
Designs and Analyses in

Structured Peer-to-Peer Systems

Sameh El-Ansary

A Dissertation submitted to
the Royal Institute of Technology (KTH)

in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

June 2005

The Royal Institute of Technology (KTH)
School of Information and Communication Technology

Department of Microelectronics and Information Technology
Stockholm, Sweden

TRITA-IMIT-LECS AVH 05:02
ISSN 1651-4076
ISRN KTH/IMIT/LECS/AVH-05/02–SE
and
SICS Dissertation Series 38
ISSN 1101-1335
ISRN SICS-D–38–SE

c© Sameh El-Ansary, June 2005

Printed by Universitetsservice US-AB 2005

To My Beloved Wife Mena

3

4

Abstract

Peer-to-Peer (P2P) computing is a recent hot topic in the areas of networking
and distributed systems. Work on P2P computing was triggered by a number of
ad-hoc systems that made the concept popular. Later, academic research efforts
started to investigate P2P computing issues based on scientific principles. Some
of that research produced a number of structured P2P systems that were collec-
tively referred to by the term “Distributed Hash Tables” (DHTs). However, the
research occurred in a diversified way leading to the appearance of similar con-
cepts yet lacking a common perspective and not heavily analyzed. In this thesis
we present a number of papers representing our research results in the area of
structured P2P systems grouped as two sets labeled respectively “Designs” and
“Analyses”.

The contribution of the first set of papers is as follows. First, we present the
principle of distributed k-ary search and argue that it serves as a framework for
most of the recent P2P systems known as DHTs. That is, given this framework,
understanding existing DHT systems is done simply by seeing how they are in-
stances of that framework. We argue that by perceiving systems as instances of
that framework, one can optimize some of them. We illustrate that by applying
the framework to the Chord system, one of the most established DHT systems.
Second, we show how the framework helps in the design of P2P algorithms by
two examples: (a) The DKS(n; k; f) system which is a system designed from the
beginning on the principles of distributed k-ary search. (b) Two broadcast algo-
rithms that take advantage of the distributed k-ary search tree.

The contribution of the second set of papers is as follows. We account for
two approaches that we used to evaluate the performance of a particular class
of DHTs, namely the one adopting periodic stabilization for topology mainte-
nance. The first approach was of an intrinsic empirical nature. In this approach,
we tried to perceive a DHT as a physical system and account for its properties
in a size-independent manner. The second approach was of a more analytical
nature. In this approach, we applied the technique of Master Equations, which
is a widely used technique in the analysis of natural systems. The application of
the technique lead to a highly accurate description of the behavior of structured
overlays.

Additionally, the thesis contains a primer on structured P2P systems that tries
to capture the main ideas prevailing in the field and enumerates a subset of the
current hot and open research issues.

5

6

Acknowledgments

I had the privilege to work with many experienced senior persons during my
research and to whom I would like to offer my thanks.

First, I would like to thank my supervisor Prof. Seif Haridi for offering me the
chance of being a member of his distinguished research team. Seif’s enthusiasm
was a strong source of encouragement. He was always keen to share his long ex-
perience with me and to teach me new things. He continuously and successfully
exerts lots of effort to provide the best research environment and to open new
horizons for myself and to all of his students.

Second, I would like to express my gratitude to Dr. Luc Onana Alima. Luc in-
troduced me to the field of distributed algorithms as a teacher. He, then, worked
with me as a partner and co-supervised the first part of this thesis. Luc has been
a serious working partner who offered maximum moral support and pushed me
to the limit whenever needed.

Third, during the second part of the thesis I was co-supervised by Prof. Erik
Aurell and Dr. Supriya Krishnamurthy. Erik showed me how physicists do di-
mensional analysis for systems. He was a constant source of support and inspira-
tion and acted as an example in efficient and hard work. Finally, the supervision
of Supriya at the end of the thesis opened to me a complete new scope of think-
ing by introducing me to the technique of Master Equations. She showed me how
systems of intricate complexity could be analyzed with high accuracy using very
basic probabilistic primitives.

I would like also to thank the team leader of the DSL lab at SICS Per Brand.
Per taught me distributed programming in Mozart. Moreover, he has always
been a very inspiring person. His strong intuition and shrewd remarks have
always opened the gate for new ideas.

I would like to thank my colleagues in the DSL lab at SICS, Konstantin Popow,
Erik Klintskog, Dragan Havelka, Fredrik Holmgren, Frej Drejhammar, Joe Arm-
strong for being a constant source of help. Ali Ghodsi was a colleague with
whom I had lots of enlightening discussions. We experienced together the stress
of weekend- and late-night-working in order to conduct simulations and write
papers.

On the personal level, I would like to thank my wife, my mother, my father
and Prof. Ahmed Rafea. If I was able to finish my PhD, that is because of them.
Dr. Mahmoud Rafea has been the friend who shared with me the joys and the
hardships of the first two years of living in Sweden.

7

8

Contents

1 Introduction 21

1.1 Thesis Motivation . 21
1.2 Thesis Organization . 22

2 A Structured P2P Overlay Networks Primer 29

2.1 What is P2P? . 29
2.2 Evolution of P2P Systems . 30

2.2.1 First Generation . 31
2.2.2 Second Generation . 32
2.2.3 Third Generation . 33

2.3 Definitions and Assumptions 34
2.4 Comparison Criteria . 36
2.5 DHT Systems . 36

2.5.1 Chord . 36
2.5.2 Pastry . 40
2.5.3 Tapestry . 43
2.5.4 Kademlia . 43
2.5.5 HyperCup . 46
2.5.6 DKS . 46
2.5.7 P-Grid . 48
2.5.8 Koorde . 51
2.5.9 Distance Halving . 53
2.5.10 Viceroy . 55
2.5.11 Ulysses . 57
2.5.12 CAN . 58

9

2.6 Summary . 60
2.6.1 The Overlay Graph . 60
2.6.2 Mapping Items Onto Nodes 62
2.6.3 The Lookup Process 62
2.6.4 Joins, Leaves and Maintenance 62
2.6.5 Replication and Fault Tolerance 63

2.7 Hot and Open Research Issues 64

I Designs 75

3 A Framework for P2P Lookup Services Based on k-ary Search 77

3.1 Introduction . 80
3.1.1 Motivation and contribution 81

3.2 The Chord lookup algorithm 82
3.2.1 The Chord identifier/search space 82
3.2.2 Key assignment . 82
3.2.3 The routing table . 83
3.2.4 Key location . 84
3.2.5 Complexity . 84

3.3 Chord as binary-search . 84
3.3.1 Complexity . 88

3.4 Lookup services as k-ary search 88
3.4.1 Complexity . 90

3.5 k-ary search for improving Chord 91
3.6 Conclusion and future work 93

4 The DKS(N, k, f) Infrastructure for P2P Applications 95

4.1 Introduction . 98
4.1.1 Motivations and contributions 98
4.1.2 An overview of our approach 99
4.1.3 Paper organization . 100

4.2 The concepts in the design of the DKS(N, k, f) 101
4.2.1 Underlying assumptions 101
4.2.2 The identifier space and notations 101
4.2.3 Key/value pairs management 102

10

4.2.4 Levels and views . 102

4.2.5 Responsibilities . 103

4.2.6 Routing information 104

4.3 DKS(N, k, f) networks construction 105

4.4 Correction-on-use . 107

4.5 Lookup in a DKS(N, k, f) . 108

4.6 Leave . 109

4.7 Failure . 109

4.8 Experimental results . 110

4.9 Concluding remarks and future work 112

5 Efficient Broadcast in Structured P2P Networks 117

5.1 Introduction . 120

5.2 Related Work . 121

5.3 Our Approach . 121

5.3.1 DHTs as Distributed k-ary Search 121

5.3.2 Problem Definition . 123

5.3.3 Solutions . 123

5.4 The Broadcast Algorithm . 124

5.4.1 System Model & Notation 124

5.4.2 Rules . 124

5.4.3 Correctness Argument 127

5.5 Cost Versus Guarantees . 127

5.6 Simulation Results . 128

5.7 Conclusion and Future Work 130

6 Self-Correcting Broadcast in Distributed Hash Tables 133

6.1 Introduction . 136

6.1.1 Contribution . 136

6.1.2 Related work . 137

6.1.3 Outline . 138

6.2 DKS overview . 138

6.2.1 Structure of the DKS 138

6.2.2 Routing tables . 139

6.2.3 Lookups . 140

11

6.2.4 Correction-on-use . 141
6.3 The broadcast algorithms . 142

6.3.1 Desired properties . 142
6.3.2 Informal description 142
6.3.3 Formal description . 143

6.4 Simulation Results . 147
6.5 Conclusion . 149

7 A Component-based P2P Simulation Environment 153

7.1 Motivation . 153
7.2 Architecture . 155

7.2.1 Overview . 155
7.2.2 The Traffic Component 155
7.2.3 The Topology Component 156
7.2.4 The Controller Component 156
7.2.5 The Node Abstraction 157
7.2.6 The Observation Channels Components 159

II Analyses 163

8 Physics-inspired Performance Evaluation of DHTs. 165

8.1 Introduction . 168
8.2 The physics-inspired approach 169

8.2.1 Motivation. 169
8.2.2 How do physicists deal with scale? 169
8.2.3 Was the approach useful in the computer science arena?170
8.2.4 “Data collapse”: the tool for observing intensive vari-

ables . 170
8.2.5 Application of the approach in distributed systems . 171

8.3 Background & assumptions about Chord 172
8.4 Intensive variable A: Density (ρ) 174

8.4.1 Application of the Methodology 174
8.4.2 Results. 177

8.5 Intensive variable B: Ratio of Perturbation to Stabilization (β) 177
8.5.1 Application of the Methodology 178

12

8.5.2 Results . 180
8.6 Related Work . 184
8.7 Note on the implementation. 186
8.8 Conclusion and future work 186

9 Analytical Study of DHTs under Churn 189

9.1 Introduction . 192
9.2 Related Work . 192
9.3 Assumptions & Definitions 193
9.4 The Analysis . 194

9.4.1 Distributional Properties of Inter-Node Distances . . 194
9.4.2 Successor Pointers . 200
9.4.3 Break-up (Network Disconnection) Probability 203
9.4.4 Lookup Consistency 206
9.4.5 Failure of Fingers . 206
9.4.6 Cost of Finger Stabilizations and Lookups 208

9.5 What is Churn? . 213
9.6 Discussion and Conclusion 214
A Our Implementation of Chord 218

A.1 Joins, Failures & Ring Stablization 218
A.2 Lookups and Stablization of Fingers 220
A.3 Failures . 222

10 Conclusions and Future work 223

1 Conclusion of Part I : Designs 223
2 Conclusion of Part II : Analyses 224
3 Future Work . 226

13

14

List of Figures

2.1 (a) A chord network with N = 16 populated with 6 nodes
and 5 items. (b) The general policy for Chord’s routing ta-
bles. (c) Example routing tables for nodes 3 and 11. 37

2.2 Illustration of how the Pastry node 10233102 chooses its
routing edges in an identifier space of size N = 2128 and
encoding base 2b = 4. 41

2.3 The pointers of node 3 (0011) in Kademlia. The same par-
titioning of the identifier space as in Pastry with binary-
encoded digits. 44

2.4 Illustration of how a DKS node divides the space in an iden-
tifier space of size N = 28 = 256. 47

2.5 Illustration of some interactions of P-Grid nodes. 50

2.6 (a) The pointers of all the nodes in a complete Koorde net-
work where N = 8. Every node n points to nodes of ids 2n
and 2n+1. (b) Examples of how nodes 1, 3 and 4 reach other
nodes by matching the destination id digit by digit starting
from the most significant bit. 52

2.7 (a) The pointers of all the nodes in a complete Distance-
Halving network where N = 8. (b) Examples of how nodes
1 reaches other nodes by matching the destination id digit
by digit starting from the least significant bit. 54

2.8 The Butterfly edges of a complete Viceroy network with
N = 16 nodes. (a) The down edges. (b) The up edges. 56

2.9 The process of 5 nodes joining a CAN network. 58

15

2.10 A classification of DHT systems based on the size of the
node state and underlying graph. 61

3.1 An example Chord network with 16 identifiers. 83

3.2 Decision tree for a query originating at node 0 in a 16-node
network applying binary search 87

3.3 Decision tree for a query originating at node 0 in a 16-node
network applying 4-ary search. 89

3.4 Evolution of routing table entries as a function of the system
size. 92

4.1 The average, the 1st and the 99th percentile of the lookup
length as a result of increasing the lookup traffic in a sys-
tem bootstrapped with 500 nodes and 3500 joins are done
concurrently with lookups. 111

4.2 The average lookup length as a result of increasing the lookup
traffic in a system of actual size 210 while 10% of the nodes
leave, and another 10% join concurrently. 112

4.3 The 99th percentile of the lookup length as a result of in-
creasing the lookup traffic in a system of actual size of 210

while 10% of the nodes leave, and another 10% join concur-
rently. 113

5.1 (a) Decision tree for a query originating at node 0 in a fully-
populated 8-node Chord network. (b) The spanning tree
derived from the decision tree by removing the virtual hops. 122

5.2 Initiating a Broadcast Message 125

5.3 Processing a Broadcast Message 126

5.4 Comparison of number of messages needed to cover all nodes
using efficient broadcast and Gnutella-like flooding in a struc-
tured network. 129

5.5 Comparison of percentage of redundant messages gener-
ated by efficient broadcast and Gnutella-like flooding in a
structured network. 129

16

6.1 a) A DKS network with k = 4 and N = 64, with the nodes
21, 24, 27, 48, 57, and 63 present. The figure shows node 21’s
views, V1, V2 and V3, and how each view is partitioned into
k = 4 equally sized intervals. The dark nodes represent
the responsible nodes from node 21’s view. b) Node 21’s
routing table showing each interval and its responsible node. 140

6.2 A node with identifier 26 joins the network depicted in fig-
ure 6.1. As node 21 is not the predecessor of node 26, it will
not immediately be informed about node 26’s existence. Hence
it will continue to, erroneously, consider node 27 as respon-
sible for I2

1 . If node 21 sends a lookup message to node 27,
node 21 will find out about node 26’s existence by correction-
on-use. Alternatively, node 21 will become aware of node
26’s existence if node 26 sends a lookup message to node 21. 141

6.3 Algorithm 1 . 145

6.4 Algorithm 2. The rules R12 are R32 are the same as rules
R11 and R31 in figure 6.3. 146

6.5 Experiment 1: a) Shows the distance from the optimal net-
work b) Shows the percentage of correction messages 147

6.6 Experiment 2: Shows the convergence to a maximally op-
timal network while performing broadcasts with algorithm
1, 2. 148

7.1 Simulator Architechture . 154

7.2 The Node Abstraction. 158

8.1 The average lookup length as a function of ρ and N 175

8.2 Data collapse of the average lookup length as a function of
ρ and N compared to 0.5 log2 ρ. 176

8.3 Example experiments showing the average normalized pop-
ulation size of 128 nodes under perturbation (joins/failure)
and the average distance from optimal network under two
different rates of perturbation (µ) and stabilization (τ) but
the same β = µ

τ . 179

17

8.4 The average lookup path length 〈L〉 as a function of the
speculated intensive variable β (the ratio of average time
between perturbation events µ and average time between
stabilization events τ). 181

8.5 The average distance from optimal network 〈δ〉 as a func-
tion of the speculated intensive variable β. 182

8.6 The deviation from optimal average lookup path length 〈L〉−
〈Lopt〉 as a function of the speculated intensive variable β. . . 183

8.7 Data collapse of figure 8.6 obtained by using β′. 184
8.8 Data collapse of figure 8.5 obtained by using β′. 185

9.1 (a) Case when n and p have the same value of fink.node.
(b) Case where a newly joined node p copies the kth entry
of its successor node n as the best approximation for its own
kth entry (by the join protocol). In this case, there could be
a node o which is the ’correct’ entry for p.fink.node. How-
ever, since p is newly joined, the only information it has ac-
cess to is the finger table of n. 198

9.2 Changes in W1, the number of wrong (failed or outdated)
s1 pointers, due to joins, failures and stabilizations. 202

9.3 Theory and Simulation for w1(r, α), d1(r, α) 203
9.4 Theory and Simulation for Pbu(2, r, α) 205
9.5 Theory and Simulation for I(r, α) 205
9.6 Changes in Fk, the number of failed fink pointers, due to

joins, failures and stabilizations. 206
9.7 Cases that a lookup can encounter with the respective prob-

abilities and costs. 209
9.8 Theory and Simulation for fk(r, α), and L(r, α) 211
9.9 Joins and Ring Stabilization Algorithms 219
9.10 Initialization and Stabilization of Fingers 220
9.11 The Lookup Algorithm . 221

18

List of Tables

2.1 Summary of Node State and Lookup Path Length for the
different categories of systems. 61

2.2 The different policies for mapping items onto nodes. 62
2.3 The different policies overlay graph maintenance policies. . 63

3.1 Lookup length and routing information required in three
DHT-based lookup services 81

3.2 Chord(d) vs. k-ary Chord . 91
3.3 Number of routing entries for different system sizes with

k = x = 4 . 92

4.1 Responsibilities at node n. 103
4.2 Routing table of the DKS(N, k, f) node n. 104

5.1 Flooding Approach vs. DHT Approach 120

9.1 Gain and loss terms for Int(x) the number of intervals of
length x. 195

9.2 Gain and loss terms for W1(r, α): the number of wrong first
successors as a function of r and α. 201

9.3 Gain and loss terms for Nbu(2, r, α): the number of nodes
with dead first and second successors 204

9.4 Some of the relevant gain and loss terms for Fk, the number
of nodes whose kth fingers are pointing to a failed node for
k > 1. 207

19

20

Chapter 1

Introduction

1.1 Thesis Motivation

How can we reason better about structured Peer-to-Peer (P2P) overlay net-
works? This question was always in the background while our research
team was observing the quickly-evolving and diversified results in the
emerging field of structured P2P systems. In this thesis, we report two
main principles that we followed and that led us to a better reasoning
about structured P2P systems. These two principles are:

• Distributed k-ary search as a common foundation of a major class of
structured P2P systems.

• The perception of structured P2P systems as physical systems for
better analysis.

The thesis is composed of two parts each corresponding to the research
results obtained by applying the respective principle. The thesis title (De-
signs and Analyses in Structured P2P Networks) reflects the two different na-
tures of its two parts. “Designs” is the name of the first part since the prin-
ciple of distributed k-ary search was helpful in the design of the DKS sys-
tem as well as additional services such as the efficient and self-correcting
broadcast algorithms. “Analyses” is the name of the second part, where
the focus was not on designing new systems/algorithms but rather on a
meticulous analysis of already-existing structured overlays.

21

22 1.2. THESIS ORGANIZATION

This thesis summarizes the research efforts of its author as a member
of a team from SICS and KTH researching structured peer-to-peer sys-
tems in the context of the European projects PEPITO (IST-2001-33234) and
EVERGROW (IST-2004-001935) as well as the Swedish Vinnova projects
PPC and AMRAM.

1.2 Thesis Organization

The thesis is written in the “collection-of-papers” style. Since each paper
has a number of authors, we report here the individual contribution of the
thesis author in each paper.

Chapter 1: Introduction. In this chapter we explain the motivation of the
thesis and its organization.

Chapter 2: Structured P2P Overlay Networks Primer. In this chapter,
first, we give an idea about the evolution of P2P systems in general.
Second, we focus on structured peer-to-peer systems by enumerat-
ing some of the prominent systems in the field and explaining the
basic principles of their operation. Finally, we enumerate some of
the current hot research topics. The chapter is a version of:

Sameh El-Ansary and Seif Haridi, An Overview of Structured P2P
Overlay Networks, Book chapter to appear in the upcoming book:
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless
and Peer-to-Peer Networks, (Editor: Prof. Jie Wu), CRC Press, July
2005.

Thesis Author Contribution: This chapter required the reading and
selection of papers as well as devising comparison criteria and gath-
ering of open issues. The thesis author has performed all of the
above activities and written this chapter under the supervision of
Prof. Seif Haridi.

CHAPTER 1. INTRODUCTION 23

Part I: Designs

Chapter 3: A Framework for Peer-To-Peer Lookup Services Based

On k-ary Search. This chapter contains the first technical re-
port where we tackle the issue of a common framework for the
understanding of DHT systems. We show the importance of the
framework by showing that the perception of the Chord system
as an instance of the distributed k-ary search framework leads
to a substantial optimization in its performance. The work is
published in:

Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif
Haridi. A Framework for Peer-To-Peer Lookup Services
Based On k-ary Search. Technical Report TR-2002-06, SICS,
May 2002.

Thesis Author Contribution: The thesis author together with
Luc Onana co-formulated the common framework based on the
idea of distributed k-ary search and co-applied the framework
to optimize the Chord system. The work was done under the
supervision of Luc Onana, Per Brand and Seif Haridi.

Chapter 4: The DKS(N, k, f) Infrastructure for P2P Applications.

In this paper, we show the design of the DKS system which is a
DHT system designed from the beginning on the principles of
distributed k-ary search. We also show by means of simulation
that the “correction-on-use” technique that is introduced in this
paper is feasible provided that enough lookups are taking place
in the overlay. The work is published in:

Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif
Haridi. DKS(N, k, f): A Family of Low Communication,
Scalable and Fault-tolerant Infrastructures for P2P Applica-
tions. In the 3rd International Workshop on Global and Peer-
To-Peer Computing on Large-scale Distributed Systems - CC-
GRID2003, Tokyo, Japan, May 2003.

Thesis Author Contribution: The DKS system is designed by
Luc Onana. The role of the thesis author in this paper was to im-

24 1.2. THESIS ORGANIZATION

plement the DKS system using a component-based simulation
environment and to design simulations to show the validity of
the various properties offered by its design; most importantly
the ability of correction-on-use to act as the sole correction tech-
nique. The work was done under the supervision of Luc Onana,
Per Brand and Seif Haridi.

Chapter 5: Efficient Broadcast in Structured P2P networks. This
chapter contains a paper that, first, emphasizes the perception
of a class of DHT systems as an instance of the distributed k-
ary search framework. Second, shows that this perception can
be used to build an efficient broadcast algorithm with optimal
messaging cost by traversing the distributed k-ary search tree.
The work published in:

Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif
Haridi. Efficient broadcast in structured P2P networks. In
the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), Berkeley, CA, USA, February 2003.

Thesis Author Contribution: The initial idea of performing
broadcasts in a structured network is of Luc Onana. The the-
sis author contributed with the following: i) Suggested the ex-
ploitation of the structured topology for minimizing the num-
ber of messages, ii) Co-designed with Luc the broadcast algo-
rithm, iii) Implemented the algorithm and designed the simu-
lation experiments required for the evaluation of the algorithm.
The work was done under the supervision of Luc Onana, Per
Brand and Seif Haridi.

Chapter 6: This chapter contains a second paper on efficient broad-
casting where we combine broadcasting with the correction-on-
use technique from chapter 4 to make the broadcast correct the
overlay. The work is published in:

CHAPTER 1. INTRODUCTION 25

Ali Ghodsi, Luc Onana Alima, Sameh El-Ansary, Per Brand
and Seif Haridi, Self-Correcting Broadcast in Distributed
Hash Tables, In the 15th International Conference on Parallel and
Distributed Computing and Systems (PDCS 2003), Marina del
Rey, CA, USA, November 3-5, 2003.

Thesis Author Contribution: This paper involved algorithm
design, metric design and implementation. The algorithm de-
sign is mainly that of Luc Onana. The thesis author: i) Designed
the “Distance-from-optimal-Network” metric used for observ-
ing the convergence of the network. ii) Co-simulated with Ali
Ghodsi the algorithm on the simulation environment designed
by the thesis author. The work was done under the supervision
of Luc Onana, Per Brand and Seif Haridi.

Chapter 7: A Component-based Simulation environment. In this
chapter, we describe the architecture of the simulation environ-
ment designed by the thesis author and that was used through-
out the above papers. The environment adopts a component-
based architecture building on previous experiences available
at the DSL lab at SICS.

Part II: Analyses

Chapter 8: Physics-inspired Performance Evaluation of DHTs.

This chapter combines three publications in which we perceive
a structured overlay as a physical system and try to find in-
tensive (size-independent) variables that describe its behavior.
The main result of this work is the size-independent descrip-
tion of the performance of a structured overlay as a function
of the ratio of perturbation (joins/failures) to stabilization. The
description is obtained empirically from extensive simulation.
The three summarized publications are:

26 1.2. THESIS ORGANIZATION

Erik Aurell and Sameh El-Ansary, A Physics-Style Approach
to Scalability of Distributed Systems. In the LNCS Post-
Proceedings of the Global Computing 2004 Workshop, Rovereto,
Italy, March 2004.

Sameh El-Ansary, Erik Aurell, Per Brand and Seif Haridi, Ex-
perience with a physics-style approach for the study of self
properties in structured overlay networks, In the International
Workshop on Self-* Properties in Complex Information Systems,
Bertinoro, Italy, May 2004.

Sameh El-Ansary, Erik Aurell and Seif Haridi, A Physics-
inspired Performance Evaluation of a Structured Peer-to-Peer
Overlay Network, In the International Conference on Parallel
and Distributed Computing and Networks (PDCN 2005), Inns-
bruck, Austria, February 2005.

Thesis Author Contribution: Erik Aurell suggested the idea
of searching for intensive variables in structured overlays. The
thesis author suggested using the population density and the
ratio of perturbation to stabilization as candidates for intensive
variables. All the simulation and analysis activities were per-
formed by the thesis author. The work was done under the
supervision of Erik Aurell, Per Brand and Seif Haridi.

Chapter 9: Analytical Study of DHTs under Churn. In this chap-
ter, we take the performance analysis of structured overlays be-
yond empirical observations. We present a complete analytical
study of a structured overlay undergoing perturbation using
a Master Equations -based approach. The technique of Mas-
ter Equations is traditionally used in non-equilibrium statisti-
cal mechanics to describe steady-state or transient phenomena.
Simulations are used to verify all theoretical predictions instead
of being the primary investigation tool as is the case in chapter
7. We also discuss briefly how churn may actually be of differ-
ent types and the implications this will have on the functioning
of DHTs in general. The work was reported in the following

CHAPTER 1. INTRODUCTION 27

two publications where the paper is a small of version of the
technical report:

Sameh El-Ansary, Supriya Krishnamurthy, Erik Aurell and
Seif Haridi, An Analytical Study of Consistency and Perfor-
mance of DHTs under Churn. Technical Report TR-2004-12,
SICS, October 2004.

Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell and
Seif Haridi, A Statistical Theory of Chord under Churn. In
the 4th Annual International Workshop on Peer-To-Peer Systems
(IPTPS 05), Ithaca, NY, USA, February 2005.

Thesis Author Contribution: The idea of trying to analytically
derive the functional form of the cost-performance trade-off curve
is that of the thesis author. The actual derivation of the func-
tional form using Master Equations was entirely done by Supriya
Krishnamurthy. The thesis author’s role was to: i) Decide the
quantities that are interesting to analyze, ii) Come up with a
chord implementation that is capable of validating the model
suggested by Supriya and making sure that the simplifications
of the model are not too unrealistic, ii) Guide the presenta-
tion of the results to make it palatable to a computer science
audience. Finally, Erik Aurell and Sameh cooperated to inde-
pendently validate and slightly refine the analytical results and
situated the work by comparing it to related research results.
The work was done under the supervision of Supriya Krishna-
murthy, Erik Aurell and Seif Haridi.

28 1.2. THESIS ORGANIZATION

Chapter 2

A Structured P2P Overlay
Networks Primer

2.1 What is P2P?

Like any new trend that is undergoing evolution, Peer-To-Peer systems do
not have a precise definition, instead, many definitions were developed
trying to reflect the new features of some phase in the evolution process.
The following are some definitions presented in the P2P literature:

Oram: P2P is a class of applications that takes advantage of re-
sources – storage, cycles, content, human presence – available
at the edges of the Internet. Because accessing these decentral-
ized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, P2P nodes must
operate outside the DNS system and have significant or total
autonomy from central servers [47, 46].

Miller: P2P is a network architecture in which each computer
has equivalent capability and responsibility. This is in contrast
to the traditional client/server network architecture, in which
one or more computers are dedicated to serving the others.
However, we need a more complex definition: P2P has five

29

30 2.2. EVOLUTION OF P2P SYSTEMS

key characteristics. (i) The network facilitates real-time trans-
mission of data or messages between the peers. (ii) Peers can
function as both client and server. (iii) The primary content of
the network is provided by the peers. (iv) The network gives
control and autonomy to the peers. (v) The network accommo-
dates peers that are not always connected and that might not
have permanent Internet Protocol (IP) addresses [41].

P2P Working Group: P2P computing is the sharing of com-
puter resources and services by direct exchange between sys-
tems. These resources and services include the exchange of
information, processing cycles, cache storage, and disk stor-
age for files. Peer-to-peer computing takes advantage of ex-
isting desktop computing power and networking connectivity,
allowing economical clients to leverage their collective power
to benefit the entire enterprise. [24]

As one can observe from the different definitions, there is a strong con-
sensus on some concepts such as: Resource sharing, autonomy/decentralization,
dynamic IP addresses, and a client-and-server dual role.

2.2 Evolution of P2P Systems

The term Peer-to-Peer is a relatively new term in the areas of networking
and distributed systems. According to Oram, P2P computing started to be
a hot topic by the middle of the year 2000 [47]. During its short history,
P2P passed through several generations. Transitions through generations
were motivated by different goals. While most surveys merge what we
present as first and second generations, we distinguish them to highlight
different transition motives.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 31

2.2.1 First Generation

Basic Idea

The first generation of P2P systems started with the appearance of the file-
sharing application Napster [47, 44, 45]. The main contribution of Napster
was the introduction of a network architecture where machines are not
categorized as client and server but rather as machines that offer and con-
sume resources. Consequently, the term “Peer” was a suitable term for
a participant in that system as all participants are more or less of equal
functionality. However, in order for machines to locate files in the shared
space, Napster’s solution was to provide a central directory. That is, the
Napster system was composed of two services, a storage service and a di-
rectory service. The storage was decentralized and functioning in a Peer-
to-Peer style while the directory service was centralized. A participant in a
Napster network also had two main characteristics: i) A dynamic Internet
address, and ii) Freedom to join and leave the network at any time.

Discussion

The Napster system faced problems that led to its decay as a mainstream
P2P system. The main problem was a political problem, due to the copy-
righted music files that were illegally shared among participants of the
system. Legal problems hindered Napster from continuing to offer its ser-
vices. Differently said, the central coordination represented by the Nap-
ster directory was a single point of failure with the special case that the
failure is a political/legal failure and not a technical one. From a techni-
cal point of view, the centralized directory service offers a low messaging
cost for locating items in the storage space but the load on the directory
increases linearly with the number of participants which, anyhow, makes
it unscalable.

32 2.2. EVOLUTION OF P2P SYSTEMS

2.2.2 Second Generation

Basic Idea

The central coordination in the first generation led to the transition to a
new genre of P2P systems where the focus is on the elimination of the
central coordination. The second generation started with applications like
Gnutella [23] and Freenet [19]. A new participant in such systems must
know an already-participating member and then uses a flooding algo-
rithm to gain knowledge about other participants. Similarly, a partici-
pant performs a flooding algorithm by asking all of his neighbors about
a given query. His neighbors act similarly and the process is stopped by a
query embedded Time-To-Live value that prevents further forwarding of
queries.

Discussion

Second generation systems solved the problem of central coordination.
However, the problem of scalability became more severe because of high
network traffic induced by the flooding algorithms as shown in studies
such as [37, 55]. Moreover, there are no guarantees of finding a data item
or a resource that exists in a Gnutella network because the search scope is
limited. Freenet follows a slightly better approach which is the document
routing model through which a data item d is inserted in a node with an
identifier that is most similar to the identifier of d. During search, a query
is forwarded guided by the identifier of the data item. Due to the random
nature of the Freenet network, guarantees on finding items are low.

An optimization to the flooding/gossiping approach adopted in sec-
ond generation systems was the introduction of the notion of super-peers
that was initially adopted in the Kazaa [30] system and later in the Gnutella
system as well. The optimization allows for some nodes to act as directory
services and thus reduces the amount of flooding needed to locate data.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 33

2.2.3 Third Generation

Basic Idea

The simultaneous “beauty” and “ugliness” of second generation overlay
networks attracted academic researchers from the networking and the dis-
tributed systems communities. The “beauty” lies in the simplicity of the
solution and its ability to completely diffuse central authority and legal
liability. From a computer science point of view, this elimination of cen-
tral control is very attractive for - among other things - eliminating single
points of failure and building large-scale distributed systems. The “ugli-
ness” lies in the huge amount of induced traffic that renders the solution
unscalable [37, 55]. The problem of having a scalable P2P overlay net-
work with no central control became a scientifically challenging problem
and the efforts to solve it resulted in the emergence of what is known as
“structured P2P overlay networks”.

The third generation of P2P systems was initiated by research projects
such as Chord [61, 62], CAN [53], Pastry [56], Tapestry [70] and P-Grid
[1]. Those projects aim at providing what is known as a Distributed Hash
Table (DHT) abstraction. A node (Peer) in such systems, acquires an iden-
tifier based on a cryptographic hash of some unique attribute such as its
IP address or its public key. An identifier for a data item is also obtained
through hashing. The hash table actually stores data items as values in-
dexed by their corresponding keys. That is, node identifiers and key-
value pairs are both hashed to one identifier space. The nodes are then
connected to each other in a certain predefined topology, e.g. a circular
space in Chord, a d-dimensional Cartesian space in CAN and a mesh in
Tapestry and key-value pairs are stored at nodes according to the given
structure. Thanks to the structured topology, data lookup becomes a rout-
ing process with low (typically logarithmic) routing table size and maxi-
mum path length. Unlike second generation systems, DHTs provide high
data location guarantees.

34 2.3. DEFINITIONS AND ASSUMPTIONS

Discussion

DHTs were introduced to let a set of cooperating peers act as a distributed
data structure with well-defined operations, namely a distributed hash ta-
ble with the two primitive operations Put(key,value) and Get(Key).
The Put operation should result in the storage of the value at one of the
peers such that any of the peers can perform the Get operation and reach
the peer that has the value. More importantly, both operations need to take
a “small” number of hops. A first naive solution would be that every peer
knows all other peers, and then every Get operation would be resolved in
one hop. Apparently, that is not scalable. Therefore, a second constraint is
needed. Each node should know a “small” number of other peers. From
a graph-theory point of view, this means that a directed graph of a certain
known “structure” rather than a random graph needs to be constructed
with scalable sizes of both the outgoing degree of each node and the di-
ameter of the graph.

Given the desirable properties of scalability and high guarantees while
meeting the requirements of full decentralization, DHTs are currently con-
sidered in research communities as a reasonable approach to routing and
location in P2P systems. While having a common principle, each system
has some relative advantages. e.g., The Chord system has the property of
simple design. Tapestry and Pastry address the issue of proximity routing.
P-Grid excels in dealing with unbalanced distributions of identifiers. The
most attractive property in all current DHT systems is self-organization.
Due to the focus on the absence of central authority, DHTs provide mech-
anisms by which the structural properties of the network are maintained
while the peers are continuously joining and leaving it.

2.3 Definitions and Assumptions

Values. The set of values V such as files, directory entries etc.. Each value
has a corresponding key from the set Keys(V). If a value is a file, the key
could be, for instance, its checksum, a combination of owner, creation date
and name or any such unique attribute.

Nodes. The set P of machines/processes also referred to as nodes or

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 35

peers. Keys(P) is the set of unique keys for members of P , usually the IP
addresses or public keys of the nodes.

The Identifier Space. A common and fundamental assumption of all
DHTs is that the keys of the values and the keys of the nodes are mapped
into one range using a hashing function. For instance, the IP addresses
of the nodes and the checksums of files are hashed using SHA-1 [18] to
obtain 128-bit identifiers. The term “identifier” is used to refer to hashed
keys of items and of nodes. The term “identifier space” refers to the range
of possible values of identifiers and its size is usually referred to by N . We
use id as an abbreviation for identifier most of the time.

Items. When a new value is inserted in the hash table, its key is saved
with it. We use the term “item” to refer to a key-value pair.

Equivalence of Nodes. The operations of adding a value, looking up
a value, adding a new node (join), removing an existing node (leave) are
all possible through any node p ∈ P .

Autonomy of Nodes. The addition or removal of any node is a deci-
sion taken locally at that node and there is a distinction between graceful
removals of nodes (leaves) and ungraceful removals (failures).

The first contact. Another fundamental assumption in all DHTs is that
to join an existing set of peers who already formed an overlay network, a
new peer must know some peer in that network. This knowledge in many
systems is assumed to be acquired by some out-of-band method. Some
systems discuss the possibility of obtaining the first contact through IP
multicast, however, it is an orthogonal issue to the operation of any DHT.

Ambiguous terms. Since we are forced to use different terminology
to refer to the same logical entities in different contexts, we try to resolve
those ambiguities early by introducing the following equalities. Nodes =
peer = contact= reference, overlay network = overlay graph, identifier=id,
edge = pointer, “point to”= “be aware of” = “keep track of”, routing table
= outgoing edges, diameter = lookup path length, lookup = query. routing
table size = outgoing arity. Also some times, letters like n, s, t, x are used
to refer to nodes and values as well as their identifiers but the meaning
should be clear from the context.

36 2.4. COMPARISON CRITERIA

2.4 Comparison Criteria

The Overlay Graph. This is the main criteria that distinguishes systems
from each other. For each overlay graph, we want to know how the graph
looks like and what is the outgoing arity of each node in the graph.

Mapping Items Onto Nodes. For a given overlay graph, we want
to know the relation between node ids and item ids, i.e. at which node
should an item be stored?

The Lookup Process. A tightly coupled property with the overlay
graph is how lookups are performed and what is the typical performance.

Joins, Leaves and Maintenance. How a new node is added to the
graph and how a node is gracefully deleted from the graph? Joins and
leaves make the graph change constantly and some maintenance process
is usually required to cope with such changes, so how does this process
take place and what is its cost?

Replication and Fault Tolerance. In addition to graceful removal of
nodes, failures are usually harder to deal with. Replication is a tightly
coupled property since it can be a technique to overcome failures effect or
a method of improving efficiency.

Upper Services and Applications. When applicable, we enumerate
some of the applications and services developed using a certain system.

Implementation. Since many systems are of a completely theoretical
nature even for their services and applications, we try to give and idea
about any available implementations of a system.

2.5 DHT Systems

2.5.1 Chord

The Overlay Graph. Chord [61, 62] assumes a circular identifier space
of size N . A Chord node with identifier u has a pointer to the first node
following it clockwise on the identifier space (Succ(u)) as well as the first
node preceding it (Pred(u)). The nodes therefore form a doubly linked list.
In addition to those, a node keeps M = log2(N) pointers called fingers.
The set of fingers of node u is Fu = {(u, Succ(u + 2i−1))}, 1 ≤ i ≤ M ,
where the arithmetic is modulo N .

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 37

(a)

(b)

(c)

Figure 2.1: (a) A chord network withN = 16 populated with 6 nodes and

5 items. (b) The general policy for Chord’s routing tables. (c) Example

routing tables for nodes 3 and 11.

38 2.5. DHT SYSTEMS

The intuition of that choice of edges is that a node perceives the circular
identifier space as if it starts from its id. The edges are, then, chosen such
as to be able to partition the space into two halves, partition one of the
halves into two quarters, and so forth.

In Figure 2.1(a), we show a network with an id space N = 16. Each
node has M = log2(N) = 4 edges. The network contains nodes with ids
0, 3, 5, 9, 11, 12. The general policy for constructing routing tables is shown
in figure 2.1(b). Node n chooses its pointers by positioning itself at the start
of the identifier space. It chooses to have the pointers to the successors of
the ids n + 20, n + 21, n + 22, and n + 23. The last pointer n + 23, divides
the space into two halves. The one before it n + 22 divides the first half
into two quarters and so forth. However, there may not exist a node at the
desired position so its successor is taken instead. Figure 2.1(c) shows the
routing entries of node 3 and 11.

Mapping Items Onto Nodes. As shown in figure 2.1(a), an item is
stored at the first node that follows clockwise on the circular identifier
space. If items with ids 2, 3, 6, 10,13 are to be stored in the network given
above, then {2,3} will be stored at 3; {6} at 9; {10} at 11; and {13} at 0.

The Lookup Process. The lookup process comes as a natural result of
how the id space is partitioned. Both the insertion and querying of items
depend on finding the successor of an id. For example, assume that node
11 wants to insert a new item with id 8, the lookup is forwarded to node
3, which is the closest preceding finger - from the point of view of 11 -
to the id 8. Node 3 will act similarly and forward the query to node 5
because 5 is the closest preceding finger for 8 from the point of view of 5.
Node 5 finds that 8 is between itself and its successor 9. And therefore,
returns 9 as an answer to the query through the reverse path1. In all cases,
upon getting the answer, node 11’s application layer should contact node
9’s application layer and ask for the storage of some value under the key
8. Any node looking for the key 8 can act similarly and in no more than

1This is known as the recursive method. Another suggested approach in the Chord
papers is an iterative method where all the answers path by the node at which the lookup
originated, i.e. instead of the path being 11 → 3 → 5 → 3 → 11, in an iterative lookup the
path will be 11 → 3 → 11 → 5 → 11. A third approach adopted in other systems like e.g.
[4] would be to continue to the destination and send the result to the origin of the lookup,
i.e. 11 → 3 → 5 → 9 → 11.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 39

M hops2, a node will discover the node at which 8 is stored. In general,
under normal conditions a lookup takes O(log2(N)) hops.

Joins, Leaves and Maintenance. To join the network, a node n per-
forms a lookup for its own id through some first contact in the network
and inserts itself in the ring between its successor s and the predecessor
of s using a periodic stabilization algorithm. Initialization of n’s routing
table is done by copying the routing table of s or letting s lookup each
required edge of n. The subset of nodes that need to adjust their tables
to reflect the presence of n, will eventually do that because all nodes run
a stabilization algorithm that periodically goes through the routing table
and looks up the value of each edge. The last task is transfer part of the
items stored at s, namely items with id less than or equal to n need to be
transferred to n and that is also handled by the application layers of n and
s.

Graceful removals (leaves) are done by first transferring all items to
the successor and informing the predecessor and successor. The rest of the
fingers are corrected by the virtue of the stabilization algorithm.

Replication and Fault Tolerance. Ungraceful failures have two nega-
tive effects. First, ungraceful failures of nodes cause loss of items. Second,
part of the ring is disconnected leading to the inability of looking up cer-
tain identifiers. Let alone if a set of adjacent nodes fail simultaneously.
Chord tackles this problem by letting each node keep a list of the log2(N)
nodes that follow it on the circle. The list serves two purposes. First, if
a node detects that its successor is dead, it replaces it with the next en-
try in its successor list. Second, all the items stored at a certain node are
also replicated on the nodes in the successor list. For an item to be lost
or the ring to be disconnected, log2(N) + 1 successive nodes have to fail
simultaneously.

Upper Services and Applications. A couple of applications such as
a cooperative file-system [14], a read/write file system [42] and a DNS
directory [13] were built on top of chord. As a general purpose service, a
broadcast algorithm was also developed for Chord [16].

Implementation. The main implementation of Chord is that by its au-
thors in C++ at [64] where a C++ discrete-event simulator is also available.

2Chord counts a remote procedure call and the response to it as one hop.

40 2.5. DHT SYSTEMS

Naanou [27] is a C# implementation of Chord with a file-sharing applica-
tion on top of it.

2.5.2 Pastry

The Overlay Graph. The overlay graph design of Pastry [56] in addition
to aiming to achieving logarithmic diameter with a logarithmic node state,
also tries to target the issue of locality. In general, as a result of obtaining
the node ids by hashing IP numbers/Public Keys, nodes with adjacent
node ids may be farther apart geographically. Differently said, two ma-
chines in one country, would communicate through a machine in another
continent just because the hash of their ids will be far apart in the id space.

Pastry assumes a circular identifier space and each node has a list con-
taining L

2 successors and L
2 predecessors known as the leaf set. A node

also keeps track of M nodes that are close according to another metric
other than the id space like, for instance, network delay. This set is known
as the neighborhood set and is not used during routing but used for main-
taining locality properties. The third type of node state is the main routing
table. It contains ⌈log2b(N)⌉ rows and 2b − 1 columns. L, M and b are
system parameters.

Node ids are represented as string of digits of base 2b. In the first row,
the routing table of a node contains node ids that have a distinct first digit.
Since the digits are of base 2b, a node needs to know 2b − 1 nodes for each
possible digit except its own.

The second row of a node with id n contains 2b − 1 nodes that share
the first digit with n but differ in the second digit. The third row contains
nodes that share the first and second digit of n but differ in the third and
so forth. We stress that −1 in 2b − 1 is because in each row the node it-
self would be the best match for one of the columns, therefore we do not
need to keep an address of it. Figure 2.2 illustrates how the the id space is
partitioned using this prefix matching scheme.

As one can observe, for each of the constraints about the node ids con-
tained in a routing table, there exists many satisfying nodes. Therefore the
node with the lowest network delay or the best according to some other
criteria is included in the routing table.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 41

Figure 2.2: Illustration of how the Pastry node 10233102 chooses its rout-

ing edges in an identifier space of size N = 2128 and encoding base

2b = 4.

42 2.5. DHT SYSTEMS

Mapping Items Onto Nodes. An item in Pastry is stored at the node
that is numerically closest to the id of the item. Such a node will have the
longest matching prefix.

The Lookup Process. To locate the closest node to an id x, a node n
checks first if x falls within the range of node ids covered by its leaf set.
If so, it is forwarded to such node. Otherwise, the lookup is forwarded to
the node in the interval that x belongs to, that is to a node that shares more
digits than the shared prefix between n and x. If no such node is found in
n’s routing table, the lookup is forwarded to the numerically closest node
to x. The later case does not happen so often provided that the ids are
uniformly distributed. With the matching of one digit of the sought id in
each hop, after log2b(N) hops a lookup is resolved.

Joins, Leaves and Maintenance. When a node n joins the network
through a node t, then t is usually in the proximity of n and thus the
neighborhood set of t is suitable for n. Due to the construction of the rout-
ing tables in Pastry, n performs a lookup for its own id to figure out the
numerically closest node s to n. It can take the ith row from the ith node
on the path from t to s and use those rows in initializing its routing table.
Moreover, the leaf set of s is a good initialization for the leaf set of n. Fi-
nally, n informs every node in its neighborhood set, leaf set and routing
table of its presence. The cost is about 3 × 2b log2b N .

Node departures are detected as failures and repaired in a routing table
by asking a node in the same row of the failed node for its entry on the
failed position.

Replication and Fault Tolerance. Pastry replicates an item on the k
closest nodes in its leaf set. This serves in saving an item after a node loss
and in the mean time, the replicas act as cached copies that can contribute
in finding an item more quickly.

Upper Services and Applications. A number of applications and ser-
vices were developed on top of Pastry such as, SCRIBE [11] for multicas-
ting and broadcasting. PAST [57], an archival storage system. SQUIR-
REL [28], a co-operative web caching system. SplitStream [10], a high-
bandwidth content distribution .

Implementation. FreePastry [20] is an open-source Java implementa-
tion of the Pastry system.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 43

2.5.3 Tapestry

Tapestry [69] is one of the earliest and largest efforts on structured P2P
overlay networks. Like Pastry, it is based on the earlier work of a Plaxton
[52] mesh. We will not describe the details of Tapestry due to the large sim-
ilarity with Pastry. However, we have to point out that as a software, it is
probably one of the most mature implementations of a structured overlay
network. In addition to network simulation, Tapestry has been evaluated
using a more realistic environment, namely PlanetLab [51], a globally dis-
tributed platform with machines all over the world that is used for testing
large-scale systems.

Tapestry is a corner-stone project in the larger Oceanstore [31] project
for global-scale persistent storage. Other applications based on Tapestry
include the steganographic file system Mnemosyne [25], Bayeux [72] an ef-
ficient self-organizing application-level multicast system, and SpamWatch
[71] a decentralized spam-filtering system.

2.5.4 Kademlia

The Overlay Graph. The Kademlia [40] graph partitions the identifier
space exactly like Pastry. However, it is presented in a different way where
node ids are leafs of a binary tree with each node’s position is determined
by the shortest unique prefix of its id. Each node divides the binary tree
into a series of successively lower subtrees that don’t contain the node id
and keeps at least one contact in each of those subtrees. For instance, a
node with id 3 has the binary representation 0011 in an identifier space of
size N = 16. Since its prefix of length 1 is the digit 0 then it needs to know
a node whose first digit is 1. Since its prefix of length 2 is 00, then it needs
to know a node with prefix 01. Since its prefix of length 3 is 001, then it
needs to know a node with prefix 000. Finally, since its prefix of length
four is 0011, then it needs to know a node with a prefix 0010. This policy is
illustrated in figure 2.3 which results in a space division exactly like Pastry
with the special case of a binary encoding of the digits.

Kademlia does not keep a list of nodes close in the identifier space
like the leaf set or the successor list in Chord. However, for every sub-
tree/interval in the identifier space it keeps k contacts rather than one con-

44 2.5. DHT SYSTEMS

Figure 2.3: The pointers of node 3 (0011) in Kademlia. The same parti-

tioning of the identifier space as in Pastry with binary-encoded digits.

tact if possible, and calls a group of no more than k contacts in a subtree a
k-bucket.

Mapping Items Onto Nodes. Kademlia defines the notion of distance
between two identifiers to be the value of the bitwise exclusive or (XOR)
of the two identifiers. An item is stored at the node whose XOR difference
between the node id and the item id is minimal.

The Lookup Process. To increase robustness and decrease response
time, Kademlia performs lookups in a concurrent and iterative manner.
When a node looks up an id, it checks to which subtree does the id belong
and forwards the query to α randomly selected nodes from the k-bucket
of that subtree. Each node possibly returns back a k-bucket of a smaller
subtree closer to the id. From the returned bucket, another α randomly
selected nodes are contacted and the process is repeated until the id is
found. When an item is inserted, it is also stored at the k closet nodes to
its id. Because of the prefix matching scheme, similar to Pastry, a lookup
is also resolved in O(log(N)) hops.

Joins, Leaves and Maintenance. A new node finds the closest node to
it through any initial contact and uses it to fill its routing table by querying
about nodes in different subtrees. If it happens that a k-bucket is filled due
to exposure to lots of nodes in a particular subtree, a least-recently-used
replacement policy is applied. However, Kademlia makes use of statis-

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 45

tics taken from existing peer-to-peer measurements studies which indi-
cate that a node which stayed for a longer time in the past will probably
stay connected longer in the future. Therefore, Kademlia can discard the
knowledge of new nodes if it knew many other stable nodes in a given
subtree.

Maintenance of the routing tables after joins and leaves depends on
a technique that is different from the stabilization in Chord or the deter-
ministic update of Pastry. Kademlia maintains the routing tables by using
the lookup traffic. The XOR metric results in every node receiving queries
from the nodes contained in its routing table (Which is not the case in a
system like Chord). Consequently, the reception of any message from a
certain node in a certain subtree is essentially an update of the k-bucket
for that subtree. This approach clearly minimizes the maintenance cost.
However, it is not deeply analyzed.

Another maintenance task is that upon receiving multiple queries from
the same subtree, Kademlia updates the latencies of the nodes in a particu-
lar k-bucket. This improves the choice of the nodes used for doing lookups
and one could say that by doing that, Kademlia also takes into considera-
tion network delay and locality.

Replication and Fault Tolerance. Since leaves are not deeply discussed,
we assume that they are treated as failures. Kademlia fault tolerance de-
pends mainly on the strong connectivity since it keeps k contacts per sub-
trees and not only one and this makes the probability of a disconnected
graph low.

Also as mentioned above, Kademlia stores k copies of an item on the
k closest nodes to its id. The nodes are also republished periodically. The
policy for republishing is that any node that sees itself closer to an item id
than all the nodes it knows about, gives it to k − 1 other nodes.

Applications and Implementation. Kademlia is probably the one DHT
that got a relatively wider non-academic adoption by being used in two
file-sharing applications, namely Overnet [48] and Emule [17].

46 2.5. DHT SYSTEMS

2.5.5 HyperCup

While it has been mentioned many times in the literature that systems like
Chord and Pastry, for instance, are approximations of Hypercubes, those
works were not presented that way by their authors. HyperCup [58] is
a system that presents a way to construct and maintain Hypercubes in a
dynamic setting. The performance of HyperCup is similar to the many
other DHTs with logarithmic order for both the routing table size and the
lookup path length under particular uniformity assumptions. HyperCup
also defines a broadcast algorithm based on the concept of a spanning tree
of all nodes. A distinguished feature of HyperCup is that it addresses se-
mantic search based on ontological terms. Nodes with similar ontologies
are clustered together such that a search by a certain ontological term is
achieved as a localized broadcast within a cluster.

2.5.6 DKS

The Overlay Graph. DKS [4] could be perceived as an optimal generaliza-
tion of Chord to provide shorter diameter with larger routing tables. In the
mean time, DKS could be perceived as a meta-system from which other
systems could be instantiated. DKS stands for Distributed k-ary Search
and it was designed after perceiving that many DHT systems are instances
of a form of k-ary search. Figure 2.4 shows the division of the space done
in DKS. You can see that it has in common with Chord that each node per-
ceives itself as the start of the space. In the mean time, like Pastry each
interval is divided into k rather than 2 intervals.

Mapping Items Onto Nodes. Along with the goal of DKS to act as a
meta-system, mapping items onto nodes is also left as a design choice. A
Chord like mapping is a valid as a simple first choice. However, different
mappings are possible as well.

The Lookup Process. A query arriving at a node is forwarded to the
first node in the interval to which the id of the node belongs. Therefore, a
lookup is resolved in logk(N) hops.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 47

Figure 2.4: Illustration of how a DKS node divides the space in an iden-

tifier space of size N = 28 = 256.

Joins, Leaves and Maintenance. Unlike Chord, DKS avoids any kind
of periodic stabilization both for the maintenance of the successors, the
predecessor and the routing table. Instead, it relies on three principles,
local atomic actions, correction-on-use and correction-on-change. When a
node joins, a form of an atomic distributed transaction is performed to in-
sert it on the ring. Routing tables are then maintained using the correction-
on-use technique, an approach introduced in DKS. Every lookup message
contains information about the position of the receiver in the routing ta-
ble of the sender. Upon receiving that information, the receiver can judge
whether the sender has an updated routing table. If correct, the receiver
continues the lookup, otherwise the receiver notifies the sender of the cor-
ruption of his routing table and advises him about a better candidate for
the lookup according to the receiver’s knowledge. The sender then con-

48 2.5. DHT SYSTEMS

tacts the candidate and the process is repeated until the correct node for
the routing table of the sender is used for the lookup.

By applying the correction-on-use technique, a routing table entry is
not corrected until there is a need to use it in some lookup. This approach
reduces the maintenance cost significantly. However, the number of joins
and leaves are assumed to be reasonably less than the number of lookup
messages. In cases where this assumption does not hold, DKS combines it
with the correction-on-change technique [6]. Correction-on-change noti-
fies all nodes that need to be updated upon the occurrence of a join, leave
or failure.

Replication and Fault Tolerance. In early versions of DKS, fault tol-
erance was handled similar to Chord where replicas of an item are placed
on the successor pointers. In later developments [22], DKS tries to address
replication more on the DHT level rather than delegating most of the work
to the application layer. Additionally, to avoid congestion in a particular
segment of the ring, replicas are placed in dispersed well-chosen positions
and not on the successor list. In general, for the correction-on-use tech-
nique to work, an invariant is maintained where the predecessor pointer
has always to be correct and that is provided by the atomic actions on the
circle.

Upper Services and Applications. General purpose broadcast [21] and
multicast [5] algorithms were developed for DKS.

2.5.7 P-Grid

The P-Grid system has a relatively large set of publications introducing
various intricate features. We will try here to account for a subset of its
basic notions.

The Overlay Graph. The basic structure of the P-Grid [1] graph mostly
resembles Kademlia/Pastry, with some differences. The nodes are re-
garded as leaves in a binary tree. A node n keeps references to nodes
in other subtrees of incremental heights not including n. P-Grid, however,
is distinguished by a very unique way of assigning node ids as we will
explain shortly.

In addition to references to other nodes in the tree, each node maintains

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 49

a set of random peers known as the “fidget list”. Each node is assumed to
have random frequent interactions with members of its fidget list.

Mapping Items Onto Nodes. Unlike most other DHT systems where
a unique attribute (e.g. IP address or public key) governs the position of
a node in the id space, in P-Grid, this position (“path” in P-Grid terminol-
ogy) is determined from the id distribution of the items. This decoupling
of a node’s identity from its position in the id space is used to provide
many unique features.

Joins and Leaves. Initially, a node joins P-Grid with items in its local
storage and an empty path. Random interactions with other nodes from
the fidget list help the new node to have a path in the search tree. When
two peers interact, a number of issues need to be resolved such as: will
their paths remain the same? will they give data to each other? could
they know better fidgets through this interaction? how will the references
be affected if a path changes? The answers to those issues depend on the
state of the interacting nodes and are managed in one elegant algorithm
called the “Exchange” algorithm. The complexity of the algorithm pre-
vents us from giving a detailed description of it here. Instead, we use an
example given in [2] and illustrate it in figure 2.5. In this example, when
we say: “two peers Pi and Pj interact”, this means that this is a random
choice based on the fidget list of one of them. The example shows some
cases such as: nodes changing their paths from empty to one bit or from
one bit to two bits (specializing on a path) and nodes giving each other
data based on the path they are specialized on. Notice that because of the
random interactions, two networks can merge very easily which is also a
distinguished feature of P-Grid.

In the final state of the example, all nodes have the same storage load.
Nevertheless, some nodes have the same path and the same data, which
means that for certain paths there are many replicas. That is, for this exam-
ple, while storage load balancing is achieved, replication load balancing is
not achieved. Therefore, P-Grid introduces an extra mechanism for repli-
cation load balancing.

Since replication is offered, and nodes have more than one reference
in each subtree, a node can leave without notifying any other node. If the
leaving node wants to rejoin the network, it searches for its path before

50 2.5. DHT SYSTEMS

leaving the network and retrieves any missing data for the path it was
specialized on.

Figure 2.5: Illustration of some interactions of P-Grid nodes.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 51

The Lookup Process and Maintenance. In its most basic form, the
lookup process follows a prefix routing scheme through which a node
forwards the query to a node with at least one more matching bit of the
sought id. The lookup ends when any one of the sought replicas is located.

In [3], the issue of dynamic IP addresses is elaborated on. Many DHTs
assume that when a node rejoins with a new IP, it is assigned a new iden-
tity. In P-Grid, however, there is a deeper treatment of this issue since
there is a complete separation between the identity, the path and the IP
address. Thus, a node can have a correct reference to a given path, how-
ever, the node specialized on that path could change its IP address. There-
fore, lookups which can correct the stale routing tables are introduced in
two variants. The first variant is an eager variant in which a discovery
of a stale reference upon a lookup triggers the immediate correction of all
references. The second variant is a lazy one where a node tries to route
through alternate references. Correction is triggered only if no alternate
reference was found.

Replication. Most DHTs assume some constant number of replicas for
each data item. In P-Grid, this is not the case. The network tries to dynam-
ically balance the replication load as well as the storage load. Therefore, a
node continuously collects statistics about the number of other nodes with
same/share-prefix of their paths. From those statistics a local approxima-
tion to the global replication loads of items is obtained and is used when
nodes interact to judge whether more/less replicas are needed.

Implementation. A file-sharing application with the same name is im-
plemented in Java and available at [49].

2.5.8 Koorde

The Overlay Graph. Koorde [29] is based on the DeBruijn graph [39]. Ko-
orde stresses the point that a constant number of outgoing edges per node
is enough for having a logarithmic lookup length. The DeBruijn graph is
an example capable of doing that. The significance of a constant number
of edges is that the maintenance overhead is lower compared to a logarith-
mic number as is the case in all the previous DHTs we have shown so far.
In figure 2.6(a) we show the pointers of all the nodes of a Koorde graph of

52 2.5. DHT SYSTEMS

(a) (b)

Figure 2.6: (a) The pointers of all the nodes in a complete Koorde net-

work where N = 8. Every node n points to nodes of ids 2n and 2n + 1.

(b) Examples of how nodes 1, 3 and 4 reach other nodes by matching the

destination id digit by digit starting from the most significant bit.

eight nodes. A node with id n has edges to nodes 2n and 2n+ 1 in a circu-
lar identifier space like Chord. We denote the first and the second edge of
node n En ◦ 0 and En ◦ 1 respectively.

Mapping Items Onto Nodes. Exactly like Chord.

The Lookup Process. When a node n needs to lookup an id x repre-
sented as a string of binary digits d1d2...dlog2(N), it takes the top bit d1, if it
is a 0, it forwards the query to En ◦ 0 otherwise to En ◦ 1. The second node
looks at the remaining string d2...dlog2(N) and acts similarly. After, at most,
log2(N) hops a query is resolved. Figure 2.6(b) shows what paths nodes
1, 3 and 4 take to reach any node in the network. The Koorde paper also
elaborates on an algorithm to handle networks where not all the nodes are
present in the id space. Each node tries to locally traverse imaginary hops
for nodes that do not exist.

Joins, Leaves and Maintenance. Exactly like Chord. In fact, the au-
thors say that Koorde could be perceived as a Chord system with a con-

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 53

stant instead of a logarithmic number of fingers. Stabilization is also the
basic mechanism for maintenance.

Replication and Fault Tolerance. For fault tolerance to be realized, an
out-degree less than log(N) nodes has to be maintained, otherwise a node
will loose all its contacts very easily. This makes the advantage of a con-
stant node state invalid. However, since with k edges, Koorde provides
logk(N) diameter. Then with logk(N) edges, it provides loglogk(N)(N) =

log(N)
log(log(N)) diameter, which is an advantage over the logarithmic class of
DHTs.

Load Balancing. The load balancing of items onto nodes will depend
on the uniform distribution exactly like Chord. However, another load-
balancing issue arises which is the load of message passing on each node.
In a DeBruijn graph, some nodes will have more traffic than others by a
factor ofO(log(N)) of the average traffic load. For example, in the network
illustrated in figure 2.6, if every node would send a message to every other
node in the network, not all the nodes will endure the same number of
messages; 12 messages will be routed via a node like 7 while 21 messages
will be routed via a node like 3.

2.5.9 Distance Halving

The Overlay Graph. The Distance Halving (DH3) [43] distributed hash
table is another system based on the DeBruijn graph like Koorde. How-
ever, the way of building the graph is somewhat different. The DH is
based on an approach called the continuous-discrete approach for build-
ing graphs. To build a DeBruijn graph with this approach, the identifier
space is normalized into a continuous space represented by the interval
[0, 1[. Nodes are points in that interval. Each node y has two edges, a left
edge and a right edge denoted ℓ(y) and r(y) respectively where ℓ(y) = y

2
and r(y) = y

2 + 1
2 . Given the set of points and their edges, a discretization

step is done to build the graph. The set of points are denoted by
→
x . The

points of
→
x divide the space into n segments. The segment of a point xi,

3Please do not confuse this abbreviation with the abbreviation of a Distributed Hash
Table (DHT).

54 2.5. DHT SYSTEMS

(a) (b)

Figure 2.7: (a) The pointers of all the nodes in a complete Distance-

Halving network where N = 8. (b) Examples of how nodes 1 reaches

other nodes by matching the destination id digit by digit starting from

the least significant bit.

S(xi) = [xi, xi+1), (i = 1...n − 1) and S(xn) = [xn−1, 1) ∪ [0, x1). If a node
y has an edge that belongs to the segment of some node z, then there is an
edge in the discrete graph between y and z. One can also notice that the
segments are defined in a way that realizes a circular identifier space.

The intuition behind that graph is that every node divides the space
into two intervals and keeps a pointer to a node that is in the middle of the
left interval and a pointer in the middle of the right interval. Figure 2.7(a)
shows the pointers of all the nodes in a DH network of size N = 8. Figure
2.7(b) shows the paths to all possible destinations starting from node 1.

Mapping Items Onto Nodes. Exactly like Chord, Koorde. In DH ter-
minology, an item is stored at node y where the id of the item belongs to
S(y).

The Lookup Process. The lookup process, similar to many other DHTs,
is done by the prefix matching of the sought id digit by digit. The lookup

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 55

is forwarded to the node pointed to by the left edge for matching a 0 digit
and to the right edge for matching a 1 digit. The lookup path length is
thus O(log2(N)).

Joins, Leaves and Maintenance. A new node n joins a DH network by
looking up the node s such that n belongs to S(s) . n then uses s to lookup
its left and right edges. By the construction of DH, a node can easily know
the nodes that are pointing to it. Therefore a node can easily compute the
nodes that needs to be updated and notifies them of n’s existence. Updat-
ing of others upon a leave is done in the same way. The transfer of the
items upon a join or a leave is also similar to Chord.

Replication and Fault Tolerance. DH recognizes the problem of fail-
ures that can lead to a disconnected graph and advocates an additional
state of O(log(N)) pointers. That comes in agreement with Koorde’s rea-
soning and emphasizes that the main advantage of having a constant de-
gree graph will be compromised if fault tolerance is to be considered.
However, with a logarithmic degree, those types of graphs can offer a di-

ameter of log(N)
log(log(N)) .

Other Comments. The formal analysis of the DH graph and the con-
tinuous discrete approach are both useful tools that help gaining more
understanding of the properties of a DHT system. The discussion of the
smoothness of the graph which is a term used by the authors to quantify
the uniformity of distribution of the ids is quite unique. It was noted in
other DHT systems that uniform distribution could affect the performance
but in DH, an analysis of the magnitude of that effect is provided.

2.5.10 Viceroy

The Overlay Graph. Viceroy [36] is based on the Butterfly [38] network.
Like many other systems, it organizes nodes into a circular identifier space
and each node has successor and predecessor pointers. Moreover, nodes
are arranged in log2(N) levels numbered from 1 to log2(N). Each node
apart from nodes at level 1 have an “up” pointer and every node apart
from the nodes at the last level have 2 “down” pointers. There is one short
and one long “down” pointers. Those three pointers are called the Butter-
fly pointers. All nodes also have pointers to successors and predecessors

56 2.5. DHT SYSTEMS

(a) (b)

Figure 2.8: The Butterfly edges of a complete Viceroy network with

N = 16 nodes. (a) The down edges. (b) The up edges.

pointers on the same level. In that way, each node has a total of 7 outgoing
pointers.

Figure 2.8(a) shows the down pointers of a network of N = 16 nodes
where all nodes are present. Figure 2.8(b) shows the up pointers of all
nodes. For simplicity, the successor pointers of the ring and the levels are
not illustrated4.

Mapping Items Onto Nodes. Exactly like Chord.

The Lookup Process. To lookup an item x, a node n follows its up
pointer until it reaches level 1. From there, it starts going down using the
down links. In each hop, it should traverse a pointer that does not exceed
the target x. For example, if node 1 is looking up the id 10, first it will
follow its up pointer and reach 4 which is at level 1. At node 4 there are
two choices either to use the short pointer to 5 or the long pointer to 13,
since 5 precedes the target 10, the pointer to 5 is followed. At node 5, there
is a direct pointer to 10. In another example, for reaching id 15 from node

3, the path will be 3
up
→ 6

up
→ 9

up
→ 12

down
→ 13

down
→ 14

down
→ 15. From the last

example, we can see that in a worst case, we can traverse all the levels up
and down, i.e. 2× log(N) hops. Needless, to say that the example includes

4In fact, some of them coincide with the Butterfly pointers.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 57

a simplified network where all the nodes are present. When the graph is
sparse, the reasoning is slightly more complicated, however the expected
lookup path length is still O(log(N)).

Joins, Leaves and Maintenance. To join, a node looks up its successor
s, fixes the ring pointers and takes the required items from s. After that, it
selects a level based on the estimation of the number of nodes. It finds, by
a combination of lookups and stepping on the ring, the rest of the pointers
(successor and predecessor at the selected level, up and down pointers).

To leave, a node disconnects all its pointers, the concerned nodes con-
sequently are aware and lookup for replacements. Additionally, the stored
items are transferred to the successor.

Replication and Fault Tolerance. Viceroy does not deeply discuss un-
graceful failures nor replication but refers to Lynch et al.’s paper [34] for a
general approach in handling failures in DHTs.

Implementation. There exists a Java implementation of Viceroy at [66].
This homepage includes also a visualization applet that can illustrate the
main topology, lookups, joins and leaves in Viceroy.

Other Comments. While the intuitive analysis might lead to thinking
that nodes at higher levels endure more lookup traffic, Viceroy’s analysis
shows that the congestion is not that bad, however such a proof is beyond
the scope of that chapter.

2.5.11 Ulysses

Ulysses is another system based on the Butterfly graph. It achieves the
known limits of routing table and lookup path length, O(log(N)) and

log(N)
log(log(N)) while accounting for joins, leaves and failures. In that sense, it

agrees with the conclusions of Koorde, Distance-Halving and Viceroy and
shows a second way of building a Butterfly network. Ulysses also depends
on periodic stabilization for maintenance of the graph. Like Distance-
Halving, it discusses the elimination of congestion. Ulysses also has an in-
teresting discussion on the optimization of the average lookup path length.

58 2.5. DHT SYSTEMS

Figure 2.9: The process of 5 nodes joining a CAN network.

2.5.12 CAN

The Overlay Graph. CAN [53] is in a class of its own. The design of
the graph is based on a d-dimensional coordinate space. Like all other
systems, the nodes and items are mapped onto a virtual space using a
uniform hashing function, but the hashing is applied d times to get the d
coordinates. For instance, in a 2-dimensional discrete coordinate space, an
IP address or key of a file would be hashed once to obtain an x value and
another time to obtain a y value. The coordinate space is dynamically par-
titioned among all the nodes in the system such that every node“owns”
its distinct zone within the overall space. Figure 2.9 shows a discrete coor-
dinate space of 16 × 16 partitioned among 5 nodes.

Mapping Items Onto Nodes. An item with key k is stored at the node
that owns the zone onto which k is mapped. Two nodes are neighbors, i.e.
have pointers to each other if their zones have common sides.

The Lookup Process. A lookup is achieved by using the straight line
path through the Cartesian space from source to destination.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 59

Joins, Leaves and Maintenance. A new node w joins by selecting a
random point P , it sends to its initial contact in the network u a JOIN
message containing P . Node u consequently routes the message to the
node v that owns the zone in which P lies. The zone of v is then split
between v and w. Zones are split along the x axis first then along the y
axis. Upon a split, the new node learns its neighbors from the previous
owner. Neighbors of a new node are neighbors of the previous owner
plus the previous owner itself. The new node informs its neighbors of the
change. The cost of join in that way is O(d). Finally, items that belong to
the new node are obtained from the previous owner.

The leave process is the reverse, a node informs its neighbors of its
leaving and merges its zone with a neighbor to produce a valid zone. If
no valid zone could be formed, the items are transferred to a neighbor
owning the smallest zone.

Under normal conditions, a node sends periodic updates to each of its
neighbors given them its zone coordinates. Additionally, there is a back-
ground zone-balancing process that tries to reconfigure zones after a series
of joins and leaves.

Replication and Fault Tolerance. There are two ways of detecting fail-
ures in CAN, the first if a node tries to communicate with a neighbor and
fails, it takes over that neighbor’s zone. The second way of detecting a
failure is by not receiving the periodic update message after a long time.
In the second case, the failure would probably be detected by all the neigh-
bors, and all of them would try to take over the zone of the failed node,
to resolve this, all nodes send to all other neighbors the size of their zone,
and the node with the smallest zone takes over.

Replication in CAN is achieved in two ways. The first way is to use α
hashing functions to map an item to α points. When retrieving an item,
α queries are sent and α responses are received. The second way is to
create multiple instances of the coordinate space. Each instance is called a
“reality”. If a node storing an item is dead in one reality, the item can be
retrieved from one of the other realities because the item would be stored
at other nodes in the other realities.

Latency. Every node in CAN keeps round-trip-time (RTT) of its neigh-
bors. When selecting a path for a lookup, a CAN node forwards to the

60 2.6. SUMMARY

neighbor with maximum ratio of progress to RTT. CAN also has a mech-
anism for nodes to choose their points so as to make points near in the
IP network also near in the Cartesian space, the technique uses root DNS
servers as landmarks from which a node can approximate to which other
nodes it is near in the IP network.

Upper Services. A multicast protocol is available for CAN [54]. Some
work has also been done on richer queries such as range queries in [7].

2.6 Summary

2.6.1 The Overlay Graph

We summarize the different overlay graphs by providing a classification
based on the size of the node state as shown in figure 2.10. The first cat-
egory is for systems that keep a logarithmic number of routing entries.
Most DHT systems are in that category. A common property in that cat-
egory is the logarithmic order lookup path length. The second category
includes systems that use a constant number of routing entries. CAN is
in a class of its own as it provides a polynomial order lookup path length.
Other systems in the same category include the DeBruijn-based and the
Butterfly-based DHTs and such systems offer a logarithmic path length.
Naturally, one can instead set the constant of the constant-state systems
to a value logarithmic in the number of nodes and get a shorter lookup
length. Table 2.1 summarizes those performance trade-offs.

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 61

Figure 2.10: A classification of DHT systems based on the size of the

node state and underlying graph.

Category Node State Lookup Path Length

Logarithmic sate O(log(N)) O(log(N))

DeBruijn & Butterfly O(k) O(log(N))
(per se)

DeBruijn & Butterfly O(log(N)) O(log(N))
O(log(log(N)))

(k = O(log(N)))

CAN O(k) O(kN1/k))
(per se)

CAN O(log(N)) O(log(N)N1/ log(N)))
(k = O(log(N))) = O(log(N))a

aSince N1/ log(N) is a constant factor.

Table 2.1: Summary of Node State and Lookup Path Length for the dif-

ferent categories of systems.

62 2.6. SUMMARY

2.6.2 Mapping Items Onto Nodes

Four ways of assigning items to ids are identified and summarized in table
2.2.

Assignment policy Example Systems

Item assigned to successor on the ring Chord, DKS, Koorde, Viceroy,
DH, Ulysses

Item assigned to numerically closet node Pastry, Tapestry

Item assigned to XOR closest node Kademlia

Item assigned to zone owner CAN

Table 2.2: The different policies for mapping items onto nodes.

In all those scenarios, the fair (load-balanced) assignment of items onto
nodes relies on the uniform distribution of the hashing function. This is
apart from P-Grid, where the network is in constant trial to load balance
the items between nodes irrespective of the distribution of identifiers.

2.6.3 The Lookup Process

The lookup process is a direct result of the node state. Increasing more
node decreases the lookup path length but increases the maintenance cost.

In some systems like Pastry, Tapestry, Kademlia and CAN, overlay
hops are not the sole optimized metric, additionally network latency is
addressed.

Congestion is a tricky issue related to the lookup process. Not only
the lookup path length should be optimized, but it should not be the case
that some nodes endure more traffic than others which is the case in the
DeBruijn and Butterfly graphs. However, authors of systems that suffer
from congestion try to adapt those graphs to eliminate congestion.

2.6.4 Joins, Leaves and Maintenance

Joins and leaves jeopardize the desired properties of any good graph, dif-
ferent systems have adopted different techniques to bring back the overlay

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 63

graph to its ideal state. Table 2.3 enumerates those techniques.

Maintenance policy Example Systems

Stabilization Chord, Koorde, Viceroy, CAN

Use of Traffic Kademlia

Determinism+ Stabilization Pastry, Tapestry

Correction on-use + Correction on-change DKS

Lazy+Randomized P-Grid

Table 2.3: The different policies overlay graph maintenance policies.

Stabilization is the most common technique where routing table entries
are periodically looked up and corrected. The use of traffic is adopted in
Kademlia where the graph structure makes a node receive lookups from
the same nodes it is pointing to. Pastry also depends on the structure
of the graph where a new node can inform all the other nodes that need
to be informed about it. Periodic activity is still needed though for col-
lecting latency information. The correction-on-use introduced in DKS, re-
lies on the presence of traffic as well but a receiving node can correct a
sending node and no periodic activity is used. Where not sufficient alone,
correction-on-use is complemented with a more deterministic technique,
namely, correction-on-change. P-Grid has a unique correction mechanism,
where the random interaction between peers can lead to the change of
their ids in a way that causes eventual optimality of the graph.

2.6.5 Replication and Fault Tolerance

Replication is an essential tool for recovering items stored at failed nodes.
Choice of nodes for replication is tightly coupled with the policy for map-
ping items to nodes. Local vicinity is mostly chosen, for example, the suc-
cessors on the circle or the k numerically closest nodes.

Fault tolerance is one of the most challenging and open areas in struc-
tured overlay networks. Some systems can cope with the failure of a small
number of nodes at a time. However, dealing with a large number of
simultaneous failures is harder. A constant- state routing table is an ad-
vantage that has to be given up if a large number of simultaneous failures

64 2.7. HOT AND OPEN RESEARCH ISSUES

is to be tolerated. Nodes will have to keep their node state to at least log-
arithmic order to be able to cope with N/2 randomly-distributed nodes
failing simultaneously or the failure of O(log(n)) adjacent node ids simul-
taneously.

2.7 Hot and Open Research Issues

DHTs as the state-of-the-art systems, made a remarkable progress in solv-
ing the issue of scalability and decentralization while providing determin-
ism and high guarantees. However, they opened the way for new research
issues. We briefly enumerate some of those issues.

State-Performance Trade-off. The trade-off between node-state and lookup
path length is fundamental. The current known limit is that a con-
stant node state can provide logarithmic path length. However, if
fault-tolerance is to be addressed, more state is required. It is still an
open question whether a constant state suffices for a fault-tolerant
system while preserving the logarithmic path length and without
introducing congestion. A good overview of this issue is covered in
[67] and [29].

Cost of Maintaining the Structure. While we have seen throughout this
chapter different techniques for dealing with the maintenance of the
overlay structure, any optimization in that aspect is important for
the overall performance of a DHT. For the class of DHTs that depend
on the periodic checking and correction (aka stabilization), this peri-
odic activity costs a high number of messages and sometimes unnec-
essarily in the case of checking stable sections of a routing table. The
awareness about this problem motivated research such as, e.g., [35]
where a network tries to “self-tune” the rate at which it performs
periodic stabilization.

Complex Queries. DHTs assume that for each item, there is a unique key
and to retrieve the item one must know the key. That is, one can
not search for items matching a certain criteria like a keyword or
a regular-expression-specified query. The feasibility of the task is

CHAPTER 2. A STRUCTURED P2P OVERLAY NETWORKS PRIMER 65

questionable [32]. Some approaches include the insertion of indices
[26] for general queries or using some geometrical constructs that
make use of the DHT structure such as space-filling curves [7]. An-
other approach is to let the hashing be based on keywords or seman-
tic information and not on unique keys [59]. However, this approach
destroys one of the basic assumptions of DHTs, namely uniformity
of identifiers. In P-Grid, however because of the ability to deal with
a non-uniform set of identifiers, efficient range queries could be pro-
vided as in [15].

Locality. Though accounted for in systems like Pastry and Tapestry, lo-
cality remains to be an open research issue. Additionally, the loss of
locality due to hashing is not always considered a disadvantage. The
Oceanstore system [31] which depends on Tapestry for location and
routing, considers loss of locality favorable because replicas of items
would be stored at physically apart nodes which renders a system
resistant to denial of service attacks.

Heterogeneity. While all DHT systems aim at letting all nodes have equal
duties and responsibilities, the heterogeneity in physical connectiv-
ity makes them unequal. Consequently, nodes with higher latencies
constitute bottlenecks for the operation of structured P2P systems.
Some of the approaches that were suggested to cope with those prob-
lems: i) Cloning: The more powerful nodes are cloned so they can
act as multiple nodes and receive higher percentage of the uniformly
distributed traffic [14] ii) Clustering: Nodes of similar latency behav-
ior are clustered together [68] iii) A third approach is to build an “ex-
press way”, i.e. an auxiliary overlay that contains only nodes with
large forwarding capacity. Each node in the overlay is connected to
a variable number of nodes in the auxiliary overlay [68].

Group Communication. Since structured P2P systems offer graphs of known
topologies to connect peers, it is natural to start exploiting the struc-
tural properties in group communication. The main focus in P2P
Group communication is on multicasting. Extensions like [60, 54,
11, 5] aim at providing multicast layers to existing DHT systems.

66 BIBLIOGRAPHY

Publish-subscribe communication [63] is also another form of group
communication that was researched in P2P systems such as [8].

Grid Integration. P2P and the Grid are two fields that share key prop-
erties such as being large scale distributed systems and the goal of
sharing networked resources. The properties of scalability and self
organization provided by recent P2P infrastructures are interesting
properties for Grid applications. Actually, both research commu-
nities are starting to merge, we can observe that from conferences
like the international conference on peer-To-peer computing[50] and
the international conference on cluster computing and the Grid (CC-
GRID) [12]. Additionally, the P2P working group [24] and The Global
Grid Forum [65], two respective standardization efforts, started to
merge their efforts [9].

Performance of Existing DHTs Under Churn. At the time of writing of
this thesis, while many systems have been introduced, more work
is needed to measure their performance in different aspects and for
different applications under different tuning parameters, especially
under heavy churn. In an extensive study of various DHT systems
under churn, Li et. al conclude the work in [33] by saying: “Evaluat-
ing DHT protocols in the presence of churn is a challenge.”

Bibliography

[1] Karl Aberer. P-Grid: A self-organizing access structure for p2p infor-
mation systems. In InProceedings of the Sixth International Conference
on Cooperative Information Systems (CoopIS 2001), Trento, Italy, 2001.

[2] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. The quest
for balancing peer load in structured peer-to-peer systems. Technical
Report EPFL Technical Report IC/2003/32, Ecole Polytechnique Fed-
erale de Lausanne (EPFL), 2003. http:// www.p-grid.org / Papers /
TR-IC-2003-32.pdf.

BIBLIOGRAPHY 67

[3] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Efficient,
self-contained handling of identity in peer-to-peer systems. IEEE
Transactions on Knowledge and Data Engineering, 16(7):858–869, 2004.

[4] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.
DKS(N; k; f): A Family of Low Communication, Scalable and
Fault-Tolerant Infrastructures for P2P Applications. In The 3rd In-
ternational Workshop On Global and Peer-To-Peer Computing on Large
Scale Distributed Systems (CCGRID 2003), Tokyo, Japan, May 2003.
http://www.ccgrid.org/ccgrid2003.

[5] Luc Onana Alima, Ali Ghodsi, Per Brand, and Seif Haridi. Multicast
in dks(n, k, f) overlay networks. In The 7th International Conference
on Principles of Distributed Systems (OPODIS’2003). Springer-Verlag,
2004.

[6] Luc Onana Alima, Ali Ghodsi, and Seif Haridi. A framework for
structured peer-to-peer overlay networks. In LNCS volume of the post-
proceedings of the Global Computing 2004 workshop. Springer-Verlag,
2004.

[7] Artur Andrzejak and Zhichen Xu. Scalable, Efficient Range Queires
for Grid Information Services. In 2nd International Conference on Peer-
To-Peer Computing, pages 33–40, Linkping, Sweden, September 2002.
IEEE Computer Scociety. ISBN-0-7695-1810-9.

[8] S. Baehni, P. Eugster, and R. Guerraoui. OS Support For P2P Program-
ming: A Case For TPS. In 22nd International Conference on Distributed
Computing Systems (ICDCS ’02), pages 355–362, Washington - Brussels
- Tokyo, July 2002. IEEE.

[9] Per Brand and Karan Bhatia. Relation of OGSA/Globus and
Peer2Peer, 2003. http://www.gridforum.org/4 GP/ogsap2p.htm.

[10] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh
Nandi, Antony Rowstron, and Atul Singh. Splitstream: High-
bandwidth multicast in a cooperative environment. In 19th ACM
Symposium on Operating Systems Principles (SOSP’03), 2003.

68 BIBLIOGRAPHY

[11] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
Rowstron. Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in Communica-
tion (JSAC), 20(8), October 2002.

[12] CCGRID. The IEEE International Symposium on Cluster Computing
and the Grid. http://www.ccgrid.org.

[13] Russ Cox, Athicha Muthitacharoen, and Robert Morris. Serving dns
using chord. In Proceedings of the 1st International Workshop on Peer-to-
Peer Systems (IPTPS), Cambridge, MA, March 2002.

[14] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica. Wide-area cooperative storage with CFS. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles (SOSP ’01),
Chateau Lake Louise, Banff, Canada, October 2001.

[15] Anwitaman Datta, Manfred Hauswirth, Renault John, Roman
Schmidt, and Karl Aberer. Range queries in trie structured over-
lays. Technical Report EFPL Technical Report IC/2004/111, Ecole
Polytechnique Federale de Lausanne (EPFL), 2004. http:// www.p-
grid.org / Papers / TR-IC-2004-111.pdf.

[16] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Effi-
cient Broadcast in Structured P2P Netwoks. In 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February
2003.

[17] Emule. The emule file-sharing application homepage, 2004.
http://www.emule-project.net/.

[18] FIPS 180-1. Secure Hash Standard. U.S. Department of Com-
merce/NIST., National Technical Information Service, Springfield,
VA, April 1995.

[19] FreeNet, 2003. http://freenet.sourceforge.net.

[20] FreePastry. The freepastry homepage, 2004. http://www.cs.rice.edu
/ CS / Systems / Pastry / FreePastry.

BIBLIOGRAPHY 69

[21] Ali Ghodsi, Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif
Haridi. Self-correcting broadcast in distributed hash tables. In In
Series on Parallel and Distributed Computing and Systems (PDCS’2003),
Calgary, 2003. ACTA Press.

[22] Ali Ghodsi, Luc Onana Alima, and Seif Haridi. A novel replication
scheme for load-balancing and increased security. Technical Report
TR-2004-11, SICS, June 2004.

[23] Gnutella, 2003. http://www.gnutella.com.

[24] Peer-To-Peer Working Group. What is Peer-To-Peer?, 2001.
http://www.peer-to-peerwg.org/whatis/index.html.

[25] Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-peer
steganographic storage. Lecture Notes In Computer Science (IPTPS ’02),
pages 130–140, 2002.

[26] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch,
Boon Thau Loo, Scott Shenker, and Ion Stoica. Complex
Queries in DHT-based Peer-to-Peer Networks. In The 1st In-
terational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[27] Clint Heyer. Naanou home page, 2004.
http://naanou.sourceforge.net.

[28] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A de-
centralized peer-to-peer web cache. In 12th ACM Symposium on Prin-
ciples of Distributed Computing (PODC 2002), ?-? 2002.

[29] Frans Kaashoek and David R. Karger. Koorde: A simple degree-
optimal distributed hash table. In 2nd International Workshop on Peer-
to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February 2003.

[30] Kazaa Home Page, 2003. http://www.kazaa.com.

[31] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon,

70 BIBLIOGRAPHY

Westly Weimer, Christopher Wells, and Ben Zhao. OceanStore: An
architecture for global-scale persistent storage. In Proc. of ASPLOS.
ACM, Nov 2000.

[32] Jinyang Li, Boon Thau Loo, Joe Hellerstein, Frans Kaashoek, David R.
Karger, and Robert Morris. On the Feasibility of Peer-to-Peer Web In-
dexing and Search. In 2nd International Workshop on Peer-to-Peer Sys-
tems (IPTPS ’03), Berkeley, CA, USA, February 2003.

[33] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and
Thomer M. Gil. A performance vs. cost framework for evaluating
DHT design tradeoffs under churn. In Proc. of the 24th Infocom, March
2005.

[34] Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic
data access in content addressable networks. In The 1st
Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[35] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Controlling
the Cost of Reliability in Peer-to-Peer Overlayss. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, Feb-
ruary 2003.

[36] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dy-
namic emulation of the butterfly. In InProceedings of the 21st ACM
Symposium on Principles of Distributed Computing (PODC ’02), August
2002.

[37] E. P. Markatos. Tracing a Large-Scale Peer to Peer System: An Hour in
the Life of Gnutella. In The Second International Symposium on Cluster
Computing and the Grid, 2002. http://www.ccgrid.org/ccgrid2002.

[38] MathWorld. The butterfly graph, 2004. http:// math-
world.wolfram.com / ButterflyGraph.html.

[39] MathWorld. The de bruijn graph, 2004. http:// math-
world.wolfram.com / deBruijnGraph.html.

BIBLIOGRAPHY 71

[40] Petar Maymounkov and David Mazires. Kademlia: A Peer-
to-peer Information System Based on the XOR Metric. In The
1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[41] Mike Miller. Discovering P2P. Sybex International, November 2001.
ISBN-0782140181.

[42] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Ben-
jie Chen. Ivy: A read/write peer-to-peer file system. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation,
Boston, Massachusetts, USA, December 2002. USENIX Association.

[43] Moni Naor and Udi Wieder. Novel architectures for p2p applica-
tions: the continuous-discrete approach. In InProceedings of SPAA
2003, 2003.

[44] Napster. Open source napster server, 2002.
http://opennap.sourceforge.net/.

[45] OpenNap, 2001. http://opennap.sourceforge.net/.

[46] Andy Oram. What is P2P... And What isn’t?, November 2000.
http://www.oreillynet.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html.

[47] Andy Oram. Peer-To-Peer: Harnessing the Power of Disruptive Technolo-
gies. O’Reilly, first edition, March 2001. ISBN:0-596-00110-X.

[48] Overnet. The overnet file-sharing application homepage, 2004.
http://www.overnet.com.

[49] P-Grid. The P-Grid homepage, 2004. http://www.p-grid.org.

[50] P2P Conference. The IEEE International Conference on Peer-To-Peer
Computing, Use of Computers at the Edge of Networks P2P, Grid,
Clusters. http://www.ida.liu.se/conferences/p2p/p2p2002/.

[51] Planet-Lab. The planet-lab homepage. http://www.planet-lab.org.

72 BIBLIOGRAPHY

[52] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Access-
ing nearby copies of replicated objects in a distributed environment.
In ACM Symposium on Parallel Algorithms and Architectures, pages 311–
320, 1997.

[53] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A Scalable Content Addressable Network. In Proceed-
ings of the ACM SIGCOMM ’01 Conference, Berkeley, CA, August 2001.

[54] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level Multicast using Content-Addressable Networks. In
Third International Workshop on Networked Group Communication (NGC
’01), 2001. http://www-mice.cs.ucl.ac.uk/ngc2001/.

[55] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping The Gnutella Net-
work: Properties of Large-Scale Peer-to-Peer Systems And Implica-
tions For System Design. IEEE Internet Computing Journal, 6(1), 2002.

[56] Antony Rowstron and Peter Druschel. Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), 329-350 2001.

[57] Antony Rowstron and Peter Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility.
In 18th ACM Symposium on Operating Systems Principles (SOSP’01),
188-201 2001.

[58] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolf-
gang Nejdl. HyperCuP – hypercubes, ontologies and effi-
cient search on peer-to-peer networks, May 2003. http://www-
db.stanford.edu/ schloss/docs/HyperCuP-LNCS2530.ps.

[59] Mario Schlosser, Michael Stinek, Stefan Decker, and Wolfgang Nejdl.
A Scalable and Ontology-Based P2P Infrastructure for Semantic Web
Services. In 2nd International Conference on Peer-To-Peer Computing,
pages 104–111, Linkping, Sweden, September 2002. IEEE Computer
Scociety. ISBN-0-7695-1810-9.

BIBLIOGRAPHY 73

[60] Ion Stoica, Dan Adkins, Sylvia Ratnasamy, Scott Shenker, Sonesh
Surana, and Shelley Zhuang. Internet Indirection Infrastructure. In
The 1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[61] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, pages 149–160, San Diego, California, August 2001.

[62] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. IEEE
Transactions on Networking, 11, 2003.

[63] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, Inc., 2002. ISBN-0-13-088893-
1.

[64] The Chord Project Home Page, 2003.
http://www.pdos.lcs.mit.edu/chord/.

[65] The Global Grid Forum. The Global Grid Forum Home Page, 2003.
http://www.gridforum.org.

[66] Viceroy. Java implementation and visualization applet, 2004.
http://www.ece.cmu.edu/ atalmy/viceroy.

[67] J. Xu, A. Kumar, and X. Yu. On the fundamental tradeoffs between
routing table size and network diameter in peer-to-peer networks.
IEEE Journal on Selected Areas in Communications, 22(1):151–163, Jan-
uary 2004. Preliminary version appeared in Proc. IEEE INFOCOM
2003.

[68] Zhichen Xu, Mahalingam Mallik, and Magnus Karlsson. Turn-
ing Heterogeneity into an Advantage in Overlay Routing. Tech-
nical Report HPL-2002-126R2, Hewlett-Packard Labs, July 2002.
http://www.hpl.hp.com/techreports/2002/HPL-2002-126R2.html.

74 BIBLIOGRAPHY

[69] Ben Y. Zhao, Ling Huang, Sean C. Rhea, Jeremy Stribling, Anthony D
Joseph, and John D. Kubiatowicz. Tapestry: A global-scale overlay
for rapid service deployment. IEEE J-SAC, 22(1):41–53, January 2004.

[70] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2000.

[71] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D. Joseph,
and John D. Kubiatowicz. Approximate object location and spam
filtering on peer-to-peer systems. In Proc. of Middleware, pages 1–20,
Rio de Janeiro, Brazil, June 2003. ACM.

[72] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz,
and John D. Kubiatowicz. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In Proc. of NOSSDAV,
pages 11–20. ACM, June 2001.

Part I

Designs

75

Chapter 3

A Framework for P2P Lookup
Services Based on k-ary Search

77

78

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 79

A Framework for Peer-To-Peer Lookup Services based
on k-ary search

Sameh El-Ansary

Swedish Institute of Computer Science
Kista, Sweden

Luc Onana Alima

Department of Microelectronics and Information Technology
Royal Institute of Technology

Kista, Sweden

Per Brand

Swedish Institute of Computer Science
Kista, Sweden

Seif Haridi

Department of Microelectronics and Information Technology
Royal Institute of Technology

Kista, Sweden

Abstract

Locating entities in peer-to-peer environments is a fundamental operation. Recent
studies show that the concept of distributed hash table can be used to design scal-
able lookup schemes with good performance (i.e. small routing table and lookup
length). In this paper, we propose a simple framework for deriving decentral-
ized lookup algorithms. The proposed framework is simple in that it is based on
the well-known concept of k-ary search. To demonstrate the applicability of our
framework, we show how it can be used to instantiate Chord. When deriving a
generalized Chord from our framework, we obtain better performance in terms
of the routing table size (38% smaller than the generalization suggested by the
Chord authors).

Keywords: Lookup, peer-to-peer, distributed hash table, k-ary search.

80 3.1. INTRODUCTION

3.1 Introduction

Peer-to-peer systems emerged as a special field of distributed systems
where the lack of centralized control is a key requirement. Lookup ser-
vices is one area in the peer-to-peer field that deserves a particular atten-
tion as a lookup service is a core requirement in peer-to-peer systems and
applications. Given a certain key, the main task of a lookup service is to
locate a network node that is responsible for that key.

The lookup problem in peer-to-peer systems has been approached in
several ways. In our view, existing lookup services could be categorized
based on two main properties: i) scalability, ii) hit guarantee, i.e., possibil-
ity of locating an entity in the system given that it is present. Depending
on the application, other properties such as security and anonymity may
be of interest.

In most of the early peer-to-peer systems such as Napster [3], Gnutella
[2] and FreeNet [1], the hit guarantee and the scalability properties are ei-
ther missing or not simultaneously satisfied. For example, the centralized
directory in Napster offers the hit guarantee property while it renders the
system unscalable. In Gnutella, the flooding approach prevents it from
being scalable [5]. Furthermore, the hit guarantee is limited to the scope of
the flooding. Similarly, in FreeNet the search scope is bounded and the use
of caching can lead to inconsistent views of the network. The scalability of
FreeNet is still to be evaluated.

Later approaches to the lookup problem are based on the concept of
Distributed Hash Table (DHT). This approach is represented, for example,
by systems such as Chord [6], Tapestry [8] and CAN [4]. The idea behind
this approach is to let all the names of the different entities in the system be
mapped to a single search space by using a certain hashing function and
thus all the entities in the system have a consistent view of that mapping.
Given that consistent view, various structures of the search space are used
for locating entities. For example, in Chord, the search space is structured
as a ring. In Tapestry, it is structured as a mesh. In CAN, it is structured as
a d-dimensional coordinate space.

The hit guarantee property is well-addressed in the three above-mentioned
systems as the whole search space is considered by the indexing structures

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 81

Lookup length Routing entries Comments

Chord log2(N) log2(N) N , system size

Tapestry logb(N) blogb(N) b, search space encoding base

CAN d
4n

1
d 2d d, some constant

Table 3.1: Lookup length and routing information required in three DHT-
based lookup services

in the three cases of ring, mesh and d-dimensional space and is no longer
limited to the scope of a certain query. The different indexing structure
are realized by means of routing tables. The hit guarantee is offered under
normal failure conditions as the three algorithms provide fault-handling
mechanisms to repair outdated routing tables. Scalability is also well-
addressed because of the fact that a reasonable amount of routing informa-
tion is required in order to offer an acceptable lookup length (i.e., number
of hops to resolve a query). Table 3.1 shows that Chord and Tapestry both
offer a lookup length and a number of routing table entries that grow log-
arithmically with the system size. CAN offers a lookup length that grows
with the system size as a polynomial with order 1/d, for some constant d
and requires a constant amount of routing information.

3.1.1 Motivation and contribution

After exploration of some of the DHT-based lookup services, we were in-
terested to answer the following question: Is there a general abstraction that
can be used to derive most of the existing DHT lookup services?

By investigating the question, we observed that the idea of k-ary search
seems to be general enough to derive several DHT-based lookup algo-
rithms.

In this paper we show that:

• The lookup problem in peer-to-peer networks could be perceived as
k-ary search.

• The DHT-based lookup service, Chord, is a special case of k-ary
search where k = 2, i.e. performing binary search.

82 3.2. THE CHORD LOOKUP ALGORITHM

• This line of thinking can improve the lookup length of Chord and
the number of routing table entries.

In general, DHT-based lookup services have three basic operations: In-
sertion, deletion and lookup. The scope of this paper will cover only the
lookup operation. In a future paper, we will show how the k-ary search
framework can simplify the insertion and deletion operations.

To present the suggested framework, in section 3.2, we introduce the
Chord algorithm. In section 3.3, we show how the Chord algorithm can
be perceived as an algorithm that mimics binary search. In section 3.4,
we show how to perceive the lookup problem as k-ary search. Based on
this result, in section 3.5, we show how the k-ary search framework can
improve Chord lookup algorithm and the number of routing table entries.
Finally, we conclude our work and present future directions in section 3.6.

3.2 The Chord lookup algorithm

In this section, we review the Chord system without considering the as-
pects of node joins and failures. We only focus on the lookup functionality.

Assuming a network of nodes where each node is assigned a number
of keys, the Chord system provides a lookup service. That is, given a key
K, a node running the chord algorithm will be able to determine the node
to which K is assigned.

3.2.1 The Chord identifier/search space

The nodes’ addresses and the keys of data items are both hashed to form a
single identifier space. Where each identifier is encoded using m-bits. The
identifiers are ordered in an identifier circle modulo 2m.

3.2.2 Key assignment

Each identifier in the circle corresponds either to a node address or a key
of a data item. Let ID be the function that maps nodes and keys to the
identifier space. We say that a key K is assigned to node n iff

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 83

0

8

412

10

5

13

15 1

2

6

79

11

14

3

Figure 3.1: An example Chord network with 16 identifiers.

• ID(K) = ID(n) or

• ID(n) is the first identifier that corresponds to a node in the clock-
wise traversal of the identifier circle, starting from ID(K).

When a key K is assigned to a node n, we say that node n is the successor
of K. From now on, we do not make a distinction between a key and its
identifier. The same applies for the nodes. Therefore, for an identifier k,
we write successor(k) to denote the node to which, the key that maps to k
is assigned.

Using the system depicted in Figure 3.1, which has three nodes, namely
node 3, 7 and 10, the idea of key assignment is as follows. All identifiers
from 11 to 3 are assigned to node 3; all identifiers from 4 to 7 are assigned
to node 7 and all identifiers from 8 to 10 are assigned to node 10.

3.2.3 The routing table

Each node in the Chord network maintains a routing table of m entries
called the finger table. At a given node n, the i-th entry of this table, stores

84 3.3. CHORD AS BINARY-SEARCH

the node s such that s is the successor of n⊕2m 2i−11.

3.2.4 Key location

In this subsection, we briefly describe how to find the location of keys in a
Chord network. When a node n receives a query for a key k, n will use its
fingers as follows:

• If k ∈]n,successor(n)] then n returns successor of n and we say the
query is resolved.

• If k 6∈]n,successor(n)] then, node n forwards the query to the node n′,
which is the closest preceding node of k according to n’s finger table.
When n′ receives the forwarded query, it acts like node n.

3.2.5 Complexity

The m-th entry of each finger table contains the address of the node fm,
where fm = successor(n⊕2m 2m−1). Thus, if a query cannot be resolved at
a node n, the node n will forward the query to fm, which is at least half
way between n and the target. Using this argument, it is proven in [7] that
log2(N) hops are sufficient to resolve a given query with a routing table of
log2(N) entries.

3.3 Chord as binary-search

Although not explicitly stated in [6, 7], we can see that the Chord lookup
algorithm mimics binary search. Seeing the Chord lookup as a binary
search simplifies its understanding. In this section, we show how this is
the case. Before explaining, we introduce the following definition:

Definition 3.3.1 Let I =]x, y] be an interval of identifiers. We call the node with
identifier x, the responsible for I .

1The notation x ⊕z y is used to denote (x + y) mod z.

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 85

The definition above deserves a comment. The responsible for a given
interval I , is the node to which a query for a key k is forwarded once it is
determined that k belongs to I .

To show how the Chord lookup algorithm can be perceived as binary
search, we consider a fully populated Chord network with 16 nodes. We
say that a Chord network is fully populated when there is a node at each
identifier of the identifier space.

In order to determine the location of a key, a query is introduced to the
Chord network. A query arrives at a node either as an original query or as
a forwarded query. Therefore, a precise characterization of a query Q at an
arbitrary node n can be given in terms of the number of hops that Q made
in order to reach node n. Hence, an original query made zero hops while
a forwarded query made one or more hops. We will denote a query that
made i hops, i ≥ 0, an i-hop query.

Let us see how the Chord lookup algorithm determines the location of
key k assuming that the original query for k arrives at node 0.

When the original (or the 0-hop) query for k arrives at node 0, node 0
determines the search space for k, which for node 0, is the whole identifier
space, denoted]0, 0], traversing the ring clockwise. Then, node 0 performs
the following steps:

1. Using its 4-th entry of the finger table, node 0 divides the search
space into the two intervals]0, 8] and]8, 0].

2. Determines the interval to which k belongs.

3. Forwards the query to the node responsible for the interval to which
k belongs. Given the two intervals above, the query is forwarded
either to node 0 itself or to node 8.

At this point, two cases are to be considered depending on which node the
query is forwarded to.

Case 1: the query was forwarded to node 0 itself. In this case, node 0
receives the query after one hop and performs the following steps:

1. Using its 3-rd entry of the finger table, node 0 divides the new search
space (i.e.]0, 8]) into the two intervals]0, 4] and]4, 8].

86 3.3. CHORD AS BINARY-SEARCH

2. Determines the interval to which k belongs.

3. Forwards the query to the node responsible for the interval to which
k belongs. That is, the query is forwarded either to node 0 itself or to
node 4.

Case 2: the query was forwarded to node 8. The characteristic of the
forwarded query when it arrives at node 8 is that it made one hop. Thus,
when node 8 receives this “one hop” query for k, node 8 determines that
the search space for this query is]8, 8⊕16

16
21] and 8 performs the following

steps:

1. Using its 3-rd entry of the finger table, node 8 divides the search
space for k into the two intervals]8, 12] and]12, 0].

2. Determines the interval to which k belongs.

3. Forwards the query to the node responsible for the interval to which
k belongs. At this point, the query is forwarded to either node 8 itself
or to node 12.

By continuing the above startegy of processing forwarded queries, we can
observe that each node that receives an x-hop query, 0 ≤ x ≤ 3, has only
two forwarding alternatives, which means that the search process follows
a path of a binary search tree. Figure 3.2 illustrates this behavior.

As illustrated in figure 3.2, after each hop, the search space is halved
into two intervals. Therefore, any other node in the network is reachable
from the originating node of the query, within 4 hops.

In general, if N and H are respectively the system size and the maxi-
mum number of hops, then when a node n receives a i-hop query, 0 ≤ i ≤
H − 1, the node n does the following:

1. Determines the search space for the query. This search space is given
by the interval

]n, n⊕N
N

2i
] (3.1)

2. Using the (H−i)-th entry of its finger table, node n divides the search
space for k into two intervals:]n, n⊕N

N
2i+1] and]n⊕N

N
2i+1 , n⊕N

N
2i]

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 87

0

8
]8, 0]

12

]1
2,

0]

14

]1
4,

0]

15

]1
5
, 1

6
]

14

]1
4
, 1

5
]

12

]12, 14]

13

]1
3
, 1

4
]

12

]1
2
, 1

3
]

8

]8, 12]

10

]1
0,

12
]

11

]1
1
, 1

2
]

10

]1
0
, 1

1
]

8

]8, 10]

9

]9
, 1

0
]

8

]8
, 9

]

0
]0, 8]

4

]4
, 8

]

6

]6
, 8

]

7

]7
, 8

]

6

]6
, 7

]

4

]4, 6]

5

]5
, 6

]

4

]4
, 5

]

0

]0, 4]

2

]2
, 4

]

3

]3
, 4

]

2

]2
, 3

]

0

]0, 2]

1

]1
, 2

]

0

]0
, 1

]

Figure 3.2: Decision tree for a query originating at node 0 in a 16-node
network applying binary search

88 3.4. LOOKUP SERVICES AS K-ARY SEARCH

3. Determines the interval to which k belongs.

4. Forwards the query to the node responsible for the interval to which
k belongs. More precisely, node n forwards the query to either node
n itself or to node n⊕N

N
2i+1 .

3.3.1 Complexity

Given that, for each query, the Chord lookup algorithm follows a path of
a binary search tree rooted at the node where the query originated, the
following results follow.

Theorem 3.3.1 (Lookup length) The maximum number of hops for any query
to be resolved, is log2(N).

Proof : Follows from the fact that the height of a binary tree of N nodes is
log2(N).

Theorem 3.3.2 (Routing Table Entries) The maximum number of routing ta-
ble entries at each node is log2(N).

Proof : Let n be an arbitrary node. From the above algorithm, node n
must be able to forward any x-hop query, 0 ≤ x ≤ H − 1, where H is the
maximum number of hops required to resolve any query.

In order for the node n to route an x-hop query, the node n must select
exactly one destination between two possible forwarding alternatives. But,
as the node n does not need an entry for routing to itself, only one entry is
needed.

Overall, since x varies from 0 to H − 1, and one entry is needed for
each x-hop query, therefore, H entries in the routing table are needed.

Since n is an arbitrary node, the theorem follows.

3.4 Lookup services as k-ary search

Having observed that the Chord algorithm mimics binary search, we gen-
eralize this idea to develop a modified algorithm that rather mimics k-ary

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 89

0

12

]12, 0]

15

]1
5,

16
]

14

]1
4
, 1

5
]

13

]1
3
, 1

4
]

12

]12, 13]

8
]8,

12
]

11

]1
1,

12
]

10

]1
0
, 1

1
]

9

]9
, 1

0
]

8

]8, 9]

4

]4, 8]

7

]7
, 8

]

6

]6
, 7

]

5

]5
, 6

]

4

]4, 5]
0

]0, 4]

3

]3
, 4

]

2

]2
, 3

]

1

]1
, 2

]

0

]0, 1]

Figure 3.3: Decision tree for a query originating at node 0 in a 16-node
network applying 4-ary search.

search , k ≥ 2. We consider a fully populated system that consists of N
nodes and assume that the maximum number of hops required to resolve
any query is H . In addition, we assume that the identifier space is orga-
nized as a circle modulo N .

When a node n receives a i-hop query for key y, 0 ≤ i ≤ H − 1, the
node n does the following:

1. Determines the search space for the for key y. This search space is
given by the interval

]n, n⊕N
N

ki
] (3.2)

2. Using the (H−i)-th entry of its finger table, node n divides the search
space for y into k intervals:
]n⊕N

N
ki+1 j, n⊕N

N
ki+1 (j + 1)], 0 ≤ i ≤ H − 1, 0 ≤ j ≤ k − 1.

3. Determines the interval to which y belongs.

4. Forwards the query to the node responsible for the interval to which
y belongs. More precisely, node n forwards the query to one of the
nodes:
n⊕N

N
ki+1 j, 0 ≤ j ≤ k − 1.

Figure 3.3 illustrates the behavior of this algorithm in the case of k = 4
in a 16 node system.

90 3.4. LOOKUP SERVICES AS K-ARY SEARCH

3.4.1 Complexity

Given that for each query, the general algorithm presented in the above
section, follows a path of a k-ary search tree rooted at the node where the
query originated, the following results follow.

Theorem 3.4.1 (Lookup length) The maximum number of hops for any query
to be resolved, is logk(N).

Proof : Follows from the fact that the height of a k-ary tree of N nodes is
logk(N).

Theorem 3.4.2 (Routing Table Entries) The maximum number of routing ta-
ble entries at each node is (k-1)logk(N).

Proof : Let n be an arbitrary node. From the above algorithm, node n
must be able to forward any x-hop query, 0 ≤ x ≤ H − 1, where H is the
maximum number of hops required to resolve any query.

In order for the node n to route an x-hop query, the node n must select
exactly one destination between k possible forwarding alternatives. One of
these destinations is the node n itself and as the node n does not need an
entry for routing to itself, only k − 1 entries are needed.

Overall, since x varies from 0 to H − 1, and k − 1 entries are needed
for each x-hop query. Therefore, (k − 1)H entries in the routing table are
needed.

Since n is an arbitrary node, the theorem follows.

CHAPTER 3. A FRAMEWORK FOR P2P LOOKUP SERVICES BASED ON K-ARY SEARCH 91

Chord(d) k-ary Chord

H logx(N) logk(N)

R log(N)
log(x

x−1
) (k − 1)logk(N)

Table 3.2: Chord(d) vs. k-ary Chord

3.5 k-ary search for improving Chord

Having perceived chord as a special case of k-ary search, where k = 2, we
can observe that if we need to improve the lookup length of Chord to a
desired valueH , we can choose a suitable k to achieve that value based on
the following formula:

H = logk(N)

The number of routing table entries, R will be:

R = (k − 1)logk(N)

We refer to our generalization of Chord by k-ary Chord.

The authors of the Chord system suggested as a future work in [7], a
modification of the Chord lookup algorithm if a certain number of hops
was desired. The modification suggested the placement of the fingers at
intervals that are integer powers of (1 + 1

d) instead of powers of 2, for
some constant d. In that case, the lookup length is log1+d(N). The cost of
the modification is an increase in the number of routing table entries to

log(N)

log(1+ 1
d
)
. We refer to this generalization by Chord(d).

In order to compare our result with the suggested generalization of the
Chord authors, we take x = 1 + d and we obtain table 3.2.

If we let k = x = 4 , we can see that the number of routing table entries
of the k-ary Chord is 38% smaller than Chord(d) as shown in table 3.3.

A more elaborate analysis of the size of the routing table as a function
of the system size is shown in Figure 3.4.

92 3.5. K-ARY SEARCH FOR IMPROVING CHORD

N RChord(d)
R

k−ary Chord
24 9.637683359 6

28 19.27536672 12

216 38.55073343 24

232 77.10146687 48

264 154.2029337 96

Table 3.3: Number of routing entries for different system sizes with k =
x = 4

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

N
o.

 o
f r

ou
tin

g
ta

bl
e

en
tr

ie
s

System size N, 1<=N<=2^64, K=x=4

Chord(d)
k-ary Chord

Figure 3.4: Evolution of routing table entries as a function of the system
size.

BIBLIOGRAPHY 93

3.6 Conclusion and future work

In this paper, we have presented a simple framework for designing dis-
tributed hash table based lookup services. The proposed framework is
simple in that it is based on a well-known technique, that of k-ary search.

The paper shows how the idea of k-ary search can be used to derive
the Chord lookup algorithm. More importantly, the generalization of the
Chord lookup algorithm based on the k-ary search requires, for the same
system size and the same lookup length, a routing table which is 38%
smaller than the one required in the generalization suggested by the Chord
authors.

As future work, we plan to show how this framework can be used
to instantiate other distributed hash table based lookup algorithms. In
addition, we show in a future paper how our framework simplifies the
handling of node joins and failures.

Bibliography

[1] FreeNet. http://freenet.sourceforge.net.

[2] Gnutella. http://www.gnutella.com.

[3] Napster. http://freenet.sourceforge.net.

[4] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content addressable network. Technical Re-
port TR-00-010, Berkeley, CA, 2000.

[5] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella net-
work: Properties of large-scale peer-to-peer systems and implications
for system design, 2002.

[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In ACM SIGCOMM 2001, pages 149–160, San Deigo, CA, August
2001.

94 BIBLIOGRAPHY

[7] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. Technical Report TR-819, MIT, January 2002.

[8] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing. U.
C. Berkeley Technical Report UCB//CSD-01-1141, April 2000.

Chapter 4

The DKS(N, k, f)
Infrastructure for P2P
Applications

95

96

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 97

DKS(N, k, f): A Family of Low Communication,
Scalable and Fault-Tolerant Infrastructures for P2P

Applications1

Luc Onana Alima1, Sameh El-Ansary2, Per Brand2 and Seif Haridi1
1IMIT-Royal Institute of Technology, Kista, Sweden

2Swedish Institute of Computer Science, Kista, Sweden
{onana, seif}@it.kth.se, {sameh, perbrand}@sics.se

Abstract

In this paper, we present DKS(N, k, f), a family of infrastructures for building
Peer-To-Peer applications. Each instance of DKS(N, k, f) is a fully decentralized
overlay network characterized by three parameters: N the maximum number of
nodes that can be in the network; k the search arity within the network and f the
degree of fault-tolerance. Once these parameters are instantiated, the resulting
network has several desirable properties. The first property, which is the main
contribution of this paper, is that there is no separate procedure for maintaining
routing tables; instead, any out-of-date or erroneous routing entry is eventually
corrected on-the-fly thereby, eliminating unnecessary bandwidth consumption.
The second property is that each lookup request is resolved in at most logk(N)
overlay hops under normal operations. Third, each node maintains only (k −
1) logk(N) + 1 addresses of other nodes for routing purposes. Fourth, new nodes
can join and existing nodes can leave at will with a negligible disturbance to the
ability to resolve lookups in logk(N) hops in average. Fifth, any pair key/value
that is inserted into the system is guaranteed to be located even in the presence of
concurrent joins. Sixth, even if f consecutive nodes fail simultaneously, correct
lookup is still guaranteed.

1This work is funded by the European IST-FET PEPITO project, the PIRATES project of
the “Region Wallone” in Belgium and Vinnova PPC project in Sweden.

98 4.1. INTRODUCTION

4.1 Introduction

The need for sharing information and computing resources in large scale
networks is motivating a significant amount of research in the area of Peer-
To-Peer (P2P) computing. The majority of recent research in this area fo-
cuses on providing Distributed Hash Tables (DHT) as infrastructures for
building large scale P2P applications. The basic functionality of a DHT is
to map keys to values. Most of the existing DHTs aim at achieving logarith-
mic routing table size and lookup length [6, 7, 4, 5].

A common characteristic of existing DHTs is the use of what we call
active correction for maintaining routing tables. Typically, the active correc-
tion consists in running, periodically, specific routines whose sole purpose
is to correct routing table entries [6, 7, 4, 5]. This results in additional band-
width consumption, which in practical systems, constitutes a drawback.

To overcome the above-mentioned drawback, we propose an alterna-
tive approach in which there is no active correction. Instead, we use a
technique we call correction-on-use by which, any out-of-date routing in-
formation is corrected on-the-fly while performing lookups and insertions
of key/value pairs. Our design still provides logarithmic complexity as
we demonstrate by simulation in the sequel.

4.1.1 Motivations and contributions

The motivation to our work is threefold. The first is the following obser-
vation.

In P2P systems in which at any time, the number of lookups
and key/value (or document) insertions is significantly higher
than the number of joins, leaves and failures, the cost incurred
by active correction is unnecessary.

The second is the need to build tunable (or flexible) infrastructures for
building P2P applications. The rational behind flexibility is that for a
given desirable system maximum size, N , one should be able to tune
the infrastructure to achieve good balance between routing table size and
lookup length.

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 99

The third is the lookup reliability. That is, we target infrastructures that
guarantee to find the data associated to a key provided that the corre-
sponding key/value pair were inserted into the system. Systems utilizing
active correction usually do not meet this requirement.

The main contributions of this paper can be put as follows. First, we
demonstrate the viability of the observation stated above. Second, we pro-
vide a design that is tunable and guarantees lookup reliability.

The result presented in this paper can be seen to some extent as a gen-
eralization of the Chord system [6]. Letting k be equal to 2 leads to a
DKS(N, k, f) with the same routing table size and the same lookup length
as in Chord. However, Chord uses active correction, which has a high and
unnecessary communication cost.

The technique we use to correct routing tables is general enough to be
applied to other systems. We demonstrate the validity of our approach by
means of simulation.

4.1.2 An overview of our approach

Our approach builds on two main ideas. First, we use a form of interval
routing that we call distributed k-ary search [3] (Hence, the name DKS). Sec-
ond, we use a novel technique that we call correction-on-use for maintaining
routing tables. In this section, we briefly introduce these two ideas.

The distributed k-ary search principle is as follows. Given a key iden-
tifier t, in order to resolve the key t (i.e. find the data associated to t), the
distributed k-ary search proceeds in logk(N) steps. At the beginning of the
search, the search space is equal to the whole identifier space. At each step
of the (distributed) search, the current search space is divided into k equal
parts. Each part is under the responsibility of a well chosen node. This
partitioning of the search space is repeated until we reach k equal parts
containing each only one element. At this point, the part that contains t
is the one that is used to resolve the key t. Provided that the identifier
space is a power of k, which we assume, it is easy to see that for an identi-
fier space of size N , each lookup will require at most logk(N) hops under
normal operation. In addition, each node needs a routing table of only
(k − 1) logk(N) entries as we demonstrate in the rest of this paper.

100 4.1. INTRODUCTION

The correction-on-use technique is based on the fact that in P2P sys-
tems, having out-of-date routing entries should be considered as the nor-
mal situation rather than an exception due to frequent changes. Therefore,
a challenging task is to provide efficient integrated mechanisms for han-
dling out-of-date routing entries on-the-fly while providing logarithmic
lookup length and reliable lookup.

Intuitively, the idea in the correction-on-use technique consists in em-
bedding technical information into messages such that when a peer n′ re-
ceives a message MSG from another peer n, peer n′ can determine whether
the routing information used by peer n when sending the message MSG

was correct or not. Hence, if peer n′ finds out that the routing information
used by n was wrong, peer n′ immediately informs peer n. In addition,
peer n′ tells peer nwhich peer it knows is a possible candidate for the rout-
ing entry used by n. When peer n receives such a notification, it updates
the erroneous routing entry and repeats the operation that led it to con-
tact n′. In this manner, any out-of-date routing information is eventually
corrected; and if ever the system enters some steady period, no additional
bandwidth consumption takes place in contrast to systems that use active
correction (or periodical stabilization).

How fast the correction-on-use technique corrects routing entries de-
pends on how frequently each routing entry is used. Intuitively, the more
useful traffic (i.e. traffic related to lookup and key/value insertion), the
higher is the correction rate of routing table entries.

To ensure lookup reliability, we let peers join and leave the system in
an atomic manner. Fault-tolerance is achieved by means of replication as it
is the case in traditional fault-tolerant systems [2].

4.1.3 Paper organization

The remaining of this paper is organized as follows. In section 4.2, we
present the concepts used in the design of the DKS(N, k, f). Section 4.3 is
devoted to the construction of a DKS(N, k, f) network. Section 4.4 de-
scribes how the correction-on-use is achieved. In Section 4.5 we briefly
describe the protocol used for resolving any key identifier and correct-
ing out-of-date (or erroneous) routing entries. Section 4.6 describes how

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 101

nodes leave a DKS(N, k, f) network. Section 4.7 explains how failures are
handled. Section 4.8 presents experimental results and finally, Section 4.9
concludes.

4.2 The concepts in the design of the DKS(N, k, f)

In this section, we present the concepts behind the design of the DKS(N, k, f)
systems. We begin by giving the underlying assumptions.

4.2.1 Underlying assumptions

For the design of the DKS(N, k, f), we model a distributed system as a set
of processes linked together through a communication network. Processes
communicate by message passing. The communication network is as-
sumed to be connected, asynchronous, reliable and FIFO.

To set up a DKS(N, k, f) system, it is assumed that: k is an integer
greater or equal 2. The maximum number of nodes that can be in the
system is N = kL where L is assumed to be large enough to achieve very
large distributed systems. f is the fault-tolerance parameter. Each peer
knows the parameters N , k and f , thus can compute L.

4.2.2 The identifier space and notations

In designing DKS(N, k, f) systems, we assume, like in most P2P infrastruc-
tures [6, 5], that nodes of a DKS(N, k, f) and objects managed by these
nodes are uniquely identified by identifiers taken from the same logical
space.

In this paper, we assume that the identifier space, denoted I = {0, 1, · · · , N−
1} is organized as a ring. It is worth pointing out that this choice is arbi-
trary, because the design principle shown in this paper can be applied for
other organizations of the identifier space.

Given, the ring of at most N identifiers, some definitions are in order.
First, we note that the whole identifier space can be represented by an
interval of the form [x, x[or]x, x] for an arbitrary x ∈ I. For any x ∈ I, we

102 4.2. THE CONCEPTS IN THE DESIGN OF THE DKS(N, K, F)

note that [x, x] = {x} and]x, x[= I\{x}. From now on, we use for a, b ∈ I,
a⊖ b for (a− b) modulo N and a⊕ b for (a+ b) modulo N .

Next in the paper, we shall need to determine whether a given identi-
fier belongs to a part (or interval) of the identifier space. For this reason,
we use an appropriate boolean function ∈̂, which will serve that purpose.
For simplicity of notation, we shall use infix notation for the function ∈̂.

4.2.3 Key/value pairs management

Let (t, v) be a key/value pair, where t is a key identifier and v is the value
associated with t. When inserted in a DKS(N, k, f) network, this pair is
stored at the first node met moving on the identifier space starting from t,
in the clockwise direction. When a pair (t, v) is stored at a node n, we say
that node n manages the key t.

4.2.4 Levels and views

Any DKS(N, k, f) network is built in a manner that allows each lookup to
be performed as a distributed k-ary search [3] to ensure that each lookup is
resolved in at most logk(N) hops. To achieve this, each node in a DKS(N, k, f)
network has logk(N) levels numbered from 1 to L, where L = logk(N). In
the sequel, we shall use L for {1, 2, · · · , L}.

When at level l ∈ L, a node n has a view V l of the identifier space. The
view V l consists of k equal parts, denoted I l

i , 0 ≤ i ≤ k − 1, and defined
below level by level. Next, we use K for {0, 1, · · · , k − 1}.

• At level 1:

V 1 = I1
0 ∪ I1

1 ∪ I1
2 ∪ · · · ∪ I1

k−1 where
I1
0 = [x1

0, x
1
1[, I

1
1 = [x1

1, x
1
2[, · · · , I1

k−1 = [x1
k−1, x

1
0[

x1
i = n⊕ iNk , for 0 ≤ i ≤ k − 1

• At level 2 ≤ l ≤ L:

V l = I l
0 ∪ I

l
1 ∪ I

l
2 ∪ · · · ∪ I l

k−1 where

I l
0 = [xl

0, x
l
1[, I

l
1 = [xl

1, x
l
2[, · · · , I l

k−1 = [xl
k−1, x

l−1
1 [

xl
i = n⊕ iN

kl , for 0 ≤ i ≤ k − 1

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 103

Notice that the end of I l
k−1 is equal to the end of I l−1

0 .

4.2.5 Responsibilities

Let n be an arbitrary DKS(N, k, f) node. Let l, 1 ≤ l ≤ L, and let V l =
∪0≤j≤k−1I

l
j be the view that node n has at level l. With respect to node

n, each I l
j , 0 ≤ j ≤ k − 1 has associated to it a node, R(I l

j), that node n

considers responsible (or representative) for I l
j . Intuitively, the responsible

for I l
j represents the node that n will contact for example, when trying to

resolve a key identifier that belongs to I l
j .

The choice of representative nodes for the views determine the routing
mechanism used for resolving keys. In this paper we show one possible
way of selecting representatives. The choice presented here is similar to
the one made in the Chord system. However, there are several other pos-
sibilities.

Let x be an identifier. We denote by S(x) the first node encountered in
the interval [x, x[moving in the clockwise direction.

For an arbitrary node n and an arbitrary level l ∈ L, the representa-
tives for I l

i , i ∈ K are given by Table 4.1, where the responsible for an
interval I l

i = [xl
i, x

l
i+1[is taken to be S(xl

i). Notice that each node is itself
responsible for I l

0 for any 1 ≤ l ≤ logk(N).

I l
i R(I l

i)

I l
0 n

I l
1 S(xl

1)
...

...

I l
k−1 S(xl

k−1)

Table 4.1: Responsibilities at node n.

104 4.2. THE CONCEPTS IN THE DESIGN OF THE DKS(N, K, F)

4.2.6 Routing information

To ensure that each lookup has a path length of at most logk(N), each node
n of a DKS(N, k, f) system maintains a routing table that is organized as
shown in Table 4.2.

Level Intervals Responsible

1 I1
0 n
I1
1 S(x1

1)
I1
2 S(x1

2)
· · · · · ·
I1
k−1 S(x1

k−1)

· · ·

L− 1 IL−1
0 n

IL−1
1 S(xL−1

1)

IL
2 S(xL−1

2)
· · · · · ·

IL
k−1 S(xL−1

k−1)

L IL
0 n
IL
1 S(n⊕ 1)

· · · · · ·
IL
k−1 S(n⊕ (k − 1))

Table 4.2: Routing table of the DKS(N, k, f) node n.

Notice that at each level, an arbitrary node n has an entry for itself and
only k − 1 entries for other nodes. Hence, the total number of entries in
each routing table is (k − 1) logk(N) (without counting n).

From now on, we model each routing table as a mapping RT, which is
of type

RT : L → (K → I)

Hence, (RT (l)) (i) denotes the responsible for the interval I l
i . Sometimes,

for the sake of clarity, we write RTn, to emphasize that the routing table
under consideration is that of node n.

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 105

In addition to the above routing table, each node n maintains a pointer
denoted p, to its predecessor on the ring. The predecessor of a node n is
the first node met when moving in the counterclockwise direction starting
from n. So, in total, each node needs only (k−1) logk(N)+1 for the purpose
of the lookup.

4.3 DKS(N, k, f) networks construction

Let N be a DKS(N, k, f) network. Note that by definition, N is either an
empty set or a non-empty set of nodes. Let nj be a DKS(N, k, f) node
that wants to join N . Two situations are to be considered depending on
whether or not N is empty.

To handle insertion of new peers (or nodes), we add a component de-
noted pP to each node in a DKS(N, k, f) network. The component pP at
any node is used only for atomic insertion of new nodes. At any point in
time, the pP of a node n contains either the address of the new node that
node n is currently inserting or the value nil. The pointer pP of a node n
is nil if node n is not inserting a new node.

Joining an empty DKS(N, k, f). In this case, node nj is the first node of
N . The insertion of nj simply amounts to perform the following:

• for each 1 ≤ l ≤ logk(N) and i ∈ K, set (RT (l)) (i) to nj

• set p to nj and pP , to nil.

Joining a non-empty DKS(N, k, f). To join a non-empty DKS(N, k, f)
network N , the joining node nj sends a join request message to a known
node that is currently in N . The join request by nj is possibly forwarded
until it reaches the node n that is currently the successor of nj . To simplify
the understanding of the insertion of nj in the system, we consider two
cases. (i) The first case is when n is currently the only node of the sys-
tem. (ii) The case where n is not the only node in the system, thus has a
predecessor p, which is different from n.

106 4.3. DKS(N, K, F) NETWORKS CONSTRUCTION

The intuition in both cases is that node n will compute according to
appropriate invariants, an approximate routing table for the new node nj .

Case (i): The insertion of nj in this case is made as follows. Node n
computes the routing table of nj according to the following formula.

(

∀l ∈ L :
(

RTnj (l)
)

(0) = nj

)

(4.1)
(

∀l ∈ L, i ∈ K\{0} :
(

nj ⊕ iN
kl

)

∈̂]nj , n] :
(

RTnj (l)
)

(i) = n
) (4.2)

(

∀l ∈ L, i ∈ K\{0} :
(

nj ⊕ iN
kl

)

∈̂]n, nj [:
(

RTnj (l)
)

(i) = nj

) (4.3)

Naturally, node n adapts its routing table to account the arrival of the new
node nj . The predecessor pointers of nj and n are properly set.

Case (ii): In this case, node n has a predecessor p, which is different
from n. Node n computes an approximate routing table for nj according
to the following formula.

(

∀l ∈ L :
(

RTnj (l)
)

(0) = nj

)

(4.4)

(

∀l ∈ L, i ∈ K\{0} :
(

nj ⊕ iN
kl

)

∈̂]nj , n] :
(

RTnj (l)
)

(i) = n
) (4.5)

(

∀l ∈ L, i ∈ K\{0} :
(

nj ⊕ iN
kl

)

∈̂]p, nj] :
(

RTnj (l)
)

(i) = nj

) (4.6)

(

∀l ∈ L, i ∈ K\{0} :
(

nj ⊕ iN
kl

)

∈̂]n, p] :
(

RTnj (l)
)

(i) = as
) (4.7)

In (4.7), as is the node that is, according to the current knowledge of n, the
successor of

(

nj ⊕ iN
kl

)

. When the RTnj is computed, node n sends it to nj .
In addition, the message that carries RTnj contains also the information
that the current predecessor of n will become the predecessor of nj . Node
n updates its predecessor from p to nj ; also, RTn is revised to account the
arrival of nj .

More important to note at this point is that at the end of an insertion
of a new node, the new node receives an approximate routing table that
is computed without any lookup and satisfies the core invariant given in

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 107

(4.8) and that captures the idea that when a node n inserts a new node nj ,
node n gives to nj a routing table RTnj such that for any l ∈ L any i ∈ K,
(

RTnj (l)
)

(i) is equal to the node asn that node n currently thinks is the

successor of (nj ⊕ iN
kl).

(

∀l ∈ L, i ∈ K :
(

RTnj (l)
)

(i) = asn

)

(4.8)

To ensure proper insertion of new nodes between n and its predecessor,
we use local atomic insertion. More precisely, if concurrent joins happen to
be between n and its predecessor, node n serializes them. Notice that the
atomic insertion of a new node nj by node n involves only n, the prede-
cessor of n and nj (when we do not consider fault-tolerance).

Given that concurrent joins at different parts of the circle can take place
by the same time, and that when a node joins it obtains an approximate
routing table, it is possible that routing entries can be out of date.

Handling such out of date information is one of the key contributions
of this paper. Indeed, rather than using separate stabilization mechanism
to be run periodically, we adopt another approach in which erroneous or
out-of-date routing entries are detected and corrected on-the-fly. We intu-
itively present the technique used in the next subsection.

4.4 Correction-on-use

The correction-on-use technique builds on two simple observations.

Observation 1: By piggybacking the level and the interval information in
lookup/insert messages, a remote node n′ can determine upon re-
ceiving a message from n, whether the routing entry used by n to
send the received message was correct.

Observation 2: A node n can determine upon receiving a message from a
remote node n′, whether it has an erroneous routing entry.

To exploit the first observation, we recall that by definition of responsibil-
ities, at a node n, for any l (1 ≤ l ≤ logk(N)), and any i ∈ K, we should
have that (RTn(l))(i) = S(n ⊕ iN

kl). This invariant will hold in any con-
figuration of the system where each node has correct routing information.

108 4.5. LOOKUP IN A DKS(N, K, F)

Therefore, if a node n sends the level (i.e. l) and the interval information
(i.e. i) while sending message to a node n′, then node n′ upon receiving
the message can determine whether or not the entry used by nwas correct.
With respect to node n′, the entry used by n to send a message carrying l
and i, is correct only if node n′ is the successor of (n⊕ iN

kl). So, n′ can accu-
rately detect erroneous routing entries when receiving a message carrying
the level and the interval used by the sender node.

When, a node n′ detects that a node n contacted it using a level and
an interval that shoud not have been used, node n′ sends an error mes-
sage to node n. This error message serves to inform node n that the entry
it used to contact n′ is erroneous. In addition, this error message carries
the address of the predecessor of n′ as the candidate node for correcting
the routing entry used by n. When node n receives such an error mes-
sage, it updates its routing table and repeates the operation (eg. lookup
request, pair key/value insertion request) that led it to contact n′, but now
the message is sent to the predecessor of n′.

The exploitation of the second observation is immediate. Indeed, when
a node n receives a message from a remote node n′, node n checks its
routing table to determine whether it should have n′ in its routing table. If
this is the case, node n updates its routing table accordingly.

4.5 Lookup in a DKS(N, k, f)

The protocol for resolving keys in a DKS(N, k, l) serves also for correcting
erroneous or out-of-date routing entries. As we have already sketched the
idea of detection and correction of routing entries, in this section, we only
present briefly how keys are resolved.

When a node n receives a lookup request for key identifier t, from its
user, node n checks if t is between its predecessor, p and itself. If this is
case, node n does a local lookup to find the value associated to t. The result
is returned to the user. Otherwise, node n triggers a forwarding process
that goes level by level, and that consists in routing lookup messages to the
node that succeeds t on the identifier circle. Each lookup message carries
necessary information (level and interval) for detection and correction of
routing entries. When the node n′ successor of t is reached, n′ performs a

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 109

local lookup to retrieve the value associated to t. The result is forwarded
backward or sent directly to the origin of the lookup.

Inserting key/value pairs in the system is similar to the lookup. In ad-
dition, messages for inserting key/value pairs are also used for detection
and correction of routing entries.

4.6 Leave

Briefly, let n be a node that wants to leave the system. Let s be the suc-
cessor of n. To start the leave process, node n asks its application layer to
hand over the state to the application layer at s. From this point, node n
enqueues all messages related to lookup, join of new nodes and to inser-
tion of key/value pairs that arrive to it. When the state is transfered, node
s is notified by its application layer. Upon receiving the notification from
its application layer, node s sends a “you can leave” message to n that it
can leave the system. Upon receiving the “you can leave” message, node
n sends all the work enqueued to node s. Then, node n leaves without any
additional message.

The departure of n is detected by any other node m that points to n
when node m tries to communicate with n. Upon this detection, node m
replaces n by the node it believes is the successor of n+ 1.

The tricky part of the leave operation is when consecutive nodes at-
tempt to leave by the same time. We manage this situation by a serializa-
tion mechanism that is omitted in this paper.

4.7 Failure

In DKS(N, k, f) we handle two failure situations. The first is the inability
for two peers to communicate in a timely manner due to, for example,
network congestion. This leads to timeout events. The second case is the
real failure situation, where a peer fails by stopping and this fact is detected
only if the site of the failed peer is still functional.

To achieve fault-tolerance, each node n maintains a list fln that con-
tains the first (f + 1) nodes that follows n on the identifier circle. Also,

110 4.8. EXPERIMENTAL RESULTS

the application layer replicates state accordingly to ensure that even if f
consecutive nodes fail simultaneously, the system can still provide reliable
lookup.

When a node n detects the crash of another node n′, the behavior of n
depends on whether or not n′ ∈ fln. In the case n′ ∈ fln, node n replaces
node n′ by the node ns in fln that follows the failed node n′. In addition,
the list fln is corrected using flns

. If the failed node n′ was not in fln, then
node n replaces n′ by the node nas, that node n believes is the first node
following n′. Notice that the believe by n might not be correct. However,
the node nas used for replacement is chosen such that it respects the in-
variant given in (4.8). Hence, even though the node used to replace the
failed node n′ is not correct, subsequent attempts of using the substitute
node will eventually correct the corresponding routing entry.

4.8 Experimental results

The DKS(N, k, f) family is implemented and simulated using a distrib-
uted algorithms simulator developed by our team using the Mozart [1]
programming platform.

Experiments setting. In order to evaluate the performance of our sys-
tem, we conducted several experiments where the maximum system size
is 220. Two of these experiments are reported here.

Experiment 1. The goal of this experiment was to observe the evolu-
tion of the lookup length while new nodes are joining and the number
of lookups increases. To do this, we bootstrapped the system with 500
nodes using a search arity k = 2. Then, we inserted 10 × 212 keys into the
system. Afterward, we introduced concurrency by letting 3500 new nodes
join while α × 212 (where 10 ≤ α ≤ 100) lookups are taking place. These
concurrent events were scheduled at a rate of one event every 3 seconds
following a Poisson distribution. The result of this experiment is shown in
Figure 4.1. This figure shows that as we increase the number of lookups,
the average lookup length tends to 1

2 log2(2
10) and the 99th percentile of the

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 111

0

5

10

15

20

0 20 40 60 80 100

A
ve

ra
ge

, t
he

 1
st

 a
nd

 th
e

99
th

 p
er

ce
nt

ile
 o

f t
he

 lo
ok

up
 e

ng
th

Ratio of Lookups to actual system size of 4000 nodes

K=2

Figure 4.1: The average, the 1st and the 99th percentile of the lookup
length as a result of increasing the lookup traffic in a system bootstrapped
with 500 nodes and 3500 joins are done concurrently with lookups.

lookup length tends to log2(2
10). A reader familiar with the Chord system

can see that those are the typical lookup bounds offered by the Chord sys-
tem. The DKS(N, k, f) system offers the same bounds, yet without active
stabilization.

Experiment 2. This experiment was conducted to observe the evolution
of the lookup length while a proportion of the system is changing with
concurrent joins and leaves and the number of lookup increases. For that,
we bootstrapped the system with 210 nodes. Then, we kept changing
20% of the system with 10% of joins and 10% of leaves happening con-
currently. The experiment was repeated for search arity of 2 and 4. In
figure Figure 4.2, one can observe that in the case of k = 2, the system is
able to achieve the expected logarithmic lookup bounds when the num-
ber of lookups is 120 times the system size. However, in the case of k = 4,

112 4.9. CONCLUDING REMARKS AND FUTURE WORK

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

T
he

 a
ve

ra
ge

 lo
ok

up
 le

ng
th

Ratio of lookups to an actual system size of 1024 nodes

K=2
K=4

Figure 4.2: The average lookup length as a result of increasing the lookup
traffic in a system of actual size 210 while 10% of the nodes leave, and
another 10% join concurrently.

the system is slowly converging towards its expected performance. i.e.,
more lookups are needed in that case. Moreover, in Figure 4.3, the 99th
perecentile of the lookup length for the case where k = 4 tends to be high
when there is no enough lookup traffic which is natural, since the number
of out-of-date entries is larger because of the larger routing tables. As the
lookup traffic increases, the system with k = 4, starts to outperform the
system with k = 2. In all our experiments, the number of lookup failures
observed was negligible with respect to the amount of lookup requests
injected.

4.9 Concluding remarks and future work

In this paper, we presented DKS(N, k, f), a family of low communication,
scalable and fault-tolerant infrastructures for building P2P applications.

CHAPTER 4. THE DKS(N, K, F) INFRASTRUCTURE FOR P2P APPLICATIONS 113

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

T
he

 9
9t

h
pe

rc
en

til
e

of
 th

e
lo

ok
up

 le
ng

th

Ratio of lookups to an actual system size of 1024 nodes

K=2
K=4

Figure 4.3: The 99th percentile of the lookup length as a result of increasing
the lookup traffic in a system of actual size of 210 while 10% of the nodes
leave, and another 10% join concurrently.

The low communication of our infrastructures comes from the elimination
of active correction, in which separate procedures are periodically run in
order to maintain routing tables.

Our design is suitable for P2P systems in which, at any time, the traf-
fic induced by lookup and key/value insertion is significantly higher than
that induced by join, leave and failure. Notice that this assumption im-
plies that at any time, the number of lookup and key/value insertion is
significantly higher than the system size, because join, leave and failure
affect the system size.

A DKS(N, k, f) can be seen as a generalization of the Chord system.
Taking k = 2 gives a system with a routing table exactly as in Chord and a
lookup length of log2(N). However, Chord uses active correction.

The design proposed in this paper is close, to some extent, to systems
such as Pastry [5] and Tapestry [7]. The main differences are that in these

114 BIBLIOGRAPHY

systems, prefix routing and active correction are used. Furthermore, in
Pastry, locality information is exploited while in our design, it is not. How-
ever, it is worth noticing that the idea of distributed k-ary search can be
applied for prefix routing by reconsidering the identifier space.

The DKS(N, k, f) is designed to facilitate the development of P2P ap-
plications. This means that any DKS(N, k, f) should provide an API that
supports a variety of operations. In this paper, we have presented only the
LOOKUP. Currently, we are considering issues such as multicast/broadcast
in DKS(N, k, f). As future work, we will investigate heterogeneity and lo-
cality in DKS(N, k, f) networks.

Acknowledgments

We would like to thank Peep Kungas, Samer Al-Kassimi for their help in
implementing some of the routines of our simulation environment.

Bibliography

[1] Mozart Consortium. http://www.mozart-oz.org.

[2] Flaviu Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[3] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. A
framework for peer-to-peer lookup services based on k-ary search.
Technical Report TR-2002-06, SICS, May 2002.

[4] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content addressable network. Technical Re-
port TR-00-010, Berkeley, CA, 2000.

[5] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Lec-
ture Notes in Computer Science, 2218, 2001.

BIBLIOGRAPHY 115

[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In ACM SIGCOMM 2001, pages 149–160, San Deigo, CA, August
2001.

[7] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing. U.
C. Berkeley Technical Report UCB//CSD-01-1141, April 2000.

116 BIBLIOGRAPHY

Chapter 5

Efficient Broadcast in
Structured P2P Networks

117

118

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 119

Efficient Broadcast in Structured P2P Networks 1

Sameh El-Ansary1, Luc Onana Alima2, Per Brand1, and Seif Haridi2
1Swedish Institute of Computer Science, Kista, Sweden

{sameh,perbrand}@sics.se
2IMIT-Royal Institute of Technology, Kista, Sweden

{onana, seif}@imit.kth.se

Abstract

In this paper, we present an efficient algorithm for performing a broadcast oper-
ation with minimal cost in structured DHT-based P2P networks. In a system of
N nodes, a broadcast message originating at an arbitrary node reaches all other
nodes after exactly N − 1 messages. We emphasize the perception of a class of
DHT systems as a form of distributed k-ary search and we take advantage of that
perception in constructing a spanning tree that is utilized for efficient broadcast-
ing. We consider broadcasting as a basic service that adds to existing DHTs the
ability to search using arbitrary queries as well as dissiminate/collect global in-
formation.

1This work is funded by the Swedish funding agency VINNOVA, PPC project, the Eu-
ropean IST-FET PEPITO project and by the PIRATES project at UCL, Belgium.

120 5.1. INTRODUCTION

Flooding DHT

Queries Arbitrary Key Lookup

Query-Induced Traffic O(N) O(log(N))

Hit Guarantees Low High

Connectivity Graph Random Structured

Table 5.1: Flooding Approach vs. DHT Approach

5.1 Introduction

Research in P2P systems resulted in the creation of many Data/Resource-
location systems. Two approaches were used to tackle this problem; the
flooding approach and the Distributed Hash Table approach. The com-
mon characteristic of both approaches is the construction of an application-
level overlay network. Table 5.1 includes some of the major differences
between the two approaches.
The DHT approach with a structured overlay network, determinism, rel-
atively low traffic and high guarantees is currently perceived in the P2P
research community as the “reasonable” approach. Many systems were
constructed based on that approach such as Tapestry [17], Pastry [13],
CAN [10], Chord [14], Kademlia [8]. In contrast, the flooding-based ap-
proach represented by [5] [4] is mainly considered as unscalable based on
a number of traffic analyses such as [7, 12].

A missing feature in most DHTs is the ability to perform search based
on an arbitrary query rather than key lookups. Extensions to existing
DHTs are needed to supply this feature. Arbitrary querying is realized in
flooding-based systems via broadcasting. However, the random nature of
the overlay network renders the solution costly and with low guarantees.

In this position paper, we show the status of our work on extending
DHTs with an efficient broadcast layer. We are primarily investigating
how to take advantage of the structured nature of the DHT overlay net-
work in performing efficient broadcasts. We provide broadcasting as a
basic service in DHTs that should be deployed for any kind of global dis-
semination/collection of data.

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 121

In the next section, we describe related work. In section 5.3, we ex-
plain our approach based on the perception of a class of DHTs as systems
performing distributed k-ary search. In section 5.4, we present a broadcast
algorithm for one of the DHTs, namely Chord. Some preliminary simu-
lation results are presented in section 5.6. Finally, we conclude and show
intended future work in section 5.7.

5.2 Related Work

Our work can be classified as an arbitrary-search-supporting extension to
DHTs. From that perspective, the following research shares the same goal:
Complex Queries in DHTs. In [6], an extension to existing DHT systems
was suggested to add the ability of performing complex queries. The ap-
proach constructs search indices that enable the performance of database-
like queries. This approach differs from ours in that we do not add extra
indexing to the DHT. The analysis of the cost of construction, maintenance,
and performing database-like join operations is not available at the time
of writing of this paper.

Multicast. Since broadcast is a special case of multicast, a multicast
solution developed for a DHT such as [15, 11, 2] can provide broadcast.
Nevertheless, a multicast solution would require the additional mainte-
nance of a multicast group which is, in the case of broadcast, a large group
containing all the nodes of the network. In our approach, we do not re-
quire such an additional cost, we depend on the routing information of
the already-maintained overlay network.

5.3 Our Approach

5.3.1 DHTs as Distributed k-ary Search

By looking at the class of DHT systems that have logarithmic performance
bounds such as Chord, Tapestry, Pastry, and Kademlia, one can observe
that the basic principle behind their operation is performing a form of dis-
tributed k-ary search. In the case of Chord, a binary search is performed.
For other systems like, e.g., Tapestry and Pastry, the search arity is higher.

122 5.3. OUR APPROACH

0

4 2

35

7

6

1 03 25 47 6

2 06 4

04

0

(a) (b)

[0,4[

[0,2[

[2,3[

[4,0[

[6
,0

[

[3
,4

[
[2

,4
[

[7
,0

[

[5
,6

[[4,5[

[6,7[[1
,2

[[0,1[

1[4,6[

Figure 5.1: (a) Decision tree for a query originating at node 0 in a fully-

populated 8-node Chord network. (b) The spanning tree derived from

the decision tree by removing the virtual hops.

In this paper, we explain the perception of the Chord system as a spe-
cial case of distributed k-ary search. The arguments apply to higher search
arities as well.

The familiarity of the reader to the Chord system and its terminology
is assumed. However, we restate the structure of the routing tables. Every
Chord node has an identifier that represents its position in a circular iden-
tifier space of size N . Each Chord node maintains a table of M = log2(N)
routing entries, called the fingers. We denote the table of fingers at a node
by Finger. At a node n, Finger[i] contains the address of the successor of
n+ 2i−1, 1 ≤ i ≤M .

To illustrate the idea of the distributed k-ary search, without loss of
generality, we assume a Chord system with identifier space of size N = 8.
The system is fully populated, i.e. a node is present for every identifier
in the space. In Figure 5.1 (a), we show the decision tree of a lookup
query originating at node 0. Given a query for a key whose identifier is x,
node 0, starts to lookup for the node responsible for x by considering the
whole identifier space as the search space. Based on the interval to which
x belongs (arc labels in figure 1 (a), the query is forwarded and the process
is repeated with the search space reduced to a half of the previous search

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 123

space. Hence, all nodes are reachable by a query-guided path of at most
H = log2(N) hops.

Notice that some of the hops are made from one node to itself. We
call such hops, virtual hops. An important observation to be made from
the decision tree shown in Figure 5.1 (a) is that a spanning tree can easily
be derived by removing virtual hops. Figure 5.1 (b) shows a spanning tree
derived from the decision tree by removing virtual hops. A more elaborate
explanation on the idea of distributed k-ary search is presented in [1, 3].

5.3.2 Problem Definition

Having highlighted the idea of distributed k-ary search, we can now state
the problem we solve in this paper.
Problem. Given an overlay network constructed by a P2P DHT system, find an
efficient algorithm for broadcasting messages. The algorithm should not depend
on global knowledge of membership and should be of equal cost for any member in
the system.

Note that in the problem definition, we emphasize the P2P assump-
tions, i.e. the absence of central coordination and where every peer pays
the same cost for running the algorithm.

5.3.3 Solutions

Efficient Broadcast. We base our solution on the fact that from the deci-
sion tree of the distributed k-ary search, a spanning tree can be derived by
removing virtual hops. Figure 5.1 (b) shows a spanning tree derived from
the binary decision tree for the 8-node Chord system. In section 5.4, we
show how to construct this tree in a distributed fashion.

Gnutella-like Broadcast. A simple solution for the above-mentioned
problem is to apply a Gnutella-like algorithm, where every node forwards
a received query to its neighbors. This approach has an extra advantage
when applied in a structured overlay network compared to a random net-
work, namely, the ability to determine the diameter of the network. Speak-
ing of the class of DHTs with logarithmic performance, one can set the
Time-To-Live (TTL) parameter of the queries to the logarithm of the total
number of nodes and be sure that the flooding process covers the whole

124 5.4. THE BROADCAST ALGORITHM

network instead of using a heuristic TTL that results in unknown guaran-
tees. However, this solution retains the main property of non-scalability.
In section 5.6, we compare Gnutella-like broadcasting to efficient broad-
casting.

Ring Traversal. As the overlay network of a system like Chord is or-
ganized in a ring, traversing that ring by following the successor pointers
is also a possible solution. The solution differs from our solution in execu-
tion time. That solution requires the sequential traversal of the ring while
our algorithm reaches different parts of the network in parallel.

5.4 The Broadcast Algorithm

5.4.1 System Model & Notation

We assume a distributed system modeled by a set of nodes communicat-
ing by message passing through a communication network that is: (i) Con-
nected, (ii) Asynchronous, (iii) Reliable, and (iv) providing FIFO commu-
nication.

A distributed algorithm running on a node of the system is described
using rules of the form:

receive(Sender : Receiver : MESSAGE(arg1, .., argn))

Action(s)

The rule describes the event of receiving a message MESSAGE at the Re-
ceiver node and the action(s) taken to handle that event. A Sender of a mes-
sage executes the statement send(Sender : Receiver : MESSAGE(arg1, .., argn))
to send a message to Receiver.

5.4.2 Rules

Initiating a Broadcast. A broadcast is initiated at any node as a result of
a user-level request. That is, a user-level layer entity P can send to a node
Q a message INITBROADCAST(Info) where Info is a piece of information
that must be broadcast e.g. an arbitrary search query, a statistics gathering
query, a notification, etc.

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 125

receive(P : Q : INITBROADCAST(Info))

for i in 1 to M − 1 do

//Skip a redundant finger
if Finger[i] 6= Finger[i+ 1] then

R := Finger[i]
Limit := Finger[i+ 1]
send(Q:R:BROADCAST(Info, Limit))

fi

od

//Process the M th finger
send(Q:Finger[M]:BROADCAST(Info, Q))

Figure 5.2: Initiating a Broadcast Message

The role of the node Q is to act as a root for a spanning tree. As shown
in the rule in Figure 5.2, Q does that by sending a BROADCAST message to
all its neighbors. Note that, unless the identifier space is fully populated,
the table Finger of a node contains many redundant fingers. For a sequence
of redundant fingers, the last one is used for forwarding while the others
are skipped.

A BROADCAST message contains the Info to be broadcast and a Limit
argument. A Limit is used to restrict the forwarding space of a receiving
node. The Limit of a Finger[i] is Finger[i+1], (1 ≤ i ≤M−1) whereM is the
number of entries of the routing table. The M th finger’s limit is a special
case where the Limit is set to the sender’s identifier. As an example, we use
the sample Chord network given in section 5.3.1. When node 0 initiates a
broadcast, it sends to nodes 1, 2, and 4. Giving them the limits of 2, 4,
and 0 respectively. By doing that it is actually telling node 4 to cover the
interval [4, 0[, i.e. half of the space. It is telling node 2 to cover the interval
[2, 4[, i.e. quarter of space and finally, telling node 1 to cover the interval
[1, 2[, i.e. an eighth of the space.

Processing a Broadcast. A node Q receiving a BROADCAST(Info, Limit)
message delivers it to its application layer and continues the broadcast in
a subtree confined in the interval]Q,Limit[. In addition to skipping the

126 5.4. THE BROADCAST ALGORITHM

receive(P : Q : BROADCAST(Info, Limit))

//Take some action to deliver to application layer ...
for i in 1 to M − 1 do

//Skip a redundant finger
if Finger[i] 6= Finger[i+ 1] then

//Forward while within “Limit”
if Finger[i] ∈]Q,Limit[then

R := Finger[i]
//NewLimit must not exceed Limit
if Finger[i+ 1] ∈]Q,Limit[then

NewLimit := Finger[i+ 1]
else

NewLimit := Limit
fi

send(Q:R:BROADCAST(Info, NewLimit))
else

exit for

fi

fi

od

Figure 5.3: Processing a Broadcast Message

redundant fingers, Q forwards to every finger whose identifier is before
the Limit. Moreover, when forwarding to any finger, it supplies it with a
NewLimit, defining a smaller subtree. Note that, this will only happen if
NewLimit ∈]Q,Limit[, i.e. the NewLimit is not exceeding the Limit given by
the parent. Figure 5.3 contains the rule for processing a broadcast message.

Note that for any node other than the initiating node, the M th finger
will never be used, so we do not try to forward to it. In general, after
h hops, the (M -h)th finger at most is used in forwarding. An additional
invariant of the two rules that is not shown in the figures, for the simplicity
of presentation, is that a node never sends a BROADCAST message to itself.
A finger of a node n can point to n only in the rare case that half or more

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 127

of the identifier space does not contain any nodes which is most unlikely
given the assumption of a uniform distribution of node identifiers.

Replies. We are considering the issue of replying to the broadcast
source to be an orthogonal issue that depends on the Info argument of the
BROADCAST message. Several strategies could be considered for replying,
for example : (i) Sending the broadcast source with every broadcast mes-
sage and it is contacted directly by a node willing to reply (ii) The reply is
propagated to the root over the same spanning tree.

5.4.3 Correctness Argument

Coverage of All Nodes. As a DHT system constructs a connected graph of
nodes and as every node that receives a broadcast message forwards it to
all of its neighbors (except those it knows by DHT construction properties
that they are going to be contacted by other nodes), therefore, eventually
every node in the system receives the broadcast message.

No Redundancy. The algorithm ensures that disjoint (non-overlapping)
intervals are considered for forwarding. Consequently every node re-
ceives the broadcast message exactly once.

5.5 Cost Versus Guarantees

While presenting an efficient algorithm for broadcast in DHT-based P2P
networks, we are aware that the cost of N -1 messages, especially in large
P2P systems can be prohibitive for many applications. The point is that
we offer broadcasting as a basic service available for a system that is will-
ing to pay its cost. Our algorithm offers strong guarantees and utilization
of traffic for that endured cost. In order to offer the same guarantees on
a network, of the same size, in a Gnutella-like broadcast, a substantially
higher cost is paid. The next section elaborates more on this comparison.

Predictable Guarantees. The broadcast as presented in section 5.4, of-
fers strong guarantees as it explores every node in the network. Minor
modifications to the algorithm could be applied to, deterministically, re-
duce the scope of the broadcast and thus offer weaker, yet predictable
guarantees. For example, by sending only to the M th (or all but the M th)

128 5.6. SIMULATION RESULTS

finger while initiating a broadcast, only 50% of the network is covered in
the broadcast. Similar pruning policies could be applied to achieve differ-
ent coverage percentages.

Different Traversal Policies. The algorithm could also be modified
to support an iterative deepening policy. This policy was suggested in
[16] for use in unstructured overlay networks. We believe that combining
this policy with our algorithm can decrease the messaging cost, especially,
when one query hit suffices as a result.

5.6 Simulation Results

In this section, we show preliminary simulation results for the presented
broadcast algorithm. We are primarily interested to see that all nodes
are covered in the broadcast process and that no redundant messages are
sent. Additionally, we want to compare the messaging cost of the efficient
broadcast algorithm with that of the Gnutella broadcast algorithm over
the same size of the network and with the same guarantees offered. The
experiments were conducted on a distributed algorithms simulator devel-
oped by our team and using the Mozart [9] programming platform.

Experiments Setting. To study the messaging cost, we create an iden-
tifier space of size 216 and we vary the number of nodes in the space, from
23 up to 214 with increasing powers of 2. For each network size, after
all the nodes join the system, we initiate a broadcast process starting at
a randomly-chosen node. We wait until the broadcast process ends and,
then, analyze the messages to see if all the nodes are covered and count the
amount of redundant messages. We repeat the same experiment a number
of times, initiating the broadcast from different sources.

Both the efficient and the Gnutella algorithms are evaluated in the
same way. We use the basic Gnutella algorithm except that we deploy it
on a structured rather than a randomly-connected overlay network. That
is, the unique fingers of the Chord nodes are used as neighbors. More-
over, we set the Time-To-Live (TTL) parameter of the Gnutella broadcast
to the diameter of the network , i.e. log2(N) which should be just enough
to guarantee that all the nodes of the network are covered.

Results. For the number of messages, the efficient broadcast algorithm

CHAPTER 5. EFFICIENT BROADCAST IN STRUCTURED P2P NETWORKS 129

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

Number of Nodes

N
um

be
r

of
 M

es
sa

ge
s

Efficient Broadcast
Gnutella−like Broadcast

Figure 5.4: Comparison of number of messages needed to cover all

nodes using efficient broadcast and Gnutella-like flooding in a struc-

tured network.

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Nodes

M
es

sa
ge

 R
ed

un
da

nc
y

(%
)

Efficient Broadcast
Gnutella−like Bradcast

Figure 5.5: Comparison of percentage of redundant messages generated

by efficient broadcast and Gnutella-like flooding in a structured net-

work.

130 5.7. CONCLUSION AND FUTURE WORK

constantly produces N -1 messages for the different network sizes. The
Gnutella algorithm succeeds to cover all the nodes, thanks, to the TTL pa-
rameter, but does that with a substantially larger amount of messages. The
comparison is shown in figure 4. The reason for that difference is the re-
dundant messages that are sent in the Gnutella case and are eliminated
in the efficient broadcast case. It is worth noting that the amount of re-
dundancy increases with system size, strongly affecting scalability if the
strong guarantees are to be maintained. Figure 5 shows the percentage of
redundant messages from the total number of messages generated by both
algorithms.

5.7 Conclusion and Future Work

In this paper, we showed the status of our work in extending the func-
tionality of DHTs with the ability to perform efficient broadcasts. Our
approach depended mainly on the perception of systems such as Chord,
Tapestry, Pastry, and Kademlia as implementations of distributed k-ary
search. We gave an algorithm for traversing the k-ary search tree and thus,
constructing a spanning tree of an overlay network formed by a DHT.

We based all our explanation on Chord as a simple system implement-
ing binary search. In future papers, we intend to elaborate more on how
to construct a spanning tree in systems with higher arities.

We suggested a number of strategies by which a peer deploying the
efficient broadcast algorithm can reduce its scope by pruning a spanning
tree in order to generate less traffic, yet with the ability to deterministically
decide the percentage of network members that are covered in the broad-
cast and thus offering predictable guarantees. More experiments need to
be done for the evaluation of those strategies.

For the issue of dynamic network (joins/leaves), more experimental
results are needed to: (i) Quantify the effect of outdated routing tables
on the properties offered by the efficient broadcast algorithm. (ii) Guide
the design of a more fault-tolerant version of the algorithm. In its current
state, our algorithm, depends heavily on the ability of the underlying DHT
system to cope quickly with the dynamic nature of the network.

BIBLIOGRAPHY 131

Bibliography

[1] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.
Dks(n; k; f): A family of low communication, scalable and fault-
tolerant infrastructures for p2p applications. In To appear in the 3rd In-
ternational workshop on Global and Peer-To-Peer Computing on large scale
distributed systems, Tokyo, Japan, May 2003.

[2] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. Scribe: A
large-scale and decentralised application-level multicast infrastruc-
ture. In IEEE Journal on Selected Areas in Communications (JSAC) (Spe-
cial issue on Network Support for Multicast Communications, 2002.

[3] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. A
framework for peer-to-peer lookup services based on k-ary search.
Technical Report TR-2002-06, SICS, May 2002.

[4] FreeNet. http://freenet.sourceforge.net, 2003.

[5] Gnutella. http://www.gnutella.com, 2003.

[6] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau
Loo, Scott Shenker, and Ion Stoica. Complex queries in dht-based
peer-to-peer networks. In The 1st Interational Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

[7] E. P. Markatos. Tracing a large-scale peer to peer system: An hour
in the life of gnutella. In Second International Symposium on Cluster
Computing and the Grid, 2002.

[8] Petar Maymounkov and David Mazires. Kademlia: A peer-to-peer
information system based on the xor metric. In The 1st Interational
Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.

[9] Mozart Consortium. http://www.mozart-oz.org, 2003.

[10] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content addressable network. Technical
Report TR-00-010, Berkeley, CA, 2000.

132 BIBLIOGRAPHY

[11] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. In
Third International Workshop on Networked Group Communication (NGC
’01), 2001.

[12] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella net-
work: Properties of large-scale peer-to-peer systems and implications
for system design, 2002.

[13] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218, 2001.

[14] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applica-
tions. Technical Report TR-819, MIT, January 2002.

[15] Ion Stoica, Dan Adkins, Sylvia Ratnasamy, Scott Shenker, Sonesh
Surana, and Shelley Zhuang. Internet indirection infrastructure. In
The 1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.

[16] Beverly Yang and Hector Garcia-Molina. Efficient search in peer-to-
peer networks. In The 22nd International Conference on Distributed Com-
puting Systems (ICDCS 2002), 2001.

[17] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing.
U. C. Berkeley Technical Report UCB//CSD-01-1141, April 2000.

Chapter 6

Self-Correcting Broadcast in
Distributed Hash Tables

133

134

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 135

Self-Correcting Broadcast
in Distributed Hash Tables 1

Ali Ghodsi1,Luc Onana Alima1, Sameh El-Ansary2,
Per Brand2 and Seif Haridi1

1IMIT-Royal Institute of Technology, Kista, Sweden
2Swedish Institute of Computer Science, Kista, Sweden
{aligh, onana, seif}@it.kth.se, {sameh, perbrand}@sics.se

Abstract

We present two broadcast algorithms that can be used on top of distributed hash
tables (DHTs) to perform group communication and arbitrary queries. Unlike
other P2P group communication mechanisms, which either embed extra informa-
tion in the DHTs or use random overlay networks, our algorithms take advantage
of the structured DHT overlay networks without maintaining additional informa-
tion. The proposed algorithms do not send any redundant messages. Furthermore
the two algorithms ensure 100% coverage of the nodes in the system even when
routing information is outdated as a result of dynamism in the network. The first
algorithm performs some correction of outdated routing table entries with a low
cost of correction traffic. The second algorithm exploits the nature of the broad-
casts to extensively update erroneous routing information at the cost of higher
correction traffic. The algorithms are validated and evaluated in our stochastic
distributed-algorithms simulator.

1This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-2001-
33234 PEPITO project and partially by the Vinnova PPC project in Sweden

136 6.1. INTRODUCTION

6.1 Introduction

The need for making effective use of the huge amount of computing re-
sources attached to large scale networks, such as the Internet, has estab-
lished a new field within the distributed computing area, namely, Peer-to-
Peer (P2P) computing.

The current trend in this new field builds on the idea of distributed
hash tables (DHT) that provide infrastructures for scalable P2P systems
[12, 13, 2, 7]. The infrastructure is a logical network, called an overlay net-
work, within which key/value pairs are stored. The main operation offered
by DHT-based overlay networks is the lookup operation, that is finding
a value associated with a given key. However, the lookup operation it-
self is not enough to perform arbitrary queries such as context dependent
searches. Furthermore, it is difficult, in large DHT systems, to collect sta-
tistical information about the system, such as the overall system usage for
billing purposes.

In this paper we present two broadcast algorithms for the distributed
k-ary system (DKS) [2] that can be used to solve the above mentioned prob-
lems. The choice of DKS is motivated by two reasons. First, the DKS sys-
tems, in contrast to all other systems [9, 14, 6], avoid the use of periodic sta-
bilization protocols for maintaining routing information. Instead, a novel
technique called correction-on-use serves to correct outdated routing infor-
mation on-the-fly. Network bandwidth is thus saved during periods when
activity is low. Second, DKS provides the ability to tune the ratio between
routing table size and maximum lookup length. E.g. a system can be
configured with large routing tables and a low maximum lookup length,
consequently, making broadcasts faster.

6.1.1 Contribution

The work in [4] paved the way for doing broadcasts on top of structured
P2P networks such as the Chord system [12, 11]. However, the algorithm
in [4] fails to cover all nodes when the routing information is inconsistent,
which is the natural case in dynamic P2P networks as a consequence of
nodes joining or leaving.

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 137

In this paper we present two broadcast algorithms that deal with rout-
ing table inconsistencies. The new broadcast algorithms guarantee 100%
coverage even in the presence of frequent network changes and outdated
routing information. Furthermore, unlike other similar attempts[8], nodes
do not receive any redundant messages.

Furthermore, we extend the DKS philosophy of avoiding the use of
periodic stabilization. The second broadcast algorithm exploits the nature
of a broadcast to effectively correct outdated routing information at the
cost of extra local computation and network traffic.

The proposed algorithms can be used to perform multicast. Each mul-
ticast group is then represented by an instance of DKS within which the
proposed broadcast algorithms can be used to disseminate multicast mes-
sages.

6.1.2 Related work

Our work can be classified as extending DHTs to support arbitrary-searches.
From that perspective, the research in complex queries shares the same
goal. In [5] the idea is to construct search indices that enable the perfor-
mance of database-like queries. This approach differs from ours in that
we do not add extra indexing to the DHT. The analysis of the cost of con-
struction, maintenance, and performing database-like join operations is
not available at the time of writing of this paper.

Since broadcast is a special case of multicast, a multicast solution de-
veloped for a DHT such as [10, 8, 3] can provide broadcast functionality.
Nevertheless, a multicast solution would require the additional mainte-
nance of a multicast group which, in the case of broadcast, is a large group
containing all the nodes in the network. For example [3] uses one rendez-
vous node per group, that disseminates messages with the help of po-
tential non-members called forwarders by using multicast trees. In [8], a
bootstrap node stores information about a group, in which it is not neces-
sarily a member. Additionally, there is a inherent redundancy of messages
when the coordinate space is not perfectly partitioned. In our approach,
these two drawbacks are avoided.

138 6.2. DKS OVERVIEW

6.1.3 Outline

The remaining of this paper is organized as follows. In section 6.2 we
give an overview of DKS systems. Section 6.3 provides informal and for-
mal descriptions of the proposed algorithms. Section 6.4 is devoted to the
validation and the evaluation of the two algorithms. Finally, section 6.5
concludes.

6.2 DKS overview

In the following sub-sections we present the DKS systems. We focus on its
two main contributions, a generalization to tune the lookup length, and a
correction-on-use technique used to avoid periodic stabilization protocols
for maintaining routing information.

6.2.1 Structure of the DKS

DKS systems are configured with the parameters, N , and k≥2, such that
the lookup length is guaranteed to take at most logk(N) hops for a network
of maximum size N . With k defined, the maximum number of nodes that
can be simultaneously in a DKS network is chosen to be N = kL for some
large L. Every node knows k and N , and can therefore compute L.

Once N has been defined, all nodes and keys in the system are deter-
ministically mapped onto the identifier space, I= {0, 1, .., N−1}, by using
a globally known hash function, H . The identifier space is a circular space
modulo N .

Each key/value pair is physically stored at the first node encountered
in the ring, moving in clockwise direction, starting at H(key).

We shall use the notation a⊕b for (a+ b) modulo N for all a, b∈I. The
whole identifier space can be represented by an interval of the form [x, x[
or]x, x] for an arbitrary x ∈ I. For any x ∈ I, we note that [x, x] = {x}
and]x, x[= I\{x}.

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 139

6.2.2 Routing tables

Each node, in addition to storing key/value pairs, maintains a routing
table. The routing table consists of logk(N) levels. Let L = {1, 2, .., logk(N)}
be the set of levels.

At each level, l ∈ L, a node n has a view of the identifier space defined
as:

Vl = [n, n⊕
N

kl−1
[

This means that for level one, the view consists of the whole identifier
space, and at any other level l > 1, one k:th of Vl−1 is considered.

At any level l∈L, the view is partitioned into k equally-sized intervals
denoted I l

i for 0≤i≤k − 1. At a node n, I l
i is defined as:

I l
i = [n⊕ i

N

kl
, n⊕ (i+ 1)

N

kl
[, i∈{0, 1, .., k − 1}, l∈L

Each node, n, maintains a responsible node for every interval in its
routing table. For any level, l∈L the responsible for interval I l

0 is always n
itself. 2 For all other intervals j∈{1, 2, .., k − 1}, the responsible for interval
I l
j is chosen to be the first node encountered, moving in clockwise direc-

tion, starting at the beginning of the interval. We shall use the function
R(I) to denote the id of the responsible node for interval I .

In addition to storing a routing table, each node, n, maintains a pre-
decessor pointer, that is the first node encountered, moving in counter-
clockwise direction, starting at n.

An important property of a DKS system is that when a node n joins
or leaves the system, only n’s predecessor and successor are explicitly up-
dated in a fault-free context. The rest of the nodes in the system will find
out about n existence or departure by the correction-on-use technique de-
scribed in section 6.2.4.

Figure 6.1 shows an example of a DKS network from one node’s point
of view. Note that in figure 6.1 we have mapped the modulo N circle onto
a line from node 21’s view.

2The responsible node’s identifier and network address is stored such that communi-
cation can be established with it.

140 6.2. DKS OVERVIEW

Figure 6.1: a) A DKS network with k = 4 and N = 64, with the nodes 21,
24, 27, 48, 57, and 63 present. The figure shows node 21’s views, V1, V2 and
V3, and how each view is partitioned into k = 4 equally sized intervals.
The dark nodes represent the responsible nodes from node 21’s view. b)
Node 21’s routing table showing each interval and its responsible node.

6.2.3 Lookups

To initiate a search for a key identifier id at a node n the distributed lookup
is performed as follows. If id is between n’s predecessor and n, the key/value
pair is stored at n itself and can be resolved locally at n.

Otherwise, n searches its routing table at level l = 1, for an interval
I l
i in Vl such that id∈I l

i , for 0≤i≤k − 1. The lookup request is thereafter
forwarded to the responsible node for interval I l

i with the parameters l
and i piggybacked.

A node n′ upon receipt of the forwarded request checks if the key iden-
tifier id is between its predecessor and itself. If so, then n′ returns the value
associated with id to n. Otherwise, it searches its routing table at level l+1
for an interval that contains id. Then a lookup request is forwarded to the
responsible for that interval. The current level and interval are again pig-

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 141

Figure 6.2: A node with identifier 26 joins the network depicted in figure
6.1. As node 21 is not the predecessor of node 26, it will not immediately be
informed about node 26’s existence. Hence it will continue to, erroneously,
consider node 27 as responsible for I2

1 . If node 21 sends a lookup message
to node 27, node 21 will find out about node 26’s existence by correction-
on-use. Alternatively, node 21 will become aware of node 26’s existence if
node 26 sends a lookup message to node 21.

gybacked in the forwarded request. This process repeats until the node
storing the key id is found, in which case the value associated with id is
recursively sent back to n.

6.2.4 Correction-on-use

In a DKS network, routing information can become outdated as a result
of joining or leaving nodes. Figure 6.2 shows how routing entries become
outdated as a result of a join operation. The outdated routing entries are
corrected only when they are used. As long as the ratio of lookups to
joins, leaves, and failures is high, the routing information are eventually
corrected. This is the essential assumption in DKS, which is validated in
[2].

Correction-on-use is based on two ideas. The first idea is to embed
the level, l, and the interval, i, parameters with every lookup or insertion
message. A node n receiving a lookup or insertion message from a node
n′ can then calculate the start of the interval, I l

i at node n′, for which n is
responsible according to the node n′. If n’s predecessor is in the interval
[n′⊕iN

kl , n[, then node n notifies the node n′ of the existence of n’s prede-
cessor. Node n′ can then update its erroneous routing entry.

The second idea is that a message sent by a node p to another node n
is an indication that p exists and is thus part of the DKS network. Hence,

142 6.3. THE BROADCAST ALGORITHMS

node n examines all of its intervals to determine if p should be responsible
for any of the intervals, in which case routing information is updated.

6.3 The broadcast algorithms

6.3.1 Desired properties

The broadcast algorithms should have the following desirable properties:

• Coverage. All the nodes present in the system, at the time a broad-
cast operation starts, receive the broadcast message as long as they
remain in the system.

• Redundancy. Any node that receives a broadcast message receives it
once, disregarding messages sent trough erroneous pointers as they
will trigger correction-on-use.

• Correction of routing information. The broadcast algorithms should
contribute to the correction of outdated routing information.

6.3.2 Informal description

The basic principle of the two broadcast algorithms is as follows. A node
starting the broadcast iterates through all levels in L starting at the first
level. At each level, the node moves in counter-clockwise direction through
all of its intervals, broadcasting a message to each responsible node. Each
broadcast message, sent by a node n, carries with it the parameters l, i and
limit. The message’s purpose is twofold. First, it delivers the intended data
to the receiving node. Second, it serves as a request to a receiving node to
cover all nodes in the interval]n ⊕ i ∗ N

kl , limit[. Each node, receiving the
broadcast message, repeats the mentioned process, but makes certain not
to broadcast to a node beyond the limit given to it.

To illustrate the principle of the proposed algorithms, a fully populated
DKS network with N = 16 and k = 4 is considered. A broadcast initiated
at node 0 proceeds level by level. Beginning at level one, node 0 sends a
broadcast message to node 12 giving it responsibility to cover the interval

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 143

]12, 0[. Thereafter it repeats the same procedure for I1
2 giving node 8 re-

sponsibility for the interval]8, 12[. After sending a broadcast to interval I1
1

the algorithm moves to level two, repeating the process for the intervals
I2
3 , I2

2 , and I2
1 . Each of the responsible nodes receiving the message from

node 0 will repeat a similar process except they will not go beyond the
limits assigned to them. For example node 12 will not send, at level one,
to its intervals I1

3 , I1
2 , I1

1 as they are beyond the given limit 0. Instead, it
will move to level two, sending a broadcast to the nodes responsible for
intervals I2

3 , I2
2 , and I2

1 .

6.3.3 Formal description

In both algorithms we assume a distributed system modeled by a set of
nodes communicating by message passing through a communication net-
work that is: (i) Connected, (ii) Asynchronous, (iii) Reliable, and (iv) pro-
viding FIFO communication.

A distributed algorithm running on a node of the system is described
using rules of the form:

R ::
receive(Sender, Receiver, MESSAGE(arg1, .., argn))

Action

The rule R describes the event of receiving a message MESSAGE at the
Receiver node and the action taken to handle that event. A Sender of a mes-
sage executes the statement send(Sender, Receiver, MESSAGE(arg1, .., argn))
to send a message to Receiver.

The first algorithm The first broadcast algorithm is given by figure 6.3.
RuleR11 describes the reaction of a DKS node upon receipt of a BCASTREQUEST(data)
from the application layer. Rule R11 triggers rule R21 with the parameters
l = 1, k = 0, and limit set to the initiating node’s id, giving the initiating
node responsibility to cover all nodes in the system.

When a broadcast is initiated, the algorithm proceeds level by level. At
each level, the node iterates all intervals from k− 1 down to 1 and sends a
message to the responsible node for each of the intervals. To avoid sending
duplicate messages to nodes responsible for several intervals, a message

144 6.3. THE BROADCAST ALGORITHMS

is only sent when the id of the responsible node is not beyond the end of
the interval checked for.

Due to outdated routing table entries some intervals might not seem
to have any nodes even though they are populated. The responsibility of
covering those intervals is delegated to the next interval in the iteration.
This is done by not changing the limit parameter when an interval seem
to be unpopulated.

Improving the correction of the routing information In order to im-
prove the correction of outdated routing information, we extend Algo-
rithm 1 with self-correction. The idea consists of extending the responsibil-
ity assigned to a node n′, by a node n, to cover other preceding intervals
that n′ is responsible for according to n. Hence, if other nodes exist in n′’s
preceding intervals, which n is not aware of, n′ will trigger correction-on-
use and the routing information will be corrected at n. The subroutine
FINDLOWEST is used for this purpose.

The second broadcast algorithm is the same as the first algorithm, ex-
cept that rule R21 is replaced by rule R22 as shown in figure 6.4.

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 145

R11 :: receive(u, n, BCASTREQUEST(data))

send(n : n : BCAST(data, 1, 0, n)

R21 :: receive(n′, n, BCAST(data, l, i, limit))

if n′⊕i N
kl
∈]predecessor, n] then

%% Deliver the message to the application layer
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do

if R(Iλ
τ) ∈]n, limit[then

send(n, R(Iλ
τ), BCAST(data, λ, τ, limit))

limit := n⊕τ N
kλ

fi
od

od
else

send(n, n′, BADPOINTER(BCAST(data, l, i, limit), predecessor))
fi

R31 :: receive(n′, n, BADPOINTER(BCAST(data, l, i, limit), candidate)

for λ := 1 to logk(N) do
for τ := k − 1 downto 1 do

if n⊕τ N
kλ

∈]n, candidate] and R(Iλ
τ)∈]candidate, n] then

R(Iλ
τ) = candidate

fi
od

od
send(n, candidate, BCAST(data, l, i, limit))

Figure 6.3: Algorithm 1

146 6.3. THE BROADCAST ALGORITHMS

R22 :: receive(n′,n,BCAST(data, l, i, limit))

if n′⊕i N
kl
∈]predecessor, n] then

%% Deliver the message to the application layer
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do

if R(Iλ
τ) ∈]n, limit[then

(i′, l′) :=FINDLOWEST(n, R(Iλ
τ))

send(n, R(Iλ
τ), BCAST(data, i′, l′, limit))

limit := n⊕i′ N

kl′

fi
od

od
else

send(n,n′,BADPOINTER(BCAST(data, l, i, limit), predecessor))
fi

Subroutine :: FINDLOWEST(n′, r)
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do

if R(Iλ
τ) = r then

(l′, i′) := (λ, τ)
fi

od
od
return (l′, i′)

Figure 6.4: Algorithm 2. The rules R12 are R32 are the same as rules R11

and R31 in figure 6.3.

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 147

Figure 6.5: Experiment 1: a) Shows the distance from the optimal network
b) Shows the percentage of correction messages

6.4 Simulation Results

In this section we show preliminary simulation results for the broadcast
algorithms. We use the following four metrics for evaluation. Coverage,
Redundancy, Correction Cost and Distance from Optimal Network.

The Coverage and the Redundancy metrics are calculated by taking a
snapshot of all the nodes present in the overlay network at the initia-
tion time of each broadcast. The simulator then maintains a counter for
each node receiving the broadcast message. The coverage is calculated by
counting the percentage of nodes in the snapshot that received the broad-
cast message by the end of the simulation. The redundancy is computed
by counting the number of covered nodes that received the message more
than once. Correction Cost is defined as the percentage of messages used
for correction of routing entries out of the total number of messages gen-
erated by a broadcast. Distance from Optimal Network is the ratio of the
number of erroneous routing entries in all nodes to the total number of
routing entries in the system. When this ratio is equal to 0 the routing
information is said to be optimal.

148 6.4. SIMULATION RESULTS

Figure 6.6: Experiment 2: Shows the convergence to a maximally optimal
network while performing broadcasts with algorithm 1, 2.

The experiments were conducted on a stochastic discrete distributed-
algorithms simulator developed by our team and using the Mozart [1]
programming platform. In this paper we present the results of two ex-
periments. The purpose of the first experiment was to test the system in a
dynamic setting and evaluate the performance of our algorithms using the
mentioned metrics. The second experiment focused on the convergence
towards a minimal distance from the optimal network.

Experiment 1. A DKS network of size N = 212 was created. The popu-
lation of nodes in the system was considered a variable P that took values
from {500, 1000, 2000, 3000, 4000}. For each value of P , we proceeded in
two steps. First, we initialized the system with 10% of P . Second, 90%
of P nodes joined while P broadcasts were initiated. The experiment was
repeated for the values of k = 2, 4, 8. That is, with a high probability, each
node initiated one broadcast while the overlay network was growing.

CHAPTER 6. SELF-CORRECTING BROADCAST IN DISTRIBUTED HASH TABLES 149

Experiment 2. A DKS network of size N = 212 was created. The sys-
tem was initialized with 1500 nodes. Thereafter an arbitrary number of
broadcasts were initiated. The experiment was repeated for the values of
k = 2, 4, 8.

Results. In all our experiments, the Coverage and Redundancy were
100% and 0 respectively as expected from the design.

Distance from Optimal Network. Two observations can be made from
Figure 6.5 a). First, for all values of k, Algorithm 2 corrects routing infor-
mation more effectively than Algorithm 1. Second, the final distance from
the optimal network is mainly affected by the search arity, k, and not the
population size. From Figure 6.6 we can see that algorithm 2, in contrast
to algorithm 1, effectively converges to the optimal network for all search
arities.

Correction Cost. As shown in Figure 6.5 b), the correction cost is in gen-
eral higher for Algorithm 2. This was expected as the correction requires
some additional overhead.

6.5 Conclusion

In this paper we presented two algorithms for broadcasting on structured
peer-to-peer networks. Our work was motivated by two reasons. First,
the need to extend distributed hash tables to perform arbitrary queries
and retrieval of global statistical information about the DHTs. Second, to
provide robust algorithms that can be used for multicasting within groups
in the context of DKS overlay networks. Each group is formed by creating
a specific DKS instance for it.

The proposed algorithms use the DKS philosophy of avoiding periodic
stabilization to maintain routing information. The second algorithm ex-
tends the philosophy by heavily correcting incorrect routing information.

In addition, the broadcast algorithms provide full coverage even if
nodes have erroneous routing information. Furthermore, each broadcast
message is received once even if new nodes join while the broadcasts are
taking place.

The proposed algorithms have been validated and evaluated in a dy-
namic network through simulations and the obtained results confirm our

150 BIBLIOGRAPHY

expectations. More precisely, Algorithm 1 gives less correction overhead
and larger distance from the optimal network compared to Algorithm 2.

Bibliography

[1] Mozart Consortium, 2003. http://www.mozart-oz.org.

[2] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.
DKS(N; k; f): A Family of Low Communication, Scalable and
Fault-Tolerant Infrastructures for P2P Applications. In The 3rd In-
ternational Workshop On Global and Peer-To-Peer Computing on Large
Scale Distributed Systems (CCGRID 2003), Tokyo, Japan, May 2003.
http://www.ccgrid.org/ccgrid2003.

[3] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
Rowstron. Scribe: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in Communica-
tion (JSAC), 20(8), October 2002.

[4] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Effi-
cient Broadcast in Structured P2P Netwoks. In 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February
2003.

[5] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch,
Boon Thau Loo, Scott Shenker, and Ion Stoica. Complex
Queries in DHT-based Peer-to-Peer Networks. In The 1st In-
terational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[6] Petar Maymounkov and David Mazires. Kademlia: A Peer-
to-peer Information System Based on the XOR Metric. In The
1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[7] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A Scalable Content Addressable Network. In Proceed-
ings of the ACM SIGCOMM ’01 Conference, Berkeley, CA, August 2001.

BIBLIOGRAPHY 151

[8] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level Multicast using Content-Addressable Networks. In
Third International Workshop on Networked Group Communication (NGC
’01), 2001. http://www-mice.cs.ucl.ac.uk/ngc2001/.

[9] Antony Rowstron and Peter Druschel. Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), 329-350 2001.

[10] Ion Stoica, Dan Adkins, Sylvia Ratnasamy, Scott Shenker, Sonesh
Surana, and Shelley Zhuang. Internet Indirection Infrastructure. In
The 1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, pages 149–160, San Diego, California, August 2001.

[12] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. IEEE
Transactions on Networking, 11, 2003.

[13] Ben Y. Zhao, Ling Huang, Sean C. Rhea, Jeremy Stribling, Anthony D
Joseph, and John D. Kubiatowicz. Tapestry: A global-scale overlay
for rapid service deployment. IEEE J-SAC, 22(1):41–53, January 2004.

[14] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2000.

152 BIBLIOGRAPHY

Chapter 7

A Component-based P2P
Simulation Environment

7.1 Motivation

Due to the complex nature of P2P algorithms, i.e. the large number of
nodes and the many possible scenarios of peer interactions under different
operating conditions, formal reasoning about such algorithms is challeng-
ing. One of the goals of the PEPITO project [2], in which this work is done,
is to start tackling this issue. However, in our work on studying and de-
signing P2P algorithms, we needed a rather practical tool that can quickly
show the validity of new ideas and that is capable of measuring the per-
formance of the various algorithms in different operating conditions.

To achieve our goal, we developed a simulation environment for the
validation and evaluation of P2P algorithms. We aimed at providing an
environment that allows us to focus on interesting properties of the P2P
algorithms currently under study/design. Meanwhile we wanted to allow
enough expressive power to accommodate for upcoming algorithms.

The design of our simulation environment was based on two previous
works in the field of simulation. The first is the Chord simulator [5] which
is a discrete-event simulator designed for simulating the Chord system.
The second, is the experience acquired by our colleagues at the DSL lab at
SICS during their work on component-based large-scale simulation in the

153

154 7.2. ARCHITECTURE

Figure 7.1: Simulator Architechture

iCities project [3] and which depends on favorable features of the Mozart
programming system [1]. While the Chord simulator provided us with a
good starting point, we needed to have an environment in which we can
compare several algorithms easily and that is where we needed to make
use of a component-based architecture according to the methodology pre-
sented in [4].

This chapter aims at describing the simulator from a software engi-
neering point of view and not as an explanation of a certain simulation
model. Instead, we view the architecture presented as generic architecture
capable of realizing different simulation models. The rest of this chapter is
dedicated to the description of the simulation environment architecture.

CHAPTER 7. A COMPONENT-BASED P2P SIMULATION ENVIRONMENT 155

7.2 Architecture

7.2.1 Overview

The component-based simulation architecture suggested in [4] assumes
the availability of a library of different component types from which an
experiment is composed. Following this strategy, we have designed a
number of components that suit our requirements for simulating P2P algo-
rithms. To perform a certain experiment, the designer of the experiment
should choose a controller component, a topology component, a traffic
component, an algorithm component, and a number of observation chan-
nel components. The composition of the simulation environment, thus,
is done, by configuring a parameters module that specifies the different
component types and their parameters in addition to global simulation
parameters.

7.2.2 The Traffic Component

The traffic component is responsible for generating traffic, i.e. different
events that can happen during the simulation such as new peers joining a
network, existing peers leaving the network gracefully or due to a failure,
a peer inserting, looking up or deleting a key-value pair.

So far, we have worked with two types of traffic components: The first
type is adopting the traffic model of the Chord simulator where: (i) There
are five types of events: join, leave, fail, insert, lookup, (ii) All the traffic
is generated before the simulation begins, i.e. with a predetermined max-
imum simulation time, and (iii) Lottery scheduling is used for generating
the different events. The second type of traffic components we use for
working with predefined topologies, especially when we want to define
non-probabilistic traffic pattern, e.g. letting every node search for each
possible item. In that case, we do not need probabilistic scheduling and
we do not require a predefined maximum simulation time.

New traffic component types could be authored and plugged easily in
case one would want to adopt a different scheduling policy like using, for
instance, Poisson processes for node arrivals and exponential distribution
for node failure.

156 7.2. ARCHITECTURE

Irrespective of the traffic component used, events that are generated
are saved in time queues. The structure of the time queue is defined as
follows:

Definition 7.1 A time queue is defined as the mapping TimeQueue : Time→
2E , where Time ∈ Z+ is a simulation time step and E is the set of all possible
events. We write TimeQueuep(t) to denote all the events that are scheduled at
time step t at process p.

7.2.3 The Topology Component

The topology component is an optional component. In some simulations,
we are interested to start with a set of nodes connected in a predefined
topology. In other cases, we want the algorithms under evaluation or de-
sign to construct the network topology themselves. Therefore, in most of
the simulations related to studying performance measures of core DHT
functionalities, we do not use the topology component for constructing
the overlay network.

An example simulation where we need to use a topology component
is validation experiments. Mainly, to check that a certain property holds,
given that the topology is optimally structured, e.g., checking that a broad-
cast algorithm will cover all the nodes of a correctly structured Chord or
DKS system. In that case we use a topology component to generate that
optimal structure. Another typical case is that after letting a large number
of nodes join a P2P network, we need to validate that they were able to
self-organize as an optimally structured network.

7.2.4 The Controller Component

A controller component serves as the main program of the simulation en-
vironment. Different controller components types are used depending on
what other types of components are needed and how they are initialized.
The behavior of an example controller component is given in the algorithm
below.

As shown in algorithm 1, a controller component, starts by initializing
other components such as the traffic component, the topology component,

CHAPTER 7. A COMPONENT-BASED P2P SIMULATION ENVIRONMENT 157

Algorithm 1 Controller Behavior

1: INITTHETRAFFICCOMPONENT()
2: INITTHETOPOLOGYCOMPONENT() //Optional
3: INITTHEOBSERVATIONCHANNELS()
4: for t = 1 to MaxTime
5: forall p : p ∈ P ∪ {Controller}
6: p.Signal(t)
7: End for
8: End for
9: CONCLUDETHEOBSERVATIONS() //Optional

and the observation channels components [lines 1 − 3]. The time queue of
the controller is usually used to save the output of the traffic component.
The second task of the controller is to advance the simulation time. In each
time step, the controller as well as the set P of all nodes being simulated
are signaled. Consequently, the set of events TimeQueueP∪{Controller}(t)
are executed [lines 4 − 8]. Finally, the controller concludes the obser-
vations, i.e. computes any statistical or validation information that are
needed [line 9].

7.2.5 The Node Abstraction

The core of the simulator lies in the behavior of the collection of nodes.
As illustrated in figure 7.1, the nodes interact with two main entities of
the simulator, the controller and the observation channels. The controller
advances the time and signals all the nodes with the current time step. The
nodes use the observation channels to log different kinds of information
about the simulation state.

Each node hosts an algorithm component. Figure 7.2 shows a more
detailed view of the architecture of each individual node. The node is
abstracted in three different layers; a TimedNode layer, a DistributedNode
layer and an AlgorithmNode layer.

The TimedNode layer is concerned with simulation time. It is the layer
at which the time queue of a node is dealt with. Its interface provides two
functions:

158 7.2. ARCHITECTURE

Controller

AlgorithmNode Layer

DistributedNode Layer

TimedNode Layer

Message(SenderId,

 Params)
Send(ReceiverId,

 Message)

ExecEvent(Event)
ScheduleEvent

(E,Time)

Signal(Time)

AlgorithmNode Layer

DistributedNode Layer

TimedNode Layer

Send(ReceiverId,

 Message)

ExecEvent(Event)ScheduleEvent

(E,Time)

ScheduleEvent

(E,Time)
Signal(Time)ScheduleEvent

(E,Time)

Node Abstraction Node Abstraction

Sch
ed

uleE
ven

t

(E
,T

im
e)

ScheduleEvent

(E,Time)

Message(SenderId,

 Params)

Figure 7.2: The Node Abstraction.

• ScheduleEvent(E, T ime)

• Signal(Time)

A call to ScheduleEvent(E, T ime) results in the insertion of a new event
in the time queue at the specified time and a call to Signal(Time), leads to
the execution of all the events scheduled at the specified time. This layer
is a basic layer for any entity that depends on simulation time and at this
level, there is no awareness of a network or a distributed algorithm.

The DistributedNode layer is concerned with providing the abstraction
of a node that uses a network to send and receive messages and hides the
notion of simulation time and its interface provides two functions:

• Send(ReceiverId,Message)

CHAPTER 7. A COMPONENT-BASED P2P SIMULATION ENVIRONMENT 159

• ExecEvent(Event)

The Send function is used by the AlgorithmNode layer to send messages
and the ExecEvent function is used by the TimedNode layer when the
time comes for the execution of a certain event. Sending messages is
modeled by the scheduling of an event at the receiving node. That is, if
a sender node sends a message at time t, an event is scheduled at time
t + AverageTransmissionDelay() at the receiving node where Average-
TransmissionDelay() is a function that provides an average transmission de-
lay using a Poisson distribution. The DistributedNode layer can also sched-
ule an event at the local node which is typically used for modeling time-
outs. This layer is also the place for modeling any communication-related
issues like message loss, netwrok partitioning, firewalls, etc.

The AlgorithmNode layer hosts the algorithm component. The receiv-
ing of a message is implemented via a polymorphic interface, i.e. in-
stead of providing a message called Receive, a message of the form Mes-
sage(SenderId, Params) is used as a polymorphic method call that should
be implemented by any algorithm component in the AlgorithmNode layer.
Since this layer uses the underlying DistributedNode layer to interact with
other nodes by sending and receiving messages, a real communication
layer can replace the DistributedNode layer leading to the reuse of the sim-
ulated algorithm component as a working piece of software.

7.2.6 The Observation Channels Components

The observation channels offer a very flexible means for gathering infor-
mation about what happens during simulation. They are configured prior
to running a simulation via a specification record described by the follow-
ing grammar:

ObservationChannels ::= channels({<ChannelName>(
output:<OutputTarget>
state:’on’ | ’off’
)
...

}

160 7.2. ARCHITECTURE

)
<ChannelName> ::= <atom>
<OutputTarget> ::= console

| file(<FileName>)
| module(<ModuleName>)

<FileName> ::= <string>
<ModuleName> ::= <string>

An example of such configuration is as follows:

Channels = channels(
protocolErr(output:console state:on)
commTrace(output:module(
"TraceFilter.ozf")

state:on)
stat(output:module("Stat.ozf")

state:off)
sys(output:console state:on)
debug(output:console state:on)
join(output:console state:off)
bstat(output:module("BcastStat.ozf")

state:on)
convergence(output:file("conv.txt")

state:on)
)

As shown in the example each observation channel is responsible for track-
ing a different kind of information. Each channel has an output target.
This could be the console, simple dump in a file or to be processed by a
module. A module that is to be used as an output target for a channel must
implement the interface for observation channels which includes the two
methodswrite() for sending data to the channel and close() to indicate the
end of incoming data and perform any finalizing steps if any. Depending
on what observations are interesting during a certain experiment, chan-
nels could be turned on and off.

BIBLIOGRAPHY 161

Bibliography

[1] Mozart Consortium, 2003. http://www.mozart-oz.org.

[2] Peer-To-Peer Implementation and Theory (PEPITO), EU Project IST-
2001-33234 , 2003. http://www.sics.se/pepito.

[3] The iCities project, EU Project IST - 1999 - 11337, 2003.
http://icities.csd.uoc.gr/.

[4] M. Rafea, F. Holmgren, K. Popov, S. Haridi, S. Lelis, P. Kavassalis,
and J. Sairaamesh. Application architecture of the internet simulation
model: Web word of mouth (WoM). In MS 2002: IASTED International
Conference on Modelling and Simulation, May13–15 2002.

[5] The Chord Project Home Page , 2003.
http://www.pdos.lcs.mit.edu/chord/.

162 BIBLIOGRAPHY

Part II

Analyses

163

Chapter 8

Physics-inspired Performance
Evaluation of DHTs.

165

166

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 167

Physics-inspired Performance Evaluation of DHTs.

Sameh El-Ansary1, Erik Aurell1,2 and Seif Haridi1,3

1 Distributed Systems Laboratory
SICS Swedish Institute of Computer Science

2Department of Physics, KTH-Royal Institute of Technology
3IMIT, KTH-Royal Institute of Technology

{sameh,eaurell,seif}@sics.se

Abstract

In the majority of structured peer-to-peer overlay networks a graph with a desir-
able topology is constructed. In most cases, the graph is maintained by a periodic
activity performed by each node in the graph to preserve the desirable structure
in face of the continuous change of the set of nodes. The interaction of the au-
tonomous periodic activities of the nodes renders the performance analysis of such
systems complex and simulation of scales of interest can be prohibitive. Physi-
cists, however, are accustomed to dealing with scale by characterizing a system
using intensive variables, i.e. variables that are size independent. The approach
has proved its usefulness when applied to satisfiability theory. This work is the
first attempt to apply it in the area of distributed systems. The contribution of this
paper is two-fold. First, we describe a methodology to be used for analyzing the
performance of large scale distributed systems. Second, we show how we applied
the methodology to find two intensive variables that describe the characteristic
behavior of the Chord overlay network, the variables are: 1) The density of nodes
in the identifier space and 2) The ratio of the magnitude of perturbation of the
network (joins/failures) to the magnitude of periodic stabilization of the network.

Keywords: DHT performance, Structured Overlay networks, Data Col-
lapse, Complex Systems

168 8.1. INTRODUCTION

8.1 Introduction

A number of structured P2P overlays [16, 14, 17, 8, 2], aka Distributed
Hash Tables (DHTs) were recently suggested. In most such systems, nodes
self-organize in a graph with a diameter and outgoing arity of nodes that
are both of a logarithmic order of the number of nodes. Some systems like
[7, 13] can even provide a logarithmic order diameter with a constant order
routing table. To maintain the graph in an optimal state despite change of
membership (joins/failures), each node needs to follow some self-repair
policy to keep its routing table (the outgoing edges) up-to-date.

Our general observation on the literature of structured overlay net-
works is that the self-organization aspect is dominant compared to self-
repair. The typical case for a paper introducing a DHT system would be
to show the structure of the routing table, how the overlay graph will be
constructed, and protocols for joins and leaves. When it comes to self-
repair, the discussion gets relatively superficial. We find arguments on the
level of: “Periodic maintenance of routing tables will ensure its correctness”,
“Data items have to be republished periodically by the upper layer”, etc.. In the
best cases, a simulation is given showing that under particular values of
maintenance rates, the network can operate.

We attribute the shortage of work on performance analysis of self-
repair properties to the following two factors: i) The novelty of such sys-
tems and the requirement to establish the new concepts first before deeper
analysis is performed. ii) Once we have a system deploying a self-repair
policy, an analytical model that describes the behavior of the system can
range in degree of difficultly from not-so-clear to very-complex-to-analyze.
Therefore, we see the compelling need for more studies whether analyti-
cal or simulation-based that can tell us whether those novel techniques are
really useful or over-hyped.

In this paper we try a novel approach for analyzing the performance
of one of the most well-established overlay networks, namely the Chord
system [16, 15]. In the following section we motivate our deployment of
a physics inspired approach and we state our methodology. After that,
we explain our assumptions in implementing the Chord protocols. We
follow that by the core sections of the paper namely the application of our

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 169

methodology to find intensive variables. Finally, we conclude the work in
the last section.

8.2 The physics-inspired approach

8.2.1 Motivation.

Having observed that analytical models are not always trivial to formu-
late given a system applying a given self-repair policy, we thought that
using simulation seemed to be the practical tool for analyzing such sys-
tems. However, we figured out that scales of interest could be prohibitive
for simulation purposes. At this point, a physics-style approach started
to be of interest since physicists are accustomed to reasoning about large
natural systems.

8.2.2 How do physicists deal with scale?

Physics was the first science to encounter problems of this sort. The num-
berN of molecules in a macroscopic body, say a liter of water, is about 1027.
On the microscopic level, all substances are made of atoms and molecules
of the same basic type – different number of electrons, protons and neu-
trons – yet large lumps of the same kind of atoms or molecules make up
substances with distinct qualities which we can perceive. Those can be
density, pressure (of a gas at given density and temperature), viscosity (of
a liquid), conductivity (of a metal), hardness (of a solid), how sound and
light do or do not propagate, if the material is magnetic, and so on.

The first level of analysis in a physical system of many components,
is to try to separate intensive and extensive variables. Extensive variables
are those that eventually become proportional to the size of the system,
such as total energy. Intensive variables, such as density, temperature and
pressure, on the other hand, become independent of system size. A de-
scription in terms of intensive variables only is a great step forward, as it
holds regardless of the size of the system, if sufficiently large.

Further steps in a physics-style analysis may include identifying phases,
in each of which all intensive variables vary smoothly, and where the char-

170 8.2. THE PHYSICS-INSPIRED APPROACH

acteristics of the system remain quantitatively the same.

8.2.3 Was the approach useful in the computer science arena?

A physics-style approach was carried over to satisfiability theory more
than ten years ago. KSAT is the problem to determine if a conjunction of
M clauses, each one a disjunction of K literals out of N variables can be
satisfied. Both M and N are extensive variables, while α = M/N , the av-
erage number of clauses per variable, is an intensive variable. For largeN ,
instances of KSAT fall into either the SAT or the UNSAT phase depending
on whether α is larger or smaller than a threshold αc(K) [10, 3]. The order
of the phase transition, a statistical mechanics concept roughly describing
how abrupt the transition is, has been shown to be closely related to the
average computational complexity of large instances of KSAT with given
values of K and α [12, 11]. Recent advances include the introduction of
techniques borrowed from the physics of disordered systems, leading to
an important new class of algorithms, currently by far the best of large
and hard SAT problems [9]. Without question, statistical mechanics have
been proven to be very useful on very challenging problems in theoretical
computer science, and it can be hoped that this will also be the case in the
analysis and design of distributed systems.

8.2.4 “Data collapse”: the tool for observing intensive variables

Let us assume that we have a system that we evaluate using a function
m(S, P) where m is some performance metric, S is the size of the system
and P is a set of system parameters. A description of the system in terms
of all the possible values of m under all values of S and P is not very
transparent, and can be prohibitive to enumerate.

If all the parameters in P are essential, we cannot do better. If on the
other hand they only influencem through some combination or functional
relationship, it is preferable to use instead m(g(ψ)), where ψ ⊂ {S} ∪ P ,
and g is some function. We will assume g smooth, as otherwise the prac-
tical utility is generally small. The main advantage is that this encodes
a definite understanding of what really influences system behavior. Ad-

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 171

ditionally, the data can be presented in a systematic and much compact
manner.

A discussion of the process of obtaining ψ and g in general is outside
this presentation. Suffice it so say that if the relationship is simple, say lin-
ear, it can be found by exhaustive search. Once however a putative rela-
tionship has been posited, it can be tested for by systematically varying all
parameters. If there is indeed a functional relationship, the relation (g(ψ),m)
has to be injective. In a diagram of m versus g, all data points must then
fall on one curve. This phenomenon, if it occurs, is called “data-collapse”,
and serves to prove that the posited relationship correctly describes the
system. If we were to apply that to the K-SAT case mentioned in section
8.2.3, m is the fraction of unsatisfiable instances, and ψ = {M,N} and
α = g = M

N .

8.2.5 Application of the approach in distributed systems

Having explained the importance of identifying intensive variables in de-
scribing characteristics that hold irrespective of size and shown the prag-
matic tool to find such variables, namely, data collapse, we state the main
question that we try to answer in this work and summarize the methodol-
ogy we use to answer that question:

“Is it possible to find intensive variables to describe the characteris-
tics of structured peer-to-peer overlay networks that deploy periodic
maintenance of the overlay graph?”

172 8.3. BACKGROUND & ASSUMPTIONS ABOUT CHORD

The Methodology

Step 1: Nomination of intensive variables. This step is a speculative step
where we try to nominate a subset of the parameters (ψ ⊂ {S} ∪ P)that
affect the performance and speculate that a function of them (g(ψ)) can be
an intensive variable.
Step 2: Looking for a performance metric. In this step a performance
metricm(g(ψ)) is identified and is usually an easier step for systems where
a performance metric is already agreed upon in the community but the
step can also involve the introduction of new metrics.
Step 3: Simulation. With plottingm versus g in mind, we chose a range of
values of ψ to explore a wide spectrum of parameter interaction. Finally,
if a data collapse is observed, then an intensive variable is identified.

8.3 Background & assumptions about Chord

Despite the fact that the Chord system is one of the most clearly explained
DHT systems, when implementing it there are some nuances in the im-
plementation details that can affect the performance of the system. We
provide here a semi-formal definition of Chord and state our assumptions
when needed.

• The Chord Graph: G = (V,E) where V is the set of nodes (ma-
chines/processes) and E is a set of directed edges.

• Identifier Idu: Each node in the set V has a unique identifier ob-
tained by hashing a unique property such as its IP address or public
key. We write Idu to refer to the Id of node u ∈ V and we label the
edges using the corresponding identifiers of the nodes.

• Size of the identifier space N : The number of possible identifiers.
The Chord system assumes that all the nodes are totally ordered in a
circle that has N positions.

• Population Size P : The number of nodes P = |V |, 1 ≤ |V | ≤ N).

• Successor of node u, Succ(Idu): The successor of an identifier Idu is
the first node following u in the circular identifier space. e.g if N =

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 173

16, V = {3, 11}, then we have two nodes whose identifiers are 3 and
11. Therefore the successor of any of the identifiers 4, 5, ...10, 11 is
node 11, similarly the successor of any of the nodes 12, 13, 14, 15, 1, 2, 3
is node 3.

• Routing table of node u: RT (Idu) = {(Idu, Idv) : Idv = Succ(Idu +
2i−1)}, (1 ≤ i ≤ log2N)

• Succesor List of node u: SL(Idu) = {(Idu, Idv) : Idv = Succ(Idu),
Succ(Succ(Idu)), Succ(Succ(Succ(Idu))), ... upto log2N successors
}

• Lookup process: A lookup of Idq at a node u results in u forwarding
the lookup to a node v pointed to by the highest edge of u preced-
ing Idq. v acts similarly. With each crossing of an edge (hop), the
distance to Idq decreases by a factor of a half at least and thus after
O(log2 P) hops the lookup reaches its goal.

• Joins: When a new node joins the system through any other node, it
performs a lookup to find out its successor and then uses a periodic
stabilization algorithm to correct all its edges. During that process,
both its edges, and the edges of other nodes that should point to it
are out-of-date and this results in lookups taking more hops to be
resolved.

• Failures: When a node fails ungracefully - that is, without notifying
the nodes pointing to it of its failure - lookups from nodes who have
edges pointing to the failed node will fail and will be retried with
lower edges. This also results in the lookups taking more hops to be
resolved.

• Stabilization: There has been a couple of stabilization algorithms
suggested for reparing the routing table. One iterates through the
edges in a round-robin fashion and another picks randomly one of
the edges. In our implementation we use the second. For the stabi-
lization of the successor list, there was a non-formal description in
the Chord paper, and we adopted a naive interpretation where each

174 8.4. INTENSIVE VARIABLE A: DENSITY (ρ)

nodes asks its successor for its successor list and blindly replaces its
own dropping the last entry. We also assume for simplicity that the
stabilization period for the routing table and the successor list is the
same.

8.4 Intensive variable A: Density (ρ)

8.4.1 Application of the Methodology

Our first application of the methodology is to study a variable related to
the overlay in an optimal static setting which might be of more theoretical
interest, however it outlines the application of our methodology on a sim-
ple example first before moving to a more complex example that will be
discussed in 8.5.
Step 1: Nomination of intensive variables. Let N be the size of the iden-
tifier space and P be the population as defined in section 8.3. We define
the density (ρ) to be the ratio P

N with a maximum value of 1 for a fully
populated system. Our question is: “Is ρ an intensive variable?”
Step 2: Looking for a performance metric. A key quantity of interest in
a DHT system is the average lookup path length. It indicates how well
an overlay network structure can minimize the number of hops/edges
traversed before a query is resolved and is the most-widely used metric
for evaluating the performance of overlay networks.
Step 3: Simulation. Let CHORD(P ,N) be an optimal Chord graph, that
is all the edges of all nodes are correctly assigned according to the defini-
tions in section 8.3. For all N ∈ {27, 28, .., 214}, for all P ∈ {0.1 × N, 0.2 ×
N, .., 1.0×N}, we generate CHORD(P ,N), inject uniformly distributed P 2

lookups, and record the average lookup length over the P 2 lookups de-
noted 〈L(P,N)〉 or equivalently 〈L(ρ,N)〉. This procedure is repeated 10
times, with different random seeds, and the results are averaged.

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

ρ (Density=P/N)

<
L(

ρ,
N

)>
 (

A
vg

. P
at

h
Le

ng
th

)

N= 128
N= 256
N= 512
N= 1024
N= 2048
N= 4096
N= 8192
N=16384

Figure 8.1: The average lookup length as a function of ρ and N .

176 8.4. INTENSIVE VARIABLE A: DENSITY (ρ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

ρ (P/N)

<
L(

ρ,
N

)>
 −

 <
L(

1,
N

)>

N= 128
N= 256
N= 512
N= 1024
N= 2048
N= 4096
N= 8192
N=16384

0.5*log(ρ) →

Figure 8.2: Data collapse of the average lookup length as a function of ρ
and N compared to 0.5 log2 ρ.

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 177

8.4.2 Results.

Figure 8.1 shows the behavior of the path length as a function of the den-
sity and the size of the identifier space. The curves are, to first approxima-
tion, vertically shifted by the same distance, while the values ofN used are
exponentially spaced. This means that the dependence on N alone (con-
stant P) is logarithmic. Indeed, it was noted in the Chord papers that the
average path length is 0.5× log2 P . However, we can see an additional ob-
servation by looking at the data collapse obtained in figure 8.2 by subtract-
ing 〈L(1, N)〉 from every respective curve 〈L(ρ,N)〉 compared to 0.5 log2 ρ.
From the data collapse, we can clearly see that 〈L(ρ,N)〉 = 0.5 log2 ρ+f(ρ)
where the function f is a decreasing function. That is for any given num-
ber of nodes, the average lookup length increases when they are placed in
a smaller identifier space.

It is a curious fact that the function f(ρ) alluded to above is decreasing.
We call this curious, because if the P populated nodes are regularly spaced
in the circular geometry of the address space of Chord, the average path
length is exactly 0.5 log2 P , in other words larger. Hence, we have as a
result that randomization improves the performance of P2P system built
on DHT, even in a static situation, with no peers leaving or joining the
system. We believe this may be of some conceptual importance, even if
the effect is small. Additionally, it shows that a characteristic of a self
property such as self-organization of nodes into a structured graph can be
described irrespective of the size of the system.

Conclusion 1. The density (ρ) of nodes in an identifier space of a
Chord system is an intensive variable.

8.5 Intensive variable B: Ratio of Perturbation to Sta-

bilization (β)

We like to perceive a structured overlay network as a system operating
under two competing forces: perturbation and stabilization. Perturba-
tion is the change in the set of nodes by adding and removing nodes, aka
“churn”. Stabilization is the periodic maintenance of edges performed

178 8.5. INTENSIVE VARIABLE B: RATIO OF PERTURBATION TO STABILIZATION (β)

by each node. Perturbation pulls the network towards suboptimal per-
formance because whenever a node is added or removed, some outgoing
edges of some other nodes need to be changed. Stabilization brings it back
to optimal state by reassigning a sub-optimally-assigned edges. The com-
petition between those two forces governs the performance of the system.
So far, there is no research results in the DHT community, that we are
aware of, that can answer the following question:

Question 1. If a system of size S is operating under a magnitude of
perturbation x and a magnitude of stabilization y, what is the perfor-
mance of the system according to some performance metric m(x, y)?

A comprehensive simulation-based answer to question 1 can not be ob-
tained without an exhaustive exploration of all the parameters which is
prohibitive. Instead, we try to answer it by posing the two following sim-
pler questions which in essence are attempts to find data collapse:

Question 2 (Perturbation-Stabilization Equilibrium). Assume
that we knowm(x1, y1) where x1 and y1 are some values of perturba-
tion and stabilization respectively, ism(x1, y1) = m(α×x1, α×y1)
where α is a constant? Differently said, is there an equilibrium of
those two competing forces?

Question 3 (Scalability of the equilibrium). Whatever the an-
swer to question 2 is, how does it hold for larger system sizes?

8.5.1 Application of the Methodology

To answer the above two questions we apply our methodology once more
as follows:
Step 1: Nomination of intensive variables. Let τ be the time between two
stabilization actions of a certain node. Let µ be the average time between
two perturbation events (joins or failures) while the network is in a stable
state. That is, the number of nodes is varying around a certain average
population P0. Taking µ as the magnitude of perturbation and τ as the
magnitude of stabilization, we need to answer the following question: “Is
β = µ

τ an intensive variable?”.

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 179

Step 2: Looking for characteristic behavior. In this investigation, in ad-
dition to the average lookup path length as the indicator of characteristic
behavior, we needed a metric that gives more insight about the state of the
graph and thus we used what we call the “distance from optimal network”
δ which is computed as follows:

δ =

∑

i∈P

∑

j=1.. log N Edgei
j 6= OptimalEdgei

j

P logN
(8.1)

Where Edgei
j is the jth(1 ≤ j ≤ logN) outgoing edge of a node i ∈ P

and OptimalEdgei
j is the optimal value for that edge. P logN is the total

number of edges (P nodes, logN edges per node, whereN is the size of the
identifier space). Informally, δ is the number of “wrong” (outdated) edges
in the overlay graph over the total number of edges. It varies between 0
and 1 where a value of 0 means that the graph is optimal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600

D
is

ta
nc

e
F

ro
m

 O
pt

im
al

 N
et

w
or

k
δ

an
d

N
or

m
al

iz
ed

 P
op

ul
at

io
n

P
t/P

0

Discrete Time t

Chord System operating with τ=150 and µ=30

δ
Pt/P0

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200

D
is

ta
nc

e
F

ro
m

 O
pt

im
al

 N
et

w
or

k
δ

an
d

N
or

m
al

iz
ed

 P
op

ul
at

io
n

P
t/P

0

Discrete Time t

Chord System operating with τ=300 and µ=60

δ
Pt/P0

(b)

Figure 8.3: Example experiments showing the average normalized pop-

ulation size of 128 nodes under perturbation (joins/failure) and the av-

erage distance from optimal network under two different rates of per-

turbation (µ) and stabilization (τ) but the same β = µ
τ

Step 3: Simulation Setup.

We let P0 nodes form a network and we wait until δ is equal to 0 i.e. the

180 8.5. INTENSIVE VARIABLE B: RATIO OF PERTURBATION TO STABILIZATION (β)

network graph is optimal. We then let the network operate under speci-
fied values of µ and τ for 50 turnovers (A turnover is the replacement of
P nodes with another P). During this experiment, we record δ frequently
and average it over the whole experiment. That is in addition to the av-
erage lookup path length L over the whole experiment as well. We write
〈δ(P, τ, µ)〉 and 〈L(P, τ, µ)〉 to denote the average δ and L obtained by run-
ning this experiment setup under given values of P , τ and µ.

Figure 8.3 shows example experiments. On the x-axis two values are
plotted at each discrete time t: i) δ at time t, ii) Pt

P0
, the population at time

t divided by the initial population P0. During the experiment, the aver-

age population is P0 (That is
〈

Pt
P0

〉

= 1.0). In figure 8.3(a) the values of

τ and µ were 150 and 30 respectively, therefore β = 0.2. In figure 8.3(b)
both values of τ and µ are doubled while keeping beta constant. Inter-
estingly, the average distance in both examples is almost the same, that is
〈δ(128, 150, 30)〉 = 0.518 and 〈δ(128, 300, 60)〉 = 0.504. While those exam-
ples are promising for showing that an equilibrium of perturbation and
stabilization exists, we show the investigation of a broad range of values
of β in the next section.

8.5.2 Results

Perturbation-Stabilization Equilibrium

For one value of P0, we examine various values of β by fixing τ and vary-
ing µ. We, then, try a different τ and vary µ such that the same values of
β are conserved. The target of this procedure is to understand whether δ
is dependent solely on β or is it one of the components of β (τ or µ) that
controls 〈δ〉 and 〈L〉.

In more details, we try values of τ = {150, 300, 600, 1200}. For each
value of τ we try different values of µ. For instance, for τ = 150, values of
β = {25, 30, 45,, 195, 200}. For τ = 150, values of β = {50, 60, 70,, 390, 400}.
The same procedure is repeated for values of P0 = {64, 128, 512, 1024}.

The results are shown in figures 8.5 and 8.4. Observe that as β increases
the time between two perturbation events increase, i.e. the network has

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 181

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 L
oo

ku
p

P
at

h
Le

ng
th

 <
L>

β = µ/τ

P0=64 τ=150
P0=64 τ=300
P0=64 τ=600

P0=64 τ=1200
P0=128 τ=150
P0=128 τ=300
P0=128 τ=600

P0=128 τ=1200
P0=256 τ=150
P0=256 τ=300
P0=256 τ=600

P0=256 τ=1200
P0=512 τ=150
P0=512 τ=300
P0=512 τ=600

P0=512 τ=1200
P0=1024 τ=150
P0=1024 τ=300
P0=1024 τ=600

P0=1024 τ=1200

Figure 8.4: The average lookup path length 〈L〉 as a function of the spec-

ulated intensive variable β (the ratio of average time between perturba-

tion events µ and average time between stabilization events τ).

more chance to heal itself. Therefore, it is expected to see that both 〈L〉
and 〈δ〉 decrease indicating a better performance.

In figure 8.5 we find that for smaller network sizes, the average lookup
length oscillates strongly and it is not clear that β alone controls the be-
havior. For larger sizes, this oscillation disappears and we clearly see that
the curves superimpose nicely and a data collapse is obtained. Another
way to see the behavior of the lookup length is to plot its deviation from
the optimal value (〈Lopt〉 = 0.5 × log 〈P0〉) as shown in figure 8.6. We ig-
nore the density effect as we are working with an identifier space of size
N = 4096 and therefore f(ρ) is negligible.

Unlike the average lookup path length, the distance from optimal net-
work gives a much more consistent view of the network behavior. As
shown in figure 8.5, for each given size all the curves superimpose nicely.

182 8.5. INTENSIVE VARIABLE B: RATIO OF PERTURBATION TO STABILIZATION (β)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 o

pt
im

al
 n

et
w

or
k

<
δ>

β = µ/τ

P0=64 τ=150
P0=64 τ=300
P0=64 τ=600

P0=64 τ=1200
P0=128 τ=150
P0=128 τ=300
P0=128 τ=600

P0=128 τ=1200
P0=256 τ=150
P0=256 τ=300
P0=256 τ=600

P0=256 τ=1200
P0=512 τ=150
P0=512 τ=300
P0=512 τ=600

P0=512 τ=1200
P0=1024 τ=150
P0=1024 τ=300
P0=1024 τ=600

P0=1024 τ=1200

Figure 8.5: The average distance from optimal network 〈δ〉 as a function

of the speculated intensive variable β.

That is, we have a much more vivid data collapse. A discussion of a data
collapse for all the sizes is provided in the next section. However, at this
point, we can see that the network exhibits a perturbation-stabilization
equilibrium.

Scalability of the equilibrium

If we want to discuss the scalability of the equilibrium, we need to perceive
the obtained results differently. The stabilization as defined in section 8.5.1
is a “node-level” event while the perturbation is a “whole-graph-level”

event. That is, β is defined as Perturbation of the system (µ)
Stabilization of each node (τ) . Therefore, if we

were to compare the behavior of two network sizes under the same values
of τ and µ, the network with larger size will have the same perturbation
but higher stabilization since the number of nodes is larger. Therefore, we

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 183

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
ev

ia
tio

n
fr

om
 o

pt
im

al
 p

at
h

le
ng

th
 <

l>
-<

l o
pt

>

β = µ/τ

P0=64 τ=150
P0=64 τ=300
P0=64 τ=600

P0=64 τ=1200
P0=128 τ=150
P0=128 τ=300
P0=128 τ=600

P0=128 τ=1200
P0=256 τ=150
P0=256 τ=300
P0=256 τ=600

P0=256 τ=1200
P0=512 τ=150
P0=512 τ=300
P0=512 τ=600

P0=512 τ=1200
P0=1024 τ=150
P0=1024 τ=300
P0=1024 τ=600

P0=1024 τ=1200

Figure 8.6: The deviation from optimal average lookup path length 〈L〉−
〈Lopt〉 as a function of the speculated intensive variable β.

define β′ to be Perturbation of the system (µ)
Stabilization of the system (τ

〈P0〉
) to have a more fair compari-

son. The β′ re-plots of figure 8.6 and 8.5 are shown in figures 8.7 and 8.8
respectively.

In figure 8.7 we can see that we have a noisy data-collapse due to the
oscillations of the lookup length of the small networks. Nevertheless, a
clear common trend is obvious and we believe that enhancing it more is an
exercise in statistical methods. However, judging it by using the distance
from optimal network (figure 8.8), we can see that we have a clear data
collapse.

Conclusion 2. The ratio of system perturbation to system sta-
bilization β′ in a Chord system is an intensive variable.

184 8.6. RELATED WORK

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400

D
ev

ia
tio

n
fr

om
 o

pt
im

al
 p

at
h

le
ng

th
 <

L>
-<

L o
pt

>

β’ = µ/(τ/<P0>)

P0=64 τ=150
P0=64 τ=300
P0=64 τ=600

P0=64 τ=1200
P0=128 τ=150
P0=128 τ=300
P0=128 τ=600

P0=128 τ=1200
P0=256 τ=150
P0=256 τ=300
P0=256 τ=600

P0=256 τ=1200
P0=512 τ=150
P0=512 τ=300
P0=512 τ=600

P0=512 τ=1200
P0=1024 τ=150
P0=1024 τ=300
P0=1024 τ=600

P0=1024 τ=1200

Figure 8.7: Data collapse of figure 8.6 obtained by using β′.

8.6 Related Work

We consider in this section the research in the structured overlay networks
community, that we are aware of, which addressed self-repair on deep
levels.

A lower bound on stabilization rate. In [5], the Chord research team
gives the first theoretical analysis on the lower bound of stabilization rate
required for a network to remain connected in face of continuous joins and
failures. A lower bound for the stabilization rate is definitely a substantial
result, however, we are interested to answer more questions regarding the
stabilization rates such as: If we consider the range of stabilization rates
where the overlay graph won’t be disconnected, the guarantee of graph
disconnection is not sufficient for practical purposes, how is the network
performance affected by each such rate? Differently said, if we have an
application that demands a limit on the latency in terms of the number of
hops, what is the required stabilization rate?

CHAPTER 8. PHYSICS-INSPIRED PERFORMANCE EVALUATION OF DHTS. 185

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 d
is

ta
nc

e
fr

om
 o

pt
im

al
 n

et
w

or
k

<
δ>

β’ = µ/(τ/<P0>)

P0=64 τ=150
P0=64 τ=300
P0=64 τ=600

P0=64 τ=1200
P0=128 τ=150
P0=128 τ=300
P0=128 τ=600

P0=128 τ=1200
P0=256 τ=150
P0=256 τ=300
P0=256 τ=600

P0=256 τ=1200
P0=512 τ=150
P0=512 τ=300
P0=512 τ=600

P0=512 τ=1200
P0=1024 τ=150
P0=1024 τ=300
P0=1024 τ=600

P0=1024 τ=1200

Figure 8.8: Data collapse of figure 8.5 obtained by using β′.

Self-tuned message failure rate. In [6], the Pastry research team gives
an analytical model for the percentage of message loss due to outdated
routing tables as a function of the frequency of routing table probes. The
model is then used to adaptively “self-tune” the rate at which the network
self-repairs its routing entries that are pointing to failed nodes which is
another major result because of its practical implications. However, the
analysis based on the failed nodes only is not sufficient since a node can
have alive but sub-optimally assigned edges.

Comparing performance under churn. The work in [4] gives the first
thorough simulation-based analysis for overlays network under churn (per-
turbation). In that sense it is the most similar research to our work. The
simulation model covers physical network proximity and compares sev-
eral systems and not only Chord. On the other hand, their simulation is
based on one churn rate while in ours we tackle several rates and we are
interested in finding data-collapse so as to present results that hold irre-

186 8.7. NOTE ON THE IMPLEMENTATION.

spective of the network size.

8.7 Note on the implementation.

To perform the experiments, we used the Mozart [1] distributed program-
ming platform to implement a discrete event simulator. We wrapped our
simulator in a distribution layer to be able to schedule experiments on a
cluster of 16 nodes at SICS. Each nodes is an AMD Athlon(tm) XP 1900+
(1.5GHz) with a 512MB of memory.

8.8 Conclusion and future work

We have reported in this paper our progress in investigating whether a
physics-style analytical approach can give more understanding to the per-
formance of structured overlay networks. The approach mainly necessi-
tates the description of the characteristics of the system using variables
that do not depend on the size, known as intensive variables.

Using this approach, we have shown that: i) The density of nodes in
an identifier space is an intensive variable that describes a characteristic
behavior of a network irrespective of its size. ii) The ratio of perturbation
to stabilization β′, variable governs the relative amount of wrong pointers
and the average lookup path length of the overlay graph irrespective of its
size.

In the continuation of this work, we intend to do the following:

• Perform the same experiments with a wider spectrum of numbers to
have more statistically-accurate results.

• Use the characteristic behaviors in providing a more adaptive nature
to the current DHT algorithms.

• Search for more intensive variables and possible phase transitions.

BIBLIOGRAPHY 187

Bibliography

[1] Mozart Consortium, 2003. http://www.mozart-oz.org.

[2] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.
DKS(N; k; f): A Family of Low Communication, Scalable and
Fault-Tolerant Infrastructures for P2P Applications. In The 3rd In-
ternational Workshop On Global and Peer-To-Peer Computing on Large
Scale Distributed Systems (CCGRID 2003), Tokyo, Japan, May 2003.
http://www.ccgrid.org/ccgrid2003.

[3] S. Kirkpatrick and B. Selman. Critical behaviour in the satisfiability
of random boolean expressions. Science, 264:1297–1301, 1994.

[4] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and
Frans Kaashoek. Comparing the performance of distributed hash ta-
bles under churn. In The 3rd International Workshop on Peer-to-Peer
Systems (IPTPS’02), San Diego, CA, Feb 2004.

[5] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis
of the evolution of peer-to-peer systems. In ACM Conf. on Principles
of Distributed Computing (PODC), Monterey, CA, July 2002.

[6] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Controlling
the Cost of Reliability in Peer-to-Peer Overlayss. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, Feb-
ruary 2003.

[7] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dy-
namic emulation of the butterfly. In InProceedings of the 21st ACM
Symposium on Principles of Distributed Computing (PODC ’02), August
2002.

[8] Petar Maymounkov and David Mazires. Kademlia: A Peer-
to-peer Information System Based on the XOR Metric. In The
1st Interational Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/.

188 BIBLIOGRAPHY

[9] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic so-
lutions of random satisfiability problems. Science, 297:812–815, 2002.

[10] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions
of sat problems. AAAI-92. Proceedings Tenth National Conference on
Artificial Intelligence, pages 873, 459–65, 1992.

[11] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyan-
sky. 2+p-sat: Relation of typical-case complexity to the nature of the
phase transition. Random Structures and Algorithms, 3:414, 1999.

[12] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troy-
ansky. Determining computational complexity from characteristic
phase transitions. Nature, 1999.

[13] Moni Naor and Udi Wieder. Novel architectures for p2p applica-
tions: the continuous-discrete approach. In InProceedings of SPAA
2003, 2003.

[14] Antony Rowstron and Peter Druschel. Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), 329-350 2001.

[15] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, pages 149–160, San Diego, California, August 2001.

[16] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. IEEE
Transactions on Networking, 11, 2003.

[17] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2000.

Chapter 9

Analytical Study of DHTs
under Churn

189

190

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 191

Analytical Study of Consistency and Performance of
DHTs under Churn. 1

Sameh El-Ansary1, Supriya Krishnamurthy1, Erik Aurell1,2 and Seif Haridi1,3

1 Distributed Systems Laboratory
SICS Swedish Institute of Computer Science

2Department of Physics, KTH-Royal Institute of Technology
3IMIT, KTH-Royal Institute of Technology

{sameh,supriya,eaurell,seif}@sics.se

Abstract

In this paper, we present a complete analytical study of dynamic membership (aka
churn) in structured peer-to-peer networks. We use a master-equation-based ap-
proach, which is used traditionally in non-equilibrium statistical mechanics to
describe steady-state or transient phenomena. We demonstrate that this method-
ology is infact also well suited to describing structured overlay networks by an
application to the Chord system. For any rate of churn and stabilization rates,
and any system size, we accurately account for the functional form of: the dis-
tribution of inter-node distances, the probability of network disconnection, the
fraction of failed or incorrect successor and finger pointers and show how we can
use these quantities to predict both the performance and consistency of lookups
under churn. Additionally, we also discuss how churn may actually be of differ-
ent ’types’ and the implications this will have for structured overlays in general.
All theoretical predictions match simulation results to a high extent. The analy-
sis includes details that are applicable to a generic structured overlay deploying
a ring as well as Chord-specific details that can act as guidelines for analyzing
other systems.

Keywords: Peer-To-Peer, Structured Overlays, Distributed Hash Ta-
bles, Dynamic Membership in Large- scale Distributed Systems, Analyti-
cal Modeling, Master Equations.

1This work is funded by the Swedish VINNOVA AMRAM and PPC projects, the Euro-
pean IST-FET PEPITO and 6th FP EVERGROW projects.

192 9.1. INTRODUCTION

9.1 Introduction

An intrinsic property of Peer-to-Peer systems is the process of never-ceasing
dynamic membership. Structured Peer-to-Peer Networks (aka Distributed
Hash Tables (DHTs)) have the underlying principle of arranging nodes
in an overlay graph of known topology and diameter. This knowledge
results in the provision of performance guarantees. However, dynamic
membership continuously “corrupts/churns” the overlay graph and every
DHT strives to provide a technique to “correct/maintain” the graph in the
face of this perturbation.

Both theoretical and empirical studies have been conducted to ana-
lyze the performance of DHTs undergoing “churn” and simultaneously
performing “maintenance’. Liben-Nowell et. al [6] prove a lower bound
on the maintenance rate required for a network to remain connected in the
face of a given dynamic membership rate. Aspnes et. al [2] give upper and
lower bounds on the number of messages needed to locate a node/data
item in a DHT in the presence of node or link failures. The value of such
theoretical studies is that they provide insights neutral to the details of
any particular DHT. Empirical studies have also been conducted to com-
plement theory by showing how within the asymptotic bounds, the per-
formance of a DHT may vary substantially depending on different DHT
designs and implementation decisions. Examples include the work of: Li
et. al [5], Rhea et.al [8] and Rowstron et.al [3].

In this paper, we present a new approach to studying churn, based on
working with master equations, a widely used tool wherever the math-
ematical theory of stochastic processes is applied to real-world phenom-
ena [7]. We demonstrate the applicability of this approach to one specific
DHT: Chord [9].

9.2 Related Work

Closest in spirit to our work is the informal derivation in the original
Chord paper [9] of the average number of timeouts encountered by a
lookup. This quantity was approximated there by the product of the aver-
age number of fingers used in a lookup times the probability that a given

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 193

finger points to a departed node. Our methodology not only allows us to
derive the latter quantity rigorously but also demonstrates how this prob-
ability depends on which finger (or successor) is involved. Further we are
able to derive an exact relation relating this probability to lookup perfor-
mance and consistency accurately at any value of the system parameters.

In the works of Aberer et.al [1] and Wang et.al [10], DHTs are analyzed
under churn and the results are compared with simulations. However, the
main parameter of the analysis is the probability that a random selected
entry of a routing table is stale. In our analysis, we determine this quantity
from system details and churn rates.

A brief announcement of the results presented in this paper, has ap-
peared earlier in [4].

9.3 Assumptions & Definitions

Basic Notation. In the sequel, we assume that the reader is familiar with
Chord. However we introduce the notation used below. We use K to
mean the size of the Chord key space and N the number of nodes. Let
M = log2 K be the number of fingers of a node and S the length of the
immediate successor list, usually set to a value = O(log(N)). We refer to
nodes by their keys, so a node n implies a node with key n ∈ 0 · · · K − 1.
We use p to refer to the predecessor, s for referring to the successor list as
a whole, and si for the ith successor. Data structures of different nodes
are distinguished by prefixing them with a node key e.g. n′.s1, etc. Let
fini.start denote the start of the ith finger (where for a node n, ∀i ∈ 1..M,
n.fini.start = n + 2i−1) and fini.node denote the node pointed to by that
finger (which is the closest successor of n.fini.start on the ring).

Steady State Assumption. λj is the rate of joins per node, λf the rate
of failures per node and λs the rate of stabilizations per node. We carry
out our analysis for the general case when the rate of doing successor sta-
bilizations αλs, is not necessarily the same as the rate at which finger sta-
bilizations (1 − α)λs are performed. In all that follows, we impose the
steady state condition λj = λf unless otherwise stated. Further it is useful
to define r ≡ λs

λf
which is the relevant ratio on which all the quantities we

are interested in will depend, e.g, r = 50 means that a join/fail event takes

194 9.4. THE ANALYSIS

place every half an hour for a stabilization which takes place once every 36
seconds. Throughout the paper we will use the terms λj∆t, λf∆t, αλs∆t
and (1−α)λs∆t to denote the respective probabilities that a join, failure, a
successor stabilization, or a finger stabilization take place during a micro
period of time of length ∆t.

Parameters. The parameters of the problem are hence: K, N , α and r.
All relevant measurable quantities should be entirely expressible in terms
of these parameters.

Chord Algorithms & Simulation A detailed description of the algo-
rithms used is provided in Appendix A. Since we are collecting statistics
like the probability of a particular finger pointer to be wrong, we need
to repeat each experiment 100 times before obtaining well-averaged re-
sults. The total simulation sequential real time for obtaining the results of
this paper was about 1800 hours that was parallelized on a cluster of 14
nodes where we had N = 1000, K = 220, S = 6, 200 ≤ r ≤ 2000 and
0.25 ≤ α ≤ 0.75.

9.4 The Analysis

9.4.1 Distributional Properties of Inter-Node Distances
During churn, the average inter-node distance is a fluctuating quantity
whose distribution is used throughout our analysis. The derivation we
present here of this distribution is independent of any details of the DHT
implementation and depends solely on the dynamics of the join and leave
process. It is hence applicable to any DHT that deploys a circular key
space.

Definition 9.4.1 Given two keys u, v ∈ {0...K − 1}, the “distance” between
them is u− v (with modulo-K arithmetic). We interchangeably say that u and v
form an “interval” of length u − v. Hence the number of keys inside an interval
of length ℓ is ℓ− 1 keys.

Definition 9.4.2 Let Intx be the number of intervals of length x, i.e. the number
of pairs of consecutive nodes which are separated by a distance of x keys on the
ring.

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 195

Intx(t+ ∆t) Rate of Change
= Intx(t) − 1 c1.1 = (λf∆t)2P (x)

= Intx(t) − 1 c1.2 = (λj∆t)
N(x−1)P (x)

K−N

= Intx(t) + 1 c1.3 = (λf∆t)
∑x−1

x1=1 P (x1)P (x− x1)

= Intx(t) + 1 c1.4 = (λj∆t)
2N

K−N

∑

x1>x P (x1)

= Intx(t) 1 − (c1.1 + c1.2 + c1.3 + c1.4)

Table 9.1: Gain and loss terms for Int(x) the number of intervals of length
x.

Theorem 9.4.1 For a process in which nodes join or leave with equal rates inde-
pendently of each other and uniformly on the ring, and the number of nodes N in
the network is almost constant with N << K, the probability (P (x) ≡ Intx

N) of
finding an interval of length x is: P (x) = ρx−1(1 − ρ) where ρ = K−N

K .

Proof : By definition
∑

P (x) = 1 and
∑

x P (x) = K/N . Further, for the
mean number of peers, the join-leave process we consider, simply implies
that dN

dt = λj − λf We will need to check that an equation for Int(x) does
indeed satisfy the above constraints.

We now write an equation for Intx by considering all the processes
which lead to its gain or loss. These are summarized in table 9.1

First, a failure of either of the boundary nodes of an interval of size
x leads to its loss at rate c1.1. That is, since the node killed is randomly
picked amongst all the nodes in the interval, the probability that it was
participating on either side of an interval of length x is 2P (x).

Second, an interval of size x can be lost at rate c1.2 if a joining node
splits it. Only joining with keys that belong to one of the Intx intervals
can lead to the loss of an interval of length x and in each one of these,
there are x− 1 ways (available keys) for splitting. Therefore (x− 1)× Intx
positions out of the K−N available keys can destroy an interval of length
x. That is, the probability that one of the intervals of length x is destroyed

is (x−1)Intx
K−N which can be rewritten as N(x−1)P (x)

K−N .

Third, the number of intervals of size x can increase by 1 at rate c1.3

if a failure of a boundary node results in the aggregation of two adjacent
intervals. To clarify that, we give the following examples. An interval of

196 9.4. THE ANALYSIS

length 1 cannot be formed by such a process. An interval of length 2 can
be formed by the failure of a node if the node that failed was shared be-
tween two adjacent intervals of length 1. We are assuming here that the
probability of picking two adjacent intervals of length 1 is P (1)2. This is
in effect assuming that the probability of having two adjacent intervals
of size 1, factorises. However for this system, this is an accurate estima-
tion. Thus, in general, the probability of forming an interval of length x is
∑x−1

x1=1 P (x1)P (x− x1).
Fourth, an increase can happen at rate c1.4 if a join event splits a larger

interval into an interval of size x. For a join to form an interval of length
x, it must occur in an interval of length greater than x. In each interval of
length x1 > x, there are exactly two ways of forming an interval of length
x. Therefore, the probability of forming an interval of length x is equal to
2
P

x1>x Intx

K−N , which can be rewritten as
2N
P

x1>x P (x)

K−N
Finally, Intx remains the same if none of the above happens.
Therefore the equation for Intx for x > 1 is:

dIntx
dt

= − P (x)

[

2λf +
Nλj(x− 1)

K −N

]

+ λf

x−1
∑

x1=1

P (x1)P (x− x1)

+ 2λj
N

K −N

∑

x1>x

P (x1).

(9.1)

We can check that :

d

dt

∑

Intx =
dN

dt
= λj − λf (9.2)

as required.
Further we can check that the constraint:

d

dt

∑

xIntx =
dK

dt
= 0

is also obeyed. Equation 9.1 can be readily solved leading to the solution:

P (x) = ρx−1(1 − ρ) (9.3)

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 197

where ρ = K−N

K−N(1−
λj
λf

)
. In the special case we are interested in here where

λj = λf , we have ρ = K−N
K . Note that if λj 6= λf , then N is actually an

increasing/decreasing function of time.

Given the above term for ρ we can state the following corollary that
gives an intuitive meaning for ρ in the case λj = λf .

Corollary 9.4.1.1 Given a ring of K keys populated by N nodes, ρ ≡ K−N
K is

the ratio of the unpopulated keys to the total number of keys, i.e. the probability
of picking a key at random and finding it empty is ρ.

The proof of the above theorem does assume that (in the case λj = λf)
the number of nodes N is fairly constant. Indeed at first sight this seems
to be strictly true from Eq. 9.2. However, just as in a random walk, the
variance in this case increases with time. We will comment more on the
properties of the variance later. For the moment, we note that the above
result can be generalised to also include the case when N is a largely fluc-
tuating quantity. In this case we only need to multiply the N dependent
terms in Eq. 9.1 with Prob(N, t): the probability that there are N nodes in
the system at time t, and average over N .

We now derive some Chord-specifig properties of this distribution which
will be used in the ensuing analysis.

Property 9.4.1 For any two keys u and v, where v = u + x, let bi be the proba-
bility that the first node encountered inbetween these two keys is at u + i (where
0 ≤ i < x). Then bi ≡ ρi(1 − ρ). The probability that there is definitely at least
one node between u and v is: a(x) ≡ 1 − ρx. Hence the conditional probability
that the first node is at a distance i given that there is at least one node in the
interval is bc(i, x) ≡ b(i)/a(x).

Explanation : Consider bi first. For any key u, the probability that the first
node encountered is at u itself (b0) is 1−ρ from Corollary 9.4.1.1. Similarly
the probability that the first node encountered is at u+1 (b1) is ρ(1− ρ). In
general, the probability that the first populated node starting from u is at
u + i is b(i) ≡ (ρ)i(1 − ρ). Given this, the probability that there is at least
one node between u and v = u+ x (not including the case when the node
is at v) is

∑x−1
i=0 bi = 1 − ρx ≡ a(x).

198 9.4. THE ANALYSIS

Figure 9.1: (a) Case when n and p have the same value of fink.node. (b)
Case where a newly joined node p copies the kth entry of its successor
node n as the best approximation for its own kth entry (by the join proto-
col). In this case, there could be a node o which is the ’correct’ entry for
p.fink.node. However, since p is newly joined, the only information it has
access to is the finger table of n.

Property 9.4.2 The probability that a node and at least one of its immediate pre-

decessors share the same kth finger is p1(k) ≡
ρ

1+ρ(1− ρ2k−2). This is ∼ 1/2 for
K >> 1 and N << K.Clearly p1 = 0 for k = 1. It is straightforward (though
tedious) to derive similar expressions for p2(k) the probability that a node and at
least two of its immediate predecessors share the same kth finger, p3(k) and so on.

Explanation : If the distance between node n and its predecessor p is x,
the distance between n.fink.start and p.fink.start is also x (see Fig. 9.1(a)).
If there is no node inbetween n.fink.start and p.fink.start then n.fink.node
and p.fink.node will share the same value. From Eq. 9.3, the probability
that the distance between n and p is x is ρx−1(1 − ρ). However, x has to
be less than 2k−1, otherwise p.fink.node will be equal to n. The probability
that no node exists between n.fink.start and p.fink.start is ρx (by Property
9.4.1). Therefore the probability that the n.fink.node and p.fink.node share

the same value is:
∑2k−1−1

x=1 ρx−1(1 − ρ)ρx = ρ
1+ρ(1 − ρ2k−2)

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 199

Property 9.4.3 We can similarly assess the probability that the join protocol
results in further replication of the kth pointer. Let us define the probability
pjoin(i, k) as the probability that a newly joined node, chooses the ith entry of
its successor’s finger table for its own kth entry. Note that this is unambiguous
even in the case that the successor’s ith entry is repeated. All we are asking is,
when is the kth entry of the new joinee the same as the ith entry of the successor?
Clearly i ≤ k. Infact for the larger fingers, we need only consider pjoin(k, k),
since pjoin(i, k) ∼ 0 for i < k. Using the interval distribution we find, for large

k, pjoin(k, k) ∼ ρ(1−ρ2k−2−2)+(1−ρ)(1−ρ2k−2−2)−(1−ρ)ρ(2k−2−2)ρ2k−2−3.
This function goes to 1 for large k.

Explanation : A newly joined node p, tries to assign p.fink.node to the
best approximate value from the finger table of its successor n. This ap-
proximate value might turn out to be n.fink.node, especially for the larger
fingers. If p chooses the kth entry of n as its own kth entry, it must be be-
cause the k − 1th entry of n (if distinct, as is always the case for large k)
does not afford it a better choice. The condition for this is : p.fink.start >
n.fink−1.node. If the distance between n.fink.start and p.fink.start is x,
and the distance between n.fink−1.start and n.fink−1.node is y (see Fig.
9.1 (b)), then the constraint on x and y is n + 2k−1 − x > n + 2k−2 + y
or x + y < 2k−2. We also have the added constraint that x < 2k−1, since
otherwise p.fink.node would simply be n. Thus the probability pjoin(k, k)
is:

2k−1−1
∑

x=1

2k−2−x
∑

y=1

P (x)P (y) =
2k−2−1
∑

z=2

ρz−2(1 − ρ)2(z − 1) (9.4)

where we have put in the expressions for P (x) and P (y) from Eq. 9.3
and converted the double summation to a single one. This expression can
be summed easily to obtain the result quoted above.

We can also analogously compute pjoin(i, k) for any i. The only trick
here is to estimate the probability that starting from i, the last distinct entry
of n’s finger table does not give p a better choice for its kth entry. This can
again readily be computed using property 9.4.1.

200 9.4. THE ANALYSIS

9.4.2 Successor Pointers

We now turn to estimating various quantities of interest for Chord. In all
that follows we will evaluate various average quantities, as a function of the
parameters. However this same formalism can also be used for evaluating
higher moments like the variance.

In the case of Chord, we need consider only one of three kinds of events
happening at any micro-instant: a join, a failure or a stabilization. One as-
sumption made in the following is that such a micro-instant of time exists,
or in other words, that we can divide time till we have an interval small
enough that in this interval, only any one of these three processes occur.
We also effectively assume that the time scales on which stabilizations oc-
cur is much faster that a join or a failure event. Another assumption is
that the state of the system is a product of the state of all the nodes. Nodes
are hence assumed to have, for the most part, states independent of each
other , i.e. the probability of two adjacent nodes having a wrong successor
pointer is taken to be the product of the individual nodes having wrong
successor pointers (though as we will see, in the case of finger pointers,
we do also consider the case when adjacent nodes might have correlated
fingers). However, this ansatz works very well.

Consider first the successor pointers. Let wk(r, α), dk(r, α) denote the
fraction of nodes having a wrong kth successor pointer or a failed one re-
spectively andWk(r, α),Dk(r, α) be the respective numbers . A failed pointer
is one which points to a departed node and a wrong pointer points either to
an incorrect node (alive but not correct) or a dead one. As we will see, both
these quantities play a role in predicting lookup consistency and lookup
length.

By the protocol for stabilizing successors in Chord, a node periodically
contacts its first successor, possibly correcting it and reconciling with its
successor list. Therefore, the number of wrong kth successor pointers are
not independent quantities but depend on the number of wrong first suc-
cessor pointers. We first consider s1 here, and then briefly discuss the other
cases towards the end of this section.

We write an equation for W1(r, α) by accounting for all the events that
can change it in a micro event of time ∆t. An illustration of the different
cases in which changes in W1 take place due to joins, failures and stabi-

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 201

Change in W1(r, α) Rate of Change
W1(t+ ∆t) = W1(t) + 1 c2.1 = (λj∆t)(1 − w1)
W1(t+ ∆t) = W1(t) + 1 c2.2 = λf (1 − w1)

2∆t
W1(t+ ∆t) = W1(t) − 1 c2.3 = λfw

2
1∆t

W1(t+ ∆t) = W1(t) − 1 c2.4 = αλsw1∆t
W1(t+ ∆t) = W1(t) 1 − (c2.1 + c2.2 + c2.3 + c2.4)

Table 9.2: Gain and loss terms for W1(r, α): the number of wrong first
successors as a function of r and α.

lizations is provided in Fig. 9.2. In some cases W1 increases/decreases
while in others it stays unchanged. For each increase/decrease, table 9.2
provides the corresponding probability.

By our implementation of the join protocol, a new node ny, joining
between two nodes nx and nz , has its s1 pointer always correct after the
join. However the state of nx.s1 before the join makes a difference. If nx.s1
was correct (pointing to nz) before the join, then after the join it will be
wrong and therefore W1 increases by 1. If nx.s1 was wrong before the
join, then it will remain wrong after the join and W1 is unaffected. Thus,
we need to account for the former case only. The probability that nx.s1 is
correct is 1 − w1 and from that follows the term c2.1.

For failures, we have 4 cases. To illustrate them we use nodes nx, ny,
nz and assume that ny is going to fail. First, if both nx.s1 and ny.s1 were
correct, then the failure of ny will make nx.s1 wrong and hence W1 in-
creases by 1. Second, if nx.s1 and ny.s1 were both wrong, then the failure
of ny will decrease W1 by one, since one wrong pointer disappears. Third,
if nx.s1 was wrong and ny.s1 was correct, then W1 is unaffected. Fourth,
if nx.s1 was correct and ny.s1 was wrong, then the wrong pointer of ny

disappeared and nx.s1 became wrong, therefore W1 is unaffected. For the
first case to happen, we need to pick two nodes with correct pointers, the
probability of this is (1 − w1)

2. For the second case to happen, we need to
pick two nodes with wrong pointers, the probability of this is w2

1. From
these probabilities follow the terms c2.2 and c2.3.

Finally, a successor stabilization does not affect W1, unless the stabiliz-
ing node had a wrong pointer. The probability of picking such a node is

202 9.4. THE ANALYSIS

Figure 9.2: Changes in W1, the number of wrong (failed or outdated) s1
pointers, due to joins, failures and stabilizations.

w1. From this follows the term c2.4.
Hence the equation for W1(r, α) is:

dW1

dt
= λj(1 − w1) + λf (1 − w1)

2 − λfw
2
1 − αλsw1

Solving for w1 in the steady state and putting λj = λf , we get:

w1(r, α) =
2

3 + rα
≈

2

rα
(9.5)

This expression matches well with the simulation results as shown in
Fig. 9.3. d1(r, α) is then ≈ 1

2w1(r, α) since when λj = λf , about half
the number of wrong pointers are incorrect and about half point to dead
nodes. Thus d1(r, α) ≈ 1

rα which also matches the simulations well as
shown in Fig. 9.3. We can also use the above reasoning to iteratively get
wk(r, α) for any k.

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 203

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 200 400 600 800 1000 1200 1400 1600 1800 2000

w
1
(r

,α
),

 d
1
(r

,α
)

Rate of Stabilisation /Rate of failure (r=λs/λf)

w1(r,0.25) Simulation
w1(r,0.5) Simulation

w1(r,0.75) Simulation
w1(r,0.25) Theory
w1(r,0.5) Theory

w1(r,0.75) Theory
d1(r,0.75) Simulation

d1(r, 0.75) Theory

Figure 9.3: Theory and Simulation for w1(r, α), d1(r, α)

9.4.3 Break-up (Network Disconnection) Probability

We demonstrate below, how calculating dk(r, α): the fraction of nodes
with dead kth pointers, helps in estimating precisely the probability that
the network gets disconnected for any value of r and α. Let Pbu(n, r, α)
be the probability that n consecutive nodes fail. If n = S, the length of
the successor list, then clearly the node gets disconnected from the net-
work and the network breaks up. For the range of r considered in Fig.
9.3, Pbu(S, r, α) ∼ 0. However should we go lower, this starts becoming
finite. The master equation analysis introduced here can be used to esti-
mate Pbu(n, r, α) for any 1 ≤ n ≤ S. We indicate how this might be done
by considering the case n = 2. Let Nbu(2, r, α) be the number of config-
urations in which a node has both s1 and s2 dead and Pbu(2, r, α) be the
fraction of such configurations. Table 9.3 indicates how this is estimated

204 9.4. THE ANALYSIS

Change in W1(r, α) Rate of Change
Nbu(t+ ∆t) = Nbu(t) + 1 c3.1 = (λf∆t)d1(r, α)
Nbu(t+ ∆t) = Nbu(t) + 1 c3.2 = λf∆t(1 − d1)d2

Nbu(t+ ∆t) = Nbu(t) − 1 c3.3 = αλs∆tPbu(2, r, α)
Nbu(t+ ∆t) = Nbu(t) 1 − (c3.1 + c3.2 + c3.3)

Table 9.3: Gain and loss terms for Nbu(2, r, α): the number of nodes with
dead first and second successors

within the present framework.
A join event does not affect this probability in any way. So we need

only consider the effect of failures or stabilization events. The term c3.1 ac-
counts for the situation when the first successor of a node is dead (which
happens with probability d1(r, α) as explained above). A failure event can
then kill its second successor as well and this happens with probability
c3.1. The second term is the situation that the first successor is alive (with
probability 1 − d1) but the second successor is dead (with probability d2).
This probability is ∼ 2/αr (the second successor of a node being dead ei-
ther implies that the first successor of its first successor is dead with prob-
ability d1, or that it has not stabilized recently, and hence has not corrected
its second successor pointer.This happens with probability ∼ 1/αr. These
two terms add up to 2/αr). A stabilization event reduces the number of
such configurations by one, if the node doing the stabilization had such a
configuration to begin with.

Solving the equation forNbu(2, r, α), one hence obtains thatPbu(2, r, α) ∼
3/(αr)2. As Fig. 9.4 shows, this is a precise estimate.

We can similarly estimate the probabilities for three consecutive nodes
failing, etc, and hence also the disconnection probability Pbu(S, r, α). This
formalism thus affords the possibility of making a precise prediction for
when the system runs the danger of getting disconnected as a function of
the parameters.

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 205

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 200 400 600 800 1000 1200 1400 1600 1800 2000

P
b

u
(2

,r
,α

)

Rate of Stabilisation /Rate of failure (r=λs/λf)

Pbu(2,r,0.5) Simulation
Pbu(2,r,0.5) Theory

Pbu(2,r,0.5) Simulation
Pbu(2,r,0.25) Theory

Pbu(2,r,0.5) Simulation
Pbu(2,r,0.75) Theory

Figure 9.4: Theory and Simulation for Pbu(2, r, α)
.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 200 400 600 800 1000 1200 1400 1600 1800 2000

I(
r,

α)

Rate of Stabilisation of Successors/Rate of failure (αr=αλs/λf)

I(r,0.25) Simulation
I(r,0.5) Simulation

I(r,0.75) Simulation
I(r,0.25) theory

I(r,0.5) theory
I(r,0.75) theory

Figure 9.5: Theory and Simulation for I(r, α)

206 9.4. THE ANALYSIS

Figure 9.6: Changes in Fk, the number of failed fink pointers, due to joins,
failures and stabilizations.

9.4.4 Lookup Consistency

By the lookup protocol, a lookup is inconsistent if the immediate prede-
cessor of the sought key has a wrong s1 pointer. However, we need only
consider the case when the s1 pointer is pointing to an alive (but incorrect)
node since our implementation of the protocol always requires the lookup
to return an alive node as an answer to the query. The probability that a
lookup is inconsistent I(r, α) is hence w1(r, α) − d1(r, α). This prediction
matches the simulation results very well, as shown in Fig. 9.5.

9.4.5 Failure of Fingers

We now turn to estimating the fraction of finger pointers which point to
failed nodes. As we will see this is an important quantity for predict-
ing lookups, since failed fingers cause timeouts and increase the lookup
length. We need however only consider fingers pointing to dead nodes.

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 207

Fk(t+ ∆t) Rate of Change

= Fk(t) + 1 c4.1 = (λj∆t)
∑k

i=1 pjoin(i, k)fi

= Fk(t) − 1 c4.2 = (1 − α) 1
Mfk(λs∆t)

= Fk(t) + 1 c4.3 = (1 − fk)
2[1 − p1(k)](λf∆t)

= Fk(t) + 2 c4.4 = (1 − fk)
2(p1(k) − p2(k))(λf∆t)

= Fk(t) + 3 c4.5 = (1 − fk)
2(p2(k) − p3(k))(λf∆t)

= Fk(t) 1 − (c4.1 + c4.2 + c4.3 + c4.4 + c4.5)

Table 9.4: Some of the relevant gain and loss terms for Fk, the number of
nodes whose kth fingers are pointing to a failed node for k > 1.

Unlike members of the successor list, alive fingers even if outdated, al-
ways bring a query closer to the destination and do not affect consistency
or substantially even the lookup length. Therefore we consider fingers in
only two states, alive or dead (failed). By our implementation of the sta-
bilization protocol (see Appendix A), fingers and successors are stabilized
entirely independently of each other. Thus even though the first finger is
also always the first successor, this information is not used by the node in
updating the finger.

Let fk(r, α) denote the fraction of nodes having their kth finger point-
ing to a failed node and Fk(r, α) denote the respective number. For no-
tational simplicity, we write these as simply Fk and fk. We can predict
this function for any k by again estimating the gain and loss terms for this
quantity, caused by a join, failure or stabilization event, and keeping only
the most relevant terms. These are listed in table 9.4 and illustrated in Fig.
9.6

A join event can play a role here by increasing the number of Fk point-
ers if the successor of the joinee had a failed ith pointer (occurs with proba-
bility fi) and the joinee replicated this from the successor as the joinee’s kth
pointer (occurs with probability pjoin(i, k) from property 9.4.3). For large
enough k, this probability is one only for pjoin(k, k), that is the new joinee
mostly only replicates the successor’s kth pointer as its own kth pointer.
This is what we consider here.

A stabilization evicts a failed pointer if there was one to begin with.
The stabilization rate is divided by M, since a node stabilizes any one

208 9.4. THE ANALYSIS

finger randomly, every time it decides to stabilize a finger at rate (1−α)λs.
Given a node nwith an alive kth finger (occurs with probability 1−fk),

when the node pointed to by that finger fails, the number of failed kth

fingers (Fk) increases. The amount of this increase depends on the number
of immediate predecessors of n that were pointing to the failed node with
their kth finger. That number of predecessors could be 0, 1, 2,.. etc. Using
property 9.4.2 the respective probabilities of those cases are: 1 − p1(k),
p1(k) − p2(k), p2(k) − p3(k),... etc.

Solving for fk in the steady state, we get:

fk =

[

2P̃rep(k) + 2 − pjoin(k, k) + r(1−α)
M

]

2(1 + P̃rep(k))

−

√

[

2P̃rep(k) + 2 − pjoin(k, k) + r(1−α)
M

]2
− 4(1 + P̃rep(k))2

2(1 + P̃rep(k))

(9.6)

where P̃rep(k) = Σpi(k). In principle its enough to keep even three
terms in the sum. The above expressions match very well with the simu-
lation results (Fig. 9.8).

9.4.6 Cost of Finger Stabilizations and Lookups

In this section, we demonstrate how the information about the failed fin-
gers and successors can be used to predict the cost of stabilizations, lookups
or in general the cost for reaching any key in the id space. By cost we mean
the number of hops needed to reach the destination including the number
of timeouts encountered en-route. Timeouts occur every time a query is
passed to a dead node. The node does not answer and the originator of
the query has to use another finger instead. For this analysis, we consider
timeouts and hops to add equally to the cost. We can easily generalize this
analysis to investigate the case when a timeout costs some factor n times
the cost of a hop.

Define Ct(r, α) (also denoted Ct) to be the expected cost for a given
node to reach some target key which is t keys away from it (which means
reaching the first successor of this key). For example,C1 would then be the

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 209

Figure 9.7: Cases that a lookup can encounter with the respective proba-
bilities and costs.

cost of looking up the adjacent key (1 key away). Since the adjacent key
is always stored at the first alive successor, therefore if the first successor
is alive (which occurs with probability 1 − d1), the cost will be 1 hop. If
the first successor is dead but the second is alive (occurs with probability
d1(1 − d2)), the cost will be 1 hop + 1 timeout = 2 and the expected cost is
2 × d1(1 − d2) and so forth. Therefore, we have C1 = 1 − d1 + 2 × d1(1 −
d2) + 3 × d1d2(1 − d3) + · · · ≈ 1 + d1 = 1 + 1/(αr).

For finding the expected cost of reaching a general distance t we need
to follow closely the Chord protocol, which would lookup t by first finding
the closest preceding finger. For the purposes of the analysis, we will find
it easier to think in terms of the closest preceding start. Let us hence define
ξ to be the start of the finger (say the kth) that most closely precedes t.
Hence ξ = 2k−1 + n and t = ξ + m, i.e. there are m keys between the
sought target t and the start of the most closely preceding finger. With
that, we can write a recursion relation for Cξ+m as follows:

210 9.4. THE ANALYSIS

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)a(m)

[

1 +
m−1
∑

i=0

bc(i,m)Cm−i

]

+ fka(m)

[

1 +
k−1
∑

i=1

hk(i)

ξ/2i−1
∑

l=0

bc(l, ξ/2i)(1 + (i− 1) + Cξi−l+m) +O(hk(k))

]

(9.7)

where ξi ≡
∑

m=1,i ξ/2
m and hk(i) is the probability that a node is

forced to use its k − ith finger owing to the death of its kth finger. The
probabilities a, b, bc have already been introduced in section 4, and we de-
fine the probability hk(i) below.

The lookup equation though rather complicated at first sight merely
accounts for all the possibilities that a Chord lookup will encounter, and
deals with them exactly as the protocol dictates.

The first term (Fig. 9.7 (a)) accounts for the eventuality that there is no
node intervening between ξ and ξ +m (occurs with probability 1− a(m)).
In this case, the cost of looking for ξ+m is the same as the cost for looking
for ξ.

The second term (Fig. 9.7 (b)) accounts for the situation when a node
does intervene inbetween (with probability a(m)), and this node is alive
(with probability 1 − fk). Then the query is passed on to this node (with
1 added to register the increase in the number of hops) and then the cost
depends on the length of the distance between this node and t.

The third term (Fig. 9.7 (c)) accounts for the case when the interven-
ing node is dead (with probability fk). Then the cost increases by 1 (for a
timeout) and the query needs to find an alternative lower finger that most
closely precedes the target. Let the k− ith finger (for some i, 1 ≤ i ≤ k− 1)
be such a finger. This happens with probability hk(i), i.e., the probability
that the lookup is passed back to the k − ith finger either because the in-
tervening fingers are dead or share the same finger table entry as the kth

finger is denoted by hk(i). The start of the k − ith finger is at ξ/2i and the

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 211

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500 600 700 800 900 1000

f k
(r

,α
)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

f7(r,0.5) Simulation
f7(r,0.5) Theory

f9(r,0.5) Simulation
f9(r,0.5) Theory

f11(r,0.5) Simulation
f11(r,0.5) Theory

f14(r,0.5) Simulation
f14(r,0.5) Theory

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 100 200 300 400 500 600 700 800 900 1000

L
o

o
k

u
p

 l
at

en
cy

 (
h

o
p

s+
ti

m
eo

u
ts

)
L

(r
,α

)

Rate of Stabilisation of Fingers/Rate of failure ((1-α)r=(1-α)λs/λf)

L(r,0.5) Simulation
L(r,0.5) Theory

Figure 9.8: Theory and Simulation for fk(r, α), and L(r, α)

212 9.4. THE ANALYSIS

distance between ξ/2i and ξ is equal to
∑

m=1,i ξ/2
m which we denote by

ξi. Therefore, the distance from the start of the k− ith to the target is equal
to ξi+m. However, note that fink−i.node could be l keys away (with prob-
ability bc(l, ξ/2i)) from fink−i.start (for some l, 0 ≤ l < ξ/2i). Therefore,
after making one hop to fink−i.node, the remaining distance to the target
is ξi +m− l. The increase in cost for this operation is 1 + (i− 1); the 1 in-
dicates the cost of taking up the query again by fink−i.node, and the i− 1
indicates the cost for trying and discarding each of the i − 1 intervening
nodes. The probability hk(i) is easy to compute given property 9.4.1 and
the expression for the fk’s computed in the previous section.

hk(i) =a(ξ/2i)(1 − fk−i)

×Πs=1,i−1(1 − a(ξ/2s) + a(ξ/2s)fk−s), i < k

hk(k) =Πs=1,k−1(1 − a(ξ/2s) + a(ξ/2s)fk−s)

(9.8)

Eqn.9.8 accounts for all the reasons that a node may have to use its
k − ith finger instead of its kth finger. This could happen because the in-
tervening fingers were either dead or not distinct. The probabilities hk(i)

satisfy the constraint
∑k

i=1 hk(i) = 1 since clearly, either a node uses any
one of its fingers or it doesn’t. This latter probability is hk(k), that is the
probability that a node cannot use any earlier entry in its finger table. In
this case, n proceeds to its successor list. The query is now passed on to
the first alive successor and the new cost is a function of the distance of
this node from the target t. We indicate this case by the last term in Eq.
9.7 which is O(hk(k)). This can again be computed from the inter-node
distribution and from the functions dk(r, α) computed earlier. However in
practice, the probability for this is extremely small except for targets very
close to n. Hence this does not significantly affect the value of general
lookups and we ignore it for the moment.

The cost for general lookups is hence

L(r, α) =
ΣK−1

i=1 Ci(r, α)

K

The lookup equation is solved recursively, given the coefficients and
C1. We plot the result in Fig 9.8. The theoretical result matches the simu-
lation very well.

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 213

9.5 What is Churn?

We now discuss a broader issue, connected with churn, which arises natu-
rally in the context of our analysis. As we mentioned earlier, all our analy-
sis is performed in the steady state where the rate of joins (λj) is equal to
the rate of failures λf . However the rates λj and λf can themselves each be
chosen in one of two different ways. They could either be “per-network”
or “per-node”. In the former case, the number of joinees (or the number of
failures) does not depend on the current number of nodes in the network.
This is the case when a poisson model is considered either for arrivals or
departures. Put in another way, this is like saying that on average, there
is always a fixed number of nodes joining or failing per time interval, ir-
respective of the total number of nodes in the network. In the case when
these rates are chosen to be per-node, the number of joinees or failures
does depend on the current number of occupied nodes). We consider three
possibilities here, when λj is per-network and λf is per-node; both are per-
network or (as is the case studied in this paper) both are per-node. In all
three cases, since the system is always studied in the steady state where
the total number of joinees per unit time is equal to the total number of
failures per unit time, the equation for the mean is always dN/dt = 0. We
hence expect the mean behaviour to be the same, at least in the regime
when N is roughly constant. However the behaviour of fluctuations is
very different in each of these three cases.

In the first case, the steady state condition is λj/No = λf , where No is
the initial number of nodes in the system. The equation for the mean is
dN/dt = λj/N − λf , which ensures that N cannot deviate too much from
the steady state value. Similarly one can write an equation for the second
moment N2: dN2/dt = (λj/N + λf) + 2(λj − Nλf). While the first term
is a ’noise’ term which encourages fluctuations, the second term becomes
stronger the larger the deviation from No and hence strongly damps out
fluctuations. Thus the number of nodes in the system remains close to its
initial value.

In the second case, where the join and failure rates are both per-network
the equation for the mean is dN/dt = λj/N−λf/N . Hence putting λj = λf

ensures the steady state condition. However in this case, the equation for

214 9.6. DISCUSSION AND CONCLUSION

the second moment is dN2/dt = (λj/N+λf/N). The joins-failures process
thus makes the system execute a “random-walk” in N , where the “steps”
of the walk depend on N and are smaller if N is larger. For such a system,
fluctuations are not bounded and a large deviation can and will take the
system to the N = 0 state eventually. The time for this to happen scales
with N as N3 for this process.

The third case (which is also the case considered in this paper) is when
both rates are per-node. This is very similar to the second case. The equa-
tion for the mean is just dN/dt = λj − λf as mentioned earlier. Again
setting λj = λf ensures steady state. The equation for the second moment
is now dN2/dt = (λj +λf). There is thus again no “repair” mechanism for
large fluctuations, and the system will be eventually driven to extinction.
In this case the process onN is just an ordinary random walk and the time
taken to hit the N = 0 state scales as N2.

Which of these ’types’ of churn is the most relevant? In the real world,
the churn felt by a DHT, might possibly be some time-varying mixture of
these three, and will also possibly depend on the application. It is hence
probably of importance to study all these mechanisms and their implica-
tions in detail.

9.6 Discussion and Conclusion

To summarize, in this paper, we have presented a detailed theoretical
analysis of a DHT-based P2P system, Chord, using a Master-equation for-
malism. This analysis differs from existing theoretical work done on DHTs
in that it aims not at establishing bounds, but on precise determination
of the relevant quantities in this dynamically evolving system. From the
match of our theory and the simulations, it can be seen that we can predict
with an accuracy of greater than 1% in most cases.

Though this analysis is not exact (in the sense that there are approxima-
tions made to make the analysis simpler), yet it provides a methodology
to keep track of most of the relevant details of the system. We expect that
the same analysis can be done for most other DHTs in a similar manner,
thus helping to establish quantitative guidelines for their comparison.

Apart from the usefulness of this approach for its own sake, we can

CHAPTER 9. ANALYTICAL STUDY OF DHTS UNDER CHURN 215

also gain some new insights into the system from it. For example, we
see that the fraction of dead finger pointers fk is an increasing function
of the length of the finger. Infact for large enough K, all the long fingers
will be dead most of the time, making routing very inefficient. This im-
plies that we need to consider a different stabilization scheme for the fin-
gers (such as, perhaps, stabilizing the longer fingers more often than the
smaller ones), in order that the DHT continues to function at high churn
rates.

216 BIBLIOGRAPHY

Bibliography

[1] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Efficient,
self-contained handling of identity in peer-to-peer systems. IEEE
Transactions on Knowledge and Data Engineering, 16(7):858–869, 2004.

[2] James Aspnes, Zoë Diamadi, and Gauri Shah. Fault-tolerant routing
in peer-to-peer systems. In Proceedings of the twenty-first annual sympo-
sium on Principles of distributed computing, pages 223–232. ACM Press,
2002.

[3] Miguel Castro, Manuel Costa, and Antony Rowstron. Performance
and dependability of structured peer-to-peer overlays. In Proceedings
of the 2004 International Conference on Dependable Systems and Networks
(DSN’04). IEEE Computer Society, 2004.

[4] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif
Haridi. A statistical theory of chord under churn. In The 4th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’05), Ithaca, New York,
February 2005.

[5] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and
Frans Kaashoek. Comparing the performance of distributed hash ta-
bles under churn. In The 3rd International Workshop on Peer-to-Peer
Systems (IPTPS’02), San Diego, CA, Feb 2004.

[6] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis
of the evolution of peer-to-peer systems. In ACM Conf. on Principles
of Distributed Computing (PODC), Monterey, CA, July 2002.

[7] N.G. van Kampen. Stochastic Processes in Physics and Chemistry.
North-Holland Publishing Company, 1981. ISBN-0-444-86200-5.

[8] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling churn in a DHT. In Proceedings of the 2004 USENIX Annual
Technical Conference(USENIX ’04), Boston, Massachusetts, USA, June
2004.

BIBLIOGRAPHY 217

[9] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. IEEE
Transactions on Networking, 11, 2003.

[10] Shengquan Wang, Dong Xuan, and Wei Zhao. On resilience of
structured peer-to-peer systems. In GLOBECOM 2003 - IEEE Global
Telecommunications Conference, pages 3851–3856, Dec 2003.

218 A. OUR IMPLEMENTATION OF CHORD

A Our Implementation of Chord

A.1 Joins, Failures & Ring Stablization

Initialization. Initially, the predecessor p, successors (s1..S) and fingers
(fin1..M) are all assigned to nil.

Joins (Fig. 9.9). A new node n joins by acquiring its successor from
an initial random contact node c. It also starts its first stabilization of the
successors and initializes its fingers.

Stablization of Sucessors (Fig. 9.9). The function fixSuccessors is trig-
gered periodically with rate αλs. A node n tells its first alive successor y
that it believes itself to be y’s predecessor and expects as an answer y’s
predecessor y.p and successors y.s. The response of y can lead to three
actions:
Case A. Some node exists between n and y (i.e. n’s belief is wrong), so n
prepends y.p it to its successors list as a first successor and retries fixSuc-
cessors.
Case B. y confirms n’s belief and informs n of y’s old predecessor y.p.
Therefore n considers y.p as an alternative/initial predecessor for n. Fi-
nally, n reconciles its successors list with y.s.
Case C. y agrees that n is its predecessor and the only task of n is to update
its successors list by reconciling it with y.s.

By calling iThinkIamYourPred (Fig. 9.9), some node x informs n that it
believes itself to be n’s predecessor. If n’s predecessor p is not alive or nil,
then n accepts x as a predecessor and informs x about this agreement by
returning x. Alternatively, if n’s predecessor p is alive (discovering that
will be explained shortly in section A.3), then there are two possibilities:
The first is that x is in the region between n and its current predecessor p
therefore n should accept x as a new predecessor and inform x about its
old predecessor. The second is that p is already pointing to x so the state
is correct at both parties and n confirms that to x by informing it that x is
the predecessor of n. In all cases the function returns a predecessor and a
successors list.

The function firstAliveSuccessor (Fig. 9.9) iterates through the succes-
sors list. In each iteration, if the first successor s1 is alive, it is returned.
Otherwise, the dead successor is dropped from the list and nil is appended

BIBLIOGRAPHY 219

to the end of the list. If the first successor is nil this means that all imme-
diate successors are dead and that the ring is disconnected.

n.join(c)
s1 = c.findSuccessor(n)
fixSuccessors()
initFingers(s1)

n.fixSuccessors()
y = firstAliveSuccessor()
{y.p, y.s} = y.iThinkIamYourPred(n)
if (y.p ∈]me, y[) //Case A

prepend(y.p)
fixSuccessors()

elsif (y.p ∈]y, me[) //Case B
considerANewPred(y.p)
reconcilce(y.s)

else //Case C: y.p == me
reconcile(y.s)

n.firstAliveSuccessor()
while (true)

if (s1 == nil)
//Broken Ring!!

if (isAlive(s1))
return (s1)

∀i ∈ 1..(S − 1)
si = si+1

sS = nil

n.iThinkIAmYourPred(x)
if ((isNotAlive(p) or (p == nil))

p = x
return({s, x})

if (x ∈]p, me[)
oldp = p
p = x
return({s, oldp})

else
return({s, p})

n.considerANewPred(x)
if (isNotAlive(p)

or (p == nil)
or (x ∈]p, n[))

p = x

n.reconcile(s′)
for i = 1..(S − 1)

si+1 = s′i

n.prepend(y)
for i = S..2

si = si−1

s1 = y

Figure 9.9: Joins and Ring Stabilization Algorithms

220 A. OUR IMPLEMENTATION OF CHORD

n.initFingers(s1)
f ′ = s1.f
∀i ∈ 1..M s.th. (fini.start ∈]n, s1]),

fini.node = s1

∀j ∈ 1..M s.th. (finj .start /∈]n, s1]),
finj .node =localSuccessor(f ′, finj .start)

n.localSuccessor(f ,k)
for i = 1..M

if (k ∈]n, fini])
return(fini)

return(nil)

n.fixFingers(k)
1 ≤ i = random() ≤ M
fini.node = findSuccessor(fini.start)

Figure 9.10: Initialization and Stabilization of Fingers

A.2 Lookups and Stablization of Fingers

Stablization of Fingers (Fig. 9.10). Stabilization of fingers occurs at a rate
(1 − α)λs. Each time the fixFingers function is triggered, a random finger
fini is chosen and a lookup for fini.start is performed and the result is
used to update fini.node.

Initialization of Fingers (Fig. 9.10). After having initialized its first
successor s1, a node n sets all fingers with starts between n and s1 to s1.
The rest of the fingers are initialized by taking a copy of the finger table of
s1 and finding an approximate successor to every finger from that finger
table.

Lookups (Fig. 9.11). A lookup operation is a fundamental operation
that is used to find the successor of a key. It is used by many other routines
and its performance and consistency are the main quantities of interest in
the evaluation of any DHT. A node n looking up the successor of k runs
the findSuccessor algorithm which can lead to the following cases:

Case A. If k is equal to n then n is trivially the successor of k.

Case B. If k ∈]n, s1] then n has found the successor of k, but it could
be that s1 failed and n did not discover that as yet. However, entries in
the successors list can act as backups for the first successor. Therefore, the
first alive successor of n is the successor of k. Note that, in this case, while
we try to find the first alive successor, we do not change the entries in the
successors list. This is mainly because, for the sake of the analysis, we

BIBLIOGRAPHY 221

want that the successor list is only changed at rate αλs by the fixSuccessors
function and is not affected by any other rate.

n.findSuccessor(k)
//Case A: k is exactly equal to n
if (k == n)

return(n)
//Case B: k is between n and s1

if (k ∈]n, s1])
return(firstAliveSuccessorNoChange());

//Case C: Forward to the lookup to
//the closest preceding alive finger
cpf = closestAlivePrecedingFinger(k);
if (cpf == nil)

y = firstAliveSuccessorNoChange();
if (k ∈]n, y])

return(y);
cpf = closestAlivePrecedingSucc(k);
return(cpf .findSuccessor(k))

else
return (cpf .findSuccessor(k));

n.firstAliveSuccessorNoChange()
i = 1
while (true)

if (si == nil)
//Broken Ring!!

if (isAlive(si))
return (si)

i + +
n.closestAlivePrecedingFinger(k)

for i = M..1
if ((fini ∈]n, k[)

and (fini 6= nil)
and isAlive(fini))

return(fini)
return(nil)

n.closestAlivePrecedingSucc(k)
for i = S..1

if ((si ∈]n, k[)
and (si 6= nil)
and isAlive(si))

return(si)
return(cpf)

Figure 9.11: The Lookup Algorithm

222 A. OUR IMPLEMENTATION OF CHORD

Case C. The lookup should be forwarded to a node closer to k, namely
the closest alive finger preceding k in n’s finger table. The call to the
function closestAlivePrecedingFinger returns such a node if possible and the
lookup is forwarded to it. However, it could be the case that all alive pre-
ceding fingers to k are dead. In that case, we need to use the successors list
as a last resort for the lookup. Therefore, we locate the first alive successor
y and if k ∈]n, y] then y is the successor of k. Otherwise, we locate the
closest alive preceding successor to k and forward the lookup to it.

A.3 Failures

Throughout the code we use the call isAlive and isNotAlive. A sim-
ple interpretation of those routines would be to equate them to a per-
formance of a ping. However, a correct implementation for them is that
they are discovered by performing the operation required. For instance,
a call to firstAliveSuccesor in Fig. 9.9 is performed to retrieve a node y
and then call y.iThinkIamY ourPred, so alternatively the first alive suc-
cessor could be discovered by iterating on the successor list and calling
iThinkIamY ourPred.

Chapter 10

Conclusions and Future work

Since this thesis is of the “collection-of-papers” type, there is no one single
thesis statement that we would like to conclude with. Instead, for each of
the two parts of the thesis, we will put the conclusion in the form of an
anecdotal summary of how the research questions evolved leading to the
results reported in the respective part.

1 Conclusion of Part I : Designs

The idea of a common framework for structured overlays started to emerge
after a first reading of some of the early systems in the logarithmic class
such as Chord, Pastry and Tapestry. It appeared to us that there was some
implicit common concept that stands behind those systems. We noticed
that the concept of a virtual distributed search tree of arbitrary arity is
expressive enough to stand as a common foundation. By applying our ob-
servation to Chord, we obtained a more optimal routing table size which
is 38% smaller than the generalization suggested by the Chord authors.

This optimization led to the design of the DKS(N ; k; f) system, which
is a system designed from first principles based on the Distributed k-ary
Search concept. The system acts as a meta-system from which other DHT
systems could be instantiated. Additionally, the system introduces the
technique of “Correction-on-use” for topology maintenance. Instead of
performing periodic checks to make sure that the routing information is

223

224 2. CONCLUSION OF PART II : ANALYSES

up-to-date, a node utilizes lookup traffic to extract information about the
correctness of the routing information and corrects itself and the sender’s
information accordingly, thus, saving a large amount of unnecessary net-
work traffic. We have shown via simulation that if enough queries were
taking place, they could provide enough correction without the need for
additional dedicated topology maintenance traffic.

Performing a global operation is another rather difficult task in decen-
tralized systems because each peer in the network knows a small set of
neighbors. If a global operation like counting the number of peers, or the
dissemination of statistical information is desired, a naive epidemic strat-
egy will end up being very costly. Having perceived a structured overlay
as a search tree, traversing it optimally seemed like a feasible approach
to perform a global operation. Therefore, we designed an optimal algo-
rithm for constructing a spanning tree for chord/DKS. While the pre-
sentation of the algorithm is based on the Chord/DKS system, the idea
is also applicable to other DHTs such as Tapestry and Pastry. The span-
ning tree algorithm is important for optimal broadcasting which is a basic
form of group communication and a useful service for performing com-
plex queries rather than key lookup.

Finally, we combined the broadcast algorithm with the correction-on-
use technique. This combination serves two purposes. First, it adds ro-
bustness to the broadcast algorithm. Second, it makes the broadcast algo-
rithm itself a tool for mass correction of the overlay graph.

2 Conclusion of Part II : Analyses

As we can see from chapter 2, the asymptotic limits of the performance of
structured overlays are well-known based on the underlying static graph
topology. However, for practical purposes, the deployment of a particu-
lar system needs more than the knowledge of the asymptotic limits. For
instance, if we were to connect 2x computers in a structured overlay, and
the overlay was structurally perfect, it would not take more than x hops
(O(log 2x)) to reach any other computer. However, with a high rate of dy-
namic membership (churn), the structure of the overlay is suboptimal. For
a certain rate of that churn (say λj nodes per minute) and a certain rate of

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 225

periodic stabilization (say λs per minute per node), the computers might
easily take 2x or 4x hops instead of x on average to communicate. This is
still O(log 2x) , but it is a huge difference in the practicality of the system.
More importantly, it is possible to bring back this network to optimal per-
formance if the nodes were stabilizing a little bit more frequently. From
that point stemmed the main question of our “Analyses”:

How much churn against how much topology maintenance, will
lead to how good system performance?

The above question actually implicitly includes in it the following ques-
tions: “For which system?” and “Under which topology maintenance strat-
egy?”. Not only that, but, for the same system and with the same main-
tenance strategy, there are subtle variations that affect the performance
dramatically. Having realized that, we decided to trade-off generality
for depth and started to focus on one system: “Chord”, (i.e. the special
case for the DKS system with binary arity) and one topology maintenance
strategy, namely, periodic stabilization.

We began first with an empirical physics-inspired performance analy-
sis. The physics inspiration lies in trying to describe the behavior using an
“intensive variable”, i.e. one that does not depend on the size of the sys-
tem. The result of this analysis was a size-independent curve showing the
performance degradation of the system as a function of the ratio of churn
to stabilization (β) obtained after extensive simulations of networks of dif-
ferent sizes under many conditions. The size independence of the curve
renders the analysis widely-applicable. That is, one can know that the per-
formance will degrade by, for instance, 60% if the ratio of stabilization to
churn is for instance 30, (i.e. 30 stabilizations per node for each join/leave
leave per node) and that degradation is irrespective of whether the system
contains one thousand nodes or one million nodes.

After obtaining results empirically, we were faced with the following
theoretical challenge: “Why does the degradation curve look particularly the
way it is?”, i.e. “What is its functional form?”. Beyond a curve fit, “ Is
it possible to analytically derive its functional form.”. At that point, another
physics-borrowed technique was useful, namely, the technique of “Master
Equations”. With that technique, for a given quantity of interest, one needs

226 3. FUTURE WORK

to enumerate all the events that lead to its increase and decrease over time.
With the knowledge of the probability of occurrence of each such event,
the formulation of a differential equation is made possible. For our analy-
sis, we started from the simplest system, a ring of nodes that are period-
ically stabilizing to keep the ring intact. We incrementally enriched the
system until we analyzed a full-version of chord. At that level, a precise
functional form of the performance degradation curve was at hand. The
output of this theoretical analysis was validated against simulations and
was found to match to a very high degree of accuracy. The importance of
the result is not limited to the explanation of the performance degradation
of Chord/DKS, but the derivation of that curve from first principles acts
as a tutorial in how to analyze problems in the computer science domain
using the technique of Master Equations.

3 Future Work

At the time of writing of this thesis, our research team has the intention to
pursue a number of research points mainly in the line of analysis based on
the Master Equations technique including the following:

• Using the functional forms obtained so far in developing adaptive
algorithms that can follow the optimal cost-performance curve.

• Analyzing various correction techniques other than periodic stabi-
lization, namely correction-on-use and correction on change.

• Augmenting the cost-performance trade-off analysis with physical
link latencies obtained from real traces.

• Analyzing systems outside the logarithmic class of DHTs such as the
ones based on the DeBruijn and Butterfly graphs.

• Analyzing the traffic load incurred by the constant relocation of repli-
cated data items due to churn.

227

Swedish Institute of Computer Science SICS Dissertation Series

1. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PRO-
LOG, 1990.

2. Mats Carlsson, Design and Implementation of an OR-Parallel Prolog En-
gine, 1990.

3. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SAN-
DRA, 1990.

4. Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.

5. Hans A. Hansson, Time and Probability in Formal Design of Distributed
Systems, 1991.

6. Peter Sjödin, From LOTOS Specifications to Distributed Implementations,
1991.

7. Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.

8. Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.

9. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General
Logic, 1993.

10. Mats Björkman, Architectures for High Performance Communication, 1993.

11. Stephen Pink, Measurement, Implementation, and Optimization of Inter-
net Protocols, 1993.

12. Martin Aronsson, GCLA. The Design, Use, and Implementation of a Pro-
gram Development System, 1993.

13. Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-
Based Learning, 1994.

14. Sverker Jansson, AKL - - A Multiparadigm Programming Language,
1994.

228

15. Fredrik Orava, On the Formal Analysis of Telecommunication Protocols,
1994.

16. Torbjörn Keisu, Tree Constraints, 1994.

17. Olof Hagsand, Computer and Communication Support for Interactive
Distributed Applications, 1995.

18. Björn Carlsson, Compiling and Executing Finite Domain Constraints,
1995.

19. Per Kreuger, Computational Issues in Calculi of Partial Inductive Defini-
tions, 1995.

20. Annika Waern, Recognising Human Plans: Issues for Plan Recognition
in Human-Computer Interaction, 1996.

21. Björn Gambck, Processing Swedish Sentences: A Unification-Based Gram-
mar and Some Applications, June 1997.

22. Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposition
Methods, 1996.

23. Kia Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.

24. Bengt Ahlgren, Improving Computer Communication Performance by
Reducing Memory Bandwidth Consumption, 1997.

25. Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Con-
straint Languages, May, 1997.

26. Jussi Karlgren, Stylistic experiments in information retrieval, 2000

27. Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared
Memory Systems, 1999.

28. Kristian Simsarian, Toward Human Robot Collaboration, 2000.

29. Lars-Åke Fredlund, A Framework for Reasoning about Erlang Code, 2001.

229

30. Thiemo Voigt, Architectures for Service Differentiation in Overloaded In-
ternet Servers, 2002.

31. Fredrik Espinoza, Individual Service Provisioning, 2003.

32. Lars Rasmusson, Network capacity sharing with QoS as a financial deriv-
ative pricing problem: algorithms and network design, 2002.

33. Martin Svensson, Defining, Designing and Evaluating Social Naviga-
tion, 2003.

34. Joe Armstrong, Making reliable distributed systems in the presence of
software errors, 2003.

35. Emmanuel Frecon, DIVE on the Internet, 2004.

36. Rickard Cöster, Algorithms and Representations for Personalised Infor-
mation Access, 2005

37. Per Brand, The Design Philosophy of Distributed Programming Systems:
the Mozart Experience, 2005

38. Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Sys-
tems, 2005

