The performance evaluation of biometric systems is a crucial step when
designing and evaluating such systems. The evaluation process uses the Equal
Error Rate (EER) metric proposed by the International Organization for
Standardization (ISO/IEC). The EER metric is a powerful metric which allows
easily comparing and evaluating biometric systems. However, the computation
time of the EER is, most of the time, very intensive. In this paper, we propose
a fast method which computes an approximated value of the EER. We illustrate
the benefit of the proposed method on two applications: the computing of non
parametric confidence intervals and the use of genetic algorithms to compute
the parameters of fusion functions. Experimental results show the superiority
of the proposed EER approximation method in term of computing time, and the
interest of its use to reduce the learning of parameters with genetic
algorithms. The proposed method opens new perspectives for the development of
secure multibiometrics systems by speeding up their computation time.Comment: Future Generation Computer Systems (2012