Efficient FFT Algorithms for Mobile
Devices

Koki Sugawara

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 24.9.2016

Thesis supervisors:

Prof. Risto Wichman

Thesis advisors:

Prof. Mario Di Francesco

M.Sc. Pranvera Kortoci

A” Aalto University



https://core.ac.uk/display/80722017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Koki Sugawara
Title: Efficient FFT Algorithms for Mobile Devices

Date: 24.9.2016 Language: English Number of pages: 5+36

Department of Signal Processing and Acoustics

Professorship: S-88 Signal Processing

Supervisor: Prof. Risto Wichman

Advisors: Prof. Mario Di Francesco, M.Sc. Pranvera Kortogi

Increased traffic on wireless communication infrastructure has exacerbated the
limited availability of radio frequency (RF) resources. Spectrum sharing is a
possible solution to this problem that requires devices equipped with Cognitive
Radio (CR) capabilities. A widely employed technique to enable CR is real-time RF
spectrum analysis by applying the Fast Fourier Transform (FFT). Today’s mobile
devices actually provide enough computing resources to perform not only the FFT
but also wireless communication functions and protocols by software according to
the software-defined radios paradigm. In addition to that, the pervasive availability
of mobile devices make them powerful computing platform for new services. This
thesis studies the feasibility of using mobile devices as a novel spectrum sensing
platform with focus on FFT-based spectrum sensing algorithms. We benchmark
several open-source FFT libraries on an Android smartphone. We relate the
efficiency of calculating the FFT to both algorithmic and implementation-related
aspects. The benchmark results also show the clear potential of special FFT
algorithms that are tailored for sparse spectrum detection.
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1 Introduction

1.1 Research scope and goals

The widespread popularity of both mobile devices and Internet services with rich
multimedia content have significantly increased the traffic on the wireless communi-
cation infrastructure, thereby exacerbating the limited availability of radio frequency
(RF) resources. Spectrum sharing is a possible solution to this problem which allows
unlicensed users to access to licensed RF spectrum as long as they do not produce
harmful interference. This scheme requires mobile devices equipped with Cognitive
Radio (CR) capabilities to adapt radio-system parameters according to the radio
communication environment in real-time.

A widely employed technique to enable CR is real-time RF spectrum analysis by
applying the Discrete Fourier Transform (DFT) on RF signals. The DFT decomposes
time-domain RF signals into distribution of coefficients in the frequency domain.
These coefficients represent the signal power at the corresponding frequency, and
therefore can be interpreted as occupied frequency bands. The idea behind the
Fast Fourier Transform (FFT) was first published by Cooley and Tukey [9] in 1965
for efficient calculation of the DFT. Since then, the FFT has been applied to a
number of research and engineering fields. Nowadays several FFT algorithms and
implementations are available as free or open-source libraries.

Even though most of the libraries target PC (personal computer) applications,
today’s mobile devices integrate powerful processors and sufficient resources to
perform the FFT by software. If coupled with software-defined radio (SDR) hardware,
these computing capabilities can be employed to execute wireless communication
functions and protocols. Researchers regard the pervasive availability of mobile
devices with suitable capability as a novel spectrum sensing platform.

This thesis studies the feasibility of using mobile phones in this context, with focus
on FFT-based algorithms for spectrum sensing. We benchmark several open-source
FFT libraries on an Android smartphone and evaluate their performance in terms
of average execution time. We relate the efficiency of calculating the FFT to both
algorithmic and implementation-related aspects.

1.2 Contributions

In this thesis we review the benefits of CR to address the scarcity of RF spectrum for
wireless communications. We indicate that spectrum sensing is the essential enabling
function of CR. In addition to that, we also discuss leveraging widespread mobile
devices as a pervasive computing platform, and provide examples of applying such a
platform to spectrum sensing.

As one of the core techniques for spectrum sensing, we discuss the FF'T algorithm
in detail and review solutions to improve FF'T performance. Specifically, we study
special FFT algorithms that are tailored for sparse spectrum, namely, compressed
sensing (CS) and the sparse FFT. We review well-reputed open-source FFT libraries,
and describe the benchmarking software we developed to evaluate the FFT libraries



on an Android device. Based on the evaluation results, we discuss the impact of
implementation languages and support of SIMD (single-instruction, multiple-data)
instruction sets on the FFT performance. Finally, we suggest further research
directions in this topic.

1.3 Thesis structure

The rest of the thesis is organized as follows. Chapter 2 introduces the background
on CR, SDR, and FFT. Chapter 3 provides the basis of FFT, a few derivations of the
FFT algorithm, and open-source FFT libraries. Chapter 4 details our benchmarking
software and the device used for evaluation purposes. Chapter 5 presents bench-
marking results of several FFT libraries with estimation of impact of the transform
decomposition technique. Finally, Chapter 6 concludes the thesis.



2 Background

The goal of this thesis is to evaluate efficient algorithms for computing the Fast
Fourier Transform (FFT) on mobile devices. These algorithms allow turning smart
phones and other portable devices into software-defined radio platforms. In the
rest of this chapter, we first describe the cognitive radio and software-defined radio
paradigms, then introduce the FF'T as well as compressed sensing, which is a powerful
algorithm to solve sparse problems. We conclude by a review of research on using
mobile phones as software-defined radio and spectrum sensing platforms.

2.1 Cognitive radios and software-defined radios

Radio frequency spectrum is a shared and limited physical resource. Until now,
regulatory bodies have managed the available spectrum by dividing frequency bands
in fragments, and by assigning them to licensed users for exclusive operations.

At the user side, development in electronics and radio communication technologies
has allowed millions of mobile devices to access several different radio networks
constantly. As multimedia content and services become more and more widespread,
mobile traffic increases dramatically.

These trends have led to overloaded cellular bands and to the lack of wireless
spectrum. To overcome these problems, regulatory bodies in the world have been
considering to implement shared spectrum access policy in licensed bands by unli-
censed users. In this policy unlicensed users must comply two conditions to protect
the licensees’ spectrum usage. Unlicensed users can access the spectrum on oppor-
tunistic basis, or only when free spectrum is detected, and as far as they do not
cause interference to priority users.

Cognitive Radio (CR) is a paradigm to achieve the above-mentioned functions.
It is defined by FCC as “a radio that can change its transmitter parameters based
on interaction with the environment in which it operates” [10]. CR systems monitor
the environment or the context of a user equipment — such as the available spectrum,
surrounding noise, moving speed, remaining battery — and adapt its radio parameters
dynamically to such a context. Spectrum-sensing CR denotes a subset of full CR
that detects and utilizes the best available radio spectrum given the current context.

Software-Defined Radio (SDR) is an advanced enabler technology of CR. While
the traditional radio system achieves its system function by switching the data path
among a collection of rigid functional blocks (Fig. 1), an SDR system leverages
generic functional blocks that are configurable with parameter settings or software
(Fig. 2). The ideal SDR would configure all the digital front-end functions of a radio
system — such as filters, sample-rate converters, and protocol operations (including
modulation, demodulation, error correction, encryption, network protocol) — totally
by software on general-purpose digital-signal processors (DSPs) (Fig. 3). Such a
software-centric radio system is capable of adapting its system functions to the
given context more flexibly than a traditional radio system with fixed functional
components.

Implementation of the SDR architecture started in 1980’s in the field of digital
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receivers, and in 1991 a GSM base station was built as the first software-based
transceiver [23]. A present SDR platform consists of the following components in
general; an ADC, a DSP implemented in FPGA, clock and synchronization, a DAC
when it supports transmitter, and digital interface, such as Ethernet or USB, to a host
computer. Nowadays tens of SDR platforms are available to consumers at affordable
price for various purposes such as research, TV /FM/GPS receivers, transceivers, and
radars. To name a few examples, Universal Software Radio Peripheral (USRP) is pro-
vided as “open source hardware” and used with GNU Radio, an open source software
to implement SDR and signal processing. Another module RTL-SDR(RTL2832U) is
originally an USB dongle DVB-T TV tuner at $20, but it works as an SDR platform
with a software driver [1].

2.2 The Fast Fourier Transform

When implementing spectrum-sensing CR, spectrum analysis is the first step to
observe real-time usage of frequency bands. Since the status of spectrum utilization
fluctuates over time, such an analysis needs to complete quickly. Due to the limited
energy resources in mobile devices, the analysis needs to accomplish with low power
consumption, too.

The Fourier Transform (FT) is a mathematic technique to convert a continuous
time-domain function into a collection of periodical function components or frequency
elements. The transformed result is a complex-valued function of frequency. The
absolute value of the transform represents the amplitude of the frequency element,
while the argument of the complex value represents the phase offset of the frequency



element. Joseph Fourier discovered this valuable transform in 1822 [11].

The Discrete Fourier Transform (DFT) is a FT with certain assumptions driven
by real-world numerical computing. These assumptions include: the data are sampled
at a constant rate; the number of data, or data length, is limited and known; and the
whole data set forms one long period of data that defines the frequency resolution
in the transform. The DFT converts a finite length of sampled signal into complex
coefficients of frequency elements.

The Fast Fourier Transform (FFT) is an algorithm that optimizes the number
of operations in the DF'T by fully utilizing its regularity. The FFT algorithm was
first officially published by J.F. Cooley and J.F. Tukey in 1965 [9], though its core
idea is found already in a document of the early 19th century by C.F. Gauss [17].
Section 3 describes the FFT algorithm in detail.

2.3 Compressed sensing

The Nyquist-Shannon sampling theorem defines the lowest sampling frequency that
allows perfect recovery of the original signal. When the highest frequency component
of the original time-continuous signal is limited to B, the sample rate F; must be at
least twice the highest frequency, i.e.,

F, > 2B (1)

The threshold, F; = 2B, is called the Nyquist rate [§].

The Nyquist-Shannon theorem indicates that the higher the frequency of interest
is, the higher the sampling rate must be, by increasing the number of sample data in
unit time. The input data length N of the FFT defines the order of FFT operation
as O(N log N). Even though the FFT calculates the DFT efficiently, the data length
still dominates the operation time, and it takes more time when the target frequency
increases. Thus, more efficient methods are sought.

Compressed sensing (or compressive sensing, CS) is a technique to solve an
underdetermined set of linear equations [7] [15]. A target set of linear equations can
be generally described in the following form:

Ax =y (2)

where y € R™ is a measurement vector, A € R™*" is a measurement matrix,
and x € R" is the unknown vector in the linear system. Here, both y and A are
exactly known. In case of m < n, where the number of measurement is less than
that of unknowns, the equation is underdetermined and there are multiple solution
candidates. To choose one solution from the candidates, we need to provide a criterion
of choice. An approach is minimizing the norm'of the candidates. A commonly used
criterion is minimizing the fs-norm or the Euclidean length of the vector. Fig. 4
presents the form of the solution space depending on the specified criterion in the
two-dimensional space. The f>-norm criterion provides a circular solution space to
seek for a suitable solution and the Euclidean distance from the origin of the solution
space is minimized as the p = 2 case in Fig. 4.
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Figure 4: Impact of the ¢, norm criterion on the solution space of an identical linear
equation for: (a) p =1; (b) p = 2. [15]

As Fig. 4 shows, a criterion by ¢;-norm forms a diamond-shaped solution space in
two dimensions. The figure illustrates that a solution is most likely to be found at a
vertex of the solution space. Since the vertices reside on the axes, the solution vector
obtained with an /;-norm criterion is sparser than the solution with an f;-norm
criterion. CS thus obtains a sparse solution by applying the ¢;-norm criterion with
an underdetermined equation as follows:

min ||x||; subject to Ax =y (3)

The authors in [15] list applications of CS such as wireless channel estimation,
data aggregation in a wireless sensor network, network tomography, and compressed
spectrum sensing for cognitive radios.

2.4 Mobile devices as spectrum sensing platforms

Most of mobile devices available today — such as smartphones, tablets, navigators,
and note PCs — are capable of accessing the Internet through multiple radio access
technologies, such as cellular networks and WLAN standards.

With regard to their computing performance, latest mobile devices are equipped
with modern multi-core processors that support SIMD (Single Instruction, Multiple
Data) instruction set. A SIMD instruction executes one operation on multiple sets

L'A norm is a function in a vector space that leads to a scalar value of a vector. This value
represents the length or size of the vector. For a p > 1, p-norm is defined as follows.

1
n P
2l = (Z Iivil”>
i=1

When p = 2, the norm provides the length of the vector. This is called Euclidean norm, 5 norm,
or just 2-norm. When p = 1, the norm is the sum of absolute value of each vector element, or the
Manhattan distance of the vector. This is called taxicab norm, ¢; norm, or just 1-norm.



of data in parallel to boost performance especially on multimedia data. As of this
writing, ARM is the most popular processor architecture in mobile devices, and their
ARMvT or later processor architecture support their own SIMD instruction set called
NEON [2].

With increased performance, mobile devices have become capable enough to be
employed as SDR platforms instead of field-programmable gate arrays (FPGAs) or
personal computers, the first and second generation SDR platforms, respectively.
Park et al. [28] prove that a smartphone with a 1.2 GHz processor can already
execute a low-speed radio protocol such as ZigBee (IEEE 802.15.4), and estimate that
development of processors will enable a smartphone to run WiFi (IEEE 802.11a/b)
protocols as its applications within six years.

To understand the requirements for practical spectrum sensing on mobile devices,
let us consider access to 4G cellular bands. Among the LTE-FDD bands, Band 3
has the widest uplink and downlink bandwidths of 75 MHz each [3]. Since duplex
operation is defined in the standard, we need to sense only one of either the uplink
or the downlink spectrum, i.e. 75 MHz, to detect spectrum usage. The number
of 15 kHz sub-carriers in a 75 MHz band is 5,000 Usually the size of FFT is set
to a power-of-two value for efficiency reasons. In this case the FFT size should be
N =213 = 8,192 to cover 5,000 points. The required sampling rate to achieve this
FFT is 8,192-15kH z = 122.88 Msps. For the case of LTE-TDD, the widest bandwidth
of 200 MHz (e.g. Band 43) contains 13,333 of 15 kHz channels. The FFT size should
be N = 2! and the required sampling rate is 245.76 Msps. Commercial discrete
ADC components for LTE devices support at least 250 Msps per channel [19] [32].

In industrialized countries, most people always bring one or more mobile devices
every day wherever they go. Such a new physical circumstance with widespread
high-performance wireless mobile devices as a pervasive computing infrastructure
enables large-scale spectrum sensing through crowdsourcing.

Nika et al. [25] implement low-cost spectrum monitors by applying RTL-SDR as
the RF receiver and mobile devices (including a smartphone) for calculating FFT.
They summarize that limited sensitivity and bandwidth of their low-cost spectrum
monitors can be compensated with increased data collected by crowdsourcing. One
critical point in their spectrum monitor is the decreased RF sensitivity of RTL-SDR
when powered by mobile devices via microUSB connector.

Zhang et al. [36] utilize the WiF1i chip of a smartphone to measure spectrum of
TV channels. They achieve this by introducing an RF frequency translator that
consists of a frequency synthesizer and a mixer. The original TV channel signal is
frequency shifted to WiFi frequency, and is then received with the smartphone. The
smartphone can detect TV channels with reasonable accuracy.

Achtzehn et al. [4] monitor network load on 2G cellular operators by crowdsourcing.
Their open-source mobile phones collect not only RF spectrum but also protocol
control signals to estimate weekly and daily variations of network traffic. Their cloud
backend system schedules policy-based data collection by all participating mobile
devices.

Shi et al. [29] adapt parameters of WiFi access points by utilizing smartphones
to collect the WiFi signal quality. Their unique crowdsourcing architecture avoids



interrupting an actively communicating device (e.g. a laptop computer) and utilizes
an idle device in its proximity (e.g. a smartphone) for the WiFi signal sensing, if
available. Since not many WiF1i chipsets in smartphones allow detailed measurements
because of the limitations in hardware, firmware, or in the driver, they implemented
a special hardware for their prototype.

Some of above authors [36] [4] [29] also discuss the benefits of incentive mecha-
nisms, such as a spectrum data market, to attract smartphone users into the signal
measurement campaign.
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3 The Fast Fourier Transform

This chapter is dedicated to the Fast Fourier Transform (FFT). We first introduce the
relation between Fourier Transform (FT) and FFT by focusing on their operations.
Then we present a few algorithms to improve the FFT performance, namely, FFT
pruning, transform decomposition, and the sparse FFT. In the last section, we review
open-source FFT software that realizes the previously-mentioned techniques.

3.1 The original FFT algorithm

Before discussing the FFT, we start by introducing the FT and the Discrete Fourier
Transform (DFT) [8] [20] [16].

3.1.1 Fourier Transform

The Fourier series defines a way to represent a general time-continuous periodic
function z(t) with period Ty = 1/ f; as a sum of basic periodic functions. By applying
sin and cos functions as the basis functions, z(t) is expressed as follows:

x(t) = % + i ay, cos (2w fokt) + i by sin (2 fokt) (4)
k=1 k=1
where
ap = 7%0/To x(t) cos (2 fokt) dt (5)
b = T20 [ #(0)sin 2 pokt) dt (6)

The coefficients a;, and by, express the correlation between x(¢) and the basis functions.
By using Euler’s formula with j as the imaginary unit,

e’ = cos + jsinf (7)
the Fourier series can be expressed in complex form:
o
x(t) = Z cped 2okt (8)
k=—o00

Here, the rotation vector e/?™/o** represents a combination of basis functions sin and
cos with frequency kfy. The complex coefficient ¢, again represents the correlation
between xz(t) and basis functions of frequency kfy. The coefficients are defined as

follows:
1

= —/ x(t)eI2mIok gy (9)
TO Ty
The Fourier transform solves this coefficient across the continuous frequency space,
and decomposes the frequency elements of the original signal z(t) as a continuous
function of frequency as follows:

X(f) = / T (eI gy (10)

—00

Ck



11

3.1.2 Discrete Fourier Transform

Let us introduce practical conditions of real-world computing in the F'T. The first
consideration is the form of the time-domain signal. In order to handle practical
signals, the original signal x(¢) must be sampled at a regular interval to obtain the
data sequence z[n], i.e.,

z[n] = x(nTj) (11)

where Ty is the sampling interval, or f; = 1/Tj is the sampling rate. The expression
of the corresponding time-continuous signal z(¢) with the sample values z[n] is:

o0

z(t) = > z[n]é(t —nTy) (12)
By substituting x(t) in the definition of Fourier Transform Eq.(10) with Eq.(12), and
by taking into account that [ d(t — o) f(t)dt = f(ty), we reach the definition of
discrete-time Fourier transform (DTFT):

X(f) :/OO { 3 x[n]é(t—nTs)}e_ﬂ”ftdt

X n=—c0

= > zn / §(t —nT,) e 72 dt (13)
frg i x[n] eijﬂ-nf/fS
The second consideration is the finite data length. Indeed the data length must
be finite, so that the calculations will complete in finite time. When the data length

is N, the index range of the summation becomes n = [0..N — 1], thus

N-1
X(f) =3 aln] e7s2mmdls: (14)

n=0
When the sample signal of length N contains precisely one period, the signal phase
shifts 27 /N at each sampling interval. This is the smallest representable angular
frequency or resolution with the N-length sample. The DFT calculates the frequency
coefficients with this resolution from 0 to 2”(]]\(;1), or at % where k = [0..N — 1].
The frequency coefficients are, again, the correlation between z[n| and the rotation

vectors of frequency sets defined by % Since the vector phase increases at this rate,

the n-th data is multiplied with the vector at phase 2’;\’7", leading to:
N-1 .
X[kl =Y zn]e vk (15)
n=0

By replacing the indices with suffixes for simplicity, we have

N-1 Y
Xy = x,edwhkn (16)
n=0
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3.1.3 Fast Fourier Transform

The FFT utilizes regularities in DF'T equations to calculate them in a fast manner.
First, let us define the N-th root of unity (1) as

W=e ¥ (17)

and simplify the DFT in Eq.(16) as follows:

N-1
Xp=> z, W (18)
n=0
To observe the regularity, we show the complete matrix equation for the case of
N = 8 below:

XO W0~0 WO-I W0~2 WO-3 W0~4 W0-5 W0~6 WO-?' Z0
Xl W1~0 W1~1 W1~2 W1~3 W1~4 W1-5 W1~6 Wl-? T
X2 W2-0 W2-1 W2-2 W2-3 W2-4 W2-5 W2-6 W2-7 T
X3 WB-O W3-1 W3-2 W3-3 W3-4 W3-5 W3-6 W3-7 T3
X4 W4~0 W4~1 W4-2 W4~3 W4-4 W4-5 W4-6 W4-7 T4
X5 W5~0 W5-1 W5~2 W5-3 W5~4 W5-5 W5~6 W5-7 x5
X6 W6~0 Wﬁ‘l W6~2 WG-S W6~4 WG-S W6~6 WG-? Tg
X7 W7~0 W7~1 W7~2 W7~3 W7~4 W7~5 W746 W7~7 7

The matrix in Eq.(19) clearly shows the relation of the rotation vector phase (W*")
to the target frequency index k of X and to the data index n of z,,. Another fact in
the matrix is that the data length N limits the range of & in [0..N — 1] to maintain
the unique rotation-vector matrix. Otherwise, all the column vectors return to their
original values after N elements because of aliasing (W *+N)n = p/kn),

The matrix in Eq.(19) can be simplified by first applying W® med N) — 1y/»,
Even though W° = ¢770 = 1, we keep the form of W? at this point to observe the
regularity in the matrix:

Xol WO WO WO WO WO WO WO WO [x
X (w0 oWl ow? oW oWt oW W W |
Xl (W0 W2 oWt ws w0 W2 w4 W |,
X (WO W we Wl oWt W W2 WS |y
Xl T WO oWt o wo WA W Wt WO W |y
Xs| (w0 owr w2 oWt oWt Wl oW W |
Xg| (WO WO WA w2 WO WS Wt W2 |
X w0 W owe ws oWt W w2 W |a

In the matrix in Eq.(20) we can observe a periodc property in each row vector
with an even index. The right half of each even-index row vector is an exact copy of
the left half. This allows to utilize only the left half of the matrix by combining the
operands that apply identical coefficients. X with even k indices can be simplified
as follows:



To+ T4
T+ Ty
Ty + T
T3 + X7

To
xy
WO T
WG T3
W4 T4
W2 T5
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The same periodic property becomes visible in Eq.(20) for odd k indices by
factorizing the right half of the matrix by W4
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The final derivation utilized the property of W3 = —1, where N = 8 in the considered

example.

We can further simplify DFT calculations by finding matrix periodicity in Eq.(21)
and Eq.(22). From Eq.(21),

|
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Moreover, from Eq.(22),
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The FF'T calculation is composed of a regular procedure called a butterfly. Fig. 5
shows the complete calculation procedure of the eight-point FFT as a connected

butterfly components.
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Figure 5: Calculation procedure of the eight-point FFT with butterfly components.

Fig. 5 presents two interesting properties in the FFT operation. The first
property is bit reverse. The figure is drawn so that the FFT output appears in
order of frequency {Xo, X1, X, ..., X7}. This is achieved by permuting the input
elements in bit-reverse order as is shown in the figure, i.e. {zg, x4, X2, T6, 1, T35, T3, T7}.
The reason of this name “bit reverse” becomes visible when you write down the
indices of the input vector {0,4,2,6,1,5,3,7} in binary representation, which is
{’000’/ 100, 010/, 110’/ 001’/ 101’ 011",/ 111’}. By reading each number in reverse
direction, i.e. from LSB to MSB, the corresponding decimal number results in an
array {0,1,2,3,4,5,6,7}.

Another property is that one set of data is processed by only one butterfly to
generate a new set of data. For example in Fig. 5, o and x4 are processed at the
top-left butterfly to generate two values (xg + z4) and (o — x4). And from this
point on there is no reference to the original two values (z¢ and z4) anymore, but
only the new set of values are used in the following stage. The implication of this
property in computing is that the memory space of the original input data can be
reused or overwritten until the end of FFT calculation without allocating a separate
memory space for intermediate or final results. This type of memory efficient FFT
implementation is called in-place implementation, while use of separate memory
space is called out-of-place implementation.

Each WP in the matrix (20) corresponds to a complex multiplication operation.
The matrix can be simplified by replacing W° by 1 and W* by —1. The simplified
matrix still requires 32 complex multiplications. In the Fig. 5, each WP coefficient
attached to a link corresponds to a complex multiplication. Consequently, the total
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number of multiplication operations is reduced to five from 32 in the original equation.

In this example the periodic property of matrix is found by separating the original
matrix equation into even and odd indices of X}, or by collecting every other index.
Cooley and Tukey generalizes that the periodic property appears by collecting every
p-th index, where p, a twiddle factor, is a factor of the current vector length N [9].
In the above example, the original vector length is N = 23, therefore every matrix
decomposition step takes p = 2.

3.2 Pruning and transform decomposition

The ordinary FFT described in the previous section executes all the calculation paths
in Fig. 5 to obtain N output values from N input values. However, there are cases
where not all these calculations need to be done.

One example is when only a subset of input data holds non-zero values. This
happens when the input data length is K, but the number of output points or the
output resolution N needs to be larger (i.e. K < N). In this case the original input
data is extended or padded by (N — K) zeros so that the FFT of length N can
process the input data.

Another example is when only a subset of the output contains values of interest.
This is exactly the case of spectrum-sensing CR, since the radio frequency we are
interested in is limited to a specific range of the radio communication bands, but not
to low frequency (LF) or medium frequency (MF) bands.

FFT pruning was proposed to facilitate such cases [22] [24]. The number of
operations in a single FFT task can be reduced by simply removing or pruning the
unneeded calculation paths in Fig. 5 depending on the padded sequence of zeros in
the input or the output points of interest. Unfortunately, the impact of FF'T pruning
is only modest. As an example, the time savings to execute 2'%-point FFT with 2%
non-zero input data (that is, only the first quarter of the input data holds non-zero
values) is less than ten percent with pruning [22].

The core algorithm of the transform decomposition is identical to the original
FFT algorithm of Cooley and Tukey in the sense that it splits a whole FFT task into
a set of smaller FFTs and recombine the partial results into the final result [30]. The
specialty of this solution is that the transform decomposition maintains the smaller
FFTs and recombination as separate processes, while the original FFT flattens
out all the calculations as shown in Fig. 5. By separating the final recombination
process from the internal smaller FF'T tasks, only the output points of interest can
be selectively calculated without computing unneeded output points. This method is
faster than FFT pruning, and also more flexible in that the output points of interest
do not have to be sequential as they do with FF'T pruning.

3.3 Sparse FFT

Sparse FFT (sFFT) is the FFT algorithm that analyzes sparse spectrum efficiently.
The algorithm was developed at the MIT [13], and its efficiency advantages were
proven with a GHz-wide spectrum sensing without very high-speed ADC [14]. The
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Figure 6: Time-decimation of signals including delay or offset.

sFFT combines basic properties of the FFT under the assumption of k-sparse
spectrum.

The first step of the algorithm is the time-decimation of the samples. From the
original sample data x of length N, a subsample data x, is built by selecting every
p-th element of x (Fig. 6). Here p is chosen from the factors of N (p = N/B). The
length of the subsample x, is B.

zpn| = x[np| , where n = [0..B — 1] (27)

Then the FFT is executed on the subsample to obtain spectrum X, = FFT(xp).
Notice that all the frequency components in the original signal x are still conserved
in the subsample x,. But due to the length of subsample, X, holds only B frequency
elements, while the FFT on the original sample X = FFT(x) would generate N
frequency elements. The original N frequency elements in X is divided into p sections
of size B, and accumulated (or aliased) into B frequency elements of X,, (Fig. 7).
When multiple non-zero frequency elements fall into one frequency element by aliasing,
we call it collision. By choosing a proper size of B(= N/p) to the sparsity k, the
number of collisions is limited under the assumption of k-sparse spectrum X.

To detect a collision, another set of subsamples and its FFT are needed, namely,

L T LTI TP T T 1 kA |

. > >
Size B ' SizeB ! SizeB ! SizeB | g

Figure 7: Aliasing of spectrum due to time-decimation. A collision occurred at X,;.
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Tpr[n] = x[np + 7| , where n = [0..B — 1] (28)

where 7 is a constant time offset or delay from the sampling point of x,. Now we
have another set of aliased spectrum X, = FFT(Xp,). In general, the spectrum
of a time-delayed signal has a frequency-dependent phase shift against the original
spectrum:

2rfr

N

When there is no collision at frequency f, the following relationship is observed
between X, [f] and X, [f].

A = (29)

2 fr

Xpe[f] = Xp[f] €720 = X, [ 177 (30)

This means that the magnitude of these two values are identical. In this case the
frequency, even the aliased one, can be determined or estimated from the phase shift

as follows.
N A¢

2T

f=

Let us assume that there is a collision of two frequencies f; and f5 that both fall
into frequency f by aliasing. Then X, [f] is the sum of these two components:

(31)

Xplfl = Xy + Xy, (32)

The phase of these two frequency components are independently shifted in X, [f]:

2w f1T .27 foT

XpT[f] - Xf1 ej N+ Xf2 el N (33)

Consequently, we observe the collision as the difference in magnitude between X,,[f]
and X,.[f].

Up to this point of the sFFT process, we have been able to identify all the
frequency components without collision in X, and estimate the correct frequencies
back in X. To resolve the collisions in X, sFFT executes the same analysis with
another subsampling step ¢ that is also one of the factors of N. With the new
subsample x4, we obtain a new aliased spectrum Xy = FFT(xq4). Since we have
identified some spectrum through the first analysis, those known spectrum can be
subtracted from X,. This operation resolves collisions between the known and an
unknown spectrum, and the remaining stand-alone spectrum can be solved again
with the above procedure.

The most problematic case is that the pair of frequencies that collided in X
collide again in Xg. This situation can be avoided by choosing p and ¢ as co-
prime [14]. Further subsampling analysis is required in case of collisions among
unknown frequency elements. The number of operations for the sFFT to calculate
k-sparse spectrum from N number of data is in order of O(k log N) [13].
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3.4 Efficient FFT for mobile devices

This section summarizes the features of selected FFT software. The foremost criterion
of program selection is open-source. Other criteria are the number of references in
academic papers and reputation in evaluations. We also chose libraries that were
developed under a clear concept, such as pedagogical code and those optimized for
mobile applications.

The FFT programs are classified into two categories. The baseline FF'Ts implement
the traditional Cooley and Tukey FFT algorithm and are applicable to general input
data. The sparse FF'T is only applicable to the input data that is known to result in
sparse spectrum.

Baseline FFT libraries

e The basic FFT implementation of Princeton University [35] is a ped-
agogical code focusing on the hierarchical vector decomposition nature of the
FFT. It separates the input vector into an even-index vector and an odd-index
vector, runs independent FFT on each vector, and then combine the two FFT
results into one vector. The input vector is decomposed recursively until each
vector contains one element. This is an out-of-place implementation.

e In-place FFT implementation of Princeton University [34] includes a
few techniques for efficient computing, such as bit-reverse reordering of input
data that does not require recursive operations, and in-place memory usage.

e The FFT program of Columbia University [33] is also an in-place imple-
mentation with bit-reverse reordering. It pre-calculates an array of rotation
vectors (IWP) from that a rotation vector is looked up during FFT calculations.
The above two implementations of Princeton University calculate rotation
vectors on the fly.

e The FFTW (Fastest Fourier Transform in the West) from MIT [12] is
one of the highly referenced FFT libraries for its speed and robustness. The
program internally generates optimized micro FF'T codes for various twiddle
factors. It supports SIMD instruction sets such as SSE, SSE2, Altivec, AVX,
and NEON.

e Libav is a community-driven effort that provides portable libraries for multi-
media applications [21]. The FFT program supports NEON instruction set,
and is distributed as a part of libavcodec library.

e Cricket FFT is designed for Android and iOS applications. It is optimized
for ARM devices and supports NEON instructions [31].

e The FFTS (Fastest Fourier Transform in the South) is also designed for
Android and iOS applications, and supports NEON. It dynamically generates
code at runtime as FFTW does [5].
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e Superpowered publishes a multi-platform version of the well-reputed FFT
library vDSP, which is made by Apple and available only for iOS, with NEON
support [18].

e Kiss FFT is a compact implementation with the concept of “Keep It Simple
and Stupid” [6] without NEON support.

Sparse FFT

e Source code of the Sparse FFT (sFFT) is published by MIT [26] as a
benchmark program between the sFF'T and the FFTW. The FFTW is also
utilized within the sFF'T to execute FFT on the subsamples. Since its algorithm
assumes the FFT result to be a sparse spectrum, the program does not accept
a general input signal. The special operational mode of the sFFT is detailed in
Section 4.2.4
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4 Benchmarking FFT Libraries on Android

This chapter describes the benchmarking software we built to evaluate FFT libraries
on Android. After describing the specifications of the Android device used, we
detail the developed software starting from its architecture and internal input file
generation. Then, we list all the FFT variations supported by the benchmark software
and the integration method we used. We continue with the special treatment of the
sparse FF'T evaluation, and conclude the chapter with the logging function of the
benchmarking program.

4.1 The test device

Table 1 summarizes the specification of the test device for the evaluation work,
Samsung Galaxy S5 SM-G900F 16GB.

Table 1: The specification of Android test device

[tem Description

Chipset | Qualcomm MSM8974AC Snapdragon 801
CPU Quad-core 2.5 GHz Krait 400 (ARMv7 compatible architecture)
GPU Adreno 330

RAM 2 GB
Storage | 16 GB
OS Android 5.0 (Lollipop)

ARMvT or later processor architecture supports NEON instruction sets.

4.2 Benchmarking software

This section details the benchmarking software from the view points of architec-
ture, input and output control, FFT library integration, and their performance
measurement.

4.2.1 Architecture

Fig. 8 shows the software architecture and the data flow of our benchmarking
program. The overall structure (including the white boxes and arrows in the figure)
was developed in the Android programing environment with Java and XML resource
files. The FFT libraries in C/C++ were compiled to ARM executables (the shadowed
boxes) and were called from the main program via the Java Native Interface (JNI)
framework [27].

The user provides three parameters to the program: the FFT data length, the
FFT library to run, and the number of FFT iterations. The program first generates
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the FFT input data. Then it calls the selected FF'T library and iterates it for the
specified number of times. The program measures the execution time of the whole
FFT iterations, and then calculates the average execution time for one FFT cycle.
It finally records all the input parameters, the first input and the last output of the
FFT iterations, and execution time information into a log file.

The developers of the Sparse FFT (sFFT) publish a dedicated perfornamce
comparison program between sFFT and FFTW [26]. This program was compiled
and integrated in the main program for sFFT evaluation.

The following sections describe the major functional blocks — Input vector gener-
ation, FF'T iterations, sFFT vs FFTW comparison, and Logging — in detail.

Data length (N) FFT type selection Number of iterations

FFT iterations

Input vector generation
From the common >
file (N<22) a
Random values ﬂ
(N>2%) FFT 1

SFFT vs FFTW

comparison <
J Execution time

4 VL A4 A VL VL A4

{ Logging (execution parameters, input vector, output vector, total and average execution time) ]

Figure 8: The architecture of the FF'T benchmarking program.

4.2.2 Input vector generation

The user provides the input data length as an integer exponent of two (2), such as
10 for a data length of N = 2!, Since some FFT libraries require input data lengths
to be powers of two, this is a practical way of defining data lengths. The program
generates an array of complex values of the specified length as the FFT input vector.
There are two operation modes in generating input vector depending on the specified
data length. The block reads the shared data file stored on the device and builds
an input vector up to data length of N = 2?°, which is the longest data length the
file can provide. This ensures that all the FF'T libraries start their operations on
identical input vectors. For longer data lengths the block generates input vectors
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with random values. The input vector generation function is implemented as Java
code.

4.2.3 FFT iterations

The FFT iterations block in the Fig. 8 executes the specified FFT library for the
specified number of iterations. At the same time it measures execution time of the
whole iterations. When FF'T iterations have completed, the program calculates the
average FF'T execution time per iteration.

Table 2 lists all the FFT libraries built in the benchmarking program. There
are two aspects to emphasize here. First, most of the libraries are distributed as
C/C++ code. Among the list the libraries from Columbia University and Princeton
University are originally implemented in Java. For these libraries we translated the
algorithms described in Java into C, compiled them, and integrated them into the
benchmarking program in addition to the original Java implementations for the
purpose of performance comparison.

Second, FFTW and Libav FF'T support the NEON instruction set as a compile-
time option. For these libraries two versions of executable are built with and without
activating NEON instruction sets for comparison purposes. For the other libraries
that do not provide any option with regard to NEON, only one executable was built
for each library.

Table 2: List of FF'T libraries built into the benchmarking program.

C/C++
Library name Java | NEON

off | on
Columbia Univ. FFT [33] v |V
Princeton Univ. Basic FFT [35] v |V
Princeton Univ. In-place FFT [34] || v | v
FETW [12] VN
Libav FFT 21] Vv
Cricket FFT [31] v
FFTS [5] v
Superpowered FFT [18] v
Kiss FFT [6] v

EE A

In this project we developed an iteration control part for each FF'T library as
a wrapper C code. On top of the loop control function, the wrapper handles data
feedback from FFT output to input with scaling. This scaling maintains the FFT
output signal power to be identical to the input signal power?. Without the scaling the
amplitude of signal increases at each FF'T iteration, and eventually overflows the data
range. Handling data feedback within the binary code reduces the switching overhead
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between binary and Java programs. The wrapped FF'T libraries are compiled into
ARM executables and packed into the Android application. We employed the Native
Development Kit (NDK), which Google provides to developers, to cross-compile
architecture-specific binary codes and packing them into the Android application.
The shadowed blocks in the FFT iterations box in the Fig. 8 correspond to the parts
developed with the NDK.

We also developed an interface Java code for each native ARM executable accord-
ing to the JNI specification. The main Android application passes FFT parameters
and input/output vectors through this interface.

4.2.4 Comparison between sparse FFT and FFTW

The evaluation of the sFFT is not exactly the same as the other FFT libraries
because of its peculiar algorithm and operation mode. In fact, the sFFT algorithm
is targeted to a signal that contains sparse spectrum. Because of this property,
the sFFT program requires a sparsity parameter that is the maximal number of
significant spectrum values in the result. When the program detects that the number
of significant spectrum values exceeds the specified sparsity, it stops with an error
message. This means that a tailored input vector is required with a knowledge of its
spectrum so that a target sparsity can be at least specified. Under this restriction,
the shared input vector is not applicable to sFFT since it does not necessarily fulfill
the sparsity constraints.

The applied program is not merely the sFFT library but actually a program
for performance comparison between sFFT and FFTW. According to the given
sparsity parameter, such program first generates a random sparse spectrum, which is
the expected spectrum FFT programs should obtain. Then the program executes
the inverse FFT (IFFT) to generate the corresponding input vector. After that,
the program executes the sFFT and FFTW algorithms with this tailor-made input
vector. The execution time is measured for one FFT run of each algorithm without
iterations.

This program was also integrated as a compiled binary with the NDK, and so it
is depicted as a shadowed box in the Fig. 8 as the other compiled binaries.

4.2.5 Logging

When the program executes an FFT library, it creates a log file with the file-name
format of <library_name>-<data_length>-<number of iterations>.log, such
as FFTWf_NEON-2710-1073.1og.

In addition to the information used to compose the log file name, the total time
for the FFT iterations and the average time per iteration are recorded in the log file.

2 The FFT algorithm in Section 3.1.3 results in the output vector (X) to have signal power of
the input vector (x) scaled by N. Usually an FFT library does not normalize the output signal
power to maintain the input signal power. The reason behind this is that the interest of FFT
applications is usually the relative form of the FFT result but not its absolute value. To FFT
applications such as spectrum analysis and convolution, the location of the peak value is the main
issue, and its absolute value is less important.
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When the data length is in range N < 229, the initial input vector and the final FFT
output vector are also recorded in the file.

To prevent the logging process from affecting FFT execution time, logging
functions are completely separated from time measurement. First, all the input
parameters are recorded at the point when the input vector is created. Then, time
measurement is started just before beginning FFT iterations. At the completion of
the FFT iterations, time measurement is stopped immediately. Finally, the average
FFT execution time is calculated and logged with the other parameters.
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5 Evaluation Results

This chapter presents the results obtained by our benchmarking software. In the first
section, we observe the impact of implementation options with the same algorithm,
namely, from the aspects of implementation languages and support for SIMD in-
struction sets. Moreover, we compare the performance of ordinary FFT libraries and
then carry out a special comparison between FFTW and sFFT. We also estimate
the impact of the transform decomposition for sensing spectrum of an LTE band.
Finally, we summarize the obtained results.

5.1 Impact of implementation languages and instruction sets

5.1.1 Comparison between C and Java

10 7 ! ! ! ! ! ! ! ! ! ) !

Bl .3 S S HRNE SR S S M S

10° |

Average execution time [ns]

2l o
2 4 6 8 10 12 14 16 18 20 22 24
Data length in log, (N)

Figure 9: Performance comparison between C and Java implementations of the FFT
algorithm from Columbia University. The C implementation is two to four times
faster than the Java implementation.

Fig. 9 and Fig. 10 show the average execution times of FFT algorithms imple-
mented in C and Java languages. The C implementation is faster than the original
Java implementation in all the three cases tested in this work.

Specifically, Fig. 9 shows the performance of the FFT algorithm from Columbia
University. The C version could complete the FFT calculation for data length up to
N =28 Up to this point the C implementation is two to four times faster than the
Java implementation. This algorithm creates a pre-calculated rotation-vector array
whose size is proportional to the input data length. The memory space occupied by
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Figure 10: Performance comparison between C and Java implementations of (a) the
basic FFT algorithm and (b) the in-place FFT algorithm from Princeton University.

this special array might have caused the reduced performance improvement for data
length of N > 22, and eventually led to the incomplete tasks.

Fig. 10 presents the performance of the FFT algorithms from Princeton University.
Compared to the original Java library, the corresponding C implementation is seven
times faster for the basic FFT algorithm (Fig. 10a), and ten to 30 times faster for
the in-place FFT algorithm (Fig. 10b).

5.1.2 NEON instruction set

100 [[—— withNEON | o oeel
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Figure 11: FFTW performance comparison with and without NEON instruction set.
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Fig. 11 shows the average execution time of the FFTW library written in C
and also supporting the NEON instruction set. The results show that FFTW with
the NEON instruction sets is two times faster than the implementation of the
same algorithm without the special optimization. Since the NEON instruction set
executes one operation on two data sets in parallel, the total number of clock cycles is
halved comparing to the corresponding single-instruction single-data (SISD) program.
Therefore, this two-fold performance improvement is as expected.

5.2 Comparison among ordinary FFT libraries
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Figure 12: Performance comparison of ordinary FF'T libraries implemented in C.

Fig. 12 shows the average execution time of all the ordinary (i.e., non-sparse)
FFT libraries implemented in C language. For the libraries that support NEON
instruction sets, only the results of NEON-enabled versions are included. The most
important observation from the result is that all the performances of ordinary FFTs
show a linear dependency on the data length.

We now focus on the performance of the libraries that we translated from Java
to C: the three libraries from Princeton University and Columbia University.

The Basic FFT library from Princeton University implements the recursive matrix
decomposition process described in Section 3.1.3. Since this is a pedagogical library,
the clarity of the algorithm takes more emphasis on its efficiency.

The In-place FFT library from Princeton University introduces bit-reversal
permutation on the input vector to utilize memory space efficiently. With the
permuted input vector the program can overwrite the memory array of the input
vector at each calculation step, and finally the memory array holds the FF'T result.
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This strategy is called “in-place operation” since it reuses the memory array for the
input vector without allocating another memory array for the output vector.

The FFT library from Columbia University also implements the in-place operation.
In addition to that, it reduces the number of complex operations by calculating and
storing the rotation vector arrays (W?) before the actual FFT calculations. While it
refers to the rotation vector array during the FFT calculations, the libraries from
Princeton University calculate the rotation vector on the fly.

Among the ordinary FFT libraries, “FFTS with NEON” is the fastest for almost
the whole range of considered data lengths.

5.3 Comparison between FFTW and sFFT
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Figure 13: Performance comparison between sFFT and FFTW with sparsity pa-
rameter k = 50, 100. Note that the data-length range is different from the previous
figures.

Fig. 13 shows the execution times obtained with sFFT and FFTW (without
NEON instruction sets) for two cases of sparsity, i.e., k = [50,100]. The graph shows
differences of properties in the two algorithms.

The performance of sSFFT does not show the linear dependency to the input data
length as the ordinary FF'T libraries do. On the other hand, it is dependent on the
sparsity parameter k: it performs faster for a lower k, i.e. when the FFT result
consists of fewer significant spectrum.

The performance of FF'TW is independent on the sparsity of the resulting spec-
trum. This also applies to the other ordinary FF'T libraries because they do not
require the sparsity parameter for execution.
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Because of difference in their impact factor on performance, performance of sFFT
exceeds that of FFTW for long input data where N > 220,

5.4 Impact of the transform decomposition

Even though the transform decomposition could be effective to spectrum-sensing
CR, no open-source library was found for this evaluation work. Instead of measuring
actual execution time on a device, we try to estimate its performance over the typical
FF'T program.

To give an example of the advantages in using the transform decomposition, let us
consider sensing an operational LTE band in Europe. The most challenging condition
for the transform decomposition happens when the frequency range of interest is
wide relative to the frequency band. According to the 3GPP standard [3], this
happens at Band 3 in that the uplink and downlink bands are 1,710 MHz-1,785 MHz
and 1,805 MHz-1,880 MHz, respectively. This frequency range of interest occupies
(1,880—1,710) /1,880 = 9.04% of the frequency up to 1,880 MHz. In a 512-point DFT,
this range corresponds to 512 - 9.04% = 47 points. Referring to Fig. 12 Performance
of different methods for computing a subset of output points of a length 512 DFT
in [30], the transform decomposition reduces the total number of operations by about
16% to calculate 47 points out of 512 comparing to the typical split-radix FFT.

5.5 Summary of results
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Figure 14: Performance comparison of all FFT libraries.

Fig. 14 shows all the obtained results in a single plot. The operation mode of
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sFF'T is clearly different from the other FF'T libraries. Besides, its performance is
significantly better than that of other libraries when the data length N > 22 under
the condition of sparsity k = 50.
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6 Conclusion

In this thesis we first discussed cognitive radio (CR) with software-defined radio
(SDR) technology as a paradigm to achieve effective utilization of radio frequency
spectrum. Effective spectrum sensing techniques are needed to realize CR. Since
the Fast Fourier Transform (FFT) plays the major role in spectrum analysis, then
we focused the theoretical view from Fourier Transform (FT) through FFT with
standard techniques to improve its performance such as FFT pruning and transform
decomposition. We also looked at newer techniques such as compressive sensing (CS)
and sparse FFT that enable faster FF'T operation in practical settings.

Considering that CR will be most beneficial to mobile devices, we benchmarked
open-source FFT programs on Android, which is the major mobile platform at
present. We integrated a number of FFT executables into an Android benchmark
program and compared their average FFT execution time.

From the benchmark results of ordinary FF'T programs, we observed the following
facts.

e As the type of FFT implementation, the binary executables are two to 30 times
faster than the corresponding Java implementations.

e The data length parameter is generally leveraged to improve the performance,
such as through the bit-reversal permutation of the input vector and the pre-
calculated rotation vector array.

e SIMD (single-instruction multiple-data) instruction sets, such as NEON, in-
crease FFT performance because of the data-level parallelism. This typically
results in halving the execution time.

e “FFTS with NEON” performs the best among the ordinary FFT programs.

We also discussed more sophisticated approaches to sparse spectrum sensing, such
as CS and the Sparse FFT. The benchmark program actually proved that sFFT
executes faster than the considered FFTW library with long input data (N > 2%°) with
sparse spectrum cases. However, the constraint in applying sFFT is that it requires
the spectrum sparsity as an execution parameter. Because of this requirement, sEFFT
can not be smoothly applied to general data instead of ordinary FFT programs.

To overcome this difficulty, further study could focus on two aspects. One is a
survey of practical CR contexts, such as actual sparsity and the target frequency
range, to unravel whether a general parameter for a practical context exists or not.
The other one is an algorithmic approach. If there is a way to estimate the spectrum
sparsity starting from a rough value to a finer value without using much execution
time, the algorithm will become autonomous and robust for general usage.
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