340 research outputs found

    Vulnerabilities in biometric systems: Attacks and recent advances in liveness detection

    Full text link
    This is an electronic version of the paper presented at the Spanish Workshop on Biometrics 2007, SWB-07 held in Girona (Spain)A review of the state-of-the-art in direct and indirect attacks to fingerprint and iris automatic recognition security systems is presented. A summary of the novel liveness detection methods, which take advantage of different physiological properties to distinguish between real and fake biometric traits, is also reported.This work has been supported by the TIC2006-13141-C03-03 project of the Spanish Ministry of Science and Technology and the BioSecure NoE

    Vulnerabilities and attack protection in security systems based on biometric recognition

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, noviembre de 200

    Biometric Spoofing: A JRC Case Study in 3D Face Recognition

    Get PDF
    Based on newly available and affordable off-the-shelf 3D sensing, processing and printing technologies, the JRC has conducted a comprehensive study on the feasibility of spoofing 3D and 2.5D face recognition systems with low-cost self-manufactured models and presents in this report a systematic and rigorous evaluation of the real risk posed by such attacking approach which has been complemented by a test campaign. The work accomplished and presented in this report, covers theories, methodologies, state of the art techniques, evaluation databases and also aims at providing an outlook into the future of this extremely active field of research.JRC.G.6-Digital Citizen Securit

    Fast computation of the performance evaluation of biometric systems: application to multibiometric

    Full text link
    The performance evaluation of biometric systems is a crucial step when designing and evaluating such systems. The evaluation process uses the Equal Error Rate (EER) metric proposed by the International Organization for Standardization (ISO/IEC). The EER metric is a powerful metric which allows easily comparing and evaluating biometric systems. However, the computation time of the EER is, most of the time, very intensive. In this paper, we propose a fast method which computes an approximated value of the EER. We illustrate the benefit of the proposed method on two applications: the computing of non parametric confidence intervals and the use of genetic algorithms to compute the parameters of fusion functions. Experimental results show the superiority of the proposed EER approximation method in term of computing time, and the interest of its use to reduce the learning of parameters with genetic algorithms. The proposed method opens new perspectives for the development of secure multibiometrics systems by speeding up their computation time.Comment: Future Generation Computer Systems (2012

    Biometric antispoofing methods: A survey in face recognition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Galbally, S. Marcel and J. Fierrez, "Biometric Antispoofing Methods", IEEE Access, vol.2, pp. 1530-1552, Dec. 2014In recent decades, we have witnessed the evolution of biometric technology from the rst pioneering works in face and voice recognition to the current state of development wherein a wide spectrum of highly accurate systems may be found, ranging from largely deployed modalities, such as ngerprint, face, or iris, to more marginal ones, such as signature or hand. This path of technological evolution has naturally led to a critical issue that has only started to be addressed recently: the resistance of this rapidly emerging technology to external attacks and, in particular, to spoo ng. Spoo ng, referred to by the term presentation attack in current standards, is a purely biometric vulnerability that is not shared with other IT security solutions. It refers to the ability to fool a biometric system into recognizing an illegitimate user as a genuine one by means of presenting a synthetic forged version of the original biometric trait to the sensor. The entire biometric community, including researchers, developers, standardizing bodies, and vendors, has thrown itself into the challenging task of proposing and developing ef cient protection methods against this threat. The goal of this paper is to provide a comprehensive overview on the work that has been carried out over the last decade in the emerging eld of antispoo ng, with special attention to the mature and largely deployed face modality. The work covers theories, methodologies, state-of-the-art techniques, and evaluation databases and also aims at providing an outlook into the future of this very active eld of research.This work was supported in part by the CAM under Project S2009/TIC-1485, in part by the Ministry of Economy and Competitiveness through the Bio-Shield Project under Grant TEC2012-34881, in part by the TABULA RASA Project under Grant FP7-ICT-257289, in part by the BEAT Project under Grant FP7-SEC-284989 through the European Union, and in part by the Cátedra Universidad Autónoma de Madrid-Telefónica

    Statistical meta-analysis of presentation attacks for secure multibiometric systems

    Get PDF
    Prior work has shown that multibiometric systems are vulnerable to presentation attacks, assuming that their matching score distribution is identical to that of genuine users, without fabricating any fake trait. We have recently shown that this assumption is not representative of current fingerprint and face presentation attacks, leading one to overestimate the vulnerability of multibiometric systems, and to design less effective fusion rules. In this paper, we overcome these limitations by proposing a statistical meta-model of face and fingerprint presentation attacks that characterizes a wider family of fake score distributions, including distributions of known and, potentially, unknown attacks. This allows us to perform a thorough security evaluation of multibiometric systems against presentation attacks, quantifying how their vulnerability may vary also under attacks that are different from those considered during design, through an uncertainty analysis. We empirically show that our approach can reliably predict the performance of multibiometric systems even under never-before-seen face and fingerprint presentation attacks, and that the secure fusion rules designed using our approach can exhibit an improved trade-off between the performance in the absence and in the presence of attack. We finally argue that our method can be extended to other biometrics besides faces and fingerprints

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    On Generative Adversarial Network Based Synthetic Iris Presentation Attack And Its Detection

    Get PDF
    Human iris is considered a reliable and accurate modality for biometric recognition due to its unique texture information. Reliability and accuracy of iris biometric modality have prompted its large-scale deployment for critical applications such as border control and national identification projects. The extensive growth of iris recognition systems has raised apprehensions about the susceptibility of these systems to various presentation attacks. In this thesis, a novel iris presentation attack using deep learning based synthetically generated iris images is presented. Utilizing the generative capability of deep convolutional generative adversarial networks and iris quality metrics, a new framework, named as iDCGAN is proposed for creating realistic appearing synthetic iris images. In-depth analysis is performed using quality score distributions of real and synthetically generated iris images to understand the effectiveness of the proposed approach. We also demonstrate that synthetically generated iris images can be used to attack existing iris recognition systems. As synthetically generated iris images can be effectively deployed in iris presentation attacks, it is important to develop accurate iris presentation attack detection algorithms which can distinguish such synthetic iris images from real iris images. For this purpose, a novel structural and textural feature-based iris presentation attack detection framework (DESIST) is proposed. The key emphasis of DESIST is on developing a unified framework for detecting a medley of iris presentation attacks, including synthetic iris. Experimental evaluations showcase the efficacy of the proposed DESIST framework in detecting synthetic iris presentation attacks

    DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution

    Full text link
    Recent research has demonstrated the vulnerability of fingerprint recognition systems to dictionary attacks based on MasterPrints. MasterPrints are real or synthetic fingerprints that can fortuitously match with a large number of fingerprints thereby undermining the security afforded by fingerprint systems. Previous work by Roy et al. generated synthetic MasterPrints at the feature-level. In this work we generate complete image-level MasterPrints known as DeepMasterPrints, whose attack accuracy is found to be much superior than that of previous methods. The proposed method, referred to as Latent Variable Evolution, is based on training a Generative Adversarial Network on a set of real fingerprint images. Stochastic search in the form of the Covariance Matrix Adaptation Evolution Strategy is then used to search for latent input variables to the generator network that can maximize the number of impostor matches as assessed by a fingerprint recognizer. Experiments convey the efficacy of the proposed method in generating DeepMasterPrints. The underlying method is likely to have broad applications in fingerprint security as well as fingerprint synthesis.Comment: 8 pages; added new verification systems and diagrams. Accepted to conference Biometrics: Theory, Applications, and Systems 201
    • …
    corecore