreases in α-helix structure contents in both
Amide bands at 1655 and 1548 cm−1 and also in β-sheet
conformations at 1682 cm−1. An absorption band at 1394
cm−1 corresponding to bending vibrations of CH3 groups in
proteins and lipids was observed in all juice sample spectra. It
was noted that this band could be a marker for evaluation of
changes in proteins as a result of HPP treatments.

In a study byHan et al. [114], FTIR spectroscopywas applied
to determine changes in the proteins’ secondary structure during
heating of pork meat batters at different phase transition temper-
atures (20 to 74 °C). With the destruction of myosin rods during
heat-induced processing of meat batter, the content of α-helix (at
1311 cm−1) decreased and that of β-sheets (near 1235 cm−1)
increased indicating myofibrillar protein aggregation.

Ma et al. [34] studied the influence of adding NaNO2 (90
mg/L) on hydroxyl radical-mediated (1 mmol/L of H2O2) ox-
idative damage of yak meat myoglobin to investigate the al-
terations in the myoglobin structure. For this purpose, four
groups of myoglobin extracts solution were prepared: (1) con-
trol without addition of H2O2 and NaNO2; (2) only H2O2

added group without NaNO2 addition; (3) H2O2 and NaNO2

added group; and (4) NaNO2 added group without H2O2 ad-
dition. FTIR spectroscopy was employed to obtain the peaks
for evaluating protein secondary structures. The data were
extracted from the 1600–1700 cm−1 band of the infrared spec-
trum, analyzed with Gaussian fitting, and the ratios of α-helix,
random coil, β-sheet, and β-turns structures of myoglobin
were determined. The H2O2 added group exhibited higher
α-helix and random coil structures content, and lower β-turns
structure than the other three groups, indicating that NaNO2

addition could protect the secondary structure of myoglobin
from hydroxyl radical-mediated oxidative damage.

In a study by Zhang et al. [117], the changes in secondary
structure of myofibrillar proteins of chicken breast muscles
subjected to ultrasound-assisted immersion freezing at 125,
165, 205, and 245 W power levels were evaluated in compar-
ison with immersion freezing (without ultrasound) and air
freezing. FTIR spectroscopy in the range of 4000–400 cm−1

was employed and secondary structure information was ex-
tracted in Amide I region by curve fitting. Regarding the
changes in the components of Amide I region, decrease in
α-helix and β-turn ratios and increase in the β-sheet and ran-
dom coil were determined in all frozen groups in comparison
with the control. The highest ratios ofα-helix and β-turn, thus,
less damage to the protein secondary structure, were obtained
in the samples with the application of ultrasound-assisted im-
mersion freezing at 165 W because this ultrasonic power
range resulted in small and regular ice crystal formation [117]

FTIR Spectroscopy for Assessment of Lipids

Analysis of the distribution of lipids and fatty acid composi-
tion in meat and meat products is of great importance in terms
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of physical and nutritional quality characteristics because it
provides information on the fatty acid content of the diet and
is advantageous for assessment of carcass quality and for bet-
ter understanding of the behavior of fat during further process-
ing and shelf life [33, 118, 119]. The most widely used meth-
od for determination of fatty acid composition is gas chroma-
tography (GC) analysis which has some limitations such as
being time-consuming, laborious and implies utilization of
hazardous reagents [31, 33]. For that reason, the focus has
been directed to evaluating feasibility of rapid and easier spec-
troscopy techniques such as FTIR spectroscopy to character-
ize lipid profiles of meat and meat products [33].

Hu et al. [31] used FTIR-ATR to rapidly determine fatty
acid profiles of fat tissues (direct measurement), and solvent-
extracted fat from different tissues, namely, subcutaneous,
inter-, and intramuscular fats in Wagyu beef. The results from
IR spectra of each fat samples were analyzed and the data
were compared with GC measurements. In multivariate anal-
yses, the difference among the fatty acid compositions was
assessed with PCA, and PLS regression with leave-one-out
cross-validation. It was found that it is possible to differentiate
subcutaneous fat from inter- and intramuscular fats with PCA
using the ATR-FTIR data with regard to fatty acid composi-
tion, and to determine the contents of monounsaturated fatty
acids (MUFAs) and saturated fatty acids (SFAs) of beef fats,
particularly for solvent extracted fats from Wagyu beef.

In another study by Lucarini et al. [33], feasibility of FTIR-
ATR spectroscopy coupled with PLSmodels was investigated
to obtain quantitative prediction for the determination of SFA,
MUFA, polyunsaturated fatty acid (PUFA), and palmitic acid
contents in meat and meat products. Appropriate spectral pre-
processing methods (nonfiltering, first derivative, second de-
rivative) and specific spectral ranges were employed for SFA,
MUFA, PUFA, and palmitic acid quantification. The most
efficient SFA and MUFA models were obtained with the first
derivative and at the 3022–650 cm−1 region yielding calibra-
tion coefficients of 0.9834 and 0.9775, respectively. For
PUFA, however, the best performance was achieved for the
4000–650 cm−1 region using the first derivative yielding cal-
ibration coefficient of 0.9817. Palmitic acid selected as a rep-
resentative of the single fatty acids exhibited good linear re-
gression for the first derivative in the 4000–650 cm−1 region.
The authors suggested that the variety and sample numbers in
PLS models should be increased in order to improve accuracy
for more satisfactory prediction results.

FTIR is considered a useful tool not only to study charac-
terization of fats and oils but also to monitor the changes due
to oxidation processes [30, 120]. Guillén and Cabo [30] inves-
tigated the characterization and oxidative stability of lipids of
pork adipose tissue as influenced by smoke flavorings using
FTIR spectroscopy. Dry salting was applied to pork adipose
tissue for 24 h followed by immersion smoking using two
liquid smoke flavorings for 1, 2, or 3 min. The samples were

then subjected to oxidative conditions at 70 °C and analyzed
with FTIR spectroscopy after 0, 1, 2, and 4 days under oxida-
tive conditions. Salted and smoked samples exhibited identi-
cal FTIR spectra to the control before the oxidation process.
However, in the course of oxidation, various changes were
observed in FTIR spectra of the samples which are summa-
rized as follows. In the region between 3600 and 3100 cm−1,
shifting and broadening of the band with the peak near 3471
cm−1 are attributed to overlapping of the original band and of
new absorptions due to new compounds formed as a result of
oxidation processes. When the ratio between the absorbance
of the band at 2854 cm−1 and between 3600 and 3100 cm−1

(A2854/A3600-3100) was around 90–100, the samples are
considered non-oxidized, while with the initiation of oxidation
processes, a sharp decrease in this ratio is observed. Thus,
shifting of frequency value of the peak around 3471 cm−1

and changes in A2854/A3600-3100 ratio can be used as indi-
cators to estimate the oxidation degree in adipose tissue lipids
[30]. Other important band found to monitor oxidation of
lipids in the aforementioned study was the band near 3007–
3006 cm−1. Occurrence of the shifting in the frequency value
of this band, as well as the decrease in its absorbance, indicates
a decrease in cis double bonds and could be used as a measure
of oxidation stability in pork adipose tissue lipids. In the con-
trol samples subjected to oxidation, a decrease in the absor-
bance value and shifting of the frequency of the band at 3007–
3006 cm−1 towards lower wavenumbers was observed from
the first day, which proceeded incrementally until the band
totally disappeared. However, these changes were determined
in the smoked samples during the later days and the band,
instead of disappearing, became a shoulder. These changes
meant that the samples were at progressive stages of oxida-
tion. The ratio between the absorbance of the band at 2854
cm−1 and the band near 3007–3006 cm−1 (A2854/A3006) is
another measure of the course of oxidation. In control samples
the ratio A2854/A3006 showed a sharp increase while slight
increases were observed at the beginning which then became
more intense in the smoked samples. Changes in the regions
between 1800 and 1000 cm−1, and between 1000 and 600
cm−1 in the FTIR spectra were attributed to the generation of
secondary oxidation products such as aldehydes and ketones
[30].

FTIR Spectroscopy for Estimation of Microbiological
Changes

Meats are very prone to spoilage as a result of microbiological
and biochemical changes. Growth of microorganisms and ac-
tivity of enzymes elicit alterations in the chemical and struc-
tural components of muscle, which further deteriorate the
physical and sensory quality of the products [121–123]. On
the other hand, consumption of meat and meat products con-
taminated by pathogenic bacteria constitutes food safety
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issues for human health [124]. All of these adverse changes
occur in meats due to microorganisms, bringing major chal-
lenges for the meat industry and leading to health problems,
regulatory compliance issues, and economic losses [125],
which are traditionally monitored by sensory testing, chemical
methods, and determining microbial population [122].
Among other techniques, FTIR spectroscopy has drawn in-
creasing attention as a propitious method to perform microbi-
ological analyses for various purposes [19, 45]. In this context,
the research on the application of FTIR spectroscopy in quan-
tification and detection of pathogens, biofilm characterization,
shelf life monitoring, and microbial load detection is reviewed
in the following sections. Table 5 summarizes the studies con-
ducted on detecting microbiological changes using FTIR
spectroscopy technique in meat and meat products.

FTIR Spectroscopy for Detection of Bacterial Cells

Bacteria are mainly classified in two groups: Gram positive
and Gram negative. Gram positive bacteria are distinguished
by their thick and rigid layer of peptidoglycan (PG, 40–80%
by weight of the cell wall) compared with Gram negative
bacteria (10% by weight of the cell wall). Cell wall structure
of bacteria consists of parallel polysaccharide chains of alter-
nating N-acetylglucosamine (NAG) and N-acetylmuramic ac-
id (NAM) residues joined by β(1 → 4) glycosidic bonds.
Besides these bonds, the cell wall of bacteria has parallel
chains linked by penta- or tetra-peptides. The amino acid com-
position of peptide chains can change depending on bacterial
species. In one of the best known Gram negative bacteria,
Escherichia coli, the tetra-peptide consists of D-alanine, D-
glutamic acid, and meso-diaminopimelic acid; on the other
hand, in Gram positive Staphylococcus spp., it consists of L-
alanine, D-glutamine, L-lysine, and D-alanine [126–128].
Apart from this difference, Gram positive cell walls contain
teichoic acids and lipoproteins that are covalently bound to the
PG. Gram negative bacteria have an outer membrane outside
the PG layer which contains phospholipids in the inner layer
[129].

Based on the differences in the structure of various micro-
organisms at molecular level, FTIR spectroscopy is consid-
ered a promising method to identify or detect bacteria in food
complexes by comparing contaminated and uncontaminated
spectra and identifying the species with the aid of a previously
created spectral database [126, 128]. In a review by Novais
et al. [130] on strain typing of various Gram negative and
Gram positive bacterial species based on FTIR spectroscopy,
it was noted that a consistent correlation between biochemical
fingerprints on FTIR spectra and sugar-based coating struc-
tures existed. It was also stated that FTIR could be a very
useful tool for microbiological evaluations, particularly in
pathogen-host interactions because of its strain differentiation
performance.

The spectral regions between 3000–2800 cm−1 (fatty acid
region) and 1700–1500 cm−1 (Amide I and Amide II bands of
proteins) in FTIR spectra are the most characteristic parts for
discriminating bacterial species [131–133]. On the other hand,
regions at wavenumbers between 1500–1200 cm−1 (mixed
region of fatty acid bending vibrations, proteins, and
phosphate-carrying compounds), 1200–900 cm−1 (absorption
bands of the carbohydrates in microbial cell walls), and 900–
700 cm-1 (fingerprint region for bacteria identification) can be
helpful to understand variations in structure and composition
of the bacteria [126]. To date, FTIR spectroscopy has been
successfully applied for detection or identification of particu-
lar foodborne pathogens such as Listeria, E. coli, Salmonella,
Staphylococcus, Yersinia, and Bacillus. This technique is not
only used for identification but also to exhibit information
about bacterial metabolism, growth phase, and antibiotic re-
sistance [94, 126].

In a study by Grewal et al. [95], classification of chicken
salami samples based on the FTIR spectral signatures of
Salmonella enteritidis, Pseudomonas ludensis, Listeria
monocytogenes , and E. coli was performed using
chemometrics tools. The PLS models exhibited better
(higher) R values for the classification of bacterial species (R
= 0.984) compared with quantitation of the bacteria concen-
tration (R = 0.939). Classification of chicken salami samples
contaminated with S. enteritidis and P. ludensis from control
in the wavenumber region between 1800 and 1200 cm−1 was
performed by using SIMCA with 100% accuracy while PLS-
DA exhibited some misclassifications in this region [95].

Amamcharla et al. [134] studied Salmonella contaminated
packed beef by analyzing the spectra of headspace volatiles
obtained by FTIR spectroscopy coupled with a gas cell and a
headspace sampling system. Principal component analysis
and statistical classification methods (linear and quadratic dis-
criminate analysis) indicated that whole spectra (4000–500
cm−1) and 850–500 cm−1 wavenumber region could be used
to discriminate Salmonella contaminated beef from uncon-
taminated samples [134].

FTIR Spectroscopy for Characterization of Biofilms

Some foodborne pathogens can easily attach to the environ-
ment of food manufacturing plants and develop biofilms on
various surfaces, which further might lead to bacterial cross-
contamination during processing. Biofilms mainly comprise
of proteins, saccharides, uronic acids, and humic substances,
and each biofilm producer microorganism can secrete
exopolysaccharides (EPS) with different characteristics de-
pending on its genetic structure and environmental factors
[135–137]. FTIR spectroscopy is among the nondestructive
approaches used to examine biofilms in situ without changing
biofilm structure [138, 139].
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One of the biofilm producing food-borne pathogens,
Salmonella, can create biofilms on a wide variety of food
contact surfaces, and might cause a health risk [138, 140].
ATR-FTIR spectroscopy was used by Wang et al. [138] to
identify EPS composition of biofilm produced by meat-
borne Salmonella isolates under a simulated meat manufactur-
ing medium. Spectra of biofilm were obtained at 3500 to 780
cm−1 wavenumber range. It was shown that the bands associ-
ated with carbohydrates (1084 and 1056 cm−1) and Amides
peaks (1647, 1548, and 1539 cm−1) exhibited great intensity
indicating that carbohydrates and proteins are essential com-
ponents of biofilm structure [138].

Wang et al. [141] investigated biofilm development pro-
cess of five Enterobacteriaceae isolates associated with meat
processing plants under short- and long-term growth periods.
Structure of the mature biofilms from Proteus mirabilis,
Citrobacter freundi, Enterobacter cloacae, Hafnia alvei, and
Klebsiella oxytoca was evaluated by FTIR-ATR method and
confocal laser scanning microscopy. FTIR-ATR spectra were
obtained in the fingerprint region of 2000 to 780 cm−1. Results
of the study indicated that in the FTIR-ATR spectra of biofilm
structure, the main peaks were corresponded to amide, poly-
saccharides, and glycosidic linkage [141].

Another meat spoilage and biofilm producing bacteria,
Pseudomonas fluorescens, were examined by Wang et al.
[123]. In this study, the main structure of biofilm EPS of
P. fluorescens directly on stainless-steel plates after 5 days
of incubation was determined from the FTIR-ATR spectra.
The results indicate that more than 4.5 log CFU/cm2 of
P. fluorescens were transferred to a stainless-steel surface un-
der short-term (5 h) scenario, and bacteria transfer occurred
even after only 10 min exposure. A mature biofilm was dis-
covered after 5 days of incubation under long-term (7 days)
scenario. The biofilm was characterized by more than 9.5 log
CFU/cm2 cells, 120 mm thick, and a large amount of extra-
cellular polymeric substances. In the FTIR spectra of EPS, the
peaks determined at 1650, 1540, 1230, and 1055 cm−1 were
assigned to the functional groups of proteins (Amide I, Amide
II), phosphorus-containing carbohydrates, polysaccharides,
and glycosidic linkage deformation of carbohydrates, respec-
tively. These results indicated that the constituents of biofilm
EPS formed by P. fluorescensmainly were proteins, phospho-
lipids, polysaccharides, and other carbohydrates [123].

In another study, Orhan-Yanikan et al. [139] employed
FTIR spectroscopy to determine the effects of two EPS ex-
traction methods, namely, from agar (solid) and from broth
(liquid), on the biofilm structure produced by Acinetobacter
baumannii and E. coli strains which were isolated from the
production line of a meat processing plant. Biofilms extracted
from liquid growth media exhibited more distinct bands when
compared with solid growth conditions. In FTIR spectral anal-
ysis, protein regions in the range of 4000–550 cm−1

wavenumbers were examined. The Amide bands at around

1634 and 1531 cm−1 region had great intensity in all biofilms.
The main peaks for comparing the two EPS extraction
methods were those at 1397 cm−1 corresponding to the protein
backbone components and carboxylate groups, and at 1230
cm−1 corresponding to the general phosphoryl groups and
phosphodiester sites of nucleic acids [139].

FTIR spectroscopy for detection of spoilage bacteria

In meat samples, total viable count (TVC) indicates the counts
of viable individual microorganisms which may include bac-
teria, yeasts, and mold species. Spoilage-related microbiota of
meat generally consist of Pseudomonas, Brochothrix, lactic
acid bacteria (LAB), Staphylococcus, Micrococcus, and
Enterobacteriaceae [90, 142]. LAB are generally known as
fermentative bacteria; however, in vacuum or modified atmo-
sphere packaged meats, these Gram positive bacteria easily
become predominant spoilage microorganisms. The
psychrotrophic strains of Gram negative Pseudomonas genus
are important for spoilage in aerobically storedmeats. Another
group of bacteria is the Enterobacteriaceae family, which
includes hazardous Salmonella and E. coli strains. Gram pos-
itive Brochothrix thermosphacta is one of psychrotrophic mi-
croorganisms responsible for spoilage in fresh and cured
meats [143, 144].

In the past, cultivable bacterial strains could be identified
by traditional methods. In fact, microbiologists have only
succeeded in discovering a small fraction of bacterial diversity
from the huge microbial world. Therefore, some microbial
activities cannot be followed by traditional methods and more
realistic data about microflora is needed [12, 145].
Biochemical or serological tests or DNA/RNA based molec-
ular techniques exist to identify or detect bacterial species. In
order to overcome problems related to these traditionally ap-
plied methods, nondestructive, efficient, time-saving, and
low-cost methods have drawn attention for evaluating metab-
olites generated by growth of microorganisms and microbial
enzymes [103, 146, 147]. Due to the molecular vibrations of
functional groups present in the proteins, nucleic acids, lipids,
sugars, and lipopolysaccharides, FTIR spectroscopy can pro-
vide information about molecular composition that varies
from species to species and even at strain levels. Therefore,
the FTIR spectrum is unique and characteristic for each bac-
terium [126]. It is possible to discriminate a contaminated
food from an uncontaminated food with an infrared spectrum
if the bacterial metabolism products are specific [95]. FTIR
spectroscopy is a technique that could be used to interpret
vibrational modes of organic materials and related organisms,
and the FTIR spectrum can be a “biochemical signature” of a
sample as an indicator for microbiological quality or spoilage
level [148]. The main indicators of spoilage (off-odors,
discolorations, and slime formation) are detectable after mi-
crobial populations reach 107 to 108 colony forming unit
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(CFU)/cm2 [144]. Therefore, early detection of meat spoilage
with low microbial loads is a critical point and possible with
spectroscopic techniques.

Ellis et al. [26] investigated the possibility of using FTIR
spectroscopy as a tool to determine microbial spoilage directly
on the surface of comminuted chicken breast meats. Chicken
meat samples were allowed to spoil at room temperature for
24 h. FTIR spectra were obtained using ATR, and classical
microbiological plating methods (the total viable count) were
simultaneously performed every hour. Bacterial loads were
predicted using FTIR spectra combined with PLS-R analysis
and machine learning strategies such as genetic algorithms
(GAs) and genetic programming (GP). Amide I, Amide II,
and free amino acid bands were the most intense peaks that
appeared at 1640 cm−1, 1550 cm−1, and 1240–1088 cm−1

wavenumber regions, respectively. It was noted that while
Amide II band was negatively correlated with spoilage due
to the decrease in protein content upon spoilage, there was a
positive correlation between spoilage and the peaks at 1240–
1088 cm−1 (corresponding to free amino acids). Based on the
results of GP and GAs, for the spoilage prediction in chicken
meats, the 1096–1088 cm−1 was the most significant area to
differentiate fresh (< 107 bacteria/cm2) and spoiled (≥ 107

bacteria/cm2) samples indicating that proteolysis is the main
biochemical indicator of the onset of chicken meat spoilage. It
was possible to precisely quantify bacterial contamination of 2
× 106 to 2 × 109/cm2 on chicken meat from the FTIR spectra
[26]. Furthermore, a similar study was conducted on microbi-
ologically spoiled or contaminated beef [149]. In this study,
analyses were performed using the FTIR method in combina-
tion with linear regression and evolutionary computational-
based machine learning. It was reported that the prediction
of bacterial spoilage in beef was not as accurate as used in
chicken meat, likely due to the differences in spoilage process
in these two types of meats.

FTIR and Raman spectroscopy were compared for mi-
crobiological and sensory analysis in minced beef sam-
ples under aerobic and modified atmosphere packaging at
5 °C [94]. The data were evaluated with machine learn-
ing and evolutionary computing techniques comprising
PLS-R, genetic programming (GP), genetic algorithm
(GA), ANNs, support vector machines (SVM), and sup-
port vector machines regression (SVR). When compared,
data evaluation methods using SVM and PLS exhibited
slightly more accurate predictions of microbial counts
than GA-GP, GA-ANN, GP. Calibration models for both
FTIR and Raman provided better predictions for TVC,
LAB, and Enterobacteriaceae. It was noted that, in gen-
eral, FTIR models were slightly better in predicting mi-
crobial counts.

Kodogiannis and Alshejari [150] utilized FTIR spectra ob-
tained from the surface of the meat for microbiological popu-
lation prediction and for classification of beef samples in the

respective quality classes such as fresh, semi-fresh, and
spoiled. Different from other relevant studies, in this research,
the proposed model utilized a prototype defuzzification
scheme. The neurofuzzy model classification performance
was found to be excellent, with 95.94% and 94.74% accuracy
for the two different case studies. Prediction performances of
multilayer perceptron (MLP) and PLS schemes were very
satisfactory. This study was structured to associate FTIR spec-
tra with such systems, and the adaptive fuzzy logic system
(AFLS) model used in this study seems very convincing.
However, the limited data could be used for evaluation and
there is a need to create larger training datasets. The data
obtained from classical models such as the adaptive neuro-
fuzzy inference system (ANFIS), MLP, and PLS regression
were compared against AFLS model introduced as advanced
learning-based modelling schemes. The results from these
comparisons demonstrated that AFLS modelling could have
a great potential for fast and accurate microbial spoilage de-
termination [150].

Microbial spoilage of chicken meat was investigated by
Zajac et al. [29] using time-dependent FTIR and Raman tech-
niques. The changes at the amide bonds I, II, III, and S–S,
decarboxylation of protein (reduction in the amount of C=O),
and their deamination were evaluated to predict poultry meat
spoilage in particular. Chicken breast muscle (pectoralis
major) samples were stored in air at 22 °C up to 10 days
and their FTIR and Raman spectra were measured. A
deconvolution of the selected bands into Lorentz components
was performed for analysis of the obtained spectra. It was
reported that this is a reliable approach to detect bacterial
and chemical spoilage in meats depending on the biochemical
changes occurring during storage, and that the increase in free
amino acid content could be successfully used as an indicator
for spoilage [29].

The potential of FTIR equipped with ATR to predict the
bacterial load of salmon fillets (Salmo salar) stored at different
temperatures (3, 8, and 30 °C) was measured under three
packaging conditions: air packaging (AP) and two modified
atmospheres with lemon juice (MAPL) and without lemon
juice (MAP) [28]. In the prediction of microbiological popu-
lation, PLS regression was applied at frequency regions from
1752 to 1735 cm−1, from 1560 to 1245 cm−1, and from 1160
to 1025 cm−1 and calibration models were constructed for
TVC, psychrotrophs, LAB, mold and yeast, Brochothrix
thermosphacta, Enterobacteriaceae, Pseudomonas spp., and
H2S producers. It was reported that for TVC, the RMSEP and
R2 values were 0.78 and 0.81, respectively, indicating good
estimates of bacterial counts from the infrared spectral data.

TVC and LAB counts were also successfully estimated in
ham slices packaged with probiotic supplemented edible film
and/or treated with high pressure processing (HPP) by using
FTIR in conjunction with PLS models [96]. The main aim in
this study was to classify the samples as fresh, semi-fresh, or
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spoiled depending on TVC and LAB counts. In developing
PLS regression models to obtain quantitative estimations of
microbial counts accuracy (Af), bias factors (Bf), RMSE were
calculated. For TVC and lactic acid bacteria, optimum corre-
lation between observations and predictions was determined
with Bf close to 1 in all samples. Af was close to 1 for non-
HPP treated samples, while it was not the case for HPP treated
samples likely due to different spectral characteristics deter-
mined in HPP samples in comparison with control samples,
resulting from the effect of HPP on texture or flavor properties
of the product [96].

Ur Rahman et al. [12] aimed to compare data obtained
using traditional methods in detecting microbial spoilage
with FTIR in chicken breast fillets. In traditional micro-
biological analyses, counts for total plate count (TPC) and
Enterobacteriaceae were between 3.04–8.20 CFU/cm2

and 2.39–6.33 CFU/cm2, respectively. Microbial spoilage
could be estimated by PLS regression analysis from spec-
tra with a fit of R2 = 0:66 for TPC, R2 = 0.52 for
Enterobacteriaceae numbers, suggesting that FTIR spec-
tral data are useful to retain information regarding the
spoilage of poultry meat.

Fengou et al. [59] conducted a study to screen microbio-
logical quality of minced pork using FTIR, visible (VIS) spec-
troscopy, and multispectral image (MSI) analyses. For FTIR,
VIS spectroscopy, and MSI, RMSE (log CFU/g) values were
0.915, 1.173, and 1.034, and R2 was 0.834, 0.727, and 0.788,
respectively. It was noted that FTIR spectroscopy and the
other two techniques used in this study would have consider-
able potential for the prediction of the microbiological quality
of minced pork. In another study, FTIR spectroscopy com-
bined with multivariate data analysis was used to estimate
microbiological spoilage of farmed sea bream (skin or flesh)
during aerobic storage at 0, 4, and 8 °C in comparison with
MSI analysis [60]. Spectral data were obtained at wavenum-
ber range of 3100–900 cm−1. PLS-R model performed using
the FTIR data of fish skin was successful in monitoring mi-
crobial spoilage of fish with R2, and RMSE predicted values
of 0.727 and 0.717, respectively. In the study, MRI models
were not satisfactory in predicting microbiological spoilage.

Pavli et al. [151] researched the potential of FTIR spectros-
copy in combination with chemometric analysis for estimation
of microbiological changes in Greek dry-fermented sausage
produced with the addition of probiotic Lactobacillus
plantarum L125 during fermentation, ripening, and storage
at 4 and 12 °C. The relationship between counts determined
withmicrobial analysis and estimated with FTIR spectroscopy
for lactic acid bacteria, mesophilic cocci/streptococci, TVC,
and staphylococci was evaluated by developing PLS regres-
sion models. It was noted that in general, there were good
relationships between microbial counts predicted from FTIR
data and those obtained from microbiological analyses.

Final Remarks

This review analyzes the many uses of FTIR spectroscopy in
meat and meat products where some of the highlights are as
follows:

–Aiming to ensure authenticity, quality, and safety of high-
ly nutritious, preferred, and valuable meat products, scientists,
food authorities, and the food industry need to develop alter-
native, reliable, and rapid assessment techniques to overcome
the limitations of traditional methods. Among several qualita-
tive and quantitative methods, FTIR spectroscopy has been
employed for various quality and process control purposes
in the food industry because it offers excellent opportunities
for structural and functional studies.

–In addition to being fast, sensitive, and safe, FTIR spec-
trometers provide simple and nondestructive measurements
without the need of complicated, time-consuming sample
preparation. Current research on this technique has focused
on identification of origin or species, compositional analyses,
and detection of microbiological and chemical changes in
meat products

–The eligibility of this robust analytical technique over
more classical methods is evident. Nonetheless, it must be
noted that FTIR spectroscopy would have a good chance to
become successful only if it is coupled with chemometric
modelling. Proper selection of statistical data analysis is nec-
essary for an accurate interpretation of collected data.

–One of the main drawbacks in FTIR spectroscopic analy-
sis of meat samples is that there is no standard universal ap-
plication to achieve a consensus on measurement, spectral
pre-processing, and chemometrics methods. Studies on FTIR
spectroscopic analyses of tissues focusing on biomedical/
diagnostic applications suggest a standardized workflow
based on the goals and scope of the experiment [16]. Such
approach could be used to develop standard laboratory proto-
cols in the field of meat science and technology to improve the
performance of this technique.

–Sample type, i.e., different meat species; different muscles
from the same carcass; raw meat, or processed meat, should
also be considered when selecting an appropriate chemomet-
ric model. Furthermore, because of the possible heterogeneity
of the meat samples, proper sample preparation before analy-
sis should be chosen since FTIR spectrometers measure a
small portion from the meat samples. Application of more
than one chemometric method for each case to process data
from a given type of meat sample would improve the perfor-
mance and make FTIR spectroscopy more precise and reli-
able, and thus widen its scope of application.

–Although it adds extra steps, extraction of specific food
components (e.g., fat, protein) could be considered in some
cases for the detection of adulteration if the specificity, sensi-
tivity, and power of the model are significantly increased.
Such is the case of processed meats substituted with unwanted
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meat species and incorporated with undeclared additives.
Therefore, when differentiation is based on spectral data relat-
ed to specific muscle components, a good compromise be-
tween results obtained from the extracted constituent and from
direct meat tissue measurement should be reached to warrant
the accuracy of the application.

–Validation is an important element for diagnostic analyt-
ical techniques, thus, for FTIR spectroscopy as well. After
mathematical model validation steps, results should be com-
pared with other standard methods in order to assess its limits,
suitability, and accuracy.

–The number of published papers regarding the application
of FTIR spectroscopy among other spectroscopic methods in
the analysis of meat and meat products has increased rapidly,
especially in the past 5 years, and such studies have gained
attention because of its many advantages. With the growth of
knowledge on the application of vibrational spectroscopy in
food science, instruments and software specializing in food
analysis will probably appear in the market as an end-user
product. Once sufficient knowledge is gained and standard-
ized procedures combined with appropriate chemometric
analyses are developed, it will be possible to routinely apply
the FTIR spectroscopy method in real practice in meat and
other food products.
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