
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

A versatile, scalable, and open memory architecture in CMOS 0.18 A versatile, scalable, and open memory architecture in CMOS 0.18

μm m

Karl Leboeuf
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Leboeuf, Karl, "A versatile, scalable, and open memory architecture in CMOS 0.18 μm" (2008). Electronic
Theses and Dissertations. 8251.
https://scholar.uwindsor.ca/etd/8251

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8251?utm_source=scholar.uwindsor.ca%2Fetd%2F8251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Versatile, Scalable, and Open Memory
Architecture in CMOS 0.l8fim

by

Karl Leboeuf

A Thesis
Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47093-0
Our file Notre reference
ISBN: 978-0-494-47093-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

© 2008 Karl Leboeuf

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise retained in

a retreival system or transmitted in any form, on any medium by any means without prior written

permission of the author.

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been

published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the

copyright owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for

a higher degree to any other University or Institution.

I V

Abstract

A lookup table is a permanent memory storate element in which every stored value corresponds to a

unique address. Range addressable lookup tables differ in that every stored value corresponds to a

range of addresses. This type of memory has important applications in a recently proposed central

processing unit which employs a multi-digit logarithmic number system that is well suited for digital

signal processing applications.

This thesis details the work done to improve range addressable lookup tables in terms of oper­

ating speed and area utilization. Two range addressable lookup table designs are proposed. Ideal

design parameters are determined. An integrated circuit test platform is proposed to determine the

real-world ability of these lookup tables. A case study exploring how non-linear functions can be

approximated with range addressable lookup tables is presented.

This work is dedicated to many teachers in my life who have helped shape me into what I am
today.

Acknowledgments

I would like to express my sincere thanks and appreciation to Dr. Roberto Muscedere for his

support and guidance throughout the progress of this thesis. In addition, I would also like to thank

Mr. Ashkan Hosseinzadeh Namin, Ms. Christine Koncan and my family for their unending help

and support.

Contents

Declaration of Originality iv

Abstract v

Dedication vi

Acknowledgments vii

List of Figures xiii

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

2 Background 5

2.1 Lookup Tables 5

2.1.1 Lookup Table Implementation 6

2.2 A Brief Review of Domino Logic 9

2.2.1 Static CMOS Logic 9

2.2.2 Domino Logic 11

2.2.3 Range Addressable Lookup Tables 13

3 The Range Addressable Lookup Table Architecture 15

3.1 RALUT Architecture Overview 15

3.2 The Address Decoder 15

3.2.1 Overview of the Beginning Stage 16

viii

CONTENTS

3.2.2 The Address Compare Pull-Down Network 19

3.2.3 Overview of the Middle Stage 20

3.2.4 Overview of the Final Stage 20

3.2.5 Detailed Example of the RALUT Address Decoder 21

3.3 Overview of the Word Lines 24

3.4 Address and Clock Buffering Overview 24

4 Proposed VLSI Implementations in CMOS 0.18/im 25

4.1 Existing CMOS 0.35/wn Design 26

4.1.1 Selecting an Updated Technology Node 26

4.2 Design Rescaling 27

4.3 Proposed CMOS 0.18/im Implementation 28

4.3.1 Transistor Sizing for the CMOS 0.18/im Implementation 28

4.4 The High Performance CMOS 0.18/zm Implementation 28

4.4.1 High Performance CMOS 0.18/tm Implementation Design Goals 29

4.4.2 Transistor Channel Length 29

4.4.3 Keeper Widths 30

4.4.4 NMOS Chain Scaling 30

4.4.5 Transistor Widths 31

4.4.6 High Performance CMOS 0.18/im RALUT Test Circuits 31

4.4.7 High Performance Implementation Test Circuit Results and Final Transistor

Sizing 34

4.4.8 Proposed High Performance Design Layout Improvements 44

4.5 Results of the CMOS 0.18/im and High Performance CMOS 0.18/tm Designs 46

4.6 Summary 47

5 Integrated Circuit Test Platform Design 50

5.1 Test IC Overview and Testing Strategy 51

5.2 The Clock Controller Circuit 52

5.3 Internal High-Speed Clock Generation Circuit 53

5.3.1 Phase-Locked Loops 53

5.3.2 Inverter Ring 53

5.3.3 Inverter Ring Design 54

5.3.4 Proposed Inverter Ring Design Specifications and Simulation Results 56

ix

CONTENTS

5.4 Test, and Output Select Circuits 58

5.4.1 Range Addressable Lookup Table Selection 61

5.4.2 Automatic Test Pattern Generator 62

5.5 The Control System 62

5.6 Hardware Synthesis 64

5.7 Simulation 64

5.7.1 Design Rule Check 66

5.8 IC Design 67

5.9 Test IC Summary and Results 67

6 Case Study: Range Addressable Lookup Tables in Artificial Neural Networks 70

6.1 Artificial Neural Networks and Activation Functions 71

6.2 A Brief Review of Different Hyperbolic Tangent Function Implementations 72

6.2.1 Piecewise Linear Approximation 72

6.2.2 Lookup Table Approximation 72

6.2.3 Hybrid Methods 73

6.3 Lookup Table Implementation of the Hyperbolic Tangent Function 74

6.4 Range Addressable Lookup Table Implementation of the Hyperbolic Tangent Function 74

6.5 Results and Comparison 75

6.6 Comparison of Different Hardware Implementations 76

6.7 Comparison to FPGA Implementations 76

6.8 Summary • 78

7 Conclusions and Future Work 79

7.1 Conclusions 79

7.2 Future Work 80

A Final Transistor Sizing 81

B Verilog Code 83

B.l Verilog Modules 83

B.l. l Automatic Test Pattern Generator 83

B.l.2 Clock Wrapper 84

B.1.3 Compare Module 84

B.1.4 Controller 85

X

B.1.5 n-bit Counter 86

B.1.6 Data-out Selector 86

B.1.7 n-bit Decoder 87

B.1.8 Input Module 87

B.1.9 Memory Module 88

B.1.10 n-to-1 Multiplexer 88

B. l . l l n-wide n-to-1 Multiplexer 88

B.1.12 OK Signal Indicator 89

B.1.13 Output Controller 90

B.1.14 HDL Ralut Module 90

B.1.15 Test Circuit 91

B.1.16 Power Toggle 92

B.1.17 System Wrapper 92

B.2 Verilog Test Benches 93

B.2.1 Compare Module Test Bench 93

B.2.2 Clock Wrapper Test Bench 94

B.2.3 Controller Test Bench 96

B.2.4 OK Signal Test Bench 97

B.2.5 Test Circuit Test Bench 97

B.2.6 Power Toggle Test Bench 99

C Matlab Code 101

C.l Matlab .m Files 101

C.l.l RALUT Point Generator 101

C.l.2 Sigmoid Function 103

D Layouts for the 0.35/zm, 0.18/im, and High Performance 0.18/um Designs 104

E Synopsys Files 111

E.l Verilog .v Files I l l

E.l . l Synopsys .dc Setup I l l

E.1.2 Clock Controller Script I l l

E.1.3 Test Circuit Script 112

E.1.4 RALUT Wrapper Script 112

CONTENTS

References 113

VITA AUCTORIS 115

List of Figures

1.1 The Hyperbolic Tangent Function 2

1.2 Lookup Table Approximation of tanh(x) with Eight Points 3

1.3 Range Addressable Lookup Table Approximation of tanh(x) with Eight Points . . . 3

2.1 Lookup Table Block Diagram 5

2.2 Lookup Table Internal Block Diagram 7

2.3 Hardware Compiler Result (a) Compared with ROM Implementation (b) 8

2.4 Schematic for a 2-Input, Static CMOS NAND Gate 10

2.5 A Domino Logic 2-Input NAND Gate 11

2.6 A Domino Logic 2-Input NAND Gate, with Keeper Transistor 12

2.7 Block Diagram of the RALUT, with n Address Bits, m Output Bits, and k Rows . . 13

2.8 RALUT (a) and LUT (b) Architectures 14

3.1 Block Diagram of the RALUT, with n Address Bits, m Output Bits, and k Rows . . 16

3.2 Block Diagram of a Five Row, Five Stage RALUT Address Decoder 17

3.3 Block Diagram of the Beginning Stage 17

3.4 Schematic of the Begin Stage 18

3.5 An Example Pull-Down Network for a 4-Bit Address Decode Stage Comparing to

"1100" 19

3.6 Block Diagram of the Middle Stage 20

3.7 Schematic of the Middle Stage 21

3.8 Block Diagram of the Final Stage 21

3.9 Schematic of the Final Stage 22

3.10 Example of a 5 Row, 12-bit, 4 Stage RALUT Address Decoder Evaluating 23

xii i

LIST OF FIGURES

4.1 Pull-Down Networks Used in Test Circuits: (a) '1111', (b) '0000', (c) '1000' 32

4.2 Simulation Waveforms for the Beginning Address Decode Stage. From top to bottom:

clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical Node, EQ_out . 35

4.3 Simulation Waveforms for the Middle Address Decode Stage with EQ Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical

Node, EQ-Out 38

4.4 Simulation Waveforms for the Middle Address Decode Stage with GT Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical

Node, EQ_out 38

4.5 Simulation Waveforms for the Final Address Decode Stage with EQ Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical

Node, EQ.out 40

4.6 Simulation Waveforms for the Final Address Decode Stage with GT Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical

Node, EQ-Out 40

4.7 Single-Stage Buffer Driving 8 Rows From Top to Bottom: Clock, Buffer Input, Buffer

Output, Buffer's Complemented Output, Stage's Output Signals EQ.out, GT_out,

and nGT_out_comp 43

4.8 Two-Stage Buffer Driving 8 Rows From Top to Bottom: Clock, Buffer Input, Buffer

Output, Buffer's Complemented Output, Stage's Output Signals EQ_out, GT_out,

and nGT_out_comp 43

4.9 Simulation Waveforms for the Linedriver Driving 48 Bits, From Top to Bottom: Row

1 Enable Signal, Row 1 Enable Signal Comp, Row 2 Enable Signal, Row 2 Enable

Signal Comp, Sample Output Line 44

4.10 Overlapping Wires Creating Parasitic Capacitances: (a) Original Placement, (b) Re­

duced Overlap Area, (c) Ideal Placement 47

4.11 RALUT Layout Comparison for CMOS 0.35/im design (top), CMOS 0.18/im design

(middle), and area-reduced, high-performance CMOS 0.18^m design (bottom) . . . 48

5.1 Block Diagram of the IC Subsystems 51

5.2 The Clock Selection Circuit Block Diagram 52

5.3 A 5-Stage Inverter Ring 53

5.4 Inverter Ring with Four Delay Settings 55

5.5 A Three-Inverter Delay Block 55

LIST OF FIGURES

5.6 Inverter Ring Example Using Control Word "0010" 56

5.7 Schematic for the Switch Block 56

5.8 Transistor Schematic for the Switch Block 57

5.9 Layout for the Switch Block 57

5.10 Simulation Waveform for the Ring Oscillator @ 350 MHz 58

5.11 Simulation Waveform for the Ring Oscillator @ 200 MHz 58

5.12 Simulation Waveform for the Ring Oscillator @ 75 MHz 59

5.13 Test Circuit Block Diagram With Pipelining 60

5.14 The IC Register-Based Control System and Input Word 64

5.15 Simulation Waveforms for the RALUT, from Top to Bottom: Clock Signal, Output

Line 3, 2, 1, and 0 66

5.16 Complete IC Layout 68

5.17 Close-Up View of the IC Core 69

6.1 The Hyperbolic Tangent Activation Function 71

6.2 Piecewise Linear Approximation of tanh(x) with Five Segments 73

6.3 Lookup Table Approximation of tanh(x) with Eight Points 73

6.4 Range Addressable Lookup Table Approximation of tanh(x) with Eight Points . . . 75

A.l Beginning Stage Final Transistor Sizing 81

A.2 Middle Stage Final Transistor Sizing 82

A.3 Final Stage Final Transistor Sizing 82

D.l Begin Address Decode Stage Layouts 105

D.2 Middle Address Decode Stage Layouts 106

D.3 Final Address Decode Stage Layouts 106

D.4 Output Bits Layouts, First Row: '0', ' 1 ' Second Row: '0', 1' Third Row: '00', '01',

'10', '11' 107

D.5 Address Compare Bits From Left to Right: '0' and "1 108

D.6 Linedriver Layouts 109

D.7 Buffer Layouts 110

X V

List of Tables

2.1 The NAND Function Input and Output Behaviour 9

4.1 Transistor Length and Width Scaling Factors 27

4.2 Beginning Stage Test Circuit Simulation Results in Picoseconds (ps) 36

4.3 Summary of Beginning Stage Worst Case Delay and Delay Per Address Bit, Results

in Picoseconds (ps) 37

4.4 Middle Stage Test Circuit Simulation Results in Picoseconds (ps) 39

4.5 Summary of Middle Stage Worst Case Delay and Delay Per Address Bit, Results in

Picoseconds (ps) 39

4.6 Final Stage Test Circuit Simulation Results 41

4.7 Summary of Final Stage Worst Case Delay and Delay Per Address Bit, Results in

Picoseconds (ps) 41

4.8 Buffer Test Circuit Results in Picoseconds (ps) 42

4.9 Output Bit Chain Length Test Circuit Simulation Results in Picoseconds (ps) 44

4.10 Area and Critical Path Delay Comparison for a 16-bit Input, 52-bit Output, 29 Row

RALUT 47

5.1 4-Bit LFSR Output States 63

5.2 Control Unit Signals 63

6.1 Complexity comparison of different implementations for 0.04 maximum error 75

6.2 Complexity comparison of different implementations for 0.02 maximum error 76

6.3 Complexity comparison of different implementations for 0.02 maximum error, includ­

ing FPGA implementations 78

xvi

List of Abbreviations

ASIC
ATPG
BIST
CAD
CMC
CMOS
CPU
DRC
DSP
FET
FPGA
HDL
IC
IEEE
LFSR
LUT
MDLNS
MOSFET
MSE
MUX
NAND
NMOS
PMOS
RALUT
RAM
ROM
SPICE
TLNS
TSMC
VHDL
VHSIC
VLSI

Application Specific Integrated Circuit
Automatic Test Pattern Generator
Built-in Self Test
Computer Aided Design
Canadian Microelectronics Corporation
Complimentary Metal-Oxide-Semiconductor
Central Processing Unit
Design Rule Check
Digital Signal Processing
Field-Effect Transistor
Field Programmable Gate Array
Hardware Description Language
Integrated Circuit
Institute of Electrical and Electronics Engineers
Linear Feedback Shift Register
Lookup Table
Multi-Dimensional Logarithmic Number System
Metal-Oxide-Semiconductor Field-Effect Transistor
Mean Squared Error
Multiplexer
Not-AND
n-Channel MOSFET
p-Channel MOSFET
Range Addressable Lookup Table
Random Access Memory
Read Only Memory
Simulation Program with Integrated Circuit Emphasis
Two-Digit Logarithmic Number System
Taiwan Semiconductor Manufacturing Company
VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Very Large Scale Integration

xvii

Chapter 1

Introduction

Since the first integrated circuit was successfully created in September of 1958, fabrication technology

has been constantly advancing; transistors become increasingly small, allowing for faster designs at

lower costs. The steady progress of miniaturization has continued almost unimpeded for fifty years

until recently. As transistor sizes approach atomic sizes, numerous problems begin to arise and

researchers must look elsewhere for performance improvements. Investigation into new types of

digital computer architectures is one approach researchers are taking to continue to advance the

state of the art of the integrated circuit.

Among these new architectures are processors which employ exotic number systems that excel

in performing certain mathematical operations, such as multiplication, division and exponentiation

[4], [5]. These are important operations for many digital signal processing applications, such as in a

hearing aid processor, and in digital filtering [6], [15], [7]. The multi-digit logarithmic number system

has recently been proposed for such purposes, and a processor employing this number system has

been designed; the two-digit logarithmic number system CPU [2]. This processor is able to quickly

and efficiently perform digital signal processing instructions, however it is reliant on the use of range

addressable lookup tables to perform certain crucial operations, including conversion to and from

binary [14].

Lookup tables, or LUTs, are a common form of permanent memory used in many applications.

Every LUT functions by giving it an input address, causing it to output a particular stored value.

Every value stored in the LUT corresponds to a unique input address.

1

1. INTRODUCTION

Range addressable lookup tables, or RALUTs, function similarly to LUTs, with one key differ­

ence. Every value that is stored in the RALUT corresponds to a range of input addresses. This

difference allows the table size to be significantly reduced for many applications, particularly when

approximating non-linear functions.

Consider, for example, the hyperbolic tangent function in Figure 1.1. It can be approximated with

the use of a lookup table. The input to the lookup table is the quantized x-axis of the function, while

the corresponding y-axis values are stored into the LUT, acting as outputs. Any degree of precision

is possible, however more precision will require a larger table size. An example of a hyperbolic

tangent function approximated by a LUT is shown in Figure 1.2. It is approximated with 8 values,

and it can be seen that this is a poor approximation with very large error, particularly in the points

close to the x-axis' origin. Notice that in a LUT, the stored values are evenly spaced across in input

range.

X

ta
nh

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

- 8 - 6 - 4 - 2 0 2 4 6 8

X

Figure 1.1: The Hyperbolic Tangent Function

RALUTs were designed to excel at this type of task. Similar to the LUT approximation, they

require the input address and stored output values to be quantized. RALUTs possess an impor­

tant advantage in approximating this type of function, however; the stored y-values can be placed

wherever the hardware designer wishes. This allows greater accuracy to be achieved with the same

amount of points, as in Figure 1.3. This figure shows the same function being approximated with

the same number of points, however the points are placed in a way such that the maximum error

is minimized. The points are placed closely together when the function is changing rapidly near

the origin, and further apart along the extremities where the function is hardly changing at all.

Alternately, if the error in the LUT approximation was acceptable, an RALUT implementation with

the same maximum error could be used with as few as 4 stored values, cutting the table size in half,

2

1. INTRODUCTION

0.8

0.6

0.4

ta
nh

(x
)

-0.4

-0.6

-0.8

_ i

y\
^/r i

f^ i

/ " J

_ _ J

,

« . ' I — ™"

-
-

-

-

,

Figure 1.2: Lookup Table Approximation of tanh(x) with Eight Points

achieving a major area savings.

Figure 1.3: Range Addressable Lookup Table Approximation of tanh(x) with Eight Points

The focus of this thesis is to advance the state of the art of range addressable lookup tables.

To achieve this, an existing RALUT design is rescaled to use a newer fabrication process, and then

further enhanced, reducing its area utilization and increasing its operating speed. A test platform

is proposed to allow real-world performance data to be collected. Finally, a new application for

RALUTs is proposed in the area of artificial neural networks.

This thesis consists of seven chapters. In this first chapter, the issue being addressed is presented,

and the structure of the remaining chapters is laid out. Chapter two provides pertinent background

information. Chapter three presents the RALUT architecture in detail, while chapter four proposess

two different RALUT designs along with their performance results. Chapter five details the creation

of a test platform for RALUT memory designs, and chapter six describes the utility of RALUTs in

3

1. INTRODUCTION

the area of artificial neural networks. In the final chapter, concluding remarks, and suggestions for

possible directions in future research in this are are made.

Chapter 2

Background

This chapter provides the reader important background information regarding lookup tables, a brief

review of static CMOS, domino logic, as well as range addressable lookup tables.

2.1 Lookup Tables

Lookup tables, or LUTs are a form of non-volatile, read-only memory. They are often used in

hardware design to store functions, and are desirable in applications that require high operating

speeds. As shown in Figure 2.1, LUTs have two I/O ports, an input address bus and an output bus.

Input Address
Lookup Table

Output Bus

Figure 2.1: Lookup Table Block Diagram

In literature and in practice, LUTs are generally measured with two dimensions: address space

and word size. The address space is defined by Equation 2.1; it is simply the number of different

addresses that can be referred to by the input bus. For example, a LUT with a 10-bit input bus can

refer to 1024 unique addresses.

5

2. BACKGROUND

Total Addresses = 2A d d r e s s B i t s (2.1)

The other defining parameter of the LUT, word size, is the width in bits of the output bus.

Every stored word in memory is referred to by a unique address. Together, these two dimensions

summarize the storage ability of the LUT, and the expression "address space x word size" will be

referred to as the size of the LUT.

2.1.1 Lookup Table Implementat ion

ROM Lookup Table Implementation

Different techniques for implementing LUTs exist. One of the most common methods is ROM

implementation, where the input addresses and output values are permanently stored into a hardware

array. Important advantages of this approach are simplicity and predictability; given that the

address space x word size parameters of the LUT remain constant, the specific words being stored

into the LUT do not affect its area utilization or maximum operating speed. Additionally, it is

worth mentioning that the only practical limitation of LUT size when using a ROM implementation

is silicon area. These are a highly desirable qualities when designing digital systems that make use

of LUTs.

One disadvantage of using a ROM array is that a proprietary tool called a "memory compiler"

must be used in order to implement them in hardware. Such tools are expensive, and closed-source,

meaning that the hardware designer does not have access to the internals of the ROM design.

Furthermore, memory compilers are not necessarily versatile; a compiler that works for a CMOS

0.35/zm process may not function with a CMOS 90nm process.

Another problem with ROM implementation is that they consume a very large area as the number

of address bits increases. Figure 2.2 shows the internal workings of the ROM implementation of the

LUT. It consists of an address decoder, which scales in size with the number of input bits, and the

word lines, which scale in size with the number of output bits. Thus, the total area of a ROM LUT

scales approximately with Equation 2.2. As the number of input bits increases, the area utilization

increases dramatically, possibly rendering the ROM implementation of LUTs impractical for very

large addresses.

LUTArea a 2™ x (n + TO) (2.2)

Despite these shortcomings, skillful hardware designers have found a place for the ROM array

6

2. BACKGROUND

implementation of LUTs in many different devices, including FPGAs , microcontrollers, and micro­

processors.

n-wide m-wide
Address Decoder Word Lines

•4 • •« •

Input Address

n

Figure 2.2: Lookup Table Internal Block Diagram

Logic Synthesizer and Logic Gate Implementation

An alternative approach to implementing LUTs is to use a logic synthesizer, sometimes called a

hardware compiler, to take the LUT's I / O characterisitcs, and implement it using logic gates. The

benefit of implementing LUTs as a series of simple logic gates is tha t there is a high probability

that the design can be simplified, yielding a large area reduction. The reason for this is tha t

the hardware compiler carefully examines the specific I / O behaviour of a particular and "optimizes

away" redundant logic. To demonstrate how a hardware compiler can optimize a design, the following

explanation will refer to Figure 2.3.

Suppose a designer wanted, for whatever reason, to create a 256 x 4 lookup table where every even

address would place the bit pat tern "1111" on the output bus, and "0000" for every odd address.

Given this specific design, a hardware compiler would most likely only use the least significant bit to

determine if the address were even or odd, and simply connect this signal to an inverter. Referring

to Figure 2.3 par t (a), when the address is even, the least significant bit is '0 ' , and the address passes

through an inverter and the first word line is enabled. Since the second word line receives the signal

of '0 ' , its contents are not placed on the output bus. The alternate situation occurs when an odd

address is used and the least significant bit is ' 1 ' . This hardware compiler implementation would

require (approximately) a few dozen transistors, while occupying a very tiny area, and operate at

very high speeds. As seen in Figure 2.3 par t (b), a ROM implementation would fill al ternating word

lines with these two pat terns , occupying the entire 256 x 4 ROM array, which is vastly more area

i 2° Rows
Address
Decoder

Output Bus

Word
Lines

7

2. BACKGROUND

Input Address

1 1 1 1 1 1 1 1 1

-£>o- 1111
Output Bus

Input Address

(a)

8,

256
Rows'

Address
Decoder

1111
0000
1111
0000

Output Bus

(b)

Figure 2.3: Hardware Compiler Result (a) Compared with ROM Implementation (b)

than the hardware compiler version.

While this expample is an ideal case, it does demonstrate the capability of the hardware compiler.

Under most scenarios, such dramatic reductions are not possible, however area utilization is typically

significantly less than with ROM implementations. The exact area utilization and operating speed

depend heavily on the exact bit pat terns used in the word lines of the LUT. This is a disadvantage

for hardware designers, as precise timing and area information are unknown until the design is

synthesized, and it is possible that small design changes made to the word lines will greatly affect

these LUT at tr ibutes. Another disadvantage is tha t this approach is not feasible for very large LUT

sizes. The processor and memory requirements of the logic synthesizer will increase to the point

where a single workstation equipped with a large amount of RAM still requires days or even weeks

to determine a gate-level design for the LUT.

This approach does not use a memory compiler, however it does require a s tandard cell library,

and a logic synthesizer tool: a proprietary library and a commercial tool. It is a scalable design, in

tha t any number of input bits, output bits, and rows can be used, with the only theoretical limit

being the area utilization. Currently there are no known open source s tandard cell libraries, and a

license for a hardware compiler is extremely expensive, however most digital hardware designers do

have access to both of these.

2. BACKGROUND

2.2 A Brief Review of Domino Logic

Many different logic families exist for implementing logic gates; the building blocks of digital circuit

design. The designs presented in this work make use of static CMOS, and domino-logic, a type of

dynamic CMOS logic. The goal of this section is to provide a brief overview of these logic styles,

and to impress the reader with a fundamental understanding of their mechanics, advantages, and

disadvantages.

2.2.1 Static CMOS Logic

Static CMOS is a very common logic style; it is used in almost every type of design [24]. In static

CMOS, a direct, low impedance path exists from the output of the gate to either VDD or VSS.

PMOS transistors act as the pull-up network, while NMOS transistors form a pull-down network.

When the appropriate inputs arrive at the transistors' gates, the circuit evaluates, and the output

node is either connected directly to either VDD or VSS.

A Static CMOS 2-input N A N D Gate

For example, a static CMOS 2-input NAND gate is shown in Figure 2.4. It implements the function

described by Table 2.2.1. The NMOS transistors connect the output directly to ground when both

inputs A and B are equal to logic 1, forming the pull-down network. Similarly, when either (or both)

of A or B are at logic 0, the PMOS transistors forming the pull-up network connect the output node

directly to VDD.

A

0

0

1

1

B

0

1

0

1

Output

1

1

1

0

Table 2.1: The NAND Function Input and Output Behaviour

Static CMOS Properties

Static CMOS logic gates are relatively easy to implement, and are not overly sensitive to loading.

This is a highly desirable property, as it allows different static CMOS gates to be combined together

9

2. BACKGROUND

AHL BH i Output ̂

Figure 2.4: Schematic for a 2-Input, Static CMOS NAND Gate

with ease to form larger circuits. For this reason, standard cell libraries are composed of this type

of logic gate.

Another important feature of static CMOS is near-zero static power consumption. Static power

consumption refers to the power being consumed while the device is not switching. In other words,

as long as the inputs to the logic gate remain constant, very little power is consumed. The reason

why a small amount of power is still being consumed during this operating state is due to charge

leakage; a physical phenomenon in which some of the charge carriers are able to "leak" through the

transistor's gate oxide. This is not a major issue for fabrication processes larger than 90nm due to

the relatively large oxide thickness, however when using fabrication technology at the 90nm node

and beyond, this may become a greater concern.

Static CMOS gates do, on the other hand, consume switching power. This is due to the fact that

when the gate's output is switching from logic 0 to logic 1, or vice-versa, both the pull-up network

and pull-down network will be conducting current for a very short time interval. In other words,

for a short instant (on the order of picoseconds), a short circuit from VDD to VSS is available. In

addition to consuming power, this can generate noise, which may be an issue if there are analog

circuits operating nearby.

One drawback to static CMOS, is the reliance on PMOS transistors to form the pull-up net­

work. PMOS transistors rely on "holes", rather than electrons as their charge carriers, which are

much slower [10]. It is for this reason that PMOS transistors must be significantly larger than an

NMOS transistor in order to possess equivalent current drive capability. This results in greater area

utilization and slower operating speeds compared to a logic style that relies more heavily on NMOS

transistors.

10

2. BACKGROUND

2.2.2 Domino Logic

A dynamic logic gate is one in which the output is only valid for a short amount of time after the

result is produced. [18] Athough this sounds quite restrictive, dynamic CMOS networks are useful

for high-speed system design. Dynamic logic encompasses several different logic families, including

domino logic.

Domino logic uses a clock signal to "precharge" a node, and later "evaluate" the node via an

NMOS pull-down network. It is best illustrated via an example, as in Figure 2.5.

CLK

Figure 2.5: A Domino Logic 2-Input NAND Gate

In this schematic, when the clock signal is at logic 0, the PMOS or "precharge" transistor in this

case, pulls the critical node to logic 1. This node connects to the gate of the inverter, and the output

of the gate at this point is logic 0. Also notice that at this time, the NMOS transistor connected

to the clock signal, the "evaluate" transistor, is not currently conducting, eliminating any path to

ground that the critical node may have had.

As time elapses, the clock makes the transition to logic 1, the precharge transistor stops conduct­

ing, while the evaluate transistor opens a path to ground through the NMOS pull-down network.

At this point, one of two events may occur. If inputs A and B are both at logic 0, the pull-down

network completes the path to ground from the critical node to the evaluate transistor, discharging

the critical node, and bringing the gate output to logic 1. Alternately, if either of A or B are low, a

path to ground does not exist, and the charge on the critical node remains. The gate output stays

at logic 0.

Domino logic's many advantages over static CMOS stem from several facets of its design. First,

only the faster NMOS transistors are used to evaluate the circuit, and the lack of a large pull-

up network greatly reduces parasitic capacitance, significantly enhancing operating speed. Second,

l i

2. BACKGROUND

power reduction is possible; there is never a short circuit from VDD to VSS as there is in static

CMOS. Another advantage is the reduced area utilization made possible by only implementing the

pull-down network as opposed to both pull-down and pull-up networks. For example, a 4-input

NAND gate would require only two additional NMOS transistors than 2-input gate in Figure 2.5,

whereas a static CMOS 4-input NAND gate would require four additional transistors: two NMOS

and two PMOS.

Despite these advantages, domino logic design presents a separate set of challenges. Domino

gates are sensitive to charge leakage and charge sharing, and suffer from these effects. As described

in the previous section, charge leakage is the physical phenomenon in which some of the charge

leaks through the transistor's gate oxide. In addition to dissipating power and creating heat, this

is particularly problematic in domino gates; if the charge at the critical node dissipates too rapidly,

the output will become invalid. To eliminate this concern, an additional transistor is placed between

VDD and the critical node, and controlled by the gate's output, as in Figure 2.6

CLK

Figure 2.6: A Domino Logic 2-Input NAND Gate, with Keeper Transistor

This transistor is referred to as the "keeper". Its role is to maintain charge on the critical node

that would otherwise bleed away over time due to charge leakage [20]. It is a very weak transistor;

it is deliberately sized so that it possesses low current drive. This is done to ensure that when

the circuit legitimately attempts to discharge the critical node, the keeper does not overpower the

pull-down network, reducing operating speeds.

The other domino logic concern, charge sharing, is the effect of all transistors attached to a

common node contributing to the charge stored there. A larger amount of charge will require larger

transistors, and more time to dissipate during the evaluate phase, reducing circuit performance.

Hardware designers must be aware of this phenomenon, and carefully plan their designs around this

problem. It is due to domino logic's sensitivity to this effect that limits its use to hand-designed

circuits, rather than standard cell libraries.

12

2. BACKGROUND

2.2.3 Range Addressable Lookup Tables

RALUTs were originally proposed in [14] as an efficient way to implement certain non-linear, dis­

continuous functions used for number conversion as well as addition and subtraction in a multi­

dimensional logarithmic number system (MDLNS) [16] The MDNLS number system is able to per­

form the multiplication, exponentiation, and devision operations with extreme efficiency, rendering

its use extremely beneficial in certain applications such as DSP, cryptography, and multimedia

processing. A primary concern of implementing a processor that employs this number system in

hardware is number conversion to and from the binary number system, which is traditionally used

extensively throughout most hardware designs. The conversion process is relatively time consuming

unless some special hardware techniques are used. Lookup tables were proposed, however it was

shown that they become very large in size as greater conversion accuracy is needed and a larger

address space is required.

A block diagram showing the main components of the RALUT is shown in Figure 3.1. The

architecture is divided into two main sections, the address decoder and the word lines. The input

address is connected to the address decoder, and a single word line is enabled and palced on the

output bus. There are only k rows, whereas in the LUT there are 2™ rows. As will be shown, the

number of rows in a RALUT is not dependent on the number of bits in the input address. Finally, it

is worth noting the presence of a clock signal. Although the RALUT functions like a combinational

logic circuit, due to its domino logic implementation it will require a clock.

Clock Signal

Input Address j Address Decoder

Word Line
Enables

-^ H
k

Word Lines
RALUT Output

m

Figure 2.7: Block Diagram of the RALUT, with n Address Bits, m Output Bits, and k Rows

Range addressable lookup tables, or RALUTs, function very similarly to the LUTs described in

the previous section. The key difference is that every stored value in a RALUT is referred to by a

range of addresses, as opposed to a single, unique address, as in Figure 2.8. As shown in the figure,

for a RALUT, every address is compared to the values stored in the address decoder. If the input

address is larger than a given row, but smaller than the next, that word line is activated.

This architecture allows for a tremendous area savings when implementing specific types of non-

13

2. BACKGROUND

Input Address
-n *

Address (0)

Address (1)

Address (2)

Address (3)

Address (4)
*

Data (0)

Data(l)

Data (2)

Data (3)

Data (4)

Output Bus
/ *

(a) Lookup Table Architecture

Input Address
•n *

Address (0) <= A < Address (1)

Address (1) <= A < Address (2)

Address (2) <= A < Address (3)

Address (3) <= A < Address (4)

Address (4) <= A
*

Data (0)

Data(l)

Data (2)

Data (3)

Data (4)

Output Bus
fri *

(b) Range Addressable Lookup Table Architecture

Figure 2.8: RALUT (a) and LUT (b) Architectures

linear and/or discontinuous functions. It is the RALUT's ability to span a large address space, while

only using as many rows as are required that allows it to minimize area utilizaton and optimize speed.

Equation 2.3 describes how the RALUT will scale in size with the design parameters n, m, and k.

RALUTArea & k X (n + TO.) (2.3)

14

Chapter 3

The Range Addressable Lookup Table

Architecture

This chapter presents a detailed review of the architecture originally proposed in [14]. It begins

by giving an overview of the design, and then expands on the individual components of which it is

composed.

3.1 RALUT Architecture Overview

The RALUT is composed of two main parts; the address decoder, and the output rows. As shown

in Figure 3.1, the RALUT uses three external signals. The n-bit wide input address and clock signal

enter the address decoder portion of the architecture, which is responsible for triggering one of the

k word lines. The word lines connect to the output rows, placing an output value on the m bit wide

RALUT output bus.

3.2 The Address Decoder

At the heart of the RALUT is the address decoder. The address decoder architecture determines

which output row to enable. This is performed by comparing the input address bits with the values

that are permanently stored into the RALUT's address decoding array. The input address, and

15

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

RALUT Output

£

Figure 3.1: Block Diagram of the RALUT, with n Address Bits, m Output Bits, and k Rows

consequently the decoding array, is divided up into groups and compared in stages. This is done

to minimize the length of the the domino logic NMOS pulldown network, as long NMOS chains

significantly reduce circuit performance. The number of stages used depends on the width of the

input address, as well as the number of bits being evaluated by each stage. A block diagram of a five

row, five stage RALUT address decoder is shown in Figure 3.2. Omitted for clarity are the input

address lines connecting to every row, rather than only the last row as shown in the diagram.

Figure 3.2 also shows the signals emanating from each of the stages. These are used to control the

evaluation of subsequent stages. Whenever possible, subsequent stages are prevented from evaluating

in order to reduce power consumption due to transistor switching. There are two ways in which

this is achieved. First, the EQ_out and GT_out signals act as clock signals for subsequent stages

by controlling the precharge and evaluate transistors, later evaluation stages in the same row may

be disabled. If, for example, EQ_out does not make the logical transition from logic 0 to logic 1 in

a given beginning stage, the subsequent stage's EQ circuit will not enter into an evaluation mode.

The second technique employed to limit power consumption is the use of feedback from other rows.

By having every row (except the last) use feedback from the next immediate row in the form of

the nGT-Out_comp signal. If the input address is greater than the stored value in the next, higher-

addressed, row, it stands to reason that the input address must be greater than the current row,

and that fully evaluating this entire row is redundant. By preventing as much redundant evaluation

as possible, transistor switching and thus power consumption is reduced.

It is important to note that only the first stage of the address decoder is driven by the clock.

Additional stages are driven by the EQ_out and GT_out signals, which will be further explained in

the example at the end of this chapter.

3.2.1 Overview of the Beginning Stage

A block diagram of the beginning stage is shown in Figure 3.3.

Clock Signal

Input Address \ Address Decoder

Word Line
Enables

Word Lines

16

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

CI

— •

— •

— •

— •

.K

Input
Address

Begin
EO oû _

GT out̂

nGT_comp_out

Begin

i k

Begin

i k

Begin

, k

Begin

A k

5n - 1 to 4n

Middle

ik

Middle

i i

Middle

i k

Middle

i k

Middle

A k

4n - 1 to 3n

Middle

i k

Middle

ik

Middle

i k

Middle

t k

Middle

i k

3n - 1 to 2n

Middle:

ik

Middle

ik

Middle

i k

Middle

ik

Middle

A k

2n - 1 to n

Final

ik

Final

ik

Final

ik

Final

ik

Final

A k

WL(0)^

WL(1)^

WL(2)^

WL(3)^

WL(4)^

n-1 to 0

Figure 3.2: Block Diagram of a Five Row, Five Stage RALUT Address Decoder

CLK

n Address Bits
Begin

nGT_comp_out

GT_out

EQ_out

Figure 3.3: Block Diagram of the Beginning Stage

17

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

The most significant n bits of the address are passed to every row of this stage. For every row,

the beginning stage computes if the address bits being compared are greater than, or equal to its

stored value. It then continues on to generate the following signals depending on how the circuit

evaluated.

• EQ_out evalues to logic 1 if the input address is exactly equal to the value stored in that

particular stage, and logic 0 otherwise

• GT_out evaluates to logic 1 if the input address is greater than the stage's stored value, and

logic 0 otherwise

• nGT_out_comp is simply the complement of GT_out

Note that the beginning stage is the only stage in this architecture to be driven by the clock

signal. Looking closer into the beginning architecture, shown in Figure 3.4, is the transistor-level

design, showing that the circuit is essentially divided into two parts; one to evaluate the EQ_out

signal, and the other to evaluate the GT.out and nGT_comp_out signals.

CLK

Compare to 0

Figure 3.4: Schematic of the Begin Stage

For the beginning stage, both of these sub-circuits have a very similar, standard domino-logic

gate style architecture. The only major difference is the additional inverter added after the GT_out

signal to generate nGT_comp_out. When the clock is low, these circuits precharge the critical

nodes A and B, meaning the outputs of this stage will be EQjj-ut = logicO, GTjout = logicO, and

nGT-comp-out — logicl during this time period. As time elapses, and the clock rises to logic 1, the

direct connections between these nodes and VDD are severed, and the evaluate transistor conducts,

opening a path to ground at the end of the pull-down network. If the input address is equal to the

18

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

value that this beginning stage compares to, a direct path to ground exists for node A, discharging it,

bringing the output of EQ_out to logic 1. Similarly, if the input address is greater than the compare

value, node B discharges, setting GT_out high and nGT_comp_out low.

The way in which EQ and GT are evaluated depends principally on the pull-down network. In

Figure 3.4, the pull-down network shows what combination of transistors are used for comparing a

bit of the address to '0', and ' 1 ' (shown in green and red, respectively). The pull-down network is

explained further in the next section.

3.2.2 The Address Compare Pull-Down Network

To EQ Pullup To GT Pullup

t (LSB) A0_comp 1 f~ A0 1

Al_comp Al H

A2-

(MSB) A3 11

To Evaluate Circuit
^

Figure 3.5: An Example Pull-Down Network for a 4-Bit Address Decode Stage Comparing to "1100"

An example of a 4-bit pull-down network used to evaluate the EQ and GT signals is shown in

Figure 3.5. Note that the most significant address bit that will be compared is A?>, the transistor

closest to the evaluate circuit, while the least significant address bits connect to the pull-up circuits.

In the case of the beginning stage, the EQ pullup is node A, and the GT pullup is node B. Also

note that when comparing the input address to a ' 1 ' , there is no transistor in the GT chain. This is

due to the fact that in a binary number system, it is impossible to determine if a number is greater

than one using a single digit, rather the next, more significant bit must be examined.

19

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

3.2.3 Overview of the Middle Stage

A block diagram showing the input and output signals of the middle stage is shown in Figure 3.6.

The major differences between this and the beginning stage are tha t this stage uses E Q J n and G T J n

in place of the clock signal, and nGT_comp J n used in the evaluate chain.

EQ_in

GT_in

nGT_comp_in

n Address Bits

Figure 3.6: Block Diagram of the Middle Stage

The schematic for the middle stage is shown in Figure 3.7. Once again, this stage differs only

slightly from beginning. The EQ circuit uses in_EQ from the previous stage as a clock, and an ad­

ditional transistor, controlled by in_nGT_comp, is added to the evaluate pa th . This extra transistor

is responsible for disabling the evaluate stage of the EQ circuit in the event tha t the input address

is greater than the next row's value. The GT circuit uses both the in_EQ and in_GT signals to

work the precharge and evaluate transistors. For this part of the middle stage, note tha t neither

the E Q or GT circuits will evaluate if the input address is greater than the next row due to the

additional transistor in the evaluate pa th of the pull-down network. Additionally, if the previous

stage's o u t . G T signal is at logic 1, and the input address is not yet known to be greater than the next

row, the GT_out signal of this stage will automatically propogate due to the additional transistors

added to the G T circuit's parallel pull-down network. This is done to further reduce the amount of

switching in order to improve power consumption.

3.2.4 Overview of the Final Stage

The final stage is shown in block diagram form in Figure 3.8. This stage makes use of E Q i n , G T Jn ,

and nGT_comp_in, however its only output is a word line enable signal, WL.

The schematic for the final stage is shown in Figure 3.9. This circuit is essentially the same as

the middle stage, with the exception tha t the G T and E Q subcircuits have been combined. The

reason for this is tha t if the input address is not yet known to be greater than the next row's compare

value, this stage must determine if it is to be enable its row's output word line.

Middle

nGT_comp_out

GT_out

EQ_out

20

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

in_EQ

in_nGT_comp Compare to 1 Compare to 0

GT out

Figure 3.7: Schematic of the Middle Stage

EQ_in

GT in

nGT_comp_in

n Address Bits ..

Final Wordline Enable

Figure 3.8: Block Diagram of the Final Stage

3.2.5 Detailed Example of the R A L U T Address Decoder

This example will refer extensively to the five row, four stage, 12-bit RALUT address decode circuit

shown in Figure 3.10. Omitted for clarity are the input address lines going to every row, rather than

only the last row. Also omitted are the address and clock buffers. This figure is colour coded to

indicate weather a signal is logic 1 (green), logic 0, (red), and if a stage evaluates (green), or if it is

disabled to save power (grey).

This RALUT address decoder can enable one of five different word line output rows, shown

as WL(0) through WL(4). Evaluation begins as follows. When the CLK signal is at logic 0, the

beginning stage enters its pre-charge state. During this time, the input address may change without

affecting the RALUT's output. On the rising edge of CLK, the beginning stage of the circuit begins

to evaluate.

The most significant three bits of the input address are compared with the beginning stage of

each row. If the result is equal, as in rows 3 and 4, EQ_out changes from logic 0 to logic 1, acting as

21

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

in_nGT_comp

Compare to

Compare to 0

Figure 3.9: Schematic of the Final Stage

clock signal for the next stage's EQ_out circuit. If the result is not equal however, EQ_out does not

change logic levels and the next stage's EQ_out circuit remains dormant, saving power. Similarly,

GT.out evaluates to logic 1 if the input address is greater than the stored value. This signal, in turn,

acts as the clock for the next stage's GT.out circuit, similar to EQ_out. The last row's beginning

stage's stored value is greater than the first three bits of the input address. Due to this, both the

EQ.out and GT.out lines remain low, and the remainder of the final row does not evaluate, saving

power.

The nGT_comp_out signal connects to the beginning stage of the previous row. This signal is

simply the complement of that beginning stage's GT_out, and is used to disable the evaluation of

the previous row in order to reduce power consumption. In this example, once the first three bits of

the input address have been evaluated by the beginning stages, it is apparent that the first row will

not require further evaluation since the input address is greater than the second row.

The middle stages perform similar to the beginning stage, with two differences. First, the middle

stages are not attached to a clock signal, rather they employ the previous stage's EQxmt and GT.out

as a pre-charge and evaluate mechanism. Second, the middle stages have been modified to accept

an additional input, the nGT_comp_out signal, to disable their evaluate chains when it is at logic 0.

Once the previous stages have evaluated, the final stage determines which of the word lines to

enable. Note that this architecture will, regardless of input addresses and stored decoder values,

22

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

CLK

Input
Address

Begin
000

EQ_out

GT out
Middle

000

nGT_comp_out

EQ out„

GT out
Middle

000

nGT_comp_out

Middle
110

nGT_comp_out

EQ_out

GT out

EQ_out.

GT out.
Final
000

nGT_comp_out

Middle
111

nGT_comp_out

EQ_out

GT out

WL(0),

nGT_comp_out

Final
000

nGT_comp_out

WL(1),

nGT_comp_out

Middle
110

010

EQ out

GT out
Middle

010

EQ_out

GT out
Final
011

110 001

WL(4),

101

Figure 3.10: Example of a 5 Row, 12-bit, 4 Stage RALUT Address Decoder Evaluating

fully evalute two entire rows at the most. In this example, rows 3 and 4 are evaluated to the end.

The final stage will compare the final, and least significant, three bits of the input address with its

23

3. THE RANGE ADDRESSABLE LOOKUP TABLE ARCHITECTURE

stored value, as well as the previous stage's EQ_out and GT.out signals. Based on these, a single

output word line is enabled. In this example, the input address is larger than the value stored in the

third row of the address decoder, but smaller than the fourth, and the third word line is enabled.

If the fourth row's final stage would have had the bit pattern 101 stored, the row would have been

exactly equal to the input address, and that world line would have been enabled instead.

Once all stages have evaluated, the word line remains valid until the negative edge of the clock

signal, CLK.

3.3 Overview of the Word Lines

The word lines are simple in function; given a line enable signal, they simply place the correct output

bit pattern on the output bus. The line enable signal connects to a series of buffer, or line drivers,

which then connect directly to NMOS and PMOS transistors which either pull-up or pull-down the

RALUT output bits depending how they have been configured.

3.4 Address and Clock Buffering Overview

The clock signal and input address lines must be sufficiently buffered so that as the RALUT scales in

size, these signals can be driven without incident. For example, without buffering, the incoming clock

signal would have to drive every beginning stage. With smaller designs this might be acceptable,

however when using a design with hundreds of rows the rise and fall times of the clock signal will

be very high, if the signal is able to even drive the circuit at all.

Buffering is implemented with a simple tree structure. Every input signal enter a single buffer,

which branches off to a series of additional buffers, and so on, until the signal reaches the address

decoder.

24

Chapter 4

Proposed VLSI Implementations in

CMOS 0.18/am

This chapter discusses the design goals, methodology, and results in creating two proposed designs,

both of which are in CMOS 0.18/im. The first is a rescaling of the existing 0.35/im design, in

which all layout cells were recreated in the more advanced 0.18/xm node, however only two different

transistor sizes were used: one for NMOS transistors, and the other for PMOS transistors. This was

a very rapid approach to rescaling the design, and was used to meet a fabrication deadline for the

test platform outlined in the next chapter. The second proposed design involves carefully resizing

individual transistors, and further reducing area utilization to produce a high-performance RALUT.

This approach proved to be much more time consuming, however simulation results prove to be

optimal.

This chapter is organized as follows. It begins with an overview of the CMOS 0.35/im design,

followed by an explanation why the CMOS 0.18/im technology node was chosen for the new designs.

A brief discussion regarding the rescaling of CMOS designs ensues. Next, detailed explanations

of the proposed CMOS 0.18/im and high performance 0.18/im designs are presented. Finally, the

chapter ends with a comparison of the results and some summarizing remarks.

25

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18^M

4.1 Existing CMOS 0.35/im Design

This work advances the contributions made in [14] towards a high performance, full-custom RALUT

design. As such, an existing full-custom design in an CMOS 0.35/zm process existed, however many

improvements could be made. The existing CMOS 0.35/xm design consisted of the following items:

1. A full-custom cell library, including beginning, middle, and final stages of the address decoder,

as well as the input and clock buffers, output bits and output linedriver cells

2. A CAD tool designed in SKILL, used in the Cadence software environment to automatically

place and configure the design cells based on a user-generated file containing the desired bit

patterns

While this work consists of a solid base, many improvements were possible. Originally used

in 1995, CMOS 0.35/Um. is a dated technology. Many modern processors are currently designed

with 90nm technology, and as of 2007 Intel has been fabricating some of their ICs using a 45nm

process. Clearly, it is advantageous to advance the RALUT design to a more recent technology

node, increasing its utility. In addition to porting to a more recent technology, the RALUT can be

further optimized by carefully resizing its transistors. The CMOS 0.35/im design uses two different

transistor sizes: one for PMOS and one for NMOS transistors. While this may greatly simplify

layout design, it does not yield optimal performance.

4.1.1 Selecting an Updated Technology Node

The term "technology node" refers to a generation of process technology used to fabricate integrated

circuit chips. The name of the node itself refers to the smallest possible transistor channel width that

can be fabricated with that process. CMOS 0.18/zm, for example, allows the creation of transistors

with a minimum channel width of 0.18/um. As new fabrication techniques are discovered, the creation

of smaller devices is possible, enabling faster operating speeds and reduced power consumption.

Currently, several different technology nodes are available for researchers to fabricate devices,

including CMOS 0.35/irn, 0.18/xm, 0.13/xm, and 90nm. When selecting which design technology to

implement, and later fabricate the RALUT architecture, the following considerations were made:

• The fabrication technology design kit must be made available to the University of Windsor

through CMC

• In addition to the analog design tools, the process' design kit must include standard library

cells for digital designs

26

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS O.l&nM

• It is preferable to use a mature design kit in which designs have been successfully fabricated

in the past

• Assuming the previous criteria are met, the most recent process technology should be se­

lected to ensure a high-performance design that compares well with current competing design

alternatives

The University of Windsor currently has the 0.35/im, 0.18/im, 0.13/im, 90nm, and 65nm CMOS

design kits, while fabrication services made available from CMC. Of these, the 0.35/im, 0.18/OTI, and

90nm kits have digital standard cell libraries. The 90nm design kit is currently considered quite

"bleeding edge", and at the time of this writing, the kit is incomplete; it lacks several important

elements such as timing libraries for the standard cells, which are crucial for timing-driven placement

and routing. With CMOS 0.18/im and 0.35/im to choose from, 0.18/im was selected. CMOS 0.18/im

was first used in 2000; it is a proven process, and significantly more recent than the 0.35/im node,

which was first available in 1995.

4.2 Design Rescaling

Every fabrication technology possesses a set of design rules that, among other things, define the

minimum distances that must separate certain layout elements to ensure that the integrated circuit

can be fabricated. [CMC's cmospl8/cmosp35 documents] Unfortunately, the majority of these design

rules do not scale simply with the technology. For example, as shown in Table 4.1, in advancing to

CMOS 0.18 from CMOS 0.35, the minimum transistor widths and lengths do not scale at the same

rate [26], [25]. Due to these uneven scaling factors, a full-custom layout cannot be simply rescaled

when advancing to a newer technology node.

Technology Node

Transistor Length

Transistor Width

CMOS 0.35/im

0.35/im

0.40/im

CMOS 0.18/im

0.18/im

0.22/im

Scaling Factor

0.51

0.55

Table 4.1: Transistor Length and Width Scaling Factors

Maintaining the same transistor width-to-length ratio is also insufficient when rescaling the de­

sign, as the supply voltage also changes from 3.3V to 1.8V from CMOS 0.35/im to 0.18/im. For

these reasons, rescaling the design is not simply a matter of shrinking the design cells. Rather, every

27

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/tM

cell must be redrawn by hand to ensure that the design rules are adhered to while maintaining a

compact and efficient design.

4.3 Proposed C M O S 0.18/xra Implementa t ion

The CMOS 0.18/xm implementation consists of rescaling the existing CMOS 0.35/zm design to the

CMOS 0.18/xm process. All of the design cells must be redrawn and rescaled according to the CMOS

0.18/xm design rules. Similar to the CMOS 0.35/xm design, NMOS and PMOS transistors are both

given a width parameter, allowing these broad categories of transistors to be easily resized. While it

is not ideal to use the same size for all transistors of a particular type, it simplifies the layout, and

reduces design time. It was highly desirable to fabricate an integrated circuit to test the RALUT;

due to this a shortened design cycle was important, as only four months were available from the

commencement of this work until the fabrication deadline.

4.3.1 Transistor Sizing for the CMOS 0.18/im Implementation

In order to determine transistor sizing for this design, a parametric analysis was performed, and the

NMOS/PMOS transistor widths which provided optimal results were selected. Transistor lengths

were all set to 0.18 /xm, the minimum channel length allowable for this technology node. In this

case, using a PMOS width of 0.6 /zm, and an NMOS width of 0.39 /xm provided the best results.

RALUT parameters such as the number of bits per address decode stage, number of output bits per

linedriver, and the maximum number of rows per buffer were all configured to be the same as in the

existing CMOS 0.35/xm design. Implementation results for this proposed design are shown at the

end of this chapter in Section 4.5.

4.4 T h e High Performance C M O S 0.18/im Implementa t ion

Once the 0.35/xm RALUT was rescaled to the 0.18/zm process, and the test IC sent off for fabrication,

work continued on further improving the 0.18/xm version. This proposed design will be referred to

as the "high performance CMOS 0.18/xm implementation". This section details the work done to

create this high performance design.

28

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18piM

4.4.1 High Performance CMOS 0.18/zra Implementat ion Design Goals

Carefully sizing individual transistors should be able to increase operating speeds without dramati­

cally affecting area utilization and layout complexity. The effects of proper keeper transistor sizing,

and the pull-down network chain scaling should also be investigated to determine what performance

gains can be made. Additionally, optimal design parameters for the maximum number of address

bits per decode stage, amount of address buffering, and the number of output bits per linedriver

are not known for the CMOS 0.18/xm. design. It is worthwhile to determine ideal values for these

parameters to maximize performance.

To summarize, the design goals of the high performance implmentation are as follows:

1. Optimize the transistor sizing for the address decode stages, clock and address buffers, output

bits, and output linedrivers

2. Determine ideal design parameters for the number of address bits per address decode stage,

ideal amount of input address and clock buffering, and the maximum number of output bits

per linedriver circuit

3. Report simulation performance data to serve as a guide for future hardware designers

4. Redraw cell layouts, making any possible area and performance optimizations

4.4.2 Transistor Channel Length

In digital circuit design, the transistor length, or channel length, is typically set to the minimum

size allowed by the fabrication process —in this case 0.18 fi m. This is done to maximize the

transistor's conduction current, which is governed by Equation 4.1 for NMOS devices and 4.2 for

PMOS devices. This equation describes the transistor's maximum current drive (ID,max) m terms

of the transistor's dimensions, width (W) and length (L), a process-specific constant, the gate oxide

capacitance (Cox), the gate-to-source and threshold voltages (VQS and VTH), and either the hole or

electron drift velocity, fin and nP, respectively. As shown in the equations, reducing L will increase

ID,max, resulting in, using qualitative terms, a "stronger" transistor. In short, using smaller channel

lengths will result in smaller channel widths for the same conducting current, while reducing the

total amount of charge that must be displaced. This reduces area utilization and power consumption,

while increasing the operating speed.

29

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/JM

lD,max = -A«nCoa; — (V G S ~ VTH)2 (4.1)

lD,max = yHpCox — (VGS ~ VTH) (4-2)

4.4.3 Keeper Wid ths

Keeper transistors are used to minimize the effect of charge leakage. The keeper must be correctly

sized to ensure that the critical node remains at logic 1 when it is charged, however it must not

overpower the node if it is legitimately attempting to discharge during the evaluation phase. A keeper

sizing scheme was described in [20], and was used as a starting point. To size the keeper in this way,

the NMOS ^ aspect ratios in the pull-down network are summed, and multiplied by a constant

less than one. This constant is then experimented with until simulation results prove optimal. For

this work, the keeper was computed using this approach, and then tuned to yield optimal results.

Although different keeper sizes were considered for use in the various address decode stages of the

RALUT, simulation results indicated a negligeable difference. Different keeper sizes were also tested

when using 4, 5, and 6 input bits per stage. Once again, operating speeds among the different

keeper sizes were negligeable. Due to the minimal performance gains in sizing the keepers differently

depending on the number of address bits, and among the different address decode stages, the same

keeper width of 250nm was used throughout the design to simplify the layouts.

4.4.4 NMOS Chain Scaling

NMOS chain scaling is a circuit design technique employed to improve speed performance in domino

logic [18]. It consists of sizing each of the transistors in the NMOS pull-down network such that

the transistors closest to the critical node are smaller, while the transistors closer to the ground

connection get larger. The reason for this is that when the domino logic gate enters evaluation

mode, and a valid path to ground exists via the pull-down network, the charge from the transistor

closest to the critical node must pass through the next transistor in the pull-down network, and

the charge from both of those must past through the next, and so on. Thus the last transistor in

the chain must conduct all the charge from the ones before it, and as such, modest performance

increases can be expected if the chain is resized in this way.

Chain scaling was simulated on the schematic level for this design, and it was determined that a

only a negligeable performance increase was possible. Unfortunately, the added layout complexity, in

30

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18^M

addition to the increased area utilization, outweighed the benefits of the increased operating speed.

The final design does not make use of chain scaling for these reasons.

4.4.5 Transistor Widths

With many of the transistor dimensions determined as the previous sections explained, relatively

few transistor widths need to be determined. At this point it is possible to perform a parametric

analysis to heuristically determine transistor sizing. This approach consists of running a simulation

circuit for many different combinations of transistor widths, and selecting the best results. Many

iterations are repeated, each time resizing different sets of transistors, until circuit-wide performance

is maximized.

The test circuits used during these simulations are described in the following section, while results

are presented at the end of this chapter.

4.4.6 High Performance CMOS 0.18/wn RALUT Test Circuits

In order to determine the ideal transistor sizing, test circuits were developed to load each of the

address decode stages appropriately, and to test performance with a variety of bit patterns.

Address Compare Bits

Each address decode stage can compare its fraction of the input address to any of 2n bit patterns,

where n is the number of bits per address decode stage. It is impractical to exhaustively test and

analyze every bit pattern for every address decode stage. A more reasonable approach is to determine

the worst-case bit pattern or patterns, and then to use those when evaluating performance. This

is an acceptable alternative, as the most important measure of speed performance is the maximum

delay, rather than the average.

Three different address compare values will be considered when evaluating the decode stage

delay: all ones, all zeroes, and the most significant bit set to one, with the remaining bits set to zero,

as shown in Figure 4.1. The first of these, all ones, is expected to be a best-case scenario. With

only one transistor directly attached to the critical node, a minimum amount of charge sharing is

present in this configuration. Next, the 'all zero' configuration has been selected as a test pattern

to determine performance when there is a maximal amount of charge sharing at the critical node.

With this configuration every transistor in the GT evaluate path connects directly to the critical

node and a very large amount of charge is being shared as the number of compare bits increases.

31

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS O.lSfiM

Finally, when this same pattern is used, with the most significant compare bit changed to a ' 1 ' , the

worst performance is usually observed. When this compare value is given an input address of all

ones, every '0' transistor conducts, and all this charge must pass through the single ' 1 ' transistor

along the evaluate path.

ToEQPullup ToGTPullup ToEQPullup To GT Pullup

(LSB) A0_comp 1 T A0 1 V~~ (LSB) AO 1

To EQ Pullup To GT Pullup

P (LSB) A0_comp 1 T

-C

Ht

t (MSB) A3 1 [

To Evaluate Circuit

(a)

(LSB) A0_comp 1 T AO 1

Al_comp

A2_comp

Al H ̂

(MSB) A3_comp 1

H S
I H

A i _comp—| r A i —| r

A2_comp—1£ A 2 _ |

^

^

To Evaluate Circuit

(b)

(MSB) A3 -

To Evaluate Circuit
1

(c)

Figure 4.1: Pull-Down Networks Used in Test Circuits: (a) '1111', (b) '0000', (c) '1000'

Beginning Stage Test Circuit

In the beginning stage test circuit, a single beginning stage is attached to a set of ideal address inputs,

as well as an ideal clock signal. The stage's outputs are appropriately loaded with two middle stages,

the EQ_out line attaches to the in_EQ port on the middle stage, while the nGT_comp_out of the

same beginning stages connects to a second middle stage's nGT.compJn port. This was done such

that the beginning stage could be simulated under typical loads.

This test circuit determines the latency of a single beginning stage by changing the input address

while the clock is low and the circuit is in its precharge stage, and then measuring the time between

the rising edge of the clock, and the change (if any) in each the stage's three outputs. Once the

clock returns to logic 0, the input is changed, and this cycle continues. This is repeated for every

one of the possible 2™ input combinations, where n is the number of that stage's compare bits, to

ensure that the circuit behaves properly (provides the correct results) under all input conditions. A

sample simulation waveform for the beginning stage with the 6-bit address compare value of '100000'

is shown in Figure 4.2, in Section 4.4.7, followed by a table summarizing the results.

32

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS O.I8/.1M

Middle Stage Test Circuit

Similar to the previous stage's test circuit, the middle stage test circuit is loaded with two additional

middle stages, and driven by ideal inputs. Two seperate simulations were run in order to determine

this stage's performance; one in which the EQ signal is changing, and the second where the GT

signal is changing. This is done to determine the performance of the middle stage's delay when

either of its EQ or GT subcircuits evaluate.

Final Stage Test Circuit

This test circuit is once again driven by ideal inputs, however it is loaded with two inverters connected

in series to the word-line enable output. Similar to the middle stage test circuit, it is simulated in

two separate runs, one using the EQ signal, the other using GT, in order to isolate and optimize the

stage's delay for both subcircuits.

Buffer Test Circuit

The buffer test circuit differs from the address decode test circuits in that it is much more simple, as

it only needs to drive other buffers in the buffer tree, as well as the input address lines going to the

address compare bits. The following criteria had to be determined in order to achieve an optimal

buffer design:

1. Buffer transistor sizing

2. Number of stages per buffer

3. Optimal buffer loading

The first of these goals is relatively easy to determine, a buffer is nothing more than an even

number of inverters connected in parallel, meaning very few transistors exist. A parametric analysis

quickly reveals which transistor combinations perform well. The number of stages per buffer refers

to the number of inverters connected together to form the buffer. More inverters are better suited

to drive larger loads, at the expense of increased area and delay. Finally, optimal buffer loading is

simply the drive capability of the buffer, or in other words, the number of circuits that it can drive.

As more buffers are used, the area utilization increases significantly, rendering the buffer loading

parameter very important in the efficient implementation of the RALUT in hardware.

The test circuit to determine these parameters is effective and simple. First, a one-stage buffer

was used, and its output was connected in parallel to the inputs of several inverters. A multi-

33

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18pM

dimensional parametric analysis followed, in which the number of inverters was varied along with

the buffer transistor widths. This strategy allowed the ideal transistor width and the optimal

amount of loading with relative ease. Once ideal parameters were determined for a single-stage

buffer, the experiment was repeated with a two-stage buffer, in order to determine its performance

characteristics.

Simulation waveforms and test circuit results are presented and discussed in Section 4.4.7.

Linedriver Test Circuit

The linedriver is similar in function to the buffer, except that it is exclusively used to drive output

bits and one additional linedriver stage, rather than the input address lines. The linedriver test

circuit consists of two final decode stages which are configured to enable their word lines one after

another as the input address increments. One of the output lines consists of all ones, or all PMOS

transistors, while the second output row consists of all NMOS transistors. This is done to test

the buffers with maximal loading and charge sharing. Results of this simulation, in additition to a

discussion of ideal number of output bits per linedriver stage, are presented in Section 4.4.7.

4.4.7 High Performance Implementat ion Test Circuit Results and Final

Transistor Sizing

Simulation Environment

Currently, there are several different SPICE tools available, the most popular of which are Avanti

HSPICE, Cadence Spectre, Mentor Eldo, and Silvaco SmartSpice. HSPICE and Spectre are available

for use, and both were tested for use in this work. Results from each of these tools were typically

within less than a perecent of each other. HSPICE typically evaluated faster, however for certain

circuits, it experienced difficulty in converging to a solution. Spectre, on the other hand, performed

better in this aspect, and few, if any, convergence aids were required to compute simulation results.

Additionally, Spectre is better integrated with the other Cadence tools, such as Analog Environment,

as they are both developed by the same company. For these reasons, Spectre was used almost

exclusively throughout this work, and all of the reported results are from this netlist simulator.

Measurements

Measurements shown in the following tables were determined as follows:

34

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0 . 1 8 / J M

• Rise time is measured as the time elapsed between 10% and 90% of the maximum voltage, in

other words, the time required for a signal to raise from 0.18V to 1.62V

• Fall time is measured between 90% and 10%, or 1.62V and 0.18V

• Propagation Delay is measured as the time between the 50% value (0.9V) of the input signal

and the 50% (0.9V) value of the output signal

Beginning Stage Test Circuit Results and Discussion

Pictured in Figure 4.2 are the beginning stage simulation waveforms.

Figure 4.2: Simulation Waveforms for the Beginning Address Decode Stage. From top to bottom:

clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical Node, EQ_out

In this figure, from top to bottom, the signals are: The clock, GT circuit critical node, GT_out,

GT_out-comp, the EQ circuit critical node, and EQ_out. Also note that for clarity, the input address

signals are not shown.

These waveforms demonstrate that the properly sized beginning stage operates correctly at very

high clock frequencies; in this case the clock is set to approximately 1.3GHz. Although the addresses

are not explicitly shown, it is easy to tell when the input address is '100000', as the EQ_out signal

raises to logic 1. The EQ circuit critical node shows some signs of charge sharing problems. Even

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18^iM

though a keeper transistor is used, its diminuitive size causes issues at such high operating speeds.

Unfortunately, using a larger keeper will negatively impact the critical node's fall time, resulting

in a greater worst-case delay for this stage. The sizing used in this situation is shown to function

correctly at very high operating speeds using an address chain length of 6 bits.

Table 4.2 displays the complete results for every beginning stage simulation. Signal delay, rise

and fall times were recorded for the beginning stage when using 4, 5, and 6 input address bits, and

with the bit patterns described in section 4.4.6.

Bits

4

5

6

Value

0000

1000

1111

00000

10000

11111

000000

100000

m i l l

EQ_out

Delay

252

230

209

259

279

203

298

334

207

Rise

105

107

100

127

115

123

120

122

115

Fall

65

67

66

77

88

69

71

74

62

GT_out

Delay

187

233

-

191

252

-

323

304

-

Rise

138

135

-

130

125

-

150

141

-

Fall

70

69

-

70

75

-

75

73

-

GT_comp_out

Delay

165

199

-

164

234

-

293

281

-

Rise

75

73

-

82

81

-

77

77

-

Fall

43

45

-

51

51

-

45

47

-

Table 4.2: Beginning Stage Test Circuit Simulation Results in Picoseconds (ps)

In order to determine the ideal number of address bits to use per stage, the worst-case delay of

the stage must be determined every time a different number of address bits are used. As shown

in the table, the worst case delay for the 4-address-bit beginning stage arises when the bit pattern

'0000' is used, however for both the 5, and 6-bit stages, the worst case bit pattern is '10000' and

'100000', respectively. The worst case delay for these stages are shown in Table 4.3, along with the

delay per address bit.

Rise and fall times remain relatively unaffected throughout the various simulation results, with

the exception of the GT_out signal when the bit pattern '000000' is used. In this case, the large

amount of charge sharing at the critical node begins to cause the GT_out rise time to suffer, requiring

150ps to rise from 0.18V to 1.62V. A brief simulation using a wider pull-down network determiend

that the rise time increases faster as the width of the pull-down network grows. It is for this reason

that a maximum of 6 address bits per beginning stage was considered.

It is desirable to compare as many address bits as possible per address decode stage in order

36

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS Q.18nM

Bit Pattern

0000

10000

100000

Worst Case Delay

252

279

334

Delay Per Bit

63

55.8

55.7

Table 4.3: Summary of Beginning Stage Worst Case Delay and Delay Per Address Bit, Results in

Picoseconds (ps)

to reduce area utilization. However, operating speed is of critical importance, and as such it is

preferable to minimize the delay per address bit. For these reasons, the beginning stages employed

in this design will make use of six address bits per stage, and cost approximately 55.7 picoseconds

per decoded bit.

Final transistor sizing for the beginning stage is shown in Appendix A.

Middle Stage Test Circuit Results and Discussion

Figures 4.3 and 4.4 show sample waveforms for a 6 input address middle stage comparing against

the bit pattern '100000'. The first figure shows the performance of the EQ circuit, while the second

presents waveforms when the GT circuit of the middle stage is in operation.

In both figures, from top to bottom, the waveforms are: clock, the GT critical node, GT_out,

GT_out_comp, the EQ critical node, and EQ_out. In this case, the middle stage is simulating at

1.1 GHz, and there is little noticeable effect due to charge sharing in either of the critical nodes. A

complete summary of delay, rise time, and fall time for the middle stage is shown in Table 4.4, for

various combinations of bit patterns and input address lengths.

This stage's worst-case delay for both the 4-bit and 6-bit addresses occurs when '1000' and

'100000', respectively trigger the GT_out signal when the stage is being driven by the EQin signal.

For the 5-bit address, '10000' also triggers the worst case, except this time it is GT_comp_out when

the circuit is driven by EQ _in. These worst-case delays, and the delays per bit, are summarized in

Table 4.5

Once the middle stage's transistors were properly sized, the best delay per bit was achieved is

53.4ps. For this stage, the best performance was achieved while using five address bits, however 6

bits also performed comparably with a delay per bit of 55.2ps. In the interest of minimizing area

utilization it is therefore advantageous to use the 6-bit addressing, as fewer middle stages will be

required in the overall design.

37

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0 . 1 8 / J M

Figure 4.3: Simulation Waveforms for the Middle Address Decode Stage with EQ Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical Node, EQ_out

fl
M i l l

m ft-

A i\ in
aa f\ flfl a a ft fl n a (1

Figure 4.4: Simulation Waveforms for the Middle Address Decode Stage with GT Enabled. From

top to bottom: clock signal, GT Critical Node, GT_out, GT.out-Comp, EQ Critical Node, EQ_out

38

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS O.lfyiM

Bits

4

5

6

Value

OOOO

1000

1111

00000

10000

11111

000000

100000

m i l l

EQ-Out

Delay

171

190

171

236

260

192

298

328

235

Rise

114

112

106

130

120

121

133

128

131

Fall

47

42

47

56

60

63

77

78

51

GT_out

Delay

EQ

183

244

-

225

260

-

318

331

-

GT

191

194

148

204

194

131

224

200

134

Rise

129

125

107

135

127

110

140

136

108

Fall

99

94

54

87

64

54

93

92

57

GT_comp_out

Delay

EQ

159

187

-

196

267

-

281

300

-

GT

170

167

126

163

168

110

156

184

140

Rise

84

84

80

88

92

76

84

98

82

Fall

48

51

42

50

44

47

50

53

44

Table 4.4: Middle Stage Test Circuit Simulation Results in Picoseconds (ps)

Bit Pattern

1000

10000

100000

Worst Case Delay

244

267

331

Delay Per Bit

61.0

53.4

55.2

Table 4.5: Summary of Middle Stage Worst Case Delay and Delay Per Address Bit, Results in

Picoseconds (ps)

A schematic with final transistor sizing is shown in Appendix A.

Final Stage Simulation Circuit Results and Discussion

Simulation waveforms for the final stage of the address decoder are shown in Figures 4.5 (with EQin

enabled), and 4.6 (with GT_in enabled). Both sets of waveforms are for circuits which compare the

input to the 6-bit pattern '100000'. The final stage is simulating at 833 MHz; it is the slowest of

the three address decode stages, however the dalay will be shown to be approximately the same as

the middle stage.

From top to bottom, both figures show the clock signal, and the wordline enable output. Once

again, the input address is omitted for clarity; it is incrementing by one with every clock pulse.

Figure 4.5 shows that the EQ circuit struggles to pull-up the signal when operating at 833 MHz

and above; the first peak is at 1.6V, rather than 1.8V. This voltage level is high enough to properly

39

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/xM

drive the attached logic, however it at any speeds higher than this it may not. Enlarging the PMOS

transistors will allow the final stage to work at higher clock speeds, however this will negative impact

the delay time. Since the operating speed is still very high, the delay is much more important at this

point. For these reasons, the final transistor sizing shown in Appendix A presents optimal results

for this stage of the address decoder.

n -i r

J

if

.

r

1

-

\

'

fl
. ,

-

|

II

-

1
J

r

'

__ .,

n

\ (1

11;.
Figure 4.5: Simulation Waveforms for the Final Address Decode Stage with EQ Enabled. From top

to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical Node, EQ_out

n -i i 1 n 11 i i i ' " -"
•

- n

1

Figure 4.6: Simulation Waveforms for the Final Address Decode Stage with GT Enabled. From top

to bottom: clock signal, GT Critical Node, GT_out, GT_out_comp, EQ Critical Node, EQ_out

Worst case delay, rise, and fall times are presented in Table 4.6. As shown, the worst case delay

for the all three address bit lengths occurs when the in_EQ signal is driving the decode stage, and

the pattern '1000', '10000', or '100000' is compared. All of the results which rely on the in_EQ

40

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/uAf

signal are worse than when the circuit is driven by the in_GT signal. This is due to the additional

transistors that must be discharged when in_EQ is driving the circuit; in this case the pull-down

network must evaluate, whereas this is not required when in_GT drives this decode stage. Table 4.7

displays a summary of the worst case delay for every address bit length, and the delay per address

bit. Once again, 6 address bits proves optimal. The performance gain in going from four to five

address bits is a significant reduction of 7.5 ps per address bit, however there is a performance loss of

3 ps per address bit. The final address decode stage is not repeated throughout the design like the

middle stage, so this tiny performance loss is acceptable in the interest of reducing area utilization.

Bits

4

5

6

Value

0000

1000

1111

00000

10000

urn
000000

100000

l i n n

in-EQ

Delay

206

221

191

220

239

205

246

331

263

Rise

116

117

113

126

132

130

126

139

138

Fall

77

75

49

82

85

75

90

85

82

in-GT

Delay

152

164

134

150

148

107

161

152

110

Rise

103

110

91

109

105

91

111

110

92

Fall

74

72

52

93

79

51

87

80

47

Table 4.6: Final Stage Test Circuit Simulation Results

Bit Pattern

1000

10000

100000

Worst Case Delay

221

239

305

Delay Per Bit

55.3

47.8

50.8

Table 4.7: Summary of Final Stage Worst Case Delay and Delay Per Address Bit, Results in

Picoseconds (ps)

Buffer Test Circuit Results and Discussion

Results of the buffer test circuit are shown in Table 4.8, and waveforms for one and two stage buffers

driving 8 rows is shown in Figures 4.7 and 4.8.

41

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/iM

One Stage

Two Stages

Rows per Buffer

1

2

4

8

10

1

2

4

8

10

Rising

A

66

77

103

162

206

142

156

171

234

270

s^comp

32

43

65

103

135

109

119

125

163

188

Falling

A

54

67

88

123

142

121

129

135

177

520

•ft-comp

54

71

74

94

109

130

136

147

172

201

Table 4.8: Buffer Test Circuit Results in Picoseconds (ps)

Table 4.8 shows that the single-stage buffer is able to adequately drive up to 10 stages, with

delay increasing approximately linearly with the number of stages. While this may be true, it is

important to consult the simulation waveforms. Figures 4.7 and 4.8 are both driving 8 stages, and

although the delay characterisitcs remain acceptable, the waveforms begin to show problems. Rather

than stay high the entire time, the level of the buffers' outputs fluctuate significantly, and if noise is

introduced into the system, whatever they are attached to may switch errantly. For this reason, it

is recommended to use no less than one buffer for every 8 decode stages. Additionally, there is little

signal improvement from the single stage to the double stage buffer, thus it is recommended to use

the single-stage buffer unless the RALUT is to be implemented in a high-noise environment, or if

the additonal area utilization is not a concern.

Linedriver Test Circuit Simulation Results and Discussion

Results of simulating the linedriver circuit with varying lengths of output chains are shown in Table

4.9. As shown in the table, the delay per bit appears to continuously improve as the output chains

grow in length until it is approximately 28-30 bits long at which point the improvement narrows.

While this seems to imply that a single large linedriver is well-suited to drive every output bit, it is

worth investigating the quality of the linedriver signal, as shown in Figure 4.9

Figure 4.9 shows the waveforms of two linedrivers and an output line. One of the linedrivers is

42

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18/J.M

L 1_

•• n
1

& - • : • -

= : j £=te==

1 j ••
I f

:=z:tzzzz

I - - - • / T -

— /

' /"—\ i /" \
Z / \ ! X. 1
: /. \ i i i

j \\ J \
„ : : : : : : : : : : : : zr^Tzr^rrrTt

- 1 - —
I

i- t- i. i- i- J n :fl f
zz:zz : : z . . : . z z . : . I

r \ / <^\-f^-

1 I 1

^ ^ ^ r

z
\ \ \ 1 \

7
/

\ f=\-\ r^\
/ \ ; 7 \
/ \\ J • \

cTt
Figure 4.7: Single-Stage Buffer Driving 8 Rows From Top to Bottom: Clock, Buffer Input,

Buffer Output, Buffer's Complemented Output, Stage's Output Signals EQ_out, GT_out, and

nGT_out_comp

.0 1 1

•
,5-p^W • .

' " ^

1 ^ : ,

^iHS

§==mm

^ ^

-=y.: :E:::::::::.::.:...L :.

=m\
\

M : 1=3 + .
mmm^ =

i V.

- i : ^ - ? " ^ " " ^ "

: zzMiz^: z \--JZ^^L

^^^^^^mm
^ \ _ U • • : • : . : : • - . :

H 4 i
= N -
" - • " ~ ^ Z ^
- ^ - " ^ V - - " :

: i_Z^
- ..:..

- - -/

_ ^ = z .
... \

Figure 4.8: Two-Stage Buffer Driving 8 Rows From Top to Bottom: Clock, Buffer Input, Buffer Out­

put, Buffer's Complemented Output, Stage's Output Signals EQ_out, GT_out, and nGT.out_comp

driving all PMOS transistors, while the second is driving all NMOS transistors. It can be seen that

when driving 48 output bits, the linedrivers are unable to rise above 1.5V. This is less than 90%

of the maximum voltage of 1.8V, and may have the negative effect of not being able to properly

drive the output bits. Parasitic capacitance is not taken into account for this simulation, meaning

43

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18nM

Chain

Length

4

8

12

16

20

24

28

32

Positive Transistion

Delay

90

108

126

142

158

174

189

203

Negative Transition

Delay

95

118

143

168

195

220

241

265

Delay Per

Output Bit

23.8

14.8

11.9

10.5

9.8

9.2

8.6

8.3

Table 4.9: Output Bit Chain Length Test Circuit Simulation Results in Picoseconds (ps)

Figure 4.9: Simulation Waveforms for the Linedriver Driving 48 Bits, From Top to Bottom: Row

1 Enable Signal, Row 1 Enable Signal Comp, Row 2 Enable Signal, Row 2 Enable Signal Comp,

Sample Output Line

layout results will be far worse. For this reason, it is inadvisable to use more than 16 output bits

per linedriver.

4.4.8 Proposed High Performance Design Layout Improvements

After designing the high performance RALUT implementation in CMOS 0.18/im, the layouts were

further scrutinized in order to determine what additional performance gains can be made. This

44

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18ftM

section details the work done to further reduce area utilization and improve performance.

Area Reduction Improvements

Several aspects of the RALUT design were carefully examined in order to find ways to reduce area

utilization. The most frequently occuring cells were of particular interest, namely the address decode

bits, and the output bits. Unfortunately, the address decode bits are already tightly packed, and it

was determined that no further optimizations were possible without restructuring the entire design.

The output bits, on the other hand yielded some improvement.

It was possible to pack these layouts closer together, reducing the RALUT width. In order to do

this, it was necessary to push two bits together into a single layout, and modify the placement CAD

tool to work correctly with this change. The original output bit had two possible combinations, it

could either be a 'zero' or a 'one'. The modified output bits, being pushed together are now either

a 'zero zero', 'zero one', 'one zero' or 'one one'. The output bits of the CMOS 0.18/im design were

1.5/im wide, and after this modification they are 2.25/2 = 1.125, representing a width reduction of

25%. Since the output bits repeat many times, this translates into a large area savings when many

output bits are used.

Another major area reduction improvement was achieved in superimposing the power and ground

rails over the RALUT design, rather than having them isolated at the top and bottom. This

presented many signal routing difficulties, however in the end it was possible to reduce cell height

for all design cells to 3.685 from 5.46, representing a cell height reduction of 33%.

A final area reduction was possible in increasing the fanout of the buffer tree. The existing CAD

tool had a parameter which specified the maximum number of rows per buffer row, and created a

buffer tree structure based on this information. The initial buffer would split into two additional

buffers, and so on. This was revised so that rather than splitting into two additional buffers, it will

split into n buffers. Given the performance data gathered in the previous chapter, using a fan out

of 8 rather than 2 is acceptable, and will greatly reduce area utilization.

Reduced Parasitic Capacitance

Parasitic capacitance is the term given to the unwanted or undesirable capacitance in a circuit

that is often a result of components being placed closely together [8]. These capacitances are

unwanted because they increase the charge capacity at various nodes in the circuit; a node with

greater charge capacity will require more time to charge and discharge, negatively affecting circuit

performance. To appreciate the effect they have on a circuit, simulations should be performed with,

45

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18^M

and without, parasitic capacitances. The sensitivity of domino logic designs accentuates their effect

on performance; a well designed domino-logic cell will often suffer a 15-25% maximum operating

speed decrease once parasitic capacitances have been considered.

It is useful to understand how parasitic capacitances arise in IC design; they principally come

from closely placed wires, or overlapping wires on different metal layers. When arranged in either

of these configurations, the wires essentially form parallel plate capacitors. This type of capacitance

can be approximately modeled by Equation 4.3, where A is the overlapping area of the parallel

plates, d is their separation distance, A; is a process constant, and eo is the free space permittivity

constant.

In order to reduce parasitic capacitances, several approaches were taken. By examining Equation

4.3, it is apparent that either the area of the capacitor must be reduced, or the distance increased. For

intersecting wires on different metal layers, the separation distance can only be changed by changing

the metal layers the wires reside on. This is possible, however it may create other problems as more

vias are required, and the total wire length increases. For adjacent wires on the same metal layer,

however, simply spacing them further apart whenever possible will greatly reduce the capacitance.

This technique was used with little success; unfortunately the cramped nature of the cells left almost

no room to space routing wires apart more than they already were.

Optimizing the other parameter, the overlapping plate area, can also greatly reduce parasitic

capacitances, and proved to be more advantageous. Reducing wire sizes to the minimum allowable

widths, and shifting them apart as much as possible proved to be very effective. This is illustrated in

Figure 4.10, where two metals, shown in blue and yellow, overlap. In part (b), the overlapping area

is greatly reduced. During layout optimization this was carried out wherever possible by minimizing

wire widths. Finally, in part (c), the ideal situation is shown, where the metal layers no longer

overlap. Once again, this was also implemented wherever possible, however the level of optimization

in (b) was typically more feasible.

4.5 Resul ts of the CMOS 0.18/j.m and High Performance C M O S

0.18/xm Designs

The 0.35/im design, as well as the proposed CMOS 0.18/im design layouts are shown in Figure 4.11.

It presents a comparison of a 29 row, 16-bit input, 52-bit output RALUT design in CMOS 0.35/um,

46

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0.18pM

(a) (b) (c)

Figure 4.10: Overlapping Wires Creating Parasitic Capacitances: (a) Original Placement, (b) Re­

duced Overlap Area, (c) Ideal Placement

CMOS 0.18pm, and the high performance CMOS 0.18pm design. The exact area reduction and

speed results are shown in Table 4.10.

Design

CMOS 0.35pm[17]

Proposed CMOS 0.18pm

Proposed High-Performance CMOS 0.18pm

Width

420 /im

240 /im

210 /jm

Height

260 um

163 um

126 jim

Area

68460 nm2

39120 /j,m2

26460 /im2

Delay

4.45 ns

2.70 ns

1.8 ns

Area x Delay

3.06 x 10"10

1.06 x 10"10

4.76 x 10"9

Table 4.10: Area and Critical Path Delay Comparison for a 16-bit Input, 52-bit Output, 29 Row

RALUT

Table 4.10 displays the width, height, area, and delay of the 16-bit input, 52-bit output, and

29 row RALUT. Using Area x Delay as a performance metric, Table 4.10 shows that the CMOS

0.18pm design is 65.34% more efficient than the CMOS 0.35pm design presented in [17]. It is also

shown that the proposed high performance CMOS 0.18pm design is 84.44% more efficient than the

design in [17]. This is a significant improvement in terms of both area utilization and delay.

4.6 Summary

The CMOS 0.18pm technology node was selected to design a rescaled version of the existing CMOS

0.35pm design, as well as a high performance implementation of the RALUT. The rescaled version

was quickly designed, allowing for it to be included in test IC in time for fabrication, while offering

65% better results than the 0.35pm design. The high-performance design demonstrates excellent

results with an 84% improvement over the CMOS 0.35pm design.

The superior results achieved in the high performance design were made possible due to the

47

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS Q.IS^M

n B 1 H
I 1 «6

I H I n

1 H in

1 1 fS

1

mil
IHnffi

BHIillTJt still

Hjll jfjjjf}w
jjHIH sEnSS

ilaflli jil

fBfln if]
i|yji In

i§
flB

MS

n

&• H

111
JHJnln

i glMnA

11181!
||ffl!|i«

iSi
B ^ M B B B I ijfjn 1

pWg

SP3! i '
BJHBIH a 1

HEffi

H I unl n

• H

ffl I I I

miji B I M T O I mrnm

[sire,*,* \ xxiizzx- i Zhi ^stu

m

Figure 4.11: RALUT Layout Comparison for CMOS 0.35/xra design (top), CMOS Q.lSfim design

(middle), and area-reduced, high-performance CMOS 0.18/xm design (bottom)

properly sized transistors and optimal RALUT design parameters. The ideal number of address bits

48

4. PROPOSED VLSI IMPLEMENTATIONS IN CMOS 0 . 1 8 / J M

per decode stage was determined to be 6, every linedriver should drive no more than 16 output bits,

and no fewer than one buffer should be used for every 8 rows of the design.

Also, due to the performance data collected, it is now possible to estimate the delay of the high

performance RALUT design. With knowledge of the delay per bit for every address decode stage,

in addition to the delay for the output bits, this can be calculated as in Equation 4.4.

Delay ss 55.7 x Bbits + 55.2 x Mbits + 50.8 x Fbits + 20.5 x Ibits + 10.5 x Obits(ps) (4.4)

Where Bbus is the number of address bits in the beginning stage (up to 6), Mbus is the number

of bits in the middle stage, Fbits is the number of bits in the final stage, Ibits is the number of

total input bits, and Outs is the number of output bits. It is important to note that this is only an

approximation of the delay, however it will give designers an excellent basis when considering the

use of the high performance RALUT design.

49

Chapter 5

Integrated Circuit Test Platform Design

While simulations are critical to the succes of any design, it is always preferable to rely on physical

test data. Currently, no such information exists for the RALUT. Additionally, many things are

difficult to account for, such as switching noise, sensitivity to temperature and process variation, as

well as overlooked design flaws and limitations. While critical path delay and power consumption

can be approximated via simulation, there is no guarantee that this will be the actual case given

a physical manifestation of the design. Physical test data would further prove the utility of the

RALUT, as well as provide hardware designers with realistic performance expectations.

To achieve this, an integrated circuit chip is proposed to test the design in real-world conditions.

The main goal of the proposed RALUT test IC is to determine maximum operating speed and the

power consumption of the RALUT. Additionally, it is desirable to compare the full-custom domino

logic implementation of the RALUT with a semi-custom HDL implementation of the same design.

To achieve this, the following system was designed.

This chapter begins with an explanation of the general testing strategy that the IC employs,

followed by an overview of the major components. Subsystems are fully detailed, and the IC layout,

cell placement, and routing is explained. The chapter concludes with several figures of the complete

test IC, and some concluding remarks.

50

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

5.1 Test IC Overview and Testing Strategy

RALUTs are designed to operate at very high speeds. Although the RALUT critical path delay

depends heavily on the number of input and output bits, as well as the number of rows, when a

typical RALUT design is implemented in CMOS 0.18/um the delay is expected to be approximately

two to ten nanoseconds. Unfortunately, due to pin capacitance, it is not possible to communicate

with the IC beyond approximately 50 MHz, as it takes a finite amount of time to charge and discharge

the device's pins. This creates some interesting challenges when designing an IC to determine the

design's maximum operating speed. Primarily, it is not possible to supply the IC with an external

clock frequency greater than 40-50 MHz. Additionally, input addresses cannot be sent, nor can the

device's output be verified at such speeds.

Keeping these design constraints in mind, the following test IC is proposed. The test IC will

consist of four major components pictured in Figure 5.1.

1. The clock controller circuit

2. The control unit

3. The test circuit

4. The output select circuit

External Clock Pin

External
Clock
Input

External
Controller

Clock

z Output
'8 Bus

Figure 5.1: Block Diagram of the IC Subsystems

51

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

5.2 The Clock Controller Circuit

The clock signal is extremely important in any synchronous logic system. The proposed test IC

provides a variety of clock modes to allow testing under a variety of conditions. A block diagram of

the clock controller circuit is shown in Figure 5.2.

From Input Pin

High-Speed
Clock Gen.

6-bit Clock
Divider

K32 A

5 to 32
Decoder

h

6

8 t o l
MUX

h

Inverter Ring Register
(5 bits)

8 t o l
MUX

Internal Clock

Clock Output Register
(3 bits)

To Output Pin

Clock Select Register
(3 bits)

Figure 5.2: The Clock Selection Circuit Block Diagram

A series of registers in the control unit provide the control signals which dictate the functionality

of the clock select circuit. A 5-bit clock generator control signal enters a 5-to-32 decoder, which

enables one of the clock generator's modes. The 6-bit clock divider is an up counter circuit used

to divide the frequency of the clock generator by 2, 4, 8, 16, 32, and 64. The external clock pin's

signal, as well as high-speed clock generator and it's frequency-reduced signals, are connected to a

set of 8-to-l multiplexers. This allows for the selection of an internal clock signal, as well as an

external clock signal; both sets of MUX selection lines are connected to the control unit's registers.

The internal signal is used to drive all of the IC's test-circuit sequential logic including the RALUT

design, while the external clock is connected to an output pin to allow for clock feedback.

In addition to allowing the high-frequency clock generator's output to be more carefully controlled

for interal IC use, the clock divider may be used to scale the frequency low enough such that it be

52

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

properly monitored on the output pin. For example, if the clock generator is configured to generate a

clock signal of 350MHz, the frequency can be divided by 16, reducing it to approximately 22MHz,

which is a low enough frequency for the output pin to handle. This feedback will allow the exact

operating frequency of the clock generator to be measured.

5.3 Internal High-Speed Clock Generation Circuit

Since it is not possible to provide an externally driven clock signal greater than 40-50 Mhz, in order

to test the RALUT design at higher operating speeds, an on-chip clock must be available. Two

solutions were explored, phase-locked loops and inverter rings.

5.3.1 Phase-Locked Loops

A phase-locked loop (PLL) is one of the most common methods used to generate high-frequency

internal clock signals. In short, PLLs multiply the frequency of a reference clock to generate a higher-

frequency internal clock signal. A properly designed PLL is able to reliably generate whatever clock

frequencies are required by the designer. The circuits used to create a PLL are relatively complex,

and require careful analog circuit design. A literature review on PLLs quickly revealed that their

design is an entire topic all on its own, with entire textbooks dedicated to them. Due to time

constraints, it is not feasible to implement a PLL in the proposed design.

5.3.2 Inverter Ring

A much simpler alternative is the inverter ring. The schematic for an inverter ring is shown in Figure

5.3. It consists of an odd number of digital CMOS inverters, connected together in a ring, such that

the output of the last inverter connects to the input of the first, creating an oscillator.

CLK

< ^ < ^

Figure 5.3: A 5-Stage Inverter Ring

While this is a simple solution, it does introduce its own set of challenges. Due to the large

amount of switching, the inverter ring will consume a large amount of power. The inverter ring

53

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

does not possess any feedback mechanism; process and temperature variations will affect the clock

frequency, causing its real-world behaviour to diverge significantly from simulation results.

Despite these inconveniences, the inverter ring will be used, as it is much more feasible than

designing a PLL given design-time constraints.

5.3.3 Inverter Ring Design

An inverter ring is used in the test IC for high-speed clock signal generation. It is an important

design goal for the test IC to be able to verify correct operation of the chip at a variety of different

speeds. This issue can either be resolved by creating a series of different inverter rings with varying

amounts of delay, or by creating an inverter ring with selectable delay. The latter is the preferred

solution, as multiple inverter rings will occupy a much larger area, particularly for low frequency

designs which will require a larger number of inverters.

A block diagram of the proposed selectable-delay inverter ring is presented in Figure 5.4. It

consists of two main sub-components: the delay block and the switch. The delay block, consisting

of a group of serially connected inverters as in Figure 5.5, will be broken up by a series of switches,

which are able to divert the output of a given delay block to either the next delay block in series, or

to a return path, completing the 'ring' and connecting to the first delay block. This will allow for

the run-time selection of the number of delay stages.

Figure 5.6 will be referred to, in order to further explain the functionality of the delay-select

scheme. In this case, the series of four selection lines are given the control word "0010". This causes

the first, second, and last switches to forward their inputs the the next delay stage in the chain.

The third switch, on the other hand, has its select line enabled, which causes its input to drive the

return line, connecting with the first delay block, completing the ring. In this case, a total of three

delay blocks will contribute to the clock signal's delay.

It is also important to note that this inverter ring design will require one-hot encoding on its select

lines, meaning that only one select signal should be at logic 1 at any given time. For this reason, it

is recommended to control the select lines of the proposed inverter ring design with a decoder. In

addition to ensuring the one-hot condition, it will also reduce the amount of I /O required to control

this design element.

The Switch Block

This sub-section presents more information on the design of the switch block used in 5.4. In order

to achieve a simple switch structure, transmission gates (also known as T-gates) were used [13]. A

54

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Delay
Select

4 / / - •

- *

->

Delay

Delay

Delay

Delay

Switch
A

Sel
B

Switch
A

Sel
B

Switch
A

Sel
B

Switch
A

Sel
B

Figure 5.4: Inverter Ring with Four Delay Settings

Figure 5.5: A Three-Inverter Delay Block

T-gate schematic is presented in Figure 5.7. This is a simple pass-gate which allows bidirectional

signal propogation given that the transistors are conducting. In the case of Figure 5.8, this condition

is met when signal A is driven to logic 1.

While T-gates only serve to control if a signal is to drive an output or not, two T-gates along with

an inverter can be used to create a switch, as in Figure 5.7. The selection signal and its complement

are connected to the transistors of one T-gate, while the opposite arragement is made for the second

T-gate, as in Figure5.8. Finally, the layout used to implement the switch in hardware is shown in

Figure 5.9.

55

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Delay
SeWt

4 / /
0

Delay

0
Delay

, 1
Delay

0 ~^
Delay

Switch
A

Sel
B

Switch
A

Sel
B

Switch
A

Sel
B

Switch
A

Sel
B

) 1

Figure 5.6: Inverter Ring Example Using Control Word "0010"

Input -

Sel-

En

En.

.Output A

. Output B

Figure 5.7: Schematic for the Switch Block

5.3.4 Proposed Inverter Ring Design Specifications and Simulation Re­

sults

The ring was designed to generate a series of 32 different clock frequencies, spanning the range from

approximately 75MHz to 350MHz. Greater frequencies will not be needed; even if the RALUT

design is able to perform at or above 350MHz, the static CMOS test circuitry will experience

difficulty keeping up. Switches were inserted into the inverter ring as required to allow the number

56

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

In-

Sel

t • — . , - . . , n . - . . — 1 . - . ~ —. in. . ,; k

•Output A
•Output B

Figure 5.8: Transistor Schematic for the Switch Block

:1

Figure 5.9: Layout for the Switch Block

of stages to be user-selectable during the test stages. To ensure that only one switch is enabled at

any given time, a standard-cell 5-to-32 decoder will be responsible for generating the inputs for this

design.

To ensure that the inverter ring behaves as designed as parasitic capacitances are introduced,

a complete simulation was performed, testing all 32 clock modes. Sample simulation waveforms

of the inverter ring's output at 350, 200, and 75 MHz are shown in Figures 5.10, 5.11, and 5.12,

respectively.

57

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Transient Response

13.54ns 1.6122V » 16.4315 1.S12; dK|0y 2.S92ns 3.0936uVs I.07E3

Figure 5.10: Simulation Waveform for the Ring Oscillator @ 350 MHz

Transient flespnns'
Clock Caneraior & J00 Ml

I7.S4ns 1.7465V . 22.SSns 1.7465V Isldy 4.714ns -350.05fVs -7.62E-5

Figure 5.11: Simulation Waveform for the Ring Oscillator @ 200 MHz

5.4 Test, and Output Select Circuits

Ideally it would be more convenient and more flexible to simply provide input patterns to the IC's

pins, and verify its outputs, however, once again due to the limited slew rate of the I/O pins, this is

58

5. INTEGRATED CIR.CUIT TEST PLATFORM DESIGN

Transient Response

-f 1 - \:
0- - ' .~»~~»«—J- - - — - ^ ' ^-~*~I I — - -r—? - -

12.47ns 1.7978V l 26m 1.7971V l*[6y 13.52ns -674.77UV s -4.99E4

Figure 5.12: Simulation Waveform for the Ring Oscillator @ 75 MHz

not possible. The test circuit is at the heart of the test IC, and its block diagram is shown in Figure

5.13. It is responsible for generating the test patterns and verifying the results, and makes use of

the following sub-components:

• Automatic test pattern generator (ATPG)

• Full-custom RALUT block

• Standard-cell HDL RALUT block

• Compare circuit

• Output select circuit

• Pipelining registers

The goal of the test circuit is to determine the correct operation of the RALUT at the designated

clock speed. This is a difficult task, as the full-custom RALUT design is expected to work at very

high speeds. In order to determine if it is functioning correctly at such speeds, a set of known

'correct' input/output values must be stored on the same IC to verify the full-custom design's

results. A classic LUT would be ideal for this purpose, unfortunately the available silicon area

is only 1/j.m x l/im. It is preferable to maximize the area available to the RALUT, and a LUT

59

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

ATPG

ATPG
Control
Signal

Registers
(16)

Registers
(16)

Registers
(16)

16

II

RALUT
(Layout)

RALUT
(HDL)

64

Registers
(64)

Registers
(64)

Registers
(16)

Compare
Circuit

HI

OK
Register

Registers
(64) „.

Registers
(64) c .

Registers
(16) „_

IV

• To External Pin

64
To Output

Select

Figure 5.13: Test Circuit Block Diagram With Pipelining

implementing the same functionality will not be able to fit on the IC. The proposed test circuit

design makes use of another, standard-cell RALUT to perform this task.

This second RALUT is designed using the verilog hardware description language (HDL), and

synthesized into a gate-level netlist with Synopsys. As will be shown in subsequent sections, this

design can be compiled to also function at relatively high speeds, while occupying minimal area,

allowing it to adequately test the full-custom design up to at least moderate speeds.

It is important to remark that this design is pipelined. The various stages of the pipeline are

shown in Figure 5.13, and are denoted by I, II, III, and IV. The pipelined approach was taken to

ensure that the operating time afforded to the RALUT is easily determined by the clock frequency;

by registering the RALUT inputs and outputs, only the RALUT itself contributes to the critical

path delay, rather than the RALUT in addition to input generation and output verification logic

delays.

The complete test circuit functionality works as follows:

1. The automatic test pattern generator (ATPG) places a 16-bit pattern on its output, and is

captured by the input registers in II

2. The input patterns proceed through both the full-custom and standard cell RALUT designs,

generating 64 bit outputs; they are saved into the registers in III

The original input pattern responsible for generating the RALUT outputs propagates through

the pipeline

3. The compare circuit proceeds to evaluate if the outputs of both designs are equal, if they are,

the result is logic 1, which is saved into the OK register, otherwise the OK register is set to

60

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

logic 0

Both the 64-bit output patterns that are currently being compared, as well as the original

input that generated them, propagate through the pipeline registers in IV

4. If the OK register is high, the test-circuit continues to operate, if it is low the write-enables

on the last series of pipeline registers in IV are disabled

5. The OK signal is connected to an external pin which should be monitored by a microcontroller

or other device; if it is low, the values of the registers in IV can be placed on the output bus

to determine what failed and why

Anoter important remark is that this design employs negative edge triggered flip-flops in its

registers. This allows for a smooth integration of the domino logic RALUT design; latching flip-flops

on the negative edge ensures a maximal amount of time for the domino gates to evaluate. Finally,

the test-circuit has a series of reset signals going to every one of its sequential logic components.

This is done to allow the device to begin working as power is enabled and the reset pin triggered,

to aid in debugging the IC in a physical testbench.

The remainder of this section goes into further detail regarding the sub-components of the test

circuit, including the selection of the RALUT, the ATPG design, and the output select circuit.

5.4.1 Range Addressable Lookup Table Selection

It is desirable to test the largest possible design in order to better determine the RALUT operating

performance, wherein a variety of different bit patterns are used for the many address decode stages.

The IC core for this work (the silicon area of the IC without considering bonding pads) is Immxlmm.

For these reasons, a RALUT consisting of 128 rows, a 16-bit input, and 64-bit output was used; its

dimensions are 307/im x 749/im. The quickly-designed, rather than the high-performance RALUT

described in the previous chapter was used. Although using the high-performance design would

have been preferred, it was not ready in time for the fabrication deadline. This design occupies the

majority of the available vertical space, while allowing approximately 250 [im for power rings and

I/O lines. This amount of space was left deliberately to ensure that the routing tool would be able

to connect the design with the rest of the circuit. Although enough space remains on the IC core to

expand the number of input and output bits of the proposed RALUT design, 16 input bits and 64

output bits were used to simplify testing, and also because these are practical values that may be

used in future work.

61

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

5.4.2 Automatic Test Pattern Generator

While operating at speeds in excess of 50 MHz, using external pins to supply the input address is no

longer feasible. Again, this is due to the limitation of the I/O pads, which, due to their capacitance,

require several microseconds to charge and discharge. To overcome this issue, the proposed design

employs internal automatic test pattern generator (ATPG) circuitry to from input address test

vectors.

The most straight forward approach for this design is to use a binary counter. They are easy

to implement, and will cycle through every input address, allowing for the verification of every

input/output pair. A concern with using a sequential counter, however, is that only the lower order

input address bits will change at much higher frequencies than the most significant address bits.

This will only test the speed limitations of the final stage of the RALUT address decoder. Since the

goal of this IC design is to fully test every element of the RALUT design, particularly every stage

of the address decoder, this is not an acceptable solution.

To address this problem, the use of a linear feedback shift register (LFSR) as described in [23] is

proposed. A LFSR is similar to a counter, except that the output patterns are pseudo-random. Every

possible output combination will be generated out of order, in a predictable, repeating sequence. As

an example, the output of a 4-bit LFSR is presented in Table 5.1.

The pattern shown in the table repeats, which is why the LFSR is said to generate a pseudo­

random output rather than a truly random output.

5.5 The Control System

The test IC is designed to interface well with microcontrollers for easy use on a physical testbench.

As such, it posseses an 8-bit input bus, so that it can interface with common I/O ports. This input

controls the entire functionality of the test IC design. As shown in Figure 5.14, the input word is

divided up into two parts, 4 bits of data and 4 address bits. The address bits pass through a 4-to-16

decoder, enabling one of 16 different sets of 4-bit registers, where the data component of the input

whill be stored. This scheme allows for a maximum of 64 bits of signals to be controlled, however

only 36 are used. Also worth noting, is that the control registers are driven by a separate external

clock signal, and not shown on the diagram is a reset signal which places the control registers in an

initialized state.

A complete list of the control unit signals and their locations in the control register follows in

Table 5.2

62

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Time

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Output Pattern

0001

0011

0111

1111

1110

1101

1010

0101

1011

0110

1100

1001

0010

0100

1000

0001

Table 5.1: 4-Bit LFSR Output States

Control Register Bits

0 - 2

3

4 - 6

7

8 - 12

13

14

1 5 - 19

2 0 - 3 5

Control Signal Description

External Clock Signal Select

Clock Enable

Internal Clock Signal Select

Enable Clock to Full-Custom RALUT

High-Speed Internal Clock Mode Select

Enable Clock to HDL RALUT

Reset Test Circuit

Select Output Address

ATPG Initial Value

Table 5.2: Control Unit Signals

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Control Signals
•

External
Controller -

Clock

Control Registers
Data Write Enable

A

A

VA

V 16

4-to-16
Decoder

A

Data

YA

Address
Input /
Bus \

Figure 5.14: The IC Register-Based Control System and Input Word

5.6 Hardware Synthesis

With the exception of the inverter ring and full-custom RALUT, HDL code was written for every

one of the components described in this chapter. These components were all designed using verilog;

the HDL code, as well as test benches are available in Appendix B. Existing code was available for

the RALUT, it is also available in Appendix B.

Synopsys was used with Artisan standard cells for gate-level synthesis. Synthesis parameters

were optimized for speed, particularly in the case of the HDL RALUT. Scripts indicating the exact

parameters are in Appendix E.l.

5.7 Simulation

Simulation is an important step in any hardware design methodology. It is relatively easy and

inexpensive to correct issues if they are found during simulations, and it is impossible to modify a

VLSI IC once it is fabricated.

Simulating the IC proved to be a significant challenge. The workstations available in the RCIM

lab at the University of Windsor possessed a maximum of 2GB of RAM, greatly limiting the size

of the designs that can be simulated in a reasonable amount of time. Another major simulation

limitation is that only "black box" versions of the standard cells used in the HDL design portions of

this work are available. These cells show the locations of their I/O pins, and their analog modelling

is available, however the cell layouts are not known. Without knowledge of the locations of the

64

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

various metal layers inside the cells, it is impossible to determine parasitic capacitances. In other

words, it is impossible to simulate the entire circuit with parasitic capacitances taken into account.

Due to the available workstations' limitations, a divide-and-conquer approach to simulating the

design was taken. The test IC was separated into its components and tested individually to ensure

correct functionality.

Digital Simulation

The digital components of this design were all extensively tested using verilog test benches. The

test bench code for each of the components is available in Appendix B.2. Individual components

were tested to ensure functionality, integrated into larger designs, and then these larger designs were

tested. Small errors were found and corrected; this iterative bottom-up approach to simulation and

verification proved effective.

Once the digital designs were determined to be working correctly, the gate level code was syn­

thesized and imported into Cadence so that it could be simulated in an analog environment. Unfor­

tunately the workstations currently available were unable to simulate the entire gate-level code at

once, and it had to be further subdivided in order to simulate correctly.

The digital design was separated into the control block and the clock controller, and these

two elements were successfully simulated for several clock cycles. Once again, due to the limited

computational resources, it is only feasible to simulate a limited number of clock cycles, as each of

these may require many hours of processing time.

Analog Simulation

The full-custom layouts of the RALUT and inverter ring were simulated using Spectre in Cadence

Analog Environment. Section 5.3.4 details the simulation results of the inverter ring. A sample

simulation waveform of the RALUT is shown in Figure 5.15, the entire simulation waveform has

been omitted for clarity, as it would span nearly 100 rows. Also omitted for clarity are the address

lines.

This waveform shows the clock signal at the top, followed by four output lines: 3, 2 ,1 , and 0 from

top to bottom. The outputs are switching appropriately with different input addresses, although

some jitter can be seen from time to time. While this may appear to be a serious fault at first, it is

important to remember that the output of a domino logic circuit is not valid while the clock is at

logic 0, as is the case during these glitches.

65

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Figure 5.15: Simulation Waveforms for the RALUT, from Top to Bottom: Clock Signal, Output

Line 3, 2, 1, and 0

5.7.1 Design Rule Check

Design Rule Checks, or DRCs, are a set of checks that are performed to confirm that the design does

not violate any of the fabrication process parameters. Examples of the parameters that are checked

are maximum transistor width, minimum gate overlap, and minimum metall separation. DRCs for

this work were performed using Diva as well as Calibre. During early design stages, specifically

while individual cell layouts were being created, Diva was used to perform DRCs. It possesses fast

execution times for smaller layouts, and is well-integrated with the Cadence tools. Calibre was used

to DRC the entire IC; it is a more robust tool, and properly detects certain violations that Diva does

not, such as antenna violations. Additionally, final DRC checks are also performed by Calibre. The

University of Windsor does not currently have access to full cell-views, meaning the DRC software

cannot determine if there are any violations occuring in the black box standard library cells. In

order to determine the legitimacy of a standard cell design, it must be uploaded to CMC's DRC

server, where Calibre is run locally on their system, and the results are made available for download.

66

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

5.8 IC Design

Once the design was determined to be functioning correctly in simulation results, Encounter was

used to perform cell placement and routing, power ring and stripe placement. Results of this step

are pictured in Figures 5.16, and 5.17. In these figures, routing layers for metals 4, 5, and 6 have

been removed to better show the chip's internals. On the left is the full-custom RALUT, and in the

bottom-right corner is the inverter ring. The remaining area is mostly filled with the standard cells

making up the chip's testing and control circuitry, as well as the HDL RALUT design.

5.9 Test IC Summary and Results

The test IC described in this chapter will be able to fully simulate the RALUT design such that

every input combination can be tested, operating speeds can be determined, and correct functionality

determined. The robust clock controller circuit allows for simulation at a wide variety of speeds,

while the simple 8-bit input and output ports of this design will allow it to easily interface with a

microcontroller for testing. In the future, this design framework could be used to test other memory

architectures, greatly reducing the design time in creating a custom built-in self-test module.

The test IC has been fabricated, and has been tested. Unfortunately, it is failing to respond to

even basic tests. This suggests that there was a problem with the fabrication process, and CMC is

currently being contacted in order to further investigate the issue.

67

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Figure 5.16: Complete IC Layout

68

5. INTEGRATED CIRCUIT TEST PLATFORM DESIGN

Figure 5.17: Close-Up View of the IC Core

69

Chapter 6

Case Study: Range Addressable Lookup

Tables in Artificial Neural Networks

In this chapter, a RALUT implementation of the hyperbolic tangent function is presented. Hardware

implementation results show that a RALUT implementation was significantly faster and smaller than

a recently published picewise linear (PWL) approximation method, while possessing the same level

of accuracy. Hardware designs were implemented using a digital CMOS 0.18/xm process; the same

technology node used by the PWL implementation used in the comparison. Additional comparisons

are made between the RALUT implementation and a series of other PWL methods implemented on

an FPGA, further demonstrating the RALUT's superior performance.

The rest of this chapter is organized as follows. Section 6.2 briefly reviews previous work on

hyperbolic tangent function implementation. Section 6.3 discusses a LUT-based approach, while

section 6.4 examines the RALUT approach to implement the activation function. In section 6.6,

a complexity comparison between several different methods is presented, and section 6.3 presents

additional comparisons to published work that emply FPGAs. Finally, section 6.8 summarizes the

results.

70

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

6.1 Artificial Neural Networks and Activation Functions

Artificial neural networks (ANNs) are currently employed for many diverse purposes, ranging from

image classification to motor control [9, 21]. Since ANN systems are computationally intensive,

they require large execution times in software implementations. Hardware implementations can

eliminate this issue. One of the challenges presented when designing a hardware-based ANN system

is the implementation of the activation function. There are several different activation functions

available including, but not limited to, the sigmoid, hyperbolic tangent, and step functions [9, 21].

An important property of the activation function is that a continuous derivative exists, which is

desirable when performing backpropagation-based learning. These functions are used to threshold

the output of every artificial neuron; increasing the speed of the activation function will improve the

entire system's performance.

The hyperbolic tangent function is among the most widely used activation functions in ANNs.

As it is shown in Fig. 6.1, this function produces a sigmoid curve, which is a curve having an "S"

shape. Its variation is limited outside the range of (—2,2).

1 - ^ ,

0.8 - f

0.6 - /

0.4 - /

2 °2 /
- C o /
c /
j S -0-2- /

-0.4 - /

-0.6 - /

-0.8 - /
_1 - ^

- 8 - 6 - 4 - 2 0 2 4 6 8

X

Figure 6.1: The Hyperbolic Tangent Activation Function

Currently, there are several different approaches for the hardware implementation of the activa­

tion function. Piecewise linear approximation (PWL), lookup tables (LUTs), and hybrid methods

have been widely used for this purpose [3, 19, 27]. With the use of current hardware synthesizers,

LUTs are not only faster, but also occupy less area than piecewise linear approximation methods.

71

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

In this work, range addressable lookup tables are proposed as a solution that offers advantages

compared to simple LUT implementation in terms of speed and area utilization.

This type of table was originally proposed in [16] to implement highly nonlinear, discontinuous

functions, and it will be shown to be suitable for implementing the hyperbolic tangent activation

function. Depending on the desired accuracy, ranges of inputs will have the same output, which

could be implemented more efficiently using RALUTs rather than a regular LUT.

6.2 A Brief Review of Different Hyperbolic Tangent Func­

tion Implementations

Efficient implementation of the activation function is an important part of designing an ANN system

in hardware. The activation function is typically unsuitable for direct implementation since it is

formed of an infinite exponential series. In practice, approximations of the function are used, as

opposed to the function itself.

Currently, there are three main approaches used to approximate and implement the hyperbolic

tangent function in hardware; lookup table (LUT) approximation, piece-wise linear (PWL) approx­

imation, and hybrid methods, which are essentially a combination of the former two. Following is a

brief overview of each of these methods.

6.2.1 Piecewise Linear Approximation

Piecewise linear schemes use a series of linear segments to approximate a function [3]. The number

and location of these segments are chosen such that error, processing time, and area are minimized.

This approach usually requires several clock cycles and the use of multipliers, which are expensive

in terms of area. A piecewise linear approximation of the hyperbolic tangent function with five

segments is shown in Fig. 6.2.

6.2.2 Lookup Table Approximation

In this method, the function is approximated with a limited number of points [19]. The points are

uniformly distributed across the entire input range. There is a direct relation between the number

of bits used to represent the address (input) and output, and as such, care must be taken to ensure

enough are used to minimize the error. A LUT approximation of the hyperbolic tangent function

with eight points (a three bit input representation) is shown in Fig. 6.3.

72

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

1

0.8

0.6

0.4

, , 0.2

><_
^ 0
c CO
* " -0.2

-0.4

-0.6

-0.8

-

-

"

-

'

^

'

* * * } ̂

1 1

II
if

if
if

il
II

II
it

il

1 i _

S^ *
/ * / *

I *
f *
Is

-

.

-

"

-

-2 -1 0
X

Figure 6.2: Piece wise Linear Approximation of tanh(x) with Five Segments

c
03

Figure 6.3: Lookup Table Approximation of tanh(x) with Eight Points

6.2.3 Hybrid Methods

Hybrid methods use a combination of look-up tables and other hardware to generate the result of

a function [27]. They typically take several clock cycles, however they do not employ multipliers,

which significantly increases their speed.

73

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

6.3 Lookup Table Implementation of the Hyperbolic Tangent

Function

The major advantages of using a LUT is its high operating speed, particularly when compared to

PWL approximation which uses multipliers in its design. The are two different ways to implement

a lookup table in hardware. The first is to use a ROM. The main drawback of this method is that

no further optimization can be done after the exact input/output bit patterns are known.

The second method is to use a logic synthesizer to implement the table as a purely combinational

circuit. This works well because the synthesizer excels in optimizing away large amounts of logic.

In the implementation, MATLAB code was generated to determine the number of input and

output bits, as well as the output bit patterns themselves, for a table with a specified maximum

error. For a maximum error of 0.04, 9 bits were used for both the input and output, whereas 10 bits

were required to keep the maximum error below 0.02.

Once the input/output characteristics of the table were determined, HDL code employing them

was written, and a hardware design was synthesized using Synopsys' Design Compiler. Virtual

Silicon standard library cells for a TSMC CMOS 0.18/im process were used for this design, and

synthesis parameters were chosen to maximize operating speed. Hardware implementation results

with a maximum error of 0.04 and 0.02 are summarized in the second row of tables 6.1 and 6.2

respectively.

6.4 Range Addressable Lookup Table Implementation of the

Hyperbolic Tangent Function

A range addressable lookup table, originally proposed in [16] to accurately approximate non-linear,

discontinuous functions, shares many aspects with the classic LUT with a few notable differences.

In LUTs, every data point stored by the table corresponds to a unique address. In RALUTs, every

data point corresponds to a range of addresses. This alternate addressing approach allows for a large

reduction in data points, particularly in situations where the output remains constant over a range.

An example of this is the hyperbolic tangent function, where the output changes only slightly outside

the range of (—2, 2). Rather than store every individual point, a single point is used to represent an

entire range.

To implement the hyperbolic tangent function, MATLAB code was written to select the mini­

mum number of data points, while keeping the maximum error beneath a specified threshold. The

74

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

c

Figure 6.4: Range Addressable Lookup Table Approximation of tanh(x) with Eight Points

MATLAB code is available in Appendix C. It was possible to represent the activation function with

61 points using 9 bits for the inputs and outputs, with an error below 0.04 . Using a 10 bit repre­

sentation, only 127 were needed to maintain a maximum error below 0.02 . The required number of

points for these levels of maximum error using classic LUTs were 512 and 1024, respectively. This

large reduction in stored values is what drives the RALUT approach to achieve better results than

a LUT implementation of the same function.

6.5 Results and Comparison

Architectures

Scheme-1 [11]

Proposed-LUT

Proposed-RALUT

Max-Error

0.0430

0.0365

0.0357

AVG-Error

0.0078

0.0040

0.0089

Area

32069.83 / m 2

9045.94 urn2

7090.40 nm2

Delay

903 ns

2.15 ns

1.85 ns

Area x Delay

2.895 x 10~5

1.944 x 10"11

1.311 x HT 1 1

Table 6.1: Complexity comparison of different implementations for 0.04 maximum error

Both sets of data points were passed on to HDL code, and the designs were synthesized with

Synopsys Design Compiler using CMOS 0.18/um technology. Design parameters were chosen to

maximize operating speed. Implementation results are shown on the last row of tables 6.1 and 6.2.

75

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

Architectures

Scheme-2 [11]

Proposed-LUT

Proposed-RALUT

Max-Error

0.0220

0.0180

0.0178

AVG-Error

0.0041

0.0020

0.0057

Area

83559.17/im2

17864.24 urn2

11871.53 urn2

Delay

1293 ns

2.45 ns

2.12 ns

Area x Delay

1.080 x 10"4

4.376 x 1 0 " n

2.516 x 10"1 1

Table 6.2: Complexity comparison of different implementations for 0.02 maximum error

6.6 Comparison of Different Hardware Implementations

Comparisons of hardware implementations for a maximum error of 0.04 and 0.02 are shown in

tables 6.1 and 6.2. In table 6.1, the first row represents results from "Scheme-1", which is an

isosceles triangular approximation of the hyperbolic tangent function. In table 6.2, the same row

shows results from "Scheme-2", which is a PWL approximation of the hyperbolic tangent function.

Both Scheme-1 and Scheme-2 designs were implemented using CMOS 0.18/j.m technology; the same

used by the proposed implementations. Also note that all designs accept an input in the range of

(-8,8) .

The proposed RALUT design was able to improve over the LUT implementation in both cases.

With a maximum error of 0.04, the RALUT was 13% faster, and occupied 21.6% less area than

the classic LUT approach. When the maximum error threshold was reduced to 0.02, the RALUT

maintained a speed improvement of 13.5%, and area was further reduced by 33.5% compared to the

LUT.

As can be seen from the tables, the LUT and RALUT designs prove to be significantly faster

than the work recently presented in [11]. This is largely because this approach uses combinational

logic exclusively, allowing results to appear after a single clock cycle, whereas multiple clock cycles

are needed by the other designs. The "orea x delay" was calculated as a performance metric to

compare the overall efficiency of the designs. It is shown in the last column of tables 6.1 and 6.2.

6.7 Comparison to FPGA Implementations

While Section 6.6 outlines a direct comparison of two ASIC VLSI designs using CMOS 0.18/xm

technology, other designs are available which target FPGA platforms. In an effort to broaden the

proposed design's basis of comparison, it will be compared with FPGA implementations of ANN

activation functions. First, however, it is important to understand the some key differences between

FPGAs and ASIC designs.

76

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

Rather than use a library of cells as building blocks, FPGAs make use of regularly patterned

groups of logic that typically contain a combination of small look up tables, multiplexers, and flip

flops to implement their designs. The FPGA implementations in Table 6.3 are a reproduction of

the results published by [22], and were implented on a Xilinx Virtex-II XC2V40 device. Virtex-II

FPGA devices make use of 'slices', which is a term used by the Xilinx corporation to describe a unit

of logic elements. Also, FPGAs do not use um2 of silicon as an area metric; they refer to how many

slices a design occupies. According to their datasheet [28], a slice contains the following:

• Two function generators

• Two storage elements

• Arithmetic logic gates

• Large multiplexers

• Wide function capability

• Fast carry look-ahead chain

• Horizontal cascade chain (OR gate)

It is due to this large mix of resources on a slice that renders it difficult to form a direct comparison

between FPGA and ASIC area utilization.

Another major factor affecting the fairness of comparison is the fabrication technology used to

fabricate both the ASIC and FPGA. The Virtex-II FPGA used in this comparison as described as

"0.15/im / 0.12/im CMOS 8-layer metal process with high-speed transistors", meaning it is at a more

advanced technology node than the proposed CMOS 0.18/im design. Unfortunately, the University

of Windsor does not possess a design kit for either of the 0.15/im or 0.12/im CMOS processes, and

as such a direct performance comparison is also not possible. Luckily, however, the FPGA is not

several generations ahead in technology, so this will only slightly skew the comparison in favour of

the results reported by [22].

Table 6.3 displays how the proposed work compares with other designs which also report a

maximum error of approximately 0.02. The critical path delay of the proposed RALUT design is

significantly lower than all other results, including the FPGA implementations. This is due to the

fact that the FPGA designs require multiple clock cycles to determine their results, whereas the

RALUT is purely combinational. Although not essential, it is worth remarking that the average

error of the proposed design is also lower than the FPGA implementations. Also compared in the

77

6. CASE STUDY: RANGE ADDRESSABLE LOOKUP TABLES IN ARTIFICIAL NEURAL NETWORKS

table is a high-performance full-custom RALUT design. It is larger than the ASIC designs, however

it possesses the minimum critical path delay. This design would be ideal in a situation requiring the

fastest function approximation possible.

Architectures

Zhang et al. [12]

Alippi et al. [1]

CRI (q=3) [3]

CRI (q=4) [3]

LUT

RALUT

High Performance RALUT

Max-Error

0.0216

0.0189

0.0206

0.0197

0.0180

0.0178

0.0178

AVG-Error

0.0077

0.0087

0.0085

0.0084

0.0020

0.0057

0.0057

Area

176 Slices

36 Slices

65 Slices

65 Slices

17864.24 iim2

11871.53 /xm2

39442 jjm2

Delay

15.06 ns

15.58 ns

86.21 ns

114.94 ns

2.45 ns

2.12 ns

1.60 ns

Platform

FPGA

FPGA

FPGA

FPGA

ASIC

ASIC

Custom

Table 6.3: Complexity comparison of different implementations for 0.02 maximum error, including

FPGA implementations

6.8 Summary

The hyperbolic tangent function is commonly used as the activation function in artificial neural

networks. In this work, two different hardware implementations for this function are proposed. The

first method uses a classic LUT to approximate the function, while the second method uses a RALUT

to do so. Hardware synthesis results show that proposed methods perform significantly faster, and

use less area compared to other similar methods with the same amount of error. On average, the

speed was improved by 13%, while area was reduced by 26% when using the second method compared

to first in implementing a hyperbolic tangent function. A comparison with FPGAs was carried out

to show that the propsed design also performs well against these approaches, particularly in terms of

critical path delay. The full custom, high-performance RALUT was also compared, and performed

the best in terms of critical path delay, however its area was larger than the standard cell ASIC

designs. The proposed designs can be used in the hardware implementation of ANNs.

78

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The CMOS 0.18/im technology node was selected to design a rescaled version of the existing CMOS

0.35//TO design, as well as a high performance implementation of the RALUT. The rescaled version

was quickly designed, allowing for it to be included in test IC in time for fabrication, while offering

65% better results than the 0.35/im design. The high-performance design demonstrates excellent

results with an 84% improvement over the CMOS 0.35/Um design for a typical RALUT size.

The superior results achieved in the high performance design were made possible due to the

properly sized transistors and optimal RALUT design parameters. The ideal number of address bits

per decode stage was determined to be 6, every linedriver should drive no more than 16 output bits,

and no fewer than one buffer should be used for every 8 rows of the design.

Also, due to the performance data collected, it is now possible to estimate the delay of the high

performance RALUT design.

The integrated circuit test platform will be able to fully simulate the RALUT design, such that

every input combination can be tested, operating speeds can be determined, and correct functionality

determined. The robust clock controller circuit allows for simulation at a wide variety of speeds,

while the simple 8-bit input and output ports of this design will allow it to easily interface with a

microcontroller for testing. In the future, this design framework could be used to test other memory

architectures, greatly reducing the design time in creating a custom built-in self-test module.

79

7. CONCLUSIONS AND FUTURE WORK

A case study of how RALUTs can be used to approximate non-linear functions was carried out

on the activation function of artificial neural networks. Two different hardware implementations

for this function were proposed. The first method uses a classic LUT to approximate the function,

while the second method uses a RALUT to do so. Hardware synthesis results show that proposed

methods perform significantly faster, and use less area compared to other similar methods with the

same amount of error. On average, the speed was improved by 13%, while area was reduced by 26%

when using the second method compared to first in implementing a hyperbolic tangent function. A

comparison with FPGAs was carried out to show that the propsed design also performs well against

these approaches, particularly in terms of critical path delay. A full-custom RALUT design was also

proposed, and while it yielded the best performance, the area utilization was greater than the ASIC

RALUT design. The proposed designs can be used in the hardware implementation of ANNs.

7.2 Future Work

The proposed RALUT design requires a greater amount of delay as the number of input and output

bits increases. By inserting registers in between address decode stages, this design could easily be

modified to make use of pipelining in order to boost throughput.

Another research area is in determining the suitability of this RALUT architecture in more

advanced technology nodes. The open nature of this design should easily allow minor design changes,

such as the insertion of clock gating blocks to reduce leakage power in fabrication processes which

are known to experience deep submicron effects.

80

Appendix A

Final Transistor Sizing

CLK-

540nm

HI
250nm

A(n) |k30nm

A(n)_comp [630nm

J J 360nm] J 540nm| 360nm]

4 HE60-1 H r 250H^ HC [H t c
J EQ_out I

— i F 6 ° n m —ir —ir
l u- | 360nm'h 360nm"-i

A(n) 1

GT out
•

t
nGT_comp_out

360nm~"-|

5 360nm

Compare to 1 Compare to 0

Figure A.l: Beginning Stage Final Transistor Sizing

81

A. FINAL TRANSISTOR SIZING

in_EQ-

GT out

A(n) |[630nm

A(n)_comp [[630nm
in_nGT_comp 1 [630nm

^A(n) |[360nm

630nm

in_nGT_comp P630nm Compare to 1 Compare to 0

Figure A.2: Middle Stage Final Transistor Sizing

250nm
u
)nmi I HE

A(n) 1| 630nm

360nm

in_nGT_comp 1F A(n)_comp 1P A(n) 1 !~3

630nm

I—|[36C
EQ_out

360nm

630nm
360nra

360nm in_EQ |h60r

in_nGT_comp 1 [e30nm

Compare to 1

Compare to 0

Figure A.3: Final Stage Final Transistor Sizing

82

Appendix B

Verilog Code

B . l Verilog Modules

B. l . l Automatic Test Pattern Generator

module a t p g l 6 (e l k , r e s e t , s e e d , a t p g _ o u t) ;

i n t e g e r N;
p a r a m e t e r [1 5 : 0] t a p s = 1 6 ' b 1 0 0 0 0 0 0 0 - 0 0 0 1 0 1 1 0 ;

i n p u t e lk , r e s e t ;
i n p u t [1 5 : 0] s e e d ;
w i r e e lk , r e s e t ;
w i r e [1 5 : 0] seed ;

o u t p u t [1 5 : 0] a t p g _ o u t ;
w i r e [1 5 : 0] a t p g _ o u t ;

reg b i t s , f e e d b a c k ;
reg [1 5 : 0] l f s r _ r e g , n e x t _ l f s r _r eg ;

a l w a y s © (n e g e d g e e l k)
b e g i n

i f (r

e l s e

end

a l w a y s @ (l f s r _ r e g)
b e g i n

b i t s = " | l f s r . r e g [1 4 : 0] ;
f e e d b a c k = l f s r . r e g [15] " b i t s ;
for (N = 15 ; N > = 1; N = N - 1)

83

e s e t)
l f s r _ r e g = seed ;

l f s r _ r e g = n e x t . l f s r . r e g ;

i f (t a p s [N - l] = = 1)
n e x t ^lf s'r _ r e g [N] = l f s r _ r e g [N

e l s e
n e x t _ l f s r _r eg [N] = l f s r _ r e g [N

n e x t _lf s r - r e g [0] = f e e d b a c k ;
end

a s s i g n a t p g _ o u t = l f s r _ r e g ;

endmodu le

B.1.2 Clock Wrapper

module c l o c k w r a p p e r (e x t . c l k , r e s e t , c t r l _ d e c o d e r , c t r l _ c l k ,
c t r l _ c l k _ o u t , c lkgen , elk , c l k _ o u t , d e c o d e r _ o u t) ;

i n p u t e x t _ c l k , r e s e t , c l k g e n ;
i n p u t [2 : 0] c t r l _ c l k , c t r l . c l k . o u t
i n p u t [4 : 0] c t r l _ d e c o d e r ;
w i r e e x t _ c l k , r e s e t , c l k g e n ;
w i r e [2 : 0] c t r l . c l k , c t r 1 _ c l k _ o u t ;
w i r e [4 : 0] c t r l _ d e c o d e r ;

o u t p u t elk , c l k _ o u t ;
o u t p u t [3 1 : 0] d e c o d e r _ o u t ;
w i r e e lk , c l k _ o u t ;
w i r e [3 1 : 0] d e c o d e r _ o u t ;

w i r e [5 : 0] c o u n t e r ;

d e c o d e r . n # (5 , 32) DECODER0(. d e c o d e r _ i n (c t r l . d e c o d e r) ,
. d e c o d e r _ o u t (d e c o d e r _ o u t)) ;
c o u n t e r s # (6) COUNTER0 (. e lk (c l k g e n) , . r e s e t (r e s e t) ,
. c o u n t e r _ o u t (c o u n t e r)) ;
n t o l - m u x # (8 , 3) MUX0(. mux_in ({ e x t _clk , c lkgen , c o u n t e r })
. s e l e c t (c t r l . c l k) , • mux .ou t (e lk)) ;
n t o l _ m u x # (8 , 3) MUX1(. m u x . i n ({ e x t _clk , c lkgen , c o u n t e r })
. s e l e c t (c t r l _ c l k _ o u t) , . m u x . o u t (c l k _ o u t)) ;

e n d m o d u l e

B.1.3 Compare Module

module compare2 (r a l u t , l u t , c o m p a r e) ;

i n p u t [5 1 : 0] r a l u t , l u t ;
w i r e [5 1 : 0] r a l u t , l u t ;

o u t p u t compare ;
r eg compare ;

/ / a s s i g n compare = & (r a l u t "~ l u t) ;
a l w a y s @ (r a l u t or l u t)
b e g i n

i f (r a l u t = = l u t)
compare = 1 ' b l ;

e l s e

B. VERILOG CODE

c o m p a r e = 1 'bO ;
end
endmodu le

B.1.4 Controller

m o d u l e c o n t r o l l e r (m c u - d k , r e s e t , c t r l _ c l k _ o u t , c t r l . c l k , c t r l _ d e c o d e r , c t r l _ r e s e t
c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b , c t r l _ a t p g _ s e e d , d a t a - i n , c t r l - d a t a s e l) ;

i n p u t m c u _ c l k , r e s e t ;
i n p u t [7 : 0] d a t a _ i n ;
w i r e m c u _ c l k , r e s e t ;
w i r e [7 : 0] d a t a - i n ;

o u t p u t [2 : 0] c t r l _ c l k _ o u t , c t r l . c l k ;
o u t p u t [4 : 0] c t r l _ d e c o d e r ;
o u t p u t c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b ;
o u t p u t c t r l _ r e s e t ;
o u t p u t [1 5 : 0] c t r l _ a t p g _ s e e d ;
o u t p u t [4 : 0] c t r l - d a t a s e l ;

w i r e [2 : 0] c t r l _ c l k _ o u t , c t r l . c l k ;
w i r e [4 : 0] c t r l _ d e c o d e r ;
w i r e c t r l - r e s e t ;
w i r e [1 5 : 0] c t r l _ a t p g - s e e d ;
w i r e c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b ;
w i r e [1 5 : 0] a d d r e s s - d e c o d e ;

w i r e [4 : 0] c t r l _ d a t a s e l ;

/ / o u t p u t [2 : 0] e x t r a ;
/ / w i r e [2 : 0] e x t r a ;

d e c o d e r _ n # (4 , 1 6) DATAREGS-DECODER (. d e c o d e r - i n (d a t a - i n [7 : 4]) ,
. d e c o d e r _ o u t (a d d r e s s _ d e c o d e)) ;
c o n t r o l l e r - m e m # (4) MEM-00 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [0]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a - o u t ({ c t r l _ c l k - o u t , c t r 1 _ c l k _ e n })) ;
c o n t r o l l e r . m e m # (4) MEM-01 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [l]) , , d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a - o u t ({ c t r l . c l k , c t r l _ e n _ a })) ;
c o n t r o l l e r _ m e m # (4) MEM-02 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [2]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a . o u t (c t r l - d e c o d e r [3 : 0])) ;
c o n t r o l l e r _ m e m # (4) MEMJD3 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [3]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,
, d a t a _ o u t ({ c t r l _ d a t a s e l [0] , c t r l _ r e s e t , c t r l _ e n _ b , c t r l - d e c o d e r [4] })) ;
c o n t r o l l e r _ m e m # (4) MEM_04 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [4]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a _ o u t (c t r l _ d a t a s e l [4 : 1])) ;
c o n t r o l l e r _ m e m # (4) M E M J 0 5 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s - d e c o d e [5]) , , d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a _ o u t (c t r l _ a t p g _ s e e d [3 : 0])) ;
c o n t r o l l e r _ m e m # (4) MEM-06 (. m c u - d k (m c u - c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s _ d e c o d e [6]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,
. d a t a _ o u t (c t r l _ a t p g _ s e e d [7 : 4])) ;
c o n t r o l l e r _ m e m # (4) MEM_07 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) ,
. w r i t e _ e n a b l e (a d d r e s s - d e c o d e [7]) , . d a t a _ i n (d a t a - i n [3 : 0]) ,
. d a t a _ o u t (c t r l _ a t p g _ s e e d [1 1 : 8])) ;
c o n t r o l l e r _ m e m # (4) MEM-08 (. m c u _ c l k (m c u . c l k) , . r e s e t (r e s e t) ,

. w r i t e _ e n a b l e (a d d r e s s - d e c o d e [8]) , . d a t a _ i n (d a t a _ i n [3 : 0]) ,

85

B. VERILOG CODE

. d a t a . o u t (c t r l . a t pg . s eed [15:12])) ;

endmodule

B.1.5 n-bit Counter

module counter_n (e lk , reset , counter_out);

parameter width = 6;
input elk , r e s e t ;
output [width — 1:0] counter_out ;

wire elk , r ese t ;
reg [width — 1:0] coun te r .ou t ;

always ©(posedge elk or posedge r e s e t)
begin

if (r ese t = = 1)
counter_out = 1;

e l se
coun t e r . ou t = coun t e r . ou t + 1;

end
endmodule

B.1.6 Data-out Selector

module d a t a - o u t - s e l e c t (sel , da ta - in , da ta -ou t);

input [4:0] sel ;
input [255:0] d a t a - i n ;
wire [4:0] sel ;
wire [255:0] d a t a - i n ;

output [7:0] d a t a - o u t ;
reg [7:0] d a t a - o u t ;

always @(sel
case

or dat
(s e l)

0 :
1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :
10 :
1 1 :
1 2 :
1 3 :
14 :
1 5 :
16 :
1 7 :
1 8 :
19 :
2 0 :
2 1 :

a_in)

data_out
da ta -ou t
data_out
da ta -ou t
da ta -ou t
data_out
da ta -ou t
da ta -ou t
da ta -ou t
data_out
data_out
da ta -ou t
da ta -ou t
da ta -ou t
da t a . ou t
da ta -ou t
da ta -ou t
da t a . ou t
data_out
da t a . ou t
da t a . ou t
data_out

data_
d a t a -
d a t a .
d a t a -
d a t a .
d a t a -
d a t a .
dat a_
d a t a -
d a t a .
da ta _
d a t a -
d a t a .
d a t a -
d a t a -
d a t a .
d a t a -
d a t a -
d a t a -
d a t a .
d a t a -
d a t a -

n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [
n [

7 : 0] ;
15:8] ;
23:16]
31:24]
39:32]
47:40]
55:48]
63:56]
71:64]
79:72]
87:80]
95:88]
103 :96] ;
111:104]
119:112]
127:120]
135:128]
143:136]
151:144]
159:152]
167:160]
175:1681

B. VERILOG CODE

22
23
24
25
26
27
28
29
30
31

d a t a - o u t =
d a t a - o u t =
d a t a _ o u t =
d a t a - o u t =
d a t a _ o u t =
d a t a - o u t =
d a t a - o u t =
d a t a _ o u t =
d a t a - o u t =
d a t a - o u t =

d e f a u l t :

= d a t a -
= d a t a _
= d a t a _
= d a t a .
= d a t a _
= d a t a _
= d a t a _
= d a t a _
= d a t a _

n [1 8 3 : 1 7 6]
n [1 9 1 : 1 8 4]
n [1 9 9 : 1 9 2]
n [2 0 7 : 2 0 0]
n [2 1 5 : 2 0 8]
n [2 2 3 : 2 1 6]
n [2 3 1 : 2 2 4]
n [2 3 9 : 2 3 2]
n [2 4 7 : 2 4 0]

= d a t a - i n [2 5 5 : 2 4 8]
d a t a _out = d a t a - in r 7 : 0

endc

endmodule

B.1.7 n-bit Decoder

module d e c o d e r . n (d e c o d e r _ i n , d e c o d e r _ o u t) ;

p a r a m e t e r i n _ s i z e = 5 , o u t _ s i z e = 32 ;
i n p u t [i n _ s i z e —1:0] d e c o d e r _ i n ;
o u t p u t [o u t _ s i z e —1:0] d e c o d e r _ o u t ;

r eg [o u t _s ize — 1:0] d e c o d e r _ o u t ;
i n t e g e r i ;

a l w a y s <9(d e c o d e r _in)
b e g i n

for (i = 0; i < o u t - s i z e ; i = i + 1)
i f (d e c o d e r . i n = = i)

d e c o d e r _ o u t [i] = 1;
e l s e

d e c o d e r _ o u t [i] = 0;
end

endmodu le

B.1.8 Input Module

n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t
n p u t

- t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e
. t a b l e
- t a b l e
. t a b l e
. t a b l e
. t a b l e
- t a b l e
- t a b l e
- t a b l e
. t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e
- t a b l e

0] =

1] =
2] =
3] =
4] =
5] =
6] =
7] =
8] =
9] =
10]

11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]

=16 'b0000000000000000
= 1 6 ' b 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1
=16 'b0000011111111000
= 1 6 ' b 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1
= 1 6 ' b 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0
= 1 6 ' b 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1
= 1 6 ' b 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1
= 1 6 ' b 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 •
= 1 6 ' b 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 •
= 1 6 ' b 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1
= 1 6 ' b 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0
= 1 6 ' b 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0
= 1 6 ' b 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0
= 1 6 ' b 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1
= 1 6 ' b 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0
= 1 6 ' b 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0
= 1 6 ' b O l l 1 1 0 0 1 1 1 0 1 0 0 0 0
= 1 6 ' b l O O O O O l O l l l l l l O l
=16 'b lOOOl l l lOOOOlOOl
= 1 6 ' b l O O l 1 0 0 0 1 0 1 1 1 0 1 0
= 16 ' b l O O l l O l l O l l l O H O
= 1 6 ' b l 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0

87

B. VERILOG CODE

input_table[22]=16 'b l011001010010011
i n p u t . t a b l e [2 3] = 16'blOl1110100100000
inpu t . t ab le [24] = 16'bl100101011111100
i n p u t . t a b l e [2 5] = 16'bl101011000100001
i n p u t - t a b l e [2 6] = 16'bl110010011000100
i n p u t - t a b l e [2 7] = 16 'bi l l1000010001010
i n p u t . t a b l e [2 8] = 16'bl111001111011100

B.1.9 Memory Module

module main_mem (elk , reset , wri te_enable , da ta - in , da ta -ou t);

parameter size = 52;

input elk , reset , wr i te_enable ;
input [size—1:0] d a t a - i n ;
wire elk , reset , wr i te_enable ;
wire [size—1:0] d a t a - i n ;

output [size —1:0] d a t a - o u t ;
reg [size —1:0] d a t a - o u t ;

always @(negedge elk)
begin

i f (r e s e t)
da ta -ou t = 0;

e l se i f (wr it e_enable)
data_out = da t a - in ;

end

endmodule

B.1.10 n-to-1 Multiplexer

module ntol_mux (mux_in , se lect , mux_out);

parameter mux_size = 8;
parameter s e l e c t - l i n e s = 3;
i n t ege r i ;

input [mux_size — 1:0] mux-in;
input [s e l e c t _ l i n e s — 1:0] s e l e c t ;
output mux_out ;
reg mux-out ;

always @(mux_in or s e l e c t)
begin

mux_out = mux_in[0];
for (i = 0; i < mux-size ; i = i + 1)

begin
i f (s e l e c t —= i)

mux_out = muxjn [i
end

end
endmodule

B . l . l l n-wide n-to-1 Multiplexer

B. VERILOG CODE

module d a t a . o u t . s e l e c t (se l , data_in , d a t a - o u t) ;

input [4:0] s e l ;
input [255:0] d a t a - i n ;
wire [4:0] sel ;
wire [255:0] d a t a - i n ;

output [7:0] d a t a - o u t ;
reg [7:0] da ta_out ;

always
begin

end

endmodule

@(sel or dat

case (s e l)
0 :
1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :
10 :
1 1 :
1 2 :
1 3 :
14 :
1 5 :
1 6 :
1 7 :
1 8 :
19 :
2 0 :
2 1 :
2 2 :
2 3 :
2 4 :
2 5 :
2 6 :
2 7 :
2 8 :
2 9 :
3 0 :
3 1 :

defaul t :
endcase

a_in)

da ta -ou t
da ta -ou t
d a t a . o u t
da ta -ou t
d a t a . o u t
da ta -ou t
da ta -ou t
da t a . ou t
da t a . ou t
da t a . ou t
data_out
da ta -ou t
da ta -ou t
da ta -ou t
d a t a . o u t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a .ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t
da t a . ou t

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

d a t a . i n
dat a. in
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
da t a - in
da t a - in
d a t a . i n
d a t a . i n
d a t a . i n
da t a - in
da t a - in
da t a - in
da t a - in
da t a - in
da t a - in
da ta - in
da ta - in
da t a - in
da t a - in
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
d a t a . i n
da t a - in
da t a - in

7:0] ;
15:8] ;
23:16]
31:24]
39:32]
47:40]
55:48]
63:56]
71:64]
79:72]
87:80]
95:88]
103 :96] ;
111:104]
119:112]
127:120]
135:128]
143:136]
151:144]
159:152]
167:160]
175:168]
183:176]
191:184]
199:192]
207:200]
215:208]
223:216]
231:224]
239:232]
247:240]
255:248]
7:0] ;

B.1.12 OK Signal Indicator

module ok (e l k , reset , i n , out) ;

input elk , reset , in;
wire elk , reset , in ;

output out ;
reg out ;

B. VERILOG CODE

a l w a y s @(negedge e l k)
b e g i n

i f (r e s e t)
out = 1 ' b l ;

e l s e
out = i n ;

end

endmodu le

B.1.13 Output Controller

output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output

.table

.table

.table
-table
.table
-table
-table
.table
-table
.table
.table
-table
.table
.table
.table
-table
-table
.table
.table
.table
.table
.table
-table
-table
-table
.table
.table
.table
.table

= 52'bOOOOOOOOOOOOOOOOOOOOOl100011011100000011101000001011
=52'b0000011000110111000001111111100001110101010101110100
=52'b0000011111111000000011100110000110101000111010001111
=5 2'b0000111001100001000101101100110000011110000111110011
=52'b0001011011001100000111011001000111000001101001101110
=52'b0001110110010001001001100111010100110110110111010010
=52'b0010011001110101001011011001101111011010011001001101
=52'b0010110110011011001101101111111101001111100110110001
=52'b0011011011111111001111101000110111110011001000101100
=52'bOOll111010001101010000001010111001100100110110010101
=52'b0100000010101110010010000111100010011000011010110000
=52'b0100100001111000010100101011001000001101101000010100
=52'b0101001010110010010110101110101110110001001010001111
=52'b0101101011101011011001011011100000100110010111110011
=52'b0110010110111000011011100110100011001001111001101110
=52'bOllOlllOOllOlOOOOllllOOlllOlOOOOOOllllllOOOlllOlOOlO
=52'bOllllOOlllOlOOOOlOOOOOlOllllllOll1100010101001001101
= 52'blOOOOO10111111011000 111 10000100101010111110110110001
=52'blOOOl11100001001100110001011101011111011011000101100
=52'blOOl100010111010100110110111011001101101000110010101
=52'blOOl101101110110101001010111010010100000101010110000
=52'b1010010101110100101100101001001100010101111000010100
=52'blOl1001010010011101111010010000010111001011010001111
=52'blOl1110100100000110010101111110000101110100111110011
= 52'bl100101011 111 100110101100010000111010010001001101110
=52'bl101011000100001111001001100010001000111010111010010
=52'bl110010011000100111100001000101011101010111001001101
=52'bill1000010001010111100111101110001011100100110110110
=52'bill1001111011100000000000000000010010000001011010001

B.1.14 HDL Ralut Module

module r a l u t (r a l u t _ i n , r a l u t _ o u t) ;

p a r a m e t e r i n _ s i z e = 1 6 , o u t _ s i z e = 5 2 , rows == 29 ;
i n t e g e r i ;

/ / i n p u t e lk ;
i n p u t [i n _ s i z e — 1:0] r a l u t _ i n ;
o u t p u t [o u t _ s i z e —1:0] r a l u t _ o u t ;

reg [o u t - s i z e — 1:0] r a l u t . o u t ;
r eg [i n _ s i z e — 1:0] i n p u t . t a b l e [rows — 1:0] ;
r eg [o u t _ s i z e — 1:0] o u t p u t _ t a b l e [rows — 1:0] ;

/ * for s i m u l a t i o n , i n i t i a l i z e t h e t a b l e s in " i n i t i a l " b l o c k * /
' i f d e f SYNTHESIS
' e l s e

i n i t i a l

B. VERILOG CODE

b e g i n
' i n c l u d e " i n p u t . v "
' i n c l u d e " o u t p u t . v "

end
' e n d i f

a l w a y s @ (r a l u t _ i n)
b e g i n

/ * For s y n t h e s i s , i n i t i a l i z e t h e t a b l e s i n an a l w a y s b l o c k * /
' i f d e f SYNTHESIS
' i n c l u d e " i n p u t . v "
' i n c l u d e " o u t p u t . v "
' e n d i f

r a l u t - o u t = o u t p u t . t a b l e [0] ;
f o r (i = 0; i < r o w s ; i = i + 1)
b e g i n

i f (i < rows — 1)
b e g i n

i f ((r a l u t _ i n > = i n p u t . t a b l e [i]) && (r a l u t _ i n < i n p u t - t a b l e
r a l u t - o u t = o u t p u t - t a b l e [i]

end
e l s e i f (i = = rows — 1)

b e g i n
i f (r a l u t _ i n > = i n p u t - t a b l e [i])

r a l u t - o u t = o u t p u t - t a b l e [i]
end

end
end

endmodu le

B.1.15 Test Circuit

module t e s t b l o c k 2 (elk , c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b , c t r l _ r e s e t , o k ,
r a l u t _ c l k , r a l u t - a t p g , r a l u t _ v _ a t p g , r a l u t _ o u t , r a l u t _ v _ o u t , c t r l _ d a t a s e l ,
d a t a . o u t , c t r l _ a t p g - s e e d) ;

i n p u t e lk , c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b , c t r l _ r e s e t ;
w i r e elk , c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b , c t r l - r e s e t ;

i n p u t [6 3 : 0] r a l u t _ o u t , r a l u t _ v _ o u t ;
w i r e [6 3 : 0] r a l u t _ o u t , r a l u t _ v _ o u t ;

i n p u t [4 : 0] c t r l _ d a t a s e l ;
w i r e [4 : 0] c t r l _ d a t a s e l ;

i n p u t [1 5 : 0] c t r l _ a t p g _ s e e d ;
w i r e [1 5 : 0] c t r l - a t p g _ s e e d ;

o u t p u t o k , r a l u t _ c l k ;
w i r e o k , r a l u t _ c l k ;

o u t p u t [1 5 : 0] r a l u t - a t p g , r a l u t . v . a t p g ;
w i r e [1 5 : 0] r a l u t - a t p g , r a l u t _ v _ a t p g ;

o u t p u t [7 : 0] d a t a - o u t ;
w i r e [7 : 0] d a t a - o u t ;

w i r e [1 5 : 0] a t p g ;
w i r e [1 5 : 0] a t p g p l , a t p g p 2 , a t p g p 3 ;

[i + 1]))

91

B. VERILOG CODE

w i r e [6 3 : 0] r a l u t l 2 , r a l u t v 2 , r a l u t l 3 , r a l u t v 3 ;

w i r e c o m p a r e d ;

main-mem # (1 6) ATPG_L (. c l k (c l k) , . r e s e t (c t r l _ r e s e t) , . w r i t e - e n a b l e (c t r l _ e n _ a)

. d a t a _ i n (a t p g) , . d a t a - o u t (r a l u t - a t p g)) ;
main jnem # (1 6) ATPG_V(. c l k (c l k) , . r e s e t (c t r l _ r e s e t) , . w r i t e - e n a b l e (c t r l . e n _ b)
. d a t a _ i n (a t p g) , . d a t a _ o u t (r a l u t _ v _ a t p g)) ;
main-mem # (1 6) ATPG_P1(. c l k (c l k) , . r e s e t (c t r l . r e s e t) , . w r i t e . e n a b l e (1 ' b l) ,
. d a t a . i n (a t p g) , . d a t a _ o u t (a t p g p l)) ;

main_mem # (16) ATPG_P2 (. c l k (c l k) , . r e s e t (c t r l _ r e s e t) , . w r i t e _ e n a b l e (l ' b l) ,
. d a t a - i n (a t p g p l) , . d a t a _ o u t (a t p g p 2)) ;
main-mem # (1 6) ATPG_P3(. c l k (c l k) , . r e s e t (c t r 1 - r e s e t) , . w r i t e . e n a b l e (1 ' b l) ,
. d a t a . i n (a t p g p 2) , . d a t a . o u t (a t p g p 3)) ;

t o g g l e RALUT_CLK_TOGGLE (. c l k - i n (e lk) , . e n a b l e (c t r l _c lk _en) ,
. e l k - o u t (r a l u t . c l k)) ;

main-mem # (6 4) RALUT-L2 (. c l k (c l k) , . r e s e t (c t r l . r e s e t) , . w r i t e - e n a b l e (o k) ,
. d a t a - i n (r a l u t - o u t) , . d a t a _ o u t (r a l u t l 2)) ;
mairumem # (64) RALUT-V2 (. c l k (c l k) , . r e s e t (c t r l _ r e s e t) , . w r i t e . e n a b l e (o k) ,
. d a t a - i n (r a l u t _ v _ o u t) , . d a t a - o u t (r a l u t v 2)) ;

main.mem # (6 4) RALUT-L3 (. c l k (c l k) , , r e s e t (c t r l _ r e s e t) , . w r i t e - e n a b l e (o k) ,
. d a t a - i n (r a l u t l 2) , . d a t a _ o u t (r a l u t l 3)) ;
main-mem # (6 4) RALUT-V3 (. c l k (c l k) , . r e s e t (c t r l _ r e s e t) , . w r i t e - e n a b l e (o k) ,
. d a t a _ i n (r a l u t v 2) , . d a t a _ o u t (r a l u t v 3)) ;

d a t a - o u t - s e l e c t DATAOUTJ3EL(. s e l (c t r 1 _d a t a s e l) ,

. d a t a _ i n ({ 1 1 2 ' b x , r a l u t l 3 , r a l u t v 3 , a t p g p 3 }) , . d a t a _ o u t (d a t a _ o u t)) ;

compare COMPAPiEl (. r a l u t (r a l u t 12) , . l u t (r a l u t v 2) , . compare (compared)) ;

ok O K l (. e l k (e l k) , . r e s e t (c t r l _ r e s e t) , . i n (c o m p a r e d) , . o u t (o k)) ;

a t p g l 6 ATPG16-1 (. e lk (e l k) , , r e s e t (c t r l _ r e s e t) , . s e e d (c t r l _ a t p g _ s e e d) ,
. a t p g _ o u t (a t p g)) ;

endmodu le

B.1.16 Power Toggle

module t o g g l e (c lk_ in , e n a b l e , c l k . o u t) ;

i n p u t c l k . i n , e n a b l e ;
w i r e c l k - i n , e n a b l e ;

o u t p u t c l k _ o u t ;
w i r e c l k _ o u t ;

a s s i g n c l k . o u t = (c l k _ i n & e n a b l e) ;

endmodu le

B.1.17 System Wrapper

/ / IO WRAPPER,

' t i m e s c a l e I n s / l O p s

module w r a p p e r (m c u _ c l k _ w r a p p e r , e x t _ c l k _ w r a p p e r , r e s e t _ w r a p p e r , o k .
c l k _ o u t _ w r a p p e r , d a t a - i n _ w r a p p e r , d a t a _ o u t - w r a p p e r) ;

i n p u t m c u - d k _ w r a p p e r , e x t _ c l k _ w r a p p e r , r e s e t - w r a p p e r ;
i n p u t [7 : 0] d a t a _ i n _ w r a p p e r ;
w i r e mcu_c lk_wrappe r , e x t _ c l k _ w r a p p e r , r e s e t - w r a p p e r ;
w i r e [7 : 0] d a t a _ i n _ w r a p p e r ;

o u t p u t ok_wrapper , c l k . o u t . w r a p p e r ;
o u t p u t [7 : 0] d a t a _ o u t _ w r a p p e r ;
w i r e o k - w r a p p e r , c l k _ o u t _ w r a p p e r ;
w i r e [7 : 0] d a t a - o u t - w r a p p e r ;

w i r e mcu_clk , e x t _ c l k , r e s e t , ok , c l k - o u t ;
w i r e [7 : 0] d a t a - i n , d a t a _ o u t ;

a s s e m b l e d 2 U0 (
. r e s e t (r e s e t) ,

e x t - c l k (e x t . c l k) , . m c u _ c l k (m c u _ c l k) , . d a t a _ i n (d a t a _
d a t a - o u t (d a t a - o u t) , . o k (o k) , . c l k _ o u t (c l k _ o u t)) ;

PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ
PDIDGZ

PAD-MCU.CLK(. P A D (m c u - c l k . w r a p p e r) ,
PAD-EXT.CLK (,PAD(e x t . c l k . w r a p p e r) ,
PAD_RESET(.PAD(r e s e t . w r a p p e r) , .C(
PAD_DATAJN_0 (
PAD-DATAJN.1 (
PAD-DATAJN.2 (
P A D J D A T A J N J (
PAD-DATAJN.4 (
PAD-DATAJN-5 (
PAD_DATAJN_6 (
PAD -DATA JN-7 (

,PAD(d a t a _in . w r a p p e r
. P A D (d a t a J n - w r a p p e r
.PAD(d a t a - i n _ w r a p p e r
,PAD(d a t a _in . w r a p p e r
.PAD(d a t a - i n . w r a p p e r
.PAD(d a t a - i n - w r a p p e r
.PAD(d a t a _ i n _ w r a p p e r
,PAD(d a t a - i n - w r a p p e r

. C (m c u _ c l k))

. C (e x
r e s e t)
[0]) ,
[1]) ,
[2]) ,
[3]) ,
[4]) ,
[5 !) ,
[6]) ,
[7]) ,

t _ c l k))

);
. C (d a t a .
. C (d a t a _
. C (d a t a _
. C (d a t a _
. C(d a t a - .
. C (d a t a _
. C (d a t a _
. C (d a t a _

n
n
n
n
n
n
n
n

[0]))
[1]))
[2]))
[3]))
[4]))
[5]))
[6]))
[7]))

PDO08CDG PAD-OK (. I (o k) , .PAD(o k . w r a p p e r)) :
PDO08CDG PAD-CLK_OUT(. I (e l k . o u t) , .PAD
PDO08CDG P AD_DATA_OUT_0 (. l (d a t a _ o u t [0]
PDO08CDG PADJDATA_OUT_l (. I (d a t a - o u t [1]
PDO08CDG PAD_DATA_OUT^ (. I (d a t a _o u t [2]
PDO08CDG PAD_DATA_OUT-3 (. I (d a t a _o u t- [3]
PDO08CDG PAD.DATA-OUT-4 (. I (d a t a - o u t [4]
PDO08CDG PADJDATA-OUT-5 (. I (d a t a _o u t [5]
PDO08CDG P A D _ D A T A _ O U T J 6 (. I (d a t a - o u t [6]
PDO08CDG PAD_DATA_OUT_7 (. I (d a t a _o u t [7]
e n d m o d u l e

c l k _ o u t - w r a p p e r)) ;
.PAD(d a t a . o u t - w r a p p e r [0]
.PAD(d a t a - o u t - w r a p p e r [1]
. P A D (d a t a - o u t - w r a p p e r [2]
,PAD(d a t a - o u t . w r a p p e r [3]
.PAD(d a t a _ o u t - w r a p p e r [4]
.PAD(d a t a - o u t - w r a p p e r [5]
.PAD(d a t a _ o u t - w r a p p e r [6]
.PAD(d a t a - o u t - w r a p p e r [7]

B.2 Verilog Test Benches

B.2.1 Compare Module Test Bench

module c o m p a r e _ t b ;

r eg [5 1 : 0] r a l u t , l u t
w i r e c o m p a r e ;

compare2 U0 (. r a l u t (r a l u t) , . l u t (l u t) , . compare (compare)) ;

B. VERILOG CODE

i n i t i a l
begin
#0 $monitor (" r a lu t „=J%d , „ lut „=„%d , -compare_=„%b" , ra lu t , lut , compare'
#10 ra lu t = 0;

lut = 0;

#20 r a lu t = 5;
#50 lut = 25;
#70 lut = 5;
end

endmodule

B.2.2 Clock Wrapper Test Bench

module c lockwrapper . tb () ;

reg ex t . c lk , reset , clkgen ;
reg [2:0] c t r l - c l k , c t r l . c l k . o u t
reg [4:0] c t r l_decoder ;

wire elk , clk_out ;
wire [31:0] decode r . ou t ;

clockwrapper U0 (, e x t _ c l k (e x t _ c l k) , . r e s e t (r e s e t) , . c t r l . d e c o d e r (C t r l . d e c o d e r)
. c t r l - c l k (c t r l - c l k) , . c t r l . c l k . o u t (c t r l . c l k . o u t) , . c l k g e n (c l k g e n) , . c l k (c l k) ,
. c l k _ o u t (c l k _ o u t) , . d e c o d e r . o u t (d e c o d e r . o u t)) ;

i n i t i a l
begin
Smonitor
c t r l . c l k .
reset , e
c lk .out ,
#0

("reset„=„%b,-ext_clk„=. .%b,„clkgen„=„%b,
. o u t ^ - K b , - Ctrl . decoder ^=..%b , _ clk„=„%b , .
x t . c l k , clkgen , c t r l . c l k , c t r l . c l k . o u t ,

d e c o d e r . o u t) ;
rese t = 0;
e x t . c l k = 0;
clkgen = 0;
c t r l . c l k = 0;
c t r l . c l k . o u t = 0;
c t r l . d e c o d e r = 0;

„ c t r l _ c l k ^ „ % b ,
elk .ou t *j=~%h , - decoder _out.^„%b"
c t r l . d e c o d e r , elk ,

#30
#10
#1

#1

#1

#1

#1

#1

#1

1

rese t = 1;
rese t = 0;
e x t . c l k = 1
clkgen = 1
e x t . c l k =
clkgen = 0
e x t . c l k =
clkgen = 1
e x t . c l k =
clkgen = 0
e x t . c l k =
clkgen = 1
e x t . c l k =
clkgen = 0
e x t . c l k =
clkgen = 1
e x t . c l k =
clkgen = 0

-4J -11 ~U ~U ~il -~U -<U -4J -~U --U -~U »4J -~U -~U ^U -U. -U. —U -LL -U ~U ~il -41 -41 -41 -41 -41 -4J -41 -41 * * * * * * : * * * * =N= =|fc ^ =#: =#:

o
c-t-
>~t

Q-
CD
o
o
CL
0)
>-i

II
CO
CD

O
c+
*- j

]

03
O
0
a-
03
>-i

II
to
GO

O
c+
*- i

a
<t>
O

o
a
03
>-1

II
CO
-a

o
irf-
*-t

a
05
O

o
a
0!
*- i

II
CO
OS

O
r+-

^
a
03

o
0
a
0)
>-i

II
CO
or

o
r +

^
0-
01
n
C

&. 0!
>-J

II
CO

^

o
r+-
HJ

a
05
n
o
a
0)
*- i

II
CO
CO

o
rt-

>-!
CL
CD
o
0

a
CD
•"!

II
to
to

o
r *

11

0-
0
o
c
0-
0

-"
II
bO
1-1

o
rt-

""
i

0-
0
o
o
0 .
05

^
II
to
o

o
c+

",

O.
0
O
0
0 .
0
I

II
(—i

to

o
c+

"*
Q.
O
o
c
0 -
0

**
II

h ^

0 0

o
c +

^
0 -
0
o
o
0 -
0

"
II

H J

~ 1

o
c t

1-1

O.
0
o
0
D-
0
1-1

II
t—i
a>

o
r t -

^
0 -
0
o
0
0 .
0

^
II

h - 1

Cn

o
e+
i - i

(X
a>
o
o
a
0)

^
II

^
•£-

o
e-h

^
a.
cc
o
O
0 -
0)
* - j

II
t - j

CO

n
c+
>-s

a.
<D
a
0
0 -
(b

^
II

h - i

CO

o
e l -

"1

a
CD
o
0
a
(15
•"S

II
| _ L

1-1

o
C ^

>-j

a
OS
O

c
a
0!
>-S

II
i _ i

O

O
c+
>-i

CL
0!
o
0
a
re
>~t

II
CO

o
e+
*~t

a
a>
o
o
CL
0)
>~s

1!
00

o
c+-
»-i

1

a. a:
o
0
a
CD
>~t

II
- 4

O
r+-
>-i

a
CD
n
o
a
a>
H

II
a ;

o
e-H

t - i

l

a
CD
O

o
0 -
CD
<-i

II
CJI

o
c i -

^
0 -
03
n
o
a
CD
1-1

II

*>.

O
<Tt-

>~i

1

0-
03

o
o
0 -
03
H

II
CO

o
<r+-

1-1

0 -
03

n
c
CL
03
i - i

11
CO

o
c +
i-J

a
CD
O

o
a
CD
i-J

II
w

o
(T+

"*
Q.
a;
o
o
a
CD

""
1!
o

(D o [t n 0 : 0 0 0 0) 0 ^ 0 0) 0 0 0 0 0 0 :
X X X

aq i CR i aq I" aq i aq i aq
0 O 0 O 0 O 0 O 0 O 0 O
3 — 3 — B — B ^ - B

W- X- S>f X"

oq i oq i oq i w i
0 O 0 O 0 O 0 O

B ^ S K - B — B — CS —
X* X* X" X- ?r X-

II " II " II " II " II " II
O I-" O l-J O

l _ i - • o - ' M - - O - - I-1 — O

O 0

£ x
0 0 O

X

m aq ^ ffq ^ oq ^ oq
0 O 0 O 0 O 0 O 0
0 — B — B — B — B

X" X" X* X-
II „ II „ II „ II „ II

l_i - • o - • h-» -

to

to

O

o o
t)

B. VERILOG CODE

1
1

c t r 1 _ d e c o d e r
c t r l - d e c o d e r

30 ;
3 1 ;

end
endmodu le

B.2.3 Controller Test Bench

module c o n t r o l l e r _ t b () ;

r eg mcu_clk , r e s e t ;
r eg [7 : 0] d a t a . i n ;

w i r e [2 : 0] c t r l _ c l k _ o u t , c t r l _ c l k ;
w i r e [4 : 0] c t r l - d e c o d e r ;
w i r e c t r 1 _ r e s e t ;
w i r e [1 5 : 0] c t r l _ a t p g _ s e e d ;
w i r e c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b ;
w i r e [4 : 0] c t r l _ d a t a s e l ;

a l w a y s # 2 0 m c u - c l k = ~ mcu_c lk ;

c o n t r o l l e r U0 (. m c u _ c l k (m c u _ c l k) , . r e s e t (r e s e t) , , c t r l _ c l k _ o u t (c t r l _ c l k _ o u t) ,
. c t r l - c l k (c t r l . c l k) , . c t r l - d e c o d e r (c t r l _ d e c o d e r) , . c t r l _ r e s e t (c t r l _ r e s e t) ,
. c t r l _ a t p g _ s e e d (c t r l _ a t p g - s e e d) , . c t r l - d k _ e n (c t r l _ c l k _ e n) , . c t r l _ e n _ a (c t r l _ e n _ a)
. c t r l _ e n _ b (c t r l _ e n _ b) , . d a t a _ i n (d a t a _ i n) , . c t r l _ d a t a s e l (c t r l _ d a t a s e l)) ;

i n i t i a l
b e g i n '
S m o n i t o r (" output^=„%b„%b„%b„%b„%b„%b„%b„%b„%b , „ r e s e t ^=-%b , „ mcu_clk^=„%b ,
d a t a _ i n „ = „ % b " , c t r l _ a t p g _ s e e d , c t r l _ d a t a s e l , c t r l _ r e s e t , c t r l _ e n _ b ,
c t r l - d e c o d e r , c t r l - c l k , c t r l _ c l k _ e n , c t r l . c l k . o u t , c t r l _ c l k _ e n , r e s e t ,
mcu-c lk , d a t a - i n) ;
0 m c u . c l k = 0;
0 r e s e t = 0;
0 d a t a - i n = 8 ' b 0 0 0 0 _ 0 0 0 0 ;
4 0 r e s e t = 1;
4 0 r e s e t = 0;
4 0 d a t a - i n = 8 ' b O O O O . l l l l
4 0 d a t a - i n = 8 ' b 0 0 0 1 - l l l l
4 0 d a t a - i n = 8 ' b 0 0 1 0 _ l l l l
4 0 d a t a - i n = 8 ' b 0 0 1 1 - l l l l
4 0 d a t a - i n = 8 ' b 0 1 0 0 - l l l l
4 0 d a t a - i n = 8 ' b 0 1 0 1 - l l l l

8 ' b O l l O - l l l l
8 ' b 0 1 1 1 - l l l l
8 ' b l 0 0 0 - l l l l
8 ' b l 0 0 1 . 1 H l
8 ' b l 0 1 0 - l l l l
8 ' b l 0 1 1 - l l l l
8 ' b l l 0 0 - l l l l
8 ' b l l 0 1 _ l l l l
8 ' b l l l O . l l l l
8 ' b l l l l - l l l l

4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =
4 0 d a t a - i n =

4 0 d a t a - i n = 8 ' b l l l l - 0 0 0 0
4 0 d a t a - i n = 8 ' b l l l 0 _ 0 0 0 0
4 0 d a t a - i n = 8 ' b l l 0 1 - 0 0 0 0
4 0 d a t a - i n = 8 ' b l l 0 0 - 0 0 0 0
4 0 d a t a - i n = 8 ' b l 0 1 1 _ 0 0 0 0

B. VERILOG CODE

4 0
4 0
4 0
4 0
4 0
4 0
4 0
4 0
4 0
4 0
4 0

d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .
d a t a .

-in
_in
. in
_in
_in
. in
_in
. in
_in
. in
-in

= 8
= 8
= 8
= 8
= 8
= 8
= 8
= 8
= 8
= 8
= 8

' b l 0 1 0 _ 0 0 0 0
' b l 0 0 1 _ 0 0 0 0
'blOOO.OOOO
' b O l l l . 0 0 0 0
' b0110_0000
'bOlOl.OOOO
'b0100_0000
' b0011_0000
' b0010_0000
' b0001_0000
'bOOOO-0000

4 0 r e s e t = 1;
4 0 r e s e t = 0;
end
a l w a y s # 2 0 0 0 S f i n i s h ;
endmodu le

B.2.4 OK Signal Test Bench

module ok_ tb ;

r e g elk , r e s e t , i n ;
w i r e ou t ;

ok U0(elk , r e s e t , in , out) ;

i n i t i a l
b e g i n
$ m o n i t o r (" c lk„=„%b , - r e s e t j = „ % b , - in„=„%b , - o u t - = - % b " , e l k , r e s e t , i n , o u t) ;
0 e lk = 0;

r e s e t = 0 ;
in = 0;

#20 in = 1;
#20 r e s e t = 1;
#20 r e s e t = 0;
#20 in = 0;
#40 in = 1 ;
end
a l w a y s # 5 0 0 S f i n i s h ;
a l w a y s # 5 e lk = " e lk ;

e n d m o d u l e

B.2.5 Test Circuit Test Bench

module t e s t b l o c k 2 _tb () ;
r eg elk , c t r l _ c l k _ e n , c t r l _ e n _ a , c t r l _ e n _ b , c t r l . r e s e t ;

r eg [6 3 : 0] r a l u t _ o u t , r a l u t _ v _ o u t ;

r eg [4 : 0] c t r l _ d a t a s e l ;

r eg [1 5 : 0] c t r l _ a t p g _ s e e d ;

w i r e o k , r a l u t _ c l k ;

97

B. VERILOG CODE

w i r e [1 5 : 0] r a l u t _ a t p g , r a l u t _ v _ a t p g ;

w i r e [7 : 0] d a t a _ o u t ;

t e s t b l o c k 2 U0(. c l k (c l k) , . c t r 1 _ c l k - e n (c t r 1 _ c l k _ e n) , . c t r l _ e n _ a (c t r l _en_a) ,
. c t r l _ e n _ b (c t r l - e n _ b) , , c t r l _ r e s e t (c t r l _ r e s e t) , . o k (o k) , . r a l u t _ c l k (r a l u t _ c l k) ,
. r a l u t _ a t p g (r a l u t _ a t p g) , . r a l u t _ v _ a t p g (r a l u t _ v _ a t p g) , . r a l u t - o u t (r a l u t _ o u t) ,
. r a l u t _ v _ o u t (r a l u t _ v _ o u t) , . c t r l _ d a t a s e l (c t r l _ d a t a s e l) , . d a t a - o u t (d a t a . o u t) ,
. c t r l _ a t p g _ s e e d (c t r l _ a t p g _ s e e d)) ;

a l w a y s # 2 0 e l k ;

i n i t i a l
b e g i n
$ m o n i t o r (" c lk„=„%b , ~ r e s e t ^=„%b , - d a t a . o u t ^ - % b , „ r a l u t _ a t p g . ^ „ % b , „ r a l u t _v_a tpg~=„%b ,
ok-=M%b ,„ r a l u t _clk_=_%b ,„ c t r l _ d a t a s e l ^ = - % b " , elk , c t r l _ r e s e t , d a t a - o u t , r a l u t . a t p g
r a l u t _ v _ a t p g , o k , r a l u t _ c l k , c t r l - d a t a s e l) ;

#0

#40
#40
#40

#40
#40
#40
#40
#100
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
#20

6 0
1
1
1

r a l u t - o u t =
r a l u t _ v _ o u t 3;
elk

ct r

ct r

ctr

ct r

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

ctr

= 0;
- r e s e t = 0;
- d a t a s e l = 0
_ a t p g _ s e e d
. r e s e t = 1;
- r e s e t = 0;
_en_a = 1;
. e n . b = 1;
. r e s e t = 1;
- r e s e t = 0;
_ c l k _ e n = 1
_c lk _en = 0

= 0;

_clk_en =

_d at asel

-datasel

-dat asel

_dat asel

_dat asel

_dat asel

-datasel

-datasel

-datasel

-datasel

-datasel

_dat asel

_dat asel

_d at asel

_d at asel

_dat asel

-dat asel

-datasel

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

r a l u t - o u t = 6 4 ' b l l l l l l l l . 0 0 0 0 0 0 0 0 . 1 1 1 1 1 1 1 1 - 0 0 0 0 0 0 0 0 - 1 1 1 1 1 1 1 1 -
0 0 0 0 0 0 0 0 - 1 1 1 1 1 1 1 1 - 0 0 0 0 0 0 0 0 ;
r a l u t _ v _ o u t = 6 4 ' b 0 0 0 0 0 0 0 0 _ l l l 1 1 1 1 1 - 0 0 0 0 0 0 0 0 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0 .
1 1 1 1 1 1 1 1 - 0 0 0 0 0 0 0 0 - 1 1 1 1 1 1 1 1 ;
c t r l _ d a t a s e l = 0;
c t r l - d a t a s e l = 1
c t r l _ d a t a s e l = 2
c t r l - d a t a s e l = 3

98

B. VERILOG CODE

1 c t r l _ d a t a s e l = 4
1 c t r 1 _ d a t a s e l = 5
1 c t r l _ d a t a s e l = 6;
1 c t r l _ d a t a s e l = 7;
1 c t r l _ d a t a s e l = 8
1 c t r l - d a t a s e l = 9
1 c t r l - d a t a s e l = 10
1 c t r l . d a t a s e l = 11
1 c t r l _ d a t a s e l = 12
1 c t r l . d a t a s e l = 13
1 c t r l . d a t a s e l = 14
1 c t r l . d a t a s e l = 15
1 c t r l . d a t a s e l = 16
1 c t r l . d a t a s e l = 17
#20 c t r L r e s e t = 1;
#20 c t r l . r e s e t = 0;
2 0 r a l u t . o u t = 6 4 ' b O l O l O l O l . 0 1 0 1 0 1 0 1 . 0 1 0 1 0 1 0 1 . 0 1 0 1 0 1 0 1 . 0 1 0 1 0 1 0 1 .

0 1 0 1 0 1 0 1 . 0 1 0 1 0 1 0 1 - 0 1 0 1 0 1 0 1 ;
r a l u t . v . o u t = 6 4 ' b l O l O l O l O . 1 0 1 0 1 0 1 0 - 1 0 1 0 1 0 1 0 - 1 0 1 0 1 0 1 0 - 1 0 1 0 1 0 1 0 ,
1 0 1 0 1 0 1 0 - 1 0 1 0 1 0 1 0 - 1 0 1 0 1 0 1 0 ;

6 0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

end
a l w a y s

c t r l . d a t a s e l
c t r l - d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r 1 _ d a t a s e l
c t r l _ d a t a s e l
c t r l . d a t a s e l
c t r l _ d a t a s e l
c t r l - d a t a s e l
c t r l - d a t a s e l
c t r l - d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l
c t r l _ d a t a s e l

3 0 0 0 S f i n i s h

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

0;
1;
2;
3;
4;
5;
6;
7;
8;
9;
10

n
12
13
14
15
16
17

endmodu le

B.2.6 Power Toggle Test Bench

module t o g g l e . t b ;

reg e lk ;
reg e n a b l e ;
w i r e o u t ;

t o g g l e U0 (. c l k - i n (c l k) , . e n a b l e (e n a b l e) , . c l k _ o u t (o u t)) ;

i n i t i a l
b e g i n
0 e lk = 0;

e n a b l e = 0
#10 e n a b l e = 1
#10 e n a b l e = 0

B. VERILOG CODE

#40 enable = 1;
#200 enable = 0;
#300 enable = 1;
end
i n i t i a l Smonitor (" clk~=~%b , -enable_=„%b , „out.^~%b" , elk , enable , out) ;
always #10 elk = ~ e lk ;
always #1000 Sfinish ;

endmodule

100

Appendix C

Matlab Code

C.l Matlab .m Files

C.l. l RALUT Point Generator

c l c
c l e a r a l l ;
c 1 o s e a 11 ;

%0.033
%0.01568
e p s = 0 . 2 5 ;
s t a r t = —8;
s t o p = 8;

ace = 0 . 0 0 0 5 ;
x . c o n t = s t a r t : ace : s t o p ;
y . c o n t = u s e r . f u n c t i o n (x . c o n t) ;

j = i ;
x . r a l u t (j) = s t a r t ;
y . r a l u t (j) = u s e r - f u n c t i o n (s t a r t) ;

for i = s t a r t : ace : s t o p
i f (a b s (y _r a l u t (j) — u s e r . f u n c t i o n (i)) > = e p s)

j = j + l ;
x _ r a l u t (j) = i ;
y . r a l u t (j) = u s e r - f u n c t i o n (i) ;

end
end

x _i 11 = x . r a l u t ;

101

C. MATLAB CODE

y . i l l = y _ r a l u t ;
%fi gure
p l o t (x _ r a l u t , y _ r a l u t , ' b o ' , x_cont , y_cont , ' r—')
%plot (x-cont , y-cont , 'k—', 'LineWidth ', 5)
% xlabel ('x ', ' FontSize ', 20)
% ylab el (''tanh(x) ', 'FontSize ', 20)
% grid on
% axis ([-8 8-1.2 1.2])

e r r o r (1) = 0;
i = 1;
x_pos = s t a r t ;
for j = 2 : 1 : s i z e (x . c o n t ,2)

%get the "true" floating point y coordonate
c o n t . y = u s e r - f u n c t i o n (x _ p o s) ;

q u a n t . y = y _ r a l u t (i) ;

e r r o r (j) = a b s (c o n t _ y — q u a n t _ y) ;

i f (i < s i z e (x _ r a l u t , 2))
i f (x _ p o s + ace > x . r a l u t (i + 1))

i = i + 1;
end

end
x . p o s = x . p o s + a c e ;

end

m a x _ e r r o r = m a x (e r r o r) ;
m e a n . e r r o r = meanferror) ;

for i = 1 : 1 : s i z e (x _ r a l u t , 2) ' — 1
d e l t a . x (i) = x _ r a l u t (i + l) — x _ r a l u t (i) ;

end

l u t _ b i t s = c e i l (l o g 2 ((s t o p — s t a r t) / m i n (d e l t a _ x)))
x _ r a l u t = x _ r a l u t + s t o p ;
x . r a l u t = x . r a l u t . / 16 .* 2 " l u t _ b i t s ;
y . r a l u t = y _ r a l u t + 1;
y _ r a l u t = y _ r a l u t , / 2 .* 2 " l u t - b i t s ;
a = d e c 2 b i n (x _ r a l u t , l u t . b i t s) ;
b = d e c 2 b i n (y _ r a l u t , l u t _ b i t s) ;

for i = 1 : 1 : s i z e (x _ r a l u t ,2)
s p a c e r (i , 1) = ' - ' ;

end

c = [a s p a c e r b]
c l e a r e r r o r ;
x _ l u t _ f r o m _ b i n a r y = b i n 2 d e c (a) ;
y _ lu t _f r o m _ b i n a r y = b i n 2 d e c (b) ;

x _ l u t _ f r o m _ b i n a r y = x _ l u t _ f r o m _ b i n a r y .* 16 . / 2 " l u t _ b i t s — s t o p ;
y . l u t _ f r o m _ b i n a r y = y _ l u t _ f r o m _ b i n a r y .* 2 . / 2 " l u t - b i t s — 1;

e r r o r (1) = 0;
i = 1;

102

x_pos = s t a r t ;
for j = 2 : 1 : s i z e (X-cont ,2)

%get the "true" floating point y coordonate
c o n t _ y = u s e r - f u n c t i o n (x . p o s) ;
%get nearest x point in the table

% previous = abs(x.pos — x.lut.front-binary (i)) ;
% if(i < 2'lut.bits)
% next = abs (x-pos — x-lut-from-binary (i + 1)) ;
% end
%
%

%if (previous <= next)
% near est.x = i ;
%els e
% if(i < 2"lut.bits)
% nearest-X = i+1;
% else
% nearest-X = i;
% end
%end

q u a n t _ y = y - l u t _ f r o m _ . b i n a r y (i) ;

e r r o r (j) = a b s (c o n t _ y — q u a n t _ y) ;

i f (i < s i z e (x_ lu t _ f r o m _ b i n a r y , 1))
i f (x _ p o s > = x _ l u t _ f r o m _ b i n a r y (i + 1))

i = i + 1;
end

end
x . p o s = x_pos + ace ;

end

m a x . e n o r = m a x (e r r o r) ;
m e a n _ e r r o r = m e a n (e r r o r) ;

C.1.2 Sigmoid Function

f u n c t i o n s = u s e r - f u n c t i o n (x)
%s = 1 ./ (1 + exp(-x)) ;
s = (e x p (x) — e x p (- x)) . / (e x p (x) + e x p (— x)) ;

end

Appendix D

Layouts for the 0.35/xra, 0.18urn, and High

Performance 0.18 um Designs

104

D. LAYOUTS FOR THE 0 . 3 5 / J M , 0.18/iM, AND HIGH PERFORMANCE 0.18/nAf DESIGNS

fft1 11:

tn-vvytw. ^tn.t/1 I
* » V { •: •

•sir

Figure D.l: Begin Address Decode Stage Layouts

105

D. LAYOUTS FOR THE 0.35/iM ; 0.18/xM, AND HIGH PERFORMANCE 0.18/iM DESIGNS

WEM-MI

:ri

iiteusiiiii ui waaas

S i aB

an
mmfin**

"J"> J W" - ™ i W J," " " "1

Figure D.2: Middle Address Decode Stage Layouts

wksyMp, •i.u j i U iBp§ki! snl*Si

11 FSS i i r " 4 ^ I f
r Vi"M

Figure D.3: Final Address Decode Stage Layouts

D. LAYOUTS FOR THE 0.35/J.M, 0.18/J.M, AND HIGH PERFORMANCE 0.18,uM DESIGNS

§* _H_ • _ m

W'

M $

TaT ffi

smsr limg, >9*j&l w

MSI H

Figure D.4: Output Bits Layouts, First Row: '0', ' 1 ' Second Row: '0', 1' Third Row: '00', '01', '10',

'ir

107

D. LAYOUTS FOR THE 0.35/iM, 0.18/iM, AND HIGH PERFORMANCE 0.l8fiM DESIGNS

Figure D.5: Address Compare Bits From Left to Right: '0' and "1

108

D. LAYOUTS FOR THE 0.35/^M, 0.18/iM, AND HIGH PERFORMANCE 0.18/iM DESIGNS

Figure D.6: Linedriver Layouts

109

D. LAYOUTS FOR THE 0.35pM, 0.18/nM, AND HIGH PERFORMANCE 0.18/iiW DESIGNS

• ~,.Kf~.\'~iiS

Figure D.7: Buffer Layouts

110

Appendix E

Synopsys Files

E . l Verilog .v Files

E . l . l Synopsys .dc Setup

set search_path " . / a r c "
set sea rch-pa th " $search_path^+„$synopsys_root -+_/ l i b r a r i e s / s y n "
set search_path "$search_path^+„$synopsys_root „+
/CMC/k i t s / a r t isan/FE/fe-TSMCHOME_tpz973g_240c/digital/
Front _End /1 iming_power/tpz973g _240c „+
/CMC/ k i t s / a r t is a n / F E / a c i / s c / s y n o p s y s „+
/CMC/ ki t s / a r t i s an /FE/ a c i / s c / s y m b o l s / s y n o p s y s "
set l i n k - l i b r a r y " tpz973gwc . db„slow . db„dw_foundation . sldb „*"
set t a r g e t - l i b r a r y " tpz973gwc . db„slow . db"
set s y n t h e t i c - l i b r a r y " dw_foundation . s ldb"
set symbo l - l i b r a ry " t smc l8 . sdb"

de f ine_des ign_ l ib work —path work

set v e r i l o g o u t _ n o _ t r i " t r u e "
def ine-name_rules preview —allowed "A—Za—zO — 9_"

set hd l in_enab le_pres to " f a l s e "
set hdl in_enable_vpp " t r u e "

set hdl in_enable-vpp t rue

E.l .2 Clock Controller Script

analyze —format ver i log { ntol_mux . v}
analyze —format ver i log { decoder _n . v}
analyze —format ver i log { counte r .n . v}

111

a n a l y z e —format v e r i l o g { c l o c k w r a p p e r . v}
e l a b o r a t e c l o c k w r a p p e r — a r c h i t e c t u r e v e r i l o f
c r e a t e _ c l o c k c l k g e n —per iod 2
l i n k
u n i q u i f y
p r o p a g a t e . c o n s t r a i n t s

E.1.3 Test Circuit Script

a n a l y z e — l i b r a r y WORK— f o r m a t v e r
a n a l y z e — l i b r a r y WORK —format v e r
a n a l y z e — l i b r a r y WORK—format v e r
a n a l y z e — l i b r a r y WORK—format v e r
a n a l y z e — l i b r a r y WORK—format v e -
a n a l y z e — l i b r a r y WORK—format ve
a n a l y z e — l i b r a r y WORK—format ve
e l a b o r a t e t e s t b l o c k — a r c h i t e c t u r e v e r i l o g
c r e a t e _ c l o c k e lk —per iod 1.5
l i n k
u n i q u i f y
p r o p a g a t e - c o n s t r a i n t s
c o m p i l e —map h igh
r e p o r t - t i m i n g

l o g { t o g g l e . v }
l o g { a t p g l 6 . v }
log {main_mem.v}
l o g { o k . v }
l o g { c o m p a r e , v}
l o g { d a t a - o u t . s e l e c t . v }

y WORK—format v e r i l o g { t e s t b l o c k . v }

r e p o r t - t i m i n g
w r i t e —f v e r i l o g —out t e s t b l o c k .
w r i t e _ s d c t e s t b l o c k _ g a t e s . s d c

j a t e s . v — h i e r

E.1.4 R A L U T Wrapper Script

a n a l y z e — l i b r a r y WORK—format v e r i l o g { r a l u t 3 . v }
a n a l y z e — l i b r a r y WORK—format v e r i l o g { r a l u t 2 . v }
a n a l y z e — l i b r a r y WORK—format v e r i l o g { r a l u t . v }
a n a l y z e — l i b r a r y WORK—format v e r i l o g { r a l u t - w r a p . v}
e l a b o r a t e r a l u t - w r a p — a r c h i t e c t u r e v e r i l o g — l i b r a r y DEFAULT
c r e a t e . c l o c k —name "CK" —per iod 4 —waveform { " 0 " " 2 " } { "GK" }
s e t _ m a x _ d y n a m i c - p o w e r 1.12e—6
c o m p i l e —map h igh —power h igh
p r o p a g a t e _ c o n s t r a i n t s
c h a r a c t e r i z e ss
w r i t e —f v e r i l o g —out g a t e s . v —hier
w r i t e - s d c g a t e s . s d c

References

C. Alippi and G. Storti-Gajani. Simple approximation of sigmoidal functions: realistic design
of digital neural networks capable of learning. 1991.

M. Azarmehr. A Multi-Dimensional Logarithmic Number System based Central Processing Unit.
MASc. Thesis,, University of Windsor, 2007.

K. Basterretxea, J.M. Tarela, and I. Del Campo. Approximation of sigmoid function and the
derivative for hardware implementation of artificial neurons, volume 151. February 2004.

V. S. Dimitrov and G. A. Jullien. A New Number Representation with Applications, volume
Second Quarter. 2003.

V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Theory and Applications of the Double-Base
Number System, volume 48. October 1999.

V. S. Dimitrov, G. A. Jullien, and K. Walus. Digital Filtering Using the Multidimensional
Logarithmic Number System, volume 4791. December 2002.

V. S. Dimitrov M. Ahmadi H. Li, G. A. Jullien and W. C. Miller. A 2-digit multidimensional
logarithmic number system filterbank for a digital hearing aid architecture, volume 2. 2002.

A. Hastings. The Art of Analog Layout. Pearson Prentice Hall, New Jersey, 2006.

S. Haykin. Neural networks : a comprehensive foundation. Prentice Hall, July, 1998.

S. O. Kasap. Electronic Materials and Devices. McGraw-Hill, New York, 2001.

C. Lin and J. Wang. 4̂ digital circuit design of hyperbolic tangent sigmoid function for neural
networks. May 2008.

S. Vassiliadis M. Zhang and J. G. Delgrade-Frias. Sigmoid generators for neural computing
using piecewise approximations, volume 45. August 1996.

M. M. Mano. Digital Design. Prentice Hall, New Jersey, 2002.

R. Muscedere. Difficult Operations in the Multi-Dimensional Logarithmic Number System.
Ph.D. Thesis,, University of Windsor, 2003.

[15] R. Muscedere, V. Dimitrov, G. Jullien, and W. Miller. A Low-Power Two-Digit Multi­
dimensional Logarithmic Number System Filterbank Architecture for a Digital Hearing Aid,
volume 18. 2005.

113

REFERENCES

[16] R. Muscedere, V. Dimitrov, G.A. Jullien, and W.C. Miller. Efficient techniques for binary-
to-multidigit multidimensional logarithmic number system conversion using range-addressable
look-up tables, volume 54. March 2005.

[17] R. Muscedere and K. Leboeuf. A dynamic address decode circuit for implementing range ad­
dressable look-up tables. May 2008.

[18] A. Pua P. Srivastava and L. Welch. Issues in the Design of Domino Logic Circuits. February
1998.

[19] F. Piazza, A. Uncini, and M. Zenobi. Neural networks with digital LUT activation functions,
volume 151. February 2004.

[20] B. Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York, 2007.

[21] D.E. Rumelhart, J.L. McClelland, and the PDP Research Group. Parallel Distributed Process­
ing, Vol. 1: Foundations. The MIT Press, July, 1987.

[22] M. A. Iachino S. Marra and F. C. Morabito. High Speed, Programmable Implementation of a
Tanh-like Activation Function and Its Derivative for Digital Neural Networks. August 2007.

[23] D. J. Smith. HDL Chip Design. Doone Publications, Madison, AL, 2000.

[24] Sedra / Smith. Microelectronic Circuits. Oxford, New York, 2004.

[25] TSMC. Tsmc 0.35 um mixed signal polycide 3.3v/5v design rule. Product Specification TA-
1098-4003 Rev. 2.2, Taiwan Semiconductor Manufacturing Co., LTD, July 1999.

[26] TSMC. Tsmc 0.18 um logic lp6m salicide 1.8v/3.3v design rule. Product Specification T-018-
LO-DR-001 Ver. 2.6, Taiwan Semiconductor Manufacturing Co., LTD, May 2006.

[27] S. Vassiliadis, Ming Zhang, and J.G. Delgado-Frias. Elementary function generators for neural-
network emulators, volume 11. November 2000.

[28] Xilinx. Virtex-ii platform fpgas: Complete data sheet. Product Specification DS031 v3.5,
Xilinx, Inc., November 2007.

114

VITA AUCTORIS

Karl was born in Windsor, Ontario, Canada. He received his Bachelor of Applied Science degree

in Electrical Engineering from the University of Windsor in 2006. He is a student member of the

IEEE, and is currently working towards a doctorate in Electrical Engineering at the University of

Windsor. His primary research interests are VLSI design, analog design, cryptography, memory

design, image processing and artificial neural networks.

115

	A versatile, scalable, and open memory architecture in CMOS 0.18 μm
	Recommended Citation

	ProQuest Dissertations

