373 research outputs found

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe

    Studio e realizzazione di un'architettura VLSI di un processore per l'implementazione dell'algoritmo FFT

    Get PDF
    Poiché lo standard di connessione 5G è utilizzato da un numero sempre crescente di dispositivi e si sta evolvendo per soddisfare nuove esigenze e requisiti, è diventato fondamentale studiare e progettare nuovi trasmettitori e ricevitori più veloci ed efficienti. Un ruolo fondamentale nella connessione 5G è svolto dal multiplexing a divisione di frequenza ortogonale (OFDM), una metodologia di modulazione. Poiché la demodulazione è basata sulla trasformata di Fourier, lo scopo di questa tesi è realizzare un processore in grado di implementare algoritmi FFT e DFT su sequenze di lunghezza variabile che rispetti i criteri dello standard 5G. Per fare ciò, è stata prima condotta un'analisi del rapporto dell'Unione internazionale delle telecomunicazioni ITU-R M.2410-0 per definire i requisiti minimi per il processore. Successivamente, uno studio dello stato dell'arte per dispositivi simili ha portato allo sviluppo di un'architettura VLSI adatta all'applicazione. Una versione RTL dell'architettura è stata implementata in VHDL e testata.Since the 5G connection standard is utilized by a rising number of devices and is evolving to meet new needs and requirements, it has become crucial to study and design new, faster, and more efficient transmitters and receivers. A fundamental role in the 5G connection is played by Orthogonal frequency-division multiplexing (OFDM), an encoding methodology. Since the demodulation is based on the Fourier Transform, the purpose of this thesis is to realize a processor capable of implementing FFT and DFT algorithms on variable length sequences that complies with the 5G standard criteria. In order to do so, first an analysis of the International Telecommunication Union report ITU-R M.2410-0 has been conducted to define the minimum requirements for the processor. Then, a study of the state of the art for similar devices led to the development of a VLSI architecture suitable for the application. An RTL version of the architecture has been implemented in VHDL and tested

    Efficient Digital Signal Processing Techniques and Architectures for On-Board Processors

    Get PDF
    In this paper, we present a number of algorithmic and architectural DSP solutions to be incorporated in digital OBPs for communication satellites to boost the system performance primarily in terms of reducing their power consumption. More specifically this article addresses (1) Infinite impulse response (IIR) implementation of digital filters, (2) Efficiency savings in channeliser FFT twiddle storage and multiplications and their reconfigurable implementation (3) Companding of interconnect data, and (4) Critically sampled/reduced over-sampling channelisation. The applicability and efficiency of these approaches were evaluated in detail during our European Space Agency (ESA) funded research project entitled "Efficient Techniques for On-Board Processing”, undertaken by Airbus Defence and Space and the Applied DSP and VLSI Research Group at the University of Westminster. The results demonstrated noteworthy improvements both in terms of power dissipation, and furthermore in the reduction of circuit complexity for future digital OBPs, which will be shown at the summary of results section

    Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design

    Get PDF
    In recent years the number of connected devices and the demand for high data-rates have been significantly increased. This enormous growth is more pronounced by the introduction of the Internet of things (IoT) in which several devices are interconnected to exchange data for various applications like smart homes and smart cities. Moreover, new applications such as eHealth, autonomous vehicles, and connected ambulances set new demands on the reliability, latency, and data-rate of wireless communication systems, pushing forward technology developments. Massive multiple-input multiple-output (MIMO) is a technology, which is employed in the 5G standard, offering the benefits to fulfill these requirements. In massive MIMO systems, base station (BS) is equipped with a very large number of antennas, serving several users equipments (UEs) simultaneously in the same time and frequency resource. The high spatial multiplexing in massive MIMO systems, improves the data rate, energy and spectral efficiencies as well as the link reliability of wireless communication systems. The link reliability can be further improved by employing channel coding technique. Spatially coupled serially concatenated codes (SC-SCCs) are promising channel coding schemes, which can meet the high-reliability demands of wireless communication systems beyond 5G (B5G). Given the close-to-capacity error correction performance and the potential to implement a high-throughput decoder, this class of code can be a good candidate for wireless systems B5G. In order to achieve the above-mentioned advantages, sophisticated algorithms are required, which impose challenges on the baseband signal processing. In case of massive MIMO systems, the processing is much more computationally intensive and the size of required memory to store channel data is increased significantly compared to conventional MIMO systems, which are due to the large size of the channel state information (CSI) matrix. In addition to the high computational complexity, meeting latency requirements is also crucial. Similarly, the decoding-performance gain of SC-SCCs also do come at the expense of increased implementation complexity. Moreover, selecting the proper choice of design parameters, decoding algorithm, and architecture will be challenging, since spatial coupling provides new degrees of freedom in code design, and therefore the design space becomes huge. The focus of this thesis is to perform co-optimization in different design levels to address the aforementioned challenges/requirements. To this end, we employ system-level characteristics to develop efficient algorithms and architectures for the following functional blocks of digital baseband processing. First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT), and corresponding reordering scheme, which can significantly reduce the latency of orthogonal frequency-division multiplexing (OFDM) demodulation and modulation as well as the size of reordering memory. The corresponding VLSI architectures along with the application specific integrated circuit (ASIC) implementation results in a 28 nm CMOS technology are introduced. In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction in the latency and size of reordering memory. Second, we propose a low-complexity massive MIMO detection scheme. The key idea is to exploit channel sparsity to reduce the size of CSI matrix and eventually perform linear detection followed by a non-linear post-processing in angular domain using the compressed CSI matrix. The VLSI architecture for a massive MIMO with 128 BS antennas and 16 UEs along with the synthesis results in a 28 nm technology are presented. As a result, the proposed scheme reduces the complexity and required memory by 35%–73% compared to traditional detectors while it has better detection performance. Finally, we perform a comprehensive design space exploration for the SC-SCCs to investigate the effect of different design parameters on decoding performance, latency, complexity, and hardware cost. Then, we develop different decoding algorithms for the SC-SCCs and discuss the associated decoding performance and complexity. Also, several high-level VLSI architectures along with the corresponding synthesis results in a 12 nm process are presented, and various design tradeoffs are provided for these decoding schemes

    Application of bit-slice microprocessors to digital correlation in spread spectrum communication systems

    Get PDF
    This thesis describes the application of commercially available microprocessors and other VLSI devices to high-speed real-time digital correlation in spread spectrum and related communication applications. Spread spectrum communications are a wide-band secure communication system that generate a very broad spectral bandwidth signal that is therefore hard to detect in noise. They are capable of rejecting intentional or unintentional jamming, and are insensitive to the multipath and fading that affects conventional high frequency systems. The bandwidth of spread spectrum systems must be large to obtain a significant performance improvement. This means that the sequence rate must be fast and therefore very fast microprocessors will be required when they are used to perform spread spectrum correlation. Since multiplication cannot be performed efficiently by microprocessors considerable work, since 1974, has been published in the literature which is devoted to minimising the requirement of multiplications in digital correlation and other signal processing algorithms. These fast techniques are investigated and implemented using general-purpose microprocessors. The restricted-bandwidth problem in microprocessor-based digital correlator has been discussed. A new implementation is suggested which uses bit-slice devices to maintain the flexibility of microprocessor-based digital correlation without sacrificing speed. This microprocessor-based system has been found to be efficient in implementing the correlation process at the baseband in the digital domain as well as the post-correlation signal processing- demodulation, detection and tracking, especiaJIy for low rate signals. A charge coupled-device is used to obtain spectral density function. An all-digital technique which is programmable for any binary waveform and can be used for achieving initial acquisition and maintaining synchronisation in spread spectrum communications is described. Many of the practical implementation problems are discussed. The receiver performance, which is measured in terms of the acquisition time and the bit-error rate, is also presented and results are obtained which are close to those predicted in the system simulations

    Efficient FFT Algorithms for Mobile Devices

    Get PDF
    Increased traffic on wireless communication infrastructure has exacerbated the limited availability of radio frequency ({RF}) resources. Spectrum sharing is a possible solution to this problem that requires devices equipped with Cognitive Radio ({CR}) capabilities. A widely employed technique to enable {CR} is real-time {RF} spectrum analysis by applying the Fast Fourier Transform ({FFT}). Today’s mobile devices actually provide enough computing resources to perform not only the {FFT} but also wireless communication functions and protocols by software according to the software-defined radios paradigm. In addition to that, the pervasive availability of mobile devices make them powerful computing platform for new services. This thesis studies the feasibility of using mobile devices as a novel spectrum sensing platform with focus on {FFT}-based spectrum sensing algorithms. We benchmark several open-source {FFT} libraries on an Android smartphone. We relate the efficiency of calculating the {FFT} to both algorithmic and implementation-related aspects. The benchmark results also show the clear potential of special {FFT} algorithms that are tailored for sparse spectrum detection

    Area and Power Efficient FFT/IFFT Processor for FALCON Post-Quantum Cryptography

    Full text link
    Quantum computing is an emerging technology on the verge of reshaping industries, while simultaneously challenging existing cryptographic algorithms. FALCON, a recent standard quantum-resistant digital signature, presents a challenging hardware implementation due to its extensive non-integer polynomial operations, necessitating FFT over the ring Q[x]/(xn+1)\mathbb{Q}[x]/(x^n+1). This paper introduces an ultra-low power and compact processor tailored for FFT/IFFT operations over the ring, specifically optimized for FALCON applications on resource-constrained edge devices. The proposed processor incorporates various optimization techniques, including twiddle factor compression and conflict-free scheduling. In an ASIC implementation using a 22 nm GF process, the proposed processor demonstrates an area occupancy of 0.15 mm2^2 and a power consumption of 12.6 mW at an operating frequency of 167 MHz. Since a hardware implementation of FFT/IFFT over the ring is currently non-existent, the execution time achieved by this processor is compared to the software implementation of FFT/IFFT of FALCON on a Raspberry Pi 4 with Cortex-A72, where the proposed processor achieves a speedup of up to 2.3×\times. Furthermore, in comparison to dedicated state-of-the-art hardware accelerators for classic FFT, this processor occupies 42\% less area and consumes 83\% less power, on average. This suggests that the proposed hardware design offers a promising solution for implementing FALCON on resource-constrained devices.Comment: 14 page

    Field Programmable Gate Arrays (FPGAs) II

    Get PDF
    This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Computer and Information Science. The book comprises single chapters authored by various researchers and edited by an expert active in the Computer and Information Science research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on Computer and Information Science, and open new possible research paths for further novel developments
    corecore