
Field Programmable Gate
Arrays (FPGAs) II

Edited by George Dekoulis

Edited by George Dekoulis

This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of
reviewed and relevant research chapters, offering a comprehensive overview of

recent developments in the field of Computer and Information Science. The book
comprises single chapters authored by various researchers and edited by an expert

active in the Computer and Information Science research area. All chapters are
complete in itself but united under a common research study topic. This publication
aims at providing a thorough overview of the latest research efforts by international

authors on Computer and Information Science, and open new possible research paths
for further novel developments.

Published in London, UK

© 2020 IntechOpen
© Hello I’m Nik / unsplash

ISBN 978-1-83881-056-6

Field Program
m

able G
ate A

rrays (FPG
A

s) II

Field Programmable Gate
Arrays (FPGAs) II

Edited by George Dekoulis

Published in London, United Kingdom

Supporting open minds since 2005

Field Programmable Gate Arrays (FPGAs) II
http://dx.doi.org/10.5772/intechopen.78489
Edited by George Dekoulis

Contributors
J. Guadalupe Velasquez, Outmane Oubram, Luis Cisneros-Villalobos, Yongbo Liao, Mário Lopes
Ferreira, João Canas Ferreira, Felipe A.P. de Figueiredo, Fabbryccio A.C.M. Cardoso, Surya Prasada
Rao Borra, Rajesh K. Panakala, Pullakura Rajesh Kumar

© The Editor(s) and the Author(s) 2020
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2020 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Field Programmable Gate Arrays (FPGAs) II
Edited by George Dekoulis
p. cm.
Print ISBN 978-1-83881-056-6
Online ISBN 978-1-83881-057-3
eBook (PDF) ISBN 978-1-83881-058-0

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

5,000+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

125,000+
International authors and editors

140M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Meet the editor

Prof. George Dekoulis received his PhD in Space Engineering
and Communications from Lancaster University, UK, in 2007.
He was awarded a 1st Class BEng (Hons) degree in Communi-
cations Engineering from De Montfort University, UK, in 2001.
He has received several awards from STFC, UK and EPSRC, UK,
and the “IET Hudswell International Research Scholarship”. He
is currently a professor at the Aerospace Engineering Institute

(AEI), Cyprus. He is founder of the IEEE Aerospace and Electronic Systems Society
(AESS) – Cyprus and was the General Chair of IEEE Aerospace Engineering Inno-
vations 2019 (IEEE AEI 2019) Symposium, 20-23 April 2019, Limassol, Cyprus.
He has previously worked as a professor in aerospace engineering at various depart-
ments, such as space and planetary physics, aeronautical and space engineering,
professional flight, robotics/mechatronics and mechanical engineering, computer
science and engineering and electrical and electronics engineering. His research is
focused on the design of reconfigurable aerospace engineering systems.

Contents

Preface XI

Chapter 1 1
Real-Time FPGA-Based Systems to Remote Monitoring
by J. Guadalupe Velásquez-Aguilar, Outmane Oubram
and Luis Cisneros-Villalobos

Chapter 2 25
Real-Time Echo State Network Based on FPGA and Its Applications
by Yongbo Liao

Chapter 3 39
Flexible Baseband Modulator Architecture for Multi-Waveform
5G Communications
by Mário Lopes Ferreira and João Canas Ferreira

Chapter 4 57
An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
by Felipe A.P. de Figueiredo and Fabbryccio A.C.M. Cardoso

Chapter 5 85
VLSI Implementation of Medical Image Fusion Using DWT-PCA
Algorithms
by Surya Prasada Rao Borra, Rajesh K. Panakala
and Pullakura Rajesh Kumar

Contents

Preface XIII

Chapter 1 1
Real-Time FPGA-Based Systems to Remote Monitoring
by J. Guadalupe Velásquez-Aguilar, Outmane Oubram
and Luis Cisneros-Villalobos

Chapter 2 25
Real-Time Echo State Network Based on FPGA and Its Applications
by Yongbo Liao

Chapter 3 39
Flexible Baseband Modulator Architecture for Multi-Waveform
5G Communications
by Mário Lopes Ferreira and João Canas Ferreira

Chapter 4 57
An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
by Felipe A.P. de Figueiredo and Fabbryccio A.C.M. Cardoso

Chapter 5 85
VLSI Implementation of Medical Image Fusion Using DWT-PCA
Algorithms
by Surya Prasada Rao Borra, Rajesh K. Panakala
and Pullakura Rajesh Kumar

Preface

This Edited Volume is a collection of reviewed and relevant research chapters,
concerning the developments within the Field Programmable Gate Arrays (FPGAs)
II area of study. The book includes scholarly contributions by various authors and
edited by a group of experts pertinent to Computer and Information Science. Each
contribution comes as a separate chapter complete in itself but directly related to
the book’s topics and objectives.

The book is divided in one section which includes chapters dealing with the
topics: Real-Time FPGA-Based Systems to Remote Monitoring, Real-Time Echo
State Network Based on FPGA and Its Applications, Flexible Baseband Modulator
Architecture for Multi-Waveform 5G Communications, An Efficient FPGA-Based
Frequency Shifter for LTE/LTE-A Systems, and VLSI Implementation of Medical
Image Fusion Using DWT-PCA Algorithms.

The target audience comprises scholars and specialists in the field.

George Dekoulis
Aerospace Engineering Institute,

Cyprus

Preface

This Edited Volume is a collection of reviewed and relevant research chapters,
concerning the developments within the Field Programmable Gate Arrays (FPGAs)
II area of study. The book includes scholarly contributions by various authors and
edited by a group of experts pertinent to Computer and Information Science. Each
contribution comes as a separate chapter complete in itself but directly related to
the book’s topics and objectives.

The book is divided in one section which includes chapters dealing with the
topics: Real-Time FPGA-Based Systems to Remote Monitoring, Real-Time Echo
State Network Based on FPGA and Its Applications, Flexible Baseband Modulator
Architecture for Multi-Waveform 5G Communications, An Efficient FPGA-Based
Frequency Shifter for LTE/LTE-A Systems, and VLSI Implementation of Medical
Image Fusion Using DWT-PCA Algorithms.

The target audience comprises scholars and specialists in the field.

George Dekoulis
Aerospace Engineering Institute,

Cyprus

1

Chapter 1

Real-Time FPGA-Based Systems to
Remote Monitoring
J. Guadalupe Velásquez-Aguilar, Outmane Oubram
and Luis Cisneros-Villalobos

Abstract

Some industrial and laboratory applications such as control, monitoring, test
and measurements, and automation require real-time systems for their develop-
ment. Embedded systems for acquisition and processing often require the partici-
pation of the embedded operating system and therefore are necessary techniques
that can accelerate software execution. The latest field-programmable gate arrays’
(FPGA) technology has blurred the distinction between hardware and software
with embedded processors that allow the development of Systems-on-a-Chip (SoC)
running on operating systems. The widespread adoption of wireless technologies
such as Bluetooth, ZigBee, and Wi-Fi in the last years has facilitated the use of
these technologies to the development of real-time monitoring applications that
combined with FPGA devices which has the advantages of low cost, flexibility, and
scalability as compared with other commercial systems.

Keywords: real-time monitoring, wireless FPGA-based controllers

1. Introduction

In many of the industrial and laboratory systems, especially in control and
monitoring tasks, hardware is used in a loop (Figure 1).

In the diagram shown above, information about the physical environment is
obtained through sensors that respond to a physical stimulus (light, heat, pressure,
magnetism, acceleration, stress) and that are designed so that the information
acquired is transformed into an electrical signal proportional to the changes.
Frequently, the electrical signal obtained from the sensor has noise or interference,
so signal conditioning is necessary, which is achieved through some processing
operations such as amplification, linearization, compensation, and filtering.
Analog-to-digital converters (ADC) are used to sample and hold charge, thereby
converting the analog circuit current/voltage into a digital value. Without encoding,
sensors are useful in analog control systems, but for the use in digital control and
monitoring systems, encoding is critical. Real-time embedded systems therefore
require digital encoding of all sensor inputs, with the exception of subsystems,
which are all analog [1].

One of the main tasks of embedded systems is the processing and interpretation
of information that arrives from the outside. An embedded system is a combina-
tion of hardware and software that is specifically designed for a particular func-
tion. In most cases, an embedded system is used to replace an application specific

1

Chapter 1

Real-Time FPGA-Based Systems to
Remote Monitoring
J. Guadalupe Velásquez-Aguilar, Outmane Oubram
and Luis Cisneros-Villalobos

Abstract

Some industrial and laboratory applications such as control, monitoring, test
and measurements, and automation require real-time systems for their develop-
ment. Embedded systems for acquisition and processing often require the partici-
pation of the embedded operating system and therefore are necessary techniques
that can accelerate software execution. The latest field-programmable gate arrays’
(FPGA) technology has blurred the distinction between hardware and software
with embedded processors that allow the development of Systems-on-a-Chip (SoC)
running on operating systems. The widespread adoption of wireless technologies
such as Bluetooth, ZigBee, and Wi-Fi in the last years has facilitated the use of
these technologies to the development of real-time monitoring applications that
combined with FPGA devices which has the advantages of low cost, flexibility, and
scalability as compared with other commercial systems.

Keywords: real-time monitoring, wireless FPGA-based controllers

1. Introduction

In many of the industrial and laboratory systems, especially in control and
monitoring tasks, hardware is used in a loop (Figure 1).

In the diagram shown above, information about the physical environment is
obtained through sensors that respond to a physical stimulus (light, heat, pressure,
magnetism, acceleration, stress) and that are designed so that the information
acquired is transformed into an electrical signal proportional to the changes.
Frequently, the electrical signal obtained from the sensor has noise or interference,
so signal conditioning is necessary, which is achieved through some processing
operations such as amplification, linearization, compensation, and filtering.
Analog-to-digital converters (ADC) are used to sample and hold charge, thereby
converting the analog circuit current/voltage into a digital value. Without encoding,
sensors are useful in analog control systems, but for the use in digital control and
monitoring systems, encoding is critical. Real-time embedded systems therefore
require digital encoding of all sensor inputs, with the exception of subsystems,
which are all analog [1].

One of the main tasks of embedded systems is the processing and interpretation
of information that arrives from the outside. An embedded system is a combina-
tion of hardware and software that is specifically designed for a particular func-
tion. In most cases, an embedded system is used to replace an application specific

Field Programmable Gate Arrays (FPGAs) II

2

electronics in consumer products. By doing so, most of the systems functionality is
encapsulated in the firmware that runs the system, and it is possible to change and
upgrade the system by changing the firmware, while keeping the hardware same
[2]. When embedded systems are board-based, it is fairly straightforward to select
the proper components, integrate them with software, and ship the product.

In the mid-1990s, the development of embedded systems evolved with the
concept of ASIC technology, changing the philosophy of systems based on a chip-
set to a concept System-on-a-Chip (SoC) based on embedded cores. The term SoC
defines an integrated circuit (IC) designed by joining multiple independent VLSI
models to provide full functionality for an application. Each model is predesigned
with complex functions known as cores that serve to a variety of applications. Cores
can use a library of components designed by intellectual property (IP) companies
or by self in house. The chip used for the system may contain combinations of cores
that are generally available in the form of a synthesizable high-level description
language (HDL), as Verilog/VHDL, or optimized transistor-level design. Some
examples of core-based SoC include high-end microprocessors, GPS positioning for
autonomous vehicles, smartphone, and even PC-on-a-Chip [3].

Nowadays, embedded systems are made on SoC. The SoC can include several
heterogeneous subsystems, including specific hardware components and sophisti-
cated interconnects (Figure 2).

Often in systems used in industrial and laboratory applications for control,
monitoring, testing and measurement, and automation, data acquisition (DAQ)
subsystem is the first stage. The main purpose of DAQ is to measure physical
phenomena, converting the analog signal into a digital signal, and then send or
save the data collected for further analysis. An important point to consider is the
problems of output conversion into a digital format, as well as to high accuracy and
speed conversion methods used. In addition, if the application requires simultane-
ously capturing several signals, the DAQ must be of the multichannel type and
will need a central processor, which will control the channeling and organization
of data acquisition for further displays or its use in control systems. The methods
to be used in multichannel data acquisition depend on the control and measure-
ment tasks and directly influence the structure and functionalities of the DAQ. In
a modern system, the measurement and control sensors can be set up in different
ways; the most used are:

Figure 1.
Real-time processing system hardware in the loop.

3

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

• Methods that use time-division channeling, which perform sensor multiplex-
ing, that is, the time is shared by each sensor in the data acquisition.

• Methods using space-division channeling, based on simultaneous data acquisi-
tion from all the sensors.

In both cases, access to information at any time depends on the control and
measurement tasks used [5].

Commercial DAQ cards are differentiated by their viabilities such as sampling
frequency, scale of acquired signal, power, and requirements but are generally high in
cost, and they need a PC at the collection site. Embedded systems to data acquisition
often require the participation of the embedded operating system. The modern on-
board FPGA can not only overcome the deficiency of the microcontroller unit (MCU)
or the digital signal processor (DSP) and meet the requirements of system for real-time
and synchronization but also for embedded applications using SoC FPGA platforms
with the high level coordination, versatility, and full-stacked operative system [6].

2. Wireless communications standard protocols

At present, the most used standard protocols in communication in wireless sen-
sor networks (WSN) are IEEE 802.15.1 Bluetooth, IEEE 802.15.4, IEEE 802.15.4/a
ZigBee, and IEEE 802.11 Wi-Fi. The following describes these protocols:

2.1 Bluetooth technology

IEEE 802.15.1 protocol is an economical and secure wireless communication
standard, used to exchange information between devices through a short-range radio

Figure 2.
Embedded system architecture. In addition to hardware, a SoC includes classic application software- and
hardware-dependent software that must be co-designed with hardware interfaces. The API hides hardware
details such as interrupt controllers or memory and I/O systems [4].

Field Programmable Gate Arrays (FPGAs) II

2

electronics in consumer products. By doing so, most of the systems functionality is
encapsulated in the firmware that runs the system, and it is possible to change and
upgrade the system by changing the firmware, while keeping the hardware same
[2]. When embedded systems are board-based, it is fairly straightforward to select
the proper components, integrate them with software, and ship the product.

In the mid-1990s, the development of embedded systems evolved with the
concept of ASIC technology, changing the philosophy of systems based on a chip-
set to a concept System-on-a-Chip (SoC) based on embedded cores. The term SoC
defines an integrated circuit (IC) designed by joining multiple independent VLSI
models to provide full functionality for an application. Each model is predesigned
with complex functions known as cores that serve to a variety of applications. Cores
can use a library of components designed by intellectual property (IP) companies
or by self in house. The chip used for the system may contain combinations of cores
that are generally available in the form of a synthesizable high-level description
language (HDL), as Verilog/VHDL, or optimized transistor-level design. Some
examples of core-based SoC include high-end microprocessors, GPS positioning for
autonomous vehicles, smartphone, and even PC-on-a-Chip [3].

Nowadays, embedded systems are made on SoC. The SoC can include several
heterogeneous subsystems, including specific hardware components and sophisti-
cated interconnects (Figure 2).

Often in systems used in industrial and laboratory applications for control,
monitoring, testing and measurement, and automation, data acquisition (DAQ)
subsystem is the first stage. The main purpose of DAQ is to measure physical
phenomena, converting the analog signal into a digital signal, and then send or
save the data collected for further analysis. An important point to consider is the
problems of output conversion into a digital format, as well as to high accuracy and
speed conversion methods used. In addition, if the application requires simultane-
ously capturing several signals, the DAQ must be of the multichannel type and
will need a central processor, which will control the channeling and organization
of data acquisition for further displays or its use in control systems. The methods
to be used in multichannel data acquisition depend on the control and measure-
ment tasks and directly influence the structure and functionalities of the DAQ. In
a modern system, the measurement and control sensors can be set up in different
ways; the most used are:

Figure 1.
Real-time processing system hardware in the loop.

3

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

• Methods that use time-division channeling, which perform sensor multiplex-
ing, that is, the time is shared by each sensor in the data acquisition.

• Methods using space-division channeling, based on simultaneous data acquisi-
tion from all the sensors.

In both cases, access to information at any time depends on the control and
measurement tasks used [5].

Commercial DAQ cards are differentiated by their viabilities such as sampling
frequency, scale of acquired signal, power, and requirements but are generally high in
cost, and they need a PC at the collection site. Embedded systems to data acquisition
often require the participation of the embedded operating system. The modern on-
board FPGA can not only overcome the deficiency of the microcontroller unit (MCU)
or the digital signal processor (DSP) and meet the requirements of system for real-time
and synchronization but also for embedded applications using SoC FPGA platforms
with the high level coordination, versatility, and full-stacked operative system [6].

2. Wireless communications standard protocols

At present, the most used standard protocols in communication in wireless sen-
sor networks (WSN) are IEEE 802.15.1 Bluetooth, IEEE 802.15.4, IEEE 802.15.4/a
ZigBee, and IEEE 802.11 Wi-Fi. The following describes these protocols:

2.1 Bluetooth technology

IEEE 802.15.1 protocol is an economical and secure wireless communication
standard, used to exchange information between devices through a short-range radio

Figure 2.
Embedded system architecture. In addition to hardware, a SoC includes classic application software- and
hardware-dependent software that must be co-designed with hardware interfaces. The API hides hardware
details such as interrupt controllers or memory and I/O systems [4].

Field Programmable Gate Arrays (FPGAs) II

4

frequency; it was invented in 1994 by a group of engineers of the Ericsson Company.
The original idea of Bluetooth was to eliminate the need for a cable connection between
devices by connecting them over short distances (up to 100 m). Bluetooth operates
with industrial, scientific, and medical frequencies (ISM), from 2.4 to 2.4835 GHz
starting at 2.402 GHz. Bluetooth devices can be configured to operate in two ways:

1. Basic and Enhanced Data Rates (BR/EDR) transmissions, where 79 radio
frequency (RF) channels with 1 MHz spacing are used. This configuration uses
frequency-hopping spread spectrum (FHSS) scheme, at a nominal rate of 1600
hop per second.

2. Low Energy (LE) mode, where only 40 RF channels with 2 MHz spacing are
available and adaptive frequency hopping (AFH) is used (Figure 3) [7, 8].

Since its appearance, Bluetooth protocol has continuously evolved, so there are
several versions that are differentiated with a number. Bluetooth versions 1.0–3.0
are known as Bluetooth Classic category and originally supported a maximum
data rate of 721 kbps. This is referred to as Basic Rate (BR). The Bluetooth 2.0
EDR specification added support for data rates up to 2.1 Mbps. This is referred
to as Enhanced Data Rate (EDR). The Bluetooth 3.0 High Speed (HS) specifica-
tion enhanced it even further to 24 Mbps. Bluetooth Low Energy (BLE) is a new
category that include versions 4.0 and 5.0. Geared toward applications requiring
low power consumption, BLE returns to a lower data throughput of 1 Mbps using
the GFSK modulation scheme. The Bluetooth 4.0 specification did not add any
additional data rates; it only reduced the current consumption to enable low-energy
devices. In Bluetooth 5.0, in addition to low power consumption, four different data
rates are offered to accommodate a variety of transmission ranges: 2 Mbps, 1 Mbps,
500 kbps, and 125 kbps. The lower data rate of 125 kbps was added to compensate
for the increase in transmission range [9].

Bluetooth module generally consists of four components: radio transceiver,
baseband/link controller, link manager, and a host controller interface (HCI) [8].
HCI is the interface to access the Bluetooth module setup from the host. Bluetooth
communication is based on the following two network topologies:

1. Piconet: It consists of one master and up to seven slaves (Figure 4a).

2. Scatternet (combination or two or more piconets) (Figure 4b): It is formed
when two or more piconets come together by sharing a device. Scatternets help

Figure 3.
Bluetooth frequency bands and RF channels. Each RF channel is ordered in channel number n as follows:
f = 2402 + n MHz, where n = 0, …, 78 (BR/EDR) and f = 2402 + n*2 MHz, with n = 0, …, 39 (LE).

5

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

to extend the number of Bluetooth devices that can communicate with each
other. They allow more than seven devices to communicate with each other [10].

2.2 ZigBee technology

ZigBee, also known as IEEE 802.15.4, was initially conceived in 1998, standardized
in 2003, and finally revised in 2006; it is a low power standard for short-range com-
munications between wireless devices. ZigBee is classified as a wireless personal area
network (WPAN). ZigBee devices operate in one of three bands: 868 MHz (Europe),
915 MHz (North America), and 2.4 GHz (worldwide). The 2.4 GHz band is the
most used by the ZigBee transceivers and uses offset quadrature phase-shift keying
(OQPSK) modulation stream. This type of modulation, which is a derivation of tra-
ditional QPSK, is used for requiring less transmission power and achieving the same
or better performance than similar ones. OQPSK modulation combined with the use
of a 5 MHz channel bandwidth allows devices to reach a data rate of up to 250 kbits/s
efficiently [11]. The IEEE 802.15.4 has three different operation modes (Figure 5):

1. Personal area network coordinator (ZigBee coordinator, ZC): It is the principal
controller of the PAN. This device identifies the network, and in it the configura-
tions that allow other devices to be associated are made. ZC function is to act as
ZigBee Router (ZR) once the network is formed. ZC is a full-functional device
(FFD) that implements the full protocol stack; it can operate with or without bea-
con mode. The beacon mode of operation is used when data packets must be sent
within an allowable delay, such as in monitoring and control applications. The
beaconless mode is suitable for applications where data is only sent when an event
occurs, that is, there is no continuity in sending information such as motion de-
tection. In a cluster-tree network, all ZRs will receive beacons from their parents
and send their own beacons to synchronize the nodes that belong to their clusters.

2. Local Coordinator (ZigBee Router, ZR): This device must be associated with a
ZC or with another ZR previously associated with a network, because it does
not create its own network. ZR is a full-functional device (FFD) that imple-
ments the full protocol stack. This device participates in multi-hop routing
of message in mesh and cluster-tree networks (in the latter case they are also
called cluster heads (CHs)). ZR provides synchronization services through
beacon transmission.

3. End device (ZigBee end device, ZED): It is a device that does not implement
the previous functionalities and should associate with a ZC or ZR before
interacting with the network. In ZigBee, it is just a sensor/actuator node; it can
be a reduced function device (RFD) that implements a reduced subset of the
protocol stack [12].

Figure 4.
Bluetooth network topologies. (a) Piconet. (b) Scatternet.

Field Programmable Gate Arrays (FPGAs) II

4

frequency; it was invented in 1994 by a group of engineers of the Ericsson Company.
The original idea of Bluetooth was to eliminate the need for a cable connection between
devices by connecting them over short distances (up to 100 m). Bluetooth operates
with industrial, scientific, and medical frequencies (ISM), from 2.4 to 2.4835 GHz
starting at 2.402 GHz. Bluetooth devices can be configured to operate in two ways:

1. Basic and Enhanced Data Rates (BR/EDR) transmissions, where 79 radio
frequency (RF) channels with 1 MHz spacing are used. This configuration uses
frequency-hopping spread spectrum (FHSS) scheme, at a nominal rate of 1600
hop per second.

2. Low Energy (LE) mode, where only 40 RF channels with 2 MHz spacing are
available and adaptive frequency hopping (AFH) is used (Figure 3) [7, 8].

Since its appearance, Bluetooth protocol has continuously evolved, so there are
several versions that are differentiated with a number. Bluetooth versions 1.0–3.0
are known as Bluetooth Classic category and originally supported a maximum
data rate of 721 kbps. This is referred to as Basic Rate (BR). The Bluetooth 2.0
EDR specification added support for data rates up to 2.1 Mbps. This is referred
to as Enhanced Data Rate (EDR). The Bluetooth 3.0 High Speed (HS) specifica-
tion enhanced it even further to 24 Mbps. Bluetooth Low Energy (BLE) is a new
category that include versions 4.0 and 5.0. Geared toward applications requiring
low power consumption, BLE returns to a lower data throughput of 1 Mbps using
the GFSK modulation scheme. The Bluetooth 4.0 specification did not add any
additional data rates; it only reduced the current consumption to enable low-energy
devices. In Bluetooth 5.0, in addition to low power consumption, four different data
rates are offered to accommodate a variety of transmission ranges: 2 Mbps, 1 Mbps,
500 kbps, and 125 kbps. The lower data rate of 125 kbps was added to compensate
for the increase in transmission range [9].

Bluetooth module generally consists of four components: radio transceiver,
baseband/link controller, link manager, and a host controller interface (HCI) [8].
HCI is the interface to access the Bluetooth module setup from the host. Bluetooth
communication is based on the following two network topologies:

1. Piconet: It consists of one master and up to seven slaves (Figure 4a).

2. Scatternet (combination or two or more piconets) (Figure 4b): It is formed
when two or more piconets come together by sharing a device. Scatternets help

Figure 3.
Bluetooth frequency bands and RF channels. Each RF channel is ordered in channel number n as follows:
f = 2402 + n MHz, where n = 0, …, 78 (BR/EDR) and f = 2402 + n*2 MHz, with n = 0, …, 39 (LE).

5

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

to extend the number of Bluetooth devices that can communicate with each
other. They allow more than seven devices to communicate with each other [10].

2.2 ZigBee technology

ZigBee, also known as IEEE 802.15.4, was initially conceived in 1998, standardized
in 2003, and finally revised in 2006; it is a low power standard for short-range com-
munications between wireless devices. ZigBee is classified as a wireless personal area
network (WPAN). ZigBee devices operate in one of three bands: 868 MHz (Europe),
915 MHz (North America), and 2.4 GHz (worldwide). The 2.4 GHz band is the
most used by the ZigBee transceivers and uses offset quadrature phase-shift keying
(OQPSK) modulation stream. This type of modulation, which is a derivation of tra-
ditional QPSK, is used for requiring less transmission power and achieving the same
or better performance than similar ones. OQPSK modulation combined with the use
of a 5 MHz channel bandwidth allows devices to reach a data rate of up to 250 kbits/s
efficiently [11]. The IEEE 802.15.4 has three different operation modes (Figure 5):

1. Personal area network coordinator (ZigBee coordinator, ZC): It is the principal
controller of the PAN. This device identifies the network, and in it the configura-
tions that allow other devices to be associated are made. ZC function is to act as
ZigBee Router (ZR) once the network is formed. ZC is a full-functional device
(FFD) that implements the full protocol stack; it can operate with or without bea-
con mode. The beacon mode of operation is used when data packets must be sent
within an allowable delay, such as in monitoring and control applications. The
beaconless mode is suitable for applications where data is only sent when an event
occurs, that is, there is no continuity in sending information such as motion de-
tection. In a cluster-tree network, all ZRs will receive beacons from their parents
and send their own beacons to synchronize the nodes that belong to their clusters.

2. Local Coordinator (ZigBee Router, ZR): This device must be associated with a
ZC or with another ZR previously associated with a network, because it does
not create its own network. ZR is a full-functional device (FFD) that imple-
ments the full protocol stack. This device participates in multi-hop routing
of message in mesh and cluster-tree networks (in the latter case they are also
called cluster heads (CHs)). ZR provides synchronization services through
beacon transmission.

3. End device (ZigBee end device, ZED): It is a device that does not implement
the previous functionalities and should associate with a ZC or ZR before
interacting with the network. In ZigBee, it is just a sensor/actuator node; it can
be a reduced function device (RFD) that implements a reduced subset of the
protocol stack [12].

Figure 4.
Bluetooth network topologies. (a) Piconet. (b) Scatternet.

Field Programmable Gate Arrays (FPGAs) II

6

It is important to consider some operational considerations that may be
presented by topologies for traditional wireless sensor networks (WSN). If you
choose to use the star topology, you should keep in mind (a) that the sensor node
selected as ZC will quickly consume its battery and (b) that the coverage of an IEEE
802.15.4/ZigBee cluster is very limited when addressing a large-scale WSN, leading
to a scalability problem. On the other hand, the mesh topology enables enhanced
networking, but it induces additional complexity to provide end-to-end connectiv-
ity between all nodes in the network. Therefore, unlike the star topology, the mesh
topology can be more energy efficient, since the communication process does not
depend on a particular node [14].

2.3 Wi-fi technology

Wi-Fi is the name given by the Wi-Fi Alliance [15] to the IEEE 802.11 suite
of standards. 802.11 defined the initial standard for wireless local area networks
(WLANs).

The evolution of Wi-Fi technology has focused on increasing speed, lower
latency, and better user experiences in a multitude of environments and with a vari-
ety of device types. Wi-Fi Alliance has introduced generational names to devices and
product descriptions. The latest generation of Wi-Fi devices, based on the 802.11ax
standard, is known as Wi-Fi devices 6. If the device contains 802.11 ac, 5 GHz
technology is known as Wi-Fi 5, or if the device uses technology 802.11n, 2.4 GHz
is known as Wi-Fi 4 [16]. Generations of Wi-Fi prior to Wi-Fi 4 will not be assigned
names. Most of devices available in the market today are identified as Wi-Fi 5.

Figure 5.
ZigBee network topologies. (a) Star topology contains a unique node that operates as ZC, which establishes the
PAN identifier. The identifier should not be used by any other ZigBee network in the vicinity. Also in the star
topology, the communication is centralized, so each device (FFD or RFD) joining the network and willing to
communicate with other devices must send its data to the ZC, which sends it to the adequate destination. (b)
Mesh topology includes a ZC that identifies the entire network. Communication in this topology is decentralized,
so each node can communicate directly with any other node within its radio. (c) In cluster tree topology, there is
a single routing path between any pair of nodes, and there is a distributed synchronization mechanism (IEEE
802.15.4 beacon-enabled mode). There is only one ZC that identifies the entire network and one ZR per cluster.
Any of the FFDs can act as a ZR that provides synchronization services to other devices and ZRs [13].

7

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Wi-Fi is a physical layer/link interface, as is Ethernet. A wireless station (STA)
can be a personal computer (PC), a laptop, a personal digital assistant (PDA), or
phone. When two or more STAs are connected wirelessly, they form a Basic Service
Set (BSS) (Figure 6). This is the basic component of a Wi-Fi network [17].

Wi-Fi has two different operation modes: infrastructure mode and ad hoc mode.
Each one uses the BSS, but they yield different network topologies.

1. Ad hoc mode: Wireless stations communicate directly with one another, with a
peer-to-peer network model. A BSS operating in ad hoc mode is isolated, that
is, there is no connection to other Wi-Fi or wired LAN networks. The utility of
this network is in situations that demand a quick setup in places where there is
no network infrastructure.

2. Infrastructure mode: This mode requires the BSS to contain a wireless access
point (AP). An AP is an STA with additional functionality that allows extend-
ing access to wired networks for clients of a wireless network. Any wireless
device that tries to join the BSS must first be associated with the AP. A distri-
bution system (DS) is generated when an AP provides access to its associated
STAs. The DS can allow communication between APs as shown in Figure 7.

Figure 6.
BSS controlled by a single coordination function (CF). The CF determines when a STA transmits and when it
receives.

Figure 7.
All wireless communication to or from an associated STA goes through an AP. This type of setup is similar to the
“star topology” used in wired networks.

Field Programmable Gate Arrays (FPGAs) II

6

It is important to consider some operational considerations that may be
presented by topologies for traditional wireless sensor networks (WSN). If you
choose to use the star topology, you should keep in mind (a) that the sensor node
selected as ZC will quickly consume its battery and (b) that the coverage of an IEEE
802.15.4/ZigBee cluster is very limited when addressing a large-scale WSN, leading
to a scalability problem. On the other hand, the mesh topology enables enhanced
networking, but it induces additional complexity to provide end-to-end connectiv-
ity between all nodes in the network. Therefore, unlike the star topology, the mesh
topology can be more energy efficient, since the communication process does not
depend on a particular node [14].

2.3 Wi-fi technology

Wi-Fi is the name given by the Wi-Fi Alliance [15] to the IEEE 802.11 suite
of standards. 802.11 defined the initial standard for wireless local area networks
(WLANs).

The evolution of Wi-Fi technology has focused on increasing speed, lower
latency, and better user experiences in a multitude of environments and with a vari-
ety of device types. Wi-Fi Alliance has introduced generational names to devices and
product descriptions. The latest generation of Wi-Fi devices, based on the 802.11ax
standard, is known as Wi-Fi devices 6. If the device contains 802.11 ac, 5 GHz
technology is known as Wi-Fi 5, or if the device uses technology 802.11n, 2.4 GHz
is known as Wi-Fi 4 [16]. Generations of Wi-Fi prior to Wi-Fi 4 will not be assigned
names. Most of devices available in the market today are identified as Wi-Fi 5.

Figure 5.
ZigBee network topologies. (a) Star topology contains a unique node that operates as ZC, which establishes the
PAN identifier. The identifier should not be used by any other ZigBee network in the vicinity. Also in the star
topology, the communication is centralized, so each device (FFD or RFD) joining the network and willing to
communicate with other devices must send its data to the ZC, which sends it to the adequate destination. (b)
Mesh topology includes a ZC that identifies the entire network. Communication in this topology is decentralized,
so each node can communicate directly with any other node within its radio. (c) In cluster tree topology, there is
a single routing path between any pair of nodes, and there is a distributed synchronization mechanism (IEEE
802.15.4 beacon-enabled mode). There is only one ZC that identifies the entire network and one ZR per cluster.
Any of the FFDs can act as a ZR that provides synchronization services to other devices and ZRs [13].

7

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Wi-Fi is a physical layer/link interface, as is Ethernet. A wireless station (STA)
can be a personal computer (PC), a laptop, a personal digital assistant (PDA), or
phone. When two or more STAs are connected wirelessly, they form a Basic Service
Set (BSS) (Figure 6). This is the basic component of a Wi-Fi network [17].

Wi-Fi has two different operation modes: infrastructure mode and ad hoc mode.
Each one uses the BSS, but they yield different network topologies.

1. Ad hoc mode: Wireless stations communicate directly with one another, with a
peer-to-peer network model. A BSS operating in ad hoc mode is isolated, that
is, there is no connection to other Wi-Fi or wired LAN networks. The utility of
this network is in situations that demand a quick setup in places where there is
no network infrastructure.

2. Infrastructure mode: This mode requires the BSS to contain a wireless access
point (AP). An AP is an STA with additional functionality that allows extend-
ing access to wired networks for clients of a wireless network. Any wireless
device that tries to join the BSS must first be associated with the AP. A distri-
bution system (DS) is generated when an AP provides access to its associated
STAs. The DS can allow communication between APs as shown in Figure 7.

Figure 6.
BSS controlled by a single coordination function (CF). The CF determines when a STA transmits and when it
receives.

Figure 7.
All wireless communication to or from an associated STA goes through an AP. This type of setup is similar to the
“star topology” used in wired networks.

Field Programmable Gate Arrays (FPGAs) II

8

Figure 8.
Hardware components used for the real-time monitoring system.

2.3.1 Services specified by IEEE 802.11

The IEEE 802.11 standard does not define any specific implementations. Instead,
nine services are specified that all implementations must provide; these are:

2.3.1.1 Station services (SS)

Authentication - The STA must identify itself to the AP before it can access
network services.

De-authentication - This service voids an existing authentication.
Privacy - An STA must be able to encrypt the frame to protect the message

content to be transmitted, so that only the recipient can read it.
MAC service data unit (MSDU) delivery - An MSDU is a data frame that must be

transmitted to the proper destination.

2.3.1.2 Distribution system services (DSS)

A STA that functions as an AP must implement the following services:
Association - This service establishes an AP/STA mapping after mutually agree-

able authentication has taken place between the two wireless stations. A STA can
only associate with one AP at a time.

Re-association - This service allows you to change the current association from
one AP to another AP.

Disassociation - This service voids a current association.
Distribution - This service handles delivery of MSDUs within the distribution

system.
Integration - This service is the bridge function between wireless and wired networks.

MSDU handles the delivery of between the distribution system and a wired LAN [17].

3. Hardware description

The elements used for the realization of the proposed system are shown in
Figure 8. The platform is composed of four components: the FPGA board that
includes A/D converter and three wireless interface Bluetooth, XBee (ZigBee
protocol-based), and Wi-Fi module. The wireless modules provide the FPGA device
the capacity to communicate with other system or the Internet.

9

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

3.1 Analog/digital converter

The A/D converter chip used is the integrated circuit (IC) LTC2308, Linear
Technology, whose characteristics are low noise and power consumption, up to 500
Kbps, 8-channel, 12-bit, and SPI/MICROWIRE compatible serial interface. The
internal conversion clock allows the external serial output data clock (SCK) to oper-
ate at any frequency up to 40 MHz [18]. Figure 9 shows the block diagram of ADC.

3.2 FPGA device

Cyclone V FPGA. The Intel FPGA Cyclone V SE 5CSEMA4U23C6N device has
Dual ARM Cortex-A9 MPCore with Core Sight System on Chip (SoC), integrated cir-
cuit Cyclone V SE FPGA, with 40 K logic elements, maximum CPU clock frequency
925 MHz, 224 18×19 multipliers, and 5761 kb embedded memory (Figure 10).

3.3 Wireless modules

3.3.1 XBee Pro S1

The Digi XBee series modules implement the IEEE 802.15.4 radio and ZigBee
networking protocol for its physical layer and MAC. Outdoor transmission distances
to 0–90 meters depending on power output and environmental characteristics.
XBee devices work in ISM 2.4 GHz frequency bands having a serial interface data

Figure 9.
(a) Block diagram LTC2308 device. Eight analog input and operation modes can be programmed by a 6-bit
DIN word through SDI terminal. (b) Timing with a long pulse. The configuration signals are S/D can be
single-ended/differential-bit; O/S can be odd/sing-bit; S1 and S0 addressing select bit; UNI can be unipolar/
bipolar and SLP active sleep mode [19].

Field Programmable Gate Arrays (FPGAs) II

8

Figure 8.
Hardware components used for the real-time monitoring system.

2.3.1 Services specified by IEEE 802.11

The IEEE 802.11 standard does not define any specific implementations. Instead,
nine services are specified that all implementations must provide; these are:

2.3.1.1 Station services (SS)

Authentication - The STA must identify itself to the AP before it can access
network services.

De-authentication - This service voids an existing authentication.
Privacy - An STA must be able to encrypt the frame to protect the message

content to be transmitted, so that only the recipient can read it.
MAC service data unit (MSDU) delivery - An MSDU is a data frame that must be

transmitted to the proper destination.

2.3.1.2 Distribution system services (DSS)

A STA that functions as an AP must implement the following services:
Association - This service establishes an AP/STA mapping after mutually agree-

able authentication has taken place between the two wireless stations. A STA can
only associate with one AP at a time.

Re-association - This service allows you to change the current association from
one AP to another AP.

Disassociation - This service voids a current association.
Distribution - This service handles delivery of MSDUs within the distribution

system.
Integration - This service is the bridge function between wireless and wired networks.

MSDU handles the delivery of between the distribution system and a wired LAN [17].

3. Hardware description

The elements used for the realization of the proposed system are shown in
Figure 8. The platform is composed of four components: the FPGA board that
includes A/D converter and three wireless interface Bluetooth, XBee (ZigBee
protocol-based), and Wi-Fi module. The wireless modules provide the FPGA device
the capacity to communicate with other system or the Internet.

9

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

3.1 Analog/digital converter

The A/D converter chip used is the integrated circuit (IC) LTC2308, Linear
Technology, whose characteristics are low noise and power consumption, up to 500
Kbps, 8-channel, 12-bit, and SPI/MICROWIRE compatible serial interface. The
internal conversion clock allows the external serial output data clock (SCK) to oper-
ate at any frequency up to 40 MHz [18]. Figure 9 shows the block diagram of ADC.

3.2 FPGA device

Cyclone V FPGA. The Intel FPGA Cyclone V SE 5CSEMA4U23C6N device has
Dual ARM Cortex-A9 MPCore with Core Sight System on Chip (SoC), integrated cir-
cuit Cyclone V SE FPGA, with 40 K logic elements, maximum CPU clock frequency
925 MHz, 224 18×19 multipliers, and 5761 kb embedded memory (Figure 10).

3.3 Wireless modules

3.3.1 XBee Pro S1

The Digi XBee series modules implement the IEEE 802.15.4 radio and ZigBee
networking protocol for its physical layer and MAC. Outdoor transmission distances
to 0–90 meters depending on power output and environmental characteristics.
XBee devices work in ISM 2.4 GHz frequency bands having a serial interface data

Figure 9.
(a) Block diagram LTC2308 device. Eight analog input and operation modes can be programmed by a 6-bit
DIN word through SDI terminal. (b) Timing with a long pulse. The configuration signals are S/D can be
single-ended/differential-bit; O/S can be odd/sing-bit; S1 and S0 addressing select bit; UNI can be unipolar/
bipolar and SLP active sleep mode [19].

Field Programmable Gate Arrays (FPGAs) II

10

rate from 1200 bps to 250Kbps. The following are the supported network topolo-
gies: point-to-point, point-to-multipoint, and peer-to-peer.

3.3.2 HC-06 Bluetooth 2.0 EDR module

This module is a serial interface converter to Bluetooth adapter. HC-06 has a
2.4GHz digital wireless transceiver, low power consumption, an EDR module,
the change range of modulation depth: 2Mbps–3Mbps, and standard HCI Port
(UART or USB), and it can work at the low voltage (3.1–4.2 V). The module can
be set by AT commands and have two modes, master and slave, but the mode
cannot be switched during the process of communication. Serial baud rate is
1200–1,382,400 bps [21].

3.3.3 ESP8266 Wi-Fi module.

This module implements TCP/IP and full 802.11 b/g/n (support 2.4 GHz, up to
72.2 Mbps) WLAN MAC protocol. It can perform either as a stand-alone applica-
tion or as the slave to a host MCU, so it supports Basic Service Set (BSS) STA and
SoftAP operations under the distributed control function (DCF). ESP8266 includes
a CPU Tensilica L106 32-bit processor, and it has peripheral interfaces: UART, SDIO,
SPI, I2C, I2S, and IR. Power management is handled with minimum host interaction
to minimize active duty period. ESP8266EX can be applied to any microcontroller
design as a Wi-Fi adaptor through SPI/SDIO or UART interfaces [22].

4. System architectures

The design of an FPGA-based remote monitoring system architectures is show
in Figure 11. The resultant design is implemented in VHDL and block diagrams;
it is validated in co-simulation environment, and finally, it is tested in a real-time
application to monitoring an electric signal.

There are three important features to consider before starting the development
system: first, the nature of the feedback signal. If the sensor which measures the
variable to be monitored has an analog nature, it is necessary to use an analog-to-
digital converter (ADC) which has an output with a fixed bit width. Second: in
order to avoid performing arithmetic operations between signals of different bit

Figure 10.
Cyclone V SoC device block diagram is composed of two distinct portions: A dual-core ARM cortex-A9 hard
processor system (HPS) and an FPGA. The cortex-A9 processor has two 32-bit CPUs and associated subsystems
on the Intel Cyclone V SoC chip, where hardware circuits can be implemented, which reduce the size of the
board and increase the performance of the developed system [20].

11

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

width, it is strongly recommended that the operations have the same bit width as
the measured variable. Finally, the system output must be congruent with the bus
width wireless interface.

4.1 A/D converter controller

The ADC LTC2308 operates on a 12-cycle operational frame, as shown in
Figure 9b. ADC has four wires to control and communicate with the FPGA: SCLK,
CS, DIN, and DOUT. The SCLK and CS signals are used to control the ADC. SCLK
is the signal clock for the ADC. The CS signal serves as chip select for the ADC chip.
The DIN and DOUT wires are used for transferring addresses and data between
the two chips (ADC and FPGA). The FPGA uses the DIN connection to provide the
address (3 bits in length) of the next channel requested for conversion. The DOUT
connection is used by the ADC to send the digital value (12 bits long) of the con-
verted signal to the FPGA. Both DIN and DOUT are sent in a serial manner at a rate
of 1 bit per SCLK cycle [23].

In the case of our working example, SPI controller was developed to control
the conversion process. A long CONVST pulse is used. Figure 9b shows time
diagram to programming ADC. According to the diagram, “the conversions are
initiated by a rising edge on the CONVST input. Once a conversion cycle has
begun, it cannot be restarted. Between conversions, a 6-bit input word (DIN) at
the SDI input configures the MUX and programs various modes of operation.
As the DIN bits are shifted in, data from the previous conversion is shifted out
on SDO. After the 6 bits of the DIN word have been shifted in, the ADC begins
acquiring the analog input in preparation for the next conversion as the rest of the
data is shifted out” [19]. Figure 12 shows the block diagram architecture corre-
sponding to SPI controller.

4.2 FIFO architecture

A dual-clock First-In First-Out (FIFO) buffer was used to cross data between the
two different clock domains: sampling frequency A/D converter (from 1 to 25 MHz)
and transmission rate (from 9600 to 921,600 bps), Figure 13. In the systems’ clock
frequency domain, the serialized outputs are continuously stored in 12 bits shift

Figure 11.
Block diagram of architectures implemented on FPGA. This module comprises five blocks: ADC controller,
FIFO memory, Wi-fi, UART drivers, and a finite state machine (FSM).

Field Programmable Gate Arrays (FPGAs) II

10

rate from 1200 bps to 250Kbps. The following are the supported network topolo-
gies: point-to-point, point-to-multipoint, and peer-to-peer.

3.3.2 HC-06 Bluetooth 2.0 EDR module

This module is a serial interface converter to Bluetooth adapter. HC-06 has a
2.4GHz digital wireless transceiver, low power consumption, an EDR module,
the change range of modulation depth: 2Mbps–3Mbps, and standard HCI Port
(UART or USB), and it can work at the low voltage (3.1–4.2 V). The module can
be set by AT commands and have two modes, master and slave, but the mode
cannot be switched during the process of communication. Serial baud rate is
1200–1,382,400 bps [21].

3.3.3 ESP8266 Wi-Fi module.

This module implements TCP/IP and full 802.11 b/g/n (support 2.4 GHz, up to
72.2 Mbps) WLAN MAC protocol. It can perform either as a stand-alone applica-
tion or as the slave to a host MCU, so it supports Basic Service Set (BSS) STA and
SoftAP operations under the distributed control function (DCF). ESP8266 includes
a CPU Tensilica L106 32-bit processor, and it has peripheral interfaces: UART, SDIO,
SPI, I2C, I2S, and IR. Power management is handled with minimum host interaction
to minimize active duty period. ESP8266EX can be applied to any microcontroller
design as a Wi-Fi adaptor through SPI/SDIO or UART interfaces [22].

4. System architectures

The design of an FPGA-based remote monitoring system architectures is show
in Figure 11. The resultant design is implemented in VHDL and block diagrams;
it is validated in co-simulation environment, and finally, it is tested in a real-time
application to monitoring an electric signal.

There are three important features to consider before starting the development
system: first, the nature of the feedback signal. If the sensor which measures the
variable to be monitored has an analog nature, it is necessary to use an analog-to-
digital converter (ADC) which has an output with a fixed bit width. Second: in
order to avoid performing arithmetic operations between signals of different bit

Figure 10.
Cyclone V SoC device block diagram is composed of two distinct portions: A dual-core ARM cortex-A9 hard
processor system (HPS) and an FPGA. The cortex-A9 processor has two 32-bit CPUs and associated subsystems
on the Intel Cyclone V SoC chip, where hardware circuits can be implemented, which reduce the size of the
board and increase the performance of the developed system [20].

11

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

width, it is strongly recommended that the operations have the same bit width as
the measured variable. Finally, the system output must be congruent with the bus
width wireless interface.

4.1 A/D converter controller

The ADC LTC2308 operates on a 12-cycle operational frame, as shown in
Figure 9b. ADC has four wires to control and communicate with the FPGA: SCLK,
CS, DIN, and DOUT. The SCLK and CS signals are used to control the ADC. SCLK
is the signal clock for the ADC. The CS signal serves as chip select for the ADC chip.
The DIN and DOUT wires are used for transferring addresses and data between
the two chips (ADC and FPGA). The FPGA uses the DIN connection to provide the
address (3 bits in length) of the next channel requested for conversion. The DOUT
connection is used by the ADC to send the digital value (12 bits long) of the con-
verted signal to the FPGA. Both DIN and DOUT are sent in a serial manner at a rate
of 1 bit per SCLK cycle [23].

In the case of our working example, SPI controller was developed to control
the conversion process. A long CONVST pulse is used. Figure 9b shows time
diagram to programming ADC. According to the diagram, “the conversions are
initiated by a rising edge on the CONVST input. Once a conversion cycle has
begun, it cannot be restarted. Between conversions, a 6-bit input word (DIN) at
the SDI input configures the MUX and programs various modes of operation.
As the DIN bits are shifted in, data from the previous conversion is shifted out
on SDO. After the 6 bits of the DIN word have been shifted in, the ADC begins
acquiring the analog input in preparation for the next conversion as the rest of the
data is shifted out” [19]. Figure 12 shows the block diagram architecture corre-
sponding to SPI controller.

4.2 FIFO architecture

A dual-clock First-In First-Out (FIFO) buffer was used to cross data between the
two different clock domains: sampling frequency A/D converter (from 1 to 25 MHz)
and transmission rate (from 9600 to 921,600 bps), Figure 13. In the systems’ clock
frequency domain, the serialized outputs are continuously stored in 12 bits shift

Figure 11.
Block diagram of architectures implemented on FPGA. This module comprises five blocks: ADC controller,
FIFO memory, Wi-fi, UART drivers, and a finite state machine (FSM).

Field Programmable Gate Arrays (FPGAs) II

12

register, before they will be sent to FIFO buffer. The finite state machine (FSM)
FIFO, in the system controller, wait until collected data of the last active channel
will be sent through wireless module, before starting a new acquisition.

Figure 12.
SPI controller architecture. (a) 12 bits a/D conversion general architecture. (b) ADC_Core architecture. (c)
ADC_Nano architecture generates signal control to ADC. The 4-bit counter counts 16 cycles in high for the
acquisition of the signal and 16 cycles in low for the sending of the 12 output bits parallel to the configuration
instruction for the next sample. The control ADC architecture is based on shift register.

13

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

The following source code corresponds to the FIFO_LOGIC and RAM entities of
the design.

Code 1. FIFO_LOGIC.vhd [24].

Figure 13.
Dual-clock FIFO architecture. Two counters are used to addressing the data to read and write operations. RAM
of 12-bit and 16 words is used to store data.

Field Programmable Gate Arrays (FPGAs) II

12

register, before they will be sent to FIFO buffer. The finite state machine (FSM)
FIFO, in the system controller, wait until collected data of the last active channel
will be sent through wireless module, before starting a new acquisition.

Figure 12.
SPI controller architecture. (a) 12 bits a/D conversion general architecture. (b) ADC_Core architecture. (c)
ADC_Nano architecture generates signal control to ADC. The 4-bit counter counts 16 cycles in high for the
acquisition of the signal and 16 cycles in low for the sending of the 12 output bits parallel to the configuration
instruction for the next sample. The control ADC architecture is based on shift register.

13

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

The following source code corresponds to the FIFO_LOGIC and RAM entities of
the design.

Code 1. FIFO_LOGIC.vhd [24].

Figure 13.
Dual-clock FIFO architecture. Two counters are used to addressing the data to read and write operations. RAM
of 12-bit and 16 words is used to store data.

Field Programmable Gate Arrays (FPGAs) II

14

Code 2. RAM_16.vhd.

4.3 UART driver

Serial communications depend on the two UART devices (the FPGA architecture
and the wireless module) to be configured with compatible settings: baud rate,
parity, control (start and stop bits), and data bits (Figure 14).

In this system, a general port input/output (GPIO) is used to send serial data.
Subsystem architecture (Figure 15) is used to set the baud rate in the output. UART
interface will read out the data when it is filled in the FIFO and send to the host

Figure 14.
UART data packet has data format structure: Data bits, parity, and stop bits. In the graph, the data 0x9B
(decimal number “155,” ASCII character “ø”) is transmitted through the wireless module with format: 8-N-1 [25].

15

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

through the wireless link (Bluetooth or XBee modules), and finally the data can be
displayed in the host with software application.

Code 3. DIVISOR_8333.vhd.

Figure 15.
UART driver diagram. Serial transmission uses baud rate module (DIVISOR_8333). MAQUINAFSM together
with MUXSALIDA sends data from FIFO to serial data in the transmission format. The parity is verified with
PARIDAD.

Field Programmable Gate Arrays (FPGAs) II

14

Code 2. RAM_16.vhd.

4.3 UART driver

Serial communications depend on the two UART devices (the FPGA architecture
and the wireless module) to be configured with compatible settings: baud rate,
parity, control (start and stop bits), and data bits (Figure 14).

In this system, a general port input/output (GPIO) is used to send serial data.
Subsystem architecture (Figure 15) is used to set the baud rate in the output. UART
interface will read out the data when it is filled in the FIFO and send to the host

Figure 14.
UART data packet has data format structure: Data bits, parity, and stop bits. In the graph, the data 0x9B
(decimal number “155,” ASCII character “ø”) is transmitted through the wireless module with format: 8-N-1 [25].

15

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

through the wireless link (Bluetooth or XBee modules), and finally the data can be
displayed in the host with software application.

Code 3. DIVISOR_8333.vhd.

Figure 15.
UART driver diagram. Serial transmission uses baud rate module (DIVISOR_8333). MAQUINAFSM together
with MUXSALIDA sends data from FIFO to serial data in the transmission format. The parity is verified with
PARIDAD.

Field Programmable Gate Arrays (FPGAs) II

16

Code 4. MUX_SALIDA.vhd.

Code 5. MAQUINA_FSM.vhd.

17

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Code 6. PARIDAD.vhd.

4.4 Bluetooth and XBee modules

The wireless modules are configured through AT commands. Command strings
have the form ATxx (where xx is the name of a setting). The mode for both is slave
to receive data from UART driver architecture. Bluetooth can be set to baud rate
from 9600 to 921,600 bps. XBee can be set to baud rate from 9600 to 250,000 bps.
Terminal software like Tera Term [26] can be used to have an initial configuration of
the devices. Any USB to TTL converter, for example, PL2303HX device or similar,
can be used.

In the case of Bluetooth, the module only needs to be connected to the Rx of
module to Tx of USB-TTL converter and Tx of module. It is necessary to connect
ground and Vcc. HC-06 module is permanently configured to be slaved, and it

Field Programmable Gate Arrays (FPGAs) II

16

Code 4. MUX_SALIDA.vhd.

Code 5. MAQUINA_FSM.vhd.

17

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Code 6. PARIDAD.vhd.

4.4 Bluetooth and XBee modules

The wireless modules are configured through AT commands. Command strings
have the form ATxx (where xx is the name of a setting). The mode for both is slave
to receive data from UART driver architecture. Bluetooth can be set to baud rate
from 9600 to 921,600 bps. XBee can be set to baud rate from 9600 to 250,000 bps.
Terminal software like Tera Term [26] can be used to have an initial configuration of
the devices. Any USB to TTL converter, for example, PL2303HX device or similar,
can be used.

In the case of Bluetooth, the module only needs to be connected to the Rx of
module to Tx of USB-TTL converter and Tx of module. It is necessary to connect
ground and Vcc. HC-06 module is permanently configured to be slaved, and it

Field Programmable Gate Arrays (FPGAs) II

18

is always in AT mode when not paired to any other device. AT commands can be
founded in datasheets [27].

XBee configuration needs a test utility (XCTU) to enable users to interact
with radio frequency (RF) devices through a graphical interface. The application
includes built-in tools that make it easy to set up, configure, and test RF devices.
The software can be downloaded from the Internet [28].

4.5 Wi-fi driver

ESP8266 Wi-Fi module is used to transmit the sensor data wirelessly to the
Wi-Fi modem at the other end with Internet connection. ESP8266 can be initial-
ized using a set of AT commands. Initialization process includes (a) verifying the
communication between ESP8266 module and FPGA architecture (RST command)
and (b) searching for a Wi-Fi network within its range and connecting to it, with
the required credentials (CWJAP command). Sending process includes (a) setting
the Wi-Fi module as a TCP/IP client (CIPSTART command); (b) transmitting data
involves communication with cloud server using IP address (CIPSEND command).
Address IP of the server is required to access the data from personal computing
devices such laptop, tablet, and smartphone. Figure 16 shows the AT command
sequence and a block of Wi-Fi architecture:

Figure 16.
AT command sequence. (a) Flow diagram of WEB connection [27]. (b) Block WI-FI driver module. (c) Code
for AT command definition inside FPGA; green letters are comments about hexadecimal data.

19

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

5. Experimental results on graphical user interface (GUI)

An analog signal is generated by the function generator to test the system, and
the final data sent to the PC or WEB page is observed. Figures 17, 18 and 19 show
the corresponding practical wave and storage wave.

The GUI (Figure 18) was made using Java Eclipse Oxygen [29] and serial commu-
nication libraries (jSerialComm). jSerialComm is a Java library designed to provide a
platform-independent way to access standard serial ports without requiring external

Figure 17.
Measurements of real signal sent to the host and WEB page. The signal has an offset = 3.98Vdc and 8.06Vpp
and frequency of 60 Hz with harmonics of 3rd, 5th, 7th, and 9th. This signal is obtained from digital
oscilloscope.

Figure 18.
Data received from the remote DAQ system (Bluetooth or XBee module) using GUI development. Each cycle is
represented by 133 samples (sampling frequency = 8 kHz). The UART baud rate is 115,200 bps.

Field Programmable Gate Arrays (FPGAs) II

18

is always in AT mode when not paired to any other device. AT commands can be
founded in datasheets [27].

XBee configuration needs a test utility (XCTU) to enable users to interact
with radio frequency (RF) devices through a graphical interface. The application
includes built-in tools that make it easy to set up, configure, and test RF devices.
The software can be downloaded from the Internet [28].

4.5 Wi-fi driver

ESP8266 Wi-Fi module is used to transmit the sensor data wirelessly to the
Wi-Fi modem at the other end with Internet connection. ESP8266 can be initial-
ized using a set of AT commands. Initialization process includes (a) verifying the
communication between ESP8266 module and FPGA architecture (RST command)
and (b) searching for a Wi-Fi network within its range and connecting to it, with
the required credentials (CWJAP command). Sending process includes (a) setting
the Wi-Fi module as a TCP/IP client (CIPSTART command); (b) transmitting data
involves communication with cloud server using IP address (CIPSEND command).
Address IP of the server is required to access the data from personal computing
devices such laptop, tablet, and smartphone. Figure 16 shows the AT command
sequence and a block of Wi-Fi architecture:

Figure 16.
AT command sequence. (a) Flow diagram of WEB connection [27]. (b) Block WI-FI driver module. (c) Code
for AT command definition inside FPGA; green letters are comments about hexadecimal data.

19

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

5. Experimental results on graphical user interface (GUI)

An analog signal is generated by the function generator to test the system, and
the final data sent to the PC or WEB page is observed. Figures 17, 18 and 19 show
the corresponding practical wave and storage wave.

The GUI (Figure 18) was made using Java Eclipse Oxygen [29] and serial commu-
nication libraries (jSerialComm). jSerialComm is a Java library designed to provide a
platform-independent way to access standard serial ports without requiring external

Figure 17.
Measurements of real signal sent to the host and WEB page. The signal has an offset = 3.98Vdc and 8.06Vpp
and frequency of 60 Hz with harmonics of 3rd, 5th, 7th, and 9th. This signal is obtained from digital
oscilloscope.

Figure 18.
Data received from the remote DAQ system (Bluetooth or XBee module) using GUI development. Each cycle is
represented by 133 samples (sampling frequency = 8 kHz). The UART baud rate is 115,200 bps.

Field Programmable Gate Arrays (FPGAs) II

20

libraries, native code, or any other tools. It is meant as an alternative to Rx-Tx and
the (deprecated) Java Communications API, with increased ease of use, an enhanced
support for timeouts, and the ability to open multiple ports simultaneously [30].

6. Conclusions

This chapter described a data acquisition system based on FPGA. Several
architectures to ADC controller, UART communication, FIFO memory, and Wi-Fi
configuration process were made to develop the system. Experiments show that the
system can convert the analog signals to digital signal and send to host computer
to Java GUI or WEB page in real-time. The data can be acquired by using custom
sampling frequency and baud rate. The entire system is designed to be simple,
stable, and low cost.

Figure 19.
Data sent to WEB page through Wi-fi module. The WEB page was made on a XAMPP package that includes
apache WEB server, MySQL, and PHP [31].

21

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Author details

J. Guadalupe Velásquez-Aguilar*, Outmane Oubram and Luis Cisneros-Villalobos
Faculty of Chemical Sciences and Engineering, Department of Electrical
Engineering, Autonomous University of the State of Morelos, Cuernavaca, Morelos,
México

*Address all correspondence to: jgpeva@uaem.mx

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Field Programmable Gate Arrays (FPGAs) II

20

libraries, native code, or any other tools. It is meant as an alternative to Rx-Tx and
the (deprecated) Java Communications API, with increased ease of use, an enhanced
support for timeouts, and the ability to open multiple ports simultaneously [30].

6. Conclusions

This chapter described a data acquisition system based on FPGA. Several
architectures to ADC controller, UART communication, FIFO memory, and Wi-Fi
configuration process were made to develop the system. Experiments show that the
system can convert the analog signals to digital signal and send to host computer
to Java GUI or WEB page in real-time. The data can be acquired by using custom
sampling frequency and baud rate. The entire system is designed to be simple,
stable, and low cost.

Figure 19.
Data sent to WEB page through Wi-fi module. The WEB page was made on a XAMPP package that includes
apache WEB server, MySQL, and PHP [31].

21

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

Author details

J. Guadalupe Velásquez-Aguilar*, Outmane Oubram and Luis Cisneros-Villalobos
Faculty of Chemical Sciences and Engineering, Department of Electrical
Engineering, Autonomous University of the State of Morelos, Cuernavaca, Morelos,
México

*Address all correspondence to: jgpeva@uaem.mx

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

22

Field Programmable Gate Arrays (FPGAs) II

References

[1] Siewert S, Pratt J, editors. Real-time
embedded components and system with
linux and RTOS. Mercury Learning and
Information LLC; 2016. 483 p. ISBN:
978-1942270041

[2] Mohit A editor. Embedded system
design: Introduction to SoC system
architecture. Learning Bytes Publishing;
2016. 214 p. ISBN: 978-0997297201

[3] Rajsuman R editor. System-on-a-
Chip: Design and Test. Artech House;
2000. 294 p. ISBN: 978-1580531078

[4] Jerraya AA, Mint WW. Hardware/
software interface codesign for
embedded systems. Computer, IEEE.
2005;38:63-69

[5] Kirianaki N, Yurish S, Shpak N,
Deynega V. Data Acquisition and Signal
Processing for Smart Sensors. John
Wiley & Sons Ltd; 2002. 291 p. ISBN:
0-470843179

[6] Velásquez-Aguilar JG, Aquino-Roblero F,
Limón-Mendoza M, Cisneros-Villalobos L,
Zamudio-Lara A. Multi-channel
data acquisition and wireless
communication FPGA-based system,
to real-time remote monitoring.
In: 2017 International Conference
on Mechatronics, Electronics and
Automotive Engineering (ICMEAE);
21-24 November 2017; Cuernavaca,
México. IEEE; 2017. pp. 181-186

[7] Collotta M, Pau G, Salerno VM,
Scatá G, editors. Wireless Sensor
Networks to Improve Road Monitoring.
IntechOpen; 2012. pp. 323-346. DOI:
10.5772/48505.ch15

[8] National Instruments. Introduction
to Bluetooth Device Testing: From
Theory to Transmitter and Receiver
Measurements. Available from: http://
download.ni.com/evaluation/rf/
intro_to_bluetooth_test.pdf

[9] Symmetry Electronics, Bluetooth 1.0
vs 2.0,vs 3.0 vs 4.0 vs 5.0—How They
Compare. Available from: https://www.
semiconductorstore.com/blog/2018/
Bluetooth-1-0-vs-2-0-vs-3-0-vs-4-0-
vs-5-0-How-They-Differ-Symmetry-
Blog/3147

[10] Gupta NK, editor. Inside Bluetooth
Low Energy. Artech House; 2016. 458 p.
ISBN: 978-1630810894

[11] National Instruments. The Basic of
ZigBee Transmitter Testing. Available
from: www.ni.com

[12] Jaiswal L, Kaur J, Singh G.
Performance analysis of backoff
exponent behaviour at MAC layer in
ZigBee sensor networks. International
Journal of Computer Applications.
2012;57(22)

[13] Cunha A, Koubâa A, Severino R,
Alves M. Open-ZB: An open-
source implementation of the IEEE
802.15.4/ZigBee protocol stack on
TinyOS. Available from: https://
www.cister.isep.ipp.pt/docs/
open_zb__an_open_source_
implementation_of_the_ieee_802_15_4_
zigbee_protocol_stack_on_tinyos/381/
view.pdf

[14] Tennina S et al. editors. IEEE
802.15.4 and ZigBee as enabling
Technologies for Low-Power Wireless
Systems with Quality-of-Service
Constraints. Springer; 2013. 173 p. DOI:
10.1007/978-3-642-37368-8

[15] Available from: https://www.wi-fi.org

[16] Wi-Fi Alliance. Generational
Wi-Fi User Guide. Available
from: https://www.wi-fi.org/file/
generational-wi-fi-user-guide

[17] Rabbit Web site. An
Introduction to Wi-Fi. Available

23

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

from: http://ftp1.digi.com/support/
documentation/0190170_b.pdf

[18] Terasic, DE0-Nano-SoC User
Manual. Available from: https://
media.digikey.com/pdf/Data%20
Sheets/Terasic%20Technologies/
DE0-Nano-SoC_UM.pdf

[19] LTC2308 Datasheets, Linear
Technology Corporation, 2007

[20] Cyclone V. Hard Processor System
Technical Reference Manual, Intel
FPGA; 2018. cv_5v4 | 2019.06.14

[21] HC-06 Datasheets, Guangzhou
HC Information Technology Co. Ltd.
2011. Available from: https://www.
olimex.com/Products/Components/
RF/BLUETOOTH-SERIAL-HC-06/
resources/hc06.pdf

[22] Espressif. ESP8285 Datasheet.
Available from: https://www.
espressif.com/sites/default/files/
documentation/0a-esp8285_datasheet_
en.pdf

[23] Altera, Using the DE0-Nano ADC
Controller. Available from: ftp://ftp.
intel.com/Pub/fpgaup/.../Using_DE0-
Nano_ADC.pdf

[24] Stroud CE. First-In First-Out
(FIFO) Control Logic VHDL Modeling
Example, ECE Department, Auburn
University. Available from: http://
www.eng.auburn.edu/~strouce/class/
elec4200/vhdlmods.pdf

[25] Digi International Inc. XBee-PRO
900/ DigiMesh 900 OEM RF Modules.
Available from: https://www.sparkfun.
com/datasheets/Wireless/Zigbee/XBee-
900-Manual.pdf

[26] Available from: https://tera-term.
en.lo4d.com/windows

[27] Espressif. ESP8266 AT Command
Examples. 2017. Available from: https://

espressif.com/sites/default/files/.../4b-
esp8266_at_command_examples_en.pdf

[28] Available from: https://www.
digi.com/products/iot-platform/
xctu#productsupport-utilities

[29] Available from: https://www.eclipse.
org/

[30] Available from: https://fazecast.
github.io/jSerialComm/

[31] Available from: https://sourceforge.
net/projects/xampp/

22

Field Programmable Gate Arrays (FPGAs) II

References

[1] Siewert S, Pratt J, editors. Real-time
embedded components and system with
linux and RTOS. Mercury Learning and
Information LLC; 2016. 483 p. ISBN:
978-1942270041

[2] Mohit A editor. Embedded system
design: Introduction to SoC system
architecture. Learning Bytes Publishing;
2016. 214 p. ISBN: 978-0997297201

[3] Rajsuman R editor. System-on-a-
Chip: Design and Test. Artech House;
2000. 294 p. ISBN: 978-1580531078

[4] Jerraya AA, Mint WW. Hardware/
software interface codesign for
embedded systems. Computer, IEEE.
2005;38:63-69

[5] Kirianaki N, Yurish S, Shpak N,
Deynega V. Data Acquisition and Signal
Processing for Smart Sensors. John
Wiley & Sons Ltd; 2002. 291 p. ISBN:
0-470843179

[6] Velásquez-Aguilar JG, Aquino-Roblero F,
Limón-Mendoza M, Cisneros-Villalobos L,
Zamudio-Lara A. Multi-channel
data acquisition and wireless
communication FPGA-based system,
to real-time remote monitoring.
In: 2017 International Conference
on Mechatronics, Electronics and
Automotive Engineering (ICMEAE);
21-24 November 2017; Cuernavaca,
México. IEEE; 2017. pp. 181-186

[7] Collotta M, Pau G, Salerno VM,
Scatá G, editors. Wireless Sensor
Networks to Improve Road Monitoring.
IntechOpen; 2012. pp. 323-346. DOI:
10.5772/48505.ch15

[8] National Instruments. Introduction
to Bluetooth Device Testing: From
Theory to Transmitter and Receiver
Measurements. Available from: http://
download.ni.com/evaluation/rf/
intro_to_bluetooth_test.pdf

[9] Symmetry Electronics, Bluetooth 1.0
vs 2.0,vs 3.0 vs 4.0 vs 5.0—How They
Compare. Available from: https://www.
semiconductorstore.com/blog/2018/
Bluetooth-1-0-vs-2-0-vs-3-0-vs-4-0-
vs-5-0-How-They-Differ-Symmetry-
Blog/3147

[10] Gupta NK, editor. Inside Bluetooth
Low Energy. Artech House; 2016. 458 p.
ISBN: 978-1630810894

[11] National Instruments. The Basic of
ZigBee Transmitter Testing. Available
from: www.ni.com

[12] Jaiswal L, Kaur J, Singh G.
Performance analysis of backoff
exponent behaviour at MAC layer in
ZigBee sensor networks. International
Journal of Computer Applications.
2012;57(22)

[13] Cunha A, Koubâa A, Severino R,
Alves M. Open-ZB: An open-
source implementation of the IEEE
802.15.4/ZigBee protocol stack on
TinyOS. Available from: https://
www.cister.isep.ipp.pt/docs/
open_zb__an_open_source_
implementation_of_the_ieee_802_15_4_
zigbee_protocol_stack_on_tinyos/381/
view.pdf

[14] Tennina S et al. editors. IEEE
802.15.4 and ZigBee as enabling
Technologies for Low-Power Wireless
Systems with Quality-of-Service
Constraints. Springer; 2013. 173 p. DOI:
10.1007/978-3-642-37368-8

[15] Available from: https://www.wi-fi.org

[16] Wi-Fi Alliance. Generational
Wi-Fi User Guide. Available
from: https://www.wi-fi.org/file/
generational-wi-fi-user-guide

[17] Rabbit Web site. An
Introduction to Wi-Fi. Available

23

Real-Time FPGA-Based Systems to Remote Monitoring
DOI: http://dx.doi.org/10.5772/intechopen.89629

from: http://ftp1.digi.com/support/
documentation/0190170_b.pdf

[18] Terasic, DE0-Nano-SoC User
Manual. Available from: https://
media.digikey.com/pdf/Data%20
Sheets/Terasic%20Technologies/
DE0-Nano-SoC_UM.pdf

[19] LTC2308 Datasheets, Linear
Technology Corporation, 2007

[20] Cyclone V. Hard Processor System
Technical Reference Manual, Intel
FPGA; 2018. cv_5v4 | 2019.06.14

[21] HC-06 Datasheets, Guangzhou
HC Information Technology Co. Ltd.
2011. Available from: https://www.
olimex.com/Products/Components/
RF/BLUETOOTH-SERIAL-HC-06/
resources/hc06.pdf

[22] Espressif. ESP8285 Datasheet.
Available from: https://www.
espressif.com/sites/default/files/
documentation/0a-esp8285_datasheet_
en.pdf

[23] Altera, Using the DE0-Nano ADC
Controller. Available from: ftp://ftp.
intel.com/Pub/fpgaup/.../Using_DE0-
Nano_ADC.pdf

[24] Stroud CE. First-In First-Out
(FIFO) Control Logic VHDL Modeling
Example, ECE Department, Auburn
University. Available from: http://
www.eng.auburn.edu/~strouce/class/
elec4200/vhdlmods.pdf

[25] Digi International Inc. XBee-PRO
900/ DigiMesh 900 OEM RF Modules.
Available from: https://www.sparkfun.
com/datasheets/Wireless/Zigbee/XBee-
900-Manual.pdf

[26] Available from: https://tera-term.
en.lo4d.com/windows

[27] Espressif. ESP8266 AT Command
Examples. 2017. Available from: https://

espressif.com/sites/default/files/.../4b-
esp8266_at_command_examples_en.pdf

[28] Available from: https://www.
digi.com/products/iot-platform/
xctu#productsupport-utilities

[29] Available from: https://www.eclipse.
org/

[30] Available from: https://fazecast.
github.io/jSerialComm/

[31] Available from: https://sourceforge.
net/projects/xampp/

Chapter 2

Real-Time Echo State Network
Based on FPGA and Its
Applications
Yongbo Liao

Abstract

In this chapter, a hardware processing architecture of real-time echo state net-
work based on field-programmable gate array (FPGA) is proposed, which solves the
problem that it is difficult to obtain the output weight of the network in real time.
The design of this architecture strictly follows the reservoir calculation (RC) theory,
and its five components are established in FPGA: input module, reservoir module,
output module, training module, and system switch module. This paper implements
the architecture in Altera FPGA chip and verifies it through the application of
pattern recognition, waveform generation, and multiple-input multiple-output
(MIMO) channel prediction. Experimental results show that the hardware-
implemented real-time echo state network can identify the duty cycle of different
input signals, generate floating-point waveforms, and predict the MIMO channel by
training. In this paper, a real-time echo state network based on field programmable
gate array is proposed, which has the advantages of fast computation speed, less
resource consumption, and ideal simple task execution.

Keywords: FPGA, ESN, pattern recognition, waveform generation, MIMO channel
prediction, real-time, training, testing

1. Introduction

Echo state network [1] simplifies training tasks into linear regression tasks.
It mainly solves the problems of large consumption of Recurrent Neural Network
(RNN) training resources, long running time, and slow convergence. There are
many studies on the applications of echo state network, such as wind power ramp
time prediction [2, 3], medical image recognition classification [4], water flow
prediction [5], etc. There are also many studies on the structure of the echo state
network, such as the dynamic reservoirs that increase their stochastic properties [6]
or delay characteristics [7], correlation entropy replaces traditional error function
[8], change calculation model [9, 10], etc. Less research work on hardware platform
implementation of neural networks, such as [11] proposed a software framework
for simulating RNN circuits, [12, 13] proposed FPGA/software framework; however
these frameworks are always trained in software such as MATLAB, which not be
strictly said to be hardware implementation. The FPGA-based real-time echo state
network structure proposed in this chapter trains the output weights on the FPGA
platform without calculating the relevant parameters by means of software. In

25

Chapter 2

Real-Time Echo State Network
Based on FPGA and Its
Applications
Yongbo Liao

Abstract

In this chapter, a hardware processing architecture of real-time echo state net-
work based on field-programmable gate array (FPGA) is proposed, which solves the
problem that it is difficult to obtain the output weight of the network in real time.
The design of this architecture strictly follows the reservoir calculation (RC) theory,
and its five components are established in FPGA: input module, reservoir module,
output module, training module, and system switch module. This paper implements
the architecture in Altera FPGA chip and verifies it through the application of
pattern recognition, waveform generation, and multiple-input multiple-output
(MIMO) channel prediction. Experimental results show that the hardware-
implemented real-time echo state network can identify the duty cycle of different
input signals, generate floating-point waveforms, and predict the MIMO channel by
training. In this paper, a real-time echo state network based on field programmable
gate array is proposed, which has the advantages of fast computation speed, less
resource consumption, and ideal simple task execution.

Keywords: FPGA, ESN, pattern recognition, waveform generation, MIMO channel
prediction, real-time, training, testing

1. Introduction

Echo state network [1] simplifies training tasks into linear regression tasks.
It mainly solves the problems of large consumption of Recurrent Neural Network
(RNN) training resources, long running time, and slow convergence. There are
many studies on the applications of echo state network, such as wind power ramp
time prediction [2, 3], medical image recognition classification [4], water flow
prediction [5], etc. There are also many studies on the structure of the echo state
network, such as the dynamic reservoirs that increase their stochastic properties [6]
or delay characteristics [7], correlation entropy replaces traditional error function
[8], change calculation model [9, 10], etc. Less research work on hardware platform
implementation of neural networks, such as [11] proposed a software framework
for simulating RNN circuits, [12, 13] proposed FPGA/software framework; however
these frameworks are always trained in software such as MATLAB, which not be
strictly said to be hardware implementation. The FPGA-based real-time echo state
network structure proposed in this chapter trains the output weights on the FPGA
platform without calculating the relevant parameters by means of software. In

25

order to verify the performance of the proposed architecture, two types of bench-
mark tasks were performed: the output signal which was a binary signal [14] and a
floating point number signal and a MIMO channel prediction task [15].

2. Theory and model

This section describes the mathematical model of the echo state network. The
structural model is shown in Figure 1. Let the model have K input units whose
vector form is

u nð Þ ¼ u1 nð Þ; u2 nð Þ⋯⋯⋯uK nð Þð ÞT (1)

N reservoir units, the vector form is

x nð Þ ¼ x1; x2⋯⋯⋯xNð ÞT (2)

L output units whose vector form is

y nð Þ ¼ y1; y2⋯⋯⋯yL
� �T (3)

where (•)T is the transpose, n is the discrete time, and the input/reservoir/
output connection weight is represented by a weight matrix of size N � K/N �
N/L�(K + N), i.e.

Win ¼ wi,n
i, j

� �
,W ¼ wi, j

� �
,Wout ¼ wout

ij

� �
(4)

The output unit can select whether to feed back to the intermediate unit and the
connection weight is represented by a feedback weight matrix of size N � L:

Wback ¼ wback
ij

� �
(5)

Intermediate cell status updates according to the formula

x nþ 1ð Þ ¼ f Winu nþ 1ð Þ þWx nð Þ þWbackytarget nð Þ
� �

(6)

where u(n + 1) is the external given input at time n + 1, such as Eq. (1); ytarget(n)
is the ideal output at time n, in the form of Eq. (2); and f represents the transfer

Figure 1.
The basic structure of the echo state network. The arrows indicate the flow of data.

26

Field Programmable Gate Arrays (FPGAs) II

function of the intermediate unit, mainly using the S function, but sometimes a
linear network f = 1 is also used. Output calculation is based on

y nþ 1ð Þ ¼ f out W
out u nþ 1ð Þ; x nþ 1ð Þð Þð Þ (7)

where (u(n + 1),x(n + 1)) represents the juxtaposition of the input and the
intermediate state vector, as shown in the input layer to the output layer of the
dashed arrow in Figure 1, in some applications, such as [16], where the data stream
does not exist. That is, the output is calculated directly using the intermediate state
value. The output transfer function is usually fout = tanh or fout = 1, depending on
whether the output unit is nonlinear or linear. The output weight Wout is calculated
according to the following formula:

Wout ¼ YtargetXT XXT þ α2I
� ��1

(8)

where I∈RN�N is the identity matrix, α is the regularization factor, R∈RN�N is
the set matrix of u nþ 1ð Þ; x nþ 1ð Þð Þð Þ, Y target is the ideal output set matrix, and •ð Þ‐1
is the matrix inversion.

3. Real-time FPGA echo state network structure

Real-time FPGA echo state network execution structure maps Eqs. (6)–(8) to six
modules, which are input module, reservoir module, output module, training mod-
ule, system switch module, and random number generator, as shown in Figure 2.
The input module is a two-input single-output module, and the input is a random
input weight Win generated by a random number generator and an external signal
u(n + 1), performing a W in u(n + 1) multiplication operation, and encoding the
input signal to form a data signal that can be calculated by the reservoir module.
The reservoir module is a five-input single-output module that strictly performs the
remainder of Eq. (6), the input including the encoded external signal from the input
module, reservoir initial state value (this input is the state value of the previous
clock reservoir module output as the operation progresses), network expected out-
put, reservoir interconnection weights generated by the random number generator,
and feedback. Connecting the weight, output high-dimensional state signal, the
specific circuit is shown in Figure 3.

Figure 2.
Real-time FPGA echo state network structure diagram.

27

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

order to verify the performance of the proposed architecture, two types of bench-
mark tasks were performed: the output signal which was a binary signal [14] and a
floating point number signal and a MIMO channel prediction task [15].

2. Theory and model

This section describes the mathematical model of the echo state network. The
structural model is shown in Figure 1. Let the model have K input units whose
vector form is

u nð Þ ¼ u1 nð Þ; u2 nð Þ⋯⋯⋯uK nð Þð ÞT (1)

N reservoir units, the vector form is

x nð Þ ¼ x1; x2⋯⋯⋯xNð ÞT (2)

L output units whose vector form is

y nð Þ ¼ y1; y2⋯⋯⋯yL
� �T (3)

where (•)T is the transpose, n is the discrete time, and the input/reservoir/
output connection weight is represented by a weight matrix of size N � K/N �
N/L�(K + N), i.e.

Win ¼ wi,n
i, j

� �
,W ¼ wi, j

� �
,Wout ¼ wout

ij

� �
(4)

The output unit can select whether to feed back to the intermediate unit and the
connection weight is represented by a feedback weight matrix of size N � L:

Wback ¼ wback
ij

� �
(5)

Intermediate cell status updates according to the formula

x nþ 1ð Þ ¼ f Winu nþ 1ð Þ þWx nð Þ þWbackytarget nð Þ
� �

(6)

where u(n + 1) is the external given input at time n + 1, such as Eq. (1); ytarget(n)
is the ideal output at time n, in the form of Eq. (2); and f represents the transfer

Figure 1.
The basic structure of the echo state network. The arrows indicate the flow of data.

26

Field Programmable Gate Arrays (FPGAs) II

function of the intermediate unit, mainly using the S function, but sometimes a
linear network f = 1 is also used. Output calculation is based on

y nþ 1ð Þ ¼ f out W
out u nþ 1ð Þ; x nþ 1ð Þð Þð Þ (7)

where (u(n + 1),x(n + 1)) represents the juxtaposition of the input and the
intermediate state vector, as shown in the input layer to the output layer of the
dashed arrow in Figure 1, in some applications, such as [16], where the data stream
does not exist. That is, the output is calculated directly using the intermediate state
value. The output transfer function is usually fout = tanh or fout = 1, depending on
whether the output unit is nonlinear or linear. The output weight Wout is calculated
according to the following formula:

Wout ¼ YtargetXT XXT þ α2I
� ��1

(8)

where I∈RN�N is the identity matrix, α is the regularization factor, R∈RN�N is
the set matrix of u nþ 1ð Þ; x nþ 1ð Þð Þð Þ, Y target is the ideal output set matrix, and •ð Þ‐1
is the matrix inversion.

3. Real-time FPGA echo state network structure

Real-time FPGA echo state network execution structure maps Eqs. (6)–(8) to six
modules, which are input module, reservoir module, output module, training mod-
ule, system switch module, and random number generator, as shown in Figure 2.
The input module is a two-input single-output module, and the input is a random
input weight Win generated by a random number generator and an external signal
u(n + 1), performing a W in u(n + 1) multiplication operation, and encoding the
input signal to form a data signal that can be calculated by the reservoir module.
The reservoir module is a five-input single-output module that strictly performs the
remainder of Eq. (6), the input including the encoded external signal from the input
module, reservoir initial state value (this input is the state value of the previous
clock reservoir module output as the operation progresses), network expected out-
put, reservoir interconnection weights generated by the random number generator,
and feedback. Connecting the weight, output high-dimensional state signal, the
specific circuit is shown in Figure 3.

Figure 2.
Real-time FPGA echo state network structure diagram.

27

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

(Figure 3 circuit is the circuit that outputs the reservoir state x1, other state circuits
are similar). The output module is a three-input single-output module, the input is an
external input signal, the state value is obtained by the reservoir module calculation,
and the output connection weight is calculated by the training module. The output is
the final acquired network output. The function is to perform simple multiplication
and addition on the input data and decode the result to form an output signal. The
training module is a three-input single-output module, the input is an externally given
desired output, a status signal is generated by the reservoir module, and an enable
signal S is sent by the system switch module, When S = 0, the module stops working.
When S = 1, themodule works, and the output is the core parameter output connection
weight of the echo state network. The function is expressed as Eq. (8). The specific
implementation mechanism is shown in Figure 4 (in Eq. (8)), YtargetXT ¼ aitð Þ,
XXT þ α2I ¼ dtj

� �
, XXT þ α2I
� �‐1 ¼ btj

� �
,Wout ¼ cij

� �
; then, the output weight

Wout ¼ cij
� �

is obtained; The system switch module is a two-input single-output mod-
ule. The input is a network output signal and a desired output signal. The output is an
enable signal for controlling the operation of the trainingmodule. Its function is mainly
to judge the network performance. When the network output signal matches the
expected output signal or the difference is within the receiving range, the output S = 0
and the other cases continue to output S = 1. A random number generator is used to
generate inputs, reservoirs, and feedback weights.

The following sections detail how to train a real-time FPGA echo state network.
As is well known, FPGAs implement digital systems that primarily process digital

Figure 3.
Reservoir module.

Figure 4.
Training module. Subscript z represents the zth unit of input, reservoir, and output.

28

Field Programmable Gate Arrays (FPGAs) II

signals, providing a logic cell array that can be configured as a given function via a
bitstream file. Its basic digital logic, the smallest programmable logic unit, is the
logic gate. Therefore, FPGAs are the best device for performing echo state net-
works. The architecture is all implemented in the FPGA. On the one hand, the
dynamic reservoir (i.e., the middle layer) is established. On the other hand, how to
obtain the real-time output weights when the input signal is the digital signal “0” or
“1” is established.

The dataflow and training process of the real-time FPGA echo state network
structure will be briefly described as follows:

Given: Input and target output sequence u(n) and ytarget(n), n ¼ 1⋯⋯T.
Objective: The teacher signal input/output training acquires Wout and acquires

the network output signal by loading the input signal.
Proceed as follows:
The random number generator module generates an input, a reservoir, and a

feedback weight of the echo state network and sends the input and feedback weights
to the input module, and the reservoir weight is sent to the reservoir module.

The input module loads the input signal, encodes the input signal, and sends it to
the reservoir module.

The reservoir module receives the encoded signal sent by the input module,
loads the target output signal, acquires the feature value, and sends it to the output
module and the training module.

The training module loads the input signal, the target output signal, and the
characteristic value sent by the reservoir module; calculates the output weight;
sends the result to the output module; and determines whether to stop training
according to the signal sent by the system switch module.

The output module loads the input signal and calculates the network output
according to the characteristic value sent by the reservoir module and the output
weight sent by the training module and sends the network output value to the
system switch module and outputs the actual network value.

The system switch module loads the target output signal and the network output
signal to determine whether the match is matched and sends the judgment result
back to the training module. If it matches, it sends back S = 0; if it does not match, it
sends back S = 1;

Repeat steps 2–6 until the judgment result of the system switch module is to stop
training, that is, S = 0.

This is followed by the regular echo state network function, which only per-
forms input, reservoir, and output modules and outputs network prediction values.

4. Experiment and analysis

A total of two types of benchmark task experiments were performed: the output
signal was a binary signal and a floating point number signal and a multiple-input
multiple-output channel prediction task experiment. The programming language is
Verilog HDL, the chip uses Altera Stratix III FPGA, and the integrated place and
route are implemented in QUARTUS II.

4.1 Different duty cycle signal pattern recognition

The pattern recognition reference task with different duty cycles is very similar
to the memory resistance based on reservoir calculation (RC) in [14]. The mode
signals with different duty cycles are shown in Figure 5. The input signal of the echo

29

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

(Figure 3 circuit is the circuit that outputs the reservoir state x1, other state circuits
are similar). The output module is a three-input single-output module, the input is an
external input signal, the state value is obtained by the reservoir module calculation,
and the output connection weight is calculated by the training module. The output is
the final acquired network output. The function is to perform simple multiplication
and addition on the input data and decode the result to form an output signal. The
training module is a three-input single-output module, the input is an externally given
desired output, a status signal is generated by the reservoir module, and an enable
signal S is sent by the system switch module, When S = 0, the module stops working.
When S = 1, themodule works, and the output is the core parameter output connection
weight of the echo state network. The function is expressed as Eq. (8). The specific
implementation mechanism is shown in Figure 4 (in Eq. (8)), YtargetXT ¼ aitð Þ,
XXT þ α2I ¼ dtj

� �
, XXT þ α2I
� �‐1 ¼ btj

� �
,Wout ¼ cij

� �
; then, the output weight

Wout ¼ cij
� �

is obtained; The system switch module is a two-input single-output mod-
ule. The input is a network output signal and a desired output signal. The output is an
enable signal for controlling the operation of the trainingmodule. Its function is mainly
to judge the network performance. When the network output signal matches the
expected output signal or the difference is within the receiving range, the output S = 0
and the other cases continue to output S = 1. A random number generator is used to
generate inputs, reservoirs, and feedback weights.

The following sections detail how to train a real-time FPGA echo state network.
As is well known, FPGAs implement digital systems that primarily process digital

Figure 3.
Reservoir module.

Figure 4.
Training module. Subscript z represents the zth unit of input, reservoir, and output.

28

Field Programmable Gate Arrays (FPGAs) II

signals, providing a logic cell array that can be configured as a given function via a
bitstream file. Its basic digital logic, the smallest programmable logic unit, is the
logic gate. Therefore, FPGAs are the best device for performing echo state net-
works. The architecture is all implemented in the FPGA. On the one hand, the
dynamic reservoir (i.e., the middle layer) is established. On the other hand, how to
obtain the real-time output weights when the input signal is the digital signal “0” or
“1” is established.

The dataflow and training process of the real-time FPGA echo state network
structure will be briefly described as follows:

Given: Input and target output sequence u(n) and ytarget(n), n ¼ 1⋯⋯T.
Objective: The teacher signal input/output training acquires Wout and acquires

the network output signal by loading the input signal.
Proceed as follows:
The random number generator module generates an input, a reservoir, and a

feedback weight of the echo state network and sends the input and feedback weights
to the input module, and the reservoir weight is sent to the reservoir module.

The input module loads the input signal, encodes the input signal, and sends it to
the reservoir module.

The reservoir module receives the encoded signal sent by the input module,
loads the target output signal, acquires the feature value, and sends it to the output
module and the training module.

The training module loads the input signal, the target output signal, and the
characteristic value sent by the reservoir module; calculates the output weight;
sends the result to the output module; and determines whether to stop training
according to the signal sent by the system switch module.

The output module loads the input signal and calculates the network output
according to the characteristic value sent by the reservoir module and the output
weight sent by the training module and sends the network output value to the
system switch module and outputs the actual network value.

The system switch module loads the target output signal and the network output
signal to determine whether the match is matched and sends the judgment result
back to the training module. If it matches, it sends back S = 0; if it does not match, it
sends back S = 1;

Repeat steps 2–6 until the judgment result of the system switch module is to stop
training, that is, S = 0.

This is followed by the regular echo state network function, which only per-
forms input, reservoir, and output modules and outputs network prediction values.

4. Experiment and analysis

A total of two types of benchmark task experiments were performed: the output
signal was a binary signal and a floating point number signal and a multiple-input
multiple-output channel prediction task experiment. The programming language is
Verilog HDL, the chip uses Altera Stratix III FPGA, and the integrated place and
route are implemented in QUARTUS II.

4.1 Different duty cycle signal pattern recognition

The pattern recognition reference task with different duty cycles is very similar
to the memory resistance based on reservoir calculation (RC) in [14]. The mode
signals with different duty cycles are shown in Figure 5. The input signal of the echo

29

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

state network is U, the expected output is Y target, and the actual output signal is Yr;
Wo1 and Wo2 are output weights, and B is the bias signal. The second line (signal
Y_target) represents the expected response of the first line (signal U). When the duty
cycle of the input signal is less than 50%, the signal Y_target should converge to 0 and
should converge to 1 for a duty cycle greater than 50%. As shown in Figure 5, the
online training echo state network in the FPGA obtains Wo1, Wo2, and B, and their
values are 00Eh, 00Ah, and FC1h, respectively. After the output weight is obtained,
different duty cycle mode signals are loaded into the trained echo state network, and
the result is as shown in Figure 6. The output signal (Yr) changes between a duty
cycle of the input signal (U) greater than 50% and less than 50%.

Figure 7 is a graph showing the percentage of the total number of nerve cells
implemented in the FPGA logic and FPGA and the error curve. It can be seen that
the logic utilization is less than 60% until the number of neurons is 512 units. When
the number of nerves exceeds 16 units, the error between the actual output signal
and the ideal output is zero. Therefore, the circuit resources proposed in this paper
consume less, and the convergence speed is faster.

4.2 Sine wave generator

Here we test how to train the echo state network to generate a sine wave signal,
which is a floating point number, which is very similar to the simple sine wave test

Figure 5.
Different duty cycle pattern recognition training.

Figure 6.
Echo state network test results.

Figure 7.
Relationship between neuron number and logic utilization and error curve.

30

Field Programmable Gate Arrays (FPGAs) II

performed in MATLAB when the echo state network is proposed in [1]. The ideal
sine wave signal is given by the equation ytarget tð Þ ¼ sin t=8ð Þ. There is no input in

this experiment, so set Win to 0; W and Wback are matrices formed by random
numbers, and the basic unit of the echo state network is the standard S unit (i.e., the
activation function is S function tanh), and the training result is shown in Figure 8.
In the process of generating sine wave training, the ideal output signal (Ytarget) is a
floating point number, so the actual output signal (Yr), the normalized root mean
square error signal (E), and the output weight signal (Wout1, Wout2, Wout3,
Wout4) are all floating point numbers. The training error is calculated in the system
switch module, and E = 3D0228E7h is calculated according to the normalized root

mean square error calculation equation E ¼
ffi
PN

n¼1
ytarget nð Þ�y nð Þð Þ2
N�var ytargetð Þ

s
. The optimized

output weights Wout1, Wout2, Wout3, and Wout4 of the training module are
BDFEDD9Dh, 3CB22AA8h, 3CA0BDD8h, and 3F55E542h, respectively. The wave-
form shown in Figure 9 is acquired by the SignalTap II logic analyzer and is a
floating-point sine wave generated for the trained echo state network. The Altera
floating-point IP core was used in the experiment to set up the echo state network.
As shown in Figure 10, the top is the Y target signal, the middle is the actual output
y signal of the network, and the bottom is the error waveform of the network
expected output and the actual output.

4.3 MIMO channel prediction

Recurrent neural networks have been widely used in MIMO systems [17–23].
Echo state networks are a way to train recurrent neural networks. They have faster
convergence characteristics, and more efficient tracking channel state changes than
other traditional training methods. For a 2 � 2 multiple-input multiple-output
system with a binary phase shift keying (BPSK) modulator, as shown in Figure 11,
the zero-forcing equalizer used in the receiver section can reduce symbol interfer-
ence (ISI) due to the precise channel. It is estimated that the zero-forcing equaliza-
tion can be improved by the degraded radio channel, and therefore the proposed
architecture is used for MIMO channel prediction.

The matrix equation of the MIMO system shown in Figure 11 is given as

y1
y2

� �
¼ h11 h12

h21 h22

� �
x1
x2

� �
þ n1

n2

� �
(9)

Figure 8.
Sine wave generation training.

Figure 9.
Echo state network generating floating point sine wave.

31

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

state network is U, the expected output is Y target, and the actual output signal is Yr;
Wo1 and Wo2 are output weights, and B is the bias signal. The second line (signal
Y_target) represents the expected response of the first line (signal U). When the duty
cycle of the input signal is less than 50%, the signal Y_target should converge to 0 and
should converge to 1 for a duty cycle greater than 50%. As shown in Figure 5, the
online training echo state network in the FPGA obtains Wo1, Wo2, and B, and their
values are 00Eh, 00Ah, and FC1h, respectively. After the output weight is obtained,
different duty cycle mode signals are loaded into the trained echo state network, and
the result is as shown in Figure 6. The output signal (Yr) changes between a duty
cycle of the input signal (U) greater than 50% and less than 50%.

Figure 7 is a graph showing the percentage of the total number of nerve cells
implemented in the FPGA logic and FPGA and the error curve. It can be seen that
the logic utilization is less than 60% until the number of neurons is 512 units. When
the number of nerves exceeds 16 units, the error between the actual output signal
and the ideal output is zero. Therefore, the circuit resources proposed in this paper
consume less, and the convergence speed is faster.

4.2 Sine wave generator

Here we test how to train the echo state network to generate a sine wave signal,
which is a floating point number, which is very similar to the simple sine wave test

Figure 5.
Different duty cycle pattern recognition training.

Figure 6.
Echo state network test results.

Figure 7.
Relationship between neuron number and logic utilization and error curve.

30

Field Programmable Gate Arrays (FPGAs) II

performed in MATLAB when the echo state network is proposed in [1]. The ideal
sine wave signal is given by the equation ytarget tð Þ ¼ sin t=8ð Þ. There is no input in

this experiment, so set Win to 0; W and Wback are matrices formed by random
numbers, and the basic unit of the echo state network is the standard S unit (i.e., the
activation function is S function tanh), and the training result is shown in Figure 8.
In the process of generating sine wave training, the ideal output signal (Ytarget) is a
floating point number, so the actual output signal (Yr), the normalized root mean
square error signal (E), and the output weight signal (Wout1, Wout2, Wout3,
Wout4) are all floating point numbers. The training error is calculated in the system
switch module, and E = 3D0228E7h is calculated according to the normalized root

mean square error calculation equation E ¼
ffi
PN

n¼1
ytarget nð Þ�y nð Þð Þ2
N�var ytargetð Þ

s
. The optimized

output weights Wout1, Wout2, Wout3, and Wout4 of the training module are
BDFEDD9Dh, 3CB22AA8h, 3CA0BDD8h, and 3F55E542h, respectively. The wave-
form shown in Figure 9 is acquired by the SignalTap II logic analyzer and is a
floating-point sine wave generated for the trained echo state network. The Altera
floating-point IP core was used in the experiment to set up the echo state network.
As shown in Figure 10, the top is the Y target signal, the middle is the actual output
y signal of the network, and the bottom is the error waveform of the network
expected output and the actual output.

4.3 MIMO channel prediction

Recurrent neural networks have been widely used in MIMO systems [17–23].
Echo state networks are a way to train recurrent neural networks. They have faster
convergence characteristics, and more efficient tracking channel state changes than
other traditional training methods. For a 2 � 2 multiple-input multiple-output
system with a binary phase shift keying (BPSK) modulator, as shown in Figure 11,
the zero-forcing equalizer used in the receiver section can reduce symbol interfer-
ence (ISI) due to the precise channel. It is estimated that the zero-forcing equaliza-
tion can be improved by the degraded radio channel, and therefore the proposed
architecture is used for MIMO channel prediction.

The matrix equation of the MIMO system shown in Figure 11 is given as

y1
y2

� �
¼ h11 h12

h21 h22

� �
x1
x2

� �
þ n1

n2

� �
(9)

Figure 8.
Sine wave generation training.

Figure 9.
Echo state network generating floating point sine wave.

31

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

The system can be represented as a compact form Y = HX + n, where Y is a 2 � 1
received signal vector, H is a 2 � 2 channel coefficient matrix, X is a 2 � 1 propaga-
tion vector, and n is a 2 � 1 additive white Gaussian noise vector. The channel is
considered to be a Rayleigh decay with a mean of 0 and a variance of 0.5. At the
receiving end, the zero-forcing equalization performs the prediction of the propa-
gated signal, and the equation is

X̂ ¼ HHH
� ��1

HY (10)

where HHH
� ��1

H represents the pseudo inverse of H. The predicted X̂ loaded
BPSK demodulator recovers the original information.

In order to dynamically update the channel state at each step, an echo state
network is added to the 2 � 2 MIMO system in Figure 11. The system structure
diagram after adding the echo state network is shown in Figure 12. The echo state
network channel prediction strategy is shown in Figure 13. The channel coefficients
are trained in the echo state network channel prediction. Once the training is com-
pleted, the echo state network channel prediction can automatically generate the
predicted channel coefficients, and the predicted channel coefficients are loaded into
the zero-forcing equalization, thereby completing the MIMO channel prediction.

Figure 14 shows the RTL level circuit diagram generated by the FPGA. The
system mainly includes a transmitter (fx), a receiver (rx), and an echo state

Figure 10.
Target signal (ytarget), actual signal (y), and error curve (number of neurons is 8).

Figure 11.
2 � 2 MIMO system.

32

Field Programmable Gate Arrays (FPGAs) II

network module (ch_test). In the transmitting module (fx), the signals x1r, x2r and
x1i, x2i are the real and imaginary parts of the MIMO system input signals X1 and
X2, respectively, and h11r, h12r, h21r, h22r and h11i, h12i, h21i, h22i are, respec-
tively, MIMO channels. The real and imaginary parts of the coefficient, y1r, y2r and
y1i, y2i are the real and imaginary parts of the received signal, respectively. In the
receiving module (rx), a11, a12, a21, a22 and b11, b12, b21, b22 are the real and
imaginary parts of the channel prediction coefficients, and the output is calculated
by the echo state network module (ch_test), c1, c2, and d1. d2 is the real and
imaginary part of X̂ , respectively, corresponding to the demodulated signal X, and
the signal “detu” is the demodulation scale factor of c1, c2, d1 and d2.

Figure 12.
Echo state network for 2 � 2 MIMO systems.

Figure 13.
Echo state network channel prediction strategy structure diagram.

Figure 14.
RTL circuit diagram obtained by FPGA synthesis.

33

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

The system can be represented as a compact form Y = HX + n, where Y is a 2 � 1
received signal vector, H is a 2 � 2 channel coefficient matrix, X is a 2 � 1 propaga-
tion vector, and n is a 2 � 1 additive white Gaussian noise vector. The channel is
considered to be a Rayleigh decay with a mean of 0 and a variance of 0.5. At the
receiving end, the zero-forcing equalization performs the prediction of the propa-
gated signal, and the equation is

X̂ ¼ HHH
� ��1

HY (10)

where HHH
� ��1

H represents the pseudo inverse of H. The predicted X̂ loaded
BPSK demodulator recovers the original information.

In order to dynamically update the channel state at each step, an echo state
network is added to the 2 � 2 MIMO system in Figure 11. The system structure
diagram after adding the echo state network is shown in Figure 12. The echo state
network channel prediction strategy is shown in Figure 13. The channel coefficients
are trained in the echo state network channel prediction. Once the training is com-
pleted, the echo state network channel prediction can automatically generate the
predicted channel coefficients, and the predicted channel coefficients are loaded into
the zero-forcing equalization, thereby completing the MIMO channel prediction.

Figure 14 shows the RTL level circuit diagram generated by the FPGA. The
system mainly includes a transmitter (fx), a receiver (rx), and an echo state

Figure 10.
Target signal (ytarget), actual signal (y), and error curve (number of neurons is 8).

Figure 11.
2 � 2 MIMO system.

32

Field Programmable Gate Arrays (FPGAs) II

network module (ch_test). In the transmitting module (fx), the signals x1r, x2r and
x1i, x2i are the real and imaginary parts of the MIMO system input signals X1 and
X2, respectively, and h11r, h12r, h21r, h22r and h11i, h12i, h21i, h22i are, respec-
tively, MIMO channels. The real and imaginary parts of the coefficient, y1r, y2r and
y1i, y2i are the real and imaginary parts of the received signal, respectively. In the
receiving module (rx), a11, a12, a21, a22 and b11, b12, b21, b22 are the real and
imaginary parts of the channel prediction coefficients, and the output is calculated
by the echo state network module (ch_test), c1, c2, and d1. d2 is the real and
imaginary part of X̂ , respectively, corresponding to the demodulated signal X, and
the signal “detu” is the demodulation scale factor of c1, c2, d1 and d2.

Figure 12.
Echo state network for 2 � 2 MIMO systems.

Figure 13.
Echo state network channel prediction strategy structure diagram.

Figure 14.
RTL circuit diagram obtained by FPGA synthesis.

33

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

The designed MIMO system is downloaded to the FPGA chip through a bitstream
file, and the waveform result is obtained by a SignalTap II logic analyzer, as shown in
Figure 15. It can be seen from the waveform diagram that the signal waveforms of
the C1 and C2 parts are completely identical. In the C1 portion, the signals in1 and in2
correspond to x1r and x2r, respectively, and in the C2 portion, the signals oute1 and
oute2 correspond to the real part of the signal X. X1r, x2r, and x1i, x2i are the real and
imaginary parts before demodulation of the demodulated signal, respectively.

In order to be able to explain the C3 part, the C3 part is enlarged here (see
Figure 16). As can be seen from the C3 section, the received signals Y1 and Y2 and the
estimated channel matrix are all changed. However, zero-forcing equalization can still
predict values x1r, x2r, and C through the echo state network. After the processing is
completed, BPSK demodulation signals “oute1” and “oute2” are obtained.

5. Conclusion

The real-time FPGA echo state network structure is proposed and studied. The
input weight and the reservoir weight are randomly determined before training,
and the output weight is calculated in real time in the FPGA by training the echo
state network. In the above two benchmark experiments (pattern recognition and
waveform generation) and MIMO channel prediction experiments, the proposed
hardware architecture can recognize the duty cycle of different input signals,
generate floating point waveforms, and predict channel coefficients. From the

Figure 15.
Real-time waveforms for channel prediction in MIMO systems and echo state networks.

Figure 16.
C3 partial enlargement result.

34

Field Programmable Gate Arrays (FPGAs) II

experimental results, the echo state network is faster, the resources are less occu-
pied, and the simple task execution is ideal. In future research work, the proposed
FPGA real-time echo state network will be used in more complex 5G-based wireless
MIMO-OFDM systems.

Author details

Yongbo Liao
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of
Electronic Science and Technology of China, Chengdu, China

*Address all correspondence to: lyb@uestc.edu.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

35

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

The designed MIMO system is downloaded to the FPGA chip through a bitstream
file, and the waveform result is obtained by a SignalTap II logic analyzer, as shown in
Figure 15. It can be seen from the waveform diagram that the signal waveforms of
the C1 and C2 parts are completely identical. In the C1 portion, the signals in1 and in2
correspond to x1r and x2r, respectively, and in the C2 portion, the signals oute1 and
oute2 correspond to the real part of the signal X. X1r, x2r, and x1i, x2i are the real and
imaginary parts before demodulation of the demodulated signal, respectively.

In order to be able to explain the C3 part, the C3 part is enlarged here (see
Figure 16). As can be seen from the C3 section, the received signals Y1 and Y2 and the
estimated channel matrix are all changed. However, zero-forcing equalization can still
predict values x1r, x2r, and C through the echo state network. After the processing is
completed, BPSK demodulation signals “oute1” and “oute2” are obtained.

5. Conclusion

The real-time FPGA echo state network structure is proposed and studied. The
input weight and the reservoir weight are randomly determined before training,
and the output weight is calculated in real time in the FPGA by training the echo
state network. In the above two benchmark experiments (pattern recognition and
waveform generation) and MIMO channel prediction experiments, the proposed
hardware architecture can recognize the duty cycle of different input signals,
generate floating point waveforms, and predict channel coefficients. From the

Figure 15.
Real-time waveforms for channel prediction in MIMO systems and echo state networks.

Figure 16.
C3 partial enlargement result.

34

Field Programmable Gate Arrays (FPGAs) II

experimental results, the echo state network is faster, the resources are less occu-
pied, and the simple task execution is ideal. In future research work, the proposed
FPGA real-time echo state network will be used in more complex 5G-based wireless
MIMO-OFDM systems.

Author details

Yongbo Liao
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of
Electronic Science and Technology of China, Chengdu, China

*Address all correspondence to: lyb@uestc.edu.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

35

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

References

[1] Jaeger H. The “Echo State” Approach
to Analysing and Training Recurrent
Neural Networks. German National
Research Center for Information
Technology; 2001

[2] Dorado-Moreno M, Cornejo-Bueno
L, Gutiérrez PA, et al. Robust estimation
of wind power ramp events with
reservoir computing. Renewable
Energy. 2017;111:428-437

[3] Escalona-Morán MA, Soriano MC,
Fischer I, et al. Electrocardiogram
classification using reservoir computing
with logistic regression. IEEE Journal of
Biomedical and Health Informatics.
2015;19(3):892-898

[4] Bezerra SGTA, Andrade CBD,
Valença MJS. Using reservoir computing
and trend information for short-term
streamflow forecasting. In: Artificial
Neural Networks and Machine Learning
—ICANN 2016. Springer International
Publishing; 2016

[5] Basterrech S, Rubino G. Echo state
queuing networks: A combination of
reservoir computing and random neural
networks. Probability in the
Engineering & Informational Sciences.
2017;31:1-20

[6] Pahnehkolaei SMA, Alfi A,
Machado JAT. Uniform stability of
fractional order leaky integrator echo
state neural network with multiple time
delays. Information Sciences. 2017;
418-419:703-716

[7] Guo Y, Wang F, Chen B, et al. Robust
echo state networks based on
correntropy induced loss function.
Neurocomputing. 2017;267(6):295-303

[8] Lun SX, Yao XS, Qi HY, et al. A novel
model of leaky integrator echo state
network for time-series prediction.
Neurocomputing. 2015;159(1):58-66

[9] Li D, Min H, Wang J. Chaotic time
series prediction based on a novel robust
echo state network. IEEE Transactions
on Neural Networks and Learning
Systems. 2012;23(5):787-799

[10] Schrauwen B, D’Haene M,
Verstraeten D, et al. Compact hardware
liquid state machines on FPGA for real-
time speech recognition. Neural
Networks the Official Journal of the
International Neural Network Society.
2008;21(2–3):511

[11] Alomar ML, Canals V,
Martinez-Moll V, et al. Low-cost
hardware implementation of reservoir
computers. In: International Workshop
on Power and Timing Modeling,
Optimization and Simulation. IEEE;
2014. pp. 1-5

[12] Jaeger H. Tutorial on Training
Recurrent Neural Networks, Covering
BPPT, RTRL, EKF and the Echo State
Network Approach - First revision.
2002. 7 p

[13] Sun X, Li T, Li Q, et al. Deep belief
echo-state network and its application
to time series prediction. Knowledge-
Based Systems. 2017;130(15):17-29

[14] Yi Y, Liao Y, Wang B, et al. FPGA
based spike-time dependent encoder
and reservoir design in neuromorphic
computing processors. Microprocessors
and Microsystems. 2016;46(PB):175-183

[15] Jaeger H, Haas H. Harnessing
nonlinearity: Predicting chaotic systems
and saving energy in wireless
communication. Science. 2004;
304(5667):78-80

[16] Kulkarni MS, Teuscher C.
Memristor-based reservoir computing.
In: IEEE/ACM International Symposium
on Nanoscale Architectures. ACM; 2012.
pp. 226-232

36

Field Programmable Gate Arrays (FPGAs) II

[17] Zhang L, Zhang X. MIMO channel
estimation and equalization using three-
layer neural networks with feedback.
Journal of Tsinghua University Natural
Science Edition (English Edition). 2007;
12(6):658-662

[18] Potter C. RNN based MIMO channel
prediction. Signal Processing. 2010;
90(2):440-450

[19] Sarma KK, Mitra A. Modeling
MIMO channels using a class of complex
recurrent neural network architectures.
AEU International Journal of Electronics
and Communications. 2012;66(4):
322-331

[20] Routray G, Kanungo P. Rayleigh
fading MIMO channel prediction using
RNN with genetic algorithm.
Communications in Computer and
Information Science. 2011;250:21-29

[21] Cai H. MIMO-OFDM channel
estimation based on neural network.
Computer Engineering and
Applications. 2011;47(34):1-4

[22] Lukoševičius M. A Practical Guide
to Applying Echo State Networks.
Springer; 2012

[23] Dorado-Moreno M, Cornejo-Bueno
L, Gutiérrez PA, et al. Robust estimation
of wind power ramp events with
reservoir computing. Renewable
Energy. 2017;111:428-437

37

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

References

[1] Jaeger H. The “Echo State” Approach
to Analysing and Training Recurrent
Neural Networks. German National
Research Center for Information
Technology; 2001

[2] Dorado-Moreno M, Cornejo-Bueno
L, Gutiérrez PA, et al. Robust estimation
of wind power ramp events with
reservoir computing. Renewable
Energy. 2017;111:428-437

[3] Escalona-Morán MA, Soriano MC,
Fischer I, et al. Electrocardiogram
classification using reservoir computing
with logistic regression. IEEE Journal of
Biomedical and Health Informatics.
2015;19(3):892-898

[4] Bezerra SGTA, Andrade CBD,
Valença MJS. Using reservoir computing
and trend information for short-term
streamflow forecasting. In: Artificial
Neural Networks and Machine Learning
—ICANN 2016. Springer International
Publishing; 2016

[5] Basterrech S, Rubino G. Echo state
queuing networks: A combination of
reservoir computing and random neural
networks. Probability in the
Engineering & Informational Sciences.
2017;31:1-20

[6] Pahnehkolaei SMA, Alfi A,
Machado JAT. Uniform stability of
fractional order leaky integrator echo
state neural network with multiple time
delays. Information Sciences. 2017;
418-419:703-716

[7] Guo Y, Wang F, Chen B, et al. Robust
echo state networks based on
correntropy induced loss function.
Neurocomputing. 2017;267(6):295-303

[8] Lun SX, Yao XS, Qi HY, et al. A novel
model of leaky integrator echo state
network for time-series prediction.
Neurocomputing. 2015;159(1):58-66

[9] Li D, Min H, Wang J. Chaotic time
series prediction based on a novel robust
echo state network. IEEE Transactions
on Neural Networks and Learning
Systems. 2012;23(5):787-799

[10] Schrauwen B, D’Haene M,
Verstraeten D, et al. Compact hardware
liquid state machines on FPGA for real-
time speech recognition. Neural
Networks the Official Journal of the
International Neural Network Society.
2008;21(2–3):511

[11] Alomar ML, Canals V,
Martinez-Moll V, et al. Low-cost
hardware implementation of reservoir
computers. In: International Workshop
on Power and Timing Modeling,
Optimization and Simulation. IEEE;
2014. pp. 1-5

[12] Jaeger H. Tutorial on Training
Recurrent Neural Networks, Covering
BPPT, RTRL, EKF and the Echo State
Network Approach - First revision.
2002. 7 p

[13] Sun X, Li T, Li Q, et al. Deep belief
echo-state network and its application
to time series prediction. Knowledge-
Based Systems. 2017;130(15):17-29

[14] Yi Y, Liao Y, Wang B, et al. FPGA
based spike-time dependent encoder
and reservoir design in neuromorphic
computing processors. Microprocessors
and Microsystems. 2016;46(PB):175-183

[15] Jaeger H, Haas H. Harnessing
nonlinearity: Predicting chaotic systems
and saving energy in wireless
communication. Science. 2004;
304(5667):78-80

[16] Kulkarni MS, Teuscher C.
Memristor-based reservoir computing.
In: IEEE/ACM International Symposium
on Nanoscale Architectures. ACM; 2012.
pp. 226-232

36

Field Programmable Gate Arrays (FPGAs) II

[17] Zhang L, Zhang X. MIMO channel
estimation and equalization using three-
layer neural networks with feedback.
Journal of Tsinghua University Natural
Science Edition (English Edition). 2007;
12(6):658-662

[18] Potter C. RNN based MIMO channel
prediction. Signal Processing. 2010;
90(2):440-450

[19] Sarma KK, Mitra A. Modeling
MIMO channels using a class of complex
recurrent neural network architectures.
AEU International Journal of Electronics
and Communications. 2012;66(4):
322-331

[20] Routray G, Kanungo P. Rayleigh
fading MIMO channel prediction using
RNN with genetic algorithm.
Communications in Computer and
Information Science. 2011;250:21-29

[21] Cai H. MIMO-OFDM channel
estimation based on neural network.
Computer Engineering and
Applications. 2011;47(34):1-4

[22] Lukoševičius M. A Practical Guide
to Applying Echo State Networks.
Springer; 2012

[23] Dorado-Moreno M, Cornejo-Bueno
L, Gutiérrez PA, et al. Robust estimation
of wind power ramp events with
reservoir computing. Renewable
Energy. 2017;111:428-437

37

Real-Time Echo State Network Based on FPGA and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.88820

Chapter 3

Flexible Baseband Modulator
Architecture for Multi-Waveform
5G Communications
Mário Lopes Ferreira and João Canas Ferreira

Abstract

The fifth-generation (5G) revolution represents more than a mere performance
enhancement of previous generations: it will deeply transform the way humans
and/or machines interact, enabling a heterogeneous expansion in the number of use
cases and services. Crucial to the realization of this revolution is the design of
hardware components characterized by high degrees of flexibility, versatility and
resource/power efficiency. This chapter proposes a field-programmable gate array
(FPGA)-oriented baseband processing architecture suitable for fast-changing com-
munication environments such as 4G/5G waveform coexistence, noncontiguous
carrier aggregation (CA) or centralized cloud radio access network (C-RAN)
processing. The proposed architecture supports three 5G waveform candidates and
is shown to be upgradable, resource-efficient and cost-effective. Through hardware
virtualization, enabled by dynamic partial reconfiguration (DPR), the design space
exploration of our architecture exceeds the hardware resources available on the
Zynq xc7z020 device. Moreover, dynamic frequency scaling (DFS) enables the
runtime adjustment of processing throughput and power reductions by up to 88%.
The combined resource overhead for DPR and DFS is very low, and the
reconfiguration latency stays two orders of magnitude below the control plane
latency requirements proposed for 5G communications.

Keywords: FPGA, reconfigurable computing, dynamic partial reconfiguration,
baseband processing, OFDM, FBMC, UFMC, waveform coexistence,
carrier aggregation

1. Introduction

The fifth-generation (5G) cellular network technology will have a tremendous
impact on society by optimizing existing telecommunication services and applica-
tions and enabling solutions in new application fields, such as transportation,
education or medical science. The scope of the anticipated changes is clear from
the three main types of 5G use cases and services defined by the International
Telecommunication Union (ITU): enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (URLLC) and massive machine-type
communications (mMTC) [1]. Therefore, the handling of the physical layer (PHY)
for 5G systems will be far more complex than in the current generation.

39

Chapter 3

Flexible Baseband Modulator
Architecture for Multi-Waveform
5G Communications
Mário Lopes Ferreira and João Canas Ferreira

Abstract

The fifth-generation (5G) revolution represents more than a mere performance
enhancement of previous generations: it will deeply transform the way humans
and/or machines interact, enabling a heterogeneous expansion in the number of use
cases and services. Crucial to the realization of this revolution is the design of
hardware components characterized by high degrees of flexibility, versatility and
resource/power efficiency. This chapter proposes a field-programmable gate array
(FPGA)-oriented baseband processing architecture suitable for fast-changing com-
munication environments such as 4G/5G waveform coexistence, noncontiguous
carrier aggregation (CA) or centralized cloud radio access network (C-RAN)
processing. The proposed architecture supports three 5G waveform candidates and
is shown to be upgradable, resource-efficient and cost-effective. Through hardware
virtualization, enabled by dynamic partial reconfiguration (DPR), the design space
exploration of our architecture exceeds the hardware resources available on the
Zynq xc7z020 device. Moreover, dynamic frequency scaling (DFS) enables the
runtime adjustment of processing throughput and power reductions by up to 88%.
The combined resource overhead for DPR and DFS is very low, and the
reconfiguration latency stays two orders of magnitude below the control plane
latency requirements proposed for 5G communications.

Keywords: FPGA, reconfigurable computing, dynamic partial reconfiguration,
baseband processing, OFDM, FBMC, UFMC, waveform coexistence,
carrier aggregation

1. Introduction

The fifth-generation (5G) cellular network technology will have a tremendous
impact on society by optimizing existing telecommunication services and applica-
tions and enabling solutions in new application fields, such as transportation,
education or medical science. The scope of the anticipated changes is clear from
the three main types of 5G use cases and services defined by the International
Telecommunication Union (ITU): enhanced mobile broadband (eMBB), ultra-
reliable and low-latency communications (URLLC) and massive machine-type
communications (mMTC) [1]. Therefore, the handling of the physical layer (PHY)
for 5G systems will be far more complex than in the current generation.

39

Orthogonal frequency-division multiplexing (OFDM) is the preferred waveform in
4G standards, and the 3GPP Release 15 [2] recently defined it as the multiple access
scheme for the 5G New Radio (NR) PHY, especially due its high frequency selectiv-
ity, flexibility, efficient hardware implementation by FFT/IFFT modules, and good
Multiple-Input Multiple-Output (MIMO) compatibility [3]. However, the spectrum
of OFDM symbols presents large side lobes that cause high out-of-band (OOB)
emissions. Moreover, the interference between adjacent time-domain symbols is
mitigated by adding redundancy to each symbol, which reduces spectral efficiency.
Together, these characteristics may make 5G requirements in certain communica-
tion scenarios hard to achieve, which has led to the proposal of other waveforms [4].
The most popular ones are filter bank multicarrier modulation (FBMC), Universal
Filtered Multicarriermodulation (UFMC), Filtered OFDM (f-OFDM) and general-
ized frequency-division multiplexing (GFDM). Different waveforms imply different
baseband processing operations. Especially for sub-6 GHz spectrum bands, the
coexistence of multiple numerologies and waveforms and the close interworking
between 5G and current systems is likely to occur in the near future [5].

The expansion of wireless communication caused by 5G systems and services
raises concerns about the inefficient use of the electromagnetic spectrum. In addi-
tion, to expand spectrum utilization to frequency bands above 6 GHz, a more
efficient spectral utilization of heavily used bands must be achieved. To tackle this
issue, future baseband processor designs should support dynamic spectrum access
(DSA) [6] and carrier aggregation (CA) schemes.

In summary, baseband processing infrastructures for 5G systems must be (1)
flexible, to adapt their operation for different communication setups (i.e. wave-
forms and their parameterization); (2) scalable, to tune performance and capacity
according to communication demands; (3) resource and power efficient, for cost-
effectiveness and reduced environmental impact [7]; (4) forward compatible, to
easily integrate the support for new services and requirements, extending system
lifetime. Modern field-programmable gate arrays (FPGAs) represent an implemen-
tation platform that favors the design of systems with the characteristics men-
tioned. The intrinsic FPGA reconfigurability can be enhanced by means of dynamic
partial reconfiguration (DPR), i.e. by reconfiguring modules of the design without
halting the system. The hardware virtualization allowed by DPR enhances system
flexibility, feature wealth, upgradability and cost-effectiveness [8]. This chapter
discusses how DPR and dynamic frequency scaling (DFS) can be combined to pro-
duce a dynamically reconfigurable baseband processing architecture for multimode,
multi-waveform coexistence and dynamic spectrum aggregation.

After a brief summary of the state of the art in Section 2, the implementation of
datapaths for baseband processing of three waveforms (OFDM, FBMC and UFMC)
is described in Section 3. The implementation of a dynamically reconfigurable
baseband modulator that combines these datapaths is described in Section 4,
together with a discussion of the results. Some final remarks are presented in
Section 5.

2. Summary of the state of the art

Application of DPR to baseband processing in wireless communications started
with the adoption of small-scale and relatively simple functional elements such as
FIR filters, constellation mappers or channel encoders [9, 10]. Possibly the first
multi-waveform flexible PHY architecture was proposed by He et al. [11]. It is a
software-defined radio (SDR) architecture implemented on a Xilinx Virtex-5 FPGA,

40

Field Programmable Gate Arrays (FPGAs) II

which combines two reconfiguration techniques: (a) DPR to dynamically change
the baseband processing mode of operation (e.g. FFT size, modulation scheme
and CP length) and (b) DFS to adapt the clock frequency of the digital up-converter
and the baseband processor. The design supports two waveforms (OFDM and
WCDMA) and several 3G/4G standards and modes of operation. Compared with a
static multimode design, the DPR-based design achieves a reduction in the number
of used slices, DSP blocks (DSPs) and block RAMs (BRAMs). However, the com-
parison is not accurate as the static design uses parallel and independent processing
chains for each standard, ignoring potential optimization from the reutilization of
common modules.

CoPR, an automated framework for DPR-based adaptive systems on a Xilinx
Zynq device, is described in [12]. An illustrative case study is presented, where a
reconfigurable multistandard baseband OFDM transmitter is designed. The design
supports three standards (IEEE 802.11, IEEE 802.16 and IEEE 802.22) and contains
two reconfigurable partitions (RPs): one to implement the digital modulation
scheme and the other for the OFDM processing datapath. The paper only reports
reconfiguration time results and does not provide figures for power consumption or
the amount of resources of each RP.

An ARM-FPGA-based platform is also used in [13]. Several processes run on the
ARM processor and retrieve communication environment information, which is
employed by a configuration controller to reconfigure an OFDM baseband
processing modulator. An OFDM transmitter supporting Wi-Fi and WiMAX is
implemented on Zynq’s programmable logic (PL) with four RPs used for scram-
bling, interleaving, FEC encoding and IFFT. Results for resource utilization and
DPR latency are discussed, together with power consumption measurements.
However, the sampling period used for the measurements is of the order of magni-
tude of the reconfiguration times (milliseconds) and, therefore, not suitable for
accurate real-time measurements at the time scale of interest.

The Zynq is also used in [14], which presents a HW/SW codesign for CR
systems combining parameter reconfiguration and DPR. Only DPR latency and RP
resources are reported.

Pham et al. [15] present a reconfigurable multistandard OFDM transceiver
supporting IEEE 802.11, IEEE 802.16 and IEEE 802.22 on a Xilinx Virtex-6 FPGA.
The modulator uses a single RP, whereas the demodulator explores a mixture of
DPR-based and static multimode modules. The authors put more weight on
the whole architecture and only provide data about reconfiguration times and
bitstream size.

All works mentioned target 3G/4G standards and waveforms. From a system
perspective, they focus primarily on the enhanced flexibility DPR can offer, with
less attention paid to the global impact of this technique on the design of the
hardware infrastructure. Additionally, no architecture with multiple and indepen-
dent processors suitable for noncontiguous spectrum aggregation is studied.

3. Implementation of datapaths for baseband processing

This section describes the implementation of pipelined datapaths for three dif-
ferent waveforms (OFDM, FBMC and UFMC) and respective variants. Each variant
is defined by the values assigned to the parameters of the design. The possible sets
of values are sometimes called “numerologies” in the literature. In this case study,
two sets of parameter values for each waveform are considered, as described in the
remainder of this section and summarized in Tables 1–3.

41

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

Orthogonal frequency-division multiplexing (OFDM) is the preferred waveform in
4G standards, and the 3GPP Release 15 [2] recently defined it as the multiple access
scheme for the 5G New Radio (NR) PHY, especially due its high frequency selectiv-
ity, flexibility, efficient hardware implementation by FFT/IFFT modules, and good
Multiple-Input Multiple-Output (MIMO) compatibility [3]. However, the spectrum
of OFDM symbols presents large side lobes that cause high out-of-band (OOB)
emissions. Moreover, the interference between adjacent time-domain symbols is
mitigated by adding redundancy to each symbol, which reduces spectral efficiency.
Together, these characteristics may make 5G requirements in certain communica-
tion scenarios hard to achieve, which has led to the proposal of other waveforms [4].
The most popular ones are filter bank multicarrier modulation (FBMC), Universal
Filtered Multicarriermodulation (UFMC), Filtered OFDM (f-OFDM) and general-
ized frequency-division multiplexing (GFDM). Different waveforms imply different
baseband processing operations. Especially for sub-6 GHz spectrum bands, the
coexistence of multiple numerologies and waveforms and the close interworking
between 5G and current systems is likely to occur in the near future [5].

The expansion of wireless communication caused by 5G systems and services
raises concerns about the inefficient use of the electromagnetic spectrum. In addi-
tion, to expand spectrum utilization to frequency bands above 6 GHz, a more
efficient spectral utilization of heavily used bands must be achieved. To tackle this
issue, future baseband processor designs should support dynamic spectrum access
(DSA) [6] and carrier aggregation (CA) schemes.

In summary, baseband processing infrastructures for 5G systems must be (1)
flexible, to adapt their operation for different communication setups (i.e. wave-
forms and their parameterization); (2) scalable, to tune performance and capacity
according to communication demands; (3) resource and power efficient, for cost-
effectiveness and reduced environmental impact [7]; (4) forward compatible, to
easily integrate the support for new services and requirements, extending system
lifetime. Modern field-programmable gate arrays (FPGAs) represent an implemen-
tation platform that favors the design of systems with the characteristics men-
tioned. The intrinsic FPGA reconfigurability can be enhanced by means of dynamic
partial reconfiguration (DPR), i.e. by reconfiguring modules of the design without
halting the system. The hardware virtualization allowed by DPR enhances system
flexibility, feature wealth, upgradability and cost-effectiveness [8]. This chapter
discusses how DPR and dynamic frequency scaling (DFS) can be combined to pro-
duce a dynamically reconfigurable baseband processing architecture for multimode,
multi-waveform coexistence and dynamic spectrum aggregation.

After a brief summary of the state of the art in Section 2, the implementation of
datapaths for baseband processing of three waveforms (OFDM, FBMC and UFMC)
is described in Section 3. The implementation of a dynamically reconfigurable
baseband modulator that combines these datapaths is described in Section 4,
together with a discussion of the results. Some final remarks are presented in
Section 5.

2. Summary of the state of the art

Application of DPR to baseband processing in wireless communications started
with the adoption of small-scale and relatively simple functional elements such as
FIR filters, constellation mappers or channel encoders [9, 10]. Possibly the first
multi-waveform flexible PHY architecture was proposed by He et al. [11]. It is a
software-defined radio (SDR) architecture implemented on a Xilinx Virtex-5 FPGA,

40

Field Programmable Gate Arrays (FPGAs) II

which combines two reconfiguration techniques: (a) DPR to dynamically change
the baseband processing mode of operation (e.g. FFT size, modulation scheme
and CP length) and (b) DFS to adapt the clock frequency of the digital up-converter
and the baseband processor. The design supports two waveforms (OFDM and
WCDMA) and several 3G/4G standards and modes of operation. Compared with a
static multimode design, the DPR-based design achieves a reduction in the number
of used slices, DSP blocks (DSPs) and block RAMs (BRAMs). However, the com-
parison is not accurate as the static design uses parallel and independent processing
chains for each standard, ignoring potential optimization from the reutilization of
common modules.

CoPR, an automated framework for DPR-based adaptive systems on a Xilinx
Zynq device, is described in [12]. An illustrative case study is presented, where a
reconfigurable multistandard baseband OFDM transmitter is designed. The design
supports three standards (IEEE 802.11, IEEE 802.16 and IEEE 802.22) and contains
two reconfigurable partitions (RPs): one to implement the digital modulation
scheme and the other for the OFDM processing datapath. The paper only reports
reconfiguration time results and does not provide figures for power consumption or
the amount of resources of each RP.

An ARM-FPGA-based platform is also used in [13]. Several processes run on the
ARM processor and retrieve communication environment information, which is
employed by a configuration controller to reconfigure an OFDM baseband
processing modulator. An OFDM transmitter supporting Wi-Fi and WiMAX is
implemented on Zynq’s programmable logic (PL) with four RPs used for scram-
bling, interleaving, FEC encoding and IFFT. Results for resource utilization and
DPR latency are discussed, together with power consumption measurements.
However, the sampling period used for the measurements is of the order of magni-
tude of the reconfiguration times (milliseconds) and, therefore, not suitable for
accurate real-time measurements at the time scale of interest.

The Zynq is also used in [14], which presents a HW/SW codesign for CR
systems combining parameter reconfiguration and DPR. Only DPR latency and RP
resources are reported.

Pham et al. [15] present a reconfigurable multistandard OFDM transceiver
supporting IEEE 802.11, IEEE 802.16 and IEEE 802.22 on a Xilinx Virtex-6 FPGA.
The modulator uses a single RP, whereas the demodulator explores a mixture of
DPR-based and static multimode modules. The authors put more weight on
the whole architecture and only provide data about reconfiguration times and
bitstream size.

All works mentioned target 3G/4G standards and waveforms. From a system
perspective, they focus primarily on the enhanced flexibility DPR can offer, with
less attention paid to the global impact of this technique on the design of the
hardware infrastructure. Additionally, no architecture with multiple and indepen-
dent processors suitable for noncontiguous spectrum aggregation is studied.

3. Implementation of datapaths for baseband processing

This section describes the implementation of pipelined datapaths for three dif-
ferent waveforms (OFDM, FBMC and UFMC) and respective variants. Each variant
is defined by the values assigned to the parameters of the design. The possible sets
of values are sometimes called “numerologies” in the literature. In this case study,
two sets of parameter values for each waveform are considered, as described in the
remainder of this section and summarized in Tables 1–3.

41

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

3.1 Baseband datapath for OFDM

OFDM is the main reference among multicarrier modulation waveforms; it is
used in a wide range of standards such as DSL, DVB-T, DVB-C, Wi-Fi (IEEE
802.11), WiMAX (IEEE 802.16) and 3GPP LTE. The conceptual structure of an
OFDM modulator is illustrated in Figure 1.

With exception of the inverse FFT (IFFT), the tasks required for a modulator
involve only simple arithmetic, data selection and reordering. The first module is
the QAM mapper. For a general M-ary QAM case, the module is simply

Parameter Mode 1 Mode 2

subcarriers, N (IFFT size) 512 1024

length of cyclic prefix, LCP 40 (1st slot symbol) 80 (1st slot symbol)

36 (other symbols) 72 (other symbols)

WOLA samples, W 4 6

Table 1.
Parameter values supported by the OFDM datapath.

Parameter Mode 1 Mode 2

subcarriers, Nc 512 1024

Overlapping factor, K 4 4

IFFT size, K � Nc 2048 4096

Table 2.
Parameter values supported by the FBMC datapath.

Parameter Mode 1 Mode 2

subcarriers, N 512 1024

subcarriers per PRB 12 12

active PRBs 3 3

IFFT size, N0 64 64

Upsampling factor, N/N0 8 16

Filter length, L 37 73

Filter type Dolph-Chebyshev (60-dB side lobe attenuation)

Table 3.
Parameter values supported by the UFMC datapath.

Figure 1.
OFDM baseband modulation. GB, zero-valued guard bands.

42

Field Programmable Gate Arrays (FPGAs) II

implemented with an M:1 multiplexer: a log 2M-bit input signal selects a complex
value out of the M prestored constants that form the constellation. In the imple-
mentation used for this work, Gray mapping and average power normalization are
considered in the definition of the constellation point values.

After digital modulation, the subcarrier mapping module is responsible for map-
ping the A input active subcarriers to the central bins of an N-element array and
zeroing the centre bin (the DC null subcarrier). The remaining N � A� 1 bins
correspond to null subcarriers that serve as guard bands. As the IFFT DC bin is at
index 0, an IFFT shift operation is performed on the N-element array. The resulting
vector is then fed to the IFFT core. Here, it is assumed that the A active subcarriers
include both data and pilot subcarriers and that the higher levels of the communi-
cation system provide them in their correct relative locations. The main modules
required for subcarrier mapping are a double buffer and a control unit. The double
buffer is implemented with a dual-port RAM, with each half storing N complex
samples. This allows for simultaneous reading and writing of consecutive A-ele-
ment arrays without any data conflicts: while one buffer is used for input (writing),
the other is used for output (reading). The read/write access to the double buffer is
managed by a control unit that receives and correctly maps the data to the correct
IFFT input bin. The index mapping scheme implemented by the control unit com-
bines subcarrier mapping and IFFT shifting.

The IFFT module implements a Cooley-Tukey Mixed-Radix algorithm using a
pipelined single-delay feedback architecture as in [16]. The IFFT module has several
processing stages which are comprised of shift registers, ROM memories, complex
multipliers and arithmetic blocks (called “butterflies”). Information on the internal
structures of Radix-22 and Radix-2 butterflies can be found in [17, 18]. Apart from
processing elements, the IFFT module also includes blocks for input data reordering
and bit-reversed reordering of intermediate results, which are performed with
RAM-based double buffers.

The IFFT module produces time-domain OFDM symbols. The next module in
the datapath is responsible for cyclic prefix (CP) insertion. It receives a data array of
size N (corresponding to a time-domain OFDM symbol) and stores it in memory.
Then, the module starts to read and output the last LCP + W memory positions. The
cyclic prefix extension byW samples allows for the following weighted overlap and
add (WOLA) operation. After outputting the last LCP + W memory positions, the
CP insertion unit continues by reading and outputting the complete OFDM symbol
from the beginning. Thus, the output of this module is an extended ODFM symbol
with N þ LCP þW complex samples. Its main hardware elements are an N-ele-
ments dual-port RAM and a unit for controlling write/read memory operations.

The final module performs the WOLA operation. It can be divided into two
stages: first, OFDM symbols are multiplied by a window (windowing), and then the
symbol’s tail is overlapped and added with next symbol’s head (overlap-and-add).
The windowing operation is implemented using two multipliers (to handle the real
and imaginary parts) and a ROMmemory with prestored non-unitary raised-cosine
window coefficients. In turn, the overlap-and-add operation is implemented with a
finite-state machine (FSM) and arrays of registers to temporarily store each sym-
bol’s head and tail.

3.2 Baseband datapath for FBMC

The conceptual structure of the FBMC baseband modulator implemented for
this work is shown in Figure 2. The OQAM mapper consists of two stages: first, the
incoming data is QAM-modulated; then, the resulting in-phase and quadrature
components are decoupled and alternately transmitted on successive subcarriers

43

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

3.1 Baseband datapath for OFDM

OFDM is the main reference among multicarrier modulation waveforms; it is
used in a wide range of standards such as DSL, DVB-T, DVB-C, Wi-Fi (IEEE
802.11), WiMAX (IEEE 802.16) and 3GPP LTE. The conceptual structure of an
OFDM modulator is illustrated in Figure 1.

With exception of the inverse FFT (IFFT), the tasks required for a modulator
involve only simple arithmetic, data selection and reordering. The first module is
the QAM mapper. For a general M-ary QAM case, the module is simply

Parameter Mode 1 Mode 2

subcarriers, N (IFFT size) 512 1024

length of cyclic prefix, LCP 40 (1st slot symbol) 80 (1st slot symbol)

36 (other symbols) 72 (other symbols)

WOLA samples, W 4 6

Table 1.
Parameter values supported by the OFDM datapath.

Parameter Mode 1 Mode 2

subcarriers, Nc 512 1024

Overlapping factor, K 4 4

IFFT size, K � Nc 2048 4096

Table 2.
Parameter values supported by the FBMC datapath.

Parameter Mode 1 Mode 2

subcarriers, N 512 1024

subcarriers per PRB 12 12

active PRBs 3 3

IFFT size, N0 64 64

Upsampling factor, N/N0 8 16

Filter length, L 37 73

Filter type Dolph-Chebyshev (60-dB side lobe attenuation)

Table 3.
Parameter values supported by the UFMC datapath.

Figure 1.
OFDM baseband modulation. GB, zero-valued guard bands.

42

Field Programmable Gate Arrays (FPGAs) II

implemented with an M:1 multiplexer: a log 2M-bit input signal selects a complex
value out of the M prestored constants that form the constellation. In the imple-
mentation used for this work, Gray mapping and average power normalization are
considered in the definition of the constellation point values.

After digital modulation, the subcarrier mapping module is responsible for map-
ping the A input active subcarriers to the central bins of an N-element array and
zeroing the centre bin (the DC null subcarrier). The remaining N � A� 1 bins
correspond to null subcarriers that serve as guard bands. As the IFFT DC bin is at
index 0, an IFFT shift operation is performed on the N-element array. The resulting
vector is then fed to the IFFT core. Here, it is assumed that the A active subcarriers
include both data and pilot subcarriers and that the higher levels of the communi-
cation system provide them in their correct relative locations. The main modules
required for subcarrier mapping are a double buffer and a control unit. The double
buffer is implemented with a dual-port RAM, with each half storing N complex
samples. This allows for simultaneous reading and writing of consecutive A-ele-
ment arrays without any data conflicts: while one buffer is used for input (writing),
the other is used for output (reading). The read/write access to the double buffer is
managed by a control unit that receives and correctly maps the data to the correct
IFFT input bin. The index mapping scheme implemented by the control unit com-
bines subcarrier mapping and IFFT shifting.

The IFFT module implements a Cooley-Tukey Mixed-Radix algorithm using a
pipelined single-delay feedback architecture as in [16]. The IFFT module has several
processing stages which are comprised of shift registers, ROM memories, complex
multipliers and arithmetic blocks (called “butterflies”). Information on the internal
structures of Radix-22 and Radix-2 butterflies can be found in [17, 18]. Apart from
processing elements, the IFFT module also includes blocks for input data reordering
and bit-reversed reordering of intermediate results, which are performed with
RAM-based double buffers.

The IFFT module produces time-domain OFDM symbols. The next module in
the datapath is responsible for cyclic prefix (CP) insertion. It receives a data array of
size N (corresponding to a time-domain OFDM symbol) and stores it in memory.
Then, the module starts to read and output the last LCP + W memory positions. The
cyclic prefix extension byW samples allows for the following weighted overlap and
add (WOLA) operation. After outputting the last LCP + W memory positions, the
CP insertion unit continues by reading and outputting the complete OFDM symbol
from the beginning. Thus, the output of this module is an extended ODFM symbol
with N þ LCP þW complex samples. Its main hardware elements are an N-ele-
ments dual-port RAM and a unit for controlling write/read memory operations.

The final module performs the WOLA operation. It can be divided into two
stages: first, OFDM symbols are multiplied by a window (windowing), and then the
symbol’s tail is overlapped and added with next symbol’s head (overlap-and-add).
The windowing operation is implemented using two multipliers (to handle the real
and imaginary parts) and a ROMmemory with prestored non-unitary raised-cosine
window coefficients. In turn, the overlap-and-add operation is implemented with a
finite-state machine (FSM) and arrays of registers to temporarily store each sym-
bol’s head and tail.

3.2 Baseband datapath for FBMC

The conceptual structure of the FBMC baseband modulator implemented for
this work is shown in Figure 2. The OQAM mapper consists of two stages: first, the
incoming data is QAM-modulated; then, the resulting in-phase and quadrature
components are decoupled and alternately transmitted on successive subcarriers

43

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

and on successive transmitted symbols [19]. For instance, if the a symbol includes
the in-phase (I) and quadrature (Q) components with the pattern I,Q,I,Q,..., the
next symbol will use the pattern Q,I,Q,I.... The QAMmapper is implemented as for
the OFDM modulator. The I/Q decoupling is efficiently performed with an FSM
that alternately stores or outputs the I/Q components of a QAM symbol.

The following datapath modules are mainly characterized by parameters K and
Nc. The guard band insertionmodule places the OQAM symbols in the central bins of
an Nc-element array. The remaining subcarriers are zero and represent frequency
guard bands. The operation of this module is similar to subcarrier mapping in OFDM
modulation, except that that no DC null component is inserted.

The frequency spreading operation comprises upsampling by K and FIR filtering.
The upsampler outputs K � 1 zero values between two incoming I/Q samples. It
uses registers to store the input data and a counter to control the number of zero
values at the output. For pulse shaping, a FIR filter architecture with a transpose
structure was adopted because, unlike the direct FIR model, it does not require an
extra input shift register, nor a tree of pipelined adders to achieve high throughput.
The number of filter coefficients is odd (2� K � 1), and their values are symmetric
with a single-centre coefficient equal to one (Table 4). The multiplications by the
centre coefficient can be ignored, as they do not affect the input value. However,
the remaining coefficients imply non-trivial multiplications. The amount of non-
trivial multiplications per FIR filter can be halved by exploiting the symmetry of the
coefficients. As the sub-band signal is complex-valued, two FIR filters are required
to separately filter the real and imaginary parts. The IFFT modules are the same as
those used in the OFDM modulator.

The final operation is to overlap-and-add consecutive IFFT output stream blocks
delayed by Nc=2 samples [19]. This operation uses an array of 2� K �Nc elements
as temporary storage; the first half stores the current FBMC symbol, and the second
half accumulates IFFT output blocks. For each IFFT output block, the whole array is
shifted by Nc=2 positions and then the IFFT output block is added to the second half
of the array. A direct mapping of this approach to a hardware implementation
would require the use of replicated memory structures to perform two read opera-
tions per clock cycle on the temporary array [21]. Instead, the overlap-and-add
(OAA) module used was inspired by the architecture used in [22]. The main differ-
ence has to do with the fact that OQAM is not employed in [22] and, for the overlap-

Figure 2.
Frequency spreading FBMC-OQAM baseband modulation.

K H0 H1 ¼ H�1 H2 ¼ H�2 H3 ¼ H�3

2 1
ffiffiffi
2
p

=2 — —

3 1 0.911438 0.411438 —

4 1 0.971960
ffiffiffi
2
p

=2 0.235147

Table 4.
Frequency domain prototype filter coefficients [20].

44

Field Programmable Gate Arrays (FPGAs) II

and-add operation, the consecutive IFFT output block streams are delayed by Nc. To
continuously accumulate consecutive IFFT output blocks delayed by Nc=2, a feed-
back shift register of 2� K � 1ð Þ �Nc=2 samples is used to align the previous IFFT
block with the incoming IFFT block.

3.3 Baseband datapath for UFMC

UFMC, sometimes called Universal Filtered OFDM (UF-OFDM), is an OFDM-
based waveform that attempts to reduce OOB emissions by time-domain filtering.
The N subcarriers of each symbol are divided into B physical resource blocks (PRBs)
of N=B subcarriers each. Usually, only part of the PRBs is used for transmission
(active PRBs). For each active PRB, IFFT and bandpass L-order FIR filtering are
performed. Instead of the CP, a zero-valued guard interval with length L is inserted
after the IFFT. Frequency-shifted versions of the FIR filter are applied to all active
PRBs, and, finally, the filtered sub-bands are superimposed to form an UFMC
multicarrier symbol. Chebyshev filters are normally used for bandpass filtering in
UFMC [23–25].

The classic UFMC modulation scheme [26] uses an N-point IFFT and FIR filters
with complex coefficients for each active sub-band. To reduce this increased com-
plexity, Knopp et al. [27] combine a smaller N0-point IFFT with N=N0 upsampling.
Moreover, the same real-coefficient FIR filter is used in all sub-bands, followed by
frequency shifters implemented as multiplications by a complex exponential.
Figure 3 illustrates the datapath structure for the UFMC modulator considered in
this work.

The UFMCmodulator of this work has three processing branches, one to process
each active PRB (B = 3). These branches share the same architecture and start with
QAMmapping of the incoming data. The QAMmapper is equal to the one used in
the OFDM and FBMC datapaths. The subcarrier mappingmodule maps the 12 PRB
subcarriers to the central bins of an array with N0 (64) elements and zeroes the
remainingN0 � 12 elements. It follows the same approach as subcarrier mapping in the
FBMCmodulator: a double buffer of 2�N0 elements and read/write control engines.

Figure 3.
Conceptual structure of the UFMC baseband modulator.

45

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

and on successive transmitted symbols [19]. For instance, if the a symbol includes
the in-phase (I) and quadrature (Q) components with the pattern I,Q,I,Q,..., the
next symbol will use the pattern Q,I,Q,I.... The QAMmapper is implemented as for
the OFDM modulator. The I/Q decoupling is efficiently performed with an FSM
that alternately stores or outputs the I/Q components of a QAM symbol.

The following datapath modules are mainly characterized by parameters K and
Nc. The guard band insertionmodule places the OQAM symbols in the central bins of
an Nc-element array. The remaining subcarriers are zero and represent frequency
guard bands. The operation of this module is similar to subcarrier mapping in OFDM
modulation, except that that no DC null component is inserted.

The frequency spreading operation comprises upsampling by K and FIR filtering.
The upsampler outputs K � 1 zero values between two incoming I/Q samples. It
uses registers to store the input data and a counter to control the number of zero
values at the output. For pulse shaping, a FIR filter architecture with a transpose
structure was adopted because, unlike the direct FIR model, it does not require an
extra input shift register, nor a tree of pipelined adders to achieve high throughput.
The number of filter coefficients is odd (2� K � 1), and their values are symmetric
with a single-centre coefficient equal to one (Table 4). The multiplications by the
centre coefficient can be ignored, as they do not affect the input value. However,
the remaining coefficients imply non-trivial multiplications. The amount of non-
trivial multiplications per FIR filter can be halved by exploiting the symmetry of the
coefficients. As the sub-band signal is complex-valued, two FIR filters are required
to separately filter the real and imaginary parts. The IFFT modules are the same as
those used in the OFDM modulator.

The final operation is to overlap-and-add consecutive IFFT output stream blocks
delayed by Nc=2 samples [19]. This operation uses an array of 2� K �Nc elements
as temporary storage; the first half stores the current FBMC symbol, and the second
half accumulates IFFT output blocks. For each IFFT output block, the whole array is
shifted by Nc=2 positions and then the IFFT output block is added to the second half
of the array. A direct mapping of this approach to a hardware implementation
would require the use of replicated memory structures to perform two read opera-
tions per clock cycle on the temporary array [21]. Instead, the overlap-and-add
(OAA) module used was inspired by the architecture used in [22]. The main differ-
ence has to do with the fact that OQAM is not employed in [22] and, for the overlap-

Figure 2.
Frequency spreading FBMC-OQAM baseband modulation.

K H0 H1 ¼ H�1 H2 ¼ H�2 H3 ¼ H�3

2 1
ffiffiffi
2
p

=2 — —

3 1 0.911438 0.411438 —

4 1 0.971960
ffiffiffi
2
p

=2 0.235147

Table 4.
Frequency domain prototype filter coefficients [20].

44

Field Programmable Gate Arrays (FPGAs) II

and-add operation, the consecutive IFFT output block streams are delayed by Nc. To
continuously accumulate consecutive IFFT output blocks delayed by Nc=2, a feed-
back shift register of 2� K � 1ð Þ �Nc=2 samples is used to align the previous IFFT
block with the incoming IFFT block.

3.3 Baseband datapath for UFMC

UFMC, sometimes called Universal Filtered OFDM (UF-OFDM), is an OFDM-
based waveform that attempts to reduce OOB emissions by time-domain filtering.
The N subcarriers of each symbol are divided into B physical resource blocks (PRBs)
of N=B subcarriers each. Usually, only part of the PRBs is used for transmission
(active PRBs). For each active PRB, IFFT and bandpass L-order FIR filtering are
performed. Instead of the CP, a zero-valued guard interval with length L is inserted
after the IFFT. Frequency-shifted versions of the FIR filter are applied to all active
PRBs, and, finally, the filtered sub-bands are superimposed to form an UFMC
multicarrier symbol. Chebyshev filters are normally used for bandpass filtering in
UFMC [23–25].

The classic UFMC modulation scheme [26] uses an N-point IFFT and FIR filters
with complex coefficients for each active sub-band. To reduce this increased com-
plexity, Knopp et al. [27] combine a smaller N0-point IFFT with N=N0 upsampling.
Moreover, the same real-coefficient FIR filter is used in all sub-bands, followed by
frequency shifters implemented as multiplications by a complex exponential.
Figure 3 illustrates the datapath structure for the UFMC modulator considered in
this work.

The UFMCmodulator of this work has three processing branches, one to process
each active PRB (B = 3). These branches share the same architecture and start with
QAMmapping of the incoming data. The QAMmapper is equal to the one used in
the OFDM and FBMC datapaths. The subcarrier mappingmodule maps the 12 PRB
subcarriers to the central bins of an array with N0 (64) elements and zeroes the
remainingN0 � 12 elements. It follows the same approach as subcarrier mapping in the
FBMCmodulator: a double buffer of 2�N0 elements and read/write control engines.

Figure 3.
Conceptual structure of the UFMC baseband modulator.

45

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

UFMC performs well for short-packet lengths and sporadic burst transmission
[28, 29]. Moreover, the parallel sub-band processing in UFMC requires an IFFT core
per branch. Therefore, instead of the high-performance pipelined IFFT architec-
tures adopted for the OFDM and FBMC datapaths, low-resource memory-based
FFT architectures are adopted in the UFMC modulator. The memory-based archi-
tecture adopted here is detailed in [30]. The upsampler architecture and operation is
similar to the one used for frequency spreading in FBMC modulation. Here, the
number of zeros between consecutive IFFT output samples is N=N0ð Þ � 1.

Dolph-Chebyshev FIR filters with a transpose structure are used for bandpass
sub-band filtering. Again, the FIR coefficients are symmetric: there are an odd
number of symmetric coefficients, and the centre coefficient is equal to one. How-
ever, the higher FIR order used in UFMC modulation requires further discussion.
Considering an L-order FIR filter, L� 1 coefficients imply non-trivial multiplica-
tions that can be halved due to coefficient symmetry (L�12). As each processing
branch requires two FIR filters—for the real and imaginary parts—there are L� 1
non-trivial multiplications per branch.

In Xilinx FPGAs, non-trivial multiplications can be efficiently performed by DSP
blocks. These blocks are embedded into the logic fabric in a column arrangement.
Cost-optimized devices have a smaller amount of DSP blocks, and their utilization
should be carefully considered. For instance, the xc7z020 device has 220 DSP blocks.
Considering the modes of operation from Table 4, the overall amount of non-trivial
multiplications for FIR filtering (3� L� 1ð Þ) is 108 for mode 1 and 216 for mode 2.
This represents a high DSP utilization, and the sparse distribution of these types of
blocks throughout the logic fabric degrades the scalability of the UFMCmodulator. In
addition, placement and routing of the design is more difficult and likely to affect the
overall timing closure. To reduce DSP utilization, a multiplier-less architecture for
FIR filters was adopted. The FIR coefficients are represented in Q1.5 format, using the
Canonic Signed Digit (CSD) system with minimum non-zero bits. Then, non-trivial
multiplications are substituted by shifters and adders. For example, the multiplication
by 0.90625 can be implemented as:

This strategy eliminates the use of DSP blocks in FIR filters, but increases slice
utilization. However, slices are the most numerous type of resource (13,300 slices in
the xc7z020 device), making this approach well-suited for the present application.

After FIR filtering, each sub-band signal is shifted to the corresponding fre-
quency band. The frequency shift module for each branch has a ROM memory to
store the complex exponential values and a complex multiplier. Finally, the filtered
sub-band responses are summed to create the UFMC symbol.

4. A dynamically reconfigurable baseband modulator for 5G
communication

After the preceding overview of the architecture of high-performance baseband
engines for three different waveforms, this section presents the architecture of a
baseband processing engine that is flexible, scalable, resource and power efficient and

46

Field Programmable Gate Arrays (FPGAs) II

forward compatible. Here, DPR and DFS are combined to produce a dynamically
reconfigurable baseband processing architecture for multimode, multi-waveform
coexistence and dynamic spectrum aggregation. To enable the full potential of 5G,
carrier aggregation should also be possible across separated frequency bands [31]
(noncontiguous CA). For noncontiguous CA, a multidimensional PHY layer (and,
therefore, baseband architecture) is needed, even when data aggregation is not
performed in the PHY layer, but in the media access control (MAC) communication
layer instead [32]. In this context, multidimensional means that the PHY layer is an
array of independent processing blocks, rather than a monolithic structure.

The baseband architecture presented in this chapter features three independent
modulators, whose functionality and clock frequency can be dynamically
reconfigured through DPR and DFS, respectively. This setup enables the processing
of multiple component carriers with different waveforms and/or baseband param-
eters in noncontiguous CA schemes.

A prototype of the multidimensional baseband modulator was implemented on
an Avnet Zedboard equipped with a Zynq xc7z020 device. The system top level
combines features from the designs of the previous section and can be divided into
three parts. The Zedboard’s 512 MB DDR memory is used as a repository for the
partial bitstreams used for DPR. The Zynq’s ARM CPU act as the system manage-
ment unit: it is responsible for triggering the reconfiguration of the
multidimensional baseband modulator and setting up data transfers between the
DDR memory and the modulators implemented in the programmable logic together
with the infrastructure for DPR and DFS. Figure 4 shows the top-level architecture.

The proposed architecture targets the communication scenario described in [33],
which combines multi-waveform coexistence with dynamic spectrum access. In this
scenario, 5G communications build on the pre-existing 4G infrastructure (non-
stand-alone 5G): the primary 4G-LTE communications are OFDM-based, and the
secondary 5G communications opportunistically exploit vacant spectrum resources
through DSA, transmitting with different waveforms (OFDM, FBMC or UFMC).
The basic unit for DPR is a complete baseband datapath, and each one is
implemented in a reconfigurable partition. From the three RPs, RP1 is exclusively
used for primary OFDM-based transmission. The two remaining RPs can be used
for primary or secondary transmission: RP2 implements FBMC or OFDM transmis-
sion modes; RP3 implements UFMC or OFDM transmission modes. For instance, if
the primary transmission requires more capacity, the three RPs can be used to
independently modulate different component carriers in a noncontiguous CA
scheme. If the primary transmission is not so demanding, RP2 and RP3 can be used
for secondary multi-waveform 5G transmission. Figure 5 illustrates a potential
multi-waveform coexistence scenario by showing the combined periodograms of
the OFDM, FBMC and UFMC baseband signals obtained from the implemented
modulator datapaths.

During system initialization, the ARM CPU manages the downloading of partial
bitstreams and input data files from an SD card to the DDR memory. For the
purpose of validating the baseband engines, the input data is retrieved from the
DDR and sent to the baseband modulator(s), and the results are stored back to the
DDR (and used for validating the implementation). Each RP has an associated DMA
controller to accelerate the access to the DDR.

To achieve the specialization of computation at runtime, the configuration
interface adopted is the ICAP. This high-bandwidth internal interface permits the
FPGA to reconfigure itself. Xilinx sets the maximum ICAP bandwidth at 400, for a
100 clock frequency and 32-bit data width [34]. Nevertheless, the ICAP can be
overclocked to further enhance the reconfiguration throughput [35]. In the present

47

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

UFMC performs well for short-packet lengths and sporadic burst transmission
[28, 29]. Moreover, the parallel sub-band processing in UFMC requires an IFFT core
per branch. Therefore, instead of the high-performance pipelined IFFT architec-
tures adopted for the OFDM and FBMC datapaths, low-resource memory-based
FFT architectures are adopted in the UFMC modulator. The memory-based archi-
tecture adopted here is detailed in [30]. The upsampler architecture and operation is
similar to the one used for frequency spreading in FBMC modulation. Here, the
number of zeros between consecutive IFFT output samples is N=N0ð Þ � 1.

Dolph-Chebyshev FIR filters with a transpose structure are used for bandpass
sub-band filtering. Again, the FIR coefficients are symmetric: there are an odd
number of symmetric coefficients, and the centre coefficient is equal to one. How-
ever, the higher FIR order used in UFMC modulation requires further discussion.
Considering an L-order FIR filter, L� 1 coefficients imply non-trivial multiplica-
tions that can be halved due to coefficient symmetry (L�12). As each processing
branch requires two FIR filters—for the real and imaginary parts—there are L� 1
non-trivial multiplications per branch.

In Xilinx FPGAs, non-trivial multiplications can be efficiently performed by DSP
blocks. These blocks are embedded into the logic fabric in a column arrangement.
Cost-optimized devices have a smaller amount of DSP blocks, and their utilization
should be carefully considered. For instance, the xc7z020 device has 220 DSP blocks.
Considering the modes of operation from Table 4, the overall amount of non-trivial
multiplications for FIR filtering (3� L� 1ð Þ) is 108 for mode 1 and 216 for mode 2.
This represents a high DSP utilization, and the sparse distribution of these types of
blocks throughout the logic fabric degrades the scalability of the UFMCmodulator. In
addition, placement and routing of the design is more difficult and likely to affect the
overall timing closure. To reduce DSP utilization, a multiplier-less architecture for
FIR filters was adopted. The FIR coefficients are represented in Q1.5 format, using the
Canonic Signed Digit (CSD) system with minimum non-zero bits. Then, non-trivial
multiplications are substituted by shifters and adders. For example, the multiplication
by 0.90625 can be implemented as:

This strategy eliminates the use of DSP blocks in FIR filters, but increases slice
utilization. However, slices are the most numerous type of resource (13,300 slices in
the xc7z020 device), making this approach well-suited for the present application.

After FIR filtering, each sub-band signal is shifted to the corresponding fre-
quency band. The frequency shift module for each branch has a ROM memory to
store the complex exponential values and a complex multiplier. Finally, the filtered
sub-band responses are summed to create the UFMC symbol.

4. A dynamically reconfigurable baseband modulator for 5G
communication

After the preceding overview of the architecture of high-performance baseband
engines for three different waveforms, this section presents the architecture of a
baseband processing engine that is flexible, scalable, resource and power efficient and

46

Field Programmable Gate Arrays (FPGAs) II

forward compatible. Here, DPR and DFS are combined to produce a dynamically
reconfigurable baseband processing architecture for multimode, multi-waveform
coexistence and dynamic spectrum aggregation. To enable the full potential of 5G,
carrier aggregation should also be possible across separated frequency bands [31]
(noncontiguous CA). For noncontiguous CA, a multidimensional PHY layer (and,
therefore, baseband architecture) is needed, even when data aggregation is not
performed in the PHY layer, but in the media access control (MAC) communication
layer instead [32]. In this context, multidimensional means that the PHY layer is an
array of independent processing blocks, rather than a monolithic structure.

The baseband architecture presented in this chapter features three independent
modulators, whose functionality and clock frequency can be dynamically
reconfigured through DPR and DFS, respectively. This setup enables the processing
of multiple component carriers with different waveforms and/or baseband param-
eters in noncontiguous CA schemes.

A prototype of the multidimensional baseband modulator was implemented on
an Avnet Zedboard equipped with a Zynq xc7z020 device. The system top level
combines features from the designs of the previous section and can be divided into
three parts. The Zedboard’s 512 MB DDR memory is used as a repository for the
partial bitstreams used for DPR. The Zynq’s ARM CPU act as the system manage-
ment unit: it is responsible for triggering the reconfiguration of the
multidimensional baseband modulator and setting up data transfers between the
DDR memory and the modulators implemented in the programmable logic together
with the infrastructure for DPR and DFS. Figure 4 shows the top-level architecture.

The proposed architecture targets the communication scenario described in [33],
which combines multi-waveform coexistence with dynamic spectrum access. In this
scenario, 5G communications build on the pre-existing 4G infrastructure (non-
stand-alone 5G): the primary 4G-LTE communications are OFDM-based, and the
secondary 5G communications opportunistically exploit vacant spectrum resources
through DSA, transmitting with different waveforms (OFDM, FBMC or UFMC).
The basic unit for DPR is a complete baseband datapath, and each one is
implemented in a reconfigurable partition. From the three RPs, RP1 is exclusively
used for primary OFDM-based transmission. The two remaining RPs can be used
for primary or secondary transmission: RP2 implements FBMC or OFDM transmis-
sion modes; RP3 implements UFMC or OFDM transmission modes. For instance, if
the primary transmission requires more capacity, the three RPs can be used to
independently modulate different component carriers in a noncontiguous CA
scheme. If the primary transmission is not so demanding, RP2 and RP3 can be used
for secondary multi-waveform 5G transmission. Figure 5 illustrates a potential
multi-waveform coexistence scenario by showing the combined periodograms of
the OFDM, FBMC and UFMC baseband signals obtained from the implemented
modulator datapaths.

During system initialization, the ARM CPU manages the downloading of partial
bitstreams and input data files from an SD card to the DDR memory. For the
purpose of validating the baseband engines, the input data is retrieved from the
DDR and sent to the baseband modulator(s), and the results are stored back to the
DDR (and used for validating the implementation). Each RP has an associated DMA
controller to accelerate the access to the DDR.

To achieve the specialization of computation at runtime, the configuration
interface adopted is the ICAP. This high-bandwidth internal interface permits the
FPGA to reconfigure itself. Xilinx sets the maximum ICAP bandwidth at 400, for a
100 clock frequency and 32-bit data width [34]. Nevertheless, the ICAP can be
overclocked to further enhance the reconfiguration throughput [35]. In the present

47

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

work, the ICAP is overclocked at 200 MHz. To take advantage of ICAP
overclocking, a dedicated DMA controller is used to accelerate the transfer of partial
bitstreams to the ICAP.

The implementation of DFS follows the reference design from [36]. This design
considers an FSM that reads configuration parameters from a ROM and writes them

Figure 4.
Top-level architecture for the multidimensional and reconfigurable baseband modulator. HPx,
high-performance ports; GPIO, general purpose I/O.

Figure 5.
Periodograms for OFDM, FBMC and UFMC baseband signals.

48

Field Programmable Gate Arrays (FPGAs) II

to the clock management module available in the FPGA. To change the frequency of
the output clocks, the input signal en must be enabled, and the desired mode of
operation should be given through themode port. The DFS controller is fed by a 100
reference input clock that is used to synthesize the clock signal used for baseband
processing. Its frequency (f clkBB) can be configured to one of four values: 16.7, 33.3,
66.7 and 100 MHz. All modulator datapaths can work at 100 MHz. The other values
are based on the scaling of subcarrier spacing by 2μ as in 5G New Radio systems [2],
where μ is an integer that specifies the mode of operation. In this system, primary
communications are based on the LTE OFDM numerologies (Table 1), where the
subcarrier spacing (Δf) is 15 kHz. For OFDM mode 2 [cf. (Table 1)], the sampling
frequency required is N � Δf ¼ 15:36 MHz. Scaling the subcarrier spacing by 2μ

with μ ¼ 1, 2f g, results in sampling frequencies of 21 � 15:36 ¼ 30:72 MHz and
22 � 15:36 ¼ 61:44 MHz.

A general overview of the resource utilization of the prototype is presented in
Table 5. The static part occupies around 32 and 5% of the slices and BRAMs,
respectively. Apart from PS-PL interconnect cores and DMA controllers to acceler-
ate the baseband modulators, the static part also implements the infrastructure for
reconfiguration (DPR and DFS). The hardware required to implement DPR and
DFS is below 2% of the available LUTs, FFs and BRAMs. The three RPs form the
system’s reconfigurable part and occupy 52.6, 64.3 and 72.7% of the available slices,
BRAMs and DSPs, respectively. Overall, the resource utilization for the complete
system implementation represents a considerable share of the resources available in
the xc7z020 device: 84.3% of slices, 69.7% of BRAMs and 72.7% of DSPs.

The resource utilization of each modulator is presented in Table 6. The results
lead to a key observation: the hardware virtualization achieved with the 7000 slices,

Resource Available Static part (total) Reconfig.
overhead

RP1 RP2 RP3 All RPs

DFS DPR

Slice 13,300 4210 24 424 1400 2400 3200 7000

LUT 53,200 10,700 75 938 5600 9600 12,800 28,000

FF 106,400 13,110 79 1292 11,200 19,200 25,600 56,000

BRAM 140 7.5 0 1.5 20 40 30 90

DSP 220 0 0 0 40 80 40 160

Table 5.
Post place-and-route resource utilization for the static and reconfigurable system parts.

Resource Mode 1 Mode 2

OFDM FBMC UFMC OFDM FBMC UFMC

Slice 1015 1575 2315 1126 2210 3100

LUT 2829 5103 8090 3400 7876 11,782

FF 2107 2307 6279 2170 2284 9912

BRAM 7 19 11.5 10.5 40 11.5

DSP 14 21 18 14 21 18

Device, xc7z020; f clk ¼ 100 MHz.

Table 6.
Post place-and-route resource utilization for each baseband modulator datapath.

49

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

work, the ICAP is overclocked at 200 MHz. To take advantage of ICAP
overclocking, a dedicated DMA controller is used to accelerate the transfer of partial
bitstreams to the ICAP.

The implementation of DFS follows the reference design from [36]. This design
considers an FSM that reads configuration parameters from a ROM and writes them

Figure 4.
Top-level architecture for the multidimensional and reconfigurable baseband modulator. HPx,
high-performance ports; GPIO, general purpose I/O.

Figure 5.
Periodograms for OFDM, FBMC and UFMC baseband signals.

48

Field Programmable Gate Arrays (FPGAs) II

to the clock management module available in the FPGA. To change the frequency of
the output clocks, the input signal en must be enabled, and the desired mode of
operation should be given through themode port. The DFS controller is fed by a 100
reference input clock that is used to synthesize the clock signal used for baseband
processing. Its frequency (f clkBB) can be configured to one of four values: 16.7, 33.3,
66.7 and 100 MHz. All modulator datapaths can work at 100 MHz. The other values
are based on the scaling of subcarrier spacing by 2μ as in 5G New Radio systems [2],
where μ is an integer that specifies the mode of operation. In this system, primary
communications are based on the LTE OFDM numerologies (Table 1), where the
subcarrier spacing (Δf) is 15 kHz. For OFDM mode 2 [cf. (Table 1)], the sampling
frequency required is N � Δf ¼ 15:36 MHz. Scaling the subcarrier spacing by 2μ

with μ ¼ 1, 2f g, results in sampling frequencies of 21 � 15:36 ¼ 30:72 MHz and
22 � 15:36 ¼ 61:44 MHz.

A general overview of the resource utilization of the prototype is presented in
Table 5. The static part occupies around 32 and 5% of the slices and BRAMs,
respectively. Apart from PS-PL interconnect cores and DMA controllers to acceler-
ate the baseband modulators, the static part also implements the infrastructure for
reconfiguration (DPR and DFS). The hardware required to implement DPR and
DFS is below 2% of the available LUTs, FFs and BRAMs. The three RPs form the
system’s reconfigurable part and occupy 52.6, 64.3 and 72.7% of the available slices,
BRAMs and DSPs, respectively. Overall, the resource utilization for the complete
system implementation represents a considerable share of the resources available in
the xc7z020 device: 84.3% of slices, 69.7% of BRAMs and 72.7% of DSPs.

The resource utilization of each modulator is presented in Table 6. The results
lead to a key observation: the hardware virtualization achieved with the 7000 slices,

Resource Available Static part (total) Reconfig.
overhead

RP1 RP2 RP3 All RPs

DFS DPR

Slice 13,300 4210 24 424 1400 2400 3200 7000

LUT 53,200 10,700 75 938 5600 9600 12,800 28,000

FF 106,400 13,110 79 1292 11,200 19,200 25,600 56,000

BRAM 140 7.5 0 1.5 20 40 30 90

DSP 220 0 0 0 40 80 40 160

Table 5.
Post place-and-route resource utilization for the static and reconfigurable system parts.

Resource Mode 1 Mode 2

OFDM FBMC UFMC OFDM FBMC UFMC

Slice 1015 1575 2315 1126 2210 3100

LUT 2829 5103 8090 3400 7876 11,782

FF 2107 2307 6279 2170 2284 9912

BRAM 7 19 11.5 10.5 40 11.5

DSP 14 21 18 14 21 18

Device, xc7z020; f clk ¼ 100 MHz.

Table 6.
Post place-and-route resource utilization for each baseband modulator datapath.

49

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

90 BRAMs and 160 DSPs reserved by the three RPs allows the implementation of six
baseband modulators, which would need 11,322 slices, 99.5 BRAMs and 106 DSPs in
total. Adding these virtualized resources to the static resources exceeds the available
xc7z020 slices by 17%. This is an unequivocal demonstration of the resource effi-
ciency benefits that DPR brings to multimode baseband processors. An equivalent
static multimode design could benefit from the reuse of common hardware blocks
between different modulator datapaths (especially between OFDM and FBMC
datapaths). However, implementing the multidimensional baseband modulator as a
static multimode design would be challenging given the resource budget available
on cost-optimized devices like the xc7z020. There are FPGA/SoC devices with
larger area and logic density. However, using them would decrease the system’s
cost-effectiveness: an FPGA with a larger chip area is more expensive and likely to
consume more power [37].

Considering the modes of operation shown in Tables 1–3, and that all 3 RPs are
in use, the proposed design supports 32 combinations of baseband modulators: 2
RP1 modes � 4 RP2 modes � 4 RP3 modes. The use of DPR simplifies system upgrade
with new modes of operation in order to extend the system’s useful lifetime. The
addition of modes of operation is not limited by the available resources on the FPGA
device, but instead by the resources reserved by the RPs and the capacity to store
partial bitstreams (512 MB DDR memory, in this case).

During the DPR design with the Xilinx Vivado EDA tool, the different system
configurations are created from a design checkpoint that saves the floorplanning
and routing of the system’s static part, leaving the RPs as empty black boxes. New
configurations can be created by designing new circuit configurations for these
black boxes and generating the corresponding partial bitstreams. This design reus-
ability makes the system adaptable and reduces the upgrade design time.

The dynamic power consumption for each modulator datapath and baseband
clock frequency was estimated with the power analysis tool from Vivado 2015.2.
The high-confidence estimates were performed using placed and routed netlists and
accurate node activity files. The results are presented in Table 7. The UFMC mod-
ulator modes have a higher dynamic power consumption compared to FBMC and
OFDM. This is mainly due to the higher resource usage and node activity of UFMC
datapaths. The clock frequency adaptation allowed by DFS results in power savings
that tend to be more evident for the most resource-demanding modes of operation
(UFMC and FBMC). Compared to a design with baseband clock frequency fixed at
100 MHz, the clock frequency adaptation to:

• 66.7 MHz results in dynamic power savings between 39 mW (35% reduction in
OFDM mode 1) and 82 mW (51% reduction in FBMC mode 2)

f clk Mode 1 Mode 2

OFDM FBMC UFMC OFDM FBMC UFMC

100 MHz 113 148 180 123 161 233

66.7 MHz 74 84 119 78 79 155

33.3 MHz 34 25 60 33 28 77

16.7 MHz 14 8 30 10 10 39

Device, xc7z020; analysis tool, Vivado 2015.2; post place-and-route power analysis with high confidence level; node
activity derived from post place-and-route simulation.

Table 7.
Dynamic power consumption estimates for the six implemented baseband modulator cores (in).

50

Field Programmable Gate Arrays (FPGAs) II

• 33.3 MHz results in dynamic power savings between 79 mW (70% reduction in
OFDM mode 1) and 156 mW (67% reduction in UFMC mode 2)

• 16.7 MHz results in dynamic power savings between 99 mW (88% reduction in
OFDM mode 1) and 194 mW (83% reduction in UFMC mode 2)

For the set of baseband clock frequencies defined, the DFS procedure took on
average 47 μs to modify the clock frequency, a latency which is acceptable in 5G NR
communications.

In the multidimensional baseband modulator, the area and amount of RP
resources are higher than in the individual designs, resulting in larger bitstream
sizes. However, the reconfiguration speed was increased through ICAP
overclocking. Table 8 quantifies the DPR latency and compressed bitstream size for
the worst-case scenario in each RP. The largest RP (RP3) takes up to 767 μs to be
reconfigured, corresponding to the transfer of a 596 kB bitstream to the ICAP. In all
DPR latency measurements, the reconfiguration throughput was at least 790 MB/s.
This value is about 99% of the theoretical ICAP throughput, considering 32-bit
transfers and overclocking at 200 MHz. In general, the DPR latency for each indi-
vidual RP is below 1 ms, while the overall reconfiguration of the three RPs takes less
than 2 ms. These latency values are within an acceptable range considering the
control plane requirements from [38].

The ITU report [38] states that in critical, ultralow-latency scenarios, a make-
before-break approach must be adopted to completely mitigate the control plane
latency. In other words, the control plane latency must be hidden by setting up a
new communication channel before breaking the current one. Under these circum-
stances, a high-priority communication can reserve a spare RP to seamlessly adapt
the transmission mode. This scenario is exemplified in Figure 6. Let us assume that
RP1 is currently performing baseband modulation for an ultralow-latency commu-
nication. This transmission needs to be adapted from OFDM mode 1 to OFDM
mode 2, without breaking the current communication link. RP2 is currently unused
and is reconfigured to OFDMmode 2 before baseband processing at RP1 terminates.
In this way, the baseband processing datapath can be modified without incurring
any latency penalty due to DPR.

Characteristic RP1 RP2 RP3

DPR latency 400 μs 677 μs 767 μs

Partial bitstream size 309 kB 526 kB 596 kB

Table 8.
Measured DPR latency and size of compressed partial bitstreams for the worst-case scenarios.

Figure 6.
Example of make-before-break approach to mitigate DPR latency.

51

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

90 BRAMs and 160 DSPs reserved by the three RPs allows the implementation of six
baseband modulators, which would need 11,322 slices, 99.5 BRAMs and 106 DSPs in
total. Adding these virtualized resources to the static resources exceeds the available
xc7z020 slices by 17%. This is an unequivocal demonstration of the resource effi-
ciency benefits that DPR brings to multimode baseband processors. An equivalent
static multimode design could benefit from the reuse of common hardware blocks
between different modulator datapaths (especially between OFDM and FBMC
datapaths). However, implementing the multidimensional baseband modulator as a
static multimode design would be challenging given the resource budget available
on cost-optimized devices like the xc7z020. There are FPGA/SoC devices with
larger area and logic density. However, using them would decrease the system’s
cost-effectiveness: an FPGA with a larger chip area is more expensive and likely to
consume more power [37].

Considering the modes of operation shown in Tables 1–3, and that all 3 RPs are
in use, the proposed design supports 32 combinations of baseband modulators: 2
RP1 modes � 4 RP2 modes � 4 RP3 modes. The use of DPR simplifies system upgrade
with new modes of operation in order to extend the system’s useful lifetime. The
addition of modes of operation is not limited by the available resources on the FPGA
device, but instead by the resources reserved by the RPs and the capacity to store
partial bitstreams (512 MB DDR memory, in this case).

During the DPR design with the Xilinx Vivado EDA tool, the different system
configurations are created from a design checkpoint that saves the floorplanning
and routing of the system’s static part, leaving the RPs as empty black boxes. New
configurations can be created by designing new circuit configurations for these
black boxes and generating the corresponding partial bitstreams. This design reus-
ability makes the system adaptable and reduces the upgrade design time.

The dynamic power consumption for each modulator datapath and baseband
clock frequency was estimated with the power analysis tool from Vivado 2015.2.
The high-confidence estimates were performed using placed and routed netlists and
accurate node activity files. The results are presented in Table 7. The UFMC mod-
ulator modes have a higher dynamic power consumption compared to FBMC and
OFDM. This is mainly due to the higher resource usage and node activity of UFMC
datapaths. The clock frequency adaptation allowed by DFS results in power savings
that tend to be more evident for the most resource-demanding modes of operation
(UFMC and FBMC). Compared to a design with baseband clock frequency fixed at
100 MHz, the clock frequency adaptation to:

• 66.7 MHz results in dynamic power savings between 39 mW (35% reduction in
OFDM mode 1) and 82 mW (51% reduction in FBMC mode 2)

f clk Mode 1 Mode 2

OFDM FBMC UFMC OFDM FBMC UFMC

100 MHz 113 148 180 123 161 233

66.7 MHz 74 84 119 78 79 155

33.3 MHz 34 25 60 33 28 77

16.7 MHz 14 8 30 10 10 39

Device, xc7z020; analysis tool, Vivado 2015.2; post place-and-route power analysis with high confidence level; node
activity derived from post place-and-route simulation.

Table 7.
Dynamic power consumption estimates for the six implemented baseband modulator cores (in).

50

Field Programmable Gate Arrays (FPGAs) II

• 33.3 MHz results in dynamic power savings between 79 mW (70% reduction in
OFDM mode 1) and 156 mW (67% reduction in UFMC mode 2)

• 16.7 MHz results in dynamic power savings between 99 mW (88% reduction in
OFDM mode 1) and 194 mW (83% reduction in UFMC mode 2)

For the set of baseband clock frequencies defined, the DFS procedure took on
average 47 μs to modify the clock frequency, a latency which is acceptable in 5G NR
communications.

In the multidimensional baseband modulator, the area and amount of RP
resources are higher than in the individual designs, resulting in larger bitstream
sizes. However, the reconfiguration speed was increased through ICAP
overclocking. Table 8 quantifies the DPR latency and compressed bitstream size for
the worst-case scenario in each RP. The largest RP (RP3) takes up to 767 μs to be
reconfigured, corresponding to the transfer of a 596 kB bitstream to the ICAP. In all
DPR latency measurements, the reconfiguration throughput was at least 790 MB/s.
This value is about 99% of the theoretical ICAP throughput, considering 32-bit
transfers and overclocking at 200 MHz. In general, the DPR latency for each indi-
vidual RP is below 1 ms, while the overall reconfiguration of the three RPs takes less
than 2 ms. These latency values are within an acceptable range considering the
control plane requirements from [38].

The ITU report [38] states that in critical, ultralow-latency scenarios, a make-
before-break approach must be adopted to completely mitigate the control plane
latency. In other words, the control plane latency must be hidden by setting up a
new communication channel before breaking the current one. Under these circum-
stances, a high-priority communication can reserve a spare RP to seamlessly adapt
the transmission mode. This scenario is exemplified in Figure 6. Let us assume that
RP1 is currently performing baseband modulation for an ultralow-latency commu-
nication. This transmission needs to be adapted from OFDM mode 1 to OFDM
mode 2, without breaking the current communication link. RP2 is currently unused
and is reconfigured to OFDMmode 2 before baseband processing at RP1 terminates.
In this way, the baseband processing datapath can be modified without incurring
any latency penalty due to DPR.

Characteristic RP1 RP2 RP3

DPR latency 400 μs 677 μs 767 μs

Partial bitstream size 309 kB 526 kB 596 kB

Table 8.
Measured DPR latency and size of compressed partial bitstreams for the worst-case scenarios.

Figure 6.
Example of make-before-break approach to mitigate DPR latency.

51

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

5. Conclusion

This chapter presents a reconfigurable, multidimensional baseband modulator
architecture suitable for multimode, multiple waveform coexistence and dynamic
spectrum aggregation scenarios. The design combines the runtime specialization of
computation and performance. By featuring three independent and reconfigurable
baseband modulators, the architecture allows the processing of up to three compo-
nent carriers using different waveforms (OFDM, FBMC and UFMC) and/or
numerologies. The total reconfigurable area of the system covers more than half the
available xc7z020 resources; the ICAP overclocking contributes to maintain the
DPR latency low enough for the analyzed scenarios. In this design, the performance
specialization through DFS resulted in dynamic power savings of up to 194 mW.
Besides flexibility, scalability and forward compatibility, cost-effectiveness is perhaps
the most relevant feature of this architecture. It is clearly demonstrated how the
hardware virtualization through DPR enables implementations that exceed the
hardware resources available on an FPGA device. This allows for system
implementations on a small-form, cost-optimized devices with immediate cost and
power consumption benefits and without compromising system functionality.

Acknowledgements

This work was financed by the ERDF (European Regional Development Fund)
through the Operational Programme for Competitiveness and Internationalization
(COMPETE) 2020 Programme within Project POCI-01-0145-FEDER-006961 and
by the National Fund through a Ph.D. Grant (PD/BD/105860/2014) from the FCT
(Fundação para a Ciência e a Tecnologia) (Portuguese Foundation for Science and
Technology).

Author details

Mário Lopes Ferreira and João Canas Ferreira*
INESC TEC and University of Porto, Porto, Portugal

*Address all correspondence to: jcf@fe.up.pt

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

52

Field Programmable Gate Arrays (FPGAs) II

References

[1] ITU-R. IMT Vision—Framework and
Overall Objectives of the Future
Development of IMT for 2020 and
beyond. ITU-R; 2015. ITU-R M.2083-0

[2] TS G. NR; NR and NG-RAN Overall
Description; Stage 2 (Release 15); 2018.
38.300 V15.3.1. Available from: http://
www.3gpp.org/DynaReport/38-series.
htm

[3] Andrews JG, Buzzi S, Choi W,
Hanly SV, Lozano A, Soong ACK, et al.
What will 5G be? IEEE Journal on
Selected Areas in Communications.
2014;32(6):1065-1082

[4] Luo FL, Zhang C. Signal Processing
for 5G: Algorithms and Implementations.
United Kingdom: John Wiley & Sons
Ltd; 2016

[5] Jue G. Exploring 5G Coexistence
Scenarios Using a Flexible Hardware/
Software Testbed—Application Note;
2017

[6] Zhao Q, Sadler BM. A survey of
dynamic Spectrum access. IEEE Signal
Processing Magazine. 2007;24(3):79-89

[7] Akyildiz IF, Nie S, Lin SC,
Chandrasekaran M. 5G roadmap: 10 key
enabling technologies. Computer
Networks. 2016;106:17-48

[8] Crockett LH, Elliot RA,
Enderwitz MA, Stewart RW. The Zynq
Book: Embedded Processing with the
ARM Cortex-A9 on the Xilinx Zynq-
7000 all Programmable SoC. Glasgow,
United Kingdom: Strathclyde Academic
Media; 2014

[9] Delahaye JP, Palicot J, Moy C,
Leray P. Partial reconfiguration of
FPGAs for dynamical reconfiguration of
a software radio platform. In: 16th IST
Mobile and Wireless Communications
Summit. Budapest: IEEE; 2007. pp. 1-5.
DOI: 10.1109/ISTMWC.2007.4299250

[10] Delorme J, Martin J, Nafkha A,
Moy C, Clermidy F, Leray P, et al. A
FPGA partial reconfiguration design
approach for cognitive radio based on
NoC architecture. In: 2008 Joint 6th
International IEEE Northeast Workshop
on Circuits and Systems and TAISA
Conference. Montreal, QC: IEEE; 2008.
pp. 355-358. DOI: 10.1109/NEWCAS.
2008.4606394

[11] He K, Crockett L, Stewart R.
Dynamic reconfiguration technologies
based on FPGA in software defined
radio system. Journal of Signal
Processing Systems. 2011;69(1):75-85

[12] Vipin K, Fahmy SA. Mapping
adaptive hardware systems with partial
reconfiguration using CoPR for Zynq.
In: 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS).
Montreal, QC: IEEE; 2015. pp. 1-8. DOI:
10.1109/AHS.2015.7231169

[13] Rihani MAF, Mroue M, Prévotet JC,
Nouvel F, Mohanna Y. ARM-FPGA-
based platform for reconfigurable
wireless communication systems using
partial reconfiguration. EURASIP Journal
on Embedded Systems. 2017;2017(1):35

[14] Shreejith S, Banarjee B, Vipin K,
Fahmy SA. Dynamic cognitive radios on
the Xilinx Zynq Hybrid FPGA. In:
Weichold M, Hamdi M, Shakir M,
Abdallah M, Karagiannidis G, Ismail M,
editors. Cognitive Radio Oriented
Wireless Networks. CrownCom 2015.
Lecture Notes of the Institute for
Computer Sciences, Social Informatics
and Telecommunications Engineering.
Vol. 156. Cham: Springer; 2015. DOI:
10.1007/978-3-319-24540-9_35

[15] Pham TH, Fahmy SA,
McLoughlin IV. An end-to-end
multi-standard OFDM transceiver
architecture using FPGA partial
reconfiguration. IEEE Access. 2017;5:
21002-21015

53

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

5. Conclusion

This chapter presents a reconfigurable, multidimensional baseband modulator
architecture suitable for multimode, multiple waveform coexistence and dynamic
spectrum aggregation scenarios. The design combines the runtime specialization of
computation and performance. By featuring three independent and reconfigurable
baseband modulators, the architecture allows the processing of up to three compo-
nent carriers using different waveforms (OFDM, FBMC and UFMC) and/or
numerologies. The total reconfigurable area of the system covers more than half the
available xc7z020 resources; the ICAP overclocking contributes to maintain the
DPR latency low enough for the analyzed scenarios. In this design, the performance
specialization through DFS resulted in dynamic power savings of up to 194 mW.
Besides flexibility, scalability and forward compatibility, cost-effectiveness is perhaps
the most relevant feature of this architecture. It is clearly demonstrated how the
hardware virtualization through DPR enables implementations that exceed the
hardware resources available on an FPGA device. This allows for system
implementations on a small-form, cost-optimized devices with immediate cost and
power consumption benefits and without compromising system functionality.

Acknowledgements

This work was financed by the ERDF (European Regional Development Fund)
through the Operational Programme for Competitiveness and Internationalization
(COMPETE) 2020 Programme within Project POCI-01-0145-FEDER-006961 and
by the National Fund through a Ph.D. Grant (PD/BD/105860/2014) from the FCT
(Fundação para a Ciência e a Tecnologia) (Portuguese Foundation for Science and
Technology).

Author details

Mário Lopes Ferreira and João Canas Ferreira*
INESC TEC and University of Porto, Porto, Portugal

*Address all correspondence to: jcf@fe.up.pt

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

52

Field Programmable Gate Arrays (FPGAs) II

References

[1] ITU-R. IMT Vision—Framework and
Overall Objectives of the Future
Development of IMT for 2020 and
beyond. ITU-R; 2015. ITU-R M.2083-0

[2] TS G. NR; NR and NG-RAN Overall
Description; Stage 2 (Release 15); 2018.
38.300 V15.3.1. Available from: http://
www.3gpp.org/DynaReport/38-series.
htm

[3] Andrews JG, Buzzi S, Choi W,
Hanly SV, Lozano A, Soong ACK, et al.
What will 5G be? IEEE Journal on
Selected Areas in Communications.
2014;32(6):1065-1082

[4] Luo FL, Zhang C. Signal Processing
for 5G: Algorithms and Implementations.
United Kingdom: John Wiley & Sons
Ltd; 2016

[5] Jue G. Exploring 5G Coexistence
Scenarios Using a Flexible Hardware/
Software Testbed—Application Note;
2017

[6] Zhao Q, Sadler BM. A survey of
dynamic Spectrum access. IEEE Signal
Processing Magazine. 2007;24(3):79-89

[7] Akyildiz IF, Nie S, Lin SC,
Chandrasekaran M. 5G roadmap: 10 key
enabling technologies. Computer
Networks. 2016;106:17-48

[8] Crockett LH, Elliot RA,
Enderwitz MA, Stewart RW. The Zynq
Book: Embedded Processing with the
ARM Cortex-A9 on the Xilinx Zynq-
7000 all Programmable SoC. Glasgow,
United Kingdom: Strathclyde Academic
Media; 2014

[9] Delahaye JP, Palicot J, Moy C,
Leray P. Partial reconfiguration of
FPGAs for dynamical reconfiguration of
a software radio platform. In: 16th IST
Mobile and Wireless Communications
Summit. Budapest: IEEE; 2007. pp. 1-5.
DOI: 10.1109/ISTMWC.2007.4299250

[10] Delorme J, Martin J, Nafkha A,
Moy C, Clermidy F, Leray P, et al. A
FPGA partial reconfiguration design
approach for cognitive radio based on
NoC architecture. In: 2008 Joint 6th
International IEEE Northeast Workshop
on Circuits and Systems and TAISA
Conference. Montreal, QC: IEEE; 2008.
pp. 355-358. DOI: 10.1109/NEWCAS.
2008.4606394

[11] He K, Crockett L, Stewart R.
Dynamic reconfiguration technologies
based on FPGA in software defined
radio system. Journal of Signal
Processing Systems. 2011;69(1):75-85

[12] Vipin K, Fahmy SA. Mapping
adaptive hardware systems with partial
reconfiguration using CoPR for Zynq.
In: 2015 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS).
Montreal, QC: IEEE; 2015. pp. 1-8. DOI:
10.1109/AHS.2015.7231169

[13] Rihani MAF, Mroue M, Prévotet JC,
Nouvel F, Mohanna Y. ARM-FPGA-
based platform for reconfigurable
wireless communication systems using
partial reconfiguration. EURASIP Journal
on Embedded Systems. 2017;2017(1):35

[14] Shreejith S, Banarjee B, Vipin K,
Fahmy SA. Dynamic cognitive radios on
the Xilinx Zynq Hybrid FPGA. In:
Weichold M, Hamdi M, Shakir M,
Abdallah M, Karagiannidis G, Ismail M,
editors. Cognitive Radio Oriented
Wireless Networks. CrownCom 2015.
Lecture Notes of the Institute for
Computer Sciences, Social Informatics
and Telecommunications Engineering.
Vol. 156. Cham: Springer; 2015. DOI:
10.1007/978-3-319-24540-9_35

[15] Pham TH, Fahmy SA,
McLoughlin IV. An end-to-end
multi-standard OFDM transceiver
architecture using FPGA partial
reconfiguration. IEEE Access. 2017;5:
21002-21015

53

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

[16] Ferreira ML, Barahimi A,
Ferreira JC. Reconfigurable FPGA-based
FFT processor for cognitive radio
applications. In: Proceedings of the
Applied Reconfigurable Computing:
12th International Symposium, ARC
2016; March 22–24 March 2016;
Mangaratiba, RJ, Brazil: Springer
International Publishing; 2016.
pp. 223-232

[17] He S, Torkelson M. A new approach
to pipeline FFT processor. In:
Proceedings of International Conference
on Parallel Processing. Honolulu, HI,
USA: IEEE; 1996. pp. 766-770. DOI:
10.1109/IPPS.1996.508145

[18] Löfgren J, Nilsson P. On hardware
implementation of radix 3 and radix 5
FFT kernels for LTE systems. In: 2011,
NORCHIP. Lund: IEEE; 2011.
pp. 1-4. DOI: 10.1109/NORCHP.2011.
6126703

[19] Doré JB, Gerzaguet R, Cassiau N,
Ktenas D. Waveform contenders for 5G:
Description, analysis and comparison.
Physical Communication. Elsevier;
2017;24:46-61. DOI: 10.1016/j.
phycom.2017.05.004. ISSN: 1874-4907

[20] Bellanger M, Ruyet DL, Roviras D,
Terr’e M, Nossek J, Baltar L, et al. FBMC
physical layer: A primer. PHYDYAS
Project; 2010

[21] Carvalho M. FPGA implementation
of a baseband processor for FBMC
transmission [MSc thesis]. Faculty of
Engineering of the University of Porto;
2017

[22] Bellanger M. FS-FBMC: An
alternative scheme for filter bank based
multicarrier transmission. In: 2012 5th
International Symposium on
Communications, Control and Signal
Processing. Rome: IEEE; 2012. pp. 1-4

[23] Wang X, Wild T, Schaich F, dos
Santos AF. Universal filtered multi-
carrier with leakage-based filter

optimization. In: European Wireless
2014; 20th European Wireless
Conference. Barcelona, Spain: VDE;
2014. pp. 1-5

[24] Jafri AR, Majid J, Zhang L,
Imran MA, Najam-ul-Islam M. FPGA
implementation of UFMC based
baseband transmitter: Case study for
LTE 10MHz channelization. Wireless
Communications and Mobile
Computing. Hindawi; 2018;2018:1-12.
Article ID: 2139794. DOI: 10.1155/2018/
2139794

[25] Nadal J, Nour CA, Baghdadi A.
Flexible hardware platform for
demonstrating new 5G waveform
candidates. In: 2017 29th International
Conference on Microelectronics (ICM).
Beirut: IEEE; 2017. pp. 1-4. DOI:
10.1109/ICM.2017.8268851

[26] Vakilian V, Wild T, Schaich F, ten
Brink S, Frigon J. Universal-filtered
multi-carrier technique for wireless
systems beyond LTE. In: 2013 IEEE
Globecom Workshops (GC Wkshps).
Atlanta, GA: IEEE; 2013. pp. 223-228.
DOI: 10.1109/GLOCOMW.2013.
6824990

[27] Knopp R, Kaltenberger F, Vitiello C,
Luise M. Universal filtered multicarrier
for machine type communications in
5G. In: Proceedings of EUCNC 2016,
European Conference on Networks and
Communications; 2016. Available from:
http://www.eurecom.fr/publication/
4910. Unpublished material provided by
EURECOM

[28] Schaich F, Wild T, Chen Y.
Waveform contenders for 5G—
Suitability for short packet and low
latency transmissions. In: 2014 IEEE
79th Vehicular Technology Conference
(VTC Spring). Seoul: IEEE; 2014.
pp. 1-5. DOI: 10.1109/VTCSpring.2014.
7023145

[29] Parvez I, Rahmati A, Guvenc I,
Sarwat AI, Dai H. A survey on low

54

Field Programmable Gate Arrays (FPGAs) II

latency towards 5G: RAN, core network
and caching solutions. IEEE
Communications Surveys Tutorials.
2018;20(4):3098-3130

[30] Lopes Ferreira M, Canas FJ. An
FPGA-oriented baseband modulator
architecture for 4G/5G communication
scenarios. Electronics. 2019;8(1):1-19

[31] Bhushan N, Ji T, Koymen O, Smee J,
Soriaga J, Subramanian S, et al. Industry
perspective—5G air Interface system
design principles. IEEE Wireless
Communications. 2017;24(5):6-8

[32] Yuan G, Zhang X,WangW, Yang Y.
Carrier aggregation for LTE-advanced
mobile communication systems. IEEE
Communications Magazine. 2010;48(2):
88-93

[33] Kaltenberger F, Knopp R, Vitiello C,
Danneberg M, Festag A. Experimental
analysis of 5G candidate waveforms and
their coexistence with 4G systems. In:
XAPP888 - MMCM and PLL Dynamic
Reconfiguration. 2015. Available from:
http://www.eurecom.fr/fr/publication/
4725/download/cm-publi-4725.pdf.
Unpublished material provided by
EURECOM

[34] UG909 - Vivado Design Suite User
Guide: Partial Reconfiguration; 2015

[35] Claus C, Ahmed R, Altenried F,
Stechele W. Towards rapid dynamic
partial reconfiguration in video-based
driver assistance systems. In: Sirisuk P,
Morgan F, El-Ghazawi T, Amano H,
editors. Applied Reconfigurable
Computing: Architectures, Tools and
Applications. Springer: Berlin
Heidelberg; 2010. pp. 55-67

[36] Tatsukawa J. XAPP888 - MMCM
and PLL Dynamic Reconfiguration;
V1.7. Xilinx Inc.; April 2017

[37] Vipin K, Fahmy SA. FPGA dynamic
and partial reconfiguration: A survey of
architectures, methods, and

applications. ACM Computing Surveys.
2018;51(4):1-39

[38] ITU-R. Minimum Requirements
Related to Technical Performance for
IMT-2020 Radio Interface(s). ITU-R;
2017. M.2410–0. Available from: https://
www.itu.int/pub/R-REP-M.2410-2017

55

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

[16] Ferreira ML, Barahimi A,
Ferreira JC. Reconfigurable FPGA-based
FFT processor for cognitive radio
applications. In: Proceedings of the
Applied Reconfigurable Computing:
12th International Symposium, ARC
2016; March 22–24 March 2016;
Mangaratiba, RJ, Brazil: Springer
International Publishing; 2016.
pp. 223-232

[17] He S, Torkelson M. A new approach
to pipeline FFT processor. In:
Proceedings of International Conference
on Parallel Processing. Honolulu, HI,
USA: IEEE; 1996. pp. 766-770. DOI:
10.1109/IPPS.1996.508145

[18] Löfgren J, Nilsson P. On hardware
implementation of radix 3 and radix 5
FFT kernels for LTE systems. In: 2011,
NORCHIP. Lund: IEEE; 2011.
pp. 1-4. DOI: 10.1109/NORCHP.2011.
6126703

[19] Doré JB, Gerzaguet R, Cassiau N,
Ktenas D. Waveform contenders for 5G:
Description, analysis and comparison.
Physical Communication. Elsevier;
2017;24:46-61. DOI: 10.1016/j.
phycom.2017.05.004. ISSN: 1874-4907

[20] Bellanger M, Ruyet DL, Roviras D,
Terr’e M, Nossek J, Baltar L, et al. FBMC
physical layer: A primer. PHYDYAS
Project; 2010

[21] Carvalho M. FPGA implementation
of a baseband processor for FBMC
transmission [MSc thesis]. Faculty of
Engineering of the University of Porto;
2017

[22] Bellanger M. FS-FBMC: An
alternative scheme for filter bank based
multicarrier transmission. In: 2012 5th
International Symposium on
Communications, Control and Signal
Processing. Rome: IEEE; 2012. pp. 1-4

[23] Wang X, Wild T, Schaich F, dos
Santos AF. Universal filtered multi-
carrier with leakage-based filter

optimization. In: European Wireless
2014; 20th European Wireless
Conference. Barcelona, Spain: VDE;
2014. pp. 1-5

[24] Jafri AR, Majid J, Zhang L,
Imran MA, Najam-ul-Islam M. FPGA
implementation of UFMC based
baseband transmitter: Case study for
LTE 10MHz channelization. Wireless
Communications and Mobile
Computing. Hindawi; 2018;2018:1-12.
Article ID: 2139794. DOI: 10.1155/2018/
2139794

[25] Nadal J, Nour CA, Baghdadi A.
Flexible hardware platform for
demonstrating new 5G waveform
candidates. In: 2017 29th International
Conference on Microelectronics (ICM).
Beirut: IEEE; 2017. pp. 1-4. DOI:
10.1109/ICM.2017.8268851

[26] Vakilian V, Wild T, Schaich F, ten
Brink S, Frigon J. Universal-filtered
multi-carrier technique for wireless
systems beyond LTE. In: 2013 IEEE
Globecom Workshops (GC Wkshps).
Atlanta, GA: IEEE; 2013. pp. 223-228.
DOI: 10.1109/GLOCOMW.2013.
6824990

[27] Knopp R, Kaltenberger F, Vitiello C,
Luise M. Universal filtered multicarrier
for machine type communications in
5G. In: Proceedings of EUCNC 2016,
European Conference on Networks and
Communications; 2016. Available from:
http://www.eurecom.fr/publication/
4910. Unpublished material provided by
EURECOM

[28] Schaich F, Wild T, Chen Y.
Waveform contenders for 5G—
Suitability for short packet and low
latency transmissions. In: 2014 IEEE
79th Vehicular Technology Conference
(VTC Spring). Seoul: IEEE; 2014.
pp. 1-5. DOI: 10.1109/VTCSpring.2014.
7023145

[29] Parvez I, Rahmati A, Guvenc I,
Sarwat AI, Dai H. A survey on low

54

Field Programmable Gate Arrays (FPGAs) II

latency towards 5G: RAN, core network
and caching solutions. IEEE
Communications Surveys Tutorials.
2018;20(4):3098-3130

[30] Lopes Ferreira M, Canas FJ. An
FPGA-oriented baseband modulator
architecture for 4G/5G communication
scenarios. Electronics. 2019;8(1):1-19

[31] Bhushan N, Ji T, Koymen O, Smee J,
Soriaga J, Subramanian S, et al. Industry
perspective—5G air Interface system
design principles. IEEE Wireless
Communications. 2017;24(5):6-8

[32] Yuan G, Zhang X,WangW, Yang Y.
Carrier aggregation for LTE-advanced
mobile communication systems. IEEE
Communications Magazine. 2010;48(2):
88-93

[33] Kaltenberger F, Knopp R, Vitiello C,
Danneberg M, Festag A. Experimental
analysis of 5G candidate waveforms and
their coexistence with 4G systems. In:
XAPP888 - MMCM and PLL Dynamic
Reconfiguration. 2015. Available from:
http://www.eurecom.fr/fr/publication/
4725/download/cm-publi-4725.pdf.
Unpublished material provided by
EURECOM

[34] UG909 - Vivado Design Suite User
Guide: Partial Reconfiguration; 2015

[35] Claus C, Ahmed R, Altenried F,
Stechele W. Towards rapid dynamic
partial reconfiguration in video-based
driver assistance systems. In: Sirisuk P,
Morgan F, El-Ghazawi T, Amano H,
editors. Applied Reconfigurable
Computing: Architectures, Tools and
Applications. Springer: Berlin
Heidelberg; 2010. pp. 55-67

[36] Tatsukawa J. XAPP888 - MMCM
and PLL Dynamic Reconfiguration;
V1.7. Xilinx Inc.; April 2017

[37] Vipin K, Fahmy SA. FPGA dynamic
and partial reconfiguration: A survey of
architectures, methods, and

applications. ACM Computing Surveys.
2018;51(4):1-39

[38] ITU-R. Minimum Requirements
Related to Technical Performance for
IMT-2020 Radio Interface(s). ITU-R;
2017. M.2410–0. Available from: https://
www.itu.int/pub/R-REP-M.2410-2017

55

Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
DOI: http://dx.doi.org/10.5772/intechopen.91297

Chapter 4

An Efficient FPGA-Based
Frequency Shifter for LTE/LTE-A
Systems
Felipe A.P. de Figueiredo and Fabbryccio A.C.M. Cardoso

Abstract

The Physical Random Access Channel plays an important role in LTE and LTE-A
systems. Through this channel, the user equipment aligns its uplink transmissions
to the eNodeB’s uplink and gains access to the network. One of the initial operations
executed by the receiver at eNodeB side is the translation of the channel’s signal
back to base-band. This operation is a necessary step for preamble detection and can
be executed through a time-domain frequency-shift operation. Therefore, in this
paper, we present the hardware architecture and design details of an optimised and
configurable FPGA-based time-domain frequency shifter. The proposed architec-
ture is based on a customised Numerically Controlled Oscillator that is employed for
creating complex exponential samples using only plain logical resources. The main
advantage of the proposed architecture is that it completely removes the necessity
of saving in memory a huge number of long complex exponentials by making use of
a Look-Up Table and exploiting the quarter-wave symmetry of the basis waveform.
The results demonstrate that the proposed architecture provides high Spurious Free
Dynamic Range signals employing only a minimal number of FPGA resources.
Additionally, the proposed architecture presents spur-suppression ranging from
62.13 to 153.58 dB without employing any correction.

Keywords: LTE, LTE-A, 4G, PRACH, NCO, time-domain frequency shift, FPGA

1. Introduction

Long Term Evolution (LTE) technology is the next big step forward in cellular
services. It is a 3GPP-defined standard that is able to provide uplink speeds of up to
50 megabits per second (Mbps) and downlink speeds of up to 100 Mbps. This new
technology delivers several technical benefits to cellular networks. Its bandwidth
can be scaled from 1.25 MHz up to 20 MHz [1–4].

In order to make LTE a true fourth generation (4G) technology, it was enhanced
to meet the IMT Advanced requirements issued by the International Telecommu-
nication Union (ITU). The necessary improvements are specified in 3GPP Release
10 and also known as LTE Advanced (LTE-A). The LTE-A technology increases the
peak data rates to 1 Gbit/s in the downlink and to 500 Mbit/s in the uplink. LTE-A
has several new features such as MIMO extensions (up to 4 � 4 for UL and up to

57

Chapter 4

An Efficient FPGA-Based
Frequency Shifter for LTE/LTE-A
Systems
Felipe A.P. de Figueiredo and Fabbryccio A.C.M. Cardoso

Abstract

The Physical Random Access Channel plays an important role in LTE and LTE-A
systems. Through this channel, the user equipment aligns its uplink transmissions
to the eNodeB’s uplink and gains access to the network. One of the initial operations
executed by the receiver at eNodeB side is the translation of the channel’s signal
back to base-band. This operation is a necessary step for preamble detection and can
be executed through a time-domain frequency-shift operation. Therefore, in this
paper, we present the hardware architecture and design details of an optimised and
configurable FPGA-based time-domain frequency shifter. The proposed architec-
ture is based on a customised Numerically Controlled Oscillator that is employed for
creating complex exponential samples using only plain logical resources. The main
advantage of the proposed architecture is that it completely removes the necessity
of saving in memory a huge number of long complex exponentials by making use of
a Look-Up Table and exploiting the quarter-wave symmetry of the basis waveform.
The results demonstrate that the proposed architecture provides high Spurious Free
Dynamic Range signals employing only a minimal number of FPGA resources.
Additionally, the proposed architecture presents spur-suppression ranging from
62.13 to 153.58 dB without employing any correction.

Keywords: LTE, LTE-A, 4G, PRACH, NCO, time-domain frequency shift, FPGA

1. Introduction

Long Term Evolution (LTE) technology is the next big step forward in cellular
services. It is a 3GPP-defined standard that is able to provide uplink speeds of up to
50 megabits per second (Mbps) and downlink speeds of up to 100 Mbps. This new
technology delivers several technical benefits to cellular networks. Its bandwidth
can be scaled from 1.25 MHz up to 20 MHz [1–4].

In order to make LTE a true fourth generation (4G) technology, it was enhanced
to meet the IMT Advanced requirements issued by the International Telecommu-
nication Union (ITU). The necessary improvements are specified in 3GPP Release
10 and also known as LTE Advanced (LTE-A). The LTE-A technology increases the
peak data rates to 1 Gbit/s in the downlink and to 500 Mbit/s in the uplink. LTE-A
has several new features such as MIMO extensions (up to 4 � 4 for UL and up to

57

8 � 8 for DL), carrier aggregation, improvement of the performance at cell edge by
supporting enhanced intercell interference coordination (eICIC) and relay nodes
(RN) and uplink access enhancements such as simultaneous data and control infor-
mation (physical uplink shared channel (PUSCH) and physical uplink control
channel (PUCCH)) transmissions and clustered single-carrier frequency-division
multiple access (SC-FDMA) [3].

In LTE and LTE-A, uplink physical random access channel (PRACH) is used
for initial access requests from the user equipment (UE) to the evolved base
station (eNodeB) and to obtain time synchronisation [3, 4]. In case of a need to
access the network, a UE requests access by transmitting a random access (RA)
preamble through PRACH [5]. The RA preamble is then detected by the PRACH
receiver at eNodeB side, which estimates both the ID of the transmitted
preamble and the propagation delay between UE and eNodeB. Then, the UE is
time-synchronised according to a time alignment (TA) value (derived from the
propagation delay estimate) transmitted from the eNodeB before the uplink
transmission [6].

PRACH transmission opportunity is set by higher layers [7] and determines the
frequency-domain location of the random access preamble within the physical
resource blocks (RB). In this way, at eNodeB side, a fundamental operation before
any attempt to detect random access preambles takes place is the extraction of
relevant preamble signals through a time-domain frequency shift operation. This
operation translates the PRACH signal from the frequency-domain location set by
higher layers back to baseband so that preamble detection can be totally carried out
in baseband [4].

This paper is an extension of a previous conference paper [8]. Differently
from [8], where we provided only some very superficial aspects of the proposed
algorithm and architecture, the current paper presents a meticulous analysis on its
design and implementation aspects. Therefore, the main contributions of the
current paper are (i) the design of a low computational complexity time-domain
frequency shifter algorithm and hardware architecture to be employed in
the PRACH receiver at eNodeB side; (ii) a thorough analysis of design and
implementation details; (iii) discussion of the computational complexity of the
proposed architecture in terms of FPGA resource utilisation and speed; and
(iv) careful analysis of the implementation results considering spur suppression, i.e.
spurious-free dynamic range (SFDR), signal-to-noise ratio (SNR), probabilities
of correct and error detection and average error between time-domain frequency
shift operations carried out by a floating-point model, referred here as Golden
Model (GM), and by the fixed-point FPGA implementation of the proposed
architecture.

This paper contributes with a method and architecture optimised and tested for
reduced complexity on a Xilinx Virtex-6 LX240T FPGA device. Results show that
the architecture presents spur suppression better than 62 dB and when it is
employed in the PRACH receiver, the probability of correct detection achieved by
the receiver is greater than 99% at a SNR of �21 dB.

The remainder of the paper is organised as follows. In Section 2 we offer some
background on the physical random access channel and its features. Section 3 pre-
sents an efficient algorithm for a time-domain frequency shifter. Section 4 gives
important practical considerations on the implementation of the proposed
algorithm as well as detailed description of the units composing the main -
architecture. Test methodology, simulation and implementation results are then
presented in Section 5. Finally, Section 6 provides some concluding remarks.

58

Field Programmable Gate Arrays (FPGAs) II

2. Physical random access channel

The PRACH is the physical channel that initiates the communication exchange
with the eNodeB. Based on the sequences sent through this channel, the eNodeB is
able to compute the time it takes for the signal to travel from the user equipment
(UE) to it, identifying and correcting this time delay before establishing a data
packet connection. In order to establish a connection with the eNodeB, the UE starts
the random access procedure by transmitting the random access sequence (also
known as preamble) through the PRACH. The PRACH preamble is made up of a
cyclic prefix and a preamble part as presented in Table 5.7.1-1 of [7]. This preamble
is orthogonal to other uplink user data to allow the eNodeB do differentiate each
UE. The subcarrier spacing for the PRACH is 1.25 KHz for formats 0 to 3 and 7.5
KHz for format 4. See example in Figure 1. Formats 0 to 3 are used for frame
structure type 1, i.e. frequency division duplexing (FDD), and Format 4 is used for
the frame structure type 2, i.e. time division duplexing (TDD) only [3]. As will be
discussed later, the PRACH can be positioned at different frequency locations, i.e.
RBs, depending on a parameter configured by higher layers. Figure 1 shows an
example of a possible PRACH’s frequency-domain location.

Prime-length Zadoff-Chu (ZC) sequences are employed as random access pre-
ambles in LTE and LTE-A systems due to their constant amplitude zero autocorre-
lation waveform (CAZAC) properties, i.e. all samples of a ZC sequence are located
on the unit circle (unitary magnitude), and their autocorrelation values are equal
to zero for all time-lags different from zero [9, 10]. These properties turn ZC
sequences into very useful preambles for channel estimation, time synchronisation
and improved performance of the detection of PRACH preambles [4]. ZC sequences
transmitted through the PRACH channel present the form defined by Eq. (1) [7]:

zu nð Þ ¼ exp
�jπun nþ 1ð Þ

NZC

� �
, 0≤ n≤NZC � 1, (1)

where u is a positive integer known as ZC sequence index, n is the time index
andNZC is the length of the ZC sequence, which for FDD systems is equal to 839 [7].
Random access preambles with zero correlation zones are defined from the uth
root ZC sequence.

This sequence length, NZC, corresponds to approximately 69.92 physical uplink
shared channel (PUSCH) subcarriers in each SC-FDMA symbol and offers a band

Figure 1.
Example of physical random access channel (PRACH) format 0.

59

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

8 � 8 for DL), carrier aggregation, improvement of the performance at cell edge by
supporting enhanced intercell interference coordination (eICIC) and relay nodes
(RN) and uplink access enhancements such as simultaneous data and control infor-
mation (physical uplink shared channel (PUSCH) and physical uplink control
channel (PUCCH)) transmissions and clustered single-carrier frequency-division
multiple access (SC-FDMA) [3].

In LTE and LTE-A, uplink physical random access channel (PRACH) is used
for initial access requests from the user equipment (UE) to the evolved base
station (eNodeB) and to obtain time synchronisation [3, 4]. In case of a need to
access the network, a UE requests access by transmitting a random access (RA)
preamble through PRACH [5]. The RA preamble is then detected by the PRACH
receiver at eNodeB side, which estimates both the ID of the transmitted
preamble and the propagation delay between UE and eNodeB. Then, the UE is
time-synchronised according to a time alignment (TA) value (derived from the
propagation delay estimate) transmitted from the eNodeB before the uplink
transmission [6].

PRACH transmission opportunity is set by higher layers [7] and determines the
frequency-domain location of the random access preamble within the physical
resource blocks (RB). In this way, at eNodeB side, a fundamental operation before
any attempt to detect random access preambles takes place is the extraction of
relevant preamble signals through a time-domain frequency shift operation. This
operation translates the PRACH signal from the frequency-domain location set by
higher layers back to baseband so that preamble detection can be totally carried out
in baseband [4].

This paper is an extension of a previous conference paper [8]. Differently
from [8], where we provided only some very superficial aspects of the proposed
algorithm and architecture, the current paper presents a meticulous analysis on its
design and implementation aspects. Therefore, the main contributions of the
current paper are (i) the design of a low computational complexity time-domain
frequency shifter algorithm and hardware architecture to be employed in
the PRACH receiver at eNodeB side; (ii) a thorough analysis of design and
implementation details; (iii) discussion of the computational complexity of the
proposed architecture in terms of FPGA resource utilisation and speed; and
(iv) careful analysis of the implementation results considering spur suppression, i.e.
spurious-free dynamic range (SFDR), signal-to-noise ratio (SNR), probabilities
of correct and error detection and average error between time-domain frequency
shift operations carried out by a floating-point model, referred here as Golden
Model (GM), and by the fixed-point FPGA implementation of the proposed
architecture.

This paper contributes with a method and architecture optimised and tested for
reduced complexity on a Xilinx Virtex-6 LX240T FPGA device. Results show that
the architecture presents spur suppression better than 62 dB and when it is
employed in the PRACH receiver, the probability of correct detection achieved by
the receiver is greater than 99% at a SNR of �21 dB.

The remainder of the paper is organised as follows. In Section 2 we offer some
background on the physical random access channel and its features. Section 3 pre-
sents an efficient algorithm for a time-domain frequency shifter. Section 4 gives
important practical considerations on the implementation of the proposed
algorithm as well as detailed description of the units composing the main -
architecture. Test methodology, simulation and implementation results are then
presented in Section 5. Finally, Section 6 provides some concluding remarks.

58

Field Programmable Gate Arrays (FPGAs) II

2. Physical random access channel

The PRACH is the physical channel that initiates the communication exchange
with the eNodeB. Based on the sequences sent through this channel, the eNodeB is
able to compute the time it takes for the signal to travel from the user equipment
(UE) to it, identifying and correcting this time delay before establishing a data
packet connection. In order to establish a connection with the eNodeB, the UE starts
the random access procedure by transmitting the random access sequence (also
known as preamble) through the PRACH. The PRACH preamble is made up of a
cyclic prefix and a preamble part as presented in Table 5.7.1-1 of [7]. This preamble
is orthogonal to other uplink user data to allow the eNodeB do differentiate each
UE. The subcarrier spacing for the PRACH is 1.25 KHz for formats 0 to 3 and 7.5
KHz for format 4. See example in Figure 1. Formats 0 to 3 are used for frame
structure type 1, i.e. frequency division duplexing (FDD), and Format 4 is used for
the frame structure type 2, i.e. time division duplexing (TDD) only [3]. As will be
discussed later, the PRACH can be positioned at different frequency locations, i.e.
RBs, depending on a parameter configured by higher layers. Figure 1 shows an
example of a possible PRACH’s frequency-domain location.

Prime-length Zadoff-Chu (ZC) sequences are employed as random access pre-
ambles in LTE and LTE-A systems due to their constant amplitude zero autocorre-
lation waveform (CAZAC) properties, i.e. all samples of a ZC sequence are located
on the unit circle (unitary magnitude), and their autocorrelation values are equal
to zero for all time-lags different from zero [9, 10]. These properties turn ZC
sequences into very useful preambles for channel estimation, time synchronisation
and improved performance of the detection of PRACH preambles [4]. ZC sequences
transmitted through the PRACH channel present the form defined by Eq. (1) [7]:

zu nð Þ ¼ exp
�jπun nþ 1ð Þ

NZC

� �
, 0≤ n≤NZC � 1, (1)

where u is a positive integer known as ZC sequence index, n is the time index
andNZC is the length of the ZC sequence, which for FDD systems is equal to 839 [7].
Random access preambles with zero correlation zones are defined from the uth
root ZC sequence.

This sequence length, NZC, corresponds to approximately 69.92 physical uplink
shared channel (PUSCH) subcarriers in each SC-FDMA symbol and offers a band

Figure 1.
Example of physical random access channel (PRACH) format 0.

59

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

protection of 72 � 69.92 = 2.08 PUSCH subcarriers, which corresponds to approxi-
mately one PUSCH subcarrier protection on each side of the preamble [7].

PUSCH subcarriers are spaced 15 KHz apart from each other.
The PRACH occupies a bandwidth of 1.08 MHz that is equivalent to six resource

blocks (RB). Differently from other uplink channels, PRACH uses a subcarrier
spacing of 1250 Hz for preamble formats 0 to 3 [7]. The ZC sequence is specifically
positioned at the centre of the 1.08 MHz bandwidth, i.e. at the centre of the block of
864 available PRACH subcarriers, so that there is a guard band of 15.625 KHz on
each side of the preamble, which corresponds to 12.5 null PRACH subcarriers. These
guard bands are added to PRACH preamble edges in order to minimise interference
from PUSCH. Figure 1 depicts the PRACH preamble mapping according to what
was just exposed.

The PRACH sequence, which for formats 0 and 1 is 800 us long, is created
by cyclically shifting a root ZC sequence of prime-length NZC, defined as in
Eq. (1). Random access preambles with zero correlation zones of length NCS � 1
are generated by applying cyclic shifts to the uth root ZC sequence, according to
Eq. (2):

xu,v nð Þ ¼ xu nþ Cvð Þ mod NZCð Þ, (2)

where v is the sequence index and Cv is the cyclic shift applied to the root ZC
sequence and calculated as Cv = vNCS for unrestricted sets [7]. The parameter NCS

gives the fixed length of the cyclic shift. All the possible values for these parameters
are defined in [7].

2.1 PRACH receiver

In the literature there are two approaches for PRACH receivers, the full fre-
quency domain and the hybrid time/frequency domain [4, 11]. Although the full
frequency-domain approach provides the optimal detection performance, this
approach uses considerably large size discrete Fourier transform (DFT), to be more

Figure 2.
Architecture of a hybrid time-/frequency-domain PRACH receiver.

60

Field Programmable Gate Arrays (FPGAs) II

precise a 24576-point DFT. On the other hand, the hybrid time-/frequency-domain
approach uses FFT/IFFT blocks of the same size, i.e. 2048-point FFT when the
decimation factor adopted is 12. Thus, the hybrid time/frequency domain substan-
tially reduces the complexity of the hardware implementation. Therefore, in order
to reduce the implementation complexity of the PRACH receiver, we adopt the
hybrid time-/frequency-domain approach, which results in more practical
implementations [4]. Figure 2 depicts the PRACH receiver architecture
implemented and being used in our L1 solution.

The received signal, i.e. possible random access preamble signal, is first
preprocessed in time domain and then transformed into the frequency domain by
an FFT block, multiplied by a Fourier transformed root Zadoff-Chu (ZC)
sequence, and then the resulting sequence is searched for peaks above a predefined
threshold which is calculated to produce a given probability of false alarm.
Figure 2 depicts the main components of the PRACH receiver at eNodeB side (for
further details refer to [12]). The first block in Figure 2 is the cyclic prefix
remover, which discards all samples from the CP part of the preamble. Next, the
PRACH pass-band signal is shifted to baseband by multiplying it with a complex
exponential. In the sequence, the baseband signal is fed into a decimator block,
which decimates the signal by a factor of 12; now instead of 24,576 samples in the
case of format 0, we have only 2048 samples. The FFT block is responsible for
transforming the SC-FDMA symbols from time domain into frequency domain.
Next, the subcarrier demapping module extracts the RACH preamble sequence
from the correct FFT bins. Then, the output of subcarrier demapping module is
multiplied by the locally stored root ZC preamble, and then, the result of the
multiplication is fed into the zero-padding module. Finally, the IFFT block is used
to produce the cross-correlation between the root ZC sequence and the received
preamble signal. All samples coming out of the IFFT block have their square
modulus calculated producing what is known as power delay profile (PDP) sam-
ples. Finally, the preamble detection block employs the PDP samples to estimate
the noise power, set a detection threshold and then decide whether a preamble is
present or not. As an output of the detection process, this block reports to the
MAC layer all detected preambles and its respective time advance (TA) estimates.
For further information on this receiver architecture and detection algorithm,
refer to [4, 12].

2.2 Preamble format

The PRACH preamble, illustrated in Figure 3, consists of three parts: a cyclic
prefix (CP) with length TCP, which is added to the preamble in order to effectively
eliminate intersymbol interference (ISI) and a signature or sequence part of length

Figure 3.
Random access preamble format 0.

61

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

protection of 72 � 69.92 = 2.08 PUSCH subcarriers, which corresponds to approxi-
mately one PUSCH subcarrier protection on each side of the preamble [7].

PUSCH subcarriers are spaced 15 KHz apart from each other.
The PRACH occupies a bandwidth of 1.08 MHz that is equivalent to six resource

blocks (RB). Differently from other uplink channels, PRACH uses a subcarrier
spacing of 1250 Hz for preamble formats 0 to 3 [7]. The ZC sequence is specifically
positioned at the centre of the 1.08 MHz bandwidth, i.e. at the centre of the block of
864 available PRACH subcarriers, so that there is a guard band of 15.625 KHz on
each side of the preamble, which corresponds to 12.5 null PRACH subcarriers. These
guard bands are added to PRACH preamble edges in order to minimise interference
from PUSCH. Figure 1 depicts the PRACH preamble mapping according to what
was just exposed.

The PRACH sequence, which for formats 0 and 1 is 800 us long, is created
by cyclically shifting a root ZC sequence of prime-length NZC, defined as in
Eq. (1). Random access preambles with zero correlation zones of length NCS � 1
are generated by applying cyclic shifts to the uth root ZC sequence, according to
Eq. (2):

xu,v nð Þ ¼ xu nþ Cvð Þ mod NZCð Þ, (2)

where v is the sequence index and Cv is the cyclic shift applied to the root ZC
sequence and calculated as Cv = vNCS for unrestricted sets [7]. The parameter NCS

gives the fixed length of the cyclic shift. All the possible values for these parameters
are defined in [7].

2.1 PRACH receiver

In the literature there are two approaches for PRACH receivers, the full fre-
quency domain and the hybrid time/frequency domain [4, 11]. Although the full
frequency-domain approach provides the optimal detection performance, this
approach uses considerably large size discrete Fourier transform (DFT), to be more

Figure 2.
Architecture of a hybrid time-/frequency-domain PRACH receiver.

60

Field Programmable Gate Arrays (FPGAs) II

precise a 24576-point DFT. On the other hand, the hybrid time-/frequency-domain
approach uses FFT/IFFT blocks of the same size, i.e. 2048-point FFT when the
decimation factor adopted is 12. Thus, the hybrid time/frequency domain substan-
tially reduces the complexity of the hardware implementation. Therefore, in order
to reduce the implementation complexity of the PRACH receiver, we adopt the
hybrid time-/frequency-domain approach, which results in more practical
implementations [4]. Figure 2 depicts the PRACH receiver architecture
implemented and being used in our L1 solution.

The received signal, i.e. possible random access preamble signal, is first
preprocessed in time domain and then transformed into the frequency domain by
an FFT block, multiplied by a Fourier transformed root Zadoff-Chu (ZC)
sequence, and then the resulting sequence is searched for peaks above a predefined
threshold which is calculated to produce a given probability of false alarm.
Figure 2 depicts the main components of the PRACH receiver at eNodeB side (for
further details refer to [12]). The first block in Figure 2 is the cyclic prefix
remover, which discards all samples from the CP part of the preamble. Next, the
PRACH pass-band signal is shifted to baseband by multiplying it with a complex
exponential. In the sequence, the baseband signal is fed into a decimator block,
which decimates the signal by a factor of 12; now instead of 24,576 samples in the
case of format 0, we have only 2048 samples. The FFT block is responsible for
transforming the SC-FDMA symbols from time domain into frequency domain.
Next, the subcarrier demapping module extracts the RACH preamble sequence
from the correct FFT bins. Then, the output of subcarrier demapping module is
multiplied by the locally stored root ZC preamble, and then, the result of the
multiplication is fed into the zero-padding module. Finally, the IFFT block is used
to produce the cross-correlation between the root ZC sequence and the received
preamble signal. All samples coming out of the IFFT block have their square
modulus calculated producing what is known as power delay profile (PDP) sam-
ples. Finally, the preamble detection block employs the PDP samples to estimate
the noise power, set a detection threshold and then decide whether a preamble is
present or not. As an output of the detection process, this block reports to the
MAC layer all detected preambles and its respective time advance (TA) estimates.
For further information on this receiver architecture and detection algorithm,
refer to [4, 12].

2.2 Preamble format

The PRACH preamble, illustrated in Figure 3, consists of three parts: a cyclic
prefix (CP) with length TCP, which is added to the preamble in order to effectively
eliminate intersymbol interference (ISI) and a signature or sequence part of length

Figure 3.
Random access preamble format 0.

61

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

TPRE and of a guard period TGP which is an unused portion of time at the end of the
preamble used for absorbing the propagation delay. The standard defines four
different preamble formats for FDD operation [7]. Parameters TPRE,TCP and TGP

are set according to the chosen preamble format.
Figure 3 shows the parameter values for format 0, and the values for all formats

are listed in Table 1 where Ts is known as the standard time unit which is used
throughout the LTE specification documents. It is defined as Ts = 1/(15,000� 2048)
seconds, which corresponds to a sampling rate of 30.72 MHz.

2.3 PRACH preamble signal

The PRACH preamble signal s(t) can be defined as follows [7]:

s tð Þ ¼ βPRACH
XNZC�1

k¼0

XNZC�1

n¼0
xu,v nð Þ: exp � j2πnk

NZC

� �

: exp j2π½ ½kþ φþ K k0 þ 1=2ð Þ Δf RA t� TCPð Þ� �
,

(3)

where 0 ≤ t < TPRE + TCP, βPRACH is an amplitude scaling factor and k0 ¼
nRAPRB NRB

SC �NUL
RBN

RB
SC=2. The location in the frequency domain is controlled by the

parameter nRAPRB also known as nRAPRBoffset
(it is the input frequency_offset_i of the time-

domain frequency shifter module) expressed as a resource block number configure
by higher layers and fulfilling 0≤ nRAPRB ≤NUL

RB � 6; this inequality is only valid for
formats 0, 1, 2 and 3, i.e. FDD. The factor K = Δf/ΔfRA accounts for the ratio of
subcarrier spacing between the PUSCH and PRACH, and it is equal to 12 as Δf = 15
KHz and ΔfRA = 1250 Hz. The variable φ (equal to 7 for LTE FDD) defines a fixed
offset determining the frequency-domain location of the random access preamble
within the resource blocks. NUL

RB is the uplink system bandwidth (in RBs), andNBB
SC is

the number of subcarriers per RB, i.e. 12.
By noticing that the inner summation is the DFT of xu,v(n) of lengthNZC, we can

rewrite Eq. (3) in the following way:

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ: exp j2πkΔf RA t� TCPð Þ� �

: exp j2π φþ K k0 þ 1=2ð Þð ÞΔf RA t� TCPð Þ� �
:

(4)

Again, by noticing that the first part of the summation in Eq. (4) is a time shift
applied to the DFT of xu,v(n), we can rewrite that first part of the equation as
follows by replacing t by Δt, which is referred in [7] as the standard time unit Ts,
i.e. the sampling rate:

Preamble format TCP TPRE TGP

0 3168.Ts 24576.Ts 2976

1 21024.Ts 24576.Ts 15,840

2 6240.Ts 2.24576.Ts 6048

3 21024.Ts 2.24576.Ts 21,984

Table 1.
Random access preamble formats.

62

Field Programmable Gate Arrays (FPGAs) II

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ

: exp j2πkΔf RAΔt n�NCPð Þ� �
,

(5)

where NCP is the number of samples corresponding to the CP interval as shown
in Figure 3 and ΔfRAΔt = 1/NPRE (where for formats 0 ad 1, NPRE = 24,576).

Then rewriting Eq. (5), we have

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ: exp j2πk n�NCPð Þ

NPRE

� �

¼ βPRACH:x’u,v n�NCPð Þ:
(6)

Therefore as it can be easily seen, the result of the above equation is nothing
more than the application of the DFT’s time-shift theorem. It is also easy to see
that this equation is the IDFT of Xu,v(k) with length NPRE. With that in mind,
Eq. (4) can be rewritten as

s tð Þ ¼ βPRACH:x
,
u,v n�NCPð Þ

: exp
j2π φþ K k0 þ 1=2ð Þð Þ n�NCPð Þ

NPRE

� �
:

(7)

Eq. (4) can be reorganised in the following way:

s tð Þ ¼ βPRACH: exp �j2πNCP φþ K k0 þ 1=2ð Þð Þ
NPRE

� �

� x,u,v n�NCPð Þ: exp j2πn φþ K k0 þ 1=2ð Þð Þ
NPRE

� �� �
�

(8)

The part of Eq. (8) between curly braces represents a circular frequency shift u, v
applied to x0u,v (n � NCP), i.e.

x,u,v n�NCPð Þ: exp j2πnm
NPRE

� �
$DFT

xu,v K �mð Þ, (9)

where m is the frequency shift applied to the PRACH signal before it is trans-
mitted and it is given by the following equation

m ¼ φþ K k0 þ 1=2ð Þ: (10)

Once we are only dealing with FDD, Eq. (10) can be further simplified as

m ¼ 13þ 144nRAPRB � 72NUL
RB : (11)

Therefore, at the PRACH receiver side, after removing CP and GP, the preamble
is still shifted in frequency domain by an offset factor given by m. For further
processing, it is necessary to convert the shifted preamble into baseband. This
conversion is performed by the time-domain frequency shift module (see Figure 2),
which multiplies the received preamble by the conjugate of the complex exponen-
tial term given in Eq. (9).

63

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

TPRE and of a guard period TGP which is an unused portion of time at the end of the
preamble used for absorbing the propagation delay. The standard defines four
different preamble formats for FDD operation [7]. Parameters TPRE,TCP and TGP

are set according to the chosen preamble format.
Figure 3 shows the parameter values for format 0, and the values for all formats

are listed in Table 1 where Ts is known as the standard time unit which is used
throughout the LTE specification documents. It is defined as Ts = 1/(15,000� 2048)
seconds, which corresponds to a sampling rate of 30.72 MHz.

2.3 PRACH preamble signal

The PRACH preamble signal s(t) can be defined as follows [7]:

s tð Þ ¼ βPRACH
XNZC�1

k¼0

XNZC�1

n¼0
xu,v nð Þ: exp � j2πnk

NZC

� �

: exp j2π½ ½kþ φþ K k0 þ 1=2ð Þ Δf RA t� TCPð Þ� �
,

(3)

where 0 ≤ t < TPRE + TCP, βPRACH is an amplitude scaling factor and k0 ¼
nRAPRB NRB

SC �NUL
RBN

RB
SC=2. The location in the frequency domain is controlled by the

parameter nRAPRB also known as nRAPRBoffset
(it is the input frequency_offset_i of the time-

domain frequency shifter module) expressed as a resource block number configure
by higher layers and fulfilling 0≤ nRAPRB ≤NUL

RB � 6; this inequality is only valid for
formats 0, 1, 2 and 3, i.e. FDD. The factor K = Δf/ΔfRA accounts for the ratio of
subcarrier spacing between the PUSCH and PRACH, and it is equal to 12 as Δf = 15
KHz and ΔfRA = 1250 Hz. The variable φ (equal to 7 for LTE FDD) defines a fixed
offset determining the frequency-domain location of the random access preamble
within the resource blocks. NUL

RB is the uplink system bandwidth (in RBs), andNBB
SC is

the number of subcarriers per RB, i.e. 12.
By noticing that the inner summation is the DFT of xu,v(n) of lengthNZC, we can

rewrite Eq. (3) in the following way:

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ: exp j2πkΔf RA t� TCPð Þ� �

: exp j2π φþ K k0 þ 1=2ð Þð ÞΔf RA t� TCPð Þ� �
:

(4)

Again, by noticing that the first part of the summation in Eq. (4) is a time shift
applied to the DFT of xu,v(n), we can rewrite that first part of the equation as
follows by replacing t by Δt, which is referred in [7] as the standard time unit Ts,
i.e. the sampling rate:

Preamble format TCP TPRE TGP

0 3168.Ts 24576.Ts 2976

1 21024.Ts 24576.Ts 15,840

2 6240.Ts 2.24576.Ts 6048

3 21024.Ts 2.24576.Ts 21,984

Table 1.
Random access preamble formats.

62

Field Programmable Gate Arrays (FPGAs) II

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ

: exp j2πkΔf RAΔt n�NCPð Þ� �
,

(5)

where NCP is the number of samples corresponding to the CP interval as shown
in Figure 3 and ΔfRAΔt = 1/NPRE (where for formats 0 ad 1, NPRE = 24,576).

Then rewriting Eq. (5), we have

s tð Þ ¼ βPRACH
XNZC�1

k¼0
Xu,v kð Þ: exp j2πk n�NCPð Þ

NPRE

� �

¼ βPRACH:x’u,v n�NCPð Þ:
(6)

Therefore as it can be easily seen, the result of the above equation is nothing
more than the application of the DFT’s time-shift theorem. It is also easy to see
that this equation is the IDFT of Xu,v(k) with length NPRE. With that in mind,
Eq. (4) can be rewritten as

s tð Þ ¼ βPRACH:x
,
u,v n�NCPð Þ

: exp
j2π φþ K k0 þ 1=2ð Þð Þ n�NCPð Þ

NPRE

� �
:

(7)

Eq. (4) can be reorganised in the following way:

s tð Þ ¼ βPRACH: exp �j2πNCP φþ K k0 þ 1=2ð Þð Þ
NPRE

� �

� x,u,v n�NCPð Þ: exp j2πn φþ K k0 þ 1=2ð Þð Þ
NPRE

� �� �
�

(8)

The part of Eq. (8) between curly braces represents a circular frequency shift u, v
applied to x0u,v (n � NCP), i.e.

x,u,v n�NCPð Þ: exp j2πnm
NPRE

� �
$DFT

xu,v K �mð Þ, (9)

where m is the frequency shift applied to the PRACH signal before it is trans-
mitted and it is given by the following equation

m ¼ φþ K k0 þ 1=2ð Þ: (10)

Once we are only dealing with FDD, Eq. (10) can be further simplified as

m ¼ 13þ 144nRAPRB � 72NUL
RB : (11)

Therefore, at the PRACH receiver side, after removing CP and GP, the preamble
is still shifted in frequency domain by an offset factor given by m. For further
processing, it is necessary to convert the shifted preamble into baseband. This
conversion is performed by the time-domain frequency shift module (see Figure 2),
which multiplies the received preamble by the conjugate of the complex exponen-
tial term given in Eq. (9).

63

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

3. Efficient algorithm of a time-domain frequency shifter

In this section, we present an efficient algorithm used to apply frequency-
domain shifts to random access preamble signals in time domain (i.e. without the
need to convert them to the frequency domain) through the use of a customised
numerically controlled oscillator (NCO) and a complex multiplier. We also discuss
the advantages presented by the proposed algorithm.

3.1 Numerically controlled oscillator

Numerically controlled oscillators (NCO) are important components in many
digital communication systems. They are generally employed in quadrature
synthesisers, which are used for constructing digital down- and upconverters and
demodulators and here for time-domain frequency shifters. A very common
method for creating digital complex or real valued sinusoid signals uses a lookup
table (LUT) approach [13]. In this approach, a LUT saves into memory digital
samples of a sinusoid signal.

A digital integrator is then employed to compute the correct phase arguments,
which are mapped by the LUT to the desired output sinusoid samples. The integra-
tor computes a phase slope that is mapped to a sinusoid (possibly complex) by the
LUT. This value is presented to the address port of the LUT that performs the
mapping from phase space to time [14].

A LUT usually saves into memory uniformly spaced samples of sine and cosine
waveforms. This set of samples comprises a single cycle of a prototype complex
sinusoid waveform with length N ¼ 2BΘ nð Þ and consists of specific values of the
argument Θ(n) of sinusoid waveform, as defined by Eq. (12).

Θ nð Þ ¼ n
2π
N

, (12)

where n is the index of the time sample and BΘ(n) is the number of bits employed
in the phase accumulator which is calculated as shown in Eq. (13):

BΘ nð Þ ¼ log 2
f clk
Δf

� �
, (13)

where �d e denotes the ceiling operator, fclk is the system clock frequency and Δf is
the frequency resolution of the NCO. The frequency resolution, Δf, of the NCO is a
function of fclk and BΘ(n). Then Δf can be determined using the following equation:

Δf ¼ f clk
2BΘ nð Þ

¼ f clk
N

: (14)

The output frequency, fout, of the NCO waveform is a function of fclk, BΘ(n) and
the phase increment value Δθ. That is, fout = f(fclk, BΘ(n), Δθ) which is given in Hertz
and is defined in Eq. (15). The phase increment, Δθ, is an unsigned value which
defines the NCO output frequency:

f out ¼
f clkΔθ
2BΘ nð Þ

¼ f clkΔθ
N

: (15)

The accuracy of a signal sequence formed by reading samples of a sinusoid signal
from a LUT is influenced by both the amplitude and the phase of the quantization

64

Field Programmable Gate Arrays (FPGAs) II

process. The width and length of the LUT memory directly impact the resolution of
both the signal’s amplitude and phase angle. These resolution limits correspond to
time base jitter and amplitude quantization of the signal, respectively. Additionally,
these resolution limits add a white broadband noise floor and spectral modulation
lines to the spectrum of the generated signal sequence [15].

Quarter-wave symmetry in the basis waveform can be exploited to construct an
NCO that uses shortened tables. We will discuss this approach next.

3.2 Iterative time-domain frequency shift algorithm

The optimised algorithm representing the time-domain frequency shift opera-
tion is presented in Algorithm 1. It depicts the data processing executed by each one
of the units in Figure 4.

At first, during eNodeB’s initialisation, the parameters offset and bandwidth (bw)
are sent by higher layers to the PHY which in turn feeds them into the time-domain
frequency shifter module so that the discrete frequency shift calculator unit is able
to calculate the actual frequency shift to be applied to the received PRACH signal.
Whenever a subframe in which random access preamble transmissions are allowed
happens (it is set according to Table 5.7.1-2 in [7]) and after CP is removed, the
customised NCO unit generates a complex exponential signal with frequency set
earlier by the discrete frequency shift calculator unit and multiplies it sample by
sample with the incoming PRACH complex signal samples; note that it is a complex
multiplication once both are complex signals.

The procedure inputs are re_ad, im_ad, offset, bw and cos table where re_ad and
im_ad are the already CP removed quadrature samples coming from the analog to
digital converter (ADC), offset and bw are the configuration parameters coming
from higher layers and used to calculate the frequency shift necessary to translate
the pass-band preamble signal back to baseband and cos_table is the LUT containing
the samples of a sinusoid used to generate the complex exponential signal. The angle
mapper is the main part of the customised NCO algorithm shown in Algorithm 1
once it maps theta into a value of a 1/4-length cosine table.

In the light of what was presented in the previous section, we now discuss
Algorithm 1. The first part of the algorithm is responsible for calculating the discrete
frequency of the complex exponential signal that the NCOmust generate in order to

Figure 4.
Blocks composing the time-domain frequency shifter module.

65

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

3. Efficient algorithm of a time-domain frequency shifter

In this section, we present an efficient algorithm used to apply frequency-
domain shifts to random access preamble signals in time domain (i.e. without the
need to convert them to the frequency domain) through the use of a customised
numerically controlled oscillator (NCO) and a complex multiplier. We also discuss
the advantages presented by the proposed algorithm.

3.1 Numerically controlled oscillator

Numerically controlled oscillators (NCO) are important components in many
digital communication systems. They are generally employed in quadrature
synthesisers, which are used for constructing digital down- and upconverters and
demodulators and here for time-domain frequency shifters. A very common
method for creating digital complex or real valued sinusoid signals uses a lookup
table (LUT) approach [13]. In this approach, a LUT saves into memory digital
samples of a sinusoid signal.

A digital integrator is then employed to compute the correct phase arguments,
which are mapped by the LUT to the desired output sinusoid samples. The integra-
tor computes a phase slope that is mapped to a sinusoid (possibly complex) by the
LUT. This value is presented to the address port of the LUT that performs the
mapping from phase space to time [14].

A LUT usually saves into memory uniformly spaced samples of sine and cosine
waveforms. This set of samples comprises a single cycle of a prototype complex
sinusoid waveform with length N ¼ 2BΘ nð Þ and consists of specific values of the
argument Θ(n) of sinusoid waveform, as defined by Eq. (12).

Θ nð Þ ¼ n
2π
N

, (12)

where n is the index of the time sample and BΘ(n) is the number of bits employed
in the phase accumulator which is calculated as shown in Eq. (13):

BΘ nð Þ ¼ log 2
f clk
Δf

� �
, (13)

where �d e denotes the ceiling operator, fclk is the system clock frequency and Δf is
the frequency resolution of the NCO. The frequency resolution, Δf, of the NCO is a
function of fclk and BΘ(n). Then Δf can be determined using the following equation:

Δf ¼ f clk
2BΘ nð Þ

¼ f clk
N

: (14)

The output frequency, fout, of the NCO waveform is a function of fclk, BΘ(n) and
the phase increment value Δθ. That is, fout = f(fclk, BΘ(n), Δθ) which is given in Hertz
and is defined in Eq. (15). The phase increment, Δθ, is an unsigned value which
defines the NCO output frequency:

f out ¼
f clkΔθ
2BΘ nð Þ

¼ f clkΔθ
N

: (15)

The accuracy of a signal sequence formed by reading samples of a sinusoid signal
from a LUT is influenced by both the amplitude and the phase of the quantization

64

Field Programmable Gate Arrays (FPGAs) II

process. The width and length of the LUT memory directly impact the resolution of
both the signal’s amplitude and phase angle. These resolution limits correspond to
time base jitter and amplitude quantization of the signal, respectively. Additionally,
these resolution limits add a white broadband noise floor and spectral modulation
lines to the spectrum of the generated signal sequence [15].

Quarter-wave symmetry in the basis waveform can be exploited to construct an
NCO that uses shortened tables. We will discuss this approach next.

3.2 Iterative time-domain frequency shift algorithm

The optimised algorithm representing the time-domain frequency shift opera-
tion is presented in Algorithm 1. It depicts the data processing executed by each one
of the units in Figure 4.

At first, during eNodeB’s initialisation, the parameters offset and bandwidth (bw)
are sent by higher layers to the PHY which in turn feeds them into the time-domain
frequency shifter module so that the discrete frequency shift calculator unit is able
to calculate the actual frequency shift to be applied to the received PRACH signal.
Whenever a subframe in which random access preamble transmissions are allowed
happens (it is set according to Table 5.7.1-2 in [7]) and after CP is removed, the
customised NCO unit generates a complex exponential signal with frequency set
earlier by the discrete frequency shift calculator unit and multiplies it sample by
sample with the incoming PRACH complex signal samples; note that it is a complex
multiplication once both are complex signals.

The procedure inputs are re_ad, im_ad, offset, bw and cos table where re_ad and
im_ad are the already CP removed quadrature samples coming from the analog to
digital converter (ADC), offset and bw are the configuration parameters coming
from higher layers and used to calculate the frequency shift necessary to translate
the pass-band preamble signal back to baseband and cos_table is the LUT containing
the samples of a sinusoid used to generate the complex exponential signal. The angle
mapper is the main part of the customised NCO algorithm shown in Algorithm 1
once it maps theta into a value of a 1/4-length cosine table.

In the light of what was presented in the previous section, we now discuss
Algorithm 1. The first part of the algorithm is responsible for calculating the discrete
frequency of the complex exponential signal that the NCOmust generate in order to

Figure 4.
Blocks composing the time-domain frequency shifter module.

65

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

shift the received pass-band preamble signal to baseband. The discrete frequency
shift, m, is calculated as shown in Eq. (11). By remembering that ΔfRAΔt = 1/NPRE,
we can then rewrite the exponential part of Eq. (9) as

exp j2π mΔf RA
� �

t
� �

: (16)

By analysing the equation above, it is noticeable that all frequency shifts are
integer multiples of ΔfRA, and in this way we state that the output frequency of the
NCO must be fout = mΔfRA. Before proceeding we must define the values for some
parameters presented in the previous section. The frequency resolution Δf = ΔfRA =
1250 Hz, the system clock frequency fclk = 1/Ts = 30.72 MHz, the length, N ¼ 2BΘ nð Þ ,
of the single cycle of the basis complex waveform is made equal to 24,576 samples.
The cycle length can be expressed as N = fclk/ΔfRA.

Algorithm 1. Time-domain frequency shifter algorithm

1: procedure TDFREQSHIFTER(re_ad, im_ad, offset, bw, cos_table)
2:
3: ▷ ********* Discrete Frequency Shift Calculator *********
4: m = 13 + 144 ∗ offset � 72 ∗ bw;
5: ▷ —- Frequency Control Word (FCW) —-
6: delta_theta = m;
7: if m < 0 then
8: delta_theta = N + m;
9: end if
10:
11: ▷ ************* customised NCO Algorithm ************
12: theta = 0;
13: for i 0 to N � 1 do
14: ▷ —- Angle Mapper —-
15: cos_signal = 1;
16: sin_signal = 1;
17: if theta > 3 ∗ N/4 then
18: cos_idx = (N � theta);
19: else
20: if theta > N/2 then
21: cos_idx = (theta � (N/2));
22: cos_signal = �1;
23: else
24: if theta > N/4 then
25: cos_idx = ((N/2) � theta);
26: cos_signal = �1;
27: sin_signal = �1;
28: else
29: cos_idx = theta;
30: sin_signal = �1;
31: end if
32: end if
33: end if
34:
35: sin_idx = (N/4) – cos_idx;
36:
37: if cos_idx == N/4 then

66

Field Programmable Gate Arrays (FPGAs) II

38: cos_idx = ((N/4) � 1);
39: end if
40: if sin_idx == N/4 then
41: sin_idx = ((N/4) � 1);
42: end if
43:
44: ▷ —- Phase to Value Mapping (LUT) —-
45: re_nco(i) = cos_signal ∗ cos_table(cos_idx);
46: im_nco(i) = sin_signal ∗ cos_table(sin_idx);
47:
48: ▷ —- Phase Increment (Phase Accumulator) —-
49: theta = (theta + delta theta);
50: if theta >= N then
51: theta = (theta � N);
52: end if
53:
54: ▷*************** Complex Multiplier ***************
55: re_bb(i) = re_ad(i) ∗ re_nco(i) – im_ad(i) ∗ im_nco(i);
56: im_bb(i) = re_ad(i) ∗ im_nco(i) + im_ad(i) ∗ re_nco(i);
57: end for
58: return re_bb, im_bb
59: end procedure

Then, using the aforementioned definitions and rewriting Eq. (15) letting Δθ in
evidence, we have

Δθ ¼ f outN
f clk

¼ mΔf RAN
f clk

¼ m
mΔf RA
f clk

f clk
Δf RA

¼ m: (17)

In case m is negative, it is necessary to calculate its module in relation to NPRE

before feeding it into the customised NCO. Note in Algorithm 1 that the module
operation is simply done by adding NPRE to the negative value of m.

In a traditional NCO algorithm, i.e. one that adopts full-period waveforms, there
would be two main parts, namely, phase accumulator and LUT. In its simplest form,
there would be two LUTs storing samples of a cosine and a sine wave. However, this
approach generally results very large tables, which sometimes are impractical.
Therefore, for a practical implementation with reduced tables, the proposed algo-
rithm employs only one LUT exploiting quarter-wave symmetry in the basis wave-
form and the constant phase offset (pi/2) between sine and cosine signals. In this
approach we use one LUT with N/4 samples. However, when exploiting quarter-
wave symmetry, the mapping from phase space to time is not direct as in the
traditional NCO algorithm.

In order to exploit quarter-wave symmetry, an algorithm is needed to map the
angle values (phase space), θ, output by the phase accumulator into valid positions
of a shortened LUT containing the samples of a cosine signal. This task is performed
by the angle mapper part of Algorithm 1. The angle mapper maps angle values in
the second, third and fourth quadrants into the first one and tracks the signals that
must be applied to cosine and sine values. As can be seen in Algorithm 1, the indices
for generating the cosine signal are calculated first, and then a N/4-phase offset,
which is equivalent to a pi/2 offset, is applied to it in order to generate the sine
indexes. In order to store values ranging from 1 to 0, i.e. the first quadrant of a
cosine signal, (N/4) + 1 samples would be necessary where the last one is zero.

67

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

shift the received pass-band preamble signal to baseband. The discrete frequency
shift, m, is calculated as shown in Eq. (11). By remembering that ΔfRAΔt = 1/NPRE,
we can then rewrite the exponential part of Eq. (9) as

exp j2π mΔf RA
� �

t
� �

: (16)

By analysing the equation above, it is noticeable that all frequency shifts are
integer multiples of ΔfRA, and in this way we state that the output frequency of the
NCO must be fout = mΔfRA. Before proceeding we must define the values for some
parameters presented in the previous section. The frequency resolution Δf = ΔfRA =
1250 Hz, the system clock frequency fclk = 1/Ts = 30.72 MHz, the length, N ¼ 2BΘ nð Þ ,
of the single cycle of the basis complex waveform is made equal to 24,576 samples.
The cycle length can be expressed as N = fclk/ΔfRA.

Algorithm 1. Time-domain frequency shifter algorithm

1: procedure TDFREQSHIFTER(re_ad, im_ad, offset, bw, cos_table)
2:
3: ▷ ********* Discrete Frequency Shift Calculator *********
4: m = 13 + 144 ∗ offset � 72 ∗ bw;
5: ▷ —- Frequency Control Word (FCW) —-
6: delta_theta = m;
7: if m < 0 then
8: delta_theta = N + m;
9: end if
10:
11: ▷ ************* customised NCO Algorithm ************
12: theta = 0;
13: for i 0 to N � 1 do
14: ▷ —- Angle Mapper —-
15: cos_signal = 1;
16: sin_signal = 1;
17: if theta > 3 ∗ N/4 then
18: cos_idx = (N � theta);
19: else
20: if theta > N/2 then
21: cos_idx = (theta � (N/2));
22: cos_signal = �1;
23: else
24: if theta > N/4 then
25: cos_idx = ((N/2) � theta);
26: cos_signal = �1;
27: sin_signal = �1;
28: else
29: cos_idx = theta;
30: sin_signal = �1;
31: end if
32: end if
33: end if
34:
35: sin_idx = (N/4) – cos_idx;
36:
37: if cos_idx == N/4 then

66

Field Programmable Gate Arrays (FPGAs) II

38: cos_idx = ((N/4) � 1);
39: end if
40: if sin_idx == N/4 then
41: sin_idx = ((N/4) � 1);
42: end if
43:
44: ▷ —- Phase to Value Mapping (LUT) —-
45: re_nco(i) = cos_signal ∗ cos_table(cos_idx);
46: im_nco(i) = sin_signal ∗ cos_table(sin_idx);
47:
48: ▷ —- Phase Increment (Phase Accumulator) —-
49: theta = (theta + delta theta);
50: if theta >= N then
51: theta = (theta � N);
52: end if
53:
54: ▷*************** Complex Multiplier ***************
55: re_bb(i) = re_ad(i) ∗ re_nco(i) – im_ad(i) ∗ im_nco(i);
56: im_bb(i) = re_ad(i) ∗ im_nco(i) + im_ad(i) ∗ re_nco(i);
57: end for
58: return re_bb, im_bb
59: end procedure

Then, using the aforementioned definitions and rewriting Eq. (15) letting Δθ in
evidence, we have

Δθ ¼ f outN
f clk

¼ mΔf RAN
f clk

¼ m
mΔf RA
f clk

f clk
Δf RA

¼ m: (17)

In case m is negative, it is necessary to calculate its module in relation to NPRE

before feeding it into the customised NCO. Note in Algorithm 1 that the module
operation is simply done by adding NPRE to the negative value of m.

In a traditional NCO algorithm, i.e. one that adopts full-period waveforms, there
would be two main parts, namely, phase accumulator and LUT. In its simplest form,
there would be two LUTs storing samples of a cosine and a sine wave. However, this
approach generally results very large tables, which sometimes are impractical.
Therefore, for a practical implementation with reduced tables, the proposed algo-
rithm employs only one LUT exploiting quarter-wave symmetry in the basis wave-
form and the constant phase offset (pi/2) between sine and cosine signals. In this
approach we use one LUT with N/4 samples. However, when exploiting quarter-
wave symmetry, the mapping from phase space to time is not direct as in the
traditional NCO algorithm.

In order to exploit quarter-wave symmetry, an algorithm is needed to map the
angle values (phase space), θ, output by the phase accumulator into valid positions
of a shortened LUT containing the samples of a cosine signal. This task is performed
by the angle mapper part of Algorithm 1. The angle mapper maps angle values in
the second, third and fourth quadrants into the first one and tracks the signals that
must be applied to cosine and sine values. As can be seen in Algorithm 1, the indices
for generating the cosine signal are calculated first, and then a N/4-phase offset,
which is equivalent to a pi/2 offset, is applied to it in order to generate the sine
indexes. In order to store values ranging from 1 to 0, i.e. the first quadrant of a
cosine signal, (N/4) + 1 samples would be necessary where the last one is zero.

67

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

The zero value can be mapped to the value stored at the N/4-th position with
minimal degradation on SFDR performance. Therefore, as can be seen in the algo-
rithm, when either sine or cosine indexes are equal to N/4, their values are changed
to (N/4) � 1, which is the closest value to zero.

As the LUT only stores samples from the first quadrant of a cosine signal, i.e.
only positive values, the phase to value mapper part of the algorithm must apply the
correct signals (provided by the angle mapper) to the LUT’s output.

The phase increment (also referred as phase accumulator) part of the algorithm
acts as an integrator. It calculates at each iteration of the algorithm a new phase
value, θ, by using the phase increment Δθ value provided by the discrete frequency
shift calculator part. Once the angle mapper algorithm can only map values ranging
from 0 to N � 1 into the range 0 to (N/4) – 1, it is necessary to apply a module
operation in case the resulting phase value is equal or greater than N.

The module operation is easily performed by subtracting N from the phase
value. The last part of the algorithm multiplies sample by sample the generated
complex exponential signal by the ADC signal. That complex multiplication opera-
tion then translates the pass-band PRACH signal into baseband.

3.3 Advantage of the proposed algorithm

The main advantage of the proposed algorithm is the memory savings attained
by the use of a 1/4-length cosine table instead of storing in RAM each one of the 2N
possible samples of a complex exponential signal. Table 2 shows the memory
utilisation for some data widths if we were to store all the 2N samples (sine and
cosine waves) corresponding to one complete period of the basis complex expo-
nential waveform necessary to translate the received PRACH signal into baseband.
In Xilinx FPGAs, a block RAM (BRAM) is a dedicated, i.e. they cannot be used for
anything, but RAM, a two-port memory containing several kilobits of RAM. A
FPGA contains a limited number of these blocks. The configuration logical blocks
(CLB) in most of Xilinx FPGA contain a small RAM. They are called distributed
(LUT) RAM because they are distributed throughout the FPGA once they are part
of a CLB. This kind of RAM can normally store only a dozen bits. A reasonable rule
of thumb when designing with FPGAs is that if you need a lot of RAM, as is the case
here, you should use BRAMs; otherwise, the FPGA resources will be eaten up
implementing the RAM in distributed RAM. It is important to say that a Virtex-6
FPGA device has only 416 36 kb BRAMs which makes it a very precious resource
when implementing a large project as an L1 PHY, and in this way its usage must be
taken into account during planning and development. One alternative to decrease
the number of occupied BRAMs is the exploitation of quarter-wave symmetry in
the basis waveform. This alternative results in a customised NCO that employs a
shortened LUT, as can be seen in Table 3.

The fourth column in Table 3 shows the reduction of used BRAMs when
exploiting quarter-wave symmetry. As can be noticed, this approach results in a

Data width Size in kb No. of 36 kb BRAMs

8 384 11

12 576 16

16 768 22

24 1152 32

Table 2.
Memory utilisation when storing the full period of the complex exponential.

68

Field Programmable Gate Arrays (FPGAs) II

more area efficient implementation because the memory requirements are
minimised, i.e. fewer FPGA BRAMs are required. Therefore this approach saves on
valuable chip area and also reduces power consumption.

4. Implementation details

This section presents some discussions on implementation details of the pro-
posed architecture. It is suitable for implementation on devices that employ hard-
ware description language (HDL) as part of its design process such as field-
programmable gate arrays (FPGA) and application-specific integrated circuits
(ASIC). Figure 4 shows the hardware architecture of the time-domain frequency
shifter module. The architecture employs only one LUT and exploits quarter-wave
symmetry for shortened tables.

The proposed architecture works with two different system clocks. The first
clock, of 30.72 MHz, is used by the ADC unit and therefore dictates the rate the
complex multiplication is performed. The complex multiplier and phase to value
mapper modules are the only two modules running at this clock rate. The second
clock rate employed in the system is 61.44 MHz and is used so that two samples of
the complex exponential waveform can be read from the same LUT memory during
the period of one sample arriving from the ADC module. This dual system clock
scheme drastically reduces the amount of RAMmemory necessary for the system to
be implemented. All modules composing the proposed architecture run at this clock
rate, the complex multiplier module being the only exception.

The two input parameters, bandwidth and frequency_offset, are fed into the
module only when the eNodeB is being initialised. They can be considered static
parameters of eNodeB. The input signal config_present is asserted by higher layers
during the initialisation process to inform when the input parameter values are
valid.

The proposed architecture has to be informed through the ce_61MHz44 signal
when the sequence section of the RACH preamble starts so that it can be multiplied
by the local complex exponential, which is generated by the customised NCO
module. The signal ce_61MHz44 is set by the PRACH receiver module after it
removes (i.e. discards) the CP portion of the RACH preamble and has to stay in high
state level for the whole duration of the RACH sequence portion, e.g. in the case of
format 0, the signal ce_61MHz44 must remain in high state for 24,576 30.72 MHz
clock cycles, i.e. 2� 24,576, when considering the 61.44 MHz system clock rate. It is
important to highlight that some latency is expected once all modules have regis-
tered outputs, and therefore, this latency has to be taken into consideration by the
PRACH receiver module when setting the enable signal of the chip.

Another important characteristic of the proposed architecture is that it only
employs a total of four multipliers that are used by the complex multiplier module.
Moreover, the proposed architecture only uses plain add and bit-shift operations to

Data width Size in kb No. of 36 kb BRAMs Reduction in %

8 48 2 81.8

12 72 2 87.5

16 96 3 86.4

24 144 4 87.5

Table 3.
Memory utilisation when employing quarter-wave symmetry.

69

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

The zero value can be mapped to the value stored at the N/4-th position with
minimal degradation on SFDR performance. Therefore, as can be seen in the algo-
rithm, when either sine or cosine indexes are equal to N/4, their values are changed
to (N/4) � 1, which is the closest value to zero.

As the LUT only stores samples from the first quadrant of a cosine signal, i.e.
only positive values, the phase to value mapper part of the algorithm must apply the
correct signals (provided by the angle mapper) to the LUT’s output.

The phase increment (also referred as phase accumulator) part of the algorithm
acts as an integrator. It calculates at each iteration of the algorithm a new phase
value, θ, by using the phase increment Δθ value provided by the discrete frequency
shift calculator part. Once the angle mapper algorithm can only map values ranging
from 0 to N � 1 into the range 0 to (N/4) – 1, it is necessary to apply a module
operation in case the resulting phase value is equal or greater than N.

The module operation is easily performed by subtracting N from the phase
value. The last part of the algorithm multiplies sample by sample the generated
complex exponential signal by the ADC signal. That complex multiplication opera-
tion then translates the pass-band PRACH signal into baseband.

3.3 Advantage of the proposed algorithm

The main advantage of the proposed algorithm is the memory savings attained
by the use of a 1/4-length cosine table instead of storing in RAM each one of the 2N
possible samples of a complex exponential signal. Table 2 shows the memory
utilisation for some data widths if we were to store all the 2N samples (sine and
cosine waves) corresponding to one complete period of the basis complex expo-
nential waveform necessary to translate the received PRACH signal into baseband.
In Xilinx FPGAs, a block RAM (BRAM) is a dedicated, i.e. they cannot be used for
anything, but RAM, a two-port memory containing several kilobits of RAM. A
FPGA contains a limited number of these blocks. The configuration logical blocks
(CLB) in most of Xilinx FPGA contain a small RAM. They are called distributed
(LUT) RAM because they are distributed throughout the FPGA once they are part
of a CLB. This kind of RAM can normally store only a dozen bits. A reasonable rule
of thumb when designing with FPGAs is that if you need a lot of RAM, as is the case
here, you should use BRAMs; otherwise, the FPGA resources will be eaten up
implementing the RAM in distributed RAM. It is important to say that a Virtex-6
FPGA device has only 416 36 kb BRAMs which makes it a very precious resource
when implementing a large project as an L1 PHY, and in this way its usage must be
taken into account during planning and development. One alternative to decrease
the number of occupied BRAMs is the exploitation of quarter-wave symmetry in
the basis waveform. This alternative results in a customised NCO that employs a
shortened LUT, as can be seen in Table 3.

The fourth column in Table 3 shows the reduction of used BRAMs when
exploiting quarter-wave symmetry. As can be noticed, this approach results in a

Data width Size in kb No. of 36 kb BRAMs

8 384 11

12 576 16

16 768 22

24 1152 32

Table 2.
Memory utilisation when storing the full period of the complex exponential.

68

Field Programmable Gate Arrays (FPGAs) II

more area efficient implementation because the memory requirements are
minimised, i.e. fewer FPGA BRAMs are required. Therefore this approach saves on
valuable chip area and also reduces power consumption.

4. Implementation details

This section presents some discussions on implementation details of the pro-
posed architecture. It is suitable for implementation on devices that employ hard-
ware description language (HDL) as part of its design process such as field-
programmable gate arrays (FPGA) and application-specific integrated circuits
(ASIC). Figure 4 shows the hardware architecture of the time-domain frequency
shifter module. The architecture employs only one LUT and exploits quarter-wave
symmetry for shortened tables.

The proposed architecture works with two different system clocks. The first
clock, of 30.72 MHz, is used by the ADC unit and therefore dictates the rate the
complex multiplication is performed. The complex multiplier and phase to value
mapper modules are the only two modules running at this clock rate. The second
clock rate employed in the system is 61.44 MHz and is used so that two samples of
the complex exponential waveform can be read from the same LUT memory during
the period of one sample arriving from the ADC module. This dual system clock
scheme drastically reduces the amount of RAMmemory necessary for the system to
be implemented. All modules composing the proposed architecture run at this clock
rate, the complex multiplier module being the only exception.

The two input parameters, bandwidth and frequency_offset, are fed into the
module only when the eNodeB is being initialised. They can be considered static
parameters of eNodeB. The input signal config_present is asserted by higher layers
during the initialisation process to inform when the input parameter values are
valid.

The proposed architecture has to be informed through the ce_61MHz44 signal
when the sequence section of the RACH preamble starts so that it can be multiplied
by the local complex exponential, which is generated by the customised NCO
module. The signal ce_61MHz44 is set by the PRACH receiver module after it
removes (i.e. discards) the CP portion of the RACH preamble and has to stay in high
state level for the whole duration of the RACH sequence portion, e.g. in the case of
format 0, the signal ce_61MHz44 must remain in high state for 24,576 30.72 MHz
clock cycles, i.e. 2� 24,576, when considering the 61.44 MHz system clock rate. It is
important to highlight that some latency is expected once all modules have regis-
tered outputs, and therefore, this latency has to be taken into consideration by the
PRACH receiver module when setting the enable signal of the chip.

Another important characteristic of the proposed architecture is that it only
employs a total of four multipliers that are used by the complex multiplier module.
Moreover, the proposed architecture only uses plain add and bit-shift operations to

Data width Size in kb No. of 36 kb BRAMs Reduction in %

8 48 2 81.8

12 72 2 87.5

16 96 3 86.4

24 144 4 87.5

Table 3.
Memory utilisation when employing quarter-wave symmetry.

69

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

compute the value of trigonometric functions such as complex exponential
sequences, which turns it into a highly efficient hardware architecture in terms of
logical resource consumption.

Additionally, the proposed frequency shift architecture can have its inputs and
outputs entirely configured, i.e. the width of input and output signals can be set to
one of the following choices: 8, 12, 16 and 24 bits. In the case of our actual imple-
mentation, we employ an ADC with an output of 12 bits for each one of the
quadrature components, i.e. in-phase (I) and quadrature (Q) components, and it
has a fixed-point representation (Q-format) of Q12.11, i.e. 1 bit for the integer part
and 11 bits for the fractional part. The I and Q components computed by the
customised NCO module present the same fixed-point representation of the input
of the frequency shifter module. In relation to this particular point, after the com-
plex multiplication between the NCO and the ADC quadrature samples, which
requires the multiplication and subsequent addition of samples, the fixed-point
representation of the modules’ output is equal to Q25.22. Since the maximum
possible value generated by the complex multiplication operation is 2, the integer
part only needs 2 bits instead of 3 bits. Therefore, depending on the selected width
configuration, the fixed-point representation of the complex signal output by the
module can be configured to Q8.6, Q12.10, Q16.14 and Q24.22.

4.1 Discrete frequency shift calculator unit

Figure 5 depicts the proposed architecture for the discrete frequency shift cal-
culator module. This module is employed to compute the frequency shift, m, that
must be applied to the received PRACH signal sequence in order to translate it into a
baseband signal, i.e. a signal centred around 0 Hz. Therefore, in order to compute
such frequency shifts, the module implements Eq. (11). All multiplications involved
here are executed by bit-shifting the input values NUL

RB and nRAPRB by the constant
values �72 and 144, respectively, and then adding the result to the constant value
13. Before sending the value of m to the customised NCO module, it is necessary to
verify whether the resulting value is negative or not; if it is negative, then the
constant valueN has to be summed to the result value, which turnsm into a positive
value. It is done due to the fact that the phase increment module, which composes
the customised NCO module, only expects positive input values. As defined by
Eq. (17), the discrete frequency shift, m, is equal to Δθ, which is the necessary input
value for the customised NCO module to operate properly.

4.2 Customised numerically controlled oscillator

The customised numerically controlled module is composed of three blocks,
namely, phase increment, angle mapper and phase to value mapper, as can be seen

Figure 5.
Architecture of the discrete frequency shift calculator unit.

70

Field Programmable Gate Arrays (FPGAs) II

in Figure 4. The first two modules run at a system clock of 61.44 MHz, and the last
one runs at 30.72 and 61.44 MHz since it is the module in charge of reading both
quadrature components, I and Q, from the LUT memory inside one period of the
30.72 MHz system clock rate.

Figure 6 depicts the proposed architecture of the phase increment module. This
module is the implementation of a digital integrator, which computes the phase
argument, θ, sent to the angle mapper module. At each iteration, Δθ is added to θ,
which starts from a value equal to 0. If θ results in a value that is greater than N + 1,
then the constant value �N is added to it so that its value remains less than N and,
therefore, it can be correctly mapped into a valid phase argument value. The
procedure we have just described is nothing but the direct implementation of the
module operation, mod(θ, N). This module only produces a valid θ value when the
selection signal, sel, is set to high level. The sel signal is produced by a system clock
divisor that divides the 61.44 MHz system clock by 2, i.e. the module produces a
valid output value at a clock rate of 30.72 MHz. The sel signal is also generated by
the module in order to feed the phase to value mapper module. As Eq. (13) is equal
to N and it is not equal to a power of 2, the data width of the phase increment
module, BΘ(n), is ceiled, then resulting in a value with 15 bits.

Figure 7 shows the proposed architecture for the angle mapper module. This
module is in charge of translating the phase argument value, θ, which can vary in
the range between 0 and 2 ∗ π (i.e. from 0 to N) into a phase argument value inside
the first quadrant of the circle, i.e. a value in the range between 0 and pi/2 (i.e. from
0 andN/4). The output value of this module is the index of cosine waveform, which
is employed as an address value to access one of the N/4 values saved in the LUT
memory. In order to compute the index of the sine waveform, a constant phase
offset value equal to pi/2, i.e. N/4, has to be applied to the cosine index value. Since
the value corresponding to cos(π/2), i.e. 0, is not saved into the LUT memory,
whenever either cosine or sine index values are equal toN/4, then their index values
are modified to (N/4) � 1, which is the closest index value to 0.

The module is also responsible for keeping track of the signals (i.e. +/�) that
must be applied to the I and Q values at the output of the phase to value mapper
module. These signals translate the phase argument value, which are represented by
the sine and cosine index values, back to its original quadrant of the disc. At the
input of this module, the phase argument, θ, presents a databus width of 15 bits so
that it is able to access N samples stored in the LUT memory, i.e. all the four

Figure 6.
Architecture of the phase increment unit.

71

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

compute the value of trigonometric functions such as complex exponential
sequences, which turns it into a highly efficient hardware architecture in terms of
logical resource consumption.

Additionally, the proposed frequency shift architecture can have its inputs and
outputs entirely configured, i.e. the width of input and output signals can be set to
one of the following choices: 8, 12, 16 and 24 bits. In the case of our actual imple-
mentation, we employ an ADC with an output of 12 bits for each one of the
quadrature components, i.e. in-phase (I) and quadrature (Q) components, and it
has a fixed-point representation (Q-format) of Q12.11, i.e. 1 bit for the integer part
and 11 bits for the fractional part. The I and Q components computed by the
customised NCO module present the same fixed-point representation of the input
of the frequency shifter module. In relation to this particular point, after the com-
plex multiplication between the NCO and the ADC quadrature samples, which
requires the multiplication and subsequent addition of samples, the fixed-point
representation of the modules’ output is equal to Q25.22. Since the maximum
possible value generated by the complex multiplication operation is 2, the integer
part only needs 2 bits instead of 3 bits. Therefore, depending on the selected width
configuration, the fixed-point representation of the complex signal output by the
module can be configured to Q8.6, Q12.10, Q16.14 and Q24.22.

4.1 Discrete frequency shift calculator unit

Figure 5 depicts the proposed architecture for the discrete frequency shift cal-
culator module. This module is employed to compute the frequency shift, m, that
must be applied to the received PRACH signal sequence in order to translate it into a
baseband signal, i.e. a signal centred around 0 Hz. Therefore, in order to compute
such frequency shifts, the module implements Eq. (11). All multiplications involved
here are executed by bit-shifting the input values NUL

RB and nRAPRB by the constant
values �72 and 144, respectively, and then adding the result to the constant value
13. Before sending the value of m to the customised NCO module, it is necessary to
verify whether the resulting value is negative or not; if it is negative, then the
constant valueN has to be summed to the result value, which turnsm into a positive
value. It is done due to the fact that the phase increment module, which composes
the customised NCO module, only expects positive input values. As defined by
Eq. (17), the discrete frequency shift, m, is equal to Δθ, which is the necessary input
value for the customised NCO module to operate properly.

4.2 Customised numerically controlled oscillator

The customised numerically controlled module is composed of three blocks,
namely, phase increment, angle mapper and phase to value mapper, as can be seen

Figure 5.
Architecture of the discrete frequency shift calculator unit.

70

Field Programmable Gate Arrays (FPGAs) II

in Figure 4. The first two modules run at a system clock of 61.44 MHz, and the last
one runs at 30.72 and 61.44 MHz since it is the module in charge of reading both
quadrature components, I and Q, from the LUT memory inside one period of the
30.72 MHz system clock rate.

Figure 6 depicts the proposed architecture of the phase increment module. This
module is the implementation of a digital integrator, which computes the phase
argument, θ, sent to the angle mapper module. At each iteration, Δθ is added to θ,
which starts from a value equal to 0. If θ results in a value that is greater than N + 1,
then the constant value �N is added to it so that its value remains less than N and,
therefore, it can be correctly mapped into a valid phase argument value. The
procedure we have just described is nothing but the direct implementation of the
module operation, mod(θ, N). This module only produces a valid θ value when the
selection signal, sel, is set to high level. The sel signal is produced by a system clock
divisor that divides the 61.44 MHz system clock by 2, i.e. the module produces a
valid output value at a clock rate of 30.72 MHz. The sel signal is also generated by
the module in order to feed the phase to value mapper module. As Eq. (13) is equal
to N and it is not equal to a power of 2, the data width of the phase increment
module, BΘ(n), is ceiled, then resulting in a value with 15 bits.

Figure 7 shows the proposed architecture for the angle mapper module. This
module is in charge of translating the phase argument value, θ, which can vary in
the range between 0 and 2 ∗ π (i.e. from 0 to N) into a phase argument value inside
the first quadrant of the circle, i.e. a value in the range between 0 and pi/2 (i.e. from
0 andN/4). The output value of this module is the index of cosine waveform, which
is employed as an address value to access one of the N/4 values saved in the LUT
memory. In order to compute the index of the sine waveform, a constant phase
offset value equal to pi/2, i.e. N/4, has to be applied to the cosine index value. Since
the value corresponding to cos(π/2), i.e. 0, is not saved into the LUT memory,
whenever either cosine or sine index values are equal toN/4, then their index values
are modified to (N/4) � 1, which is the closest index value to 0.

The module is also responsible for keeping track of the signals (i.e. +/�) that
must be applied to the I and Q values at the output of the phase to value mapper
module. These signals translate the phase argument value, which are represented by
the sine and cosine index values, back to its original quadrant of the disc. At the
input of this module, the phase argument, θ, presents a databus width of 15 bits so
that it is able to access N samples stored in the LUT memory, i.e. all the four

Figure 6.
Architecture of the phase increment unit.

71

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

quadrants of the disc. Therefore, since the angle mapper module converts θ to the
first quadrant of the disc, its databus width can be decreased to 13 bits, which is the
number of bits used to access the N/4 samples of the first quadrant (i.e. quarter-
wave symmetry) and that are saved in the LUT memory. This module runs at a
clock rate of 61.44 MHz and outputs two new phase argument indexes, for the sine
and cosine waveforms, at a clock rate of 30.72 MHz once the phase argument θ is
sent to the module at that clock rate.

Figure 8 depicts the proposed architecture for the phase to value mapper mod-
ule, which is in charge of translating values from phase space to time domain. The
sine and cosine index values are employed as address values to access the correct
positions of the LUT memory. It is the LUT memory that executes the translation
from phase space to time domain. The LUT memory stores only 1/4, i.e. N/4,
samples of the cosine waveform signal employed as the basis waveform signal. The
sel signal selects whether the sine or cosine index value is employed to access the
LUT memory. As it is shown in Figure 8, the cosine index value is employed as the
address value when the sel signal is at low level and the sine index value is used
when it is at a high level.

Figure 7.
Architecture of the angle mapper unit.

Figure 8.
Architecture of the phase to value mapper unit.

72

Field Programmable Gate Arrays (FPGAs) II

Both sine and cosine index values remain constant for a cycle of the clock rate of
30.72 MHz. Since the LUT memory works at a clock rate of 61.44 MHz and both
index values are present at the same time at its input, it is possible to read two
samples inside one period of the clock rate of 30.72 MHz. Through the creation of a
delayed data path with the use of a register at the output of the LUT memory, it is
possible to redirect the I and Q sample components to two distinct data paths and
therefore generate the complex exponential sequence that is necessary to translate
the received PRACH preamble sequence into baseband. At this stage, the resulting
quadrature sequence signal is fully synchronised to the 61.44 MHz clock rate;
however, each quadrature pair of values lasts for one period of the 30.72 MHz clock
rate. This is explained by the two registers with the chip enable signal inputs set by
the sel signal that is located at the output of the multiplexers responsible for chang-
ing the signal of the quadrature components.

In order to convert the quadrature sample values to their original quadrants, the
sine and cosine signals created by the angle mapper module are applied to their
respective data paths. When due, the change of signal is easily executed through the
application of the complement of two operations to the sample value. Finally, it is
necessary to change the clock domain of the complex exponential signal sequence
since the ADC module works at a data rate of 30.72 � 106 samples per second. Even
though its samples last for the correct period, they are not synchronised to the 30.72
MHz clock rate. The simplest way to execute the clock domain crossing is to use two
different registers at the desired clock rate. As we work with complex signals, we
employ a pair of dual registers for each one of the quadrature component values. At
this stage, the resulting complex exponential sequence signal is totally ready to be
multiplied by the received PRACH preamble signal.

4.3 Complex multiplier unit

Figure 9 shows the proposed architecture for the complex multiplier module. A
complex multiplier is necessary to multiply the samples coming from both NCO and
ADC modules and perform the required frequency shift in time domain, once
samples coming from these modules are complex. The complex multiplier module,
which is also known as mixer, executes the multiplication of the ADC samples, i.e.
the received PRACH sequence signal, by the complex exponential signal created by

Figure 9.
Architecture of the complex multiplier unit.

73

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

quadrants of the disc. Therefore, since the angle mapper module converts θ to the
first quadrant of the disc, its databus width can be decreased to 13 bits, which is the
number of bits used to access the N/4 samples of the first quadrant (i.e. quarter-
wave symmetry) and that are saved in the LUT memory. This module runs at a
clock rate of 61.44 MHz and outputs two new phase argument indexes, for the sine
and cosine waveforms, at a clock rate of 30.72 MHz once the phase argument θ is
sent to the module at that clock rate.

Figure 8 depicts the proposed architecture for the phase to value mapper mod-
ule, which is in charge of translating values from phase space to time domain. The
sine and cosine index values are employed as address values to access the correct
positions of the LUT memory. It is the LUT memory that executes the translation
from phase space to time domain. The LUT memory stores only 1/4, i.e. N/4,
samples of the cosine waveform signal employed as the basis waveform signal. The
sel signal selects whether the sine or cosine index value is employed to access the
LUT memory. As it is shown in Figure 8, the cosine index value is employed as the
address value when the sel signal is at low level and the sine index value is used
when it is at a high level.

Figure 7.
Architecture of the angle mapper unit.

Figure 8.
Architecture of the phase to value mapper unit.

72

Field Programmable Gate Arrays (FPGAs) II

Both sine and cosine index values remain constant for a cycle of the clock rate of
30.72 MHz. Since the LUT memory works at a clock rate of 61.44 MHz and both
index values are present at the same time at its input, it is possible to read two
samples inside one period of the clock rate of 30.72 MHz. Through the creation of a
delayed data path with the use of a register at the output of the LUT memory, it is
possible to redirect the I and Q sample components to two distinct data paths and
therefore generate the complex exponential sequence that is necessary to translate
the received PRACH preamble sequence into baseband. At this stage, the resulting
quadrature sequence signal is fully synchronised to the 61.44 MHz clock rate;
however, each quadrature pair of values lasts for one period of the 30.72 MHz clock
rate. This is explained by the two registers with the chip enable signal inputs set by
the sel signal that is located at the output of the multiplexers responsible for chang-
ing the signal of the quadrature components.

In order to convert the quadrature sample values to their original quadrants, the
sine and cosine signals created by the angle mapper module are applied to their
respective data paths. When due, the change of signal is easily executed through the
application of the complement of two operations to the sample value. Finally, it is
necessary to change the clock domain of the complex exponential signal sequence
since the ADC module works at a data rate of 30.72 � 106 samples per second. Even
though its samples last for the correct period, they are not synchronised to the 30.72
MHz clock rate. The simplest way to execute the clock domain crossing is to use two
different registers at the desired clock rate. As we work with complex signals, we
employ a pair of dual registers for each one of the quadrature component values. At
this stage, the resulting complex exponential sequence signal is totally ready to be
multiplied by the received PRACH preamble signal.

4.3 Complex multiplier unit

Figure 9 shows the proposed architecture for the complex multiplier module. A
complex multiplier is necessary to multiply the samples coming from both NCO and
ADC modules and perform the required frequency shift in time domain, once
samples coming from these modules are complex. The complex multiplier module,
which is also known as mixer, executes the multiplication of the ADC samples, i.e.
the received PRACH sequence signal, by the complex exponential signal created by

Figure 9.
Architecture of the complex multiplier unit.

73

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

the customised NCO module. The multiplication of these two complex values, i.e.
a + jb and c + jd, results in the complex product defined by Eq. (18):

realþ j ∗ imag ¼ aþ j ∗ bð Þ ∗ cþ j ∗ dð Þ
¼ ac� bdð Þ þ j ∗ adþ bcð Þ: (18)

As can be noticed by analysing Eq. (18), the complex multiplication operation
needs two additions and four multiplications since a subtraction operation is con-
sidered as being an addition in complement of two. The complex multiplier modules
works at the clock rate of 30.72 MHz since it must always obey the data rate
determined by the ADC module.

5. Implementation and simulation results

In order to assess the efficiency of the customised NCO and time-domain fre-
quency shifter units proposed in this paper, some simulations were carried out. The
proposed time-domain frequency shifter architecture was developed in VHSIC
hardware description language (VHDL), and a corresponding bit-accurate Matlab
model, referred here as Golden Model (GM), was developed for verification. The
full design was targeted to a Xilinx Virtex-6 xc6vlx240t FPGA. The results
presented next are split into parts: the first one provides the simulation results for
the customised NCO architecture implementation, and the second part presents
the results regarding the implementation of the time-domain frequency shifter
architecture.

5.1 Customised numerically controlled oscillator

This section presents results regarding the customised NCO implementation.
The first simulation result, shown in Figure 10, compares floating-point precision
Matlab-generated complex exponential sequences with fixed-point precision
sequences generated by the device under test (DUT) along all possible discrete

Figure 10.
Average error between GM and DUT implementations of the customised NCO.

74

Field Programmable Gate Arrays (FPGAs) II

frequency shifts, m, and for some Q-formats. PRACH format 0 preambles were
considered for this and all other simulation results. Figure 11 presents the SFDR
variation of the implemented NCO unit, i.e. the DUT, along all possible discrete
frequency shifts, m, and for some Q-formats. SFDR is the power ratio between the
fundamental signal and the strongest spurious signal, i.e. the most prominent har-
monic, present at the output of the customised NCO. By analysing this result, it is
noticeable that the SFDR attained by the DUT is almost the same for formats Q24.23
and Q32.31. The SFDR values achieved by the DUT for formats Q24.23 and Q32.31
are 153.58 and 154.2 dB, respectively. These high SFDR values are due to the fact
that the phase increment bits are not truncated and all output frequencies, fout, are
integer multiples of the system clock frequency, fclk, which is the frequency used to
sample the basis waveform, therefore eliminating the spectral artefacts resultant
from phase jitter [15].

As an illustrative example of the performance presented by the customised
NCO, Figure 12 shows its power spectrum for some fixed-point formats with SFDR
indication for frequency shift, m, equal to 7187, i.e. 8,983,750 Hz. These results
clearly show the cleanliness achieved by the proposed customised NCO even for
format Q8.7. The noise floor for format Q24.23 is so small that it is imperceptible.

Figure 13 depicts the SNR variation of the customised NCO along all possible
discrete frequency shifts, m, and for some Q-formats. The SNR results are obtained
by the ratio between the signal average power and the noise average power.

5.2 Time-domain frequency shifter

This section presents results regarding the implementation of the time-domain
frequency shifter architecture. From this point on, we refer to the architecture
implementation as the DUT. This time a Matlab floating-point model (GM) of the
whole time-domain frequency shifter architecture is used to assess the performance
of the circuit.

Table 4 presents information regarding the resource usage of the proposed
architecture. It sums up the key results obtained after the implementation of the
proposed frequency shifter architecture on a given FPGA chip. The number of

Figure 11.
SFDR variation of the customised NCO.

75

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

the customised NCO module. The multiplication of these two complex values, i.e.
a + jb and c + jd, results in the complex product defined by Eq. (18):

realþ j ∗ imag ¼ aþ j ∗ bð Þ ∗ cþ j ∗ dð Þ
¼ ac� bdð Þ þ j ∗ adþ bcð Þ: (18)

As can be noticed by analysing Eq. (18), the complex multiplication operation
needs two additions and four multiplications since a subtraction operation is con-
sidered as being an addition in complement of two. The complex multiplier modules
works at the clock rate of 30.72 MHz since it must always obey the data rate
determined by the ADC module.

5. Implementation and simulation results

In order to assess the efficiency of the customised NCO and time-domain fre-
quency shifter units proposed in this paper, some simulations were carried out. The
proposed time-domain frequency shifter architecture was developed in VHSIC
hardware description language (VHDL), and a corresponding bit-accurate Matlab
model, referred here as Golden Model (GM), was developed for verification. The
full design was targeted to a Xilinx Virtex-6 xc6vlx240t FPGA. The results
presented next are split into parts: the first one provides the simulation results for
the customised NCO architecture implementation, and the second part presents
the results regarding the implementation of the time-domain frequency shifter
architecture.

5.1 Customised numerically controlled oscillator

This section presents results regarding the customised NCO implementation.
The first simulation result, shown in Figure 10, compares floating-point precision
Matlab-generated complex exponential sequences with fixed-point precision
sequences generated by the device under test (DUT) along all possible discrete

Figure 10.
Average error between GM and DUT implementations of the customised NCO.

74

Field Programmable Gate Arrays (FPGAs) II

frequency shifts, m, and for some Q-formats. PRACH format 0 preambles were
considered for this and all other simulation results. Figure 11 presents the SFDR
variation of the implemented NCO unit, i.e. the DUT, along all possible discrete
frequency shifts, m, and for some Q-formats. SFDR is the power ratio between the
fundamental signal and the strongest spurious signal, i.e. the most prominent har-
monic, present at the output of the customised NCO. By analysing this result, it is
noticeable that the SFDR attained by the DUT is almost the same for formats Q24.23
and Q32.31. The SFDR values achieved by the DUT for formats Q24.23 and Q32.31
are 153.58 and 154.2 dB, respectively. These high SFDR values are due to the fact
that the phase increment bits are not truncated and all output frequencies, fout, are
integer multiples of the system clock frequency, fclk, which is the frequency used to
sample the basis waveform, therefore eliminating the spectral artefacts resultant
from phase jitter [15].

As an illustrative example of the performance presented by the customised
NCO, Figure 12 shows its power spectrum for some fixed-point formats with SFDR
indication for frequency shift, m, equal to 7187, i.e. 8,983,750 Hz. These results
clearly show the cleanliness achieved by the proposed customised NCO even for
format Q8.7. The noise floor for format Q24.23 is so small that it is imperceptible.

Figure 13 depicts the SNR variation of the customised NCO along all possible
discrete frequency shifts, m, and for some Q-formats. The SNR results are obtained
by the ratio between the signal average power and the noise average power.

5.2 Time-domain frequency shifter

This section presents results regarding the implementation of the time-domain
frequency shifter architecture. From this point on, we refer to the architecture
implementation as the DUT. This time a Matlab floating-point model (GM) of the
whole time-domain frequency shifter architecture is used to assess the performance
of the circuit.

Table 4 presents information regarding the resource usage of the proposed
architecture. It sums up the key results obtained after the implementation of the
proposed frequency shifter architecture on a given FPGA chip. The number of

Figure 11.
SFDR variation of the customised NCO.

75

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

occupied slices, registers, memory resources, LUTs and digital signal processor
(DSP) resource blocks is shown in the table. The maximum achievable working
frequency that can be reached by the module is equal to 239.981 MHz.

Figure 12.
Customised NCO power spectrum.

Figure 13.
SNR variation of the customised NCO.

76

Field Programmable Gate Arrays (FPGAs) II

After observing the results presented in Table 4, we realise that three block
RAM (BRAM) memory resources are employed instead of the two mentioned
before. This is explained due to the fact that the synthesis tool maps all the contents
of the LUT memory into three BRAM resources since the number of bits employed
to address the LUT memory is equal to 13, and therefore, ceil((213 ∗ 12)/36K) = 3
instead of the two BRAMs mentioned earlier. Noticed that each address position of
the BRAM resources saves a 12 bit value that is sampled from the basis cosine
waveform. The four Xilinx DSP48 resources that are instantiated are used in the
complex multiplier module to implement the multiplication operation defined in
Eq. (18).

It is important to mention that in Virtex-6 family of FPGAs, one slice consists of
eight flip-flops and four LUTs. Block RAMs and FIFO resources are embedded
resources of the 36 bit memory resources. A DSP48 resource is an embedded
processing unit that corresponds to one multiplier with two 18 bit inputs and one
accumulator of 48 bits.

The reuse of DSP48 units is an important and feasible approach that is able to
optimise the FPGA area utilisation at the expense of a higher clock rate operation
and additional usage of control logical resources. For instance, the four fully parallel
multiplications in the complex multiplier module could be serialised, which would
save three out of the four DSP48 already being used.

After analysing Table 4, it is possible to notice that the proposed frequency
shifter architecture uses less than 1% of all available Virtex-6 logical resources.
Given that the actual implementation of the proposed architecture on FPGA pre-
sents a very low occupancy rate, the utilisation of low-cost FPGA models is possible.
Therefore, there are two important points that must be taken into consideration
when selecting a low-cost FPGA model: (i) the maximum achievable frequency
operation, once low-cost FPGA models tend to present worse timing characteristics,
and (ii) the number of used slices might increase in the case of families earlier than
the Virtex-6 family, since other families may employ LUT memories with 4 bits
instead of LUT memories with 6 bits per slice.

In Figure 14, the average error between the frequency shifted preambles gener-
ated by the GM and DUT is presented. In order to generate a representative result,
the average error for a given RACH preamble is averaged over all possible offsets
applied to that RACH preamble. In other words, the figure shows the average error
over all possible offsets that can be applied to a given RACH preamble. Moreover,
the figure presents the average error for several Q-formats when the PRACH band-
width parameter, NUL

RB , is made equal to 25 and 50 RBs, respectively. These band-
width parameters correspond to bandwidths of 5 and 10 MHz, respectively.
Additionally, the PRACH offset parameter, nRAPRB, is set to all possible values.

Figure 15 shows an exploded view of the results presented in Figure 14. Each
subplot, representing the error for a specific Q-format, depicts the average of the

FPGA model number XC6VLX240T-1ff1156 (Virtex-6)

Amount of slice registers 170 out of 301440 0%

Amount of slice LUTs 215 out of 150720 0%

Amount of occupied slices 84 out of 37,680 0%

Amount of RAMB36E1/FIFO36E1s 3 out of 416 0%

Amount of DSP48E1s 4 out of 768 0%

Maximum achievable frequency 239.981 MHz

Table 4.
Resource usage.

77

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

occupied slices, registers, memory resources, LUTs and digital signal processor
(DSP) resource blocks is shown in the table. The maximum achievable working
frequency that can be reached by the module is equal to 239.981 MHz.

Figure 12.
Customised NCO power spectrum.

Figure 13.
SNR variation of the customised NCO.

76

Field Programmable Gate Arrays (FPGAs) II

After observing the results presented in Table 4, we realise that three block
RAM (BRAM) memory resources are employed instead of the two mentioned
before. This is explained due to the fact that the synthesis tool maps all the contents
of the LUT memory into three BRAM resources since the number of bits employed
to address the LUT memory is equal to 13, and therefore, ceil((213 ∗ 12)/36K) = 3
instead of the two BRAMs mentioned earlier. Noticed that each address position of
the BRAM resources saves a 12 bit value that is sampled from the basis cosine
waveform. The four Xilinx DSP48 resources that are instantiated are used in the
complex multiplier module to implement the multiplication operation defined in
Eq. (18).

It is important to mention that in Virtex-6 family of FPGAs, one slice consists of
eight flip-flops and four LUTs. Block RAMs and FIFO resources are embedded
resources of the 36 bit memory resources. A DSP48 resource is an embedded
processing unit that corresponds to one multiplier with two 18 bit inputs and one
accumulator of 48 bits.

The reuse of DSP48 units is an important and feasible approach that is able to
optimise the FPGA area utilisation at the expense of a higher clock rate operation
and additional usage of control logical resources. For instance, the four fully parallel
multiplications in the complex multiplier module could be serialised, which would
save three out of the four DSP48 already being used.

After analysing Table 4, it is possible to notice that the proposed frequency
shifter architecture uses less than 1% of all available Virtex-6 logical resources.
Given that the actual implementation of the proposed architecture on FPGA pre-
sents a very low occupancy rate, the utilisation of low-cost FPGA models is possible.
Therefore, there are two important points that must be taken into consideration
when selecting a low-cost FPGA model: (i) the maximum achievable frequency
operation, once low-cost FPGA models tend to present worse timing characteristics,
and (ii) the number of used slices might increase in the case of families earlier than
the Virtex-6 family, since other families may employ LUT memories with 4 bits
instead of LUT memories with 6 bits per slice.

In Figure 14, the average error between the frequency shifted preambles gener-
ated by the GM and DUT is presented. In order to generate a representative result,
the average error for a given RACH preamble is averaged over all possible offsets
applied to that RACH preamble. In other words, the figure shows the average error
over all possible offsets that can be applied to a given RACH preamble. Moreover,
the figure presents the average error for several Q-formats when the PRACH band-
width parameter, NUL

RB , is made equal to 25 and 50 RBs, respectively. These band-
width parameters correspond to bandwidths of 5 and 10 MHz, respectively.
Additionally, the PRACH offset parameter, nRAPRB, is set to all possible values.

Figure 15 shows an exploded view of the results presented in Figure 14. Each
subplot, representing the error for a specific Q-format, depicts the average of the

FPGA model number XC6VLX240T-1ff1156 (Virtex-6)

Amount of slice registers 170 out of 301440 0%

Amount of slice LUTs 215 out of 150720 0%

Amount of occupied slices 84 out of 37,680 0%

Amount of RAMB36E1/FIFO36E1s 3 out of 416 0%

Amount of DSP48E1s 4 out of 768 0%

Maximum achievable frequency 239.981 MHz

Table 4.
Resource usage.

77

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

average error over all possible offsets applied to a given preamble for 25 and 50 RB
bandwidths. It is clearly seen that the error has a very small variation, almost
constant, along the preambles.

Next we present results regarding the use of the time-domain frequency shifter
architecture proposed in this work in the context of the PRACH receiver at eNodeB
PHY side. The PRACH receiver architecture adopted in this work is shown in
Figure 2, and a bit-accurate Matlab model was developed for its verification.

At the receiver side, the eNodeB attempts to detect a transmitted preamble by
first extracting the PRACH signal from a received OFDM signal. The extraction
involves applying downconversion, analog to digital conversion, CP removal,
frequency shift, demapping and decimation to the received PRCAH signal. Next the
receiver performs a matched filtering across the pool of preambles allocated to
the eNodeB. Matched filtering is performed as a circular cross-correlation between
the extracted PRACH signal and each of the known preambles dedicated to the
eNodeB.

Figure 2 depicts the preamble detection module, which is the last block in the
PRACH receiver processing flow. This module is responsible for detecting the
transmission of RACH preambles at the PHY layer. This module employs the
detection algorithm proposed in a previous work by the authors of [12]. All samples
being received from the IFFT module have their squared modulus computed, then
producing what is called as the power delay profile (PDP) samples. This module
uses the PDP samples to (i) estimate a noise power value, which is performed by
identifying PDP samples that can be regarded as containing only the presence of
noise, and (ii) compute a RACH detection threshold. The RACH detection threshold

Figure 14.
Average error between GM and DUT.

78

Field Programmable Gate Arrays (FPGAs) II

is calculated based on the noise power estimate that minimises the probability of
false alarms. Based on the RACH detection threshold, the PRACH receiver is able to
decide whether a RACH preamble is present or not. The RACH detection module
reports back to the MAC layer the timing offset estimates and IDs of all detected
RACH preambles in a given reception interval. Interested readers are referred to
[4, 16] for further details on the PARCH receiver architecture and RACH detection
algorithm, respectively.

The bit-accurate PRACH receiver model adopted in this work includes the
proposed time-domain frequency shift algorithm. In order to assess the perfor-
mance of the proposed architecture, format 0 RACH preambles with NCS = 13
and corrupted with additive white Gaussian noise (AWGN) were sent to
the PRACH receiver model. When NCS is equal to 13, all the 64 RACH
preambles that are allocated to a given cell can be created out of a single root ZC
sequence.

Through the execution of only one circular cross-correlation operation in the
frequency domain between the noisy RACH preambles and the corresponding local
root ZC sequence, the PRACH receiver is able to detect random access attempts by
several UE devices [4]. The RACH detection process follows the algorithm
presented in [12]. For the next results, the bit width of the output data path of the
proposed architecture was set to 8, 12, 16 and 24 bits, resulting in the fixed-point
representations Q8.6, Q12.10, Q16.14 and Q24.22, respectively.

Figures 16 and 17 present the complementary results of preamble detection
when the time-domain frequency shifter is employed along with the preamble
detection algorithm proposed in [12]. They depict comparisons between floating-

Figure 15.
Exploded view of the average error between GM and DUT.

79

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

average error over all possible offsets applied to a given preamble for 25 and 50 RB
bandwidths. It is clearly seen that the error has a very small variation, almost
constant, along the preambles.

Next we present results regarding the use of the time-domain frequency shifter
architecture proposed in this work in the context of the PRACH receiver at eNodeB
PHY side. The PRACH receiver architecture adopted in this work is shown in
Figure 2, and a bit-accurate Matlab model was developed for its verification.

At the receiver side, the eNodeB attempts to detect a transmitted preamble by
first extracting the PRACH signal from a received OFDM signal. The extraction
involves applying downconversion, analog to digital conversion, CP removal,
frequency shift, demapping and decimation to the received PRCAH signal. Next the
receiver performs a matched filtering across the pool of preambles allocated to
the eNodeB. Matched filtering is performed as a circular cross-correlation between
the extracted PRACH signal and each of the known preambles dedicated to the
eNodeB.

Figure 2 depicts the preamble detection module, which is the last block in the
PRACH receiver processing flow. This module is responsible for detecting the
transmission of RACH preambles at the PHY layer. This module employs the
detection algorithm proposed in a previous work by the authors of [12]. All samples
being received from the IFFT module have their squared modulus computed, then
producing what is called as the power delay profile (PDP) samples. This module
uses the PDP samples to (i) estimate a noise power value, which is performed by
identifying PDP samples that can be regarded as containing only the presence of
noise, and (ii) compute a RACH detection threshold. The RACH detection threshold

Figure 14.
Average error between GM and DUT.

78

Field Programmable Gate Arrays (FPGAs) II

is calculated based on the noise power estimate that minimises the probability of
false alarms. Based on the RACH detection threshold, the PRACH receiver is able to
decide whether a RACH preamble is present or not. The RACH detection module
reports back to the MAC layer the timing offset estimates and IDs of all detected
RACH preambles in a given reception interval. Interested readers are referred to
[4, 16] for further details on the PARCH receiver architecture and RACH detection
algorithm, respectively.

The bit-accurate PRACH receiver model adopted in this work includes the
proposed time-domain frequency shift algorithm. In order to assess the perfor-
mance of the proposed architecture, format 0 RACH preambles with NCS = 13
and corrupted with additive white Gaussian noise (AWGN) were sent to
the PRACH receiver model. When NCS is equal to 13, all the 64 RACH
preambles that are allocated to a given cell can be created out of a single root ZC
sequence.

Through the execution of only one circular cross-correlation operation in the
frequency domain between the noisy RACH preambles and the corresponding local
root ZC sequence, the PRACH receiver is able to detect random access attempts by
several UE devices [4]. The RACH detection process follows the algorithm
presented in [12]. For the next results, the bit width of the output data path of the
proposed architecture was set to 8, 12, 16 and 24 bits, resulting in the fixed-point
representations Q8.6, Q12.10, Q16.14 and Q24.22, respectively.

Figures 16 and 17 present the complementary results of preamble detection
when the time-domain frequency shifter is employed along with the preamble
detection algorithm proposed in [12]. They depict comparisons between floating-

Figure 15.
Exploded view of the average error between GM and DUT.

79

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

point and fixed-point detection results when bandwidth parameter, NUL
RB , is set to 50

RBs (10 MHz).
Each subplot in Figure 16 presents the comparison of the achieved correct

detection rates versus signal-to-noise ratio (SNR) in dB for a given offset, nRAPRB.
Figure 17 presents the comparison of the achieved error detection rates versus SNR
for a given offset. For both plots the probability of false alarm (Pfa) is made equal to
0.1%. The plots demonstrate the high accuracy of the proposed algorithm and
corresponding architecture in translating the received PRACH preambles to
baseband.

An important requirement for the PRACH receiver is that it must be capable of
serving a huge number of UE devices per cell maintaining a reasonable detection
probability and providing them with quasi-instantaneous access to the radio
resources, while keeping the false alarm rate to low levels. The probability of a
correct detection of the RACH preambles at the receiver side ought to be greater
than or equal to 99% at an SNR of �8.0 dB, as defined in Section 8.3.4.1 of [17].

By analysing Figure 16, it is possible to see that the proposed algorithm achieves
a probability of correct detection greater than 99% at a SNR of �21 dB, clearly
outperforming [17] in 13 dB.

Figure 16.
Comparison of the correct detection rate between the bit-accurate and the floating-point model.

80

Field Programmable Gate Arrays (FPGAs) II

6. Conclusions

A hardware-efficient algorithm and architecture for translating PRACH pream-
bles into baseband featuring high-accuracy and low-complexity characteristics has
been presented. This paper is an extension of a previous work where we only
introduced some superficial aspects of the proposed hardware architecture. In this
paper we present theoretical derivations showing how to arrive at the equations
used to design and implement the proposed architecture. We provide the
pseudocode for the proposed algorithm and discuss the advantage of the proposed
architecture in terms of memory utilisation when comparing our proposed solution
with an approach where the full period of the complex exponential is stored in
FPGA memory. The proposed architecture is optimised to shrink the use of BRAMs,
multipliers and logical resources. The low resource utilisation exhibited by the
proposed architecture demonstrates its feasibility to be employed as part of
large physical layer designs or to be used in FPGAs with small amount of
logical elements.

The corresponding hardware architecture has been developed and employed in
the PRACH receiver. Implementation and simulation results have demonstrated

Figure 17.
Comparison of the error detection rate between the bit-accurate and the floating-point model.

81

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

point and fixed-point detection results when bandwidth parameter, NUL
RB , is set to 50

RBs (10 MHz).
Each subplot in Figure 16 presents the comparison of the achieved correct

detection rates versus signal-to-noise ratio (SNR) in dB for a given offset, nRAPRB.
Figure 17 presents the comparison of the achieved error detection rates versus SNR
for a given offset. For both plots the probability of false alarm (Pfa) is made equal to
0.1%. The plots demonstrate the high accuracy of the proposed algorithm and
corresponding architecture in translating the received PRACH preambles to
baseband.

An important requirement for the PRACH receiver is that it must be capable of
serving a huge number of UE devices per cell maintaining a reasonable detection
probability and providing them with quasi-instantaneous access to the radio
resources, while keeping the false alarm rate to low levels. The probability of a
correct detection of the RACH preambles at the receiver side ought to be greater
than or equal to 99% at an SNR of �8.0 dB, as defined in Section 8.3.4.1 of [17].

By analysing Figure 16, it is possible to see that the proposed algorithm achieves
a probability of correct detection greater than 99% at a SNR of �21 dB, clearly
outperforming [17] in 13 dB.

Figure 16.
Comparison of the correct detection rate between the bit-accurate and the floating-point model.

80

Field Programmable Gate Arrays (FPGAs) II

6. Conclusions

A hardware-efficient algorithm and architecture for translating PRACH pream-
bles into baseband featuring high-accuracy and low-complexity characteristics has
been presented. This paper is an extension of a previous work where we only
introduced some superficial aspects of the proposed hardware architecture. In this
paper we present theoretical derivations showing how to arrive at the equations
used to design and implement the proposed architecture. We provide the
pseudocode for the proposed algorithm and discuss the advantage of the proposed
architecture in terms of memory utilisation when comparing our proposed solution
with an approach where the full period of the complex exponential is stored in
FPGA memory. The proposed architecture is optimised to shrink the use of BRAMs,
multipliers and logical resources. The low resource utilisation exhibited by the
proposed architecture demonstrates its feasibility to be employed as part of
large physical layer designs or to be used in FPGAs with small amount of
logical elements.

The corresponding hardware architecture has been developed and employed in
the PRACH receiver. Implementation and simulation results have demonstrated

Figure 17.
Comparison of the error detection rate between the bit-accurate and the floating-point model.

81

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

the efficiency, accuracy and low complexity of the proposed algorithm and archi-
tecture. Finally, this paper provides detailed information on the architectural design
that was tested on an FPGA device for real-time LTE applications.

Author details

Felipe A.P. de Figueiredo1,2* and Fabbryccio A.C.M. Cardoso3

1 Instituto Nacional de Telecomunicações—INATEL, Santa Rita do Sapucaí, MG,
Brazil

2 Department of Information Technology, IDLab, Ghent University—imec, Ghent,
Belgium

3 CPqD—Research and Development Center on Telecommunication, Campinas, SP,
Brazil

*Address all correspondence to: felipe.figueiredo@inatel.br

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

82

Field Programmable Gate Arrays (FPGAs) II

References

[1] Zarrinkoub H. Overview of the LTE
Physical Layer. Hoboken, New Jersey,
USA: John Wiley & Sons; 2014

[2] Kanchi S, Sandilya S, Bhosale D,
Pitkar A, Gondhalekar M. Overview of
LTE-A technology. In: IEEE Global High
Tech Congress on Electronics (GHTCE).
2014

[3] Rumney M. LTE and the Evolution to
4G Wireless: Design and Measurement
Challenges. Hoboken, New Jersey, USA:
Wiley; 2013

[4] Sesia S, Toufik I, Baker M. LTE—The
UMTS Long Term Evolution: From
Theory to Practice. Hoboken, New
Jersey, USA: John Wiley & Sons; 2011

[5] de Figueiredo FAP, Mathilde FS,
Cardoso FACM, Vilela RM, Miranda JP.
Efficient FPGA-based implementation
of a CAZAC sequence generator for
3GPP LTE. In: IEEE International
Conference on Re-ConFigurable
Computing and FPGAs (ReConFig 14).
2014

[6] de Andrade TPC, Astudillo CA,
Sekijima LR, da Fonseca NLS. The
random access procedure in long term
evolution networks for the internet of
things. IEEE Communications
Magazine. 2017;55(3):124-131

[7] 3GPP TS 36.211. Physical Channels
and Modulation (Release 10). 2009

[8] Figueiredo FAP, Mathilde FS,
Figueiredo FL, Cardoso FACM. An
FPGA-based time-domain frequency
shifter with application to LTE and LTE-
A systems. In: IEEE Latin American
Symposium on Circuits & Systems
(LASCAS). 2015

[9] Frank RL, Zadoff SA, Heimiller R.
Phase shift pulse codes with good
periodic correlation properties. IRE
Transactions on Information Theory.
1961;7:254-257

[10] Chu DC. Polyphase codes with good
periodic correlation properties. IEEE
Transactions on Information Theory.
1972;18(4):531-532

[11] Yang X, Fapojuwo AO. Enhanced
preamble detection for PRACH in LTE.
In: IEEE Wireless Communications and
Networking Conference (WCNC). 2013

[12] de Figueiredo FAP et al. Multi-stage
based cross-correlation peak detection
for LTE random access preambles.
Revista Telecomunicações. 2013;15:1-7

[13] Ranabhatt NA, Agarwal S,
Bhattar RK, Gandhi PP. Design and
implementation of numerical controlled
oscillator on FPGA. In: International
Conference on Wireless and Optical
Communications Networks (WOCN).
2013

[14] Kadam S, Sasidaran D, Awawdeh A,
Johnson L, Soderstrand M. Comparison
of various numerically controlled
oscillators. In: Midwest Symposium on
Circuits and Systems (MWSCAS). 2002

[15] Xilinx. DS246—DDS Logic Core
Product Specification—v5. 2005

[16] de Figueiredo FAP, Cardoso FACM,
Lenzi KG, Bianco Filho JA,
Figueiredo FL. A modified ca-cfar
method for lte random access detection.
In: 7th International Conference on
Signal Processing and Communication
Systems (ICSPCS). 2013. pp. 1-6

[17] 3GPP TS 36.104. Base Station (BS)
radio transmission and reception
(Release 10). 2007

83

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

the efficiency, accuracy and low complexity of the proposed algorithm and archi-
tecture. Finally, this paper provides detailed information on the architectural design
that was tested on an FPGA device for real-time LTE applications.

Author details

Felipe A.P. de Figueiredo1,2* and Fabbryccio A.C.M. Cardoso3

1 Instituto Nacional de Telecomunicações—INATEL, Santa Rita do Sapucaí, MG,
Brazil

2 Department of Information Technology, IDLab, Ghent University—imec, Ghent,
Belgium

3 CPqD—Research and Development Center on Telecommunication, Campinas, SP,
Brazil

*Address all correspondence to: felipe.figueiredo@inatel.br

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

82

Field Programmable Gate Arrays (FPGAs) II

References

[1] Zarrinkoub H. Overview of the LTE
Physical Layer. Hoboken, New Jersey,
USA: John Wiley & Sons; 2014

[2] Kanchi S, Sandilya S, Bhosale D,
Pitkar A, Gondhalekar M. Overview of
LTE-A technology. In: IEEE Global High
Tech Congress on Electronics (GHTCE).
2014

[3] Rumney M. LTE and the Evolution to
4G Wireless: Design and Measurement
Challenges. Hoboken, New Jersey, USA:
Wiley; 2013

[4] Sesia S, Toufik I, Baker M. LTE—The
UMTS Long Term Evolution: From
Theory to Practice. Hoboken, New
Jersey, USA: John Wiley & Sons; 2011

[5] de Figueiredo FAP, Mathilde FS,
Cardoso FACM, Vilela RM, Miranda JP.
Efficient FPGA-based implementation
of a CAZAC sequence generator for
3GPP LTE. In: IEEE International
Conference on Re-ConFigurable
Computing and FPGAs (ReConFig 14).
2014

[6] de Andrade TPC, Astudillo CA,
Sekijima LR, da Fonseca NLS. The
random access procedure in long term
evolution networks for the internet of
things. IEEE Communications
Magazine. 2017;55(3):124-131

[7] 3GPP TS 36.211. Physical Channels
and Modulation (Release 10). 2009

[8] Figueiredo FAP, Mathilde FS,
Figueiredo FL, Cardoso FACM. An
FPGA-based time-domain frequency
shifter with application to LTE and LTE-
A systems. In: IEEE Latin American
Symposium on Circuits & Systems
(LASCAS). 2015

[9] Frank RL, Zadoff SA, Heimiller R.
Phase shift pulse codes with good
periodic correlation properties. IRE
Transactions on Information Theory.
1961;7:254-257

[10] Chu DC. Polyphase codes with good
periodic correlation properties. IEEE
Transactions on Information Theory.
1972;18(4):531-532

[11] Yang X, Fapojuwo AO. Enhanced
preamble detection for PRACH in LTE.
In: IEEE Wireless Communications and
Networking Conference (WCNC). 2013

[12] de Figueiredo FAP et al. Multi-stage
based cross-correlation peak detection
for LTE random access preambles.
Revista Telecomunicações. 2013;15:1-7

[13] Ranabhatt NA, Agarwal S,
Bhattar RK, Gandhi PP. Design and
implementation of numerical controlled
oscillator on FPGA. In: International
Conference on Wireless and Optical
Communications Networks (WOCN).
2013

[14] Kadam S, Sasidaran D, Awawdeh A,
Johnson L, Soderstrand M. Comparison
of various numerically controlled
oscillators. In: Midwest Symposium on
Circuits and Systems (MWSCAS). 2002

[15] Xilinx. DS246—DDS Logic Core
Product Specification—v5. 2005

[16] de Figueiredo FAP, Cardoso FACM,
Lenzi KG, Bianco Filho JA,
Figueiredo FL. A modified ca-cfar
method for lte random access detection.
In: 7th International Conference on
Signal Processing and Communication
Systems (ICSPCS). 2013. pp. 1-6

[17] 3GPP TS 36.104. Base Station (BS)
radio transmission and reception
(Release 10). 2007

83

An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
DOI: http://dx.doi.org/10.5772/intechopen.91339

Chapter 5

VLSI Implementation of Medical
Image Fusion Using DWT-PCA
Algorithms
Surya Prasada Rao Borra, Rajesh K. Panakala
and Pullakura Rajesh Kumar

Abstract

Nowadays, the usage of DIP is more important in the medical field to identify
the activities of the patients related to various diseases. Magnetic Resonance
Imaging (MRI) and Computer Tomography (CT) scan images are used to perform
the fusion process. In brain medical image, MRI scan is used to show the brain
structural information without functional data. But, CT scan image is included the
functional data with brain activity. To improve the low dose CT scan, hybrid
algorithm is introduced in this paper which is implemented in FPGA. The main
objective of this work is to optimize performances of the hardware. This work is
implemented in FPGA. The combination of Discrete Wavelet Transform (DWT)
and Principle Component Analysis (PCA) is known as hybrid algorithm. The Max-
imum Selection Rule (MSR) is used to select the high frequency component from
DWT. These three algorithms have RTL architecture which is implemented by
Verilog code. Application Specified Integrated Chips (ASIC) and Field Programma-
ble Gate Array (FPGA) performances analyzed for the different methods. In 180
nm technology, DWT-PCA-IF architecture achieved 5.145 mm2 area, 298.25 mW
power, and 124 ms delay. From the fused medical image, mean, Standard Deviation
(SD), entropy, and Mutual Information (MI) performances are evaluated for
DWT-PCA method.

Keywords: application specified integrated chips, discrete wavelet transform, field
programmable gate array, principle component analysis, maximum selection rule

1. Introduction

In recent years, Image Fusion (IF) importance has increased rapidly. The pro-
cess of combining two or more images into one image is called as IF. Through this,
all kinds of information are possible to take from the different images [1]. Based on
the image stage, the fusion has been classified into two types, those are transform
domain and spatial domain fusion [2]. IF is used in so many applications like
medical, automated industry, engineering field, military, etc. [3]. Among all those
fields, medical field application is more important in IF which helps to identify
the human problems [4]. In medical, two major models like MRI and CT scan

85

Chapter 5

VLSI Implementation of Medical
Image Fusion Using DWT-PCA
Algorithms
Surya Prasada Rao Borra, Rajesh K. Panakala
and Pullakura Rajesh Kumar

Abstract

Nowadays, the usage of DIP is more important in the medical field to identify
the activities of the patients related to various diseases. Magnetic Resonance
Imaging (MRI) and Computer Tomography (CT) scan images are used to perform
the fusion process. In brain medical image, MRI scan is used to show the brain
structural information without functional data. But, CT scan image is included the
functional data with brain activity. To improve the low dose CT scan, hybrid
algorithm is introduced in this paper which is implemented in FPGA. The main
objective of this work is to optimize performances of the hardware. This work is
implemented in FPGA. The combination of Discrete Wavelet Transform (DWT)
and Principle Component Analysis (PCA) is known as hybrid algorithm. The Max-
imum Selection Rule (MSR) is used to select the high frequency component from
DWT. These three algorithms have RTL architecture which is implemented by
Verilog code. Application Specified Integrated Chips (ASIC) and Field Programma-
ble Gate Array (FPGA) performances analyzed for the different methods. In 180
nm technology, DWT-PCA-IF architecture achieved 5.145 mm2 area, 298.25 mW
power, and 124 ms delay. From the fused medical image, mean, Standard Deviation
(SD), entropy, and Mutual Information (MI) performances are evaluated for
DWT-PCA method.

Keywords: application specified integrated chips, discrete wavelet transform, field
programmable gate array, principle component analysis, maximum selection rule

1. Introduction

In recent years, Image Fusion (IF) importance has increased rapidly. The pro-
cess of combining two or more images into one image is called as IF. Through this,
all kinds of information are possible to take from the different images [1]. Based on
the image stage, the fusion has been classified into two types, those are transform
domain and spatial domain fusion [2]. IF is used in so many applications like
medical, automated industry, engineering field, military, etc. [3]. Among all those
fields, medical field application is more important in IF which helps to identify
the human problems [4]. In medical, two major models like MRI and CT scan

85

helps to analyze the normal and abnormal tissue and internal structure of human
body because both MRI and CT contain some different information of the human
brain [5]. MRI scan is used for soft tissue which detects the skull problems as well as
CT scan is used for hard tissue to identify the bone structure [6]. Earlier many
techniques used in IF like pixel level based, decision level, and feature level based
[7]. Many of the existing algorithm has been used for IF process such as Electrical
Capacitance Tomography (ECT) algorithm [8], Non-Subsample Contour let Trans-
form (NSCT) [9], sparse representation and decision [10], Curvelet transform [11],
hybrid Entropy concept [12], hybrid Dual tree complex wavelet transform [13], and
hybrid IF and image registration [14]. The main problem with these methods is
information loss. To check the hardware utilization and improve the efficiency, the
IF has been implemented in FPGA. The way of implementation is also different in
FPGA. In FPGA, DWT [15], multi model method [16], and configurable pixel level
[17] methods have been implemented for IF process. The hardware utilization of
these methods is high. To overcome these problems, hybrid algorithm with the
maximum selection rule is implemented in this paper. From the DWT, high fre-
quency component signal only processes the MSR and output of this is given to the
Inverse DWT. The combination of DWT and PCA is named as hybrid algorithm.
The PCA output gives the IF output. These methods implemented in FPGA archi-
tecture to improve the efficiency of the IF. At last, FPGA and ASIC performances
improved in proposed method compared to conventional methods. Mean, Stan-
dard Deviation (SD), Entropy, and Mutual Information (MI) performances also
calculated for all the algorithms. The rest of the paper is organized as follows:
Section-2 elaborates the literature survey, Section-3 describes the proposed
method, Section-4 discusses the experimental results, and Conclusion is summa-
rized in section-5.

2. Literature review

Mishra et al. [18] presented Modified Frei-chen based image fusion method. This
method was utilized in Structural Similarity (SS), and contrast in Night Vision
(NV) based two-scale decomposition. This method achieved 48%, 15%, and 100%
of improvements in total edge transfer, SS, and NV. This architecture was
implemented in the Xilinx tool which consumes 4% of resources. This proposed
method was analyzed in synopsis tool with 90 nm CMOS technology. This algo-
rithm provides less accuracy and less fusion efficiency.

Bavirisetti and Dhulli [19] proposed two scale image fusion using saliency
detection. This method was used for Saliency extraction process, which can high-
light the significant information. This works gave better results compared to multi-
scale fusion technique. This method failed to process the medical images perfectly.

Pemmaraju et al. [20] presented wavelet based image fusion using FPGA. This
proposed method was implemented in Xilinx EDK 10.1 using Spartan 3E. This
FPGA contains combinational blocks which are flexible for high speed application.
This architecture contains memory, flip flops, and LUT. This proposed method was
applied to multi focus image fusion. DWT does not provide stationary outputs and
low frequency component has less efficiency.

Yang et al. [21] proposed multi model based image fusion based on fuzzy logic.
With the help of type 2 fuzzy, NSCT was analyzed using pre-registered source
image for getting low and high bands. Low frequency bands are used by local
energy algorithm. The proposed fused image was taken with the help of inverse

86

Field Programmable Gate Arrays (FPGAs) II

NSCT with all sub bands. The accuracy, contrast, and versatility was also evaluated.
The main drawback of this method is low spatial resolution.

Bhaskar and Munde [22] proposed image fusion using Non-Subsampled Shear-
let Transform (NST) in FPGA implementation. Input image was separated into
individual image co-efficient using NST. Different rules were applied to fuse the
high and low bands. With the help of inverse NST, the fused image was taken. This
proposed method was implemented in Xilinx system generator and MATLAB. The
power value was reduced in proposed method. But, the hardware utilization of this
proposed method is high.

Agarwal and Bedi [23] presented hybrid image fusion for medical diagnosis. In
this paper, wavelet and Curvelet transforms were used to perform the IF. The
segmented blocks were fused into sub bands using Curvelet transform. The resolu-
tion of the fused image is too less which affects quality of the image.

Sanjay et al. [24] proposed IF based on DWT and type-2 fuzzy logic. In this paper,
CT and MRI images were fused with the help of hybrid method. The fused low level
bands and high level bands were reconstructed to perform the IDWT. This hybrid
algorithm fails to use more logic function and analyses the hardware utilization.

3. DWT-PCA-IF architecture

Image Fusion is one of the important processes for obtaining more information
from different images. The overall process of image fusion is shown in Figure 1.

• The input CT image is read into MATLAB and the pixel is converted to binary
value. These binary values are stored in a text file.

• The same process is applied to MRI images also.

Figure 1.
Block diagram of entire process.

87

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

helps to analyze the normal and abnormal tissue and internal structure of human
body because both MRI and CT contain some different information of the human
brain [5]. MRI scan is used for soft tissue which detects the skull problems as well as
CT scan is used for hard tissue to identify the bone structure [6]. Earlier many
techniques used in IF like pixel level based, decision level, and feature level based
[7]. Many of the existing algorithm has been used for IF process such as Electrical
Capacitance Tomography (ECT) algorithm [8], Non-Subsample Contour let Trans-
form (NSCT) [9], sparse representation and decision [10], Curvelet transform [11],
hybrid Entropy concept [12], hybrid Dual tree complex wavelet transform [13], and
hybrid IF and image registration [14]. The main problem with these methods is
information loss. To check the hardware utilization and improve the efficiency, the
IF has been implemented in FPGA. The way of implementation is also different in
FPGA. In FPGA, DWT [15], multi model method [16], and configurable pixel level
[17] methods have been implemented for IF process. The hardware utilization of
these methods is high. To overcome these problems, hybrid algorithm with the
maximum selection rule is implemented in this paper. From the DWT, high fre-
quency component signal only processes the MSR and output of this is given to the
Inverse DWT. The combination of DWT and PCA is named as hybrid algorithm.
The PCA output gives the IF output. These methods implemented in FPGA archi-
tecture to improve the efficiency of the IF. At last, FPGA and ASIC performances
improved in proposed method compared to conventional methods. Mean, Stan-
dard Deviation (SD), Entropy, and Mutual Information (MI) performances also
calculated for all the algorithms. The rest of the paper is organized as follows:
Section-2 elaborates the literature survey, Section-3 describes the proposed
method, Section-4 discusses the experimental results, and Conclusion is summa-
rized in section-5.

2. Literature review

Mishra et al. [18] presented Modified Frei-chen based image fusion method. This
method was utilized in Structural Similarity (SS), and contrast in Night Vision
(NV) based two-scale decomposition. This method achieved 48%, 15%, and 100%
of improvements in total edge transfer, SS, and NV. This architecture was
implemented in the Xilinx tool which consumes 4% of resources. This proposed
method was analyzed in synopsis tool with 90 nm CMOS technology. This algo-
rithm provides less accuracy and less fusion efficiency.

Bavirisetti and Dhulli [19] proposed two scale image fusion using saliency
detection. This method was used for Saliency extraction process, which can high-
light the significant information. This works gave better results compared to multi-
scale fusion technique. This method failed to process the medical images perfectly.

Pemmaraju et al. [20] presented wavelet based image fusion using FPGA. This
proposed method was implemented in Xilinx EDK 10.1 using Spartan 3E. This
FPGA contains combinational blocks which are flexible for high speed application.
This architecture contains memory, flip flops, and LUT. This proposed method was
applied to multi focus image fusion. DWT does not provide stationary outputs and
low frequency component has less efficiency.

Yang et al. [21] proposed multi model based image fusion based on fuzzy logic.
With the help of type 2 fuzzy, NSCT was analyzed using pre-registered source
image for getting low and high bands. Low frequency bands are used by local
energy algorithm. The proposed fused image was taken with the help of inverse

86

Field Programmable Gate Arrays (FPGAs) II

NSCT with all sub bands. The accuracy, contrast, and versatility was also evaluated.
The main drawback of this method is low spatial resolution.

Bhaskar and Munde [22] proposed image fusion using Non-Subsampled Shear-
let Transform (NST) in FPGA implementation. Input image was separated into
individual image co-efficient using NST. Different rules were applied to fuse the
high and low bands. With the help of inverse NST, the fused image was taken. This
proposed method was implemented in Xilinx system generator and MATLAB. The
power value was reduced in proposed method. But, the hardware utilization of this
proposed method is high.

Agarwal and Bedi [23] presented hybrid image fusion for medical diagnosis. In
this paper, wavelet and Curvelet transforms were used to perform the IF. The
segmented blocks were fused into sub bands using Curvelet transform. The resolu-
tion of the fused image is too less which affects quality of the image.

Sanjay et al. [24] proposed IF based on DWT and type-2 fuzzy logic. In this paper,
CT and MRI images were fused with the help of hybrid method. The fused low level
bands and high level bands were reconstructed to perform the IDWT. This hybrid
algorithm fails to use more logic function and analyses the hardware utilization.

3. DWT-PCA-IF architecture

Image Fusion is one of the important processes for obtaining more information
from different images. The overall process of image fusion is shown in Figure 1.

• The input CT image is read into MATLAB and the pixel is converted to binary
value. These binary values are stored in a text file.

• The same process is applied to MRI images also.

Figure 1.
Block diagram of entire process.

87

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

• Both CT and MRI images binary values perform the DWT process which gives
four frequency components such as Low High (LH), High Low (HL), High
High (HH), and Low Low (LL).

• These frequency components perform MSR. In this operation, high frequency
component only required.

• So, HH, HL, and LH frequency components performed MSR operation which
gives three results.

These three results are given to the IDWT process along with low frequency
component (LL).

• After performing IDWT, both results are given to the PCA component which
gives the fused image.

• DWT, MSR, IDWT and PCA are implemented in Verilog and the final output is
written in text file.

• With the help of MATLAB, that binary values are converted to pixel which
shows the fused image.

3.1 DWT architecture

For analyzing the signal, wavelet converts the time domain to frequency
domain. The DWT is implemented using two major blocks namely Filter Bank (FB)
and Lifting Scheme (LS). The DWT is a decimated wavelet transform, where the
size of the image reduces by half at each scale. It is easy to convert the spatial
domain inputs into frequency domain in wavelet transform [25]. High pass and
low pass coefficient series are obtained from the input series y0, y1, … . yn. The
high pass and low pass coefficients are represented by using the following two
Eqs. (1) and (2).

Hi ¼
Xl�1
n¼0

2j� nð Þ:sn zð Þ (1)

Li ¼
Xl�1
n¼0

2j� nð Þ:tn zð Þ (2)

where, the wavelet filters are represented as sn(z) and tn(z), and length of the
filter is denoted as l and j = 0, … , [n/2] � 1.

The spatial domain DWT is applied in two directions. First, 1D-DWT is applied
on the horizontal axis and that results are applied to the vertical axis of 1D-DWT.
There are four parts named as LL, LH, HL and HH obtained from the 2D-DWT.

The two-dimensional DWT applies to all the rows and columns of an image. If
the input image is of size 2k � 2k pixels at level L + 1 its size will be 2k/2 � 2k/2 The
various kinds of decomposition methods are used in wavelets over an image. The
DWT is applied to the input image, which is decomposed into four sub image. These
sub images are named as sub bands. The LL sub band is the coarse level sub image,
HH, LH, and HL are the diagonal, vertical and horizontal components of the image
respectively. Finally, the input image is decomposed into four major components
that is shown in Figure 2. A high level 2D-DWT is developed by LL frequency and
low pass components for multi resolution analysis.

Let assume input image is Y.
Here, Y is splitting into two different bands such as Yo and Ye.

88

Field Programmable Gate Arrays (FPGAs) II

Yo ¼ ½Yð1Þ; Yð3Þ; Yð5Þ…Yð2n� 1Þ� (3)

Ye ¼ ½Yð2Þ; Yð4Þ; Yð6Þ…Yð2nÞ� (4)

Q1ðnÞ ¼ YoðnÞ þ aðYeðnÞ þ Yeðnþ 1ÞÞ (5)

V1ðnÞ ¼ YeðnÞ þ bðQ1ðnÞ þ Yeðnþ 1ÞÞ (6)

dcðnÞ ¼ L:Q1ðnÞ Here, Q1ðnÞ is scaled by L.
The 2D-DWT architecture and 1D-DWT are shown in Figures 3 and 4. The

control signals represent as clk and rst. The odd input and even input are mentioned
as odd_in [7:0] and even_in [7:0]. These two inputs are given to the line buffer to
perform even and odd extraction which outputs are given to the PIPO for capturing
the data. From that block, four outputs are generated which is given to the lifting
block. After processing the lifting block, the final output is generated as detailed
co-efficient dc_out [27:0] and significance co-efficient sc_out [23:0].

Figure 2.
Discrete wavelet transform.

Figure 3.
2D-DWT architecture.

89

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

• Both CT and MRI images binary values perform the DWT process which gives
four frequency components such as Low High (LH), High Low (HL), High
High (HH), and Low Low (LL).

• These frequency components perform MSR. In this operation, high frequency
component only required.

• So, HH, HL, and LH frequency components performed MSR operation which
gives three results.

These three results are given to the IDWT process along with low frequency
component (LL).

• After performing IDWT, both results are given to the PCA component which
gives the fused image.

• DWT, MSR, IDWT and PCA are implemented in Verilog and the final output is
written in text file.

• With the help of MATLAB, that binary values are converted to pixel which
shows the fused image.

3.1 DWT architecture

For analyzing the signal, wavelet converts the time domain to frequency
domain. The DWT is implemented using two major blocks namely Filter Bank (FB)
and Lifting Scheme (LS). The DWT is a decimated wavelet transform, where the
size of the image reduces by half at each scale. It is easy to convert the spatial
domain inputs into frequency domain in wavelet transform [25]. High pass and
low pass coefficient series are obtained from the input series y0, y1, … . yn. The
high pass and low pass coefficients are represented by using the following two
Eqs. (1) and (2).

Hi ¼
Xl�1
n¼0

2j� nð Þ:sn zð Þ (1)

Li ¼
Xl�1
n¼0

2j� nð Þ:tn zð Þ (2)

where, the wavelet filters are represented as sn(z) and tn(z), and length of the
filter is denoted as l and j = 0, … , [n/2] � 1.

The spatial domain DWT is applied in two directions. First, 1D-DWT is applied
on the horizontal axis and that results are applied to the vertical axis of 1D-DWT.
There are four parts named as LL, LH, HL and HH obtained from the 2D-DWT.

The two-dimensional DWT applies to all the rows and columns of an image. If
the input image is of size 2k � 2k pixels at level L + 1 its size will be 2k/2 � 2k/2 The
various kinds of decomposition methods are used in wavelets over an image. The
DWT is applied to the input image, which is decomposed into four sub image. These
sub images are named as sub bands. The LL sub band is the coarse level sub image,
HH, LH, and HL are the diagonal, vertical and horizontal components of the image
respectively. Finally, the input image is decomposed into four major components
that is shown in Figure 2. A high level 2D-DWT is developed by LL frequency and
low pass components for multi resolution analysis.

Let assume input image is Y.
Here, Y is splitting into two different bands such as Yo and Ye.

88

Field Programmable Gate Arrays (FPGAs) II

Yo ¼ ½Yð1Þ; Yð3Þ; Yð5Þ…Yð2n� 1Þ� (3)

Ye ¼ ½Yð2Þ; Yð4Þ; Yð6Þ…Yð2nÞ� (4)

Q1ðnÞ ¼ YoðnÞ þ aðYeðnÞ þ Yeðnþ 1ÞÞ (5)

V1ðnÞ ¼ YeðnÞ þ bðQ1ðnÞ þ Yeðnþ 1ÞÞ (6)

dcðnÞ ¼ L:Q1ðnÞ Here, Q1ðnÞ is scaled by L.
The 2D-DWT architecture and 1D-DWT are shown in Figures 3 and 4. The

control signals represent as clk and rst. The odd input and even input are mentioned
as odd_in [7:0] and even_in [7:0]. These two inputs are given to the line buffer to
perform even and odd extraction which outputs are given to the PIPO for capturing
the data. From that block, four outputs are generated which is given to the lifting
block. After processing the lifting block, the final output is generated as detailed
co-efficient dc_out [27:0] and significance co-efficient sc_out [23:0].

Figure 2.
Discrete wavelet transform.

Figure 3.
2D-DWT architecture.

89

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

3.2 Maximum selection rule

The MSR diagram is shown in Figure 5. This rule is applicable for the high
frequency component. So that HH, HL, LH frequency values perform the MSR
operation. Both DWT output values are connected to the MUX for choosing
maximum value.

These outputs are given to the IDWT for changing the frequency domain into
the time domain.

3.3 PCA architecture

The architecture of PCA is shown in Figure 6 which contains control engine,
covariance matrix, MUX, multiplier, adder, and comparator. With the help of
detected spike waveform, the covariance matrix is calculated. The covariance
matrix is called as PC spike waveform. The MAC address is used for distilling and
orthogonalization process to improve the PCA efficiency. Comparator and right
shift are used to shift the procedure and level checking. The entire algorithm split
into four processing units and the data is stored in register files. Finite State
Machine (FSM) is used for scheduling and allocating the resources during the PCA

Figure 4.
1D-DWT architecture.

Figure 5.
Maximum selection rule diagram.

90

Field Programmable Gate Arrays (FPGAs) II

processing. FSM is very effective for controlling the remaining signal [26]. These
outputs are helpful to perform the image fusion. The fused architecture binary
output is read in MATLAB for showing fused image.

4. Experimental results and discussion

In this section, the experimental simulation results and discussion of the pro-
posed methodology is detailed effectively in terms of performance measure. The
performance of the proposed methodology was evaluated by ASIC and FPGA per-
formances.

4.1 Discussion

The input images (CT and MRI) are shown in Figures 7 and 8. These images are
converted to binary which are shown in Figures 9 and 10.

Figure 6.
PCA architecture.

Figure 7.
Input CT image.

91

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

3.2 Maximum selection rule

The MSR diagram is shown in Figure 5. This rule is applicable for the high
frequency component. So that HH, HL, LH frequency values perform the MSR
operation. Both DWT output values are connected to the MUX for choosing
maximum value.

These outputs are given to the IDWT for changing the frequency domain into
the time domain.

3.3 PCA architecture

The architecture of PCA is shown in Figure 6 which contains control engine,
covariance matrix, MUX, multiplier, adder, and comparator. With the help of
detected spike waveform, the covariance matrix is calculated. The covariance
matrix is called as PC spike waveform. The MAC address is used for distilling and
orthogonalization process to improve the PCA efficiency. Comparator and right
shift are used to shift the procedure and level checking. The entire algorithm split
into four processing units and the data is stored in register files. Finite State
Machine (FSM) is used for scheduling and allocating the resources during the PCA

Figure 4.
1D-DWT architecture.

Figure 5.
Maximum selection rule diagram.

90

Field Programmable Gate Arrays (FPGAs) II

processing. FSM is very effective for controlling the remaining signal [26]. These
outputs are helpful to perform the image fusion. The fused architecture binary
output is read in MATLAB for showing fused image.

4. Experimental results and discussion

In this section, the experimental simulation results and discussion of the pro-
posed methodology is detailed effectively in terms of performance measure. The
performance of the proposed methodology was evaluated by ASIC and FPGA per-
formances.

4.1 Discussion

The input images (CT and MRI) are shown in Figures 7 and 8. These images are
converted to binary which are shown in Figures 9 and 10.

Figure 6.
PCA architecture.

Figure 7.
Input CT image.

91

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

The ASIC performance of the different methods are tabulated in Table 1. In this
table, values of ASIC performance of the Existing-I [18], existing-II [20], existing-
III [22], and DWT-PCA-IF are compared.

The comparison of ASIC performances is tabulated in Table 1. Here, all the
methods are implemented and the results are tabulated. All the methods are
implemented in the cadence RTL compiler with 180 and 45 nm technology. From
this table, it’s clear that DWT-PCA-IF provides better performances when com-
pared to previous existing architectures.

Figure 8.
Input MRI image.

Figure 9.
Binary value of CT image.

92

Field Programmable Gate Arrays (FPGAs) II

4.2 Comparative analysis

In this work, three papers have been compared with proposed method. A.
Mishra, S. Mahapatra, and S. Banerjee [18], applied modified Frei-chen operator
based IF for real time applications. Scalable decomposition was used to perform the
fusion operation which was implemented in Virtex 4 FPGA. The overall architec-
ture RTL was too complex to perform the IF algorithm which caused more area.
Pemmaraju et al. [20], implemented IF based on DWT using FPGA. This algorithm
was implemented in Xilinx EDK 10.1 FPGA Spartan 3E hardware. There is no
explanation of RTL architecture, and .ucf file. Due to use of wavelet, the power
consumption is too high. Bhaskar and Munde [22] performed IF based on non-
subsampled shearlet transform. Xilinx system generator was used to implement this

Figure 10.
Binary value of MRI image.

Technology Method Area (mm2) Power (mW) Delay (ms)

180 nm Existing-I [l8] 8.471 387.1 180

Existing-II [20] 7.321 345.71 158

Existing-III [22] 6.214 314.21 143

DWT-PCA-IF 5.145 298.25 124

45 nm Existing-I [l8] 3.014 198.25 104

Existing-II [20] 2.987 168.12 101

Existing-III [22] 2.158 148.687 98

DWT-PCA-IF 1.982 111.21 91

Table 1.
Comparison of area, power, and delay for different methods.

93

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

The ASIC performance of the different methods are tabulated in Table 1. In this
table, values of ASIC performance of the Existing-I [18], existing-II [20], existing-
III [22], and DWT-PCA-IF are compared.

The comparison of ASIC performances is tabulated in Table 1. Here, all the
methods are implemented and the results are tabulated. All the methods are
implemented in the cadence RTL compiler with 180 and 45 nm technology. From
this table, it’s clear that DWT-PCA-IF provides better performances when com-
pared to previous existing architectures.

Figure 8.
Input MRI image.

Figure 9.
Binary value of CT image.

92

Field Programmable Gate Arrays (FPGAs) II

4.2 Comparative analysis

In this work, three papers have been compared with proposed method. A.
Mishra, S. Mahapatra, and S. Banerjee [18], applied modified Frei-chen operator
based IF for real time applications. Scalable decomposition was used to perform the
fusion operation which was implemented in Virtex 4 FPGA. The overall architec-
ture RTL was too complex to perform the IF algorithm which caused more area.
Pemmaraju et al. [20], implemented IF based on DWT using FPGA. This algorithm
was implemented in Xilinx EDK 10.1 FPGA Spartan 3E hardware. There is no
explanation of RTL architecture, and .ucf file. Due to use of wavelet, the power
consumption is too high. Bhaskar and Munde [22] performed IF based on non-
subsampled shearlet transform. Xilinx system generator was used to implement this

Figure 10.
Binary value of MRI image.

Technology Method Area (mm2) Power (mW) Delay (ms)

180 nm Existing-I [l8] 8.471 387.1 180

Existing-II [20] 7.321 345.71 158

Existing-III [22] 6.214 314.21 143

DWT-PCA-IF 5.145 298.25 124

45 nm Existing-I [l8] 3.014 198.25 104

Existing-II [20] 2.987 168.12 101

Existing-III [22] 2.158 148.687 98

DWT-PCA-IF 1.982 111.21 91

Table 1.
Comparison of area, power, and delay for different methods.

93

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

design with MATLAB tool. The fused image affected by more noise and it require
more hardware utilization.

The comparison graph of area, power, and delay are shown in Figures 11–13.
The dark blue bar graph is represented as DWT-PCA-IF architecture. All the ASIC
performance is reduced due to the hybrid algorithm.

The FPGA performances are tabulated in Table 2. In this table, Virtex 4 and
Virtex 5 devices are used to evaluate LUT, flip flop, slices, and frequency. These
values are shows that the DWT-PCA-IF architecture achieves better FPGA perfor-
mance parameters.

The comparison graph of LUT, Flip flop, slices, and frequency are shown in
Figures 14–17. The hardware utilizations are evaluated from this FPGA perfor-
mance. The top module and 2D DWT and 1D DWT RTL schematic diagram are
shown in Figures 18 and 19.

Figure 11.
Comparison of area performance for different methods.

Figure 12.
Comparison of power performance for different methods.

94

Field Programmable Gate Arrays (FPGAs) II

Figure 13.
Comparison of delay performance for different methods.

Devices Method LUT Flip flop slices Frequency

Virtex 4 Existing-I [l8] 4038 4852 2857 250.3

Existing-II [20] 4002 4657 2654 289.64

Existing-III [22] 3541 4214 2011 314.21

DWT-PCA-IF 3014 3987 1968 355.14

Virtex 5 Existing-I [l8] 3104 4125 1964 185.41

Existing-II [20] 3014 4032 1847 193.21

Existing-III [22] 2987 3987 1752 255.14

DWT-PCA-IF 2741 3789 1648 287.96

Table 2.
Comparison of FPGA performances for different methods.

Figure 14.
Comparison of LUT for different methods.

95

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

design with MATLAB tool. The fused image affected by more noise and it require
more hardware utilization.

The comparison graph of area, power, and delay are shown in Figures 11–13.
The dark blue bar graph is represented as DWT-PCA-IF architecture. All the ASIC
performance is reduced due to the hybrid algorithm.

The FPGA performances are tabulated in Table 2. In this table, Virtex 4 and
Virtex 5 devices are used to evaluate LUT, flip flop, slices, and frequency. These
values are shows that the DWT-PCA-IF architecture achieves better FPGA perfor-
mance parameters.

The comparison graph of LUT, Flip flop, slices, and frequency are shown in
Figures 14–17. The hardware utilizations are evaluated from this FPGA perfor-
mance. The top module and 2D DWT and 1D DWT RTL schematic diagram are
shown in Figures 18 and 19.

Figure 11.
Comparison of area performance for different methods.

Figure 12.
Comparison of power performance for different methods.

94

Field Programmable Gate Arrays (FPGAs) II

Figure 13.
Comparison of delay performance for different methods.

Devices Method LUT Flip flop slices Frequency

Virtex 4 Existing-I [l8] 4038 4852 2857 250.3

Existing-II [20] 4002 4657 2654 289.64

Existing-III [22] 3541 4214 2011 314.21

DWT-PCA-IF 3014 3987 1968 355.14

Virtex 5 Existing-I [l8] 3104 4125 1964 185.41

Existing-II [20] 3014 4032 1847 193.21

Existing-III [22] 2987 3987 1752 255.14

DWT-PCA-IF 2741 3789 1648 287.96

Table 2.
Comparison of FPGA performances for different methods.

Figure 14.
Comparison of LUT for different methods.

95

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

The performance evaluation for different methods is given in Table 3. Here,
some of the performances are evaluated such as Mean, Standard Deviation (SD),
Entropy, and Mutual information (MI). This performance evaluated for fused
medical image. From this table, it is clears that DWT-PCA gives better perfor-
mances than existing methods. Finally, the fused image is shown in Figure 20. The
above RTL schematics are taken from the Xilinx tool.

5. Conclusion

The proposed architecture has been designed effectively in order to reduce the
hardware utilization. In this work, DWT-PCA-IF architecture has been designed to
perform the image fusion. In this work, medical images like MRI and CT have been
used in the fusion process to obtain more information. The hybrid VLSI architecture

Figure 15.
Comparison of flip flop for different methods.

Figure 16.
Comparison of slices for different methods.

96

Field Programmable Gate Arrays (FPGAs) II

provided better fused image compared to previous works. The DWT-PCA-IF
architecture was implemented using Verilog code. DWT and PCA method were
used to reduce the power and area consumption. The ASIC and FPGA performance
were analyzed for different architectures. In 180 nm technology, DWT-PCA-IF
architecture achieved 5.145 mm2 area, 298.25 mW power, and 124 ms delay. In
Virtex 4, the proposed architecture achieved 3014 LUT, 3987 flip flop, 1968 slices,
and 355.14 MHz frequency. From the fused image, 55.658 mean, 53.14 SD, 9.621
entropy, and 3.141 MI value has been evaluated. In the future, different kind of
optimization algorithm will be designed to improve the ASIC and FPGA
performances.

Figure 18.
Top module of DWT architecture.

Figure 17.
Comparison of frequency for different methods.

97

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

The performance evaluation for different methods is given in Table 3. Here,
some of the performances are evaluated such as Mean, Standard Deviation (SD),
Entropy, and Mutual information (MI). This performance evaluated for fused
medical image. From this table, it is clears that DWT-PCA gives better perfor-
mances than existing methods. Finally, the fused image is shown in Figure 20. The
above RTL schematics are taken from the Xilinx tool.

5. Conclusion

The proposed architecture has been designed effectively in order to reduce the
hardware utilization. In this work, DWT-PCA-IF architecture has been designed to
perform the image fusion. In this work, medical images like MRI and CT have been
used in the fusion process to obtain more information. The hybrid VLSI architecture

Figure 15.
Comparison of flip flop for different methods.

Figure 16.
Comparison of slices for different methods.

96

Field Programmable Gate Arrays (FPGAs) II

provided better fused image compared to previous works. The DWT-PCA-IF
architecture was implemented using Verilog code. DWT and PCA method were
used to reduce the power and area consumption. The ASIC and FPGA performance
were analyzed for different architectures. In 180 nm technology, DWT-PCA-IF
architecture achieved 5.145 mm2 area, 298.25 mW power, and 124 ms delay. In
Virtex 4, the proposed architecture achieved 3014 LUT, 3987 flip flop, 1968 slices,
and 355.14 MHz frequency. From the fused image, 55.658 mean, 53.14 SD, 9.621
entropy, and 3.141 MI value has been evaluated. In the future, different kind of
optimization algorithm will be designed to improve the ASIC and FPGA
performances.

Figure 18.
Top module of DWT architecture.

Figure 17.
Comparison of frequency for different methods.

97

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

Figure 19.
Internal schematic of 2D-DWT.

Image Performance DWT
[2]

Haar
[3]

Kekre’s wavelet
[7]

DTCWT
[13]

PCA
[24]

DWT-
PCA

Fused
Image

Mean 44.25 32.53 32.41 45.14 53.22 55.65

SD 40.14 36.07 34.82 51.24 37.44 53.14

Entropy 8.145 5.97 5.9108 47.21 6.63 9.621

MI 0.147 0.39 0.5541 2.12 0.2832 3.141

Table 3.
Performance evaluation for different methods.

Figure 20.
Fused image.

98

Field Programmable Gate Arrays (FPGAs) II

Acknowledgements

At the outset, I would like to take this as an opportunity to convey my gratitude
to Intechopen publishing house and their team to for their consistent support at
every step in bringing out this chapter in their book. The process that followed in
reviewing this chapter and giving valuable review remarks helped a lot to meet the
standards of this book and IntechOpen publishing house has enriched my writing
skills. I would like to extend my sincere gratitude to my Ph.D. supervisor Dr. Rajesh
K Panakala and Dr.P.Rajesh Kumar for valuable guidance and continuous encour-
agement in publishing this chapter. I would like to thank my family members for
their love and support and the management of our college, PVP Siddhartha Institute
of Technology for their constant encouragement to carryout my research work.

Author details

Surya Prasada Rao Borra1*, Rajesh K. Panakala1 and Pullakura Rajesh Kumar2

1 Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, A.P., India

2 Andhra University College of Engineering, Visakhapatnam, A.P., India

*Address all correspondence to: suryaborra1679@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

99

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

Figure 19.
Internal schematic of 2D-DWT.

Image Performance DWT
[2]

Haar
[3]

Kekre’s wavelet
[7]

DTCWT
[13]

PCA
[24]

DWT-
PCA

Fused
Image

Mean 44.25 32.53 32.41 45.14 53.22 55.65

SD 40.14 36.07 34.82 51.24 37.44 53.14

Entropy 8.145 5.97 5.9108 47.21 6.63 9.621

MI 0.147 0.39 0.5541 2.12 0.2832 3.141

Table 3.
Performance evaluation for different methods.

Figure 20.
Fused image.

98

Field Programmable Gate Arrays (FPGAs) II

Acknowledgements

At the outset, I would like to take this as an opportunity to convey my gratitude
to Intechopen publishing house and their team to for their consistent support at
every step in bringing out this chapter in their book. The process that followed in
reviewing this chapter and giving valuable review remarks helped a lot to meet the
standards of this book and IntechOpen publishing house has enriched my writing
skills. I would like to extend my sincere gratitude to my Ph.D. supervisor Dr. Rajesh
K Panakala and Dr.P.Rajesh Kumar for valuable guidance and continuous encour-
agement in publishing this chapter. I would like to thank my family members for
their love and support and the management of our college, PVP Siddhartha Institute
of Technology for their constant encouragement to carryout my research work.

Author details

Surya Prasada Rao Borra1*, Rajesh K. Panakala1 and Pullakura Rajesh Kumar2

1 Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, A.P., India

2 Andhra University College of Engineering, Visakhapatnam, A.P., India

*Address all correspondence to: suryaborra1679@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

99

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

References

[1] Mahajan S, Singh A. A comparative
analysis of different image fusion
techniques. IPASJ International Journal
of Computer Science. 2014;2(1):008-015

[2] Hussain DK, Reddy CL, Kumar VA.
Implementation of medical image fusion
using DWT process on FPGA.
International Journal of Computer
Applications Technology and Research.
2013;2(6):676-679

[3] Phanindra P, Babu JC, Shree VU.
VLSI implementation of medical image
fusion using Haar transform.
International Journal of Scientific and
Engineering Research. 2013;4(9):
1437-1442

[4] Yang B, Li S. Pixel-level image fusion
with simultaneous orthogonal matching
pursuit. Information Fusion. 2012;13(1):
10-19

[5] Pavithra C, Bhargavi S. Fusion of two
images based on wavelet transform.
International Journal of Innovative
Research in Science, Engineering and
Technology. 2013;2(5):1814-1819

[6] Jose B, Kumar BS. Design of 2-D
DWT VLSI architecture for image
processing. International Journal of
Engineering Research and Technology.
2014;3(4):692-696

[7] B. Kekre H, Sarode T, Dhannawat R.
Implementation and comparison of
different transform techniques using
kekre's wavelet transform for image
fusion. International Journal of
Computer Applications. 2012;44(10):
41-48

[8] Olmos AM, Botella G, Castillo E,
Morales DP, Banqueri J, García A. A
reconstruction method for electrical
capacitance tomography based on image
fusion techniques. Digital Signal
Processing. 2012;22(6):885-893

[9] Bhatnagar G, Wu QMJ, Liu Z.
Directive contrast based multimodal
medical image fusion in NSCT domain.
IEEE Transactions on Multimedia. 2013;
15(5):1014-1024

[10] Fei Y, Wei G, Zongxi S. Medical
image fusion based on feature extraction
and sparse representation. International
Journal of Biomedical Imaging. 2017;
2017:1-11

[11] Tank VP, Shah DD, Vyas TV,
Chotaliya SB, Manavadaria MS. Image
fusion based on wavelet and Curvelet
transform. IOSR Journal of VLSI and
Signal Processing. 2013;1(5):32-36

[12] Sharmila K, Rajkumar S,
Vijayarajan V. Hybrid method for
multimodality medical image fusion
using discrete wavelet transform and
entropy concepts with quantitative
analysis. In: Proceedings of International
Conference on Communications and
Signal Processing. 2013. pp. 489-493

[13] Gurjar R. Hybrid image fusion
implemented in DTCWT. International
Journal of Engineering Technology and
Computer Research. 2014;2(1):688-692

[14] Bhosle DS, Gorde KS. Image
registration and wavelet based hybrid
image fusion. IOSR Journal of VLSI and
Signal Processing. 2014;4(2):1-5

[15] Suraj AA, Francis M, Kavya TS,
Nirmal TM. Discrete wavelet transform
based image fusion and de-noising in
FPGA. Journal of Electrical Systems and
Information Technology. 2014;1(1):
72-81

[16] Kaur R, Kaur S. An approach for
image fusion using PCA and genetic
algorithm. International Journal of
Computer Applications. 2016;145(6):
54-59

100

Field Programmable Gate Arrays (FPGAs) II

[17] Besiris D, Tsagaris V, Fragoulis N,
Theoharatos C. An FPGA-based
hardware implementation of
configurable pixel-level color image
fusion. IEEE Transactions on
Geoscience and Remote Sensing. 2012;
50(2):362

[18] Mishra A, Mahapatra S, Banerjee S.
Modified Frei-Chen operator-based
infrared and visible sensor image fusion
for real-time applications. IEEE Sensors
Journal. 2017;17(14):4639-4646

[19] Bavirisetti DP, Dhuli R. Two-scale
image fusion of visible and infrared
images using saliency detection.
Infrared Physics & Technology. 2016;
76:52-64

[20] Pemmaraju M, Mashetty SC,
Aruva S, Saduvelly M, Edara BB.
Implementation of image fusion based
on wavelet domain using FPGA. In:
Proceedings of International Conference
on Trends in Electronics and
Informatics. 2017. pp. 500-504

[21] Yang Y, Que Y, Huang S, Lin P.
Multimodal sensor medical image fusion
based on type-2 fuzzy logic in NSCT
domain. IEEE Sensors Journal. 2016;
16(10):3735-3745

[22] Bhaskar PC, Munde MV. FPGA
implementation of non-subsampled
Shearlet transform for image fusion. In:
Proceedings of International Conference
on Computing, Communication,
Control and Automation. 2017. pp. 1-6

[23] Agarwal J, Bedi SS. Implementation
of hybrid image fusion technique for
feature enhancement in medical
diagnosis. Human-Centric Computing
and Information Sciences. 2015;5(1):3

[24] Sanjay AR, Soundrapandiyan R,
Karuppiah M, Ganapathy R. CT and
MRI image fusion based on discrete
wavelet transform and Type-2 fuzzy
logic. International Journal of Intelligent

Engineering and Systems. 2017;10(3):
355-362

[25] Surya PRB, Panakala RK, Kumar PR.
Hybrid image fusion algorithm using
DWTmaximum selection rule and PCA.
International Journal of Scientific and
Engineering Research;8(8):814-820

[26] Surya PRB, Panakala RK, Kumar PR.
Qualitative analysis of MRI and
enhanced low dose CT scan image
fusion. In: Proceedings of International
Conference on Advanced Computing
and Communication Systems. 2017.
pp. 1752-1757

101

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

References

[1] Mahajan S, Singh A. A comparative
analysis of different image fusion
techniques. IPASJ International Journal
of Computer Science. 2014;2(1):008-015

[2] Hussain DK, Reddy CL, Kumar VA.
Implementation of medical image fusion
using DWT process on FPGA.
International Journal of Computer
Applications Technology and Research.
2013;2(6):676-679

[3] Phanindra P, Babu JC, Shree VU.
VLSI implementation of medical image
fusion using Haar transform.
International Journal of Scientific and
Engineering Research. 2013;4(9):
1437-1442

[4] Yang B, Li S. Pixel-level image fusion
with simultaneous orthogonal matching
pursuit. Information Fusion. 2012;13(1):
10-19

[5] Pavithra C, Bhargavi S. Fusion of two
images based on wavelet transform.
International Journal of Innovative
Research in Science, Engineering and
Technology. 2013;2(5):1814-1819

[6] Jose B, Kumar BS. Design of 2-D
DWT VLSI architecture for image
processing. International Journal of
Engineering Research and Technology.
2014;3(4):692-696

[7] B. Kekre H, Sarode T, Dhannawat R.
Implementation and comparison of
different transform techniques using
kekre's wavelet transform for image
fusion. International Journal of
Computer Applications. 2012;44(10):
41-48

[8] Olmos AM, Botella G, Castillo E,
Morales DP, Banqueri J, García A. A
reconstruction method for electrical
capacitance tomography based on image
fusion techniques. Digital Signal
Processing. 2012;22(6):885-893

[9] Bhatnagar G, Wu QMJ, Liu Z.
Directive contrast based multimodal
medical image fusion in NSCT domain.
IEEE Transactions on Multimedia. 2013;
15(5):1014-1024

[10] Fei Y, Wei G, Zongxi S. Medical
image fusion based on feature extraction
and sparse representation. International
Journal of Biomedical Imaging. 2017;
2017:1-11

[11] Tank VP, Shah DD, Vyas TV,
Chotaliya SB, Manavadaria MS. Image
fusion based on wavelet and Curvelet
transform. IOSR Journal of VLSI and
Signal Processing. 2013;1(5):32-36

[12] Sharmila K, Rajkumar S,
Vijayarajan V. Hybrid method for
multimodality medical image fusion
using discrete wavelet transform and
entropy concepts with quantitative
analysis. In: Proceedings of International
Conference on Communications and
Signal Processing. 2013. pp. 489-493

[13] Gurjar R. Hybrid image fusion
implemented in DTCWT. International
Journal of Engineering Technology and
Computer Research. 2014;2(1):688-692

[14] Bhosle DS, Gorde KS. Image
registration and wavelet based hybrid
image fusion. IOSR Journal of VLSI and
Signal Processing. 2014;4(2):1-5

[15] Suraj AA, Francis M, Kavya TS,
Nirmal TM. Discrete wavelet transform
based image fusion and de-noising in
FPGA. Journal of Electrical Systems and
Information Technology. 2014;1(1):
72-81

[16] Kaur R, Kaur S. An approach for
image fusion using PCA and genetic
algorithm. International Journal of
Computer Applications. 2016;145(6):
54-59

100

Field Programmable Gate Arrays (FPGAs) II

[17] Besiris D, Tsagaris V, Fragoulis N,
Theoharatos C. An FPGA-based
hardware implementation of
configurable pixel-level color image
fusion. IEEE Transactions on
Geoscience and Remote Sensing. 2012;
50(2):362

[18] Mishra A, Mahapatra S, Banerjee S.
Modified Frei-Chen operator-based
infrared and visible sensor image fusion
for real-time applications. IEEE Sensors
Journal. 2017;17(14):4639-4646

[19] Bavirisetti DP, Dhuli R. Two-scale
image fusion of visible and infrared
images using saliency detection.
Infrared Physics & Technology. 2016;
76:52-64

[20] Pemmaraju M, Mashetty SC,
Aruva S, Saduvelly M, Edara BB.
Implementation of image fusion based
on wavelet domain using FPGA. In:
Proceedings of International Conference
on Trends in Electronics and
Informatics. 2017. pp. 500-504

[21] Yang Y, Que Y, Huang S, Lin P.
Multimodal sensor medical image fusion
based on type-2 fuzzy logic in NSCT
domain. IEEE Sensors Journal. 2016;
16(10):3735-3745

[22] Bhaskar PC, Munde MV. FPGA
implementation of non-subsampled
Shearlet transform for image fusion. In:
Proceedings of International Conference
on Computing, Communication,
Control and Automation. 2017. pp. 1-6

[23] Agarwal J, Bedi SS. Implementation
of hybrid image fusion technique for
feature enhancement in medical
diagnosis. Human-Centric Computing
and Information Sciences. 2015;5(1):3

[24] Sanjay AR, Soundrapandiyan R,
Karuppiah M, Ganapathy R. CT and
MRI image fusion based on discrete
wavelet transform and Type-2 fuzzy
logic. International Journal of Intelligent

Engineering and Systems. 2017;10(3):
355-362

[25] Surya PRB, Panakala RK, Kumar PR.
Hybrid image fusion algorithm using
DWTmaximum selection rule and PCA.
International Journal of Scientific and
Engineering Research;8(8):814-820

[26] Surya PRB, Panakala RK, Kumar PR.
Qualitative analysis of MRI and
enhanced low dose CT scan image
fusion. In: Proceedings of International
Conference on Advanced Computing
and Communication Systems. 2017.
pp. 1752-1757

101

VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.91298

Field Programmable Gate
Arrays (FPGAs) II

Edited by George Dekoulis

Edited by George Dekoulis

This Edited Volume Field Programmable Gate Arrays (FPGAs) II is a collection of
reviewed and relevant research chapters, offering a comprehensive overview of

recent developments in the field of Computer and Information Science. The book
comprises single chapters authored by various researchers and edited by an expert

active in the Computer and Information Science research area. All chapters are
complete in itself but united under a common research study topic. This publication
aims at providing a thorough overview of the latest research efforts by international

authors on Computer and Information Science, and open new possible research paths
for further novel developments.

Published in London, UK

© 2020 IntechOpen
© Hello I’m Nik / unsplash

ISBN 978-1-83881-056-6

Field Program
m

able G
ate A

rrays (FPG
A

s) II

ISBN 978-1-83881-058-0

	Field Programmable Gate Arrays (FPGAs) II
	Contents
	Preface
	Chapter1
Real-Time FPGA-Based Systems to Remote Monitoring
	Chapter2
Real-Time Echo State Network Based on FPGA and Its Applications
	Chapter3
Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications
	Chapter4
An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems
	Chapter5
VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms

