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ABSTRACT 

Scan design is a widely used Design for Testability (DfT) approach for digital 

circuits. It provides a high level of controllability and observability resulting in a 

high fault coverage. To achieve a high level of testability, scan architecture must 

provide access to the internal nodes of the circuit-under-test (CUT). This access 

however leads to vulnerability in the security of the CUT. If an unrestricted access 

is provided through a scan architecture, unlimited test vectors can be applied to the 

CUT and its responses can be captured. Such an unrestricted access to the CUT can 

potentially undermine the security of the critical information stored in the CUT. 

There is a need to secure scan architecture to prevent hardware attacks however a 

secure solution may limit the CUT testability.   There is a trade-off between security 

and testability, therefore, a secure scan architecture without hindering its 

controllability and observability is required. Three solutions to secure scan 

architecture have been proposed in this thesis. 

In the first method, the tester is authenticated and the number of authentication 

attempts has been limited. In the second method, a Phase Locked Loop (PLL) is 

utilized to secure scan architecture. In the third method, the scan architecture is 

secured through a clock and data recovery (CDR) technique.  This is a manuscript 

based thesis and the results of this study have been published in two conference 

proceedings. The latest results have also been prepared as an article for submission 

to a high rank conference. 
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Chapter -1 

Introduction 

 
Integrated Circuits (ICs) have advanced steadily from Small Scale Integration (SSI) 

devices to Very Large-Scale Integration (VLSI) devices. This progression in the reduction 

of the size of ICs has followed the Moore’s law. Moore’s law states that the number of 

transistors in an IC doubles every 18 months. VLSI devices nowadays have hundreds of 

millions of transistors on them. Most chips that are used in computers and electronics 

devices contain millions of transistors. This is due to the reduction in feature size of 

transistors. Interconnecting wires used in these devices have also seen a significant 

reduction in thickness. The current wires are in the scale of nanometers. These reductions 

in dimensions allow transistors to be compacted in a small area leading to smaller chips. 

Smaller chips are faster and have lower power consumption. Current ICs have operating 

frequencies in the range of several gigahertz.  

The size of IC plays a major factor in defects that may occur during their manufacturing 

processes. The probability of defect occurring in an IC increases with its size reduction. 

Transistors in an IC can become faulty even if there is a minute defect. It takes a single 

defective transistor to make the entire IC faulty. Manufacturing defects are inevitable, 

therefore some of the manufactured ICs will be flawed. Testing is required to weed out the 

faulty ICs from the fault free [1]. 

The cost of developing integrated circuits is high. There is a rule of ten which states that 

the cost of detecting faults in an IC increases by magnitude as we move through the various 

stages of manufacturing [2].  The various levels of manufacturing have been illustrated in 



 

2 
 

Figure 1. The cost of testing will increase as we move up from ICs to Printed Circuit Boards 

(PCBs) and PCBs to system level. The system level may contain many PCBs, which will 

further increase the cost of testing. Aside from manufacturing phase, integrated circuits 

need to be tested prior to releasing them to the market. These requirements prompted the 

development of testing techniques that allows ICs to be tested at various manufacturing 

stages and during system operation. These techniques are called Design for Testability 

(DfT).   

 

 

 

Figure -1 Testing at various levels of Manufacturing 
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1.1 Testing a Device 

Testing a circuit requires external stimuli to be applied to the circuit. These stimuli are in 

the form of binary inputs called test vectors or test patterns. For a circuit with n- inputs, n-

bit test vectors must be applied to obtain responses. There are many testing techniques 

available which can be categorized into two types: functional and structural testing. In 

functional testing, as the name suggests the function of the Circuit Under Test (CUT) is 

tested. If the CUT performs its function properly then the CUT is said to be fault free. For 

a CUT with n-bit input, all possible 2n test vectors can be applied. If the correct responses 

are produced for the applied test vectors then the CUT is fault free. This method covers 

most of the fault models and faulty circuits can detected. However, when functional testing 

is performed, the type of fault that is in the CUT cannot be determined. The time taken to 

test are usually high for those CUTs with a high number of inputs. 

Structural testing on the other hand employs specific test vector for a set of fault models 

based on the structural information of the CUT. Only these test vectors are applied to the 

CUT to obtain the responses. Structural testing is less time consuming compared to the 

functional testing. However, a structural test can only cover the defects that are modeled 

since the test vectors are generated using the fault models. It cannot detect any other faults 

in the CUT [3].   

Various faults that occur during the manufacturing process of the CUT are modeled by 

different fault models. Test vector generated based on these models stimulate the CUT to 

detect the defects in the CUT. There are two criteria under which a fault model should be 

based on:  
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1) The behavior of the defect must be accurately reproduced by the fault model 

2) It should efficiently simulate the fault and produce test vectors based on the fault. 

The area of the circuit where faults occur are called fault sites. At each potential fault site, 

different faults can occur which can be bunched together into one single fault model. 

Assuming that there are n possible fault sites in a CUT and k different types of faults, there 

are two types of fault models: single fault model and multiple fault model. In the single 

fault model, there is only one type of fault that occurs in the CUT. The total number of 

possible faults is: 

Number of single faults = k × n     (1)                

Multiple fault models consist of different types of faults but each model can contain at most 

2 types of fault in them (k=2). The total number of possible faults in this case is: 

        Number of multiple faults = (k+1)n -1  (2) 

Equation (2) shows the realistic approach to calculating the number of possible faults in a 

circuit since any number of faults may occur during the manufacturing process. While 

generating test vectors to test a circuit multiple fault models can be taken into account [4,8]. 

Test vectors can be generated using Automatic Test Pattern Generators (ATPG) [5]. These 

ATPGs utilize algorithms that produce test vectors with a high fault coverage. They can be 

configured to produce specific test vectors for fault models or the entire truth table of the 

n-bit input for a more exhaustive testing. The simplest way to generate a test vector is a 

Random Number Generator (RNG). However, it does not generate test vectors based on 

any fault models and may not detect certain faults.   
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Most devices are tested by Automatic Test Equipment (ATE) [6]. These ATEs have 

advanced processing units, pin electronics and fixtures to apply stimuli to the CUT. They 

also have ATPGs to generate the test vectors based on the type of testing that needs to be 

performed and Output Response Analyzers (ORA) to verify the responses. The devices 

that produce correct responses are fault-free [7]. An overview of testing has been illustrated 

in Figure 2. 

1.2 Test During VLSI Manufacturing Process 

 

VLSI devices are tested at various stages of their manufacturing process. They are tested 

during development process, electronic system manufacturing process and system level 

 

Figure - 2 Overview of Testing 
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operation. During development process, the function of the VLSI device based on the 

customer requirement is formulated and a circuit is synthesized based on the design 

specifications. Then design verification takes place, where the circuit design is analyzed to 

predict its function before the fabrication process. The fabricated ICs are then tested for 

faults that may have occurred during fabrication processes at wafer level. Fault free ICs are 

the packaged and tested once again for any defect caused by packaging process or by a 

defective package. Before shipping, final test is conducted to assure the IC quality. This 

process is shown in Figure 3. Since faulty ICs are unavoidable during the manufacturing 

process, yield and reject rates are necessary to minimize the loss. Yield is defined as the 

percentage of acceptable parts among all parts that are fabricated. In some cases, a faulty 

IC may appear functional and pass the final test. Reject rate is the number of faulty parts 

passing the final test among the total number of parts passing final test. An acceptable 

reject rate is 500 parts per million (PPM). Reject rate of 100PPM or below is a high quality 

manufacturing process. DfT techniques are commonly utilized to reduce the reject rate [8]. 

Electronic systems are made up of one or more Printed Circuit Boards (PCBs) which hosts 

VLSI devices. These PCBs need to be tested after fabrication for any defects before 

mounting any VLSI devices on them. Once the PCB is assembled, further tests are 

performed to check for any faults. The tested PCBs are then assembled into units and 

systems that are tested prior to shipping [8].  

Electronic systems are often tested on field from time to time to ensure that the systems 

are in working condition. DfT techniques provide a way to test the devices at various 

staged of the manufacturing process. DfT techniques have been explained in detail in 

chapter 2.  
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1.3 Problem Statement: Need for Hardware Security  

Testing techniques play a vital role in detecting faults and producing fault free circuits. 

Testing techniques like DfT provide a high level of access to the circuits to conduct 

extensive and efficient testing. DfT techniques offer controllability and observability over 

Device Under Test (DUTs). However, this level of access leaves the circuit vulnerable to 

an attack. DfT techniques can be used as a pathway to gaining sensitive information that 

are stored in the circuit. For example, consider a device consisting of a crypto-core with a 

DfT architecture embedded in it during the development process. Attackers can access the 

crypto-core through the DfT architectures and obtain the secret key in the crypto-core. 

Hence it is necessary to prevent such attacks from happening. To do so, secure DfT 

technique should be designed.  There is a trade-off between testing and security. To test a 

device completely for any kind of faults, complete and unrestricted access is required. 

However, securing a DfT technique may restrict the tester from having complete access to 

the DUT which is needed to perform the necessary tests.  The focus of this thesis is on scan 

architecture, one of the widely used DfT techniques. Three different solutions have been 

proposed to protect hardware devices against scan-based attacks without limiting 

controllability and observability.   

1.4 Research Objectives 

The objective of this research is to design a secure scan architecture against scan-based 

attacks without compromising the controllability and observability. 

The research contributions of this thesis have been summarized below: 
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1. In the first solution, a secure scan chain using test port for tester 

authentication has been proposed. The CUT requires an authentication code to grant 

access to the scan architecture and limits the number of trials to enter the 

authentication code.   

2. In the second solution, a secure scan architecture using Phase Locking 

Authentication has been proposed. User authentication is achieved using a Phase 

Locked Loop. To access the scan chain the user must synchronize with the CUT. 

This solution has been implemented and simulation results are presented. Phase 

locking authentication also serves as a viable solution for 3D ICs.   

3. The third solution involves the Clock and Data Recovery technique used to 

authenticate the user. The CUT requires the user to know its operating frequency, 

authentication key and the line coding used to merge the data and the clock. 

1.5 Thesis Overview 

This thesis is organized as follows: 

Chapter-1 gives a brief overview of why testing is important, how to test a device and the 

testing involved during a VLSI development process. It also presents the problem statement 

and the solutions proposed to address the problem statement.  

Chapter -2 provides insight on Design for Testability (DfT) techniques that are available 

with a focus on scan architectures. It also describes scan based attacks and a brief overview 

of existing security measures has. 

Chapter-3 presents the first solution proposed for a secure scan architecture. Secure scan 

chain using test port for tester authentication has been explained in detail. This solution has 
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been published as a paper in IEE International conference on Electronics Circuits and 

Systems (ICECS) 2016, ISBN- 978-1-5090-6113-6. 

Chapter-4 explains the second solution proposed for a secure scan architecture. Secure scan 

chain using a Phase Locking Authentication Technique has been published as a paper in 

IEEE International Symposium on Signals, Circuits and Systems (ISSCS) 2017.  

In chapter-5 a solution to authenticate users based on lock and key method, clock 

synchronization and line coding technique has been proposed. The proposed work has been 

prepared to be submitted to ISCAS 2018.    

Chapter-6 covers conclusion and future works.  
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Chapter -2 

Design for Testability 
 

Design for Testability (DfT) can be defined as the integration of testing capabilities into 

the design of a circuit. DfT solutions are included in the design of a circuit during the 

development process. DfT techniques are developed to test the circuit at a given stage of 

the manufacturing process. They provide access to the internal nodes of the circuit. Without 

DfT techniques test solutions with a high fault coverage become a major challenge. DfT 

techniques provide support for structural testing. They increase the circuit controllability 

and observability considerably. To test a circuit, the tester has to able to control the internal 

nodes of CUT to apply test vectors and observe its responses. There are various DfT 

techniques but they can be categorized into three main types: (1) Ad Hoc, (2) Built-in-Self-

Test (BIST) and (3) Scan architecture [1]. This chapter will briefly discuss Ad Hoc and 

BIST. Scan architecture will be discussed in detail as the focus of this thesis is on a secure 

scan architecture against scan-based attacks.   
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2.1 Ad Hoc 

 

Ad hoc techniques are implemented by adding extra circuitry to test parts of the circuit that 

are difficult to access. This extra circuitry allows the tester to control and observe the 

internal nodes in the target area. Test point insertion is a typical example of Ad hoc. It is 

used to improve the controllability and observability of the circuit. Test point insertion can 

be metalized by adding a multiplexer at an input or an output node. The multiplexers 

(MUX) can be used to apply test data and capture the responses of desired nodes. Figure 

4(a) and 4(b) shows a MUX used at the input and the output nodes of a circuit-under-test 

[2]. Adding extra circuitry to the CUT increases the overhead area. Moreover, to access the 

test insertion points probes are used.  

 

           
(a)                                                                                           (b)    

Figure -4 Ad Hoc with MUX as insertion point at (a) input of internal node and (b) 
output of internal node. 
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2.2 Built-In-Self-Test  

 

Built-In-Self-Test (BIST) technique enables a circuit to test itself and produce a pass/fail 

output without any stimuli from an outside source. BIST consists of a BIST controller, Test 

Pattern Generator (TPG) and an Output Response Analyzer (ORA). The TPG generates 

test vectors to be applied to the CUT. The ORA commonly compacts the output responses 

of the CUT into a signature. The BIST controller coordinates the TPG, CUT and ORA by 

synchronizing them. It also provides a golden signature that is the correct output response 

for the test vector applied. The signature provided by the ORA is compared with the golden 

signature. Once the comparison is done, the BIST controller provides a pass/fail result. 

Since the output is only a pass/fail indication, it is not possible to determine the type of 

fault that is present in the circuit or where the fault has occurred. The area overhead of the 

circuit increases with the addition of BIST to the circuit.  The BIST can be present near the 

target circuit or away from it on the board in which the circuit is embedded. Figure 5 shows 

a typical BIST. 

 

   

Figure -5 A Basic BIST Structure 
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2.3 Scan Architecture 

Scan Design is a widely used DfT techniques. Scan architecture utilizes flip-flops that are 

present in the circuit. By adding extra logic to the flip-flops, they are converted to a 

scannable flip-flops. These modified flip-flops are called Scan Cells (SCs) or scan flip-flop 

(SFFs). A number of scan flip-flops are connected properly together to form a shift register. 

The shift registers are called scan chain. This DfT technique allows the tester to switch 

between operation mode and test mode. Scan architecture provides a high controllability 

and observability since SFFs provide access to the internal nodes of the circuit-under-test. 

The SFFs can be inserted at any internal node of the circuit during the design phase. If 

SFFs are inserted into part of the circuit that are difficult to test during the design phase, 

the observability and the controllability of the CUT increases leading to a high fault 

coverage. There are two modes of operations for scan architecture: 1) Normal mode of 

operation where the input of the circuit can be any logic data depending on the function of 

the circuit and 2) Test mode where test vectors are applied through scan chain  to the CUT 

and its responses are observed. On board level and system level, accessing scan chains 

become difficult due to the pin configurations on each circuit. To overcome this limitation, 

boundary scan technique was introduced by Joint Test Action Group (JTAG) which utilizes  

Test Access Port (TAP) to access scan chains on the circuit [5].  
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2.3.1 Scan Cells or Scan Flip-Flops. 

 

Scan Flip-Flops are typically made up of Multiplexers and D flip-flops as illustrated in 

Figure 6. The multiplexers in SFF allow the tester to choose between test input and data 

input. SFFs can be switched between the normal mode and the test mode [6]. 

2.3.2 Scan Chain 

 

A scan chain is a shift register made of Scan Flip-Flops as shown in Figure 7. Test vectors 

are applied to the scan chain through Scan Data In (SDI) to test the circuit and the responses 

are obtained from Scan Data Out (SDO) [7]. These pins are accessed through JTAG port, 

which also controls the transition between the normal mode and the test mode.   

 

Figure -6 Scan cell or a Scan Flip-Flop 

 

 

Figure -7 Structure of a Scan chain 

SFF1 SFF2 SFF2 SFFn SDOSDI

Clock
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2.3.3 Joint Test Access Group (JTAG) Port  

JTAG introduced Test Access Port (TAP) as IEEE standard 1149.1, which is used at the 

board level and the system level to access scan chains [8]. TAP consists of a four-wire 

serial bus interface through which the mode of operation for the boundary scan is 

controlled. TAP provides access to the scan chain through four pins shown in table I. The 

TCK pin provides the test clock to synchronize the tester and the scan chain. TMS selects 

the mode of operation. It controls the MUX in SFFs. Test vectors can be applied through 

TDI pin and their responses are obtained through TDO. TAP is also popularly known as 

JTAG port which serves as interface to access and test various system level devices [9]. 

 

 

Table I: JTAG Boundary Scan Interface Based on IEEE Standard 1149.1 

 

Boundary Scan 
pin 

I/O  Function 

TCK 

TMS 

TDI 

TDO 

Input 

Input 

Input 

Output 

Test Clock for synchronization 

Select Mode of Operation 

Test data In 

Test Data Out 
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2.3.4 Scan based Testing  

 

Figure 8 shows a combinational circuit with the scan architecture embedded in it. In the 

normal operation mode, the CUT performs its function on the supplied input without any 

intervention from outside source and the response is obtained. In the test mode, the test 

vectors can be applied to any internal node of the circuit with the help of scan architecture 

[10].  The process involved in scan based testing is summarized below: 

Scan in: The CUT is switched to test mode and the test vectors are shifted or scanned into 

the scan chain to be applied to the circuit-under-test. 

Capture mode: The test vectors are applied to the CUT and the CUT is switched back to 

the normal mode to perform its operations. Once the CUT completes its function, it is then 

switched to test mode and the output responses are recorded in the scan chain: 

Scan out: The output responses are then scanned out to be analyzed to check if any part of 

the CUT is faulty. A pass/fail result can be inferred from the analysis. 

 

 

 

Figure -8 Testing using Scan Architecture. 
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2.3.5 Boundary Scan Testing 

 

PCBs have many VLSI circuits mounted on them and systems have many PCBs assembled 

in them. If all ICs in the PCBs and system have scan architecture built in them, they are 

difficult to test due to limited access at the board level. This is because there are no 

configurations on the PCBs to access the scan chain in each individual ICs. To overcome 

this difficulty boundary scan was introduced. Boundary scan provides access to the input 

and the output pins of all ICs on a PCB by connecting SFFs to them and forming a scan 

chain through the interconnects between ICs on an assembled PCB. The test vectors are 

 

 

Figure -9 Boundary Scan Architecture [7]. 
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scanned in through the scan chain and applied to the target IC’s input pins and the responses 

are obtained for fault analysis. Boundary scan uses JTAG port as an interface to perform 

tests. Boundary scan also provides access to DfT techniques embedded in individual ICs 

in PCBs [11].  
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Chapter -3 

Secure Scan Chain using Test Port for Tester Authentication 
 

3.1 Introduction 

Test engineers seek for greater controllability and observability in order to manage test 

stimuli and observe the responses. Scan architecture is known as an effective DfT measure 

for digital circuits. Scan chains are used to increase the testability of circuits to apply test 

vectors and observe their responses. However, scan architecture can also be used as a back 

door for hackers to break down a chip security [2]. Scan architecture has been used to hack 

various crypto hardware implementations such us AES, RSA etc. A secure scan 

architecture to protect CUT against scan-based attacks while maintaining a high 

controllability and observability has become a design requirement. There are two 

commonly used methods to provide security for scan architecture against potential attacks. 

First, the access to the scan chain is restricted using a private controller. Second, the access 

to the scan chain is open; however, the data are encrypted [3]. Many solutions to protect 

crypto cores against the scan chain attacks have been reported in the literature. In [4] access 

to the scan chain is granted only if a predetermined key is entered. Test patterns are used 

as the authentication keys to allow access to the scan chain [5]. A function/test mode 

control method has been proposed in [6]. It limits the transitions between normal function 

mode and the test mode for crypto cores. However, this method is not suitable for at-speed 

online testing.  

The second secure scan architecture method allows access to the scan chain but during the 

scan-out phase, the data is encrypted. In this method, the scan structure is modified using 
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different methods such as adding gates like invertor, XORs, XNORs or scrambling the scan 

chain. Various encryption methods are used to encrypt the actual scanned output and make 

the output data as random as possible so that the attacker is unable to deduce the secret 

keys of the crypto cores. A secure scan architecture using the second method is the flipped 

scan technique [7]. In this technique, inverters are randomly placed in the scan chain to 

confuse the attacker, as the locations of the invertors in the scan chain are not known to the 

attacker. Although, it is difficult to guess the location of the invertors but a “reset” attack 

on the system can reveal the location of the invertors. When the flip flops are reset, the 

scan out become a stream of zeroes with ones indicating the locations of invertors.  

Another secure scan architecture is the random placement of XORs between scan cells [8]. 

This serves to confuse attacker as the nature of the gates inserted would be unclear and the 

attacker might not consider the possibility. This method offers better security than the 

above technique since this method passes the “reset” attack. Most of the available solution 

for a secure scan architecture allow the testers to access the scan chain, apply test vectors 

and observe the output responses. Moreover, the access to the scan chain is not limited and 

tests can be performed any number of times. Therefore, there is a possibility of access to 

critical information through analysis of applied inputs and corresponding outputs. 

Depending on the required level of security and the possible class of attackers, different 

measures can be taken. The solutions range from a basic security solution to a full fledge 

encryption method.  An attacker can be categorized as follows [4]: 

  Beginners: As the name indicates, someone who is new in the field.  



 

23 
 

Independents: The hackers of this class are experienced. An independent attacker has large 

resources, a good knowledge of the field and can easily hack basic security systems. 

Business: Hackers in this class are performing business secret activities. They commonly 

work in organized groups with highly qualified attackers. They have access to sophisticated 

hardware and software packages to wage attacks.  These activities are commonly supported 

by governments trying to access security information.  If we consider a novice hacker, the 

designer has a little to concern about when designing a circuit. The next two levels of the 

hacker categories require much more effort to prevent an attack. It is extremely difficult to 

secure a design against government hacking because of the vast resources available to 

them. 

 

 

 

 

 

Figure -10 Tester authentication block diagram  
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3.2 Proposed Solution 
 

 

The proposed method consists of two layers of security against hackers (a) tester 

authentication and (b) scan protection. The proposed internal structure of a CUT is shown 

in Figure 9. The CUT consists of a tester authentication block and a scan-chain security 

block. In the proposed solution, unlike previously implemented methods, where the tester 

can apply test vectors to the scan chain, the CUT requests the tester identification code 

before allowing the tester to apply test vectors to the scan chain as shown in Figure 10. The 

                
     

                                                 (a) 
 

                     

                
                                                                                  (b) 

 

Figure -11 Two phases of test port for authetication 
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number of attempts for the tester authentication is limited and exceeding the maximum 

number will result in denying further authentication attempts.  

3.2.1 Tester Authentication Block 
 

 

The steps for tester authentication by CUT are described below: 

 Step 1: Once the connection between the CUT and the tester is established, the CUT 

applies a Clk signal to the tester to obtain the serial key from the tester through Dout as 

shown in Fig. 10 (a).  

Step 2: The tester receives the Clk signal and sends the serial key to the CUT as indicated 

in Fig. 10 (b). 

Step 3: The CUT receives the serial key and compares it with a preloaded serial key in the 

authentication register. 

 

 Figure -12 Tester Authentication Block constitution 
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Step 4: If the authentication is successful, the second layer of security is activated. Else, 

the CUT sends an authentication failure message to the tester. 

Step 5: When the authentication fails, the trial counter is incremented. If the count reaches 

a predefined number, the pass/fail logic is disabled which in turn blocks the access to the 

secure scan chain. 

The authentication block in Figure 11 mainly consists of n-bit authentication register, a key 

comparator, a pass/fail logic and a counter. The authentication register stores a predefined 

n-bit serial key to authenticate the tester. The key comparator compares the tester key and 

the authentication key and sends the result to pass/fail logic. The counter is used to 

determine the number of authentication failures and blocks further authentication attempts 

once a predetermined number of failures has been reached. 

3.2.2 Scan based attacks 
 

Scan chains are designed to provide access to the circuit-under test through test access port 

in order to apply test data to CUT during the test mode. The responses obtained from CUT 

are also captured by the scan chain for evaluation. A scan-based attack incorporates four 

operations as follows:  

1) Scan-in: This step is divided into two phases as well. First, test data are serially loaded 

into the scan flip-flops connected to the input pins. Second, the loaded data is applied as a 

test vector to the CUT.  

2) Response capture: The CUT response to the applied test vector is captured by the scan 

flip-flops at the output pins.      
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3) Scan-out: Shifting out the responses captured by the scan-flip to make the data available 

serially at Test Data Output (TDO).  

4) Response evaluation: The CUT response to the applied test vectors is analyzed to unfold 

the internal circuitry and to determine the position of the secret registers. 

 To counter the steps involved in the scan-based attack, and make the data obtained from 

scan chain many solutions have been presented in the literature. Adding random inverters 

to the scan-chain [7], scrambling the scan chain [3] and using a mirror key in the test mode 

[5] for cryptography are among the known solutions.    

3.2.3 Secure scan chain   
 

After tester authentication, access to the scan chain is granted and the tester can apply test 

vectors to the scan chains and observe the output responses. An authenticated user can 

encrypt the scan output. There are various encryption methods to prevent the use of scan 

architecture by attacker.  In [11] the flip-flops in a scan chain are dynamically reordered to 

protect the secrets. However, the scan chain structure can be revealed by statistical analysis 

of the information scanned out from chips. In [4] a lock and key security solution that is 

based on a test key to secure the on-chip information is presented. This technique suffers 

from the problem of large area overhead. A method proposed in [12] where a secure scan 

chain architecture, based on Mirror Key Register (MKR), is used to maintain testability 

and security. In this method, the encryption key is used for functional mode of operation 

however; a fake mirror key is loaded in the test mode to protect the genuine key against 

unauthorized access. 
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In this work to protect against the scan-based attacks, the solution presented in [12] is used 

as the second layer of security for the proposed tow-layer security solution. To ensure 

protection against scan-based attacks, the encryption key in [12] is generated by an array 

of flip-flops. The flip-flops are hardwired to generate a private encryption key at the power 

on state as shown in Fig. 4. To protect the secret code against scan-based attacks, the direct 

access to the flip-flops has not been provided in the test mode. Instead, a Built-In Self-Test 

(BIST) method using a Linear Feedback Shift Register (LFSR) is implemented. In the test 

mode as shown in Figure 12, an LFSR is formed using the first three flip-flops in the chain 

of flip-flops. The test patterns generated by the LFSR are applied to the hardwired flip-

flops in the test mode. Using such a BIST solution for the flip-flops containing the 

encryption key eliminates the chance of obtaining the key through the scan architecture.   

 

    

 

Figure -13 Hardwired flip-flops with BIST to store encryption key. 
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3.3 Implementation 
 

 

 

 

 

Figure -14 Area overhead of the authentication block 

Table 2: Area overhead measurements 
 

32 bits 
of 

register 
test key 

Element  Size (µm x µm) 

A counter  18 × 189.8 

An XOR  5.8 × 6.6 

A trial counter  6 × 73.8 

Total Area overhead 55 × 110 
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The proposed solution of the tester authentication for scan chain has been implemented 

with Cadence design tools using CMOS 0.18µm technology as shown in Figure 13. The 

area overhead including: test key comparator, counter, 32-bits register and trial counter is 

reported in table 2. The area overhead for the scan protection block depends on the number 

of bits in the register and the counter. When the register test key size increases, the counter 

size increases as well. The size of the test key comparator does not change with the 

variations of the register test key size. The trial counter’s operation is mostly independent 

of the size of the register test key, which is based on the number of attempts. For the 

implementation in work, a 32-bit test key is used. 

The number of bits in the test register is dependent on the degree of the complexity required 

to prevent a scan chain against attacks. Increasing the size of the register test key increases 

the security of scan architecture at the cost of a higher area overhead due. A large size test 

key register makes a brute force attack impossible in practice. In the proposed solution, the 

number of unsuccessful attempts is limited to four times. After four unsuccessful attempts, 

the circuit is locked and it has to receive a power on reset to restart. This by default takes 

about two seconds.  Assuming a tester with a clock frequency of 2.9GHz is used to break 

a 64-bit user identification key through a brute force attack, the estimated time to apply test 

vectors thorough a brute force attack exceeds more than 15 years.  It is assumed that each 

cycle of applying an input test vector and observing the output response takes 20 clock 

cycles. 

The attacker may try to use a side channel attacks such as power analysis [13] timing 

analysis [14], or fault injection attacks [15] [16] to obtain the critical information. To 

perform these side channel attacks, the operation mode for the CUT has to be changed to 
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the test mode. In the test mode, an attacker can apply inputs and observe corresponding 

outputs. The correlation between the inputs and outputs can provide the required data to 

extract the security critical information. In the proposed solution, the content of the 

encryption key registers is protected against side channel attacks in the test mode.  

Revealing the encryption key in the proposed solution becomes extremely difficult as the 

number of bits in the register test key increases. An unauthorized tester will be able to apply 

test data for one of the following cases: 

• An unauthorized user must first determine the technique used to protect scan chain 

• An unauthorized user has to figure out that there is a limited number of trail for 

tester authentication  

• If an unauthorized user figures out that there is a tester authentication, the user still 

cannot access the critical security information due to the implemented BIST for the 

encryption key.  

The proposed solution is scalable and depending on the desired security level, the level of 

the security can be determined. It is clear that a higher level of security requires more 

resources and more silicon area for implementation.          

3.4 Comparative analysis 

There is a range of solutions in the literature for security against scan-based attacks [4, 7]. 

The proposed approach, presents tester authentication to prevent unauthorized tester from 

gaining access to the scan chain. In [11] 31234 gates are used to implement a secure scan 
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architecture using a mirror key register. The area occupied by the secure scan architecture 

is 412 gates that is 1.32% of the original area.   

The area overhead for implementation of Lock and Key security solution [4] on a chip is 

relatively low for 4 bits (327 gates). However, increasing the number of bits to 12 bits has 

a significant effect on the area overhead (5817 gates) due to the use of linear shift 

registers (LFSR’s) and decoders. The proposed solution uses a minimum number of 

components including resulting in an area overhead of about 2200 gate using CMOS 0.18 

µm technology. 

3.5 Conclusion 
 

This paper presents a new approach to protect scan architecture against attacks. The 

proposed solution has two layers of security. First, the circuit-under-test identifies testers 

by requesting an identification code through test access port. The tester authentication 

process limits the access to the scan chain only to known testers. Once the tester is 

successfully identified, it is allowed to carry out tests however, the tester still cannot 

access critical security information in the circuit-under-test due to the second layer of 

security. The private encryption key, which is the target for attackers, is not accessible 

through the scan architecture. In the proposed solution, a built-in self-test measure is used 

to test the private key generator rather than the scan architecture.    

 The proposed solution has been implemented using Cadence design tools in CMOS 

0.18μm technology. A comparative analysis was also performed in order to evaluate the 

area overhead for the different solutions verses the proposed method in this work. 
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Chapter-4 

Secure Scan Chain using a Phase Locking Authentication Technique 

4.1 Introduction 

The advent of three-dimensional integrated circuits (3D IC) brings forth a range of 

possibilities through heterogeneous integration circuit integration. In 3D ICs the 

conventional 2D dies are stacked to create a vertical structure. The dies that are stacked 

over each other can be of different technology and can be integrated using the die to die 

interconnects TSVs (Through Silicon Via) [1]. The DfT (Design for Testing) techniques 

like scan architecture or BIST implemented in each level of 3D ICs serve as a gateway for 

attackers to access any sensitive information stored in the 3D IC [2]. 

3D ICs face security threats similar to the conventional 2D ICs like scan-based attacks, 

hardware Trojan, overbuilding and side channel attacks [3]. Existing security solutions and 

countermeasures for 2D ICs can be integrated with 3D ICs. However, the tester may lose 

controllability and observability since there is a tradeoff between security and testability. 

Securing 3D ICs will restrict access to the DfT architecture, which lowers security risks 

but also lowers its testability.  The area overhead of 3D ICs will increase as each layer of 

the 3D IC needs to be secured. There are many 3D IC architectures that utilizes scan 

architecture in their DfT [4] solution. 3D ICs face the same security risk as the conventional 

2D ICs that use scan architecture based DfT with access to the scan architecture. In scan 

based attack, an attacker with access to the scan chain can apply input to the scan chain 

and analyze the output response to decipher the information stored in the circuit [5].  
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For known scan based attacks there are two types of secure scan chain architectures which 

are most commonly used [6]. The first type restricts access to the scan chain via tester 

authentication with the use of a private controller. Only authorized testers are allowed to 

access the scan chain. The access to the scan chain is granted only if a predetermined key 

is entered [7]. In some cases, the test vectors are used as authentication keys [8]. 

The second type allows the tester to access the scan chain but the captured responses are 

encrypted. In this method, the scan chains are modified by adding various gates and using 

various encryption techniques to encrypt the output response obtained through the scan 

chain. In [9] a smart test controller is introduced which masks the scanned-out responses. 

In [10], inverters are randomly placed in the scan chain to make the output seem random. 

It is difficult for a hacker to guess the location of the inverters, but a reset attack can reveal 

the location of the inverters. When the system is reset, a stream of zeroes with ones are 

obtained where the ones indicate the locations of the inverters present in the scan chain. 

This paper presents a secure solution against scan-based attacks on 3D ICs. In the proposed 

solution, a Phase Locked Loop (PLL) is used to authenticate the tester. The device-under-

test (DUT) includes a PLL based fractional-N synthesizer to generate an internal clock for 

the scan architecture. The synthesizer generates a clock with frequency N times higher than 

the frequency of a reference oscillator. The tester has to know “N” to be able to apply data 

to the scan chain. Moreover, the tester has to be synchronized with the embedded 

synthesizer and lock on the DUT internal clock to apply the data to the scan chain. This 

method requires the tester to enter a secret code to become synchronized with the DUT to 

access the scan chain as shown in Figure 14. If the tester and the DUT are not synchronized, 

then the output response obtained will be random and undecipherable. In this method, each 
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layer of a 3D IC can have its own authentication requirement. The proposed method 

provides security to scan architectures in all layers. The tester needs to synchronize with 

the DUT to access the scan chain in each layer. The hardware synchronization requirement 

reduces the security threats using a brute force attack. The area overhead remains the same 

irrespective of the number of layers in the 3D IC. 

The rest of the paper is organized as follows: section II explains how the scan attacks work; 

section III discusses the proposed solution for 3D ICs security threat; section IV provides 

implementation and simulation results; section V compares the proposed method with 

existing methods and conclusion in section VI. 

 

 

 

 

 

Figure -15 The frequency matching process involving PLL. 
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4.2 Scan Based Attack: 

The process for a scan-based attack is described below: 

1) Scan in: The test vectors are shifted in serially through the test access port into the 

scan flip-flops connected to the input pins of the device and applied to the DUT inputs. 

2) Capture response: The DUT’s response to the test vectors are captured by the scan 

flip-flops. 

3) Scan out: The captured responses are shifted out serially at the test port. 

4) Response evaluation: The scanned-out output is then evaluated to determine the 

internal circuitry or the encryption key used. 

 

 

Figure -16 Components of DUT. 
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4.3 Proposed Solution For Secure Scan Architecture In 3D-IC 

The proposed method involves a PLL used to authenticate the tester and support a secure 

scan architecture as shown in Figure 15. In this method, the DUT initiates the 

authentication process rather than the tester. In the DUT, an oscillator generates a reference 

clock signal, reff . The clock signal is fed into the divide by N PLL based synthesizer to 

generate an internal clock signal ( refNf ) for the scan architecture.  N is a secret code for 

the Frequency Divider in the PLL. The reference clock signal, reff , is applied to the tester 

through the TCK pin of the Test Access Port (TAP). The tester uses its own divide by N 

synthesizer to lock on the applied clock signal to generate an internal clock signal( refNf ) 

synchronized with the internal clock of the DUT. After the tester clock become 

synchronized with the DUT internal clock, it can properly access the scan chain and apply 

the test vectors to the DUT and capture the responses. The tester cannot synchronize its 

operation with the internal clock of the DUT without the knowing the value of “N”.  

This solution provides an advantage of securing 3D ICs by utilizing the phase locking 

technique. Conventional security measures used for scan architecture in 2D ICs can be 

integrated into 3D ICs. However, in this case each layer of scan architecture will require 

its own security increasing the area overhead and the complexity. The proposed method 

serves as a single authentication method for the entire 3D IC. This solution can be further 

developed by assigning different N value to different layers in the stacked ICs. Thus, each 

layer will require a unique synchronization requirement between the tester and the DUT.   

The tester must know the secret code, N, for each layer of 3D IC to perform the test. 

Without the correct secret key, the tester will not be able to synchronize with the DUT and 
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the output response obtained will be random and inconclusive. This method also has a 

secure scan architecture, which prevents the tester from accessing the sensitive information 

stored in the DUT [13].  

4.3.1 Phase Locked Loop (PLL) 
 

The PLL block in Figure 16 consists of a Phase Frequency Detector, a charge pump, 

Voltage Controlled Oscillator (VCO) and a Frequency Divider (N-Divider) [11]. The 

divide by N frequency divider used in the PLL can be replaced with a fractional divider 

(M/N Divider) for higher security. 

The process involved in synthesizing internal clock frequency for both tester and the DUT 

using PLL is described below: 

Step 1: The Frequency Phase Detector compares the clock frequency and the N- divided 

feedback frequency and produces a voltage proportional to their phase difference. 

Step 2: The output voltage of the Frequency Phase Detector is then fed into the Charge 

Pump where a control voltage is produced and applied to a Low Pass Filter.  

Step 3: The filtered control voltage drives the Voltage Controlled Oscillator (VCO) made 

up of a ring oscillator is used to create a signal with a frequency proportional to the input 

clock frequency. 

Step 4: The output is then fed to a frequency divider, which divides the VCO signal, by an 

integer N and looped back to the Frequency Phase Detector. Depending on the value of the 

integer N, the PLL generates a clock signal with frequency that is relative to the input clock 

frequency. 
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4.3.2 Secure scan chain 
 

Once the PLL inside the tester locks on the clock signal supplied by the DUT, it can apply 

the data to the scan chain. However, the tester still cannot access the internal circuit of the 

DUT due to the second layer of security. 

 The second phase of the proposed method uses the solution proposed in [13] in 

which an array of flip-flops is utilized to generate an encryption key at power on state as 

shown in Fig. 4. This method utilizes the Mirror Key Register (MKR) where the encryption 

key is utilized during the normal functional mode however during the test mode; a fake key 

is loaded into the register to protect the encryption key from the tester. A linear Feedback 

Shift Register(LFSR) based Built-In-Self-Test(BIST) is implemented to restrict access to 

the scan chain. The LFSR is formed using the first three flip-flops of the scan chain as 

shown in Figure 17 The test patterns generated by the LFSR are applied to the hardwired 

flip-flops in the test mode. This method protects the encryption key against a scan chain 

based attack. 

 

Figure -17 PLL Block Diagram. 
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4.4 Implementation And Simulation Results 
 

The proposed solution using a PLL to authenticate testers has been implemented in 

Cadence environment using 65nm technology. The PLL operates in the range of 10MHz 

to 100MHz. The simulation result in Figure 18 shows the output waveform with double 

the input frequency when the PLL captures the lock as expected.  

For this paper, two scenarios were simulated to show how the proposed method works. 

First, the tester and the DUT are in a locked state that is the clock frequency used by the 

tester to apply the test vector to the scan architecture in the DUT and the clock frequency 

of the scan architecture in the DUT are synchronized. It was found that the output of the 

DUT scan architecture is the same as the test vectors applied by the tester as shown in 

Figure 19. 

In the second scenario, the tester and the DUT are not synchronized and the clock 

frequency used by the tester to apply the test vector and the clock frequency of the scan 

 

Figure -18 Hardwired flip-flops with BIST to store encryption key [13]. 
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architecture in the DUT are the different. It was found that the output obtain from the 

scan architecture of the DUT is not the same as the test vectors applied by the tester and 

has distorted due to the difference in the frequency as shown in Figure 20.  

One of the major advantages of this method is that each layer of the 3D stacked IC can be 

programmed to operate at a different frequency. Hence even if by chance the value of N 

is determined for a layer, the same N value cannot be used to access other layers. 

Moreover, for a higher level of security instead of integer-N PLL a factional-N PLL can 

be implemented. 

 

 

 

Figure -19 PLL Frequency synthesis with divide by 2 frequency divider. 
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Figure -20 Output response when the tester and the DUT are in a locked state. 

 

 

Figure -21 A sample of the output response when the tester and the DUT are not in a 
locked state Scenario 2. 
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4.5 Comparative Analysis  
 

There is a range of solutions in the literature for scan architecture security against attacks 

[4, 7]. In [8] the area overhead of a secure scan architecture using mirror key register for 

four AES implementations of an iterative AES architecture with key scheduling consumes 

31234 gates. The area occupied by secure scan architecture is 412 gates that is 1.32% of 

the original area. 

The area overhead for implementation of Lock and Key security solution [4] on a chip is 

relatively low for 4 bits (327 gates). However, increasing the number of bits to 12 bits has 

a significant effect on the area overhead (5817 gates) due to the use of linear shift registers 

(LFSR’s) and decoders. The proposed solution uses a total of 223 gates. Table I shows the 

comparison of area overhead of the proposed security solution and low cost solution in [14] 

implemented on reference circuits in the ISCAS 89 benchmark. 

 

Table 3: Comparison with Low Cost Secure Solution(LCSS) 

Benchmark Name 

Total Number of Gates  
Overhead % 

Benchmark LCSS 
Proposed 
 Method 

LCSS 
Proposed 
Method 

S13207 6298 
7711 223 22.4 3.5 

S13207 6124 
7317 223 19.2 3.6 

S13207 19986 
23603 223 18.1 1.1 

S13207 18169 
21458 223 18.1 1.2 

S13207 17433 
20146 223 15.6 1.2 
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4.6 Conclusion 
 

This paper presents a new approach to prevent scan-based attacks.  The proposed solution 

has two security phases. First, the tester is authenticated using a phase locking method, 

where the device under test (DUT) provides the tester with a reference clock signal. The 

tester must use an appropriate N value for a frequency divider in its PLL to match the 

operating frequency of the DUT. Once the tester and the DUT are synchronized, the tester 

can load test vectors into the scan architecture and obtain the output responses. However, 

the sensitive information stored in the DUT cannot be accessed by the tester due to the 

second phase of the security. A Built-In Self-Test (BIST) is used to verify the encryption 

generator instead of the scan chain. This restricts the tester from accessing the encryption 

key. 

The proposed solution was implemented in CMOS 65nm technology in Cadence. The 

overall area of the proposed method was compared with various security measures. 
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Chapter-5 

Secure Scan Architecture Using Clock and Data Recovery Technique 

5.1 Introduction 

The cost and time required to design and manufacture integrated circuits are high. It is 

crucial to test them and detect their manufacturing defects prior to market release. Design 

for Testing(DfT) techniques allow these devices to be tested at various stages of the 

manufacturing process. These techniques are used to pinpoint design flaws and faults to 

sure the functionality of the tested devices. 

There are powerful DfT techniques developed over years to address the test requirements 

Built In Self-Test (BIST) and Scan Architecture [1] are among the well-known DfT 

techniques. BIST is a standalone architecture that can test a device on its own without any 

external stimuli. It consists of an Automatic Test Pattern generator (ATPG) that feeds input 

test vectors to the device under test (DUT) and a Response Analyzer(RA) that analyses the 

output response to provide a pass or fail result [2].    

 Scan architecture offers observability and controllability to the tester. That is the tester can 

apply test vectors to the device-under-test and observe its response through scan flip-flops. 

It is reported that scan architecture has been exploited to obtain the secret key stored within 

a device [3]. It is imperative to design a security measure for scan architecture to protect 

critical security information. To test a device unhindered access to its internal modules and 

nodes is necessary.  When security is added to scan architecture, its controllability and 

observability is limited. Hence, a secure scan architecture that supports authorized users to 

have full access to the device-under-test (DUT) while ensuring security is needed. 
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Most of the available security measures for scan architecture fall into two categories. First 

method denies access to the scan chain to unauthorized users through tester authentication. 

The tester must provide a secret key to access the DUT. Lock and key method in [4] can 

be classified under this category. 

The second category involves methods to configure scan architecture to encrypt the output 

responses. The tester can access the scan chain but the output responses are altered using 

different methods. In [5], a dynamically controllable scan architecture is proposed which 

uses State Dependent Scan Flip-Flops(SDFF) to secure the scan chain. In another method, 

a test controller is used to mask the scan responses [6].  In [7], inverters are inserted 

randomly in the scan chain to distort the captured responses. 

This paper presents a secure scan architecture based on Clock Data Recovery (CDR) for 

user authentication. The DUT consists of a CDR module to separate the clock and the data. 

A Delay Locked Loop(DLL) is used to derive the clock, which is then used to decode the 

data. In the proposed solution, the tester has to know the operating frequency of the DLL 

in the CDR and a predetermined key to access the scan architecture.  The tester must encode 

the predetermined key and the clock onto a single stream using a predetermined line coding 

technique and transmit it to the DUT. If the clock frequency and the key are authenticated 

then access to the scan chain is granted. This method requires the tester to apply a digital 

coded data based on predetermined clock and data which makes it hard for attackers to 

determine the clock frequency and the data through brute force attack.  
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5.2 Scan Based Attack 

 

Scan architecture allows the tester to apply test vectors to the DUT and the responses are 

captured by the scan chain. These responses are then scanned out and evaluated by the 

attacker to obtain the secret key in the device. Scan architecture for a DUT has been shown 

in Figure 21 The process involved in scan attack is as follows:  

a) Scan in: The test vectors are applied serially through Scan Data In (SDI) in the test 

port into the Scan Flip-Flops (SFF) to be supplied as the input for the DUT in test mode. 

The DUT is then run in normal operation mode. 

b) Capture Response: The DUT is then shifted back to test mode and the output 

response is captured into the SFF. 

c) Scan out: The output responses are clocked out of the SFF through Scan Data Out 

(SDO) via the test port. 

 

 

Figure -22 Scan architecture. 
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d) Response analysis: The scanned-out responses are then evaluated based on the 

applied input to obtain the secret key stored in the device.  

5.3 Proposed Solution for Scan Architecture  

The block diagram of the proposed solution is shown in Figure 22. In this method, the tester 

must apply a digital coded data signal to the DUT. The digital coded data has to include a 

mixture of a secret key and a reference clock. The CRD module in the DUT extracts the 

data and the clock from the applied input signal. If the correct key and reference clock are 

extracted, the tester will be granted access to the scan chain to apply the test vectors 

otherwise the access will be denied as shown in Figure 23.   

The CDR modules includes a Delay Locked Loop (DLL) designed to lock on a known 

reference clock. Once the clock frequency is extracted, it is used to derive the data from 

the digital coded data signal [8] as shown in Figure 24. This data is then supplied to the 

authentication module where the key is authenticated. After the key authentication, the test 

data is applied to the device under test. The scan chain operates with speed of the recovered 

clock frequency as shown in Figure 23. 

The tester must know the correct clock frequency, the key and mix them properly together 

into a digital coded data signal to be able to unlock the scan architecture. Without the 

correct frequency, the DLL will not lock and subsequent process cannot be completed to 

access the scan chain. It is difficult to predict the frequency of operation, the correct key 

and the method used to mix clock and data for attackers.  
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Figure -23 The frequency matching process involving PLL 

 

 

Figure -24 Components of DUT. 
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5.3.1 Clock and Data Recovery(CDR) 

 

Test data are serially transmitted through JTAG port to the DUT without its reference clock 

over a single line. The clock and data are mixed together using line coding techniques like 

Manchester coding and bipolar encoding. The DUT must have a clock and data recovery 

circuit to recover the data and clock in order to synchronize with the tester.  The Clock and 

Data Recovery(CDR) block consists of a DLL, which recovers the clock and a decision-

making unit which samples the digital coded data with the recovered clock and derives the 

actual data as shown in Figure 24.  

 

 

 

 

 

 

Figure -25 CDR Block Diagram. 
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5.3.2 Delay Locked Loop 
 

 

The DLL locks on the phase of the input signal and provides a phase aligned output clock. 

DLL consists of a Phase Detector(PD), a Charge Pump(CP) and a Voltage Controlled 

Delay Line(VCDL) [9] as shown in Figure 25.   

The operation of DLL in the proposed security solution is described below: 

Step 1: The phase detector in Fig. 5 compares the phase of the input digital coded signal 

and the output of the VCDL supplied through a feedback loop. The PD generates a phase 

difference error signal that is then supplied to the CP.  

Step 2: The CP uses the phase error information to produce a control voltage to control the 

VCDL.  

Step 3: Based on the voltage supplied by CP, VCDL adds an appropriate delay to the input 

signal at each delay stage and returns it back to PD for comparison. 

As VCDL continues to add delay to the signal, the phase difference diminishes affecting 

the control voltage until the phase difference becomes zero due to the feedback loop. When 

 

Figure -26 DLL Block Diagram. 
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the phase difference between the input and the output signals of the DLL settles to its 

minimum value the DLL is locked. In this case, the input digital coded signal and the output 

signal become in phase. 

5.3.3 Authentication Block 
 

 

Once the CDR recovers the clock, the digital coded data signal is sampled using the 

recovered clock to obtain the data. However before applying test vectors to the scan chain 

the tester is subjected to another authentication method.  

The initial data extracted from the digital coded signal must be the predetermined secret 

key. This key is then authenticated using the method in [10]. The authentication block 

consists of a 128 bit register to store the authentication key. An XOR gate is used to 

compare the input key with the secret key stored in the device register. If the key is 

authenticated access to the scan architecture is granted as shown in Fig 26. 

 

 

Figure -27 Authentication Block Diagram. 
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5.4 Implementation 
 

The proposed solution has been implemented in Cadence 65nm and simulation results were 

obtained. The DLL locks on a reference frequency of 40MHz. The simulation results in 

Figure 28 shows the input supplied to the DLL and the recovered clock in phase with the 

reference frequency. 

 

An 8-bit data is encoded using Manchester line coding using a 40MHz reference frequency 

and the encoded clock is shown in Fig 29.  Two scenarios were simulated to show the 

decoding process. First, the code is decoded using the recovered clock (40MHz). The 

decoded data matched the original data as shown in Fig 30. 

 

 

Figure -28 DLL clock recovery with Charge pump in locked state. 
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Figure -29 Manchester encoding of 8-bit data. 

 

Figure -30 Decoded data using 40MHz clock. 
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Second, the Manchester code is decoded using a clock with half the frequency of the 

recovered clock. The decoded data is different from the original data as shown in Fig 31. 

The decoded data is then applied to the authentication block. If the code matches access is 

granted to scan chain. 

 

 

 

 

 

Figure -31 Decoded data using 20MHz clock. 
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5.5 Security Analysis 

Analysis on the level of security provided by the proposed secure scan architecture solution 

has been conducted assuming the following conditions:  

 The attacker is working independently with limited resource.  

 The attacker has equipment with operating frequency of 2.9 GHz. 

 The attacker tries to break the security using brute force attack.  

 The operating frequency of the DUT is between 10 MHz to 10GHz. 

 The DLL in the CDR takes 10µs to lock on to the input frequency and phase. 

 The authentication key is 128-bit long. 

Attackers seek to extract critical information stored in the device through scan chain. They 

apply test vectors, obtain the responses and analyzing the results to get the hidden secret 

information. Following the assumptions made above, if an attacker tries to attack a DUT 

through brute force, he/she would have to: 

 sweep through the spectrum from 10 MHz to 10GHz.  

 Apply the 128-bit authentication key. 

 Merge the data and clock into a digital coded data. 

The device runs on a predetermined operating frequency. Therefore, the speed of the 

equipment used to attack has no effect in breaking the security. The attacker must wait for 

the DLL to lock on the frequency and phase which takes 10 µs. Without the knowledge of 

the lock on time of the DLL, even if the attacker can apply the entire spectrum in a few 

seconds there won’t be enough time for the DLL to lock onto the input signal.  
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The key authentication also presents similar obstacle. The authentication key is 128 bits 

long, which presents a challenge to the brute force attack. Furthermore, a trial counter 

blocks access to scan chain after a predetermined number of failed attempts. This counter 

needs to be reset by switching the device off and then turning it on.  The probability of 

finding the correct frequency and the time it takes to break the proposed solution has been 

given below.  

Assuming the attacker knows which method is used to mix clock and data, the total number 

of frequency that the DLL might lock onto is 9.99×108. And the total number of possible 

combination for the authentication key is 2128. The probability of getting the right 

frequency, which can be taken as P(A), would be:  

P(A) =   
. ×

                             (3) 

The probability that the enter key is authentic, P(B) is: 

                                               P(B) =                                         (4)                        

The total probability of successfully accessing the scan chain P(C) is: 

                                      P(C) =  
( )× ( )

                   (5) 

                                      P(C) =  
. ×

                    (6) 

From equation (6), we can see that the probability of breaking the proposed solution is very 

low.   
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5.6 Conclusion 

This paper presents a security solution to prevent scan-based attacks.  The proposed 

solution has a dual authentication requirement. First, the tester must apply a digital coded 

data signal with a predetermined clock frequency. The tester must merge their data with an 

appropriate clock and apply them the DUT. The CDR in the DUT separates the clock and 

the data. Since the DLL in the CDR takes some time to lock onto the clock frequency, the 

initial data is lost. So, the tester must apply some random data till the DLL locks before 

applying the authentication key. Once the key is authenticated, the tester can then apply 

test vectors to the DUT. 

The proposed solution was implemented in CMOS 65nm technology in Cadence. The 

overall area of the proposed method was compared with various security measures. 
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Chapter -6 

Conclusions and future work 

6.1 Conclusions  

Devices can be tested using Design for Testability (DfT) techniques at any desired stage 

during manufacturing process. Scan design is the most popular DfT technique, which 

supports high observability and controllability. However, scan architecture presents a 

backdoor to attackers that can be exploited to obtain critical information stored within the 

device under test. The security threats must be addressed to effectively use the scan 

architecture. Limiting access to the scan architecture is one of the methods to secure the 

device. In the proposed solutions in this work, methods to authenticate users have been 

presented. These methods authenticate users through circuit blocks, phase locking systems 

and Clock and Data Recovery (CDR) methods to limit the access to the scan architecture 

to authorized users. In the first method, an authentication circuit block is utilized in which 

the total number of consecutive attempts are restricted. The second method uses a Phase 

Locked Loop (PLL) based frequency synthesizer to mask the operating frequency of the 

scan architecture. In the third method, a Delay Locked Loop (DLL) based CDR along with 

an authentication block have been utilized. The proposed methods have been implemented 

in Cadence environment using CMOS 65nm technology to evaluate their performance and 

to calculate their area overhead.  
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The results of the first solution entitled Secure Scan Chain using Test Port for Tester 

Authentication has been published in the proceedings of IEEE International Conference on 

Electronics, Circuits and Systems (ICECS) in 2016. The second method, “Secure Scan 

Chain using a Phase Locking Authentication Technique”, has been published in the 

proceedings of 2017 International Symposium on Signals, Circuits and Systems (ISSCS). 

The third method, “Secure Scan Architecture Using Clock and Data Recovery Technique”, 

has been prepared and will be submitted to the 2018 IEEE International Symposium on 

Circuits and Systems (ISCAS). 

6.2 Future Works 

In this thesis, various solutions to secure a scan architecture have been proposed. With the 

development of 3-Dimensional Integrated Circuits (3D-ICs), new test solutions are 

required. Scan architecture can also be utilized to perform manufacturing test on  3D ICs. 

Developing efficient test solutions for 3D ICs while maintaining a strong security could be 

a interesting research topic. 
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