610 research outputs found

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    Search strategies in unstructured overlays

    Get PDF
    Trabalho de projecto de mestrado em Engenharia Informática, apresentado à Universidade de Lisboa, através da Faculdade de Ciências, 2008Unstructured peer-to-peer networks have a low maintenance cost, high resilience and tolerance to the continuous arrival and departure of nodes. In these networks search is usually performed by flooding, which generates a high number of duplicate messages. To improve scalability, unstructured overlays evolved to a two-tiered architecture where regular nodes rely on special nodes, called supernodes or superpeers, to locate resources, thus reducing the scope of flooding based searches. While this approach takes advantage of node heterogeneity, it makes the overlay less resilient to accidental and malicious faults, and less attractive to users concerned with the consumption of their resources and who may not desire to commit additional resources that are required by nodes selected as superpeers. Another point of concern is churn, defined as the constant entry and departure of nodes. Churn affects both structured and unstructured overlay networks and, in order to build resilient search protocols, it must be taken into account. This dissertation proposes a novel search algorithm, called FASE, which combines a replication policy and a search space division technique to achieve low hop counts using a small number of messages, on unstructured overlays with nonhierarquical topologies. The problem of churn is mitigated by a distributed monitoring algorithm designed with FASE in mind. Simulation results validate FASE efficiency when compared to other search algorithms for peer-to-peer networks. The evaluation of the distributed monitoring algorithm shows that it maintains FASE performance when subjected to churn.Os sistemas peer-to-peer, como aplicações de partilha e distribuição de conteúdos ou voz-sobre-IP, são construídos sobre redes sobrepostas. Redes sobrepostas são redes virtuais que existem sobre uma rede subjacente, em que a topologia da rede sobreposta não tem de ter uma correspondência com a topologia da rede subjacente. Ao contrário das suas congéneres estruturadas, as redes sobrepostas não-estru-turadas não restringem a localização dos seus participantes, ou seja, não limitam a escolha de vizinhos de um dado nó, o que torna a sua manutenção mais simples. O baixo custo de manutenção das redes sobrepostas não-estruturadas torna estas especialmente adequadas para a construção de sistemas peer-to-peer capazes de tolerar o comportamento dinâmico dos seus participantes, uma vez que estas redes são permanentemente afectadas pela entrada e saída de nós na rede, um fénomeno conhecido como churn. O algoritmo de pesquisa mais comum em redes sobrepostas não-estruturadas consiste em inundar a rede, o que origina uma grande quantidade de mensagens duplicadas por cada pesquisa. A escalabilidade destes algoritmos é limitada porque consomem demasiados recursos da rede em sistemas com muitos participantes. Para reduzir o número de mensagens, as redes sobrepostas não-estruturadas podem ser organizadas em topologias hierárquicas. Nestas topologias alguns nós da rede, chamados supernós, assumem um papel mais importante, responsabilizando-se pela localização de objectos. A utilização de supernós cria novos problemas, como a sua selecção e a dependência da rede de uma pequena percentagem dos nós. Esta dissertação apresenta um novo algoritmo de pesquisa, chamado FASE, criado para operar sobre redes sobrepostas não estruturadas com topologias não-hierárquicas. Este algoritmo combina uma política de replicação com uma técnica de divisão do espaço de procura para resolver pesquisas ao alcançe de um número reduzido de saltos com o menor custo possível. Adicionalmente, o algoritmo procura nivelar a contribuição dos participantes, já que todos contribuem de uma forma semelhante para o desempenho da pesquisa. A estratégia seguida pelo algo- ritmo consiste em dividir tanto os nós da rede como as chaves dos seus conteúdos por diferentes “frequências” e replicar chaves nas respectivas frequências, sem, no entanto, limitar a localização de um nó ou impor uma estrutura à rede ou mesmo aplicar uma definição rígida de chave. Com o objectivo de mitigar o problema do churn, é apresentado um algoritmo de monitorização distribuído para as réplicas originadas pelo FASE. Os algoritmos propostos são avaliados através de simulações, que validam a eficiência do FASE quando comparado com outros algoritmos de pesquisa em redes sobrepostas não-estruturadas. É também demonstrado que o FASE mantém o seu desempenho em redes sob o efeito do churn quando combinado com o algoritmo de monitorização

    LightChain: A DHT-based Blockchain for Resource Constrained Environments

    Get PDF
    As an append-only distributed database, blockchain is utilized in a vast variety of applications including the cryptocurrency and Internet-of-Things (IoT). The existing blockchain solutions have downsides in communication and storage efficiency, convergence to centralization, and consistency problems. In this paper, we propose LightChain, which is the first blockchain architecture that operates over a Distributed Hash Table (DHT) of participating peers. LightChain is a permissionless blockchain that provides addressable blocks and transactions within the network, which makes them efficiently accessible by all the peers. Each block and transaction is replicated within the DHT of peers and is retrieved in an on-demand manner. Hence, peers in LightChain are not required to retrieve or keep the entire blockchain. LightChain is fair as all of the participating peers have a uniform chance of being involved in the consensus regardless of their influence such as hashing power or stake. LightChain provides a deterministic fork-resolving strategy as well as a blacklisting mechanism, and it is secure against colluding adversarial peers attacking the availability and integrity of the system. We provide mathematical analysis and experimental results on scenarios involving 10K nodes to demonstrate the security and fairness of LightChain. As we experimentally show in this paper, compared to the mainstream blockchains like Bitcoin and Ethereum, LightChain requires around 66 times less per node storage, and is around 380 times faster on bootstrapping a new node to the system, while each LightChain node is rewarded equally likely for participating in the protocol

    Analysis and Comparison of P2P Search Methods

    Get PDF
    The popularity and bandwidth consumption attributed to current Peer-to-Peer file-sharing applications makes the operation of these distributed systems very important for the Internet community. Efficient object discovery is the first step towards the realization of distributed resource-sharing. In this work, we present a detailed overview of recent and existing search methods for unstructured Peer-to-Peer networks. We analyze the performance of the algorithms relative to various metrics, giving emphasis on the success rate, bandwidth-efficiency and adaptation to dynamic network conditions. Simulation results are used to empirically evaluate the behavior of nine representative schemes under a variety of different environments

    Designs and Analyses in Structured Peer-To-Peer Systems

    Get PDF
    Peer-to-Peer (P2P) computing is a recent hot topic in the areas of networking and distributed systems. Work on P2P computing was triggered by a number of ad-hoc systems that made the concept popular. Later, academic research efforts started to investigate P2P computing issues based on scientific principles. Some of that research produced a number of structured P2P systems that were collectively referred to by the term "Distributed Hash Tables" (DHTs). However, the research occurred in a diversified way leading to the appearance of similar concepts yet lacking a common perspective and not heavily analyzed. In this thesis we present a number of papers representing our research results in the area of structured P2P systems grouped as two sets labeled respectively "Designs" and "Analyses". The contribution of the first set of papers is as follows. First, we present the princi- ple of distributed k-ary search and argue that it serves as a framework for most of the recent P2P systems known as DHTs. That is, given this framework, understanding existing DHT systems is done simply by seeing how they are instances of that frame- work. We argue that by perceiving systems as instances of that framework, one can optimize some of them. We illustrate that by applying the framework to the Chord system, one of the most established DHT systems. Second, we show how the frame- work helps in the design of P2P algorithms by two examples: (a) The DKS(n; k; f) system which is a system designed from the beginning on the principles of distributed k-ary search. (b) Two broadcast algorithms that take advantage of the distributed k-ary search tree. The contribution of the second set of papers is as follows. We account for two approaches that we used to evaluate the performance of a particular class of DHTs, namely the one adopting periodic stabilization for topology maintenance. The first approach was of an intrinsic empirical nature. In this approach, we tried to perceive a DHT as a physical system and account for its properties in a size-independent manner. The second approach was of a more analytical nature. In this approach, we applied the technique of Master Equations, which is a widely used technique in the analysis of natural systems. The application of the technique lead to a highly accurate description of the behavior of structured overlays. Additionally, the thesis contains a primer on structured P2P systems that tries to capture the main ideas prevailing in the field

    階層型ピア・ツー・ピアファイル検索のための負荷管理の研究

    Get PDF
    In a Peer-to-Peer (P2P) system, multiple interconnected peers or nodes contribute a portion of their resources (e.g., files, disk storage, network bandwidth) in order to inexpensively handle tasks that would normally require powerful servers. Since the emergency of P2P file sharing, load balancing has been considered as a primary concern, as well as other issues such as autonomy, fault tolerance and security. In a process of file search, a heavily loaded peer may incur a long latency or failure in query forwarding or responding. If there are many such peers in a system, it may cause link congestion or path congestion, and consequently affect the performance of overall system. To avoid such situation, some of general techniques used in Web systems such as caching and paging are adopted into P2P systems. However, it is highly insufficient for load balancing since peers often exhibit high heterogeneity and dynamicity in P2P systems. To overcome such a difficulty, the use of super-peers is currently being the most promising approach in optimizing allocation of system load to peers, i.e., it allocates more system load to high capacity and stable super-peers by assigning task of index maintenance and retrieval to them. In this thesis, we focused on two kinds of super-peer based hierarchical architectures of P2P systems, which are distinguished by the organization of super-peers. In each of them, we discussed system load allocation, and proposed novel load balancing algorithms for alleviating load imbalance of super-peers, aiming to decrease average and variation of query response time during index retrieval process. More concretely, in this thesis, our contribution to load management solutions for hierarchical P2P file search are the following: • In Qin’s hierarchical architecture, indices of files held by the user peers in the bottom layer are stored at the super-peers in the middle layer, and the correlation of those two bottom layers is controlled by the central server(s) in the top layer using the notion of tags. In Qin’s system, a heavily loaded super-peer can move excessive load to a lightly loaded super-peer by using the notion of task migration. However, such a task migration approach is not sufficient to balance the load of super-peers if the size of tasks is highly imbalanced. To overcome such an issue, in this thesis, we propose two task migration schemes for this architecture, aiming to ensure an even load distribution over the super-peers. The first scheme controls the load of each task in order to decrease the total cost of task migration. The second scheme directly balances the load over tasks by reordering the priority of tags used in the query forwarding step. The effectiveness of the proposed schemes are evaluated by simulation. The result of simulations indicates that all the schemes can work in coordinate, in alleviating the bottleneck situation of super-peers. • In DHT-based super-peer architecture, indices of files held by the user peers in the lower layer are stored at the DHT connected super-peers in the upper layer. In DHT-based super-peer systems, the skewness of user’s preference regarding keywords contained in multi-keyword query causes query load imbalance of super-peers that combines both routing and response load. Although index replication has a great potential for alleviating this problem, existing schemes did not explicitly address it or incurred high cost. To overcome such an issue, in this thesis, we propose an integrated solution that consists of three replication schemes to alleviate query load imbalance while minimizing the cost. The first scheme is an active index replication in order to decrease routing load in the super-peer layer, and distribute response load of an index among super-peers that stored the replica. The second scheme is a proactive pointer replication that places location information of an index, for reducing maintenance cost between the index and its replicas. The third scheme is a passive index replication that guarantees the maximum query load of super-peers. The result of simulations indicates that the proposed schemes can help alleviating the query load imbalance of super-peers. Moreover, by comparison it was found that our schemes are more cost-effective on placing replicas than other approaches.広島大学(Hiroshima University)博士(工学)Doctor of Engineering in Information Engineeringdoctora
    corecore