101 research outputs found

    Phase Locking Authentication for Scan Architecture

    Get PDF
    Scan design is a widely used Design for Testability (DfT) approach for digital circuits. It provides a high level of controllability and observability resulting in a high fault coverage. To achieve a high level of testability, scan architecture must provide access to the internal nodes of the circuit-under-test (CUT). This access however leads to vulnerability in the security of the CUT. If an unrestricted access is provided through a scan architecture, unlimited test vectors can be applied to the CUT and its responses can be captured. Such an unrestricted access to the CUT can potentially undermine the security of the critical information stored in the CUT. There is a need to secure scan architecture to prevent hardware attacks however a secure solution may limit the CUT testability. There is a trade-off between security and testability, therefore, a secure scan architecture without hindering its controllability and observability is required. Three solutions to secure scan architecture have been proposed in this thesis. In the first method, the tester is authenticated and the number of authentication attempts has been limited. In the second method, a Phase Locked Loop (PLL) is utilized to secure scan architecture. In the third method, the scan architecture is secured through a clock and data recovery (CDR) technique. This is a manuscript based thesis and the results of this study have been published in two conference proceedings. The latest results have also been prepared as an article for submission to a high rank conference

    A versatile, scalable, and open memory architecture in CMOS 0.18 μm

    Get PDF
    A lookup table is a permanent memory storate element in which every stored value corresponds to a unique address. Range addressable lookup tables differ in that every stored value corresponds to a range of addresses. This type of memory has important applications in a recently proposed central processing unit which employs a multi-digit logarithmic number system that is well suited for digital signal processing applications. This thesis details the work done to improve range addressable lookup tables in terms of operating speed and area utilization. Two range addressable lookup table designs are proposed. Ideal design parameters are determined. An integrated circuit test platform is proposed to determine the real-world ability of these lookup tables. A case study exploring how non-linear functions can be approximated with range addressable lookup tables is presented

    Direct Digital Frequency Synthesizer Architecture for Wireless Communication in 90 NM CMOS Technology

    Get PDF
    Software radio is one promising field that can meet the demands for low cost, low power, and high speed electronic devices for wireless communication. At the heart of software radio is a programmable oscillator called a Direct Digital Synthesizer (DDS). DDS has the capabilities of rapid frequency hopping by digital software control while operating at very high frequencies and having sub-hertz resolution. Nevertheless, the digital-to-analog converter (DAC) and the read-only-memory (ROM) look-up table, building blocks of the DDS, prevent the DDS to be used in wireless communication because they introduce errors and noises to the DDS and their performances deteriorate at high speed. The DAC and ROM are replaced in this thesis by analog active filters that convert the square wave output of the phase accumulator directly into a sine wave. The proposed architecture operates with a reference clock of 9.09 GHz and can be fully-integrated in 90 nm CMOS technology

    Leading the Blind:Automated Transistor-Level Modeling for FPGA Architects

    Get PDF
    The design and development of innovative FPGA architectures hinge on the flexibility of its toolchain. Retargetable toolchains, like the Verilog-to-Routing (VTR) flow, have been developed to enable the testing of new FPGAs by mapping circuits onto easily-described and possibly theoretical architectures. However, in reality, the difficulty extends beyond having CAD tools that support the architectural changes: it is equally important for FPGA architects to be able to produce reliable delay and area models for these tools. In addition to having acute architectural intuitions, designing and optimizing the circuit at the transistor-level requires architects to have, as well, a particular set of electrical engineering skills and expertise. The process is also painstaking and time-consuming, rendering the comparison of a variety of architectures or the exploration of a wide design space quite complicated and even impossible in practice. In this work, we present a novel approach to model the delay and area of FPGA architectures with various structures and characteristics, quickly and with acceptable accuracy. Abstracting from the user the transistor-level design and optimization that normally accompany the model- ing process, this approach, called FPRESSO, can be used by any architect without prerequisites. We take inspiration from the way a standard-cell flow performs large-scale transistor-size optimization and apply the same concepts to FPGAs, only at a coarser granularity. Skilled designers prepare for FPRESSO a set of locally optimized libraries of basic parameterizable components with a variety of drive strengths. Then, inexperienced users specify arbitrary FPGA architectures as interconnects of these basic components. The architecture is globally optimized, within minutes, through a standard logic synthesis tool, by choosing the most fitting version of each cell and adding buffers wherever appropriate. The resulting delay and area characteristics are automatically returned, in a format suitable for the VTR flow. A correct modeling of any architecture requires not only an optimization of the logic components, but also a proper modeling of the wires connecting these components. This does not only include measuring the length of the wires to determine their respective resistance and capacitance, but also, minimizing their length to reduce the wireload effect on the overall performance. To that end, FPRESSO features an automatic and generic wire modeling approach based on a simulated annealing floorplanning algorithm, to estimate the wires between the different components of the FPGA architecture. To evaluate the results of FPRESSO and confirm the validity of its modeled architectures, we use it to explore a wide range of FPGA architectures. First, we repeat a known study that helped set the standards on the optimal Look-Up-Table (LUT) and cluster size for conventional FPGAs. We show, by comparing with the results of the study, that modeling in FPRESSO preserves the very same trends and conclusions, with significantly less effort. We then extend the search space to cover fracturable LUTs and sparse crossbars, and show how FPRESSO makes the exploration of a huge search space not only possible but easy, efficient, and affordable, for any class of VTR users

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models

    Introduction to Logic Circuits & Logic Design with VHDL

    Get PDF
    The overall goal of this book is to fill a void that has appeared in the instruction of digital circuits over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital circuits were designed using classical techniques. Classical techniques relied heavily on manual design practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design style, academic textbooks were developed that taught classical digital design techniques. Around 1990, large-scale digital systems began being designed using hardware description languages (HDL) and automated synthesis tools. Broad-scale adoption of this modern design approach spread through the industry during this decade. Around 2000, hardware description languages and the modern digital design approach began to be taught in universities, mainly at the senior and graduate level. There were a variety of reasons that the modern digital design approach did not penetrate the lower levels of academia during this time. First, the design and simulation tools were difficult to use and overwhelmed freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which are cost- and time-prohibitive to implement in a university setting. Between 2000 and 2005, rapid advances in programmable logic and design tools allowed the modern digital design approach to be implemented in a university setting, even in lower-level courses. This allowed students to learn the modern design approach based on HDLs and prototype their designs in real hardware, mainly field programmable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored teaching hardware description languages and higher levels of design abstraction. This trend has continued until today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only the modern digital design techniques has left a void for freshman- and sophomore-level courses in digital circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach the modern digital design approach move immediately into high-level behavioral modeling with minimal or no coverage of the underlying hardware used to implement the systems. As a result, students are not being provided the resources to understand the fundamental hardware theory that lies beneath the modern abstraction such as interfacing, gate-level implementation, and technology optimization. Students moving too rapidly into high levels of abstraction have little understanding of what is going on when they click the “compile and synthesize” button of their design tool. This leads to graduates who can model a breadth of different systems in an HDL but have no depth into how the system is implemented in hardware. This becomes problematic when an issue arises in a real design and there is no foundational knowledge for the students to fall back on in order to debug the problem
    corecore