LightChain: A DHT-based Blockchain for

Resource Constrained Environments

Yahya Hassanzadeh-Nazarabadi, Alptekin Kiipcii, and Oznur Ozkasap
Department of Computer Engineering, Ko¢ University, Istanbul, Turkey
{yhassanzadeh13, akupcu, oozkasap}@ku.edu.tr

March 31, 2019

Abstract

As an append-only distributed database, blockchain is utilized in a
vast variety of applications including the cryptocurrency and Internet-of-
Things (IoT). The existing blockchain solutions have downsides in com-
munication and storage efficiency, convergence to centralization, and con-
sistency problems. In this paper, we propose LightChain, which is the
first blockchain architecture that operates over a Distributed Hash Table
(DHT) of participating peers. LightChain is a permissionless blockchain
that provides addressable blocks and transactions within the network,
which makes them efficiently accessible by all the peers. Each block and
transaction is replicated within the DHT of peers and is retrieved in an on-
demand manner. Hence, peers in LightChain are not required to retrieve
or keep the entire blockchain. LightChain is fair as all of the participating
peers have a uniform chance of being involved in the consensus regardless
of their influence such as hashing power or stake. LightChain provides a
deterministic fork-resolving strategy as well as a blacklisting mechanism,
and it is secure against colluding adversarial peers attacking the availabil-
ity and integrity of the system. We provide mathematical analysis and
experimental results on scenarios involving 10K nodes to demonstrate the
security and fairness of LightChain.

1 Introduction

Blockchain [1] is an append-only distributed database that provides a partial
ordering of blocks among a set of trust-less peers. Each block consists of a set
of transactions. In a blockchain, the blocks are connected to each other via
immutable links from each block to its previous one and form a chain, which
is called the ledger. Because they define a partial ordering of blocks without
the need of a global synchronized clock, provide a tamper-proof architecture,
and establish trust over a trust-less system of independent peers, the blockchain
systems are employed in many decentralized applications including the crypto-
currencies [1], Internet-of-Things [2, 3], digital rights management [4], big data

[5], search engines [6], fair data exchange [7], supply-chain management [8], and
namespace management [9].

A blockchain system is usually modeled as a stack of protocols with at least
four layers, from bottom to top are named as Network, Consensus, Storage,
and View [10]. The layers work interoperably with each other in a pipelined
manner i.e., the output of the lower layer is the input to the upper one. The
Network layer deals with the dissemination mechanism of the transactions and
blocks among the peers of the system. The Consensus layer represents the
protocols for block generation decision-making process, which aim at providing
an accepted ordering of the blocks among the peers. In other words, all the peers
that follow the protocols provided by the Consensus layer are aimed to reach
the same state of the generated blocks ordering. The Storage layer provides the
read functionality for the peers to read from the blockchain. The View layer
represents the most recent state of the participating peers’ data considering all
the updates on the ledger from the very first to the most recent blocks.

Existing blockchains’ deficiencies: The existing blockchain solutions
have scalability problems in all layers of the blockchain protocol stack. To the
best of our knowledge, at the Network layer, all the existing blockchains oper-
ate on unstructured overlays [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28]. Such overlays have no deterministic, well-defined, and effi-
cient lookup mechanism to retrieve the address of the peers, the content of the
blocks, and the new transactions. Rather, the knowledge of a peer (i.e., other
peers, blocks, and transactions) is gained by the epidemic message dissemina-
tion among the peers (e.g., broadcasting in Bitcoin [1]) with the communication
complexity of O(n) to disseminate a new block or transaction, where n is the
number of participating peers in the system. In this paper, by the communica-
tion complexity we mean the number of the exchanged messages (i.e., the round
complexity).

At the Consensus layer, the existing solutions converge to centralization
by delegating the block generation decision making to a biased subset of the
special peers, e.g., the peers with higher computational power [1, 23, 24, 25],
higher stakes [12, 13|, or longer activity history in the system [16]. Such cen-
tralization convergence allows a subset of the peers to leverage the blockchain
to their advantage by, for example, performing selfish-mining [29]. The existing
blockchains are also prone to the consistency problems that are caused by their
probabilistic fork-resolving approach at the Consensus layer, i.e., following the
longest chain of the forks as the main chain [1]. The probabilistic nature of this
fork-resolving approach is due to the volatility of the main chain. This threat-
ens the consistency and performance of the system since once the main chain is
conquered by another chain, all the blocks that have been already appended to
it are considered invaluable [30]. Hence, the probabilistic fork-resolving strategy
causes probabilistic finalization on the block generation, i.e., the more blocks
are coming after a certain block on the ledger, that chain of blocks gets longer,
and with a higher probability that block is being finalized as the main chain’s
block. Thus, in the existing blockchain solutions, appending a generated block
to the ledger does not make it effective unless a number of new blocks come

after it [31].

Having b blocks in the system, the existing blockchains require the Storage
layer memory complexity of O(b) by downloading and keeping the entire ledger
locally at the peer’s storage [10]. In other words, as peers are not able to
efficiently lookup any information within the unstructured overlay, they locally
store the perceived information and gradually construct a local copy of the entire
ledger, which takes O(b) storage complexity. Likewise, upon joining the system,
during the bootstrapping phase, a new peer needs to verify the entire state of
the ledger from the very first block to the most recent one to check the integrity
of the ledger [30]. This imposes a time and communication complexity of O(b)
at the View layer. Bootstrapping is defined as the process in which a new node
constructs its view of the blockchain [10].

Sharding: The best existing approach to overcome the mentioned perfor-
mance and scalability problems of the blockchains is to apply sharding. In
the sharding-based approaches [20, 19, 26], the blockchain system is split into
multiple smaller groups of peers, and each group operates in parallel on an in-
dependent version of the ledger. Despite its advantage of increasing the speed
of the system on processing the transactions in parallel, existing sharding-based
blockchains have O(n) communication complexity for processing a single trans-
action, as well as the best case O(%) memory and time complexity at the
Storage and View layers, respectively [26].

Proposed solution: In this paper, we propose LightChain, which is a
permissionless blockchain defined over a Skip Graph-based peer-to-peer (P2P)
Distributed Hash Table (DHT) overlay [32], with the goal of providing a con-
sistent, communication and storage efficient blockchain architecture with fully
decentralized and uniform block generation decision-making. LightChain is per-
missionless [33] as it allows every peer to freely join the blockchain system and be
considered in the block generation decision-making, which is similar to the well-
known blockchains like Bitcoin [1] and Ethereum [34]. At the Network layer,
LightChain operates on top of a Skip Graph that is a DHT-based structured
P2P system with a well-defined topology and deterministic lookup strategy for
data objects. We model each peer, block, and transaction by a Skip Graph node.
This idea enables participating peers to make their blocks and transactions ad-
dressable and efficiently accessible at the Network layer with the communication
complexity of O(logn). In other words, each peer, block, and transaction is re-
trievable by exchanging at most O(logn) messages. Additionally, the latest
state of each data object is retrievable with the same communication complex-
ity and by querying the Skip Graph overlay directly. By the latest state of a
data object, we mean the consideration of all the updates on that data object
from the very first block to the most recent one on the ledger. For example, in
the cryptocurrency applications where data objects are the peers’ balance, the
latest state corresponds to the most recent updated value of a peer’s balance.
This is in contrast to the existing solutions that require the peers to follow the
ledger linearly, apply all the updates sequentially, and compute the latest state
of a data object. As we elaborate in the rest of this paper, we utilize Skip

Graph due to its ability to represent each node with two independent identi-
fiers. Nevertheless, LightChain can operate on any DHT with two independent
identifiers.

To provide a time and bandwidth efficient consensus approach that is also
fair, immutable, and secure, we propose Proof-of-Validation (PoV) as the Con-
sensus layer strategy of LightChain. We say that a consensus approach is fair if
each participating peer in the system has a uniform chance of being involved in
the consensus regardless of its influence: e.g., processing power, available band-
width, or stake. In addition, we say that a consensus approach is immutable if
none of the (influential) peers in reaching a consensus can legitimately change
the consensus at a later time after it is finalized. We say that a consensus
approach is secure if the malicious peers are not able to generate and append
an illegitimate transaction or block to the ledger. In PoV, the validation of
each block is designated to a subset of the peers, which are chosen uniformly
for each block based on its hash value (modeled as a random oracle), and are
contacted efficiently using the structured Skip Graph overlay. Working in this
fashion, LightChain enables improved decentralization of the block generation
decision-making and deters the centralization monarchy. By the centraliza-
tion monarchy, we mean the situation where the majority of block generation
decision-makings are under the control of a small subset of special peers e.g.,
peers with a strong hashing power. LightChain preserves the integrity and con-
sistency of the blockchain in the presence of colluding adversarial peers (e.g.,
Sybil adversary [35]) as well as selfish miners [29], as no peer can contribute
to the decision making of two consecutive blocks generation.'We discuss these
formally in the rest of this paper.

To improve the consistency of the ledger, LightChain governs a deterministic
rule on resolving the forks at the Consensus layer. The main chain is always
recognized in a deterministic fashion, and is followed by all the peers. Blocks on
the other branches of a fork are discarded by the LightChain peers, i.e., block
generation on those branches are rejected by the set of randomly assigned PoV
validators, and hence by other peers of the system. This mechanism allows
a block to be evaluated and finalized in a deterministic manner as the main
chain’s block once it is appended to the ledger and one other block comes after
it, which is in contrast to the existing solutions that require appending several
more subsequent blocks (e.g., around 6 blocks in Bitcoin [31]) to a new block
for that block to be considered as a main chain’s block.

To establish an efficient Storage layer policy, LightChain enables the peers
to access the transactions and blocks in an on-demand basis using the efficient
Skip Graph retrievability, rather than requiring them to store the entire ledger
locally. Each peer is responsible for keeping a small subset of the randomly
chosen blocks and transactions. This provides a storage load distribution among
the participating peers. To provide better availability of blocks and transactions
and tackle malicious peers, LightChain makes several copies of each block and

In Section 5 we analyze this probability formally, and show that it happens only with a
negligible probability in the system’s security parameter.

transaction on different peers of the system, which is known as replication.
Replication in LightChain is done in a way that it provides at least one copy of
each block and transaction accessible at any time in expectation.

At the View layer, LightChain provides each new peer with a set of randomly
chosen peers of the system that are named the view introducers of the new peer.
The introducers of a new peer are drawn uniformly from the set of participat-
ing peers to share their view of the ledger with it. This is done to facilitate
the bootstrapping of a new peer joining the system, and enable its immediate
participation on the blockchain system without the need to verify the entire
blockchain as opposed to the existing solutions. The randomized bootstrap-
ping in LightChain takes O(logn) communication complexity and O(n) time
complexity. At the end of randomized bootstrapping, a peer obtains the up-
dated view of the most recent state of all the participating peers in the system.
However, as we stated earlier, obtaining a particular peer’s state in LightChain
takes the communication complexity of O(logn) and time complexity of O(1),
and without the need to track the ledger up to the most recent block. As pre-
sented later in this paper, LightChain determines the introducers in a way that
the obtained view of a new peer towards the system is consistent with the view
of the honest peers.

Contributions: The original contributions of this paper are as follows.

e To the best of our knowledge, this is the first study in the blockchain litera-
ture that improves the communication efficiency at the Network layer, the
consistency and fairness at the Consensus layer, the memory efficiency at
the Storage layer, and provides a more efficient bootstrapping at the View
layer, altogether. With this aim, we propose LightChain, which a consis-
tent, and communication and storage efficient permissionless blockchain
with fully decentralized and uniform block generation decision-making
that operates on top of a Skip Graph-based structured P2P overlay.

e LightChain is fair in the sense that each of the participating peers in the
system has a uniform chance of being involved in the consensus regardless
of its influence: e.g., processing power, available bandwidth, or stake.

e Having n peers and b blocks in the system, compared to the best exist-
ing solutions that require the storage and communication complexity of
O(%) and O(n) by maintaining many shards, respectively, our proposed
LightChain requires O(%) storage on each peer, and incurs the commu-
nication complexity of O(logn) on generating a new block or transaction

employing a new blockchain design approach.

e In our proposed LightChain, the transactions, blocks, as well as the latest
state of the data objects are addressable within the network, and retriev-
able with the communication complexity of O(logn).

e We provide an analytical framework for the mathematical analysis of
LightChain, showing how to set the operational parameters to achieve
security, efficiency, and availability.

e We extended the Skip Graph simulator SkipSim [36] with the blockchain-
based simulation scenarios, implemented and simulated the LightChain,
and compared the experimental results with our proposed analytical frame-
work. The analytical and experimental results are found to be consistent.

The related works are summarized in Section 2. We describe the preliminar-
ies and our system model in Section 3. Our proposed LightChain is presented
in Section 4. We describe the analytical and experimental results in Section 5,
followed by conclusions in Section 6.

2 Related Works

In this section, we survey the existing blockchain solutions based on their con-
tributions to each of the blockchain protocol stack’s layers.

2.1 Network Layer

Dissemination of a new transaction or block in the existing blockchains is done
via Broadcasting [1], Flooding [24], or Gossiping [25], which are epidemic dis-
seminations with the communication complexity of O(n) i.e., O(n) message
exchanges are required for a single block or transaction to be accessible by ev-
ery peer of the system. On the other hand, our proposed LightChain applies
a communication complexity of O(logn) messages to insert a new transaction
or block in the Skip Graph overlay, and make it accessible by every peer of
the system. Additionally, in our proposed LightChain, not only the blocks, but
also the latest state of the data objects are addressable within the network,
and retrievable with the communication complexity of O(logn). By the latest
state, we mean the most recent appearance of that data object in a block on the
ledger. By directly retrieving the latest state of a data object, in contrast to the
existing blockchains, peers in LightChain are not required to keep searching and
retrieving the most recent blocks frequently. Rather, they are able to search and
retrieve the latest state of their data objects of interest on demand. For exam-
ple, in cryptocurrency applications, a peer that is interested only in the latest
balance state of another peer, performs a search within the Skip Graph overlay,
and finds the latest balance state of the other peer within the blockchain.

2.2 Consensus Layer

Proof-of-Work (PoW): In PoW-based approaches [1, 37, 34, 11], the block
generation is done by tweaking a parameter (i.e., nonce) of the block that makes
the hash of it below a predefined difficulty level. Considering the hash values are
drawn from a uniform distribution (i.e., random oracle model), reaching a hash
value below the difficulty level requires a brute force approach over the input
range [38]. The block generation decision-making in PoW is heavily correlated
with the hash power, which sacrifices the fairness of the system in favor of
the nodes with higher hash power [39]. Additionally, PoW is an inefficient

consensus solution due to its huge amount of energy consumption [40] e.g., the
power requires to maintain the PoW on Bitcoin network is equal to the Ireland’s
electrical consumption [41].

Proof-of-Stake (PoS): In PoS-based approaches, the block generation decision-
making is done by the stakeholders [12, 13, 14, 34, 42]. PoS approaches require
a synchronized clock [43] among the peers, which applies an additional O(n)
communication complexity. PoS approaches also move the system towards the
centralized monopoly of the peers with higher stakes and break down fairness
and decentralization on block generation [12, 34, 42, 14, 13].

PoW-PoS Hybrid: To provide a balance between the computational ineffi-
ciency of PoW and communication inefficiency of PoS, hybrid PoW-PoS ap-
proaches are proposed. In PPCoin [15] the difficulty of PoW is adaptively de-
termined for each peer based on its stake. Similar PoW-PoS hybrid approaches
are proposed to combat the spammers in the email systems [44, 39, 45]. Proof-
of-Activity (PoA) [16] is another hybrid approach where peers use PoW over
empty blocks to determine the voting committee of the next block uniformly
from the set of stake holders.

Compared to the existing PoW and PoS consensus solutions, our proposed
Proof-of-Validation (PoV) is the only one that provides fairness, security, and
immutability altogether. PoV is fair as it distributes the chance of participat-
ing in transactions’ and blocks’ validation decision-making uniformly among
the participating peers, regardless of their influence in the system. In contrast
to PoW-based consensus approaches, PoV is secure as malicious peers are not
able to generate a validated transaction or block, even with large computational
power. In contrast to the PoS-based approaches that are vulnerable to the pos-
terior corruption attack, PoV is immutable and secure against such attacks.
Posterior corruption attack happens when the majority of the committee mem-
bers of an old block change their decision later on and create a (legitimate) fork
from their generated block on the ledger [13]. This attack happens especially
when the committee members of a block are coming out of stake, and hence do
not have anything to lose [46]. In our proposed PoV, however, changing even
one bit of a transaction or block changes its set of validators entirely. Hence,
even the validators of a transaction or block are not able to change its content
or fork another history later on.

Byzantine Fault Tolerance (BFT) Consensus and Sharding: In its
classical form, the BFT-based consensus operates on voting nodes. Each node
broadcasts its vote to the others, receives their votes, and follows the major-
ity. BFT can tolerate up to % of adversarial nodes [47]. Hyperledger [28, 27],
Ripple [48], and Tendermint [49] support BFT-based consensus protocols. For
example, in Ripple, during each epoch, each authority contacts a subset of other
authorities as the trusted ones for voting. In sharding-based approaches the sys-
tem is partitioned into disjoint subsets of peers, e.g., subsets of size O(logn) in
Rapidchain [26]. Each subset is working on an independent version of the ledger
using BFT in an epoch-based manner [19, 20]. Such epoch-based approaches and
BFT apply an additional O(n) communication overhead to the system. NEO
[17] is another epoch-based blockchain that aims at resolving forks by Delegated

Byzantine Fault Tolerance (dBFT). In dBFT, the participating peers select a
set of consensus peers and delegate the block generation decision making to
them. Ontology [18] offers Verifiable Byzantine Fault Tolerance (VBFT), where
the consensus peers of the next blocks are selected randomly from the set of
stakeholders by applying a random function on the current block. Both dBFT
and VBFT require the communication complexity of O(n) for reaching consen-
sus over a block. Snowflake is the consensus layer protocol of Avalanche [21],
and acts similarly to our proposed PoV in the sense of randomly chosen peers
for validation. However, in contrast to our proposed PoV that engages a small
constant number of uniformly chosen peers, Snowflake requires the communal
participation of all the online peers for reaching a consensus. Only a small set
of trusted super-peers are participated in consensus protocol of BigChainDB
[5]. BigChainDB establishes a variant of Paxos [50] consensus among the set of
super-peers to elect the one that is responsible for writing to the ledger.

2.3 Storage Layer

Having b blocks in the system, existing blockchains like Bitcoin [1] and Ethereum
[34], all require peers to keep an O(b) storage. To moderate this linear storage
complexity, Rollerchain [24] obligates peers to only hold a smaller subset of chal-
lenged blocks for generating the new ones. The subset, however follows a linear
storage complexity in the number of blocks in the system i.e., O(b), which is
in contrast to our proposed LightChain that requires O(;2) storage complex-
ity on each peer. Additionally, Rollerchain lacks the storage load balancing as
well as efficient block retrieval features, since blocks are not addressable within
the network. Rollerchain also applies a noticeable communication overhead by
including the exact copies of the challenged blocks into the newly generated
block. Trustchain [25] aims to improve the storage load by making each peer
to come with its own personal ledger. Each transaction is stored solely on its
sender’s and receiver’s ledgers. In addition to the requirement of a globally syn-
chronized clock and lack of replication, personal ledgers result in O(n X b) time
complexity on generating new transactions. Similar personal ledger approach
is also proposed in [51]. Personal ledgers also make the blockchain system not
efficiently adaptable to the scenarios where a vast majority of the peers are
working on a shared set of data, e.g., distributed database applications. By
sharding the system into smaller groups of O(logn) peers that operate on dis-
joint ledgers, Rapidchain [26] requires each peer to keep O(logn) blocks, but
without an efficient retrieval feature. BigChainDB [5] provides a distributed
database of super-peers (e.g., Cassandra [52]) that are the only ones responsi-
ble to keep the entire ledger. Ordinary peers can connect to the super-peers,
read the ledger, and propose the transactions. Writing to the database (i.e.,
ledger) in BigChainDB, however, is only limited to a small set of super-peers
that are assumed fully trusted. Compared to the existing solutions, our pro-
posed LightChain requires O(%) storage complexity on each peer, and incurs
the communication complexity of O(logn) on both generation and retrieval of
the transactions and blocks, while it presumes a uniform chance for every par-

ticipating peer to be involved in the block generation decision-making.

2.4 View Layer

To the best of our knowledge, there is no existing secure and fast (i.e., O(1) in
time and O(logn) in communication) bootstrapping approach as we have in our
proposed LightChain. Rather, almost all the existing blockchain architectures,
including the Bitcoin [1] and Ethereum [34], require all the peers that are partic-
ipating in the consensus protocol to construct their view locally by verifying the
transactions on the ledger linearly. Having b blocks in the system, this local self-
construction of view from scratch takes the time and communication complexity
of O(b). To improve the scalability of blockchain and boost up its transaction
processing speed, side-chains are proposed as a view-layer solution [53], where a
group of peers deviate from the main chain and create their own chain, proceed
with their intra-group transactions for a while, and then close the side chain and
summarize their turnover by submitting a few transactions into the main chain.
Although the side-chains are running faster with significantly fewer peers than
the main chain, they are prone to the efficiency problems of the main chain,
such as forking. Likewise, as the side-chains grow in number, it is very likely for
the sender and receiver of a transaction to reside on two different side-chains,
which requires an inter-side-chain transaction. The inter-side-chain transactions
should pass through the main chain with possibly two transactions [10] i.e., one
deposit from sender’s side-chain to the main chain, and one withdrawal from
the main chain to the receiver’s side-chain. This increases the number of the
transactions by a factor of two and acts more of a hurdle for the main chain
with advert scalability impact.

2.5 Blockchains in relation to the DHT's

Instead of storing blocks in a linked-list, Skipchain [22] provides a Skip List [54]
representation of the blocks in the ledger. Skip List is the centralized analog
of Skip Graph. Skipchain enables a peer to search for a specific block within
its own local memory in the time complexity of O(logb), while it retains the
communication complexity of O(n) at the network layer. In the other words, in
contrast to our proposed LightChain that enables peers to search for the blocks
within the network in a fully decentralized manner, each peer of Skipchain is
required to download the entire ledger on its own disk (O(b) storage) and con-
struct the Skip List locally to be able to search for a specific block in logarithmic
time. Skipchain is a single-writer blockchain, i.e., only one entity is allowed to
write on the blockchain entirely. This limiting assumption is used as appending
a new block to Skipchain requires a deterministic knowledge of the meta-data
of the immediately subsequent block. A blockchain-based decentralized access
control management that does not require a trusted third party is proposed in
[55]. The access granted by a user to a service is modeled as a transaction that
is encrypted and stored on a DHT [56]. Users hold the pointers to the encrypted
transactions on a blockchain and hence can revoke or change the access grants

Strategy Network Consensus | Storage Clock-free
Bitcoin [1] Broadcast | PoW Full Yes
BitCoin-NG [11] Broadcast | PoW Full No
NEM [12] Broadcast | PoS Full No
Snow White [13] Broadcast | PoS Full Yes
Ouroboros [14] Broadcast | PoS Full No
PPCoin [15] Broadcast | PoW-PoS | Full No
PoA-Bitcoin [16] Broadcast | PoW-PoS | Full Yes
NEO [17] Broadcast | dBFT Full No
Ountology [18] Broadcast | VBFT Full Yes
Elastico [19] Broadcast | BFT Full No
Ripple [48] Broadcast | BFT Full No
Tendermint [49] Gossiping | BFT Full No
Hyperledger[27, 28] | Gossiping | BFT Full No
Omniledger [20] Gossiping | BFT Full No
Avalanche [21] Gossiping | Snowflake | Full No
Skipchain [22] Gossiping | BFT Full Yes
PeerCesus [23] Flooding | PoW-PoS | Full No
Rollerchain [24] Flooding | PoW Distributed Yes
Trustchain [25] Gossiping | PoW Distributed No
Rapidchain [26] Gossiping | BFT Distributed No
BigChainDB [5] Broadcast | Paxos Distributed No
LightChain DHT PoV Distributed | Yes

Table 1: A comparison among a variety of the existing blockchain solutions. We assume that an
approach supports distributed storage, if the storage load of blocks and transactions is distributed
among all the participating peers in a policy-based manner, e.g., replication. Otherwise, we
presume the full storage where peers collect and hold the blocks and transactions entirely on their
local storage. We call a blockchain as clock-free, if it does not require the peers to be synchronized
over a physical or logical clock.

later on. The blockchain in their proposed solution is mainly utilized as a ser-
vice without the aim to improve its efficiency, and it is not constructed over the
DHT.

Table 1 summarizes a variety of the existing blockchain solutions in compar-
ison to our proposed LightChain.

3 Preliminaries and System Model

3.1 Skip Graph

Skip Graph [32] is a DHT-based distributed data structure that consists of
nodes. A Skip Graph node is a standalone component with three attributes; a
numerical ID, a name ID, and an (IP) address. The numerical and name IDs
are known as the identifiers of the nodes. In order to join a Skip Graph, it is
sufficient for each new node to know only one arbitrary node of the Skip Graph,
which is called the introducer of that new node. As a result of the join protocol
of the Skip Graph that is executed by the new node in a fully decentralized

10

manner, the new node obtains the attributes of O(logn) other nodes that are
called the neighbors of the new node, where n is the number of Skip Graph
nodes. Knowing its neighbors, each node is able to search and find the address
of other nodes of Skip Graph that possess a specific numerical ID or name ID,
by employing a search for numerical ID [32, 57], or a search for name ID [58]
of those nodes, respectively. Both searches are done with the communication
complexity of O(logn). As the result of the searches, if the targeted numerical
ID or name ID of the search is available in the Skip Graph, the (IP) addresses
of their corresponding nodes is returned to the search initiator. Otherwise, the
(IP) addresses of the nodes with the most similar identifiers to the search target
are returned.

3.2 Blockchain

A blockchain is a linked-list of blocks with immutable links from each block to
its previous one [10, 59]. By immutable links, we mean that each block points
back to the collision-resistant hash value of its previous block on the chain. The
immutable links define an order of precedence over the chain of blocks, which
implies that the transactions of a certain block are committed subsequent to the
transactions of the previous blocks. Due to the immutable links, the blockchain
is considered as an append-only database, and updating a block of the ledger by
changing its content is not allowed, and considered as an adversarial act. An up-
date on a block changes its hash value and makes the next subsequent block on
the ledger not to pointing to this block’s hash value anymore, which corresponds
to a disconnection on the ledger. To re-establish the connectivity between the
updated block and its subsequent block, the pointer on the subsequent block
needs to be refreshed with the new hash value of the updated block. This, in
turn, changes the hash value of the subsequent block and breaks the ledger from
a new point onward (i.e., the subsequent block). Hence, re-establishing the con-
nectivity after an update on a single block requires refreshing the hash pointers
on all the subsequent blocks. In the existing blockchains, re-establishing the
connections after an update on a block is correlated with a success probability,
e.g., solving a computationally hard problem [1] or getting the consent of a spe-
cific subset of peers [42]. This correlation makes re-establishing the connectivity
of ledger upon changing the content of even a single block a computationally
hard problem due to the collision-resistance of the hash functions.

3.3 Notations

In this paper, we call the last block that is appended to the blockchain as
the current tail of the blockchain, which is also the tail of the ledger. The
first block of a blockchain is known as the Genesis block, which is also the
head of the linked-list of the ledger. We also define the previous relationship
as the immutable links from each block to its previous block on the ledger.
Blockchain defines a partial ordering of the blocks on the ledger based on the
previous relationship. We say that block blk1 is the immediate predecessor of

11

the blk2, if blk2 points back to the hash value of blk1 as its previous block on
the ledger. In this situation, blk2 is the immediate successor of blkl. In this
paper, we consider that a block is committed to the blockchain if it is being
written by the consensus layer protocol of the blockchain to its storage, i.e., the
block passes the defined consensus verification and is being appended to the
tail of the ledger. We denote the system’s security parameter and the system’s
identifier size by A and s, respectively. Also in this paper, we denote the hash
function H : {0,1}* — {0,1}® as a random oracle.

3.4 System Model

In our system model, each peer corresponds to a device connected to the In-
ternet (e.g., a laptop, smartphone, smart TV) that executes an instance of the
LightChain protocol. As detailed in Section 4, a Skip Graph overlay of peers is
constructed by representing each peer as a Skip Graph node. We assume that
each participating peer joins the Skip Graph overlay using the Skip Graph join
protocol in a fully decentralized manner and by knowing one peer of the system
[32]. Both identifiers (i.e., name ID and numerical ID) of peers are the hash
value of their public key using a collision-resistant hash function. Following this
convention, in this paper, we refer to a peer by its identifier, which corresponds
to its name/numerical ID. We consider the system under churn [60], i.e., the
participating peers are dynamic between offline and online states. We assume
the existence of a churn stabilization strategy [61, 62] that preserves the connec-
tivity of the Skip Graph overlay under churn. We denote the System Capacity
by n, and define it as the maximum number of registered peers in the system,
i.e., n = O(2%). We consider all the participating peers as probabilistic Turing
machines that run in a polynomial time in the security parameter of the system
i.e., their running time is O(\°) for some constant ¢ > 0. We make this assump-
tion essentially for the reason that participating peers should be able to execute
O(n) cost protocols. Following this assumption, n is a polynomial in A, which
results in s << A. Similarly, we denote the Block Capacity by b, and define it
as the maximum number of the generated blocks in the system. Similarly, we
also consider b as a polynomial in A, which results in % to be a polynomial in
the security parameter of the system.

In our system model, we assume that each peer is participating in the
blockchain by a set of assets as well as a balance. The assets set corresponds
to the data that the peer initially registers on the blockchain via a transaction,
and is able to update it later on by generating new transactions. The balance of
a peer is used to cover its transaction generation fees. Although the assets and
balance are the same in cryptocurrency applications, nevertheless, we consider
them as two distinct attributes of each participating peer in general form, con-
sidering other potential applications such as distributed databases. We consider
a transaction as a state transition of the assets of the transaction’s owner. View
of a participating peer in our system model towards the blockchain is a table
of (numlID ,lastblk , state ,balance) tuples. Each tuple represents the view of
the peer with respect to another peer of the system with the numerical ID of

12

numlID. The lastblk represents the hash value of the last committed block to
the blockchain that contains the most recent transaction of that peer. The view
of the associated peer with respect to the current state of the assets of another
peer and its remaining balance are represented by state and balance, respec-
tively. By the current state, we mean the most recent values of the assets of the
peer considering all the generated transactions by that peer from the Genesis
block up to the current tail of the blockchain.

3.5 Adversarial Model

We define the availability of the blockchain as the blocks being accessible in a
timely fashion [63]. We define the integrity of the blockchain as the property
that views of the peers towards the blockchain are not being changed, except by
appending a new block to the current tail of the blockchain solely by the peers
that are included in the consensus protocol. We assume the existence of a Sybil
adversarial party [35] that adaptively takes control over a fraction f of peers in
the system. We define the honest peers as the ones that follow the LightChain
protocol, and the adversarial peers as the ones that deliberately deviate from
the LightChain protocol collectively at arbitrary points. Adversarial peers aim
to jointly attack the availability and integrity of the system.

3.6 Authenticated Search

We assume that the search queries over the Skip Graph overlay are authenticated
by an authentication mechanism in the presence of the described adversarial
peers [64]. By the authenticated searches, we mean that the validity of the
search results is publicly verifiable through a search proof that is generated by
the signing keys of the participating peers on the search path. The search proof
also contains the attributes of the peers on the search query path (e.g., identifier
and (IP) address) with the last node on the search path considered as the search
result.

4 LightChain: A Permissionless Blockchain over
Skip Graph

4.1 Overview

The LightChain protocol is executed independently by each participating peer.
In LightChain, we employ a Skip Graph DHT overlay to establish a blockchain.
The peers, as well as the transactions and blocks, are indexed as Skip Graph
nodes. Each peer invokes the insertion algorithm of Skip Graph [32] using
its own identifiers and (IP) address and joins the system. Both identifiers of
a peer (i.e., its name ID and numerical ID) are hash value of its public key
(i.e., verification key). As a result of joining the Skip Graph overlay, each peer
knows logarithmically other peers, which enables it to efficiently search for any

13

other peer of the system with the communication complexity of O(logn). Upon
joining the Skip Graph overlay, the peer creates its view of the blockchain using
LightChain’s randomized bootstrapping feature without the need to download
and process the entire ledger.

In LightChain, a transaction represents a state transition of the assets of a
peer, which is denoted by the owner peer of that transaction. For example,
in the cryptocurrency applications, the asset of a peer is its monetary wealth,
and a transaction models a monetary remittance, which represents the state
transition of the monetary wealth of the owner affected by the remittance. The
owner peer casts the state transition into a transaction, computes the identifiers
of validators, searches for the validators over Skip Graph overlay, and asks them
to validate its transaction. In order to be validated, each transaction needs to be
signed by a system-wide constant number of validators, where their identifiers
are chosen randomly for each transaction to ensure security. In addition to se-
curity, the idea of validating transactions makes participating nodes in the block
generation needless of going through the validation of individual transactions.

Once the transaction gets validated, the owner inserts it as a node into the
Skip Graph overlay, which makes it searchable and accessible by any other peer.
The insertion of the transaction is done by invoking the insertion protocol of
Skip Graph using the transaction’s identifiers but the (IP) address of the owner
peer itself. As we explain later, the identifiers of a transaction are related to its
hash value. The Skip Graph peers route the messages on behalf of the transac-
tions they hold. This idea is similar to the other existing DHTSs like Chord [65]
and Pastry [66]. This feature enables LightChain peers to search and find the
new transactions. Upon finding new validated transactions, each peer is able to
cast them into blocks, go through the validation procedure (similar to the trans-
actions’ case), and insert the validated block into the Skip Graph overlay. Each
transaction’s owner then removes its transaction node from the overlay once it
is successfully included in a validated block (for the sake of efficiency). The idea
of representing each transaction and block by a Skip Graph node results in any
search for the peer or the transactions and blocks that it holds to be routed to
the peer’s (IP) address, rendering them accessible by every other peer in a fully
decentralized manner. Hence, in LightChain’s Skip Graph overlay, there exist
three types of nodes: peers, transactions, and blocks. In other words, the Skip
Graph overlay acts as a distributed database of the transactions and blocks that
are owned by peers, which enables each peer to efficiently search for any trans-
action or block with the communication complexity of O(logn). The previous
relationship of blocks stored in a distributed manner on distinct peers defines
a blockchain. By making the blocks and transactions efficiently retrievable by
search, the participating peers are not required to keep or download the entire
ledger. In LightChain, each block or transaction is replicated by its owner and
validators to support availability, accessibility, and fault tolerance. By means
of searchable blocks and transactions as well as replication, in LightChain we
introduce the idea of distributed storage layer for the blockchain where partic-
ipating peers in the consensus only need to keep and maintain a subset of the
blocks, and not the ledger entirely. In the rest of this section, unless stated

14

) Randomized-Bootstrapping
View Layer: Time Complexity: O(n)
Communication Complexity: O(logn)

Randomized-Replication

Storage Layer: b
Storage Complexity: O(;)

Proof-of-Validation (PoV)
Time Complexity: O(1)
Communication Complexity: Oflogn)

Consensus Layer:

Network Layer: Using Skip Graph DHT

Communication Complexity: O(logn)

Figure 1: LightChain’s protocol stack and its contributions to each layer of the blockchain
architecture. The reported asymptotic complexities for the Network layer are per transaction or
block, and for other layers are per node.

otherwise, by the term node, we mean a peer.

As an incentive mechanism, LightChain employs a monetary balance for
each participating peer to exchange with other peers and cover the operational
fees of appending data to the blockchain [1]. LightChain rewards the peers’
contribution on maintaining the connectivity of the system, providing valida-
tion service, and generating blocks. Moreover, LightChain encourages honest
peers to audit other peers, by rewarding the detection and report of adversarial
acts. Malicious behavior is penalized by LightChain upon detection, and the
adversarial peers are blacklisted and gradually isolated from the system. Figure
1 summarizes the LightChain’s contributions to each layer of the blockchain
architecture.

4.2 Structure of Transactions and Blocks

A LightChain transaction, tx, is represented by a (prev, owner, cont, search_proof, h, o)
tuple, where prev is the hash value of a committed block to the blockchain. We
use the prev pointer for each transaction tx to define an order of precedence
between tx and all the blocks and transactions in the blockchain without the
need of any synchronized clock. The block that is referred by prev takes prece-
dence over tz. All the transactions included in the prev block are assumed to
be committed before tx in the essence of time. Following the same convention,
all the blocks and transactions that precede prev, also precede tx. The owner
represents the identifier of the owner node in the Skip Graph overlay that gen-
erates the transaction tx. Equating the name ID and numerical ID of the peers
with the hash value of their public key, owner refers to either of the name ID
or numerical ID of the owner peer. The cont field of a transaction denotes the
state transition of the assets of the owner node. The contribution is a general
term that covers a vast variety of the blockchain applications that LightChain
is applicable on. For example, in cryptocurrency applications, the state of peers
corresponds to their wealth, and a transaction represents a monetary remittance
between two peers. In such applications, cont includes the remittance value as
well as the identifier of the receiver peer, to whom the transaction owner aims to

15

transfer the fund. The search_proof field of a transaction is the authenticated
proof of searches over the peers of the Skip Graph overlay to find the validators
of the transaction tx, as explained before. The h field of the transaction tz is
the hash value of the transaction, which is computed as shown by Equation 1.
The o field of the transaction tx contains the signatures of both the owner as
well the validators on its hash value h. The owner’s signature is for the sake
of authenticity, and to prevent adversarial peers from masquerading as honest
peers and submitting a transaction on behalf of them. The validators’ signa-
ture is a part of LightChain’s consensus strategy, and is explained within our
proposed Proof-of-Validation consensus approach.

h = H(prev||owner||cont||search_proof) (1)

A LightChain block blk is defined by a (prev, owner, S, search_proof, h, o)
tuple, which is similar to the transaction structure of LightChain except that S
represents the set of all the transactions that are included in the block blk. The
h field of block blk is its hash value, which is computed as shown by Equation
2. The o field contains the signatures of both the block’s owner as well as the
block’s validators on its hash value (i.e., h).

h = H(prev||owner||S||search_proof) (2)

4.3 Network Layer: Skip Graph overlay of peers, transac-
tions, and blocks

In our proposed LightChain, we represent each peer, transaction, and block
by a Skip Graph node. This way, all the peers, transactions, and blocks are
addressable within the network. In other words, participating nodes (i.e., peers)
in LightChain exploit the Skip Graph overlay to search for each other, as well
as each others’ blocks and transactions. Both the numerical ID and name ID
of the peers are the hash value of their public key using a collision-resistant
hash function. As in a Skip Graph, nodes’ identifiers define the connectivity;
hence, considering the hash function as a random oracle results in the uniform
placement of peers in Skip Graph overlay, which limits the adversarial power on
tweaking the Skip Graph topology for its advantage.

The numerical ID of a transaction or a block in the Skip Graph overlay is its
hash value (i.e.,). The name ID of a transaction or a block is its corresponding
prev field value. This regulation enables peers to traverse the LightChain’s
ledger in both forward and backward directions. Following this convention,
in LightChain, having a block with numerical ID (i.e., the hash value) of h
and previous pointer value of prev, the (IP) address of the peers that hold the
immediate predecessor block are obtained by performing a search for numerical
ID of prev in the Skip Graph overlay. Similarly, the (IP) address of the peers
holding the immediate successor transaction(s) or block(s) in the blockchain are
obtainable by performing a search for name ID of h over the Skip Graph overlay.
This follows the fact that all the immediate successors of a block have h as their

16

Num ID = tx1.A
Name ID = blk4.A

Num ID = tx2.A
Name ID = blk4.A

P I
n/“
Genesis [blkl1 |« blk2 |« blk3 |« blk4 02
Num ID = genesis.A Num ID = blk1.A Num ID = blk2.~# Num ID = blk3.A NumID:b|k4./;~‘\
Name ID = null Name ID = genesis.” Name ID = blk1.A NameID=blk2.A Name ID = blk3.A ‘\\
1 o3

Figure 2: The LightChain regulation on name IDs and numerical IDs. Numerical ID (i.e., Num
ID) of a block or transaction is its hash value, and name ID is its corresponding prev value.

name ID. This feature of the LightChain enables the peers to efficiently update
their view towards the tail of the blockchain by performing a search for the
name ID of their local tail. The search returns all the blocks that are appended
subsequently to their local tail, as well as all the new validated transactions
that are waiting to be included in blocks. Additionally, using this feature, a
peer does not need to store the entire blockchain locally. Rather, having only a
single block of the ledger enables the peer to efficiently retrieve the predecessor
and successor blocks to it with the communication complexity of O(logn).

Figure 2 illustrates this convention of LightChain, where a peer that only
has blk2 is able to efficiently retrieve its immediate predecessor (i.e., blk1l) by
searching for the numerical ID [32] of its prev value (i.e., blk1l.h = blk2.prev)
in a fully decentralized manner. The search is responded by the owner 2of blk1
with its (IP) address, and hence the predecessor of blk2 (i.e., blk1) is retriev-
able efficiently by directly contacting its owner. Similarly, the peer that only
possesses blk2 is able to perform a search for name ID [58] over its hash value
(i.e., blk2.h) to retrieve the immediate successor block that comes after blk2.
As the result of the search for name ID of blk2.h, owner of blk3 responds to
the search initiator peer with its (IP) address, and blk3 is retrievable efficiently
by directly contacting its owner. In the case where a single block has several
successor blocks, the search initiator receives a response from each of the imme-
diate successor block’s owners. In the example of Figure 2, considering blk4 as
the current tail of the blockchain, as discussed later in this section, the newly
generated transactions that succeed blk4 (i.e., tal, tz2, and tx3) are efficiently
retrievable by performing a search for the name ID using blk4.h.

4.4 Consensus Layer: Proof-of-Validation (PoV), fair, ef-
ficient, immutable, and secure consensus

Proof-of-Validation (PoV) is our proposed consensus approach of LightChain,
and is employed to validate the generated transactions and blocks. Once a

2Considering the replication of blocks, the search is responded by the either the owner,
or one of the replicas. We introduce the replication of blocks and transactions later in this
section.

17

Num ID = tx3.h
Name ID = blk4.A

transaction or block is validated by PoV, it is considered legitimate by all the
participating peers. PoV is fair as each participating peer in the system has
a uniform chance of being involved in the consensus regardless of its influence.
PoV is efficient as it requires only O(logn) communication complexity for vali-
dating a single transaction or block. PoV is immutable as none of the influential
peers in reaching a consensus can legitimately change the consensus at a later
time after it is finalized. Finally, PoV is secure as malicious peers are not able
to commit an invalid transaction or block to the blockchain. We analyze the
security and immutability of PoV in Section 5. A transaction or block is con-
sidered as validated once it successfully passes the PoV consensus. Note that a
validated transaction’s contribution is not considered effective and authoritative
unless it is included in a validated block that is committed to the blockchain.
To validate each transaction or block, PoV provides a set of randomly chosen
validators for the sake of evaluation as detailed in the followings.

4.4.1 Transaction Generation and Validation

PoV considers a transaction as valid if its hash value h is signed by ¢ (randomly
chosen) validators, where t is a constant protocol parameter, which is called the
Signatures Threshold. For a transaction tz, the numerical ID of each validator
is chosen uniformly as shown by Equation 3, where v; is the numerical ID
of the " validator in the Skip Graph overlay. In order to provide security,
efficiency, and availability for the system, LightChain only allows a transaction’s
owner to iterate ¢ over [1,], where « is another constant protocol parameter,
which is called the Validators Threshold. We formally discuss this in Section 5,
and develop a formulation for deciding on the proper values of the Signatures
Threshold and Validators Threshold considering the security, efficiency, and
availability of system.

v; = H(tx.prevl||tx.owner||tx.cont||i) (3)

The transaction’s owner then conducts a search for numerical ID of the validator
(i-e., v;) within the Skip Graph overlay. If there exists a peer with the numerical
ID of v; in the overlay, the owner receives its (IP) address. Otherwise, it receives
the (IP) address of the peer with the largest available numerical ID that is less
than v;. Both cases are supported with an authenticated search proof that
is generated by the Skip Graph peers on the search path, and is delivered to
the owner. The authenticated proof of the search for numerical ID of the it?
validator is denoted by search_proof;, which also contains all the (IP) addresses
and identifiers of the Skip Graph peers on the search path. The last peer
on the search path of v; is designated as the i*" validator. The transaction’s
owner then adds the authenticated search proof for all the validators to the
transaction, computes its hash value h as specified by Equation 1, signs the
hash value, and appends her signature to ¢. The transaction’s owner then
contacts the validator asking for the validation of the tx. During the validation,
the validators evaluate the soundness, correctness, and authenticity of tz, as well
as the balance compliance of the its owner to cover the fees. As the validation

18

result for tx, the transaction owner either receives a signature over h or L from
each contacted validator.

Soundness: A transaction tx is said to be sound if it does not precede
the latest transaction of the transaction’s owner on the blockchain. By not
preceding the latest transaction of the same owner, we mean its prev should
point to the hash value of a validated and committed block on the ledger with
no transaction of the transaction’s owner in any of the subsequent blocks. In
other words, soundness requires the newly generated tx transaction to succeed
all of the previously registered transactions of its owner on the blockchain. This
is both to counter double-spending from the same set of assets, as well as to
make the validation of a transaction a one-time operation, i.e., the owner of
a validated tx transaction is able to append it to the blockchain as long as
it does not generate any new transaction on the blockchain that precedes tx
based on prev. Considering the soundness, at most one of the concurrently
generated and validated transactions of a peer has the chance to be included
into a new block. As once one of its transactions is included in a block, the others
become unsound, cannot be included in the same block or further blocks, and
should go over re-validation. Therefore, in addition to prevent double spending,
soundness provides a uniform chance for the transaction generators to include
their transaction into each new block. We elaborate more on this criteria when
we discuss block validation.

Correctness: For a transaction tz to be correct, its contribution field (i.e.,
cont) should represent a valid state transition of the owner’s assets. The com-
pliance metric is application dependent. For example, in cryptocurrency appli-
cations, for a transaction to be correct, the owner’s account should have enough
balance to cover the remittance fee (i.e., the contribution).

Authenticity: The evaluation of authenticity is done by checking the cor-
rectness of h based on Equation 1, verifying ¢ for the inclusion of a valid sig-
nature of the transaction’s owner over h, and verifying search_proof for all the
validators of tx. The validator rejects the validation of tx as unauthenticated if
any of these conditions is not satisfied.

Balance Compliance: As an incentive mechanism to participate in the
validation, LightChain considers a validation fee in the favor of the ¢ valida-
tors of the transaction tx that sign its hash value and make it validated. Also,
LightChain considers a routing fee in the favor of all the Skip Graph peers
that participate in finding the transaction’s validators, i.e., the peers that their
identifiers are included on the search path of every validator according to the
search_proof, excluding the validator and the owner itself. A transaction tx
passes the balance compliance part of validation if its owner has enough bal-
ance to cover the validation and routing fees. The balance compliance validation
is done based on the view of the validator towards the blockchain. Both the
routing and validation fees are fixed-value protocol parameters, and are the in-
centive mechanism for the peers to perform the routing and validation honestly
[1, 11, 12]. The fees also prevent Sybil adversarial peers on indefinitely gener-
ating transactions by circulating the adversarial balance among themselves and
continuously congesting the system with the validation of adversarial transac-

19

tions.

If tz is sound, correct, authenticated, and its owner has a balance compliance
to cover the fees, the validator signs h, and sends the signature to its owner,
who then includes the validator’s signature inside ¢. For a transaction tz to
be considered as validated, PoV requires the owner to include ¢ valid signatures
issued by the validators in the search_proof. The validated tx transaction is
inserted as a Skip Graph node by its owner, which makes it accessible by other
participating peers of the system to be included in a block. The numerical ID
of tx is h, and the name ID of tz is prev, which enables any Skip Graph peer
to conduct a search for name ID on the hash value of any ledger’s block within
the Skip Graph overlay and find all the new transactions that are pointing back
to that block.

4.4.2 Block Generation and Validation

We call a peer that generates blocks, a block owner. Once a block owner collects
at least min_tx newly generated transactions that have not been included into
any validated block that has been committed to the blockchain, it casts them
into a new block blk, and sends the block for validation. By casting transactions
into blk we mean including the collected transactions into S set as discussed
in Equation 2. min_tr is an application-dependent fixed-value parameter of
LightChain denoting the minimum number of the transactions that should be
included in a block. In contrast to the transaction owners that have more
flexibility on choosing their transaction’s prev pointer, the block owners should
always set the prev pointer of their block to the current tail of the blockchain.
Similar to the transactions, in PoV we say a block blk is validated if its hash
value (i.e., h) is being signed by ¢ randomly chosen PoV validators. To have
blk validated, the block owner computes the numerical ID of the it validator
as shown by Equation 4.

v; = H(prev||owner||S||i) (4)

Similar to the transaction validation, the block owner searches for validators
in the Skip Graph overlay, and completes the structure of blk by including the
search proof for validators into search_proof, computing the block’s hash value
(i.e., h), and including its own signature over h into o. The block owner then
contacts each of the validators and asks for the validation. Consistent with the
transaction validation, a block owner is only allowed to iterate over Equation 4
for i € [1,a]. As the validation result for blk, the block owner either receives
a signature over h or L from each contacted validator. If the block owner
receives t signatures over h from its PoV validators, it is said that the block
passed the PoV validation. On receiving a validation request for a block blk,
each of its PoV validators checks the authenticity and consistency of blk itself,
as well as the authenticity and soundness of all transactions included in S (as
discussed earlier). The authenticity evaluation of blocks is done similar to the
transactions.

20

Old Tail Current Tail

Genesis [« blkl |« blk2 |« blk3 [« blk4 blk5 = blké

blk7

An under-validation block

Figure 3: An example of a potential fork. Validation of block blk7 is rejected and terminated by
its validators at any state of the validation upon detection of the new block, blk6, as the new tail
of the blockchain.

Consistency: A block blk is said to be consistent, if its prev pointer points
to the current tail of the blockchain; otherwise it is inconsistent. By the current
tail of the blockchain, we mean the most recent view of the validators towards
the tail of the chain. The inconsistencies among validators’ views are handled by
our proposed fork-free mechanism later. However, it is likely for the current tail
of the blockchain to be updated during the validation of a newly generated block.
Although randomly chosen PoV validators of a block evaluate its consistency
during the validation phase, nevertheless, the update on the current tail of
the blockchain makes the block inconsistent during the validation procedure.
Validating such an inconsistent block emerges a fork on the blockchain. To
tackle this problem, once any of the randomly chosen PoV validators detects a
potential fork at any step of the validation, it terminates the validation with a
rejection, informing the owner. By a potential fork, we mean the situation where
another block outpaces an under-validation block and becomes the new tail of
the blockchain. This implies that the validators of a block need to keep their
view of the blockchain’s tail updated by continuously performing a search for
the name ID of the hash value of the current tail (during the validation process
only), which returns all the blocks and transactions that immediately succeed
the tail. In this manner, upon any update on the current tail, the new tail is
returned as the result of the search. A potential fork example is illustrated by
Figure 3 where blk7 is undergoing the validation but its validation is terminated
with rejection as soon as any of its randomly chosen PoV validators detects that
another block (i.e., blk6) has outpaced blk7 in validation and became the new
tail block of the blockchain.

If the block’s structure is authenticated, consistent, and all the transactions
in § are sound and authenticated, the validator signs h, and sends the signature
to the block’s owner, who includes the validator’s signature inside o. PoV
considers a block blk as validated if o field contains ¢ valid signatures on h
value. After the blk gets validated, its owner inserts it into the Skip Graph
overlay as a node. As the incentive mechanism of LightChain, owner of a block
receives a block generation reward once its block gets validated and committed
to the blockchain. The block generation reward is a fixed-value parameter of
LightChain that acts both as an incentive mechanism for encouraging the peers
to participate progressively in generating blocks, as well as a mean for wealth

21

blk6

Genesis [blkl | blk2 | blk3 |« blk4 |« blkS

blk7

Figure 4: Using our fork-free mechanism, whichever of the simultaneously validated blk6 or blk7

has the lowest hash value wins the fork, is followed by every participating peer. The knocked-out

block owners remove their blocks from the Skip Graph overlay, update their transactions set, and
restart the validation procedure.

creation. In this paper, we assume that the generation reward for a block is
larger than its validation and routing fees. This is done to enable peers to
participate in the block generation immediately after they join the system.

Fork-free mechanism: To resolve the forks caused by the simultaneously
validated blocks, LightChain governs a fork-free mechanism, which is a deter-
ministic approach that instructs all the peers to solely follow the block with
the lowest hash value upon a fork. For example, in the snapshot of Figure 4
in the fork that is caused by simultaneous validations of the blocks blk6 and
blk7 by disjoint set of PoV validators, whichever of blk6 or blk7 that has the
lowest hash value is presumed as the one committed to the blockchain, and is
followed by all the peers of the system. Upon a fork, we call the block with
the lowest hash value as the winner block, and the other participating blocks of
the fork as the knocked-out ones. The knocked-out block owners remove their
block from the Skip Graph overlay, update their set of transactions by dropping
the transactions that are included in the winner block, adding the new transac-
tions to reach the min_tx threshold, and restart the validation procedure. The
knocked-out block owners neither gain any block generation reward nor lose any
balance because of the fees, as these fees and rewards are not effective unless
the block is successfully committed to the blockchain, i.e., the block passes the
PoV validation, wins the possible forks, and is appended to the current tail
of the blockchain. In order to ensure that a newly appended validated block
blk to the ledger does not undergo any further fork rivalry, and is considered
committed, effective, and finalized, LightChain waits for only one further block
to be appended subsequently to blk. In this way, all the forks at the depth of
the blk are considered as potential forks, and are rejected by the consistency
checking mechanism of PoV. Once a block blk is committed to the blockchain,
the contributions and fees of transactions in S, as well as the fees and rewards
associated with blk itself become effective.

22

4.5 Storage Layer: Replication for better efficiency and
availability

In LightChain, each transaction or block is stored in the local storage of its
associated owner, and presented as a Skip Graph node, which makes it efficiently
searchable by all the participating peers in the system. Hence, peers do not need
to store or download the entire ledger. Rather, they access the transactions and
blocks in an on-demand manner, i.e., a peer searches for a transaction or block
upon a need and retrieves it efficiently from the overlay. For further efficiency,
a transaction owner should remove its transaction from the overlay once it is
included in a committed block, to be discarded from the list of transactions that
are waiting to be placed into the blocks. We assume the peers in LightChain are
subject to churn, i.e., volatile between online and offline states [60]. To provide
availability of the transactions and blocks under churn, all the randomly chosen
PoV validators of a transaction or block also act as its corresponding replicas
by storing a copy of it in their local storage, representing it as a node in the
overlay, and being responsive to the other peers’ queries over it. In Section 5, we
show that the Signatures Threshold parameter of LightChain (i.e., t) is chosen
in a way that it results in at least one available replica for each transaction and
block under churn, in expectation.

4.6 View Layer: Randomized Bootstrapping, trusted, con-
sistent, and efficient view synchronization

View of a peer in LightChain is a table of (numlID, lastblk, state, balance) tu-
ples. Each view table entry represents a single peer of the system with the
numerical ID of numID, the current state of assets that is determined by the
state, and the remaining balance of balance. The lastblk represents the hash
value of the last block on the blockchain that contains the most recent trans-
action of that peer. We define the view introducers of a new peer as the set of
randomly chosen peers that share their view of the blockchain with the newly
joined peer. Upon joining the overlay, a new peer computes the numerical IDs
of its view introducers based on Equation 5, where new_peer.numlI D is the nu-
merical ID of the new peer and view_intro; is the numerical ID of the i*" view
introducer of it. We employ the hash function as a random oracle to obtain
uniformly random view introducers’ numerical IDs.

view_intro; = H (new_peer.numlIDI||i) (5)

The new peer then conducts a search for numerical ID of view_intro; within
the overlay, contacts the peer in the search result, and obtains its view of the
blockchain. The new peer continues in this manner by iterating over ¢ until it
obtains ¢ consistent views. As we show later, we determine ¢ and « in such a
way that a new peer obtains t consistent views of the honest peers by iterating
i over [1, a].

23

4.7 Direct retrieval of the latest state

Each transaction that appears on a committed block to the ledger contains the
latest update on the transaction owner’s state of assets. LightChain’s approach
on representing each block by a Skip Graph node makes the blocks addressable,
searchable, and efficiently retrievable within the network. Tracking the updates
on the entire view of other peers’ assets, hence, requires a peer to keep its
local view updated with the new blocks, which is a plausible assumption in the
majority of the existing solutions. However, in addition to sequentially seeking
the new blocks and updating view accordingly, LightChain enables each peer to
directly retrieve the latest assets’ state of another peer of interest without the
need to keep track of the new blocks on the ledger. This is done by the additional
representation of each block with multiple Skip Graph nodes i.e., one per each
transaction included in the block. As each of these additional Skip Graph nodes
represents one of the transactions of the same block, we call them the associated
transaction pointers of that block. In this approach, each transaction tx that
is included into a committed block blk is represented by a transaction pointer
node (i.e., pointer). The name ID and numerical ID of the transaction pointer
node are set as pointer.namelD = tx.owner and pointer.numlID = blk.h,
respectively. Setting the numerical ID of a transaction pointer to its associated
block’s hash value is for the sake of security, and to provide a tie between each
pointer and the block it points to. The transaction pointer nodes associated
with each block are inserted by the block’s owner and replicated on the block’s
PoV validators. In this manner, a peer that is solely interested in knowing the
latest state of another peer’s assets, for example, tx.owner, performs a search
for a transaction pointer with the name ID of tx.owner as the search target
within the Skip Graph overlay. The search is answered by either the owner of
blk or one of its PoV validators that all keep a copy of blk (i.e., the block that
contains the latest update on the assets’ state of tx.owner). To keep track of
the latest updates over the assets, both the owner and validators of a block
should take down each of its associated transaction pointers once an update
on the corresponding assets appears on a newer committed block to the ledger.
Taking down a pointer node from the overlay is simply done by performing the
Skip Graph node deletion operation [32] by the owner and each of the validators
in a fully decentralized manner. This is for the sake of better efficiency of the
search, and to make sure that the transaction pointers always point to the
most recent states. Not dropping the pointers after a new update is counted
as misbehavior, which we address it by the misbehavior detection strategy of
LightChain. To address the network asynchrony, however, the block owner and
PoV validators are allowed to take down the pointers within at most a certain
number committed blocks after a new transaction on the associated set of assets
happens. This allows them to have enough time to discover the new updates
without being subject to misbehavior. The length of the block interval (i.e.,
number of blocks between two transaction pointers over the same set of assets)
is a constant protocol parameter that is application dependent.

24

4.8 Motivating honest behavior and misbehavior detec-
tion:

The block generation reward and the routing and validation fees constitute the
incentive mechanism of the LightChain for the peers to retain their honest be-
havior i.e., following the LightChain’s architecture and protocol as described
in this section. In this paper, we assume that the block generation reward is
greater than the routing and validation fees. We establish this assumption to
motivate any peer to retain honest behavior from the time it joins the system
by enabling it to participate in block generation and gain the block generation
reward. The counterpart of honest behavior is the misbehavior, which we de-
fine it as any sort of deviation from the described LightChain’s protocol and
architecture. As detailed earlier, for the transactions and blocks that are gone
through the consensus layer, we consider the randomly chosen PoV validators
to check the submitted transaction or block against the misbehavior. As we
analyze in Section 5, we choose the system’s security parameter (i.e., A) as well
as PoV operational parameters (i.e., o and t) in a way that an adversarial peer
cannot convince the PoV validators on a misbehavior unless with a probability
of at most 27*. In addition to the countermeasures established by PoV, we also
introduce misbehavior detection as an extra level of adversarial countermeasure,
especially for the adversarial actions that are not gone through the PoV e.g.,
direct submission of an invalid block to the ledger. In our proposed misbehavior
detection, each peer of LightChain acts as an auditor for other peers’ behavior
and gains a misbehavior audition reward by reporting their misbehavior. As
an auditor, any peer should be able to evaluate a block or transaction in the
same way that its PoV validators do during the validation. Any deviation from
LightChain’s protocol that fails the auditor’s evaluation is considered as mis-
behavior, e.g., the invalid signature of validators, lack of ¢ signatures on the
hash value, and validating an invalid block or transaction. We specified the
first two cases earlier in this section. The last case (i.e., validating an invalid
block or transaction) happens when an adversarial transaction or block owner
finds ¢ randomly chosen malicious PoV validators who deviate from the valida-
tion protocol and sign an invalid block or transaction, e.g., a double-spending
transaction. Although as we stated earlier, we determine PoV operational pa-
rameters in a way that such an attack cannot happen unless with a probability
of at most 27, nevertheless, the misbehavior detection of LightChain provides
an extra level of security to ensure that even if such an attack happens, the
invalid transaction or block does not persist on the ledger.

Upon a misbehavior detection, the auditor generates a transaction with the
evidence of the misbehavior in the contribution field. The transaction then goes
through the same PoV validation process as described earlier, except that the
validators verify the correctness of the transaction as the correctness of the re-
ported evidence. Once the transaction is validated and placed into a committed
block to the blockchain, the guilty peer is penalized by the misbehavior penalty
fee, routing fee, and validation fee that it is made to pay to the owner (i.e.,
auditor), routers, and validators of the transaction, respectively. Misbehavior

25

fee is another constant parameter of LightChain that is application dependent.
Once misbehavior is recorded for a peer on a committed block, its identifier is
blacklisted. The blacklisted peers are isolated by honest peers i.e., any incoming
message from the blacklisted peers is discarded by honest peers. This eventually
results in the blacklisted peers being excluded from the overlay, which causes
the blacklisted peers to never being selected as a validator as they no longer are
a part of the overlay from the honest peers’ point of view. A blacklisted peer
appearing in an authenticated search proof implies a malicious router peer on
the search path that is caught and blacklisted accordingly.

The detailed pseudo-code descriptions of LightChain’s algorithms are pre-
sented in the Appendix.

5 Analytical and Performance Results

5.1 Formal Mathematical Analysis

In this section, we analyze the necessary mathematical conditions on picking the
operational system parameters: the Signatures Threshold t and the Validators
Threshold «. There exist three main considerations: (1) With respect to the
security, an adversary that controls f fraction of all the peers should be able to
fork a history or validate adversarial blocks or transactions with the probability
of at most 27*, where A is the system’s security parameter. (2) With respect
to the availability, LightChain should provide the availability of at least one
replica of each block and transaction, at any given time in expectation. (3) With
respect to the efficiency, the honest peers who follow the LightChain protocol
find ¢t honest validators within at most « trials for validating their transactions
and blocks. We aim at choosing the minimum possible values of ¢ and « that
satisfies the mentioned security, availability, and efficiency constraints, since this
means a lower communication overhead imposed to the system.

In our analysis, we assume the worst case such that there is no churn for
the adversarial peers and all the adversarial peers are under the control of the
same adversarial party. For simplicity, we assume a uniform failure model for
the honest peers of the system, such that at any point in time the probability
of failure of an honest peer is denoted by ¢, which is independent of the others.
Based on these assumptions, the expected number of online peers at any time is
denoted by n, as determined based on the Equation 6. As is represented later
in this section, we implement more realistic churn models in our simulations
and show that the results match our analysis.

no =n(f+ (1= f)(1—-q)) (6)

Security Analysis: Given a certain value of «, we indicate t,, as the
minimum value of ¢ that yields in a probability of less than or equal to 27> for the
adversary to find ¢ adversarial validators within at most « trials. For example,
assuming that A\ > 40, it yields in the adversarial success probability of at most
2-40. Tet V,, be a random variable that denotes the number of adversarial

26

validators within at most « trials. We aim at achieving Pr(V,, > t,,) < 272,
Equation 7 represents the evaluation of the cumulative distribution function
of V,,, at t,,. For large values of n, Equation 7 is approximated by Equation
8, which denotes a Hypergeometric distribution [67], where v is the standard
normal distribution function [68]. Equation 9 represents a lower bound on the
value of t,, that results in the Pr(V,, < t,,) > 1 —27*. The lower bound
obtained from this equation is independent of the system capacity (i.e., n) as
well as the churn of the peers (i.e., q).

Sieg” (D)0 LL)

Pr(Vi < tm) = &) (7)
o tm—af j 1
~ w(iaf(l — f)) (8)
tm > (Vaf(l=f)x ¢ (1=27Y)) +af +1 9)

For a certain value of «, choosing t > t,, results in a less than 2~* probability
for an adversarial peer to find ¢ adversarial validators within at most « trials,
and validate an adversarial transaction or block. We also obtain a lower bound
value for o based on Equation 9. The constraint of ,,, <t < « implies a lower
bound on « as shown by Equation 10.

o> I+ VX @1 =272 +4))
- 41 =)

Efficiency Aspect: We determine the value of ¢ in such a way that finding ¢
honest validators is efficiently achievable within at most « trials in expectation.
As shown by Equation 11, we denote by p the Bernoulli probability of choosing
an honest validator for a given transaction or block uniformly at random. The
uniform distribution of p follows from the random oracle model.

p=nxa f)x(1—q) (11)

No

(10)

Given a certain value of o, we indicate the minimum number of randomly chosen
honest validators within « trials by ¢5. Let X; be a random variable denoting
the number of trials on the validators’ identifiers until the i** honest validator
is reached. X; follows a geometric distribution with the success probability of
p, and the expected value of . As shown by Equation 12, we aim to choose t;,
in such a way that it enables an honest peer to find ¢ honest validators within
at most « trials in expectation. Since X; values are independent and identically
distributed random variables, Equation 12 is simplified to Equation 13, which
results in an upper bound value of ¢, < p X « as shown by Equation 14. For
a certain value of «, one should choose t < t; to find ¢ honest validators in

27

expectation.

123
E} X|<a (12)
i=1
th th 1
Y EX|=) -<a (13)
=1 1=1 p
th<pXa (14)

Availability Aspect: The ¢t PoV validators and the owner of a block or
transaction are also designated as its replicas. To provide data availability for
LightChain under churn, we choose ¢ in such a way that at least one replica is
available for each transaction or block in a timely fashion in expectation. Let
t, be the minimum number of replicas that provides the availability of at least
one replica under the uniform failure probability of ¢. It is trivial that t, < t+1
as we should not replicate any more rather than on the owner as well as the ¢
PoV validators of a transaction or block. The replication policy of LightChain
on the owner as well as the randomly chosen PoV wvalidators each with the
failure Bernoulli probability of ¢ corresponds to a Binomial distribution of the
replicas availability. Having ¢, replicas (including the owner), the expected
number of available replicas at any given time is derived from the expected
value of the Binomial distribution of ¢, trials with the success probability of
1 — g, which is equal to qu. Equation 15 represents the availability constraint
of LightChain, which results in the lower bound of ¢,. Excluding the owner from
t,, and replicating a block or transaction on its ¢, — 1 randomly chosen validators
results in the expected availability of at least one copy in a timely fashion. Note
that in cases where the minimum expected availability of k replicas is desirable
(i.e., k > 1), Equation 15 is easily adoptable by replacing 1 in the nominator
with k.

1

ta> 7 (15)
Putting all together: Having our security parameter (i.e., A\) and the
fraction of adversarial peers (i.e., f) determined, we obtain a lower bound value
for o form Equation 10 that satisfies our security constraint. In order to satisfy
the security requirement we need t > t,,, for efficiency we need ¢t < tj, and
for availability we need t > t,. Putting all these aspects together results in a

permissible range for ¢ that is shown by Equation 16.

max{t, — 1t} <t <ty (16)

5.2 Experimental Evaluation

Setup: To simulate and evaluate LightChain, we extended the Skip Graph
simulator SkipSim [36] by enhancing it with three types of nodes on the overlay:
peers, transactions, and blocks. In SkipSim, the time is divided into the fixed
discrete intervals of one hour. To simulate the arrivals and departures of the

28

—e—a=1
H-a=2
a=4
o =
—4—a =10
Ha=11
—S—a =12

Adversarial Success Probability

Signatures Threshold (¢)

Figure 5: The security of LightChain with respect to the colluding adversarial peers. X-axis shows
the Signatures Threshold parameter of LightChain, i.e., t. Y-axis shows the adversarial peers’
success probability on finding ¢ adversarial PoV validators.

peers to and from the system (i.e., churn) in a realistic manner, we follow the
extracted Weibull-based churn model [60] over a long-term study of the P2P
systems. In this churn model, a peer shows the periodic states of online and
offline with the expected duration of 2.7 and 10 hours, respectively. The overlays
are initially empty, and peers join the overlay with an average of about 1000
peers per hour. Consistent with the reported statistics of the Bitcoin that is
provided in [69, 70], in our LightChain implementation on SkipSim, while a peer
is online it generates a single transaction per hour. Also in our simulations, we
considered 16.5% of the total registered peers as colluding adversarial peers (i.e.,
f = 0.165), which corresponds to the largest fraction of colluding hash power in
the Bitcoin network [13]. We simulated LightChain for 100 randomly generated
Skip Graph overlay topologies, each with the system capacity of n = 10,000
peers. By randomly generated overlays we mean the randomized set of peers’
identifiers as well as the overlay’s connectivity. Each topology was simulated
for 48 hours (i.e., time slots). Likewise, for the sake of simulation, we set
min_tx = 1. Therefore, each topology generates an average of 100K blocks
during the simulation time.

Security Aspect: Figure 5 shows the success probability of the colluding
adversarial peers for different values of a and ¢t < a. We consider the adversarial
success as forking a history or validating an adversarial block or transaction by
finding ¢t adversarial PoV validators within at most « trials. As shown by Figure
5, for each value of «, with the growth of ¢ from 1 to «, the success probability
of adversarial peers drops exponentially and converges to zero. Applying the
simulation parameters on Equation 10 results in an estimated lower bound of
a > 9.61 based on our analytical framework. Following Equation 9 from the
analytical framework, o values of 10, 11, and 12, result in the ¢,, lower bounds
of 9.05, 9.59, and 9.89, respectively, which is supported by Figure 5. For a > 10,
the adversarial success probability drops essentially to zero as their associated
t value goes beyond their corresponding obtained ¢,, from the framework, e.g.,

29

£ a2s5f .
5

E

7

<

wn

2 15

2

an)

L 1r

<

g

Z 05f

0 | | | | | | | | |

|
01 2 3 4 5 6 7 8 9 1011 12

Signatures Threshold (%)

Figure 6: Availability of LightChain. X-axis represents the Signatures Threshold parameter of
LightChain, i.e., t. Y-axis represents the average number of available replicated copies of each
block at each time slot.

t > 9.89 for a« = 12 results in the adversarial success probability of essentially
ZEro.

Availability Aspect: Figure 6 illustrates the average availability of the
blocks as t grows. By the blocks’ availability, we mean the average number of
available replicas of each block in the system at each time slot. The average is
taken over 48 hours of the simulation time. The ¢ parameter that corresponds to
the number of PoV validators for each block of LightChain also represents the
number of replicated copies of that block. As shown by Figure 6, the average
availability of the blocks increases linearly with respect to ¢. This linear behavior
is supported by the Binomial distribution of the randomized replication policy of
LightChain over the validators. Modeling the churn by a uniform model with the
average online and offline periods of about 2.7 and 10 hours, the uniform failure
probability of each peer is ¢ = 0.78. Considering g as a Bernoulli probability,
the expected number of available replicas is obtained as ¢ x ¢, which is linear in ¢.
Following Equation 15 from our analytical framework, ¢, > 4.55. As illustrated
in Figure 6, for t > t,, the average availability of one block over the entire
simulation time is obtained. Taking ¢ = 10 following the security discussion
above provides average block availability of about 2.

Efficiency Aspect: Figure 7 represents the efficiency of LightChain with
respect to the honest peers who follow the protocol on finding ¢ honest PoV
validators. A point (z,y) on this figure is interpreted as x randomly chosen
honest PoV walidators are obtainable on the average within y trials. We obtain
an expected bound of #; < 0.84 x a from Equation 14 of our analytical frame-
work considering the described simulated churn. Concerning honest peers to
efficiently find ¢ honest validators within at most « trials, for a certain value
of a, t;, gives an expected upper bound on the value of t. For example, for
o =12, t, gives an expected upper bound of 10.08, which is consistent with the
simulation results on Figure 7.

Analytical versus Simulation Results: As discussed earlier, considering

30

S 3 o ©

Average Achieved Honest Validators

|
01 2 3 4 5 6 7 8 9 1011 12

Validators Threshold ()
Figure 7: Efficiency of LightChain with respect to the honest peers. X-axis represents the
Validators Threshold parameter of LightChain, i.e., a. Y-axis shows the average number of honest
PoV validators that are obtainable with « trials.

S = N W e Gt
T
I

our simulation setup and assuming A = 48 as our security parameter, we obtain
a > 9.61 from our analytical framework. Selecting oo = 12, results in ¢,,, > 9.89,
t, > 4.55, and t; < 10. Following Equation 16 from our analytical framework,
we obtain ¢ = 10 as the proper Signatures Threshold value for the Validators
Threshold value of o = 12 that satisfies the security, availability, and efficiency
constraints of LightChain, which is also supported by our simulation results in
Figures 5, 6, and 7, respectively.

5.3 Asymptotic Analysis

Having the system capacity of n peers, a new peer joins the Skip Graph overlay
using the original join protocol of the Skip Graph [32], which has the communi-
cation complexity of O(logn). Generating a new transaction or block takes the
maximum of « searches over the overlay for the sake of PoV validation, as well
as an insertion in the overlay once it got validated. This results in the overall
communication complexity of O((« + 1)logn) for generating a single transac-
tion or block, which is simplified to O(logn) considering « as a system-wide
constant parameter. To reduce the number of searches, the participating peers
on the search for numerical ID path can be alternatively contacted as the PoV
validators, which is supported by the randomized identifier assignment of the
peers. In this manner, O(k’%) searches for validators are required. Although
it does not change the communication complexity asymptotically, it reduces
the number of searches. For example, based on our simulation results, in a
Skip Graph of 10K peers for a = 12 and ¢ = 10, an average of one search is
needed to obtain 10 honest validators. PoV validation of a single transaction
or block is done via sending a validation result message, which takes the com-
munication complexity of O(1). Also, both generation and validation of a new
transaction or block take constant computational operations that are a function
of the LightChain’s operational parameters (e.g., verifying ¢ signatures from

31

PoV wvalidators), and takes O(1) asymptotic time complexity. For the sake of
LightChain’s Randomized-Bootstrapping, a peer needs to search for at most «
view introducers within the overlay, which takes the communication complexity
of O(logn). Thus we conclude that the communication complexity of
LightChain is O(logn) per operation. Similarly, having b blocks in the sys-
tem, following the replication on validators policy of LightChain, the expected
storage complexity of each peer is O(%). This follows the fact that the val-
idators of each block are chosen uniformly from a random oracle modeled hash
function. Based on the simulation results, with about 100K generated blocks
during the 48 hours of simulation, the average standard deviation of the number
of replicated blocks that each peer holds is about 0.033, which corresponds to a
uniform load distribution of blocks over the peers.

6 Conclusion

To improve the communication and storage efficiency, and solve the convergence
to centralization and consistency problems of the existing blockchain solutions,
in this paper, we proposed LightChain, which is a novel blockchain architecture
that operates over a Skip Graph-based P2P DHT overlay. In contrast to the
existing blockchains that operate on epidemic data dissemination, LightChain
provides addressable peers, blocks, and transactions within the network, which
makes them efficiently accessible in an on-demand manner. Using LightChain,
no peer is required to store the entire ledger. Rather each peer replicates a
random subset of the blocks and transactions and answers other peer’s queries
on those. LightChain is a fair blockchain as it considers a uniform chance for
all the participating peers to be involved in the consensus protocol regardless
of their influence in the system (e.g., hashing power or stake). To improve the
consistency of the blockchain, LightChain governs a deterministic fork-resolving
policy.

We analyzed LightChain both mathematically and experimentally regard-
ing its operational parameters to achieve the security, efficiency, and availability.
Having n peers and b blocks in the system, compared to the existing blockchains
that require the storage and communication complexity of O(b) and O(n), re-
spectively, LightChain requires O(%) storage on each peer, and incurs the com-
munication complexity of O(logn) on generating a new transaction and block.
As future work, we plan to extend our analysis to include game-theoretical
aspects of LightChain (e.g., rewards and fees).

Acknowledgement

The authors thank Ali Utkan Sahin, Yiisa Omer Altintop, and Ece Tavona for
their contributions to the SkipSim implementation.

32

References

[1]
2]

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

A. Reyna, C. Martin, J. Chen, E. Soler, and M. Diaz, “On blockchain and
its integration with iot. challenges and opportunities,” Future Generation
Computer Systems, 2018.

M. A. Khan and K. Salah, “Iot security: Review, blockchain solutions, and
open challenges,” Future Generation Computer Systems, 2018.

Z. Ma, M. Jiang, H. Gao, and Z. Wang, “Blockchain for digital rights
management,” Future Generation Computer Systems, 2018.

T. McConaghy, R. Marques, A. Miiller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto, “Bigchaindb:
a scalable blockchain database,” white paper, BigChainDB, 2016.

P. Jiang, F. Guo, K. Liang, J. Lai, and Q. Wen, “Searchain: Blockchain-
based private keyword search in decentralized storage,” Future Generation
Computer Systems, 2017.

S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-
Joancomarti, “A fair protocol for data trading based on bitcoin transac-
tions,” Future Generation Computer Systems, 2017.

K. Leng, Y. Bi, L. Jing, H.-C. Fu, and I. Van Nieuwenhuyse, “Research on
agricultural supply chain system with double chain architecture based on
blockchain technology,” Future Generation Computer Systems, 2018.

H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and
A. Narayanan, “An empirical study of namecoin and lessons for decen-
tralized namespace design.” in WEIS, 2015.

K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller,
P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized blockchains,”
in International Conference on Financial Cryptography and Data Security.
Springer, 2016.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A
scalable blockchain protocol.” in NSDI, 2016.

J. M. BloodyRookie, Gimre, “Nem technical reference,”
https://nem.io /wp-content/themes/nem/files/NEM techRef.pdf, 2018.

P. Daian, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake,” Cryptology ePrint Archive, 2016, https://eprint.iacr.org/2016,/919.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Annual International
Cryptology Conference. Springer, 2017.

33

[15]

[16]

S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” https://peercoin.net/assets/paper/peercoin-paper.pdf, 2012.

I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “proof of activity: Ex-
tending bitcoin’s proof of work via proof of stake [extended abstract] y,”
ACM SIGMETRICS Performance Evaluation Review, 2014.

NEO, “Neo whitepaper,” [Ounline; accessed 19-December-2018]. [Online].
Available: http://docs.neo.org/en-us/whitepaper.html

ONT, “Ontology whitepaper,” [Online; accessed 23-December-2018].
[Online]. Available: https://dev-docs.ont.io

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A
secure sharding protocol for open blockchains,” in SIGSAC. ACM, 2016.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
“Omniledger: A secure, scale-out, decentralized ledger via sharding,” in
IEEFE SP, 2018.

T. Rocket, “Snowflake to avalanche: A novel metastable consensus protocol
family for cryptocurrencies,” 2018.

K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi,
J. Cappos, and B. Ford, “Chainiac: Proactive software-update trans-
parency via collectively signed skipchains and verified builds,” in USENIX
Security 17, 2017.

C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong consis-
tency,” in ICDCN. ACM, 2016.

A. Chepurnoy, M. Larangeira, and A. Ojiganov, “A prunable blockchain
consensus protocol based on non-interactive proofs of past states retriev-
ability.” arXiv preprint arXiv:1603.07926, 2016.

P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A sybil-resistant scalable
blockchain,” Future Generation Computer Systems, 2017.

M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in CCS. ACM, 2018.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in EuroSys. ACM, 2018.

C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Work-
shop on distributed cryptocurrencies and consensus ledgers, vol. 310, 2016.

I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulner-
able,” Communications of the ACM, 2018.

34

[30]

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in Big-
Data congress. 1EEE, 2017.

Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-
lenges and opportunities: A survey,” International Journal of Web and
Grid Services, 2018.

J. Aspnes and G. Shah, “Skip graphs,” ACM TALG, 2007.

K. Wiist and A. Gervais, “Do you need a blockchain?” TACR Cryptology
ePrint Archive, 2017.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, 2014.

J. R. Douceur, “The sybil attack,” in International workshop on peer-to-
peer systems. Springer, 2002.

Y. Hassanzadeh-Nazarabadi, A, Kipcii, and O. Ozkasap,
“Skipsim: An offline and scalable skip graph simulator,”
https://github.com/yhassanzadeh13/SkipSim, 2018.

M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,”
in Secure Information Networks. Springer, 1999.

D. Kraft, “Difficulty control for blockchain-based consensus systems,” Peer-
to-Peer Networking and Applications, 2016.

B. Laurie and R. Clayton, “Proof-of-work proves not to work; version 0.2,”
in Workshop on Economics and Information, Security, 2004.

M. Vukoli¢, “The quest for scalable blockchain fabric: Proof-of-work vs.
bft replication,” in International workshop on open problems in network
security. Springer, 2015.

K. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” in
IET. The Institution of Engineering & Technology, 2014.

V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

L. Lamport, “The implementation of reliable distributed multiprocess sys-
tems,” Computer Network, 1978.

C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,”
in Annual International Cryptology Conference. Springer, 1992.

D. Liu and L. J. Camp, “Proof of work can work,” WEIS, 2006.
A. Poelstra et al., “Distributed consensus from proof of stake is impossible,”

URL: https://download. wpsoftware. net/bitcoin/old-pos. pdf, 2014.

35

[47]

[48]

[49]

[50]
[51]

[52]

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the pres-
ence of faults,” JACM, 1980.

D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, 2014.

J. Kwon, “Tendermint: Consensus without mining,” Retrieved May, vol. 18,
p- 2017, 2014.

L. Lamport et al., “The part-time parliament,” ACM TOCS, 1998.

E. Harris-Braun, N. Luck, and A. Brock, “Holochain-scalable agentcentric
distributed computing,” Alpha, 2018.

A. Cassandra, “Apache cassandra,” Website. Awailable online at
http://planetcassandra. org/what-is-apache-cassandra, 2014.

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timén, and P. Wuille, “Enabling blockchain in-
novations with pegged sidechains,” http://www.opensciencereview.
com/papers/123/enablingblockchain-innovations-with-pegged-sidechains,
2014.

W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Com-
munications of the ACM, 1990.

G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain to
protect personal data,” in Security and Privacy Workshops. TEEE, 2015.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information
system based on the xor metric,” in International Workshop on Peer-to-
Peer Systems. Springer, 2002.

Y. Hassanzadeh-Nazarabadi, A. Kiipgii, and 0. Ozkasap, “Locality aware
skip graph,” in IEEE ICDCSW, 2015.

——, “Laras: Locality aware replication algorithm for the skip graph,” in
IEEE NOMS, 2016.

M. Etemad and A. Kiipgii, “Efficient key authentication service for secure
end-to-end communications,” in ProvSec. Springer, 2015.

D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer net-
works,” in SIGCOMM. ACM, 2006.

R. Jacob, A. Richa, C. Scheideler, S. Schmid, and H. Taubig, “Skip+: A
self-stabilizing skip graph,” JACM, 2014.

Y. Hassanzadeh-Nazarabadi, A. Kiipgii, and 0. Ozkasap, “Interlaced: Fully
decentralized churn stabilization for skip graph-based dhts,” arXiv preprint
arXw:1903.07289, 2019.

36

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

M. T. Goodrich and R. Tamassia, Introduction to computer security. Pear-
son, 2011.

K. Needels and M. Kwon, “Secure routing in peer-to-peer distributed hash
tables,” in Symposium on Applied Computing. ACM, 2009.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing. Springer, 2001.

W. L. Harkness, “Properties of the extended hypergeometric distribution,”
The Annals of Mathematical Statistics, 1965.

D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena
Scientific Belmont, MA, 2002.

“Global bitcoin nodes distribution,” https://bitnodes.earn.com/, accessed:
24-09-2018.

“Blockchain charts,” https://www.blockchain.com/en/charts, accessed:
24-09-2018.

37

A LightChain’s algorithms details

In this appendix, we represent the detailed descriptions of the LightChain’s
algorithms in a bottom-up manner, i.e., we first show the basic low-level algo-
rithms that act as the building blocks of the high-level ones, and then move to
the explanation of the high-level algorithms that operate on the top of those
building blocks. The Verify algorithm (Algorithm 1) verifies the authenticity of
the input search proof, and generates a misbehavior transaction upon receiving
an unauthenticated search proof (see Section 4.8 for more details). The TXB-
Generation algorithm (Algorithm 2) is called whenever a peer aims to generate
a transaction or block, and it uses the Verify algorithm as a sub-routine. Al-
gorithms 3, 4, and 5 are sub-routines that evaluate the soundness, correctness,
and authenticity of a transaction as described in Section 4.4, respectively. Al-
gorithm 5 also evaluates the authenticity of blocks, which is done in an identical
manner as for the transactions.

Using these building blocks, the Audit algorithm (Algorithm 6) evaluates the
validity of a given transaction or block based on the view of the peer that invokes
it, and generates a misbehavior transaction on receiving an invalid transaction
or block (see Section 4.8 for further details). The Audit algorithm is used as a
sub-routine in the ViewUpdate algorithm (Algorithm 7), which performs ran-
domized bootstrapping for a new peer that joins the system (see Section 4.6)
as well as updating the view of the existing peers in the system. For an already
joined peer to the system, a single call to ViewUpdate updates the view of the
peer towards the tail of the blockchain by one block, e.g., a peer with a view
that is three blocks behind the current tail of the blockchain needs to invoke
ViewUpdate three times to reach the current tail of the ledger. LightChain peers
invoke ViewUpdate periodically to update their view towards the blockchain.
The frequency of ViewUpdate execution is application dependent. ViewUpdate
audits the newly generated transactions and blocks against the misbehavior,
and generates a new block by invoking the TXB-Generation algorithm upon
collecting min_tx newly generated transactions. Algorithm 8 evaluates the bal-
ance compliance of a transaction owner to cover the routing and validation fees
based on the view of the PoV validator that invokes it. Finally, Algorithm 9 is
executed by a PoV validator peer and represents the PoV validation procedure
of a transaction or block.

38

Algorithm 1: Verify

Input: proof of search search_proof, numerical ID of the peer numlID, routing
table of the peer table, local view of the peer on blockchain’s tail c_tail
Output: boolean result
// Validate the search proof based on the validation mechanism of underlying
authenticated search proof
1 if search_proof is authenticated then

2 ‘ result = true;
3 else
4 result = false;

// Misbehavior detection (see Section 4.8)
5 find the guilty node and report it in cont;
// Generate a misbehavior transaction
6 TXB-Generation(numID, table, c_tail, cont);

39

Algorithm 2: TXB-Generation

© N O bk W N

e T S O N
S © W N O Gk W N = O

N
=

22
23

24
25
26

27

Input: identifier of the owner owner, routing table of the owner table, previous

pointer prev, contributions cont or transaction set S

Output: a new transaction or block txblk
while i € [1,a] do

// Search for the i*" validator within overlay

v; = H (prev||owner||cont/S||i);

search_proof; = searchForNumericallD(v;, table);

if Verify(search_proof;, owner, table, prev) then

L add search_proof; to search_proof;

increase 1;

include prev and search_proof into txblk;
include cont/S into txblk;

compute the hash and include it in tzblk.h;
sign tablk.h;

include signature in txzblk.c;

send txblk for validation to the validators;
obtain the validation signatures from validators;
if t validators signatures on txblk obtained then
include validators signature in txblk.o;
insert txblk into overlay as a node;

if tzblk is a block then

if tzblk is knocked-out in a fork then
drop tzblk from the overlay;
terminate;

else
// Adding transaction pointers for direct state retrieval (See
Section 4.7 for more details)
for tx € txblk.S do
L insert a transaction pointer to tx.owner into the overlay;

if taxblk is a transaction then
while txblk is not included in a block do
L wait;
| drop tzblk from the overlay;

40

Algorithm 3: isSound

Input: transaction tx, view of the auditor/validator view
Output: boolean result
// Retrieve the address of the last block of that contains the most recent
transaction of the tz’s owner
(lastblk, state, balance) = view.get(tx.owner);
2 if tx.prev points to a predecessor of lastblk then
// tx is not sound as it violates the total ordering among the transactions
of tx.owner

=

3 result = false;
4 else
5 ‘ result = true;

Algorithm 4: isCorrect

Input: transaction tx, view of the auditor/validator view
Output: boolean result
// Retrieve the state of the transaction owner from the view of the
auditor/validator peer
1 (lastblk, state, balance) = view.get(tx.owner);
2 if tx.cont contains a valid transition of state then

3 ‘ result = true;
4 else
5 ‘ result = false;

41

Algorithm 5: isAuthenticated

Input: transaction/block txblk, numerical ID of the peer numlID, routing table
of the peer table, local view of the peer on blockchain's tail c_tail
Output: boolean result
// Result is initially true and is set to false upon detection of an authenticity
violation
result = true;

2 if tablk.h # H(prev||owner||cont/S||search_proof) then

// Invalid hash value
result = false;

4 else if valid signature of txblk.owner on txblk.h & txblk.c then

// Missing a valid signature of the owner
result = false;

6 else

®

10

11
12
13

14
15

// Check the number of PoV validators that signed the transaction/block
validatorCounter = 0;
for i € [1,a] do
v; = H(prev||owner||cont/S||7);
if search_proof; € search_proof A\ Verify(search_proof;, numID,
table, c_tail)A signature of i*" validator on tablk.h € txblk.c then
validatorCounter + +;
if validatorCounter ==t then
L break;

if validatorCounter < t then
L result = false

42

Algorithm 6: Audit

10

11

12

Input: transaction/block txblk, the auditor view view, numerical ID of the

auditor numlI D, routing table of the auditor table, local view of the
auditor on blockchain’s tail c_tazil

Output: boolean result
if txblk is a transaction then

result =
isSound(txblk, view) A is Authenticated(txblk, numlID, table, c_tail);

Ise

// tablk is a block

if isAuthenticated(txblk, numlID, table, c_tail) then

// The result is initially set to true for an authenticated block, but its
final value depends on the soundness and authenticity of each
individual transaction inside the block

result = true;

for transaction tx € tzblk.S do

if
—isSound(tz,view) V —isAuthenticated(tx, numlID, table, c_tail)
then
result = false;
L break;

if result == false then
// Misbehavior detection (see Section 4.8)
find the guilty node and report it in cont;
// Generate a misbehavior transaction
TXB-Generation(numID, table, c_tail, cont);

43

Algorithm 7: ViewUpdate

[=2 B BN

~

10
11
12
13

14

15

16
17
18

19
20
21

22
23
24

Input: numerical ID of the peer numlI D, routing table of the peer table, local
view of the peer on blockchain's tail c_tail, view of the peer view, set of
peer’s collected new transactions S
Output: updated view, updated S
if view is empty then
// An empty view corresponds to a new node that requires randomized
bootstrapping to create its view
while i € [1,a] A less than t consistent views obtained do
// Find the i*" view introducer
view_intro; = H(numID||i) ;
search_proof; = searchForNumericallD(view_intro;, table);
if Verify(search_proof;, numID, table, c_tail) then
contact #*" view introducer and obtain its view;

if ¢t consistent views obtained then
L update view;

else
// Update the view towards the current tail of the blockchain using a
search for name ID of the local view of the current tail within the overlay
search_proofiq; = searchForNamelD(c-tail, {table});
if Verify(search_proofiqi;, numID, table, c_tail) then
if set of new transactions {T X} € search_proofiq: then
add tz € {TX} with Audit(tz, view, numlID, table, c_tail) == true
to S;
if min_tz new transactions are in S then
// Generate a block out of the collected transactions
L TXB-Generation(numID, table, c_tail, S);

Ise if new block(s) found then
if there is a fork then
L follow the block blk with minimum hash value;

o

// Misbehavior verification

if Audit(blk, view, numID, table, c_tail) then

update the view based on the new block;

c_tail = blk;

// Dropping existing transaction pointers (See Section 4.7 for
more details)

for tx € blk.S do
if holding a transaction pointer to tx.owner then

L L drop the transaction pointer;

44

Algorithm 8: hasBalanceCompliance

Input: transaction tx, view of the validator view
Output: boolean result
// Retrieve the state of the transaction owner from the view of the validator
peer
(lastblk, state, balance) = view.get(txz.owner);
if owner has enough balance to cover the routing and validation fees then
‘ result = true;
else
‘ result = false;

Gk W N

45

Algorithm 9: Proof-of-Validation (PoV)

10

11

12

13
14

15
16
17
18
19

20

21
22

23
24
25

26

27

Input: transaction/block tzblk, numerical ID of the validator peer numlID, view
of the validator view, local view of the validator on blockchain’s tail c_tail

Output: message msg

if txblk is a transaction then

// The validation of a transaction

// Check the transaction’s soundness, correctness, authenticity, and the

balance compliance of its owner

msg = isSound(txzblk, view) A isCorrect(txblk, view) A
isAuthenticated(txblk, numID, table, c_tail) A
hasBalanceCompliance(txblk, view);

else

// The validation of a block

// Check the authenticity and consistency of the block

if isAuthenticated(txblk, numlID, table, c_tail) A tzblk.prev == c_tail
then

// Check the soundness and authenticity of each individual transaction

in the block

for tx € txblk.S do

msg = isSound(tz, view) A isAuthenticated(tz, numlID, table,
c_tail);

if more than one transaction from tx.owner € txblk.S then
L msg = false;

if msg == false then
L break;

else
// A consistency or authenticity violation found in the block
msg = false

if msg == true then

msg = signature on tablk.h by the validator’s signing key;
// Holding a replica of the validated transaction or block
insert txblk into the overlay as a node;

if tablk is a block then

if tablk is knocked-out in a fork then

drop tzblk from the overlay;

terminate;

else
// Adding transaction pointers for direct state retrieval (See
Section 4.7 for more details)
for tx € txblk.S do
L insert a transaction pointer to tz.owner into the overlay;

if txblk is a transaction then
while txblk is not included in a block do

L wait;

| drop tzblk from the overlay;

send msg to txblk.owner;

46

