304 research outputs found

    Evaluation of face recognition algorithms under noise

    Get PDF
    One of the major applications of computer vision and image processing is face recognition, where a computerized algorithm automatically identifies a person’s face from a large image dataset or even from a live video. This thesis addresses facial recognition, a topic that has been widely studied due to its importance in many applications in both civilian and military domains. The application of face recognition systems has expanded from security purposes to social networking sites, managing fraud, and improving user experience. Numerous algorithms have been designed to perform face recognition with good accuracy. This problem is challenging due to the dynamic nature of the human face and the different poses that it can take. Regardless of the algorithm, facial recognition accuracy can be heavily affected by the presence of noise. This thesis presents a comparison of traditional and deep learning face recognition algorithms under the presence of noise. For this purpose, Gaussian and salt-andpepper noises are applied to the face images drawn from the ORL Dataset. The image recognition is performed using each of the following eight algorithms: principal component analysis (PCA), two-dimensional PCA (2D-PCA), linear discriminant analysis (LDA), independent component analysis (ICA), discrete cosine transform (DCT), support vector machine (SVM), convolution neural network (CNN) and Alex Net. The ORL dataset was used in the experiments to calculate the evaluation accuracy for each of the investigated algorithms. Each algorithm is evaluated with two experiments; in the first experiment only one image per person is used for training, whereas in the second experiment, five images per person are used for training. The investigated traditional algorithms are implemented with MATLAB and the deep learning algorithms approaches are implemented with Python. The results show that the best performance was obtained using the DCT algorithm with 92% dominant eigenvalues and 95.25 % accuracy, whereas for deep learning, the best performance was using a CNN with accuracy of 97.95%, which makes it the best choice under noisy conditions

    Robust object detection in the wild via cascaded DCGAN

    Get PDF
    This research deals with the challenges of object detection at a distance or low resolution in the wild. The main intention of this research is to exploit and cascade state-of-the-art models and propose a new framework for enabling successful deployment for diverse applications. Specifically, the proposed deep learning framework uses state-of-the-art deep networks, such as Deep Convolutional Generative Adversarial Network (DCGAN) and Single Shot Detector (SSD). It combines the above two deep learning models to generate a new framework, namely DCGAN-SSD. The proposed model can deal with object detection and recognition in the wild with various image resolutions and scaling differences. To deal with multiple object detection tasks, the training of this network model in this research has been conducted using different cross-domain datasets for various applications. The efficiency of the proposed model can further be determined by the validation of diverse applications such as visual surveillance in the wild in intelligent cities, underwater object detection for crewless underwater vehicles, and on-street in-vehicle object detection for driverless vehicle technologies. The results produced by DCGAN-SSD indicate that the proposed method in this research, along with Particle Swarm Optimization (PSO), outperforms every other application concerning object detection and demonstrates its great superiority in improving object detection performance in diverse testing cases. The DCGAN-SSD model is equipped with PSO, which helps select the hyperparameter for the object detector. Most object detectors struggle in this regard, as they require manual effort in selecting the hyperparameters to obtain better object detection. This research encountered the problem of hyperparameter selection through the integration of PSO with SSD. The main reason the research conducted with deep learning models was the traditional machine learning models lag in accuracy and performance. The advantage of this research and it is achieved with the integration of DCGAN-SSD has been accommodated under a single pipeline

    Effect of cooking time on physical properties of almond milk-based lemak cili api gravy

    Get PDF
    One of the crucial elements in developing or reformulating product is to maintain the quality throughout its entire shelf life. This study aims to determine the effect of different cooking time on the almond milk-based of lemak cili api gravy. Various cooking times of 5, 10, 15, 20, 25 and 30 minutes were employed to the almond milk-based lemak cili api gravy followed by determination of their effects on physical properties such as total soluble solids content, pH and colour. pH was determined by using a pH meter. Refractometer was used to evaluate the total soluble solids content of almond milk-based lemak cili api gravy. The colours were determined by using spectrophotometer which expressed as L*, a* and b* values. Results showed that almond milk-based lemak cili api gravy has constant values of total soluble solids with pH range of 5 to 6, which can be classified as low acid food. Colour analysis showed that the lightness (L*) and yellowness (b*) are significantly increased while redness (a*) decreased. In conclusion, this study shows that physical properties of almond milk-based lemak cili api gravy changes by increasing the cooking time

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page

    Quality 4.0 in action: Smart hybrid fault diagnosis system in plaster production

    Get PDF
    UIDB/00066/2020Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing the digital transformation of industrial companies employing emerging technologies. Factories of the future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality by employing smart solutions and intelligent algorithms. There are many conceptual frameworks and models, while the main challenge is to have the experience of Quality 4.0 in action at the workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system (ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a passive descriptive model, a smart predictive model to recommend corrective actions. A construction plaster-producing company was used to present and evaluate the advantages of this novel approach, while the result shows the competency and eligibility of Quality 4.0 in action.publishersversionpublishe

    Text-detection and -recognition from natural images

    Get PDF
    Text detection and recognition from images could have numerous functional applications for document analysis, such as assistance for visually impaired people; recognition of vehicle license plates; evaluation of articles containing tables, street signs, maps, and diagrams; keyword-based image exploration; document retrieval; recognition of parts within industrial automation; content-based extraction; object recognition; address block location; and text-based video indexing. This research exploited the advantages of artificial intelligence (AI) to detect and recognise text from natural images. Machine learning and deep learning were used to accomplish this task.In this research, we conducted an in-depth literature review on the current detection and recognition methods used by researchers to identify the existing challenges, wherein the differences in text resulting from disparity in alignment, style, size, and orientation combined with low image contrast and a complex background make automatic text extraction a considerably challenging and problematic task. Therefore, the state-of-the-art suggested approaches obtain low detection rates (often less than 80%) and recognition rates (often less than 60%). This has led to the development of new approaches. The aim of the study was to develop a robust text detection and recognition method from natural images with high accuracy and recall, which would be used as the target of the experiments. This method could detect all the text in the scene images, despite certain specific features associated with the text pattern. Furthermore, we aimed to find a solution to the two main problems concerning arbitrarily shaped text (horizontal, multi-oriented, and curved text) detection and recognition in a low-resolution scene and with various scales and of different sizes.In this research, we propose a methodology to handle the problem of text detection by using novel combination and selection features to deal with the classification algorithms of the text/non-text regions. The text-region candidates were extracted from the grey-scale images by using the MSER technique. A machine learning-based method was then applied to refine and validate the initial detection. The effectiveness of the features based on the aspect ratio, GLCM, LBP, and HOG descriptors was investigated. The text-region classifiers of MLP, SVM, and RF were trained using selections of these features and their combinations. The publicly available datasets ICDAR 2003 and ICDAR 2011 were used to evaluate the proposed method. This method achieved the state-of-the-art performance by using machine learning methodologies on both databases, and the improvements were significant in terms of Precision, Recall, and F-measure. The F-measure for ICDAR 2003 and ICDAR 2011 was 81% and 84%, respectively. The results showed that the use of a suitable feature combination and selection approach could significantly increase the accuracy of the algorithms.A new dataset has been proposed to fill the gap of character-level annotation and the availability of text in different orientations and of curved text. The proposed dataset was created particularly for deep learning methods which require a massive completed and varying range of training data. The proposed dataset includes 2,100 images annotated at the character and word levels to obtain 38,500 samples of English characters and 12,500 words. Furthermore, an augmentation tool has been proposed to support the proposed dataset. The missing of object detection augmentation tool encroach to proposed tool which has the ability to update the position of bounding boxes after applying transformations on images. This technique helps to increase the number of samples in the dataset and reduce the time of annotations where no annotation is required. The final part of the thesis presents a novel approach for text spotting, which is a new framework for an end-to-end character detection and recognition system designed using an improved SSD convolutional neural network, wherein layers are added to the SSD networks and the aspect ratio of the characters is considered because it is different from that of the other objects. Compared with the other methods considered, the proposed method could detect and recognise characters by training the end-to-end model completely. The performance of the proposed method was better on the proposed dataset; it was 90.34. Furthermore, the F-measure of the method’s accuracy on ICDAR 2015, ICDAR 2013, and SVT was 84.5, 91.9, and 54.8, respectively. On ICDAR13, the method achieved the second-best accuracy. The proposed method could spot text in arbitrarily shaped (horizontal, oriented, and curved) scene text.</div

    A Novel Hybrid CNN Denoising Technique (HDCNN) for Image Denoising with Improved Performance

    Get PDF
    Photo denoising has been tackled by deep convolutional neural networks (CNNs) with powerful learning capabilities. Unfortunately, some CNNs perform badly on complex displays because they only train one deep network for their image blurring models. We recommend a hybrid CNN denoising technique (HDCNN) to address this problem. An HDCNN consists of a dilated interfere with, a RepVGG block, an attribute sharpening interferes with, as well as one inversion. To gather more context data, DB incorporates a stretched convolution, data sequential normalization (BN), shared convergence, and the activating function called the ReLU. Convolution, BN, and reLU are combined in parallel by RVB to obtain complimentary width characteristics. The RVB's refining characteristics are used to refine FB, which is then utilized to collect more precise data. To create a crisp image, a single convolution works in conjunction with a residual learning process. These crucial elements enable the HDCNN to carry out visual denoising efficiently. The suggested HDCNN has a good denoising performance in open data sets, according to experiments

    Driver attention analysis and drowsiness detection using mobile devices

    Get PDF
    Drowsiness and lack of attention are some of the most fatal and underrated accident causes while driving. In this thesis a non intrusive classifier based on features from drivers' facial movements has been developed, focusing on detection strategies that could be deployed on low-complexity devices, like smartphones. Different classification architectures will be proposed and studied in order to understand which implementation performed the best in terms of detection accuracy.openEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes
    corecore