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Abstract—Prior work has shown that multibiometric systems are vulnerable to presentation attacks, assuming that their matching
score distribution is identical to that of genuine users, without fabricating any fake trait. We have recently shown that this assumption is
not representative of current fingerprint and face presentation attacks, leading one to overestimate the vulnerability of multibiometric
systems, and to design less effective fusion rules. In this paper, we overcome these limitations by proposing a statistical meta-model of
face and fingerprint presentation attacks that characterizes a wider family of fake score distributions, including distributions of known
and, potentially, unknown attacks. This allows us to perform a thorough security evaluation of multibiometric systems against
presentation attacks, quantifying how their vulnerability may vary also under attacks that are different from those considered during
design, through an uncertainty analysis. We empirically show that our approach can reliably predict the performance of multibiometric
systems even under never-before-seen face and fingerprint presentation attacks, and that the secure fusion rules designed using our
approach can exhibit an improved trade-off between the performance in the absence and in the presence of attack. We finally argue
that our method can be extended to other biometrics besides faces and fingerprints.

Index Terms—statistical meta-analysis, uncertainty analysis, presentation attacks, security evaluation, secure multibiometric fusion.
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1 INTRODUCTION

THE widespread use of biometric identity recognition
systems is severely limited by security threats arising

from several kinds of potential attacks [1]–[3]. In particular,
the use of fake biometric traits (e.g., gummy fingers [4]),
also known as “direct”, “spoofing” or “presentation” at-
tacks [1], [2], [5]–[7], has the greatest practical relevance as
it does not require advanced technical skills. Accordingly,
the potential number of attackers is very large. Vulnera-
bility to presentation attacks has been studied mostly for
unimodal fingerprint and face recognition systems [4], [8]–
[10]. Multibiometric systems have been considered intrin-
sically more secure, instead, based on the intuition that an
attacker should spoof all the biometric traits to successfully
impersonate the targeted client [11], [12].

This claim has been questioned in subsequent work,
showing that an attacker may successfully spoof a multibio-
metric system even if only one (or a subset) of the combined
traits is counterfeited, if the fusion rule is not designed by
taking that into account [13]–[15]. From a computer security
perspective, this is not surprising: it is well-known that
the security of a system relies the most on the security
of its weakest link [16]. This vulnerability of multibiometric
fusion has been shown under the assumption that the fake
score distribution at the output of the attacked matcher is
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identical to that of genuine users, without fabricating any
fake trait. Under the same assumption, more secure fusion
rules against presentation attacks have also been proposed.

In our recent work, through an extensive experimental
analysis, we have shown that the aforementioned assump-
tion is not representative of current face and fingerprint
presentation attacks [17]–[19]. In fact, their fake score dis-
tributions do not only rarely match those of genuine users,
but they can also be very different, depending on the
technique, materials, and source images used to fabricate
the presentation attack; i.e., presentation attacks can have a
different impact on the output of the targeted matcher. For
these reasons, the methodology proposed in [13]–[15] may
not only provide an overly-pessimistic security evaluation
of multibiometric systems to presentation attacks, but also
lead one to design secure fusion rules that exhibit a too pes-
simistic trade-off between the performance in the absence of
attack and that under attack.

To perform a more complete analysis of the security of
multibiometric systems, as shown in [17]–[21], considering
only one or a few known attacks is not sufficient. One
should thus face the cumbersome and time-consuming task
of collecting or fabricating a large, representative set of
presentation attacks (with different impact on the attacked
matchers) for each biometric characteristic, and evaluate
their subsequent effect on the fusion rule and on system
security. However, even in this case, one may not be able to
understand how multibiometric systems may behave under
scenarios that are different from those considered during
design, including presentation attacks fabricated with novel
materials or techniques, that may produce different, never-
before-seen fake score distributions at the matchers’ output.

In this paper, we propose a methodology for evaluating
the security of multibiometric systems to presentation at-
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tacks, and for designing secure fusion rules, that overcomes
the aforementioned limitations. In particular, we start from
the underlying idea of [13]–[15], based on simulating fake
score distributions at the matchers’ output (without fabricat-
ing fake traits), and on evaluating the output of the fusion
rule. However, instead of considering a single fake score
distribution equal to that of genuine users, we develop a
statistical meta-model that enables simulating a continuous
family of fake score distributions, with a twofold goal: (i) to
better characterize the distributions of known, state-of-the-
art presentation attacks, as empirically observed in our pre-
vious work, through a statistical meta-analysis; and (ii) to
simulate distributions that may correspond to never-before-
seen (unknown) attacks incurred during system operation,
as perturbations of the known distributions, through an un-
certainty analysis on the input-output behavior of the fusion
rule. Accordingly, our approach provides both a point esti-
mate of the vulnerability of multibiometric systems against
(a set of) known presentation attacks, and an evaluation of
how the estimated probability of a successful presentation
attack may vary under unknown attacks, giving confidence
intervals for this prediction. To validate the soundness of
our approach, we will empirically show that it allows one to
model and correctly predict the impact of unknown attacks
on system security. For these reasons, our approach provides
a more complete evaluation of multibiometric security. As a
consequence, it also allows us to design fusion rules that
exhibit a better trade-off between the performance in the
absence and in the presence of attack.

The remainder of the paper is structured as follows. We
discuss current approaches for evaluating multibiometric
security, and their limitations, in Sect. 2. In Sect. 3, we
present our statistical meta-model of presentation attacks. In
Sect. 4, we discuss a data model for multibiometric systems
that accounts for the presence of zero-effort and spoof im-
postors (i.e., impostors that do not attempt any presentation
attack, and impostors that use at least one fake trait). In
Sect. 5 and Sect. 6, we exploit these models to define a proce-
dure for the security evaluation of multibiometric systems,
and to design novel secure fusion rules. We empirically
validate our approach in Sect. 7, using publicly-available
datasets of faces and fingerprints that include more recent,
never-before-seen presentation attacks, with respect to those
considered to develop our meta-model. Contributions and
limitations of our work are finally discussed in Sect. 8.

2 SECURITY OF MULTIBIOMETRIC SYSTEMS

Before reviewing current approaches for evaluating multi-
biometric security against spoofing, it is worth remarking
that different terminologies have been used in the literature
when referring to biometric systems, and only recently they
have been systematized in the development of a novel
standard and harmonized vocabulary from the International
Standard Organization (ISO) [5]–[7]. We summarize some
of the most common names in Table 1, and use them
interchangeably in the remainder of this paper.

In this work, we focus on multibiometric systems ex-
ploiting score-level fusion to combine the matching scores
coming from K distinct biometric traits. An example for
K = 2 is shown in Fig. 1. During the design phase,

TABLE 1
ISO standard nomenclature (under development) for biometric systems

and presentation attacks [5], [6], and commonly-used alternatives.

ISO Standard [5], [6] Commonly-used alternatives
Artefact(s) Spoof / Fake Trait(s)
Biometric Characteristic(s) Biometric(s) / Biometric Trait(s)
Comparison Subsystem Matcher / Matching Algorithm
Comparison Score(s) Matching Score(s)
Presentation Attack(s) Spoof / Direct Attack(s)
Presentation Attack Detection Liveness / Spoof Detection

authorized clients are enrolled by storing their biometric
traits (i.e., templates) and identities in a database. During
the online operation, each user provides the requested bio-
metrics, and claims the identity of an authorized client. The
corresponding templates are retrieved from the database
and matched against the submitted traits. The matching
scores s = (s1, . . . , sK) ∈ RK are combined through a fu-
sion rule which outputs an aggregated score f(s) ∈ R. The
aggregated score is finally compared with a threshold t to
decide whether the identity claim is made by a genuine user
(if f(s) ≥ t) or an impostor. Performance is evaluated, as for
unimodal systems, by estimating the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR) from the genuine
and impostor distributions of the aggregated score [22].1

Presentation attacks can target any subset of the K
biometrics; e.g., a fake face (e.g., a 3D mask) and/or a fake
fingerprint can be submitted to the corresponding sensor
(see Fig. 1). The other impostor’s biometrics are submitted
to the remaining sensors (if any): such biometrics are said
to be subject to a zero-effort attack [13], [15], [18]–[20]. In
multibiometric systems, the FAR is evaluated when all the
biometrics are subject to a zero-effort attack, i.e., against
zero-effort impostors [15], [20], [21]. As spoofing attacks
affect only the FAR of a given system (and not the FRR),
the corresponding performance is evaluated in terms of
the so-called Spoof FAR (SFAR) [15], [20], [21]. Impostors
attempting at least a presentation attack against one of
the matchers are referred to as spoof impostors [15], [20].
Different SFAR values can be clearly estimated depending
on the combination of attacked matchers, and on the kind
of spoofing attacks involved (e.g., one may either use a face
mask or a photograph for the purpose of face spoofing).
Furthermore, the FAR evaluated against an impostor dis-
tribution including both zero-effort and spoof impostors is
referred to as Global FAR (GFAR) [20], [21]. These measures
will be formally defined in Sect. 4.2

In the following, to keep the notation uncluttered, we
will respectively denote the score distribution of genuine
users, zero-effort and spoof impostors at the output of an
individual matcher as p(SG), p(SI) and p(SF).

1. Note that, according to the ISO standard [23], FAR and FRR
refer to the overall system performance, including errors like failure
to capture and failure to extract. If one only considers the algorithmic
performance, disregarding these aspects, then the False Match Rate
(FMR) and the False Non-Match Rate (FNMR) should be used.

2. Note that SFAR and GFAR should not be confused with standard
metrics used for presentation attack detection, like the Attack Presen-
tation Classification Error Rate (APCER) and Normal Presentation
Classification Error Rate (NPCER) [5]–[7], as the latter aim to evaluate
the performance of a system that discriminates between alive and fake
traits, and not between genuine and impostor users.
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Fig. 1. A bimodal system combining face and fingerprint, that can
potentially incur presentation attacks against either biometric, or both.

2.1 Where We Stand Today
In [13], Rodrigues et al. showed that multibiometric systems
can be evaded by spoofing a single biometric characteristic,
under the assumption that the corresponding score distri-
bution is identical to that of genuine users:

p(SF) = p(SG) . (1)

This result was obtained without fabricating any fake trait:
the matching scores of presentation attacks were simulated
by resampling fictitious scores from p(SG). Similar results
were obtained under the same assumption in [14], [15].

Subsequently, we carried out an extensive experimental
analysis on multibiometric systems combining face and
fingerprint, to evaluate whether and to what extent this as-
sumption was representative of current techniques for fab-
ricating fake traits (from now on, fake fabrication techniques)
[17]–[19].3 To this end, we considered different acquisition
sensors and matchers, and several presentation attacks fab-
ricated with different techniques. We used five state-of-the-
art fake fabrication techniques for fingerprints, as listed in
Table 2, taken from the first two editions of the Fingerprint
Liveness Detection Competition (LivDet) [24], [25]. They
include fake traits fabricated with five different materials,
in a worst-case setting commonly accepted for security
evaluation of fingerprint recognition systems, i.e., with the
cooperation of the targeted client (consensual method). Fake
faces (see Table 2) were obtained by displaying a photo
of the targeted client on a laptop screen, or by printing
it on paper, and then showing it to the camera [26], [27].
Pictures were taken with cooperation (Print [26], [28] and
Photo Attack datasets [17]) and without cooperation of the
targeted client (Personal Photo Attack [17]). As a fourth fake
fabrication technique, wearable masks were also fabricated
to impersonate the targeted clients (3D Mask Attack [29]).

Our analysis showed that most of the above fake fabri-
cation techniques produced distributions p(SF) that did not
match the overly-pessimistic assumption of [13]. Represen-
tative examples are reported in Fig. 2 for several unimodal
fingerprint and face systems, where it can be seen that:
p(SF) is located in between p(SG) and p(SI), it can be
very different from p(SG), and its shape depends on the
fake fabrication technique (see the three rightmost plots in
the top row of Fig. 2, which refer to presentation attacks
against the same fingerprint system with three different fake
fabrication techniques). Notably, this is also true for more
recent work on presentation attacks, even against different
biometrics, like palm vein and iris [30], [31]. Accordingly,

3. For example, fake fingerprints can be fabricated adopting a mold
of plasticine-like material where the targeted client has put his own
finger, and a cast of gelatin dripped over the mold; fake faces can be
fabricated by printing a picture of the targeted client on paper.

TABLE 2
Dataset characteristics: number of clients (# clients), and number of

spoof (# spoofs) and live (# live) images per client.

Dataset # clients # spoofs # live
LivDet09-Silicone (catalyst) [24] 142 20 20
LivDet11-Alginate [25] 80 3 5
LivDet11-Gelatin [25] 80 3 5
LivDet11-Silicone [25] 80 3 5
LivDet11-Latex [25] 80 3 5
Photo Attack [17] 40 60 60
Personal Photo Attack [17] 25 5 (avg.) 60
Print Attack [26], [28] 50 12 16
3D Mask Attack [29] 17 5 (video) 10 (video)

the SFAR estimated under the assumption in [13] can be
much higher than the actual SFAR [17]–[19].

Under the viewpoint of security evaluation, the ap-
proach proposed in [13]–[15] has the advantage of avoiding
the fabrication of fake traits. However, it can give one
an overly-pessimistic and incomplete analysis of multibio-
metric security, as p(SF) only rarely matches p(SG), and
different presentation attacks produce different p(SF).

2.2 Limitations and Open Issues
The empirical evidences summarized in Sect. 2.1 highlight
that, even if the assumption in [13]–[15] allows us to assess
the SFAR of a multibiometric system under different com-
binations of attacked matchers without fabricating any fake
trait, the corresponding estimates may be too pessimistic.
For the same reason, secure fusion rules based on the same
assumption may even worsen the trade-off between the
performance in the absence and in the presence of spoofing.

In addition, these evaluation techniques, as well as more
recent ones [20], [21], do not specifically account for never-
before-seen presentation attacks that may be incurred dur-
ing system operation. System security is often evaluated on
a set of attacks that may not be representative enough of
future ones, i.e., considering fake score distributions that
may be very different from those exhibited by unknown
attacks. Accordingly, such evaluations only provide point
estimates for the corresponding SFAR, without giving any
information on how it may vary under presentation attacks
that are different from those considered during design.

This raises two main open issues: (i) how to perform
a more complete security evaluation of multibiometric sys-
tems, accounting for both known and unknown presenta-
tion attacks; and (ii) how to design improved secure fusion
rules, while avoiding the cumbersome task of collecting or
fabricating a large set of representative fake biometric traits.

In the next section, we present a statistical meta-model
of presentation attacks that overcomes the aforementioned
limitations by simulating a continuous family of fake score
distributions p(SF), including distributions that correspond
to known presentation attacks, and potential variations to
account for never-before-seen attacks. We will then discuss
how to exploit our meta-model for the purpose of security
evaluation and to design secure fusion rules (Sects. 5-6).

3 STATISTICAL META-ANALYSIS OF PRESENTA-
TION ATTACKS

To address the issues discussed in Sect. 2.2, in this section we
develop a statistical meta-model that allows one to simulate



4

a continuous family of fake score distributions (at the output
of a matcher), with a twofold goal: (i) to characterize the
score distributions of known, state-of-the-art presentation
attacks; and (ii) to simulate continuous perturbations of
such distributions that may correspond to the effect of
unknown presentation attacks. In both cases, no fabrication
of presentation attacks is required, since the corresponding
fake score distributions are simulated.

To this aim, we exploit two well-known techniques of
statistical data analysis:: (i) statistical meta-analysis, that
aims to find common patterns from results collected from
previous studies, to avoid repeating time-consuming and
costly experiments (see, e.g., [32]); and (ii) uncertainty anal-
ysis, to evaluate the output of a system under unexpected
input perturbations (see, e.g., [33]–[35]). In particular, the
latter allows us to investigate the input-output behavior
of fusion rules, accounting for perturbations of the fake
score distributions at the matchers’ output (i.e., inputs to
the fusion rule) that may be caused by unknown attacks.
This completes our evaluation by providing information on
how the system may behave under presentation attacks that
are different from those considered during design.

Accordingly, our approach may provide a point esti-
mate of the vulnerability of multibiometric systems against
known presentation attacks (e.g., a given SFAR value), as
current evaluation techniques [13]–[15], [20], [21], and also
an estimate of how this vulnerability may vary under un-
known attacks, giving confidence intervals for this predic-
tion. As we will show experimentally, this provides a more
thorough security evaluation of multibiometric systems,
capable of correctly predicting even the impact of never-
before-seen presentation attacks.

In the following we present our meta-model, and show
how it characterizes known presentation attacks.

3.1 A Meta-model of Presentation Attacks
We first carry out a statistical meta-analysis of the fake score
distributions of known presentation attacks described in
Sect. 2.1. We already observed that they exhibit very differ-
ent shapes across the different multibiometric systems and
fake fabrication techniques considered. Nevertheless, under
a closer scrutiny some general patterns emerge (see Fig. 2).
First, p(SF) always lies in between p(SI) and p(SG) [17]–
[19], [29]. Second, it exhibits a clear similarity either to p(SI)
or to p(SG), or an intermediate shape between them. This is
reasonable, since presentation attacks attempt to mimic the
clients’ traits: accurate reproductions are likely to result in a
score distribution more similar to p(SG), whereas inaccurate
ones (provided that they still “resemble” a real trait to the
sensor/matcher) are likely to yield a score distribution more
similar to p(SI). In particular we observed that, for finger-
print spoofing, p(SF) resembles p(SI) for lower scores, and
p(SG) for higher scores, exhibiting a significant heavy tail
behavior (see Fig. 2, top row); in the case of face spoofing,
it exhibits a shape intermediate between p(SI) and p(SG),
without significant heavy tails (see Fig. 2, bottom row).

To reproduce the above patterns, we propose a meta-
model of p(SF) as a mixing of p(SI) and p(SG), by defining
a fictitious r.v. SF as:

SF = αSG + (1− α)SI , (2)

where we define in turn SG, SI and α as indepen-
dent r.v. drawn respectively from the empirical distribu-
tions p(SG) and p(SI),4 and a distribution Beta(α;µα, σα),
with mean µα ∈ (0, 1) and standard deviation σα ∈
(0,
√
µα(1− µα)).5 Note that the meta-model (2) is more

flexible than a standard mixture, as α itself is a r.v.
The choice of a Beta distribution is motivated by the fact

that a Beta r.v. ranges in [0, 1], which allows the resulting
p(SF) to exhibit the pattern mentioned above, i.e., an inter-
mediate shapes between p(SG) and p(SI). As limit cases,
when p(α = 0) = 1, one obtains p(SF) = p(SI), and when
p(α = 1) = 1 one obtains p(SF) = p(SG). In all the other
cases, the achievable SFAR values, for any fixed decision
threshold, range between those of p(SF) = p(SI) and
p(SF) = p(SG). The above limit distributions correspond
therefore to the worst- and best-case presentation attack for
a biometric system, in terms of the corresponding SFAR,
that our meta-model can represent. These are reasonable
choices, since p(SF) = p(SG) can be seen as a worst-case
attack, and correspond to the attack scenario of [13]–[15]
(see Eq. 1); and p(SF) = p(SI) corresponds to the least
harmful spoofing attack of interest for security evaluation,
since attacks leading to a lower SFAR are by definition less
effective than a zero-effort attack, which is already included
in the standard evaluation of biometric systems.

Note that, if we set σα = 0, the meta-model (2) becomes
equivalent to the one we proposed in [36], where α was
defined as a constant parameter (not a r.v.) ranging in [0, 1].
Although this is a simpler model, it turned out to be not
flexible enough to properly fit all the fake score distributions
empirically observed in our subsequent work [17]–[19].

Inferring the meta-parameters. Given a set of genuine
and impostor scores obtained, for a given trait, in a lab-
oratory setting, and a set of scores obtained from fake
traits fabricated with a given technique, fitting the empirical
distribution p(SF) with our meta-model (2) amounts to
inferring the value of the meta-parameters (µα, σα). To this
aim the method of moments can be exploited.6 In our case it
simply amounts to setting µα and σα to the values that can
be analytically obtained from Eq. (2), as a function of means
and variances of the distributions of genuine, impostor and
fake scores, estimated from the available data:

µα =
µSF − µSI

µSG − µSI

, (3)

σα =

√
σ2
SF − µ2

ασ
2
SG − (1− µα)2σ2

SI

σ2
SG + σ2

SI + (µSG − µSI)2
. (4)

Note however that the estimated values of µα and σα
may not satisfy the constraints µα ∈ (0, 1) and σα ∈
(0,
√
µα(1− µα)) that must hold for a Beta distribution. In

this case, one should correct the corresponding estimate(s)
to the closest (minimum or maximum) admissible value.

To sum up, our meta-model characterizes a known fake
score distribution with given values of the meta-parameters

4. Note that, assuming independence between SG and SI here is only
used to generate the fictitious scores SF, and neither requires nor as-
sumes independence between the genuine and impostor distributions.

5. For the sake of interpretability, we consider the mean and standard
deviation of a Beta distribution, instead of the parameters p, q > 0.

6. An alternative is a log-likelihood maximization approach, which is
however more computationally demanding.
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Fig. 2. Matching score distributions of fake fingerprints (top row) and faces (bottom row) for LivDet09-Silicone (Sensor : Biometrika, Matcher :
Veryfinger), LivDet11-Alginate (S: Biometrika, M: Bozorth3), LivDet11-Gelatin (S: Italdata, M: Bozorth3), LivDet11-Latex (S: Italdata, M: Bozorth3),
Personal Photo Attack (S: commercial webcam, M: EBGM), 3D Mask Attack (S: Microsoft Kinect, M: ISV), Print Attack (S: commercial webcam,
M: EBGM), Photo Attack (S: commercial webcam, M: PCA). Simulated fake distributions according to our model are also shown for comparison, at
low risk (LivDet09-Silicone, LivDet11-Alginate, 3D Mask Attack, and Personal Photo Attack), medium risk (LivDet11-Gelatin, and Print Attack), and
high risk (LivDet11-Latex, and Photo Attack). The values of (µα, σα) used to simulate each attack scenario are reported in Table 3.

µα and σα. The associated presentation attack can then be
simulated on any multibiometric system that uses the same
biometric trait, by simulating the fake score distribution
using Eq. (2), with the given values of µα and σα, and the
corresponding empirical distributions p(SG) and p(SI).

Finally, our meta-model (2) can be exploited also to
carry out an uncertainty analysis. This can be attained by
considering simulated fake score distributions obtained by
perturbing the values of the µα and σα parameters asso-
ciated to the known presentation attacks. Note that this
produces a continuous family of simulated distributions.

The exact security evaluation procedure we propose is
described in Sect. 5. In the following we analyze how our
meta-model characterizes known presentation attacks.

3.2 Attack Scenarios for Fingerprints and Faces
Fig. 2 shows some representative examples of the distri-
butions p(SI), p(SG) and p(SF) collected for our statisti-
cal meta-analysis, together with the fitting distributions of
p(SF) obtained with our meta-model as explained above.
In all cases the fitting accuracy turned out to be very good.
The values of (µα, σα) obtained for all datasets, including
those of Fig. 2, are shown in Fig. 3, where each point
corresponds to a specific Beta distribution of the r.v. α. Note
that the closer the points in the µα, σα plane, the closer the
corresponding Beta distributions, and thus the distribution
p(SF), for a given pair p(SG), p(SI). The different shapes
exhibited by the fake score distributions (see, e.g., Fig. 2) are
mirrored by the different values of the corresponding meta-
parameters, which are spread over a considerable region of
the (µα, σα) plane (see Fig. 3). Note also that, often, σα > 0:
this explains why the simpler model we proposed in [36],
corresponding to σα = 0, does not provide a good fitting
in such cases, as mentioned above. In particular, it can not
properly characterize the heavy tails exhibited by the score
distributions of fake fingerprints (see Fig. 2).

In Sect. 2, we observed that some attacks produce fake
score distributions that are “closer” to the score distribution

of genuine users, rather than to that of impostors (e.g., our
fingerprint replicas made with latex are much more similar
to the “alive” ones than replicas made with silicone). A
useful by-product of our meta-model is that it allows us
to formalize the above qualitative observation, by quanti-
fying the impact of each presentation attack in terms of the
probability that it is successful. To this aim, it is not possible
to directly use the SFAR value computed for some given
decision threshold, as the fake score distribution simulated
by our meta-model (2) depends also on the distributions
p(SG) and p(SI). Nevertheless, for any given p(SG) and
p(SI), the more the α distribution is concentrated towards
higher values, the closer the corresponding p(SF) is to
p(SG), and thus the higher the SFAR for any given decision
threshold. Accordingly, we propose to quantify the impact
of an attack associated to given values of (µα, σα) as:

p(α > 0.5|µα, σα) , (5)

where 0.5 is a reasonable value to evaluate how much the
Beta distribution is concentrated towards high values, as
α ∈ [0, 1].7 Fig. 4 shows the values of Eq. (5) for each point of
the (µα, σα) plane. Note that known fake score distributions
exhibit very different values of the attack impact.

Another interesting by-product emerging from our sta-
tistical meta-analysis is that score distributions produced
by the same fake fabrication technique (e.g., fake finger-
prints fabricated with latex) are fitted by our meta-model
with very similar (µα, σα) values, across different sensors,
matchers, and user populations (i.e., different p(SG) and
p(SI)); on the other hand, the same sensor, matcher, and
user population can result in considerably different (µα, σα)
values for different fake fabrication techniques (e.g., fake
fingerprints fabricated with alginate, gelatin and latex). This
implies that the attack impact measure of Eq. 5 mainly
depends on the kind of attack, and is almost independent on

7. We argue that this measure of the attack impact may be also useful
to quantitatively evaluate some aspects of the attack potential, a metric
under definition in [6]. This can be investigated in future work.
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Fig. 3. Results of fitting our model to the considered datasets [17],
[18], [29]. Each real fake distribution is represented as a point with
coordinates (µα, σα). A red (green) ‘x’ (‘+’) denotes a fake fingerprint
distribution obtained by the Bozorth3 (Veryfinger) matcher and the
Biometrika (Italdata) sensor. A blue (black) ‘x’ denotes a fake face
distribution obtained by the EBGM (PCA) matcher and a commercial
webcam. The black ‘+’ denotes the distribution of fake faces for the 3D
Mask Attack database, obtained by the ISV matcher and the Microsoft
Kinect sensor. The area under the dashed black curve corresponds to
σα ≤

√
µα(1− µα), and delimits the family of possible fake distribu-

tions generated by our meta-model. Low-, medium-, and high-impact
presentation attacks clustered to form the corresponding attack scenar-
ios are highlighted respectively as blue, orange, and red shaded areas.
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Fig. 4. Attack impact for each attack scenario of our meta-model (Eq. 5).

the specific multibiometric system. Accordingly, our meta-
model allows one to quantitatively compare the impact of
different kinds of presentation attacks, either against the
same or different multibiometric systems. The above result
also means that, for both considered traits, our meta-model
produces compact clusters of (µα, σα), each representing
fake score distributions associated to one or more different
fake fabrication techniques. These clusters are highlighted
in Fig. 3. This result allows one to use a single instantiation
of our meta-model for approximating all the distributions
p(SF) corresponding to the fake fabrication technique(s)
lying in the same cluster, encompassing all the underlying,
different multibiometric systems. For instance, the corre-
sponding pair of (µα, σα) values can be defined as the
cluster centroid, with no appreciable loss in fitting accuracy.
In particular, we can identify in the considered data the
three clusters for fingerprint spoofing, and the three for face
spoofing, highlighted in Fig. 3. The meta-model associated
to each cluster, corresponding to a point in the (µα, σα)
plane, can then be used to simulate a given presentation
attack scenario, involving the corresponding trait and fake
fabrication technique(s), as explained in the next sections.

Fig. 5 shows the Beta distributions associated to the at-
tack scenarios of Fig. 3 (using the cluster centroids), and the
corresponding values of Eq. (5). It can be seen that, for each
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Fig. 5. Beta distributions and attack impact (in parentheses) for the three
fingerprint and face presentation attack scenarios identified in Fig. 3.

TABLE 3
Attack scenarios for fingerprint and faces, and their parameters.

Fing. µα σα risk Dataset(s)
Low risk 0.08 0.09 0.28% LivDet09-Silicone;

LivDet11-Alginate
Med. risk 0.23 0.20 12.33% LivDet11-Gelatin
High risk 0.40 0.26 35.67% LivDet11-Silicone;

LivDet11-Latex
Face µα σα risk Dataset(s)
Low risk 0.38 0.03 0.01% Personal Photo Attack;

Mask Attack
Med. risk 0.78 0.19 89.83% Print Attack
High risk 0.91 0.11 98.75% Photo Attack

considered trait, the Beta distribution of the different attack
scenarios are characterized by considerably different values
of the attack impact. Accordingly, we can label the above
scenarios as “low”, “medium” and “high” impact. In Table 3
we report the corresponding values of (µα, σα), together
with the attack techniques associated to each scenario. This
taxonomy may be clearly revised in the future, if novel
attack scenarios emerge from new empirical evidences.

To sum up, our meta-analysis does not only provide a
clear picture of current fingerprint and face spoofing attacks,
but also the first quantitative characterization of their impact.

4 DATA MODELING FOR MULTIBIOMETRIC SYS-
TEMS UNDER PRESENTATION ATTACKS

We define here a data model for multibiometric systems
to account for different presentation attacks against each
matcher, and revise the metrics used for evaluating the
performance of such systems accordingly. This model will
be exploited in the rest of the paper to define our security
evaluation procedure, and to design secure fusion rules.

In the following, uppercase and lowercase letters respec-
tively denote random variables (r.v.) and their values. We
denote with Y ∈ {G, I} the r.v. representing an identity
claim made by either a genuine user (G) or an impostor
(I), and with A = (A1, . . . , AK) ∈ A =

∏K
i=1{0, . . . , ui},

the r.v. denoting whether the ith matcher is under attack
(Ai 6= 0) or not (Ai = 0), assuming that ui > 0 different
presentation attacks are possible against the ith matcher.

For instance, in Sect. 3.2, we found three representative
attack scenarios for fingerprint and face. To model them, the
corresponding Ai should take values in {0, 1, 2, 3} (i.e., ui =
3), respectively denoting the no-spoof scenario (Ai = 0), and
the low-, medium- and high-impact scenarios (Ai = 1, 2, 3).

Assuming that the matching scores S = (S1, . . . , SK) ∈
RK are independent from each other, given Y , and that each
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Fig. 6. A Bayesian network equivalent to Eq. (6).

Ai only influences the corresponding Si, we can write the
class-conditional score distributions by marginalizing over
all possible values of A = a ∈ A, as:

p(S|Y ) =
∑
a∈A

p(a|Y )
K∏
i=1

p(Si|ai, Y ) . (6)

Note that the attack variables Ai are not assumed to be
independent, given Y , i.e., p(A|Y ) 6=

∏K
i=1 p(Ai|Y ). This

model corresponds to the Bayesian network of Fig. 6.
Since it is unlikely that genuine users use fake traits to

access the system, we can reasonably set p(A = {0}K |Y =
G) = 1. Thus, the genuine distribution consists of a single
component, i.e., p(S|Y = G) = p(S|A = {0}K , Y = G).
The impostor distribution p(S|Y = I) is instead modeled
as a mixture of |A| =

∏K
i=1(ui + 1) different components,

including the distribution p(S|A = {0}K , Y = I) of zero-
effort impostors, and the distributions p(S|A = a, Y = I),
for a ∈ A \ {0}K , associated to different combinations of
attacked matchers and presentation attacks.

Accordingly, for a given fusion rule f(·) and acceptance
threshold t, the metrics used to evaluate the performance of
a multibiometric system can be defined as:

FRR = p(f(S) < t|Y = G) , (7)

FAR = p(f(S) ≥ t|A = {0}K , Y = I) , (8)

SFARa = p(f(S) ≥ t|A = a, Y = I),a ∈ A \ {0}K , (9)

where SFARa denotes the SFAR associated to a specific
combination a 6= {0}K of attacked matchers and spoofing
attacks (which are |A| − 1 in total). Further, it is not difficult
to see that the so-called Global FAR (GFAR) [20], [21]
attained in the presence of a mixture of zero-effort and
spoof impostors can be directly computed as a convex linear
combination of FAR and SFAR using Eq. (6), as:

GFAR = p(f(S) > t|I) =
∑
a∈A

p(a|I)
∫ ∞

t
p(f(S)|a, I)df(S)

= π0 FAR +
∑

a∈A\{0}K

πa SFARa , (10)

where, for notational convenience, we set π0 = p(A =
{0}K |I) and πa = p(A = a|I), for a 6= {0}K . To our knowl-
edge, this is the first model highlighting a clear connection
between the aforementioned performance metrics and the
distribution of zero-effort and spoof impostors.

5 SECURITY EVALUATION OF MULTIBIOMETRIC
SYSTEMS UNDER PRESENTATION ATTACKS

In this section we describe our security evaluation proce-
dure, and show how it can be exploited also for selecting
the fusion rule and/or its parameters.

Security evaluation. The procedure we propose is em-
pirical, as in [13]–[15]: the SFAR under a simulated presen-
tation attack is evaluated by replacing the available zero-
effort impostor scores coming from the attacked matchers
with fictitious fake scores sampled from our meta-model.
More precisely, consider a multibiometric system made up
of K matchers, and an available set of matching scores
D = {s1

j , . . . , s
K
j , yj}nj=1, with yj ∈ {G, I}. For a point

estimate of the SFAR under a single attack against a subset
of matchers (e.g., one of the known attacks), one should first
define the combination a ∈ A \ {0}K of attacked matchers
and attack scenarios, i.e., the values of the meta-parameters
(µα, σα) for each such matcher. Then:

(i) for each matcher i = 1, . . . ,K , if ai 6= 0, set (µiα, σ
i
α)

according to the desired scenario;
(ii) set D′ = {s′1j , . . . , s′Kj , y′j}nj=1 equal to D;

(iii) for each (i, j), if yj = I and ai 6= 0, set s′ij according
to Eq. (2), with α drawn from p(α|µiα, σiα), and SG

and SI sampled from {sij}j|yj=G and {sij}j|yj=I, i.e.,
the genuine and impostor scores of the ith matcher;

(iv) evaluate SFARa empirically using D′.

The resulting GFAR can then be evaluated by Eq. (10)
(where the summation reduces to the single term a), after
estimating the FAR through the standard procedure and
hypothesizing the values of π0 and πa.

To evaluate the GFAR of Eq. (10) under different com-
binations a 6= {0}K of attacked matchers and scenarios, the
above steps can be repeated for each of them.

Uncertainty analysis for security evaluation. To account
for both known and unknown presentation attacks, through
an uncertainty analysis, the above procedure has to be
carried out by sampling a large number of attack scenarios
(µα, σα) from the feasible region of Fig. 3, besides the
known attacks of interest. For instance, a uniform sampling
can be used, as we will show in Sect. 7. In particular, it is
convenient to sort the attack scenarios of each matcher for
increasing values of attack impact (Eq. 5), such that higher ai
values correspond to a higher attack impact. This allows the
SFARa to be evaluated as a function of the attack impact
on each matcher, highlighting its variability around the
point estimates corresponding to known attacks, and which
matchers the fusion rule is most sensitive to. Confidence
bands can be used to represent the variability of the SFARa

as the attack impact varies, as commonly done in statistical
data analysis to represent the uncertainty on the estimate of
a curve or function based on limited or noisy data. Examples
are given in the plots of Fig. 7, where the yellow and purple
bands represent the uncertainty on the impact of different
attacks on the SFAR. As we will show in Sect. 7, even the
SFAR associated to never-before-seen attacks can fall within
these confidence bands, highlighting that our approach can
also predict the impact of unknown attacks on the system.

Fusion rule and parameter selection. Our security eval-
uation procedure can be also exploited to help system
designers selecting an appropriate fusion rule (or tuning
its parameters), taking into account a set of potential attack
scenarios. Assume that the designer has identified a number
of relevant attack scenarios a of interest, and would like
to choose among p ≥ 1 fusion rules F = {f1, . . . , fp},
and/or tuning their parameter vectors Θ = {θ1, . . . , θp},
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to attain a suitable trade-off between the performance in
the absence of attacks (defined by FRR and FAR values)
and the one under the relevant attack scenarios, defined by
the corresponding values of SFARa, estimated using the
above procedure. While in the absence of attack applica-
tion requirements can be expressed in terms of a trade-off
between FRR and FAR, in the presence of spoofing the
desired trade-off should also account for the SFAR under
distinct, potential attack scenarios [13]–[15], [19]–[21]. This
can be expressed, for instance, by minimizing a desired
GFAR expression (Eq. 10), while keeping the FRR below
a maximum admissible value FRRmax:

min
F,Θ

GFAR = π0 FAR +
∑

a∈A\{0}K

πa SFARa , (11)

s.t. FRR ≤ FRRmax . (12)

The value of FRRmax and the priors π0 and πa have to
be carefully chosen by the system designer, depending on
the application at hand, and on the attack scenarios that
are considered more relevant. In Sect. 7 we will show an
example of how to exploit the proposed procedures to assess
the security of a bimodal system against fingerprint and face
presentation attacks, and to select a suitable fusion rule.

6 DESIGN OF SECURE FUSION RULES

The secure score-level fusion rules proposed so far are
based on explicitly modeling presentation attacks against
each matcher as part of the impostor distribution, using the
scenario defined by Eq. (1) [13]–[15]. However, as discussed
in Sect. 2, this may cause such rules to exhibit a too pes-
simistic trade-off between the performance in the absence
of spoofing and that under attacks that are not properly
represented by Eq. (1). In this section, we discuss how to
overcome these limitations using our meta-model (Sect. 3).

We first show how previously-proposed secure fusion
rules can be interpreted according to the data model of
Sect. 4 (Sect. 6.1), and how this model can be also exploited
to train secure fusion rules based on discriminative classi-
fiers (Sect. 6.2). Then, we discuss how our meta-model of
p(SF) and the attack scenarios defined in Sect. 3.2 can be
exploited to design spoofing-aware score-level fusion rules
that can achieve a better trade-off in terms of FRR, FAR
and SFAR, on a wider set of attack scenarios characterized
by different levels of attack impact. In particular, two secure
score-level fusion rules are considered, respectively relying
on a generative and a discriminative approach (Sect. 6.3).

6.1 Previously-proposed Secure Fusion Rules
In [13], [37] spoofing-aware score-level fusion rules were
proposed, as variants of the well-known LLR rule [38]:

f(s) = p(s|Y = G)/p(s|Y = I) . (13)

Both exploit an estimate of p(S|Y = I) incorporating knowl-
edge of potential presentation attacks that may be incurred
during operation, and that are not included in the training
data (as our model of Eq. 6). Therefore, while the genuine
and the zero-effort impostor distributions can be estimated
from the corresponding matching scores in the training data,
specific assumptions have to be made on the remaining
components of the mixture p(S|Y = I) of zero-effort and

spoof impostors. In our model, they include the priors
p(a|Y = I) and the fake score distributions p(Si|ai, Y = I),
for ai = 1, . . . , ui, and i = 1, . . . ,K . Both rules assume
only a possible kind of attack against each matcher. This can
be easily accounted for in our model of Eq. (6) by setting
A ∈ {0, 1}K , i.e., ui = 1 for i = 1, . . . ,K .

Extended LLR [13]. This rule is based on a seemingly
more complex expression of p(S|Y = I) than Eq. (6), as it
includes the probability of attempting a presentation attack
against each matcher (represented by the r.v. T ∈ {0, 1}K ),
and the probability of each attempt being successful (rep-
resented by the r.v. F ∈ {0, 1}K ). For each matcher, only
if an attack is attempted and successful (i.e., Ti = 1 and
Fi = 1), then the corresponding score follows a distribution
different from that of zero-effort impostors. The expression
of p(S|Y = I) becomes however equivalent to Eq. (6), if we
set Ai = Fi, and marginalize over Ti (cf. Eq. 6 with Eq. 5 in
[13]). The prior distribution can be indeed written as:

p(A|Y = I) =
∑

t∈{0,1}K

p(t|Y = I)
K∏
i=1

p(Ai|ti) , (14)

while the fake score distributions p(Si|Fi, Y = I) in [13] are
clearly equivalent to our p(Si|Ai, Y = I).

In [13] the probability of attempting a presentation attack
against any of the 2K − 1 combinations of matchers p(T 6=
{0}K |Y = I) was set to r/(2K − 1). Thus, the probability
of zero-effort impostor attempts p(T = {0}K |Y = I) was
set to 1 − r, being r a parameter.8 The probability of an
attempted spoof failing, p(Ai = 0|Ti = 1), was denoted as ci,
and referred to as the “level of security” of the ith matcher.
Clearly, as an attack can not be successful if it has not been
attempted, p(Ai = 1|Ti = 0) = 0. The resulting expression
of p(S|Y = I) therefore depends on the parameters r and
ci. Setting their values amounts to defining the distribution
p(A|Y = I) in Eq. (6) (see Eqs. 6 and 14); e.g., for a bimodal
system (K = 2), one obtains:

p(A1 = 1, A2 = 0|I) =
r

3
(1− c1)(1 + c2), (15)

p(A1 = 0, A2 = 1|I) =
r

3
(1 + c1)(1− c2), (16)

p(A1 = 1, A2 = 1|I) =
r

3
(1− c1)(1− c2), (17)

p(A1 = 0, A2 = 0|I) =
r

3
(c1 + c2 + c1c2) + 1− r. (18)

Notably, if we assume A ∈ {0, 1}K and the scenario of
Eq. (1), the distribution p(S|Y = I) described by the models
of Eqs. (6) and (14) becomes identical, as well as the corre-
sponding LLR-based secure fusion rules given by Eq. (13).

Uniform LLR [37]. We proposed this robust version of
the LLR in previous work, for a broader class of applications
in computer security. It is based on modeling the impostor
distribution according to Eq. (6), with A ∈ {0, 1}K . How-
ever, we considered the case when no specific knowledge
on the distribution of potential attacks is available to the
designer; accordingly, we agnostically assumed a uniform
distribution for modeling p(Si|Ai = 1, Y = I).

8. To avoid confusion, we use r instead of α as in [13].
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6.2 Discriminative Approaches

The aforementioned secure fusion rules are based on a
generative model of the data distribution. However, Eq. (6)
can be also exploited to develop secure rules based on
discriminative classifiers such as Support Vector Machines
(SVMs) and Neural Networks (NNs) [39]. To this end, one
may train the fusion rule after resampling the available
zero-effort impostor scores according to Eq. (6) as follows
(see also [39, Sect. 8.1.2]). First, define p(S|I) according to
Eq. (6), i.e., define p(A|Y = I) and p(Si|Ai, Y = I) (for
Ai = 1, . . . , ui, and i = 1, . . . ,K). As for the security
evaluation procedure defined in Sect. 5, let us denote the
available set of scores as D = {s1

j , . . . , s
K
j , yj}nj=1, with

yj ∈ {G, I}. For each j|yj = I, draw a value of a from
p(A|I). For each ai ∈ a, if ai 6= 0, replace the corresponding
si with a sample from the hypothesized fake score distribu-
tion p(Si|ai, I), otherwise leave si unmodified (i.e., sample
from the empirical distribution of zero-effort impostors).

Despite their simplicity, discriminative approaches have
not been widely considered to design secure fusion rules.
We will show how to exploit them to this end in Sect. 7.

6.3 Secure Fusion Rules based on our Meta-model

We showed that our meta-model (Eq. 2) can be exploited
in the design of secure fusion rules to simulate the fake
score distribution p(Si|Ai 6= 0, Y = I) at the output of each
attacked matcher, both in generative and discriminative ap-
proaches. To overcome the limitations of secure fusion rules
based on Eq. (1), the aforementioned distribution can be
hypothesized by selecting a suitable combination of attack
scenarios, depending on the given application and desired
level of security. The corresponding parameters (µα, σα) can
be selected either among those defined in Sect. 3.2 (Table 3)
for faces and fingerprints, or through cross validation, to
properly tune the trade-off among FRR, FAR and SFAR
(or GFAR) under a wider class of presentation attacks.

In the following, we give two examples of how novel se-
cure fusion rules can be defined. Different choices are possi-
ble, depending on the the selected fusion scheme (e.g., LLR,
SVM, NN), and on the trade-off between the performance in
the absence of attack and the security level that one aims to
achieve. In our data model (Eq. 6), this influences the choice
of each prior p(A|Y = I) and of the corresponding attack
scenarios (i.e., the parameters µα and σα). We consider here
an application setting demanding for a high level of security,
e.g., an access control system for banking, and we thus only
consider the worst-case available scenarios involving high-
impact presentation attacks (see Table 3).

α-LLR. This is another variant of the generative LLR
rule (Eq. 13), in which A = {0, 1}K and the distributions
p(Si|Ai = 1, Y = I) are simulated according to the high-
impact attack scenario. The prior distribution p(A|Y = I)
should be hypothesized based on the specific application
setting, as suggested for the Extended LLR [13].

α-SVM-RBF. This rule is instead based on a discrimina-
tive approach. It consists of learning an SVM with the Radial
Basis Function (RBF) kernel on a modified training set that
includes simulated presentation attacks, as discussed in
Sect. 6.2: the available impostor scores are replaced with a
number of matching scores sampled from the hypothesized

p(S|Y = I). As for the α-LLR, p(A|Y = I) is a parameter,
A = {0, 1}K and p(Si|Ai = 1, Y = I) is simulated
according to the high-impact attack scenario.

Besides p(A|Y = I), the other parameters to be tuned
are the SVM regularization parameter C and the parameter
γ of the RBF kernel, given by k(s, si) = exp

(
−γ||s− si||2

)
,

where s and si denote the input and the i-th training score
vectors (see, e.g., [39]).

In conclusion, it is worth remarking that each secure
fusion rule makes specific assumptions on the mixture of
zero-effort and spoof impostors p(S|Y = I) (Eq. 6), in
terms of the prior p(A|Y = I) and of the fake score
distributions p(Si|Ai = ai, Y = I), for i = 1, . . . ,K and
ai ∈ {1, . . . , ui}. It is thus clear that each rule will achieve
an optimal trade-off between FRR and GFAR (Eq. 10) only
when the GFAR is obtained under the same hypothesized
model of p(S|Y = I) (Eq. 6). This also holds for the secure
fusion rules proposed in this section. Nevertheless, the data
model of Sect. 4 along with the meta-model of Sect. 3 can be
exploited to implement secure fusion rules that are optimal
according to any other choice of p(S|Y = I), giving us much
clearer guidelines to design secure score-level fusion rules,
especially if compared to previous work [13]–[15].

7 EXPERIMENTAL ANALYSIS

We report here a case study on a bimodal system combining
fingerprint and face, to show how to thoroughly assess its
security against presentation attacks, and to select a suitable
fusion rule, according to the procedures defined in Sect. 5.

For our experiments, we consider a scenario in which the
designer (i) believes that only presentation attacks against
one matcher (either the face or fingerprint one) are likely,
and (ii) would like to select a fusion rule and/or its param-
eters to protect the multibiometric system against worst-case
attacks, assuming that attacks against face and fingerprint
are equiprobable, and accepting a maximum FRR of 2%.
According to our approach, and to point (i) above, all the
available attack scenarios encompassed by our meta-model
should be considered against each matcher, to thoroughly
evaluate system security. With regard to point (ii) above,
and according to Sect. 5, the system designer should also
encode application-specific requirements using Eqs. (11)-
(12) to define a proper trade-off among FRR, FAR and
SFAR. Then, the goal defined above can be formalized as:

min GFAR =
1

2
FAR +

1

4
(SFARH1 + SFARH2) , (19)

s.t. FRR ≤ 2% , (20)

being SFARH1 and SFARH2 the SFAR attained by the first
and the second matcher against the corresponding high-
impact attacks, while the other matcher is not under attack.

The above setting can be easily generalized to any other
combination of attacks, also targeting multiple biometrics at
the same time, or choice of parameters π0, πa and FRRmax.

7.1 Experimental Setup
For these experiments, to validate the predictions of our
approach under never-before-seen presentation attacks, we
have considered two very recent databases of fake finger-
prints and faces that have not been used in the design of
our meta-model. They are concisely described below.



10

LivDet15 [40]. This database consists of about 16,000
fingerprint images captured by performing multiple acqui-
sitions of all fingers of 50 different subjects, with four differ-
ent optical devices (Biometrika, Green Bit, Digital Persona
and Crossmatch). Fingerprint images were acquired in a
variety of ways (e.g., wet and dry fingers, high and low
pressure) to simulate different operating conditions. Fake
fingerprints were fabricated using the cooperative method,
with different materials, including Ecoflex, Playdoh, Body
Double, silicone and gelatin. In our experiments, we use the
images acquired with the Crossmatch sensor, and consider
each separate finger as a client, yielding 500 distinct clients.
We use Bozorth3 as the matching algorithm.

CASIA [41]. This database consists of 600 videos of alive
and fake faces belonging to 50 distinct subjects, captured
at high and low resolution, respectively, with a Sony NEX-
5 and a standard USB camera. Three different kinds of
presentation attacks are considered: warped photo, in which
face images are printed on copper paper, and warped to sim-
ulate motion; cut photo, in which the warped face photo has
also eye cuts to simulate blinking; and video, in which face
images are displayed using a mobile device. We extract four
frames from each video, and rotate and scale face images to
have eyes in the same positions. We use the same matcher
described in [42]. It accounts for illumination variations as
in [43], and then computes a BSIF descriptor [44]. Matching
scores are finally computed using the cosine distance.

We exploit these unimodal matching scores to create a
chimerical dataset, by randomly associating face and fin-
gerprint images of different clients from the two databases.
This is a common practice in biometrics to obtain multi-
modal datasets [22]. The chimerical dataset is then randomly
subdivided into five pairs of training and test sets, respec-
tively including 40% and 60% of the “virtual” clients.9 The
matching scores are normalized in [0, 1] using the min-max
technique [22], [45]. Its parameters, and those of the trained
fusion rules, are estimated on the training set. This proce-
dure is repeated five times, each time creating a different set
of “virtual” clients. The results thus refer to the average test
set performance on the corresponding twenty-five runs.

We consider the following state-of-the-art score-level
fusion rules, including the spoofing-aware fusion rules dis-
cussed in Sect. 6.1, and the two secure fusion rules based on
our meta-model, as described in Sect. 6.3.

Sum. Given K matching scores to be combined s =
(s1, . . . , sK), the sum rule is defined as f(s) =

∑K
i=1 si.

Product. The product rule is defined as f(s) =
∏K
i=1 si.

Minimum. This rule is defined as f(s) = minKi=1 si.
10

Linear Discriminant Analysis (LDA). This is a trained
rule, in which the matching scores are linearly combined as
f(s) =

∑K
i=1 wisi+b. The parameterswi and b are estimated

from the training set by maximizing the Fisher distance
between genuine and impostor score distributions [39].

Likelihood ratio (LLR). This is the trained rule given
by Eq. (13). To estimate the likelihoods p(s|Y ) of genuine
and impostor users, it is often realistically assumed that the

9. The clients of a chimerical dataset are usually referred to as
“virtual” clients, as they do not correspond to a real person or identity.

10. Note that this rule is equivalent to an “AND” fusion rule that
classifies a claim as genuine only if all the combined matchers output a
genuine decision, assuming the same threshold for all matchers.
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Fig. 8. Matching score distributions for CASIA and LivDet15. Fake score
distributions fitted with our meta-model are shown for comparison. The
values of (µα, σα) found to simulate them are (0.33, 0.15) for CASIA (at-
tack impact=14%), and (0.32, 0.23) for LivDet15 (attack impact=23%).

si are independent given Y , i.e., p(s|Y ) =
∏K
i=1 p(si|Y ).

Here we make the same assumption, and estimate each
component p(si|Y ) by fitting a Gamma distribution on the
corresponding training data, as in [13]–[15].

SVM-RBF. This rule consists of learning an SVM with
the RBF kernel on the available training matching scores, to
discriminate between genuine and impostor users. We set
the parameters C ∈ {0.001, 0.01, 0.1, 1, 10, 100} and γ ∈
{0.01, 0.1, 1, 10, 100} by minimizing the FAR at FRR = 2%
through a 5-fold cross-validation on the training data.

Extended LLR. This is the modified LLR proposed in
[13], as described in Sect. 6.1. To minimize the GFAR ac-
cording to Eqs. (19)-(20), we set the priors as p(A1 = 0, A2 =
0|I) = 1/2, p(A1 = 1, A2 = 0|I) = p(A1 = 0, A2 = 1|I) =
1/4, and p(A1 = 1, A2 = 1|I) = 0, although this choice does
not correspond to any specific choice of r, c1 and c2 for this
rule. The fused matching score is given by Eq. (13).

Uniform LLR. This is the other LLR modification pro-
posed in [37], and described in Sect. 6.1. We set p(A1, A2|I)
as for the Extended LLR, coherently with the given selection
criterion. The combined score is given again by Eq. (13)

α-LLR. For this rule too, we set the prior distribution
p(A1, A2|I) as described for the Extended LLR and the
Uniform LLR, in agreement with the selection criterion. The
distribution of attack samples p(si|Ai = 1, Y = I) is instead
based on the high-risk attack scenarios defined by our spoof
simulation model. We therefore set µα = 0.40 and σα = 0.26
for simulating attacks against the fingerprint matcher (i.e.,
when ‘RI’ is used), and µα = 0.91 and σα = 0.11 for the
face matcher (i.e., when ‘G’ is used), according to Table 3.
The fused score is given by Eq. (13).

α-SVM-RBF. We train this fusion rule using a modified
training set sampled from the same distribution hypothe-
sized for the α-LLR, i.e., assuming the same prior p(A|I) and
fake score distributions p(si|Ai = 1, Y = I). Such a training
set can be obtained as explained in Sect. 6.2. The values of
C and γ are optimized using a 5-fold cross validation on
the training data, as for the SVM-RBF, although here this
amounts to minimizing the GFAR at FRR = 2%, as the
training data is modified according to the desired p(S|I).

7.2 Experimental Results
To show that our meta-model is capable of reliably modeling
also the score distributions of never-before-seen presen-
tation attacks, we first report in Fig. 8 its fitting on the
score distributions of the attacks included in LivDet15 and
CASIA. Note that the corresponding parameters (µα, σα)
do not exactly match any of the attack scenarios defined
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Fig. 7. Results for the considered bimodal system. Plots in the first and third column report the average DET curves attained by each fusion rule,
when no attack is considered (‘no spoof’), and under presentation attacks from LivDet15 (‘fingerprint spoofing’) and CASIA (‘face spoofing’). The
yellow and purple shaded areas represent the confidence bands for the SFAR predicted by our approach, over the family of fake score distributions
represented by our meta-model, for face and fingerprint, respectively. The background color of plots in the second and fourth column represents
the value of the fused score f(s) for each rule, in the space of matching scores. The black solid line represents its decision function at FRR = 2%.
We also report points corresponding to genuine users, impostors and presentation attacks, to compare the different decision functions.

in Table 3 and Fig. 3. In fact, face and fingerprint spoofs
from CASIA and LivDet15 exhibit an intermediate behav-
ior respectively between the low- and med-impact attack
scenarios for faces, and between the med- and high-impact
attack scenarios for fingerprints. This further highlights that
such attacks are very different from those considered in the
design of our meta-model and of known attack scenarios.

The results for the given bimodal system are reported in
terms of average Detection Error Trade-off (DET) curves
in Fig. 7. These curves report FRR vs FAR (or SFAR)
for all operating points on a convenient axis scaling [15],

[46]. Using our-meta model, we construct a family of DET
curves, each obtained by simulating an attack scenario (i.e.,
a fake score distribution) against a single matcher. We then
average DET curves corresponding to attack scenarios that
exhibit a similar attack impact, yielding 20 distinct curves cor-
responding to the attack impact values {0, 0.05, 0.1, . . . , 1}.
The area covered by such DET curves, for each matcher, is
highlighted using a shaded area, as described in Fig. 7. We
also report the DET curves corresponding to presentation
attacks from the LivDet15 and CASIA databases.

To correctly understand our evaluation, recall that spoof-
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TABLE 4
Average (%) performance (and standard deviation) attained by each rule at FRR = 2%, in terms of FAR, SFAR under the LivDet15 (SFAR fing.)
and CASIA (SFAR face) presentation attacks, SFAR under the fingerprint (SFARH1) and face (SFARH2) high-impact simulated attacks, and the

corresponding GFAR values (denoted with GFAR for the LivDet15 and CASIA attacks, and GFARH1,H2 for the simulated attacks).
Rule Sum LDA Product Minimum LLR SVM-RBF Ext. LLR Unif. LLR α-LLR α-SVM-RBF
FAR 0.0± 0.0 0.0± 0.0 0.0± 0.0 3.8± 4.0 0.0± 0.0 0.0± 0.0 0.4± 0.4 0.1± 0.1 0.1± 0.1 0.0± 0.0
SFAR fing. 23.2±14.4 25.8±16.2 23.4±15.9 53.5±25.6 37.8±21.6 42.0±20.6 49.8±28.3 47.4±27.2 31.9±26.5 17.9± 12.2
SFARH1 31.8±13.3 33.7±13.4 30.6±14.3 51.6±11.8 41.8±14.6 46.1±14.2 47.4±15.4 45.9±15.0 35.5±14.8 25.0± 7.6
SFAR face 15.3±14.0 13.2±13.5 4.9± 6.9 9.3± 13.8 3.1± 4.6 5.5± 5.4 4.0± 7.4 5.2± 8.1 3.3± 7.4 19.1± 29.5
SFARH2 39.5±11.6 42.0±11.6 37.9±11.9 58.2± 9.0 51.8±12.2 56.7±12.2 55.1±12.4 55.1±12.1 43.0±12.0 30.7± 6.8
GFAR 9.6± 6.1 9.8± 6.2 7.1± 4.8 17.6± 9.3 10.2± 6.1 11.9± 6.2 13.7± 8.2 13.2± 8.1 8.8± 7.6 9.3± 9.4
GFARH1,H2 17.8± 4.4 18.9± 4.4 17.1± 4.7 29.4± 4.2 23.4± 4.8 25.7± 4.7 25.8± 5.0 25.3± 4.8 19.7± 4.8 14.0± 2.5

ing does not affect the matching score distribution of gen-
uine users, i.e., the FRR under attack does not change.
Accordingly, for any operating point on the DET curve
computed without attacks (corresponding to the ‘no spoof’
scenario, which reports FRR vs FAR), the SFAR values
predicted by our model can be found by intersecting the
shaded areas in Fig. 7 with the horizontal line corresponding
to the same FRR value (see, e.g., ‘op. point’ in Fig. 7).

To provide a clearer discussion of our results, in Table 4,
we also report the average performance attained by each
rule at the operating point corresponding to FRR = 2%,
including FAR, and SFAR and GFAR (Eqs. 19-20) attained
under the LivDet15 and CASIA attacks, and under the high-
impact attacks simulated with our meta-model (see Table 3).

Let us first compare the predictions provided by our
analysis against those corresponding to the LivDet15 and
CASIA presentation attacks. As one may note from Fig. 7,
the confidence bands denoting the variability of the DET
curves obtained under the attacks simulated with our meta-
model almost always correctly represent and follow the
behavior of the DET curves corresponding to the LivDet15
and CASIA attacks. This shows that our approach may be
able to reliably predict the performance of a multibiometric
system even under never-before-seen presentation attacks.

Furthermore, our analysis also highlights whether the
fusion rule is more sensitive to variations in the output
of a given matcher. This can be noted by comparing the
confidence bands corresponding to attacks against the fin-
gerprint and the face matcher in Fig. 7. In our case, fusion
rules are generally more vulnerable to attacks targeting
the fingerprint matcher (except for Sum and LDA), as the
confidence bands corresponding to fingerprint presentation
attacks are typically more shifted towards higher error rates.
The reason is simply that the fingerprint matcher is more
accurate than the face one in this case, and, thus, when
the former is under attack, the matching scores of spoof
impostors and genuine users tend to overlap more (cf. the
scatter plots in the second and fourth column of Fig. 7).

From the DET curves in Fig. 7, one may also note that
standard rules are generally more accurate in the absence
of attack than secure fusion rules, confirming the trade-off
between the performance in the absence and in the presence
of spoofing. The Minimum is an exception, as it exhibits
a higher FAR. The reason is that this rule only accepts a
genuine claim if all the combined scores are sufficiently
high. Thus, to keep an acceptable, low FRR, one has to trade
for a higher FAR, and this may also worsen security against
spoofing, conversely to intuition.

From Table 4, one may also appreciate that secure fusion
rule designed under the too pessimistic assumption given

by Eq. (1) perform worse than the α-LLR and the α-SVM-
RBF under the LivDet15 and CASIA presentation attacks.
This shows that our meta-model can also lead one to de-
sign fusion rules with an improved trade-off between the
performance in the absence of attack and system security.

Besides giving a general overview of the kind of analysis
enabled by our security evaluation procedure, the goal of
the proposed case study is to show how a system designer
can select a suitable fusion rule. According to the criterion
given by Eqs. (19)-(20), it is clear from Table 4 that the rule
that attains the minimum expected GFAR (according to our
model, the GFARH1,H2 value) is the α-SVM-RBF, which can
be thus selected as the fusion rule for this task. In particular,
this rule attains also the lowest SFAR under the (simu-
lated) fingerprint presentation attack (SFARH1). Notably,
also Sum, LDA, Product and α-LLR may be exploited to
the same end, as they achieve only a slightly higher GFAR.

When considering the GFAR attained under the
LivDet15 and CASIA spoofing attacks, the best rule turns
out to be the Product rule, immediately followed by the α-
LLR and the α-SVM-RBF. This is somehow reasonable to
expect, as our analysis did not exploit any specific knowl-
edge of such attacks, and, in particular, as we tuned our
fusion rules using slightly overly-pessimistic attack settings
(the fingerprint and face attack scenarios considered to
design the α-LLR and the α-SVM-RBF have a higher attack
impact than that exhibited by the LivDet15 and CASIA
attacks). Despite this, selecting the α-SVM-RBF instead of
the Product would not raise any severe security issue in
this case. Conversely, it may be even beneficial if fingerprint
spoofing is deemed more likely during system operation
than face spoofing. This should be clearly noted by the
system designer before taking the final decision.

Why Secure Fusion Works. The fact that the standard
fusion rules like the Product can be competitive with secure
fusion rules in the presence of spoofing can be easily under-
stood by looking at the shape of the decision functions in
the scatter plots of Fig. 7. In fact, the decision functions of
such rules tend to better enclose the genuine class rather than
the impostor class. Whereas untrained rules like the Product
may perform well only under specific data distributions
(like those shown in the depicted cases), trained secure
fusion rules are expected to perform better on a wider
variety of cases, due to their flexibility in learning and
shaping the decision function depending on the given set of
scores. However, providing a better enclosing of the genuine
class turns out to clearly increase the FAR at the same
FRR value (or vice versa), underlining again the trade-off
between the performance in the absence of attacks and that
under attack. For this reason, it is especially important to
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be able to tune this trade-off properly, and not in an overly-
pessimistic manner, as demonstrated in the design of the
secure fusion rules based on our meta-model.

8 CONCLUSIONS AND FUTURE WORK

We proposed an approach to thoroughly assess the security
of multibiometric systems against presentation attacks, and
to improve their security by design, overcoming the limita-
tions of previous work [13]–[15]. Our approach is grounded
on a statistical meta-model that incorporates knowledge of
state-of-the-art fingerprint and face presentation attacks, by
simulating their matching score distributions at the output
of the attacked matchers, avoiding the cumbersome task
of fabricating a large, representative set of attacks during
system design. It also allows us to simulate perturbations of
such distributions that may correspond to unknown attacks
of different impact, through an uncertainty analysis. This as-
pect is specifically important, as attackers constantly aim to
find novel evasion techniques [47]. In the case of biometric
systems, this means that novel, unexpected attacks may be
encountered in the near future. For instance, in [48], it has
been claimed that it is not possible to forecast all potential
face spoofing attacks and fake fabrication techniques, as
humans can always find very creative ways to cheat a
system. Our uncertainty analysis aims thus to overcome this
issue. We showed empirically that our approach provides a
much more informative security evaluation of multibiomet-
ric systems, characterizing the behavior of the system also
under never-before-seen attacks, and enabling the design of
improved secure fusion rules.

We argue that our statistical meta-model can be applied
to presentation attacks targeting other biometric traits, like
palm vein and iris, as preliminary empirical evidences show
that their score distributions exhibit similar characteristics to
those observed for face and fingerprint in Sect. 3.1 (see, e.g.,
[30], [31]). This however requires further investigation, and
can be addressed in future work.

To conclude, it is also worth remarking that secure fusion
may provide a complementary approach to liveness detec-
tion techniques that protect the combined matchers against
spoofing. Accordingly, another interesting future extension
of this work may be to exploit our meta-model in the context
of recent approaches that combine liveness detection and
matching algorithms, instead of using them as independent
modules [49]–[52]. We believe that this may significantly
improve multibiometric security to spoofing.
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