
Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

Search Strategies in Unstructured Overlays

Pedro Marques Fonseca

Mestrado em Engenharia Informática

2008

Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

Search Strategies in Unstructured Overlays

Pedro Marques Fonseca

DISSERTAÇÃO

Projecto orientado pelo Prof. Dr. Hugo Miranda

Mestrado em Engenharia Informática

2008

This work was partially supported by LaSIGE through the FCT

Pluriannual Funding Programme

Declaração

Pedro Fonseca, aluno no 29837 da Faculdade de Ciências da Universidade de

Lisboa, declara ceder os seus direitos de cópia sobre o seu Relatório de Projecto em

Engenharia Informática, intitulado ”Search Strategies in Unstructured Overlays”,

realizado no ano lectivo de 2007/2008 à Faculdade de Ciências da Universidade

de Lisboa para o efeito de arquivo e consulta nas suas bibliotecas e publicação do

mesmo em formato electrónico na Internet.

FCUL, 30 de Junho de 2008

Hugo Miranda, supervisor do projecto de Pedro Fonseca, aluno da Faculdade

de Ciências da Universidade de Lisboa, declara concordar com a divulgação do

Relatório do Projecto em Engenharia Informática, intitulado ”Search Strategies in

Unstructured Overlays”.

Lisboa, 30 de Junho de 2008

i

Abstract

Unstructured peer-to-peer networks have a low maintenance cost, high re-

silience and tolerance to the continuous arrival and departure of nodes. In these

networks search is usually performed by flooding, which generates a high number

of duplicate messages. To improve scalability, unstructured overlays evolved to a

two-tiered architecture where regular nodes rely on special nodes, called supern-

odes or superpeers, to locate resources, thus reducing the scope of flooding based

searches. While this approach takes advantage of node heterogeneity, it makes

the overlay less resilient to accidental and malicious faults, and less attractive to

users concerned with the consumption of their resources and who may not desire

to commit additional resources that are required by nodes selected as superpeers.

Another point of concern is churn, defined as the constant entry and departure

of nodes. Churn affects both structured and unstructured overlay networks and,

in order to build resilient search protocols, it must be taken into account.

This dissertation proposes a novel search algorithm, called FASE, which com-

bines a replication policy and a search space division technique to achieve low

hop counts using a small number of messages, on unstructured overlays with non-

hierarquical topologies. The problem of churn is mitigated by a distributed moni-

toring algorithm designed with FASE in mind.

Simulation results validate FASE efficiency when compared to other search

algorithms for peer-to-peer networks. The evaluation of the distributed monitoring

algorithm shows that it maintains FASE performance when subjected to churn.

KEYWORDS:

Peer-to-peer; unstructured overlays; churn; efficient search.

iii

Resumo

Os sistemas peer-to-peer, como aplicações de partilha e distribuição de conteúdos

ou voz-sobre-IP, são constrúıdos sobre redes sobrepostas. Redes sobrepostas são

redes virtuais que existem sobre uma rede subjacente, em que a topologia da rede

sobreposta não tem de ter uma correspondência com a topologia da rede subja-

cente.

Ao contrário das suas congéneres estruturadas, as redes sobrepostas não-estru-

turadas não restringem a localização dos seus participantes, ou seja, não limitam

a escolha de vizinhos de um dado nó, o que torna a sua manutenção mais simples.

O baixo custo de manutenção das redes sobrepostas não-estruturadas torna estas

especialmente adequadas para a construção de sistemas peer-to-peer capazes de

tolerar o comportamento dinâmico dos seus participantes, uma vez que estas redes

são permanentemente afectadas pela entrada e sáıda de nós na rede, um fénomeno

conhecido como churn.

O algoritmo de pesquisa mais comum em redes sobrepostas não-estruturadas

consiste em inundar a rede, o que origina uma grande quantidade de mensagens

duplicadas por cada pesquisa. A escalabilidade destes algoritmos é limitada porque

consomem demasiados recursos da rede em sistemas com muitos participantes.

Para reduzir o número de mensagens, as redes sobrepostas não-estruturadas podem

ser organizadas em topologias hierárquicas. Nestas topologias alguns nós da rede,

chamados supernós, assumem um papel mais importante, responsabilizando-se

pela localização de objectos. A utilização de supernós cria novos problemas, como

a sua selecção e a dependência da rede de uma pequena percentagem dos nós.

Esta dissertação apresenta um novo algoritmo de pesquisa, chamado FASE,

criado para operar sobre redes sobrepostas não estruturadas com topologias não-

hierárquicas. Este algoritmo combina uma poĺıtica de replicação com uma técnica

de divisão do espaço de procura para resolver pesquisas ao alcançe de um número

reduzido de saltos com o menor custo posśıvel. Adicionalmente, o algoritmo

procura nivelar a contribuição dos participantes, já que todos contribuem de uma

forma semelhante para o desempenho da pesquisa. A estratégia seguida pelo algo-

ritmo consiste em dividir tanto os nós da rede como as chaves dos seus conteúdos

iv

por diferentes “frequências” e replicar chaves nas respectivas frequências, sem, no

entanto, limitar a localização de um nó ou impor uma estrutura à rede ou mesmo

aplicar uma definição ŕıgida de chave. Com o objectivo de mitigar o problema do

churn, é apresentado um algoritmo de monitorização distribúıdo para as réplicas

originadas pelo FASE.

Os algoritmos propostos são avaliados através de simulações, que validam a

eficiência do FASE quando comparado com outros algoritmos de pesquisa em redes

sobrepostas não-estruturadas. É também demonstrado que o FASE mantém o seu

desempenho em redes sob o efeito do churn quando combinado com o algoritmo

de monitorização.

PALAVRAS-CHAVE:

Peer-to-peer; redes sobrepostas não-estruturadas; churn; pesquisa eficiente.

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivation and Contribution . 2

1.2 Organization . 4

2 Related Work 5

2.1 Overlay Topologies . 5

2.2 Peer-to-Peer Networks Characterization 6

2.2.1 Participation Dynamics . 7

2.2.2 Content Distribution . 8

2.3 Search Algorithms . 9

2.3.1 Flooding . 9

2.3.2 Random Walks . 10

2.4 Indexing . 11

2.4.1 Bloom Filters . 12

2.5 Search Protocols in Unstructured Overlays 13

2.5.1 Gnutella . 13

2.5.2 Hierarchical Overlays: Kazaa 13

2.5.3 Semantic Communities . 14

2.5.4 Adaptive Probabilistic Search 16

2.5.5 Gia . 17

2.5.6 Scalable Query Routing . 18

2.6 Summary . 19

vi CONTENTS

3 Search In Unstructured Overlays 21

3.1 Frequency Aware Search . 21

3.1.1 Assumptions . 22

3.1.2 Pointer Replication . 23

3.1.3 Item Retrieval . 24

3.2 Monitoring Algorithm . 25

3.2.1 Backup Creation . 26

3.2.2 Stale Items Update . 27

3.3 Implementation . 27

3.3.1 Key Definition . 28

3.3.2 Dissemination of Multiple Keys 28

3.3.3 Random Walk Forwarding 28

3.4 Discussion . 30

3.4.1 Properties . 30

3.4.2 Number of Frequencies . 31

3.4.3 Locality Sensitive Hashing 32

3.5 Summary . 32

4 Evaluation 33

4.1 Methodology . 33

4.2 Experimental Parameters . 34

4.2.1 Number of Frequencies and Degree 35

4.3 Stable Network Evaluation . 37

4.4 Churning Network Evaluation . 39

4.4.1 Churn Model . 40

4.4.2 Pointer and Backups Evolution 41

4.4.3 Query Performance . 43

4.4.4 SQR . 44

4.5 Summary . 47

5 Conclusion and Future Work 49

5.1 Future Work . 50

Bibliography 56

List of Figures

2.1 Session length distribution of three data sets within the same system. 8

2.2 Insertion of elements in a Bloom filter. 12

2.3 SOSPNet architecture. 15

2.4 Decaying information in a Exponentially Decaying Bloom filter. . . 19

3.1 Pointer replication. 24

4.1 Effect of the number of frequencies in the average hop count. 35

4.2 Failure ratio. 36

4.3 Effect of the number of frequencies in the replication costs. 37

4.4 Average hop count and number of messages used with multiple ran-

dom walks (RW). Logscale on the x axis. 38

4.5 Hop limit for 90% of the queries. Logscale on the x axis. 39

4.6 Average hop count, number of messages used and hop limit, us-

ing multiple random walks (RW) in a topology with degree = 30.

Logscale on the x axis. 40

4.7 Evolution of the number of pointers and backups in the RedHat

data set. 41

4.8 Evolution of the number of pointers and backups in the Debian data

set. 42

4.9 Evolution of the number of pointers and backups in the FlatOut

data set. 43

4.10 Live items which lost all their pointers in the RedHat and FlatOut

sets. The Debian set is similar to RedHat. 44

4.11 Average hop count and hop limit for 90% in the RedHat and Debian

sets. 45

4.12 Query hop count split in 10 minutes time slots for the RedHat set. . 46

x LIST OF FIGURES

4.13 Query hop count split in 10 minutes time slots for the FlatOut set. 47

4.14 Average hop count for FASE and SQR. Logscale on the x axis. . . . 48

4.15 Hop limit for 90% success for FASE and SQR. Logscale on the x axis. 48

List of Tables

4.1 Simulation parameters used by FASE. 35

4.2 Session length distribution parameters. 41

4.3 Simulation parameters used by SQR. 45

4.4 FASE+ and SQR subject to churn. 47

Chapter 1

Introduction

Overlay networks form virtual topologies on top of an underlying network. These

topologies are said to be virtual because links in the overlay have no correspon-

dence with links established in the underlying network. Peer-to-peer (P2P) net-

working is one of the applications that are based on overlays. Key applications of

P2P include voice-over-IP (e.g. the Skype network) and software distribution (for

instance, many Linux distributions are downloadable using P2P). More recently,

the BBC made available its programs for download or streaming using P2P-based

technology (BBC, 2008).

In a P2P network, resources are stored in a distributed fashion by the partici-

pating nodes. However, these resources need to be known to be of use to anyone.

For this reason, P2P networks need to provide a search functionality to their users.

Early P2P systems were built using a hybrid architecture, where some features like

search depended on a centralized server, but, in recent years, P2P systems have

moved from hybrid networks to fully decentralized architectures. Without a cen-

tral directory, resource location becomes a problem because peers only have a

partial view of the network. Besides resource location, P2P decentralized net-

works must also cope with the intermittent connectivity of the participants who

may, intentionally or not, depart from the overlay at any time.

Current decentralized P2P search systems are built over structured or unstruc-

tured overlays. The former organize peers in a structure that strictly conforms to

a desired topology (e.g. a ring or a torus) and that restricts which connections

peers may establish as well as the resource placement. The unstructured variant

offers few or no restrictions, allowing the peers to connect in a random topology,

Chapter 1. Introduction 2

but it may leverage on a hierarchical organization.

Locating an item in unstructured overlays with moderate resource consumption

is an interesting challenge. Original resource location algorithms for these kind of

overlays were reliable but resource intensive, what raised scalability problems,

emphasized by the increased popularity of P2P networks in the Internet. The

problem becomes more relevant when we known that participants abandon and

join the overlay at a high rate (Liang et al., 2005; Qiao & Bustamante, 2006;

Saroiu et al., 2002; Stutzbach & Rejaie, 2006), in a process designated as churn.

Therefore, scalable search algorithms need to balance the consumption of network

resources with the need for reliability.

The work presented in this dissertation is about resource location in unstruc-

tured overlays. The focus of the work is in search efficiency, that is, locating re-

sources within a small number of hops using a relatively low number of messages,

while considering the effect of churn.

1.1 Motivation and Contribution

Churn is an important characteristic of P2P file-sharing and content distribution

systems. The negative effects of churn are more significant on overlays which put

additional effort on maintaining a predefined topology. Operating under churn,

structured distributed hash tables (DHT) experience an increase in lookup latency

as well as inconsistent results (Rhea et al., 2004). Additionally, DHT filiation can

have a higher cost than filiation in unstructured overlays as, instead of joining a

random neighbor, a node is restricted to join nodes that are close (the closeness is

usually measured by the proximity of the node’s IDs).

The search algorithms for unstructured overlays are often based in flooding, a

reliable but resource intensive and unscalable method that is similar to a breadth-

first search (with added redundancy), or random-walks, which use less resources

than the previous method but cover less search space for each hop. The first gen-

eration of Gnutella (Clip2, 2001), a protocol where the impact of churn is minimal,

uses a simple flooding search mechanism.

In unstructured hierarchical overlays, such as the current Gnutella protocol, a

small subset of nodes are elected as supernodes. In such two tiered architectures,

the contents offered by a regular node are indexed in the correspondent supernode

Chapter 1. Introduction 3

and queries are transmitted between supernodes. Supernode architectures exhibit

an unfair load balancing between ordinary nodes and supernodes, since a supern-

ode is not a dedicated server but a regular user similar to the other participants.

However, a supernode can have a much higher load than regular nodes. Addition-

ally, the loss of a supernode due to churn results in several nodes being orphaned,

and their contents unreachable, until a new supernode is found. After a supernode

is found, the nodes contents have to be indexed in their new supernode.

The present work is motivated by the observation that a fair network is also a

more resilient one as, if all the nodes have the same role the loss of one can be more

easily tolerated. Moreover, a “fair” organization might appeal to users who do not

want to contribute with more resources than their peers. The challenge is how to

achieve low latency searches and scalability in such networks, since flat, i.e. non-

hierarchical, unstructured overlays that use flooding based search are not scalable.

The introduction of supernodes, to overcome the scalability issue, results in an

excessive unbalance as it imposes a much higher resource consumption to a few

nodes than to the majority, and reduces the overlay robustness as it gives a more

important role to a small subset of nodes. We note that even when supernodes

have the capacity to cope with the additional load, the unfair load balancing may

not be acceptable for some users.

The primary goal of this work is to design a search algorithm for unstructured

overlay networks to improve fairness, while being able to find resources within a

comparable number of hops with other search strategies. The algorithm should

provide a robust and scalable alternative to Gnutella without requiring an under-

lying hierarchical organization of the participants.

The contributions of this dissertation are:

• the Frequency-Aware SEarch (FASE) algorithm, a search protocol over un-

structured, non-hierarchical overlays.

• a distributed monitoring algorithm to help FASE cope with high churn rates.

FASE uses a search space partitioning mechanism, combined with a replication

policy and biased random walks. The algorithm does not rely on a hierarchical

architecture and does not require the exchange of routing information between

Chapter 1. Introduction 4

nodes, which would impact on its capability to recover from node failures. The

search is an uninformed search that leverages on the partitioning mechanism. Ad-

ditionally, we implemented a distributed monitoring algorithm that improves the

performance of FASE while subjected to churn and removes references to outdated

resources.

1.2 Organization

The remainder of this dissertation is organized as follows.

Chapter 2 presents the related work. Fundamental concepts about overlay

topologies are defined and P2P networks participants and content distribution

characterized. The participation characteristics in P2P networks are related to a

model of churn that is representative of different P2P networks. Finally, a number

of relevant P2P protocols are discussed.

Chapter 3 describes the Frequency-Aware Search search space division method,

the replication and the search algorithms. The related monitoring algorithm is

presented, followed by the implementation details of both algorithms. This chapter

is concluded with a discussion of FASE.

Chapter 4 presents the evaluation of the algorithm implementation, based on

extensive simulations. Additionally, FASE performance is compared with another

search algorithm for unstructured overlays.

Chapter 5 concludes with the final remarks and discussion of future work.

Chapter 2

Related Work

There is a substantial body of research on P2P search algorithms, as well as nu-

merous measurement studies about participant behavior and content distribution.

In this chapter, we first refer to the topological aspects of P2P overlays before pro-

ceeding to characterize participant behavior and content distribution, which have

to be considered when designing a search algorithm. Two classes of search algo-

rithms for unstructured overlays are then discussed, followed by indexing strategies

in decentralized overlays. We conclude with a survey of existing search protocols

for unstructured overlays.

2.1 Overlay Topologies

The topological characteristics of P2P overlays need to be taken into account

when designing search algorithms. Overlay networks can be represented by a

graph, usually a random graph in the case of unstructured overlays. In the case of

structured overlays, they obey to well known topologies such as ring, torus, tree

or a combination of the above. First, we define a few fundamental concepts that

are essential to the discussion of network topologies:

Degree In an undirected graph the degree is the number of edges of a node. In

a directed graph the incoming edges of a node define its in-degree, whereas the

outgoing edges define its out-degree.

Neighbor A node n has a neighbor n′ if there is an edge connecting n and n′.

The set of neighbors of a node defines the nodes view.

Chapter 2. Related Work 6

Filiation in unstructured overlays is usually straightforward: the node wishing

to join the overlay first contacts a well known contact point or host cache1 and

either adds the contact point as its neighbor or obtains a list of nodes from the

contact point from where a suitable neighbor is found. The node keeps looking for

other nodes willing to accept connections until a defined limit is reached. To find

these nodes, the node relies on explicit look-up messages or on the examination of

the overlay traffic.

Unstructured overlays form random topologies with a diverse degree distribu-

tion. Measurement studies such as (Saroiu et al., 2002) or more recently, (Stutzbach

et al., 2005) proved the robustness of such topologies: (Saroiu et al., 2002) con-

cludes that, for a maximum degree of 20, the Gnutella overlay is fragmented when

more than 60% of the nodes fail but that it is vulnerable to the failure of 4%

of the nodes with the highest degree, which suggests that, for a overlay where

the median degree is low, a topology where all nodes have an approximate degree

would be more reliable; (Stutzbach et al., 2005) states that upon removal of 85%

of the nodes the remaining 90% are still connected and, as a result of a higher

median degree when compared to previous studies, the overlay is more resilient to

the removal of high degree nodes.

In this work we considered two kinds of topologies: i) a Gnutella-like random

graph where the node degree is randomly distributed; and ii) a random graph

where nodes seek to maintain a constant degree. In all cases we consider undirected

graphs. The constant degree topology is based on HyParView (Leitão et al., 2007).

HyParView is a robust membership protocol which tolerates massive failures up

to 70% of the nodes before the overlay is fragmented.

2.2 Peer-to-Peer Networks Characterization

Characterizing user participation in P2P networks is a necessary step to establish a

realistic model to be used in the evaluation of the impact of churn in P2P protocols.

Churn, the continuous arrival and departure of nodes, is a direct consequence

of P2P participants behavior. It is also necessary to characterize the content

1The existence of a well known contact point is a common assumption in overlay membership
algorithms.

Chapter 2. Related Work 7

distribution, as the effectiveness of a search algorithm can be affected by the

existence of content replication.

2.2.1 Participation Dynamics

The patterns of peer participation are discussed in several studies about widely

used hybrid, structured and unstructured P2P networks (Liang et al., 2005; Qiao &

Bustamante, 2006; Saroiu et al., 2002; Stutzbach & Rejaie, 2006), where similarities

in peers session length in different P2P networks have been found. The session

length metric is frequently used in the literature to characterize churn in P2P

networks. It is defined as the time between the arrival and departure of a node.

(Stutzbach & Rejaie, 2006) surveyed three types of deployed P2P networks by

observing three popular P2P services, Gnutella, BitTorrent and Kad. The current

generation of Gnutella implementations are based on a supernode architecture;

BitTorrent is a content distribution system where peers form a distinct overlay for

each file and locate each other via a well known point called a tracker; and Kad is

a P2P network based on the DHT Kademlia (Maymounkov & Mazières, 2002).

In (Stutzbach & Rejaie, 2006), Weibull2 and log-normal distributions were iden-

tified as the more accurate distributions for modeling session lengths. In the ma-

jority of the studies cited above, it was observed that:

• The session length distribution across the three different systems is similar.

• The session lengths observed in different systems can be described by the

same type of distribution.

• Within the same system, the distribution of session length for different data

sets is similar.

Figure 2.1 shows the plot of the session length distribution for three distinct

BitTorrent data sets, using the data in (Stutzbach & Rejaie, 2006). The plot shows

the similarity of the session lengths in the different data sets, all described by a

Weibull distribution.

2The Weibull distribution is a continuous probability distribution commonly used in life data
analysis (for instance, to predict the failure of machine parts). Its probability density function

is given by f(x) = k
λ (x

λ)k−1e−(x/λ)k

.

Chapter 2. Related Work 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.0e+00 1.0e+01 1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06 1.0e+07

Session Length (s)

RedHat
Debian
FlatOut

Figure 2.1: Session length distribution of three data sets within the same system.

The consistent observation of similarities in different studies, focused on dif-

ferent P2P networks, suggest that user behavior does not differ from network to

network. Consequently, the churn rate is similar across different networks and a

common model for user participation can be used when evaluating different P2P

networks.

2.2.2 Content Distribution

The characterization of content distribution is important because some algorithms,

such as Gnutella, are more suited to find well replicated content whereas others,

for instance a DHT (if not impaired by the effect of churn), are efficient at finding

even the rarest of objects, since some algorithms use blind search methods and

others know the precise location of items.

The contents available in P2P networks are not homogeneous, persistent or

evenly distributed. The transiency of P2P peers discussed in the previous sec-

tion in part justifies this as, if the participants who offer the content are highly

transient, the content offered by those participants will likely be affected by that

Chapter 2. Related Work 9

behavior. Furthermore, most P2P content sharing systems do not force partici-

pants to share content (at least at the protocol level). It has been noticed that

many participants do not share any resources. Such participants are known as

free-riders. For instance, (Saroiu et al., 2002) found that 25% of Gnutella peers

do not share any files; (Fessant et al., 2004) found 68% free-riders in the eDonkey

networks.

Survey studies found that the content distribution is similar to the query distri-

bution at a given moment, that is, how well an item is replicated is closely related

to its popularity. (Gummadi et al., 2003) and (Fessant et al., 2004) findings show

that i) the popularity of the available content follows the same pattern whether

measured as item replication or as the number of requests for items; ii) the most

popular items are recently born; iii) highly replicated items have a uniform distri-

bution and the least popular items follow a Zipf distribution. Zipf law states that

the frequency of an item with rank n is proportional to 1

nα
, where α is close to 1.

2.3 Search Algorithms

In this section we discuss with more detail the flooding and random walks algo-

rithms introduced in the previous chapter.

2.3.1 Flooding

In a flooding search each node forwards a message to every neighbor, except to

the node from where the message was received. Propagation of messages is limited

by a time-to-live (TTL) field that is decreased every hop and, additionally, nodes

do not forward messages seen before. When a message is propagated by flooding

it is guaranteed that it is delivered to every node that can be reached within

TTL-hops, however, there is a high number of redundant messages, since every

node retransmit the message upon seeing it for the first time. Therefore, flooding

searches are reliable but result in a high overhead, particularly in high degree

graphs. Moreover, in (Lv et al., 2002) it is shown that the percentage of redundant

messages increases with the TTL.

The definition of a correct TTL is itself a problem as, if it is set too high it

implies a large overhead, but if it is too low the coverage is reduced and a node

that uses flooding can only know the contents of the nodes at a distance (in hops)

Chapter 2. Related Work 10

of the designated TTL.

There are two variants of flooding which present trade-offs between reliability,

search latency and message overhead. One option to mitigate flooding overhead is

an expanding ring, or iterative deepening, search (Lv et al., 2002; Yang & Garcia-

Molina, 2002). The search starts with a small TTL; if it is not successful the TTL

is increased and the search is started again. This method can only be efficient if

the requested item is close to the source. If the requested item is not close to the

query source, it may consume more messages than the standard flooding method

in consequence of the successive iterations. Another approach is to only forward

a query to a subset of the neighbors of a node according to some deterministic

metric (Yang & Garcia-Molina, 2002) (e.g. quality of past results) or with some

probability p. While this method reduces the overall number of redundant mes-

sages, it also reduces the coverage of a search and increases latency. However,

this method also loses reliability. If the loss of reliability is acceptable, a search

algorithm that does not generate redundant messages can be more adequate.

As a consequence of its message redundancy, flooding is not feasible for large

scale networks. Even in smaller networks the selection of a correct TTL poses a

non trivial problem.

2.3.2 Random Walks

In random walks, messages are not replicated. Instead, when receiving a message

for the first time, each node forwards it to exactly one of its neighbors selected at

random. It was shown that random walks can find objects within a comparable

number of hops, while reducing network traffic by an order of magnitude when

compared to flooding (Lv et al., 2002).

A single random walk may traverse a large number of hops, adding latency to

the search. The performance of random walks can be improved if the selection of

the next hop is biased to nodes where the location of the item is more probable. We

defer the specifics of this biasing to the discussion of existing protocols, which use

random walks to achieve scalability, in Sec. 2.5. Another method to improve the

performance of random walks is the use of multiple instances or walkers. However,

this method evinces the same problem of termination that characterizes a flooding

algorithm. Unlike a flooding algorithm, the number of messages remains constant

during the search (or, equal to the number of walkers); unlike flooding, it is feasible

Chapter 2. Related Work 11

to contact the query source to check for termination. If such a method was to be

used in a flooding there would be a message implosion at the source node, as the

number of messages grow by each visited node. An adaptive termination algorithm

that uses this method is described in (Lv et al., 2002). In this algorithm, each n

hops, the walkers contact their origin to check for termination before proceeding

to the next hop. A TTL, set to a large value, is used to prevent loops.

In a network with high clustering, that is, when nodes have many neighbors

in common, the probability of finding content outside clusters diminishes, since

a walker can exceed its TTL without ever leaving a cluster. Cluster Resilient

Random Walk (Chen et al., 2007) was proposed to mitigate this problem. In this

algorithm, the probability of a walker being forwarded is higher for neighbors that

have fewer nodes in common. The drawback of this algorithm is that it imposes a

non-negligible cost, since every node has to know the view of its neighbors, which

may change frequently.

2.4 Indexing

Any search method requires the existence of some index to reference the contents

that are to be the subject of search. In decentralized P2P networks we distinguish

between local and distributed indexes.

Local Indexing Local indexing is characteristic of the first version of the Gnutella

protocol, where each node only indexed its local content. This indexing scheme has

the advantage of allowing unrestricted search as there is no loss of meta-information

because the content is local. However, this method limits scalability inasmuch as

a query for an item has to visit the exact nodes which have the item. To the best

of our knowledge, every currently deployed P2P network use a distributed index.

Distributed Indexing In this scheme the contents of a node are indexed in

multiple nodes. Distributed indexes are implemented in a number of ways. Pro-

tocols that are based on two-tiered hierarchical overlays index the information of

every regular node in the corresponding supernode. One technique called one-hop

replication dictates that pointers to the items stored in node n are indexed in every

neighbor at the distance of one hop of n. Freenet (Clarke et al., 2001) distributes

items instead of references to items. Distributed indexes can be used to support

Chapter 2. Related Work 12

h 1 (x) = 5 h 2 (x) = 2 h 3 (x) = 7

1 1 1

0 8

0 1 1 0 0 0

h 1 (y) = 1 h 2 (y) = 3 h 3 (y) = 5

Figure 2.2: Insertion of elements in a Bloom filter.

routing decisions in search algorithms.

In the following section we describe a data structure that can be used to save

and transmit indexes in a space-efficient way.

2.4.1 Bloom Filters

A Bloom filter (Bloom, 1970) is a lossy data structure used to test membership. It

is constituted by a bit vector V of length m, initially with all the elements set to 0.

A Bloom filter uses k hash functions. Upon insertion, an item i is hashed k times,

one for each different hash function. The result of applying the k hash functions is

that k bits are set to 1 (assuming that there are no collisions). Figure 2.2 depicts

the insertion of two elements, x and y in a Bloom filter with k = 3. When a bit is

already set to 1, as is in the case of the 5Th bit of the filter, shared by h1(x) and

h3(y), the value remains unchanged.

To test if some item is included in the filter, the same k hash functions are

applied. An item is assumed to be included in the filter if all the bits returned

by the k hash functions are set. Given that a single Bloom filter may include

many items, a test may return a false positive. Assuming perfectly random hash

functions, the probability of obtaining false positives is given by (1− (1− 1

m
)nk)k,

where n is the number of elements in the filter (Broder & Mitzenmacher, 2004).

Bloom filters have traditionally been used in database applications, for in-

stance, BigTable (Chang et al., 2006) uses Bloom filters to reduce the number of

disk accesses. More recently, they have been used for network applications, which

include the construction of compact indexes or probabilistic routing tables on P2P

Chapter 2. Related Work 13

overlays (Broder & Mitzenmacher, 2004).

2.5 Search Protocols in Unstructured Overlays

In this section we discuss various existing protocols for search in unstructured

overlays. The protocols discussed here are representative of the various approaches

to search in unstructured overlays.

2.5.1 Gnutella

The original Gnutella (Clip2, 2001) used flooding over a flat unstructured overlay.

A node wishing to join the overlay first discovers other peers using a host cache.

Further neighbors are discovered using PING messages, which are answered with

multiple PONG messages. A node may send PONG messages with its own ad-

dress or with cached addresses from previously seen messages. Search is performed

using QUERY messages which are answered with QUERY HIT messages, that

are sent via the query reverse path. Gnutella ping and search messages use the

flooding algorithm described in Sec. 2.3. Therefore, Gnutella is reliable, and is not

impaired by churn, but suffers from the scalability and TTL limit problem of a

pure flooding search.

2.5.2 Hierarchical Overlays: Kazaa

Kazaa (Liang et al., 2005) uses a two-tiered hierarchical architecture similar to

the current generation of Gnutella. Two-tiered architectures were developed in

response to Gnutella scalability issues. Kazaa distinguishes between Ordinary

Nodes (ON) and Super Nodes (SN). Each ON connects to a SN and SNs establish

connection between each other. Queries, which are keyword-based, are directed to

the corresponding SN n and possibly forwarded to a subset of the SNs known by

n. In Kazaa, neighbor selection is affected by locality, which reduces latency but

reduces the scope of the results.

A SN contribution is much higher than the contribution of ONs: each SN keeps

about 100 to 200 connections to ONs and 40 to 60 to other SNs. Additionally, a

SN has to index all its ONs contents and maintain that index updated to avoid

false positive search results. Furthermore, the overlay depends on a small subset of

nodes, that are not dedicated servers like in some centralized services, but ordinary

Chapter 2. Related Work 14

peers. Consequently, the Kazaa overlay, and this type of architecture in general,

lacks load balancing and its robustness could be improved.

2.5.3 Semantic Communities

A class of protocols establish semantic or interest based relationships between

nodes to improve search. Acquaintances (Cholvi et al., 2004) adapts the overlay

topology to establish communities of peers with the same interests. Acquaintances

nodes keep neighbor links, chosen randomly like in Gnutella, and acquaintance

links to nodes which returned a positive response to a previous query. Search is

performed using flooding with a low TTL, as acquaintance links should place the

desired content at a shorter distance than in the standard Gnutella overlay.

A rationale similar to the one followed by Acquaintances has been proposed

to work on top of the Gnutella overlay (Sripanidkulchai et al., 2003). In this

algorithm, a peer finds shared interests in peers that have similar contents, and

establishes shortcuts to those peers. The similar contents are found at first by

flooding and, subsequently, from query results and by observing the network traffic.

Queries are directed first to the shortcut links and, upon failing, queries use the

Gnutella flooding scheme.

The Self-Organizing Super-Peer Network (SOSPNet) (Garbacki et al., 2007) is

a supernode architecture that explores the common interest of the participants.

Unlike other P2P networks, where regular nodes are connected to one supernode

and the later is responsible to index the regular nodes contents, in SOSPNet the

contents of a regular node may be indexed across several supernodes. Figure 2.3

depicts SOSPNet architecture:

• Each regular node (designated as a weak peer in SOSPNet) maintains a cache

of supernodes (designated as super-peers in SOSPNet). The cache is ordered

according to the supernode’s priority, which is increased when a supernode

returns a positive reply to a query. When the cache capacity reaches its

limit, the item with the lowest priority is discarded.

• Each supernode maintains a cache of pointers, organized by priority, that

reference items located in regular nodes. The cache is updated when a su-

pernode receives search results. If the pointer already exists, its priority is

Chapter 2. Related Work 15

Super-peer Weak pear

Super-peer referenced in a weak peer cache

File offered by a weak peer, referenced in a super-peer cache

Figure 2.3: SOSPNet architecture.

incremented; a pointer to a new resource is given the value of the maximum

priority + 1.

Periodically, the regular nodes send information about their resources to a

random supernode, where the probability to be chosen is proportional to the su-

pernode priority in the cache maintained by the regular node. Furthermore, when

a search succeeds, the node that initiated the search merges into its cache the

supernodes present in the cache of the node which replied to the search. There-

fore, the regular nodes establish interest relations with the supernodes that satisfy

their requests, as supernodes with a higher priority are the ones that satisfied

more requests from the regular node. It is assumed that, if two nodes have similar

interests, they will search for similar content. Therefore, their search is optimized

to the same supernode, as the supernode that satisfies both nodes requests will

have a high priority in their caches. The search protocol operates in the following

manner:

• A regular node starts the search in the supernodes it knows, according to

their priority. If the item is found, the corresponding supernode priority is

updated.

• When an item cannot be found in the way above, the query is forwarded to

one of the supernodes, preferably with high priority. The supernode will be

Chapter 2. Related Work 16

responsible to find the item using its connection to the other supernodes.

• Overloaded supernodes reject requests, thus diminishing their priority and

the probability of receiving more queries.

This algorithm is interesting as regular nodes do not need to rely on a single

supernode as in other architectures, but the interest relations, in the form of the

weak peers and super-peers caches, require previous searches to be effective. The

search will be similar to the traditional supernodes architecture for new nodes

entering the overlay.

Algorithms that identify relations between nodes interests are feasible in stable

networks where peers have long session times and perform many queries for the

same type of content. Maintaining interest relationships in a network where most

of the nodes have short session times is more complex, as it is unlikely that a

nodes performs or answers to more than a few queries. The fundamental flaw of

this class of algorithms is to assume that the relations hold or can remain reliable

when the overlay is subject to churn.

2.5.4 Adaptive Probabilistic Search

Adaptive Probabilistic Search (APS) (Tsoumakos & Roussopoulos, 2003) uses bi-

ased random walks. Each node has an index with an entry for each object referred

in a query it has forwarded, and a value for the link to where the query was for-

warded. Values can be updated according to two policies: i) an optimistic policy

that assumes that the query will have success and dictates that the value of a link

is increased after a query is forwarded through that link; or, ii) a pessimistic policy,

where the value is decreased because it is assumed that the query will fail. If the

queries do not yield the expected result the values are corrected using an update

message propagated using the reverse path. There is no recovery mechanism if the

path is broken (for instance, by a node departure).

Unfortunately, this method has limited applicability when the probability of

having a large number of queries to the same item hitting the same node is low.

Furthermore, the information collected from past searches is quickly outdated, as

the arrival and departure of nodes breaks the paths traversed by previous queries.

Chapter 2. Related Work 17

2.5.5 Gia

Gia (Chawathe et al., 2003) was designed considering the heterogeneity of P2P

systems, documented in (Saroiu et al., 2002). It adapts the overlay topology to

the capacity of the participating nodes and directs queries to the higher capacity

nodes. Furthermore, it defines a flow control policy where nodes grant flow control

tokens according to their capacity, and a replication policy that dictates that the

index of a node is replicated on its neighbors at the distance of one-hop.

The topology adaptation algorithm depends on the following parameters:

Capacity The capacity of a node is a system parameter defined, for instance,

by the node bandwidth and/or CPU.

Minimum Number of Neighbors The topology adaptation algorithm searches

for new neighbors at least until the defined minimum is reached.

Maximum Number of Neighbors This parameter bounds the maximum num-

ber of neighbors that a node may have. Each node has a local maximum computed

from this parameter and the nodes capacity. The local maximum can be lower but

not higher than this parameter.

Satisfaction Level Gia computes a “satisfaction level” S, 0 ≤ S ≤ 1, for each

node. The satisfaction level at each node depends on the node’s neighbors. The

contribution of a neighbor on the satisfaction level is defined by the ratio of the

neighbor capacity to the neighbor degree.

Nodes perform topology adaptation until S = 1, even if some neighbors have to

be dropped to be substituted by other nodes which provide a higher satisfaction. A

node accepts new connections until the maximum number of neighbors is reached

and may drop existing neighbors if the new connection offers better capacity.

Queries are only forwarded to nodes with available flow control tokens. Each

query is a single random walk. Gia preferably routes random walks to the nodes

with higher capacity, those that are more likely to be more connected, thus more

likely to know an item due to the one-hop replication policy.

Chapter 2. Related Work 18

The result of the topology adaptation algorithm is a hierarchical overlay, how-

ever distinct from the two-tiered supernode approach. Queries use a single random

walk which requires the use of “keep-alive” messages which, like query responses,

are sent via reverse path. Such paths will be frequently broken by the topology

adaptation algorithm but, when subjected to churn, they will also be broken by

the arrival and departure of nodes. Gia addresses this problem by keeping con-

nections open to nodes dropped as a result of a topology adaptation decision, but

this does not prevent the loss of queries due to churn.

2.5.6 Scalable Query Routing

Scalable Query Routing (SQR) (Kumar et al., 2005) uses information encoded in

probabilistic routing tables to forward queries to the (probable) location of the

desired object.

SQR routing tables store one Exponentially Decaying Bloom Filter (EDBF) for

each neighbor link as well as a local EDBF. The local filter is an index of the node

contents. An EDBF is similar to the standard Bloom filter described in Sec. 2.4.1,

but the membership of an item in a Bloom filter is tested by a function θ(x) which

yields the number of bits in the filter that are set to 1.

SQR periodically transmits routing table updates. When creating an update,

SQR decays filter information according to a parameter d. To create an update

from node n to node n′, n first merges all its neighbors corresponding filters, with

the exception of the filter from n′. The resulting filter is decayed, that is, its bits

remain set to 1 with a probability 1

d
. The decayed filter is merged with n’s own

(undecayed) local filter; finally, the resulting filter is forwarded to n′. Figure 2.4

shows the result of the decay operation: node B knows 1

d
of the information of the

other neighbors of A; node C knows 1

d2 of the information of A’s neighbors and 1

d

of the information of the other neighbors of B.

Queries for a key x are forwarded to the closest neighbor n, that is, when the

routing table associated with a link to n has the greater θ(x). When a query

revisits a neighbor it is randomly forwarded as it is assumed that the previous

routing decision was wrong and therefore the routing tables are invalid.

The maintenance of the probabilistic routing table implies a non-negligible

message overhead. To mitigate this problem, information for each update degrades

with the distance to the host, thus implying an increasing “noise”. In consequence,

Chapter 2. Related Work 19

1/d

1 / d ^ 2

B CA

Figure 2.4: Decaying information in a Exponentially Decaying Bloom filter.

a search too far away from the searched object behaves like a random walk (and

SQRs queries use only one random walk). The problem is amplified in the presence

of churn, where the loss of accuracy caused by out of date tables will be the rule

rather than the exception. To the best of our knowledge there is no study on the

behavior of SQR under churn.

2.6 Summary

In this chapter, P2P overlays were characterized at topological and user level.

Both should be considered when designing a search algorithm. The flooding and

random-walk search algorithms were discussed, followed by the classification in-

dexes (local and distributed) available in unstructured overlays. The search al-

gorithms and the random-walks are closely related, as the indexing scheme may

improve or impair query resolution. Several protocols were discussed: a flooding

search protocol over flat unstructured overlays (Clip2, 2001) and a protocol for

hierarchical overlays (Liang et al., 2005); protocols which establish a relation be-

tween nodes based on data from past searches (Cholvi et al., 2004; Sripanidkulchai

et al., 2003); a protocol that uses information from past searches to probabilis-

tically route random walks (Tsoumakos & Roussopoulos, 2003); a protocol that

combines topology adaptation and a replication policy to create clusters were the

probability of finding an item is higher; and, a protocol which explicitly transmits

and stores routing information used to forward queries (Kumar et al., 2005).

Chapter 2. Related Work 20

Chapter 3

Search In Unstructured Overlays

Unstructured non-hierarchical overlays are attractive because they impose few

constraints to the participating peers and have a low maintenance overhead. A well

known example of this kind of overlays, the first implementation of Gnutella, had

a simple and reliable architecture but could not scale to a large number of peers,

since its flooding-based search algorithm resulted in an insurmountable overhead

for every search. As a consequence of their scalability issues, Gnutella and similar

architectures evolved to hierarchical overlays that organize themselves in regular

nodes and supernodes. The later are a small subset of the overlay and the location

of content depends entirely on them. The introduction of supernodes results in an

excessive unbalance as it imposes a much higher resource consumption to a few

nodes (see Sec. 2.5.2) than to the majority, and reduces the overlay robustness as

it gives a more important role to a small subset of nodes.

This chapter describes an algorithm that leverages on the simplicity and low

cost of non-hierarchical overlays, with the purpose of providing a scalable, efficient

and robust alternative to Gnutella while evenly distributing the load between

participants and maintaining a moderate cost of search and maintenance.

3.1 Frequency Aware Search

The Frequency Aware SEarch, or FASE, is a search algorithm for flat unstructured

overlays. FASE objective is to achieve efficiency as well as to be more scalable when

compared to flooding search algorithms. Furthermore, these objectives should be

achieved with a fair distribution of the load for all the participants.

FASE defines a policy for partitioning the search space and a key replication

Chapter 3. Search In Unstructured Overlays 22

policy. It partitions both the key space and the nodes in a common “frequency

space”1.

A frequency is defined to be any element of a finite and discrete set Φ. We

define functions fN : N 7→ Φ and fK : K 7→ Φ mapping respectively the set of

nodes (N) and keys (K) in frequencies. Mappings should uniformly distribute

nodes and keys by frequencies. A non-uniform mapping will result in unbalanced

partitions leading to a sub-optimal performance of the algorithm. A good example

of a mapping function is the hash of a node IP address and port. The set Φ and

functions fN and fK are known by every node in the network. Node neighbors

are freely created and are expected to be from different frequencies. A “frequency

path” is defined as an uninterrupted sequence of neighboring nodes of the same

frequency.

A pointer is a tuple defined as follows:

Pointer: 〈Key,URL〉

In a pointer, a key is some entity that can be used for identifying the item

and an URL is an unique, complete address to a node. We defer a more precise

definition of a key to Sec. 3.3.1. A pointer maps a key to the unique identifier of the

node that is storing the item referred by the key. In FASE, pointers to the items

are stored on nodes with the same frequency of the item’s key. The placement

of pointers is restricted to the same frequency of the key but the placement of

the original item is not constrained in any way. FASE improves search results by

having nodes to forward random walks preferably to nodes in the same frequency

of the search key.

3.1.1 Assumptions

FASE makes no assumptions about overlay structure, nor is overlay membership

the focus of this work. The algorithm does not require node membership to be

constrained by the node identification or that node insertion conforms to a given

structure. However, it is assumed that the majority of nodes (more than 95%) in

the overlay have a constant degree. There are two reasons for this assumption.

1 FASE was designed with wired peer-to-peer networks in mind. However, FASE search
algorithm has some resemblances with a model where queries are broadcasted in a frequency
echoed only by some objects.

Chapter 3. Search In Unstructured Overlays 23

First, with a uniform distribution of frequencies (assumed to be provided by func-

tions fN and fK) and for a given degree and number of frequencies, each node will

have the same probability of having a neighbor with some frequency f , that is, a

node in f can be reached from every node n, fN(n) 6= f , with the same probability

p. Second, a constant degree, that can be offered by membership protocols such

as Hyparview (Leitão et al., 2007), evenly balances the load between nodes when

combined with a uniform distribution of nodes and items over Φ.

3.1.2 Pointer Replication

To facilitate item location, nodes replicate pointers using Replication messages.

Each Replication message carries one or more pointers with keys of the same

frequency. Therefore, it is said that the Replication message belongs to that

frequency. For simplicity, we denote by fK(MR) the frequency of the keys carried

in message MR.

Replication messages carry a counter that defines the maximum number of

replicas of each pointer to be stored, defined by a configuration parameter. The

replica counter is decremented by every peer deciding to store a pointer and the

message is discarded when the counter reaches 0. A Replication message MR is

successively forwarded at each node n ∈ N to one of n’s neighbors (nn) not visited

by the message. Preference is given to neighbors in the frequency of the message,

that is, with fN(nn) = fK(MR).

A node n′ stores the pointer when it belongs to the same frequency of the

message and it has received a message from a node n with a different frequency,

that is, fN(n′) = fK(MR) ∧ fN(n) 6= fN(n′).

Recall that the Replication message is preferably forwarded to nodes labeled

with the same frequency of the item. Therefore, if there is a path of nodes in the

same frequency, only one pointer is stored for the whole path. The advantage in

storing pointers in adjacent nodes is small, as searches are preferably forwarded

to nodes in the same frequency. It is preferable to make pointers available in the

highest possible number of paths. The goal of this replication method is to make

items well available for searches starting from any node in the overlay.

The pointer replication algorithm is illustrated in Fig. 3.1, which shows the

path of a Replication message MR starting at node S. The interrupted circles

denote nodes in the same frequency of the message. Node S does not have any

Chapter 3. Search In Unstructured Overlays 24

S

Replication Path

P

P

Figure 3.1: Pointer replication.

neighbor in MR frequency, fK(MR), hence the message is forwarded to a random

neighbor; in the following hop there is a neighbor n with fN(n) = fK(MR) and

subsequently the message is forwarded to that neighbor, which will store a pointer.

The node that stores a pointer has a neighbor of the same frequency to where the

message is forwarded, but that will not store the pointer since it is in the same

frequency of the previous node. The figure shows that a Replication message is

always forwarded to (unvisited) nodes of the same frequency. The nodes labeled

with P store the pointer carried by MR. Note that the pointers are stored once

per path. The forwarding of MR stops when the replica counter reaches 0 or when

all the neighbors of the current node have been visited before by MR.

While the process of replication may sound costly, as several nodes may be

visited before the replica counters reaches 0, keep in mind that it happens only

once for a key or set of keys. A space efficient method to group keys with the same

frequency and bound the number of replication messages per node to the number

of frequencies will be described in Sec. 3.3.

3.1.3 Item Retrieval

If the mapping functions, fN and fK , uniformly distribute nodes and keys by fre-

quencies, the search space of some key should be approximately |N |
|Φ|

in comparison

with |N | of the original Gnutella and similar algorithms. Depending on the number

of frequencies |Φ|, this may represent a substantial reduction of the search space.

Chapter 3. Search In Unstructured Overlays 25

The retrieval algorithm takes advantage of this property by forwarding random

walks preferably to nodes in the same frequency of the key.

To locate an item (through the location of the keys contained in the dissem-

inated pointers), peers use Query messages, forwarded in one or more random

walks. The message includes a search string that is mappable to the same fre-

quency of the key. Queries are forwarded to a neighbor picked randomly from

the set of unvisited neighbors with the same frequency of the key; or, if there is

no node with the same frequency, to a random unvisited neighbor. That is, once

a random walk enters a path of nodes in the frequency of the target key, it will

follow that path. Therefore, if a pointer to the item was stored in the path, the

random walk should find it before exiting the path. Success depends on the node

where the random walk enters the path and the direction taken by the message

when following the path.

When a Query message is delivered to a node, the node first verifies the

items that are stored at the node. If the node has the same frequency of the

query, then the pointers stored in the node are verified. Upon a hit, i.e. when an

item corresponding to the query criteria is found, the search terminates and the

associated URL is returned.

3.2 Monitoring Algorithm

The monitoring algorithm main contribution is to prevent query performance

degradation due to the progressive loss of replicated pointers resulting from churn.

As it is closely related to FASE, henceforth we will refer to this algorithm as

FASE+. FASE+ aims at maintaining a sufficient number of pointers. Without

pointers, items may still be reachable, but only within an abnormally high hop

count, as the random walks will be biased to nodes where the item cannot be found

(unless the key frequency is coincident with the frequency of the node storing the

item).

A possible approach to mitigate the progressive reduction of the number of

pointers would be to periodically trigger a new replication phase. However, a fun-

damental aspect of FASE is that the replication algorithm stores a limited number

of pointers. Moreover, a pointer is stored only when the replication message en-

ters a path (of nodes in the same frequency) and, due to the topological changes

Chapter 3. Search In Unstructured Overlays 26

resulting from churn, one can not expect to be able to replay the path followed by

a previous Replication message. The periodic repetition of the dissemination

algorithm, without knowledge of the path followed by a previous edition, could

generate an unaccountable number of pointers as some from the previous dissem-

ination would still exist. Furthermore, with this method, it would not be possible

to determine which items had lost more pointers. Consequently, in the worst case

there would be an excessive replication of pointers i.e., the total number of pointers

would increase over time, thus wasting bandwidth and memory at the nodes.

3.2.1 Backup Creation

A strategy to avoid the loss of pointers based on their repeated dissemination

could present a high overhead and would be inaccurate. A better approach is to

monitor the state of the existing pointers. FASE+ follows a decentralized moni-

toring approach, storing backup pointers. Each backup is closely associated to a

single pointer and is preferably stored in the same path. FASE+ deploys at most

one backup per pointer on the channel. In FASE+, backups replace the primary

pointers when the later are lost due to the departure of nodes from the overlay.

When a node, lets call it Np, is requested to store a pointer of some item,

it immediately creates and forwards a backup. The backup is forwarded to a

neighbor of Np in the same frequency. If there is not any neighbor in the same

frequency, the first neighbor is chosen from the node’s ordered list of neighbors.

When the backup message reaches a neighbor in the same frequency that is not

holding a pointer of the item, the backup is stored and the message is discarded.

The node storing the backup associates with it the identity of Np. When a node

stores a backup, it sends back to the backup source (that is, Np) a message to

register itself. In this manner, nodes holding pointers and their respective backups

monitor themselves. Therefore, there is, at most, one backup per pointer.

Let ∆ be the timeout for backup verification, Np a node holding the pointer p

and Nb the node holding b, that is the backup of p. Primary and backup nodes

periodically cross-check each other according to the following rules:

• Every ∆, counting from the moment when the node joined the overlay, Nb

will try to contact Np. If Np has failed, b is self promoted to a primary pointer

p′ and a new backup b′ is created using the procedure described above.

Chapter 3. Search In Unstructured Overlays 27

• Every ∆, Np will try to contact Nb. If Nb has failed, Np creates a new backup

using the procedure described above.

FASE+ backup deployment algorithm exhibits two interesting properties: i)

with a high probability, FASE+ will deploy one backup per path, thus contributing

to a good pointer distribution, even in the presence of churn; and ii) backup for-

warding is a low overhead operation because in most cases, some one-hop neighbor

of Np will satisfy the conditions required for becoming a backup holder.

3.2.2 Stale Items Update

In an overlay subject to churn, pointers to items which are no longer available may

persist. FASE+ uses two strategies to deal with this problem. For simplicity, we

designate the node referred by a pointer as the holder, that is, a node that holds

some referred item. First, before creating a backup from a pointer p, the node

that has p tries to contact the holder. If the holder is down, p is removed and the

backup creation is aborted.

The second strategy is implemented in the search algorithm. Whenever a query

finds a pointer which matches its search criterion, it contacts the holder. If the

holder is unreachable or does no contain the item, the pointer is removed and the

query continues. In this scenario, the backup of the pointer that is removed would

still be out of date. For this reason, when the loss of a pointer is detected and a

backup is to be promoted, the node tries to contact the holder and, upon verifying

that the holder is down, removes the backup.

3.3 Implementation

In this section, we discuss the implementation options of the algorithms presented

in the previous sections. There are a number of options to be weighed such as the

definition of key, which can limit what is searchable in FASE; the implementation

of random walks and related configuration parameters, that can have an impact

on FASE performance; and how to reduce the cost of replication when multiple

keys have to be disseminated.

Chapter 3. Search In Unstructured Overlays 28

3.3.1 Key Definition

FASE does not enforce a strict definition of key. Instead, it can be adapted to the

preferred type of search. Two possible definitions of key are:

• a String, one or more words describing the item;

• a ID, the unique id identifying an item, e.g. a cryptographic hash of the

item.

FASE only requirement for a key is that it must be mappable to a frequency.

To broaden the possible search criteria, keys should be as flexible as possible. We

note that a key does not need to identify an unique item. For instance, if it is a

String, it can be a single word that is mappable to several items. Following the

same rationale, an item may be associated to different keys, for instance, based on

a set of strings that describe the item.

3.3.2 Dissemination of Multiple Keys

In real scenarios peers usually make available a (possibly large) number of data

items. A single Replication message can be used to announce multiple items

and/or multiple keys of the same item, if we extend the syntax of the pointer con-

struct. Since the keys may share a common frequency, a pointer can carry multiple

keys of the same frequency. In FASE, the pointers transmitted in Replication

messages can be defined as a tuple 〈Set〈Key〉,URL〉, that refers multiple keys

sharing the same frequency.

The key set can be represented in a space-efficient way by using Bloom filters.

To advertise multiple keys belonging to different frequencies, peers prepare one

Replication message per frequency (unless there are no keys belonging to the

frequency) and apply the replication algorithm independently to each. Given that

the number of frequencies is expected to be small in comparison to the number of

keys, we expect the multiplication of Bloom filters per peer to present an acceptable

overhead to the replication costs.

3.3.3 Random Walk Forwarding

FASE uses random walks for both the replication and retrieval of items. When

implementing a random walk algorithm, there are multiple implementation choices,

Chapter 3. Search In Unstructured Overlays 29

which may differently impact the performance of the algorithm.

There are at least two possibilities to prevent random walks from visiting more

than once the same node. One possibility is to store on the nodes the unique IDs

of the messages that have visited him recently. When a message is received for the

second time by a node, it is discarded. This approach may significantly impact the

performance of algorithms relying on a small number of parallel random walks since

there is the possibility that all the walks are discarded before finding some item.

Note that the walk need not to be discarded, but in that case, there is a chance

that the walk enters a cycle, thus wasting resources. The alternative is to include

the list of traversed nodes in the message. Although it may lead to significantly

large messages, this approach permits to nodes to avoid next hops that have been

previously visited so that the probability of the message being dropped is reduced.

We opted for the later for the replication process. Replication messages are

generated only once per frequency and per node and their length is bounded by

the number of pointers to insert, so we expect the overhead to be acceptable.

Furthermore, it ensures that replication messages are correctly forwarded until

the replication is terminated (note that it is a single message that should not be

terminated before storing all the pointers).

Query messages are more frequent than Replication messages and can use

multiple random walks. Storing every ID of the visited nodes in all the random

walks could add a non-negligible cost to the transmission of queries. In this case

we opted for a hybrid approach. Nodes store the IDs of the queries that visit

them. We assume that, for nodes on wired networks, the storage cost of a circular

queue with capacity for a large set of IDs is acceptable. When a node, n, receives

a previously seen ID, it sends the query back to the last hop, n′. If this happens,

n′ forwards the query to any neighbor except n. This method alone could increase

the search latency, for instance, if two nodes shared many neighbors and both were

previously visited. In this case, the query could waste a few hops being forwarded

from one node to the other. For this reason, we store a small set S of node IDs

in the random walk message; its length should be set to a value that results in

no more than a small increase of the Query message size. S contains the IDs of

the more recently visited nodes. Random walks are not forwarded to any node

belonging to S.

When using multiple random walks it is important to define a criteria that

Chapter 3. Search In Unstructured Overlays 30

permits to stop all the random walks after the first successful hit. In FASE im-

plementation we used “adaptive termination” (Lv et al., 2002) which dictates that

when an item is found the query source is contacted and the walker is terminated.

Walkers periodically establish a link from the hosting node to the source of the

query to confirm that no reply was found and terminate otherwise.

3.4 Discussion

In this section FASE properties are enumerated, followed by a discussion of the

optimal settings and assumptions covering two algorithm parameters: the number

of pointers and the number of frequencies. The restrictions of the algorithm are

discussed.

3.4.1 Properties

FASE was designed with fairness in mind, considering that all peers desire to have

the least possible load imposed to them. An overlay where no participant has a

role of higher importance is more able to cope with the peer transiency and pos-

sibility of failure faced by overlay networks in the Internet. The algorithm was

designed to be scalable, in comparison to resource-intensive search algorithms for

flat unstructured overlays such as the original Gnutella. Additionally, FASE should

be efficient, that is, achieve a search latency comparable to other algorithms for

unstructured overlays, while exhibiting a moderate resource consumption. Con-

cerning these properties, from FASE architecture we can draw the following ob-

servations.

Fairness FASE enforces fairness by dividing the search space in equal parts and

by storing pointers across all participants with a uniform distribution. Therefore,

each participant performs a similar role on the overlay.

Scalability By using a fixed number of random walks, FASE can be more scal-

able than a flooding algorithm, particularly in the case of items that can only be

found at more than a few hops away from the query source. The partition of the

search space reduces the number of nodes that have to be searched on each query,

equally contributing to reduce traffic on the overlay.

Chapter 3. Search In Unstructured Overlays 31

Efficiency The efficiency depends on the number of random walks used and the

pointer replication. Higher replication rates will consume more resources at the

replication phase and memory at the participants, but reduce the number of nodes

that have to be searched to find an item. The same rationale applies to the number

of random walks: more will result in a faster search but consume more resources

(which is mitigated by the adaptive termination of the walks).

3.4.2 Number of Frequencies

The purpose of the replication algorithm storing one pointer per path, and of the

search algorithm following paths in the key frequency, is that a pointer should be

useful to several nodes (i.e. all the nodes close to the path where the pointer is)

and not a single node. The rationale for this is that replicating pointers has a cost,

thus pointers should be limited and their location optimized.

Given a number of frequencies |Φ| and the degree D of a constant degree

overlay, the D
|Φ|

ratio will have influence on the path length as it conditions the

average number of frequencies reachable by each node. Since each hop traversed by

a random walk on a node not belonging to the target frequency does not contribute

to the success of the search or storage operation, each node should be aware of at

least one node in each frequency so that it is able to route any random walk to

a suitable location. Additionally, it is possible that some values of D
|Φ|

exhibit a

better use of pointers as, if nodes do not have any neighbor in the same frequency,

the limited number of pointers would be stored with a skewed distribution (e.g. a

pointer being stored every other node until the replica counter reaches 0). Since

query messages follow a path expecting to find a pointer, if there are too many

paths without pointers the search algorithm performance will be less than optimal.

Considering a D
|Φ|

ratio that allows the formation of paths containing a high

percentage of the nodes of the same frequency, FASE performance would suffer

because large paths would have to be traversed to find or store a pointer. The

pointer distribution would be affected as a replication message would traverse a

possibly large number of nodes while storing only one pointer.

The evaluation of FASE will consider several D
|Φ|

ratios and study its effect on

the cost of replication and search.

Chapter 3. Search In Unstructured Overlays 32

3.4.3 Locality Sensitive Hashing

The hashing of keys, represented by strings, into a frequency space restricts the

type of search in FASE to exact match queries. For instance, strings kreutzer

and krautzer would probably yield a different frequency after being hashed by

a function such as MD5 or SHA-1. Therefore a misspelled search, krautzer, for

some item identified by the keyword kreutzer would fail unless a query visited a

node with the matching item (recall that node’s item indexes are always examined,

regardless the query or node frequency, and that if the query is in the form of a

string it can be matched to the corresponding item).

Although orthogonal to the dissertation, one possible solution to this problem is

to use locality sensitive hashing (Indyk & Motwani, 1998) where, given a similarity

function, similar objects are mapped to the same bucket; when a bucket has more

than one element only one, chosen arbitrarily, is retained. Therefore, for some

similarity metric, similar strings could be mapped to the same frequency.

3.5 Summary

In this chapter we described FASE, a search algorithm for unstructured overlays

that combines a search space division method, a replication algorithm that dis-

seminates pointers to items and a biased search algorithm based on random walks

which leverages on the replication and search space division methods. As a high

rate of churn characterizes P2P networks, we introduced a lightweight monitoring

algorithm to maintain the ratio of pointers and thus improve the performance of

FASE when subjected to churn. A discussion of FASE concluded this chapter.

Chapter 4

Evaluation

This chapter presents an evaluation of FASE and of the distributed monitoring

algorithm (FASE+). The performance of FASE is compared with the Scalable

Query Routing (SQR) algorithm. We start by describing the evaluation method-

ology, the churn model and the experimental parameters and then present and

discuss the simulation results.

4.1 Methodology

We evaluated FASE through extensive simulations. FASE is first evaluated using

a stable network, that is, a network were the nodes remain from the beginning to

the end of the simulation. Afterward FASE and FASE+ (that is, FASE coupled

with the distributed monitoring algorithm) are evaluated in a network subject to

churn. Simulation results were obtained using PeerSim (Márk Jelasity, -) event

driven simulation engine. The simulations use a 10,000 node network. For each

test case we used 10 different topologies with constant degree, generated by Hy-

ParView (Leitão et al., 2007), running multiple simulations. Plots present the

aggregation of the multiple simulations and the standard deviation.

Each simulation creates 1000 unique data items, from a pool of more than

40000 items, each advertised by a distinct node selected at random. In a number

of running P2P networks, items often have a non-uniform distribution that depends

on their popularity. We opted for a uniform distribution model where each item is

hosted by a single node, thus representing the least popular items of the networks.

The rationale for this model is that the search for rare items is the worst case

scenario and that an algorithm that shows good performance in the search for rare

Chapter 4. Evaluation 34

items will show good performance in the search for more popular items, as popular

items will be even more replicated. Furthermore, the search for rare items does

not impose a higher maintenance overhead in the algorithms evaluated here.

For every algorithm evaluated, queries are performed for items that are present

in the network, selected uniformly at random. In the case of a stable network,

simulations have a deployment phase, where items are replicated, followed by a

querying phase, where each node issues a query. In the case of a churning network,

the querying phase is split in two: one warm-up phase, where items entering the

overlay are replicated and nodes join and depart the network but no queries are

performed, and a search phase. In the first half of the search phase, nodes arriving

the network (and that have a session time greater than 30 seconds) perform a

query for existing items; on the second half new items cease to be announced, to

measure the effect of churn over old content.

The simulations are used to evaluate two metrics:

Hop Count the number of hops until an item is found.

Hop Limit the highest hop count for a given success rate, e.g. the hop limit for

90% is the highest hop count observed in the 90% most successful queries.

If multiple random walks are used, we observe the message count, that is, the

number of messages effectively used by a query. Additionally, we observe the

failure ratio, that is, the ratio of failed queries for items existing in the network.

A query is considered failed when its random walks exceed their TTL without

finding an item or when they cannot be forwarded; the TTL was set to the same

size of the network.

4.2 Experimental Parameters

We observed FASE behavior for both low and high degree topologies, using differ-

ent replication rates and varying the number of parallel random walks. The topol-

ogy with degree = 10 models a network of participants with limited resources.

With degree = 30 we have a topology which imposes a higher load on each user,

due to the higher number of connections, to achieve a better hop count, as we

will show in next section. We experimented with different number of frequencies

until an optimal value was found. The “adaptive termination” (Lv et al., 2002)

Chapter 4. Evaluation 35

Table 4.1: Simulation parameters used by FASE.
Degree 10, 30
Number of frequencies 5, 7, 8, 9, 15, 21, 24, 27
Pointer Replication (#pointers) 0.04% (4), 0.08% (8), 0.2% (20), 0.4% (40)
Random Walks 1, 2, 4

 0

 100

 200

 300

 400

 500

 600

 700

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
op

 C
ou

nt

Degree/[Frequencies]

Query (0.04%)
Query (0.08%)
Query (0.2%)
Query (0.4%)

(a) D
|Φ| and average hop count.

 40

 50

 60

 70

 80

 90

 100

 110

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

H
op

 C
ou

nt

Degree/[Frequencies]

Query (0.2%)
Query (0.4%)

(b) D
|Φ| and average hop count for the highest

pointer replication values.

Figure 4.1: Effect of the number of frequencies in the average hop count.

parameter of random walks (see Sec. 3.3.3) was configured so that each random

walk checks for termination every four hops. Table 4.1 summarizes the parameters

used.

4.2.1 Number of Frequencies and Degree

In Sec. 3.4.2 we referred that there should be an optimal value of D
|Φ|

, the ratio of

the degree to the number of frequencies, that maximizes FASE performance while

achieving an acceptable replication cost. In this section, we investigate how this

ratio impacts performance.

We experimented several values of |Φ| over networks with degree = 10. Queries

were performed using one random walk. Figure 4.1(a) depicts the average hop

count in function of D
|Φ|

for various replication rates and Fig. 4.1(b) depicts the

same data for the replication rates that achieve the lower hop counts.

With the exception of the 0.04% replication factor, the higher values for the

average hop count occur when D
|Φ|

is lower than 0.5. The hop count increases for

all the replication factors when the number of frequencies is much higher than the

Chapter 4. Evaluation 36

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
ai

lu
re

 R
at

io

Degree/[Frequencies]

Failed (0.04%)
Failed (0.08%)
Failed (0.2%)
Failed (0.4%)

Figure 4.2: Failure ratio.

degree, in this case, when |Φ| ≥ 21. As each node is only aware of other nodes

with, at most, 10 different frequencies and FASE performance depends on find-

ing nodes with the same frequency of a query at a close distance, the hop count

increases. If the pointers have a small replication factor (0.04%) the lowest hop

count occurs when the ratio is between 0.7 and 0.5. In this case, the search algo-

rithm benefits from a higher number of frequencies, as increasing |Φ| reduces the

search space (which should be |N |
|Φ|

). However, the impact of higher replication rates

in performance is greater than the increase of frequencies and, for the replication

rates that achieve lower hop counts, from the tested values, the best results are

achieved when D
|Φ|

= 1.1. The lowest number of failures occur for the same ratio,

as it is shown in Fig. 4.2.

Figure 4.3 depicts the replication costs in function of D
|Φ|

for various replication

rates. The figure shows that for D
|Φ|

= 1.1, the hop count is 45% lower than in the

worst case. As expected, the number of hops spent in replicating pointers grows

as the probability of having multiple neighbors of the same frequency increases.

As the neighbors of the same frequency increase, the probability of having a long

path with a high percentage of the nodes assigned to some frequencies increases.

Therefore, replication messages are required to traverse more hops before storing

each replica. A replication message would traverse such a long path while storing

only one pointer. While 1.1 is not the optimal D
|Φ|

value for replication, for a

process that will happen at most once per node and per frequency, it presents a

Chapter 4. Evaluation 37

 0

 50

 100

 150

 200

 250

 300

 350

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
op

 C
ou

nt

Degree/[Frequencies]

Replication (0.04%)
Replication (0.08%)
Replication (0.2%)
Replication (0.4%)

Figure 4.3: Effect of the number of frequencies in the replication costs.

good trade-off between the replication cost and query hop count. This is justified

by observing Figs. 4.3 and 4.1, where it can be seen that, for replication rates

that allow the query hop count to reach an acceptable number of hops, a ratio of

1.1 has the lowest hop count, and a replication cost approximately 50% below the

ratio that consumes more replication messages. Additionally, a value of 1.1 has

the lowest number of failed queries (Fig. 4.2).

4.3 Stable Network Evaluation

In this section we observe the behavior of FASE in a stable network. We present

results for two degrees (10 and 30), using a D
|Φ|

ratio of 1.1, that is, we used

respectively 9 and 27 frequencies. Furthermore, we studied the hop count and

number of messages used with multiple random walks. Unless otherwise noted,

the data refers to the 10th degree topologies.

Figure 4.4(a) depicts the average hop count and the number of messages used

(that is, the sum of the hops traversed by the multiple walkers) for the various

pointer replication values and Fig. 4.4(b) zooms in on the same data for the 0.2%

and 0.4% replication rates. The figure proves the advantage of using multiple

random walks. When 4 random walks are used the hop count is 70% and 72%

lower (respectively, with 0.4% and 0.2% pointer replication). However, due to the

increased probability of finding an item and the adaptive termination, the total

Chapter 4. Evaluation 38

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.04% 0.08% 0.2% 0.4%

A
ve

ra
ge

 H
op

 C
ou

nt
/M

es
sa

ge
s

U
se

d

Replication Ratio

Query, 1 RW
Query, 2 RW
Query, 4 RW

Messages, 2 RW
Messages, 4 RW

(a) Average hop count and number of messages
used.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.2% 0.4%

A
ve

ra
ge

 H
op

 C
ou

nt
/M

es
sa

ge
s

U
se

d

Replication Ratio

Query, 1 RW
Query, 2 RW
Query, 4 RW

Messages, 2 RW
Messages, 4 RW

(b) Average hop count and number of messages
used for the highest pointer replication values.

Figure 4.4: Average hop count and number of messages used with multiple random
walks (RW). Logscale on the x axis.

number of messages used only increases by 32% and 16%, when compared to the

single random walk version. The standard deviation in the number of messages is

high because the sum of the query hop count of the worst parallel random walks

impose a heavy bias on the sample. This can be observed in Fig. 4.5, where the

hop limit for 90% of the queries is presented.

Since the number of frequencies is greater with a higher degree, the number of

nodes and keys per frequency is reduced. Therefore, with equal replication factors

(that is, with a equal number of pointers), the use of a topology with a higher

degree reduces the query hop count and the number of messages used, as is shown

in Figs. 4.6(a) and 4.6(b). This presents an interesting trade-off: when deploying

FASE, or a similar search algorithm, one has to weigh the cost of establishing

and maintaining a high number of connections against the cost of search and of

replication. In FASE, a topology with degree = 30, with a replication ratio of

0.04%, achieves lower query hop counts than with a replication ratio of 0.08% in a

topology with degree = 10, since the lower degree topology has more pointers but

also more nodes per frequency. Unless the cost of maintaining more connections

during the lifetime of the node is higher than the cost of search, having a high

degree is preferable.

Chapter 4. Evaluation 39

 0

 200

 400

 600

 800

 1000

 1200

0.04% 0.08% 0.2% 0.4%

H
op

 L
im

it
90

%

Replication Ratio

Query, 1 RW
Query, 2 RW
Query, 4 RW

Figure 4.5: Hop limit for 90% of the queries. Logscale on the x axis.

4.4 Churning Network Evaluation

The goal of this evaluation is twofold. First, to find if FASE is capable of sustaining

the pointer loss and hop count degradation observable in FASE in the presence

of churn. Second, to verify if the adopted churn mitigation strategy in FASE+

is adequate, particularly if it can use spaced enough updates to maintain a low

overhead.

In the evaluation of an overlay subject to churn, FASE and FASE+ simulations

use a degree = 10 network, four random walks and replicate pointers by 0.2% and

0.4%. This choice of parameters is justified by FASE results in the stable network

evaluation, as it performed better using these values. It was shown in the previous

section that using multiple random walks decreases the hop count with a moderate

cost and that replication factors lesser than 0.2% result in high hop counts. The

length of the simulation warm-up and search phases was set to 10800s. In the case

of FASE+, the ∆ parameter was set to 900s and 1200s.

We examined the average query hop count, the hop limit for 90% success and

the query hop count over time. Additionally, in the case of FASE+, we observed

the changes in number of pointers and backups during the simulations as well as

the total number of items losing all their pointers during the simulation.

FASE does not clean up old replicas, however, due to memory constraints, a

cleanup algorithm similar to FASE+ was executed during the simulations. Note

that this not affect the evaluation of FASE, since all queries are for items that are

Chapter 4. Evaluation 40

 0

 50

 100

 150

 200

 250

 300

 350

0.04% 0.08% 0.2% 0.4%

A
ve

ra
ge

 H
op

 C
ou

nt
/M

es
sa

ge
s

U
se

d

Replication Ratio

Query, D=30, 1 RW
Query, D=30, 2 RW
Query, D=30, 4 RW

Messages, D=30, 2 RW
Messages, D=30, 4 RW

(a) Average hop count and number of messages
used.

 0

 50

 100

 150

 200

 250

 300

 350

0.04% 0.08% 0.2% 0.4%

H
op

 L
im

it
90

%

Replication Ratio

Query, D=30, 1 RW
Query, D=30, 2 RW
Query, D=30, 4 RW

(b) Hop limit for 90% of the queries.

Figure 4.6: Average hop count, number of messages used and hop limit, using
multiple random walks (RW) in a topology with degree = 30. Logscale on the x

axis.

present in the network and, if a query finds a key but the item is no longer present,

the result is discarded but not counted as failed.

4.4.1 Churn Model

The constant arrival and departure of nodes will affect the evaluated algorithms in

different ways. In the case of FASE, it will cause the loss of the replicated pointers

and, in the case of SQR, it will out-date the routing tables of the nodes.

To simulate churn we opted to distribute the session length (the time between

the arrival and departure of a node, see Sec. 2.2.1) of the nodes in the overlay ac-

cording to the Weibull distribution using shape (k) and scale (λ) parameters for the

three BitTorrent data sets (designated as “Red Hat”, “Debian” and “FlatOut”)

studied by (Stutzbach & Rejaie, 2006). The values of k and λ are shown in Ta-

ble 4.2. The “RedHat” and “Debian” sets have a similar session length distribu-

tion, although “Debian” has a slightly higher percentage of long lived peers. The

“FlatOut” set has less extremely short and extremely long lived peers than the

previous sets.

We simplify our model by maintaining the network size constant. When a node

departs from the overlay another node joins, not necessarily in the same position,

but establishing connections to nodes which are accepting new neighbors, thus

contributing to maintain node degree. Nodes that depart from the overlay remain

Chapter 4. Evaluation 41

Table 4.2: Session length distribution parameters.
Red Hat k = 0.34, λ = 21.3
Debian k = 0.38, λ = 42.4
FlatOut k = 0.59, λ = 41.9

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25

P
oi

nt
er

s

Time (x1000s)

0.2% FASE
0.2% FASE+, 1200
0.2% FASE+, 900

0.4% FASE
0.4% FASE+, 1200
0.4% FASE+, 900

(a) Evolution of the number of pointers.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5 10 15 20 25

B
ac

ku
ps

Time (x1000s)

0.2%, 1200
0.2%, 900

0.4%, 1200
0.4%, 900

(b) Evolution of the number of backups.

Figure 4.7: Evolution of the number of pointers and backups in the RedHat data
set.

offline during the remainder of the simulation.

4.4.2 Pointer and Backups Evolution

In this section we evaluate the ability of FASE+ to maintain pointers under churn.

The evolution of the number of pointers and backups was recorded with intervals of

100 seconds. A stale pointer cleanup algorithm is executed periodically to reduce

the storage overhead during the simulation. As we only query for live items, this

does not affect the results.

Figures 4.7, 4.8 and 4.9 show the evolution of the total number of pointers

(for all items) over time, in FASE and FASE+, for the “RedHat”, “Debian” and

“FlatOut” sets, with update intervals of 900s and 1200s.

The peaks observed in the figures can be explained by the stale pointer cleanup

algorithm. As they occur at times which match the ∆ intervals counting from the

simulation start. But for such peaks to happen, a high percentage of nodes should

be timing out at the same time. There are two explanations for this. First, as

Stutzbach et al. found in (Stutzbach & Rejaie, 2006), a large portion of peers

are stable while short-lived peers constitute most sessions (as they have a high

Chapter 4. Evaluation 42

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

P
oi

nt
er

s

Time (x1000s)

0.2% FASE
0.2% FASE+, 1200
0.2% FASE+, 900

0.4% FASE
0.4% FASE+, 1200
0.4% FASE+, 900

(a) Evolution of the number of pointers.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

B
ac

ku
ps

Time (x1000s)

0.2%, 1200
0.2%, 900

0.4%, 1200
0.4%, 900

(b) Evolution of the number of backups.

Figure 4.8: Evolution of the number of pointers and backups in the Debian data
set.

turnover rate). Therefore, the probability of a node at the start of the simulation

to have a long uptime (relative to the length of the simulation) is not low. This is

confirmed by the session time distribution of the peers. Second, the granularity of

the snapshots (100s) which implies that every node that performs cleanup within

that interval contribute to the peaks.

During the first half of the querying phase the patterns are similar although

FASE+ is able to maintain a significantly higher number of pointers. Observe

that the replica growth is due to nodes with new items entering the overlay and

executing their initial replication algorithm. In the second half, after the announce

of new items is stopped, both algorithms lose pointers, albeit FASE loses them at a

higher rate whereas FASE+ is capable of maintaining the number of pointers after

an initial decrease. The behavior of FASE+ in the second half of the simulation

shows that the algorithm is capable of maintaining the availability of older items.

Figures 4.7(b), 4.8(b) and 4.9(b) proves that the number of backups is kept on

par with the number of pointers. Another interesting result is that the algorithm

maintains the number of backups and replicas even when each update is spaced

by 20 minutes.

FASE+ also reduces the number of live objects losing all their pointers. Fig-

ure 4.10 presents the cumulative count of objects that lost all their pointers present

in the overlay. In the figure, the lines that present the results for FASE+ with

various parameters overlap each other. As expected FASE with a replication fac-

tor of 0.2% loses more items than with a replication factor of 0.4%, as with more

Chapter 4. Evaluation 43

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

P
oi

nt
er

s

Time (x1000s)

0.2% FASE
0.2% FASE+, 1200
0.2% FASE+, 900

0.4% FASE
0.4% FASE+, 1200
0.4% FASE+, 900

(a) Evolution of the number of pointers.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25

B
ac

ku
ps

Time (x1000s)

0.2%, 1200
0.2%, 900

0.4%, 1200
0.4%, 900

(b) Evolution of the number of backups.

Figure 4.9: Evolution of the number of pointers and backups in the FlatOut data
set.

pointers there is a greater probability that some survive until the end of the sim-

ulation. FASE+ is able to substantially reduce the number of items that lose all

their pointers.

4.4.3 Query Performance

The average hop count and the hop limit for 90% of the queries are presented in

Fig. 4.11. Additionally, we observe in Fig. 4.12 and Fig. 4.13 the query hop count

evolution in 10 minutes time slots. This allows us to observe the relation between

the algorithm churn mitigation strategy and the hop count, both with unbiased

queries, in the first half, and with queries biased to old items, in the second half.

Figure 4.11 presents the average hop count and the hop limit for 90% success for

the RedHat and FlatOut sets, with an update interval of 1200s. As the RedHat and

Debian sets present similar results, we opted to present only the RedHat results.

In comparison with FASE, in the RedHat set FASE+ shows a lower average hop

count, less 84% and 78% hops for, respectively, 0.2% and 0.4% replication rates.

FASE+ shows a significant improvement in the hop limit, about 72% less for 0.2%

replication and 70% for 0.4% replication. The percentages in the FlatOut set are

similar. As FASE+ is able to maintain the number of pointers defined by the

replication ratio, the queries take less time to find a key than in FASE, that loses

pointers as an item age increases.

In the second half of the querying phase, FASE starts losing pointers of the

Chapter 4. Evaluation 44

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25

Ite
m

s
w

ith
ou

t p
oi

nt
er

s

Time (x1000s)

0.2% FASE
0.2% FASE+, 1200
0.2% FASE+, 900

0.4% FASE
0.4% FASE+, 1200
0.4% FASE+, 900

(a) Lost pointers in the RedHat set.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25

Ite
m

s
w

ith
ou

t p
oi

nt
er

s

Time (x1000s)

0.2% FASE
0.2% FASE+, 1200

0.2% FASE+, 900

0.4% FASE
0.4% FASE+, 1200
0.4% FASE+, 900

(b) Lost pointers in the FlatOut set.

Figure 4.10: Live items which lost all their pointers in the RedHat and FlatOut
sets. The Debian set is similar to RedHat.

old items while FASE+ mitigates that loss. This is confirmed by the following

figures, which plot the average hop count with the update interval set to 1200s.

In Figure 4.12 we can see the effect of the loss of pointers in the query resolution.

We omit the Debian set, due to the similarities with the RedHat set. While

new items are being announced, FASE+ maintains the hop count values even

when it increases in FASE; in the second half, where no new items are advertised

and therefore, queries are only addressed to old items, FASE shows an increase

while FASE+ is able to maintain the hop count. Figure 4.13 show the results of

queries over time for the FlatOut set. The FlatOut distribution has less nodes

with very short session times and less nodes with very long session times, and

presents higher hop counts when compared with the other sets. However, FASE+

is able to maintain the hop count during both halves of the querying phase.

4.4.4 SQR

We implemented the Scalable Query Routing (SQR) algorithm (see Sec. 2.5.6),

to be used as a comparison to FASE. SQR was chosen because it is an algorithm

which aims at efficiency and scalability in unstructured peer-to-peer networks using

a distinct approach from FASE. While FASE approach consists in dividing the

search space and increasing the probability of an item to be found in a specific set

of nodes, the SQR algorithm uses routing tables (which have to be maintained) at

each node to guide query forwarding.

Chapter 4. Evaluation 45

 0

 50

 100

 150

 200

 250

0.2% 0.4%

H
op

 C
ou

nt

Pointer Replication (%)

90%, RedHat, FASE
Avg., RedHat, FASE

90%, RedHat, FASE+
Avg., RedHat, FASE+

(a) RedHat

 0

 50

 100

 150

 200

 250

 300

 350

0.2% 0.4%

H
op

 C
ou

nt

Pointer Replication (%)

90%, FlatOut, FASE
Avg., FlatOut, FASE

90%, FlatOut, FASE+
Avg., FlatOut, FASE+

(b) FlatOut

Figure 4.11: Average hop count and hop limit for 90% in the RedHat and Debian
sets.

Table 4.3: Simulation parameters used by SQR.
Degree 10
Replication (#items) 0.01% (1), 0.04% (4), 0.08% (8), 0.2% (20), 0.4% (40)
d 8
m 40960
k 32

One could argue that, while FASE does not have the advantage of SQR, since

SQRs probabilistic routing tables provide hints to where the queries should be

directed, the pointer replication mechanism gives a better advantage to FASE in

finding rare items. For that reason, test cases where SQRs contents are replicated

will be presented.

Due to memory constraints imposed by its routing tables, SQR was evaluated

only up to degree = 10 topologies. SQR’s parameters d (the filter decay rate) and

k (the number of hash functions) were selected based on the values used in (Kumar

et al., 2005) to achieve a low cost for the maintenance of the routing tables; the m

parameter (the EDBF length) is lower than the value used in (Kumar et al., 2005)

as we used substantially less objects. Table 4.3 summarizes the parameters used

in SQR simulations.

Figure 4.14 compares FASE and SQR average hop count. SQR is not suited

to search for rare items: the average of the hop count for finding a unique item,

the value for 0.01% replication ratio, is of 1360. As there is enough information to

Chapter 4. Evaluation 46

 0

 50

 100

 150

 200

 250

 10000 12000 14000 16000 18000 20000 22000

H
op

 C
ou

nt

Time (s)

RedHat, FASE, 0.2%
RedHat, FASE, 0.4%

RedHat, FASE+, 0.2%
RedHat, FASE+, 0.4%

Figure 4.12: Query hop count split in 10 minutes time slots for the RedHat set.

route the query only at a close distance from the item, depending from the decaying

factor, the queries are forwarded in a random fashion most of the time. This results

seems to point that replication may be more adequate than building routing tables

as a strategy to increase the performance of unstructured overlays. We tested

SQR with its contents replicated with the same ratios observed in FASE pointer

replication. With one random walk and without the benefit of routing information,

FASE results are close to SQRs. This proves the benefit of the division of the search

space in multiple frequencies. Since the replication is equal, this division is the

only leverage of FASE in this case. The hop limit for 90%, presented in Fig. 4.15,

follows the same pattern of Fig. 4.14.

SQR does not perform well in overlays subject to churn. Like in the stable

network scenario, we first tested SQR with a unique item and set the interval of

filter dissemination to 60s. Then we compared SQR to FASE+ with a replication

ratio of 0.2%, using a single random walk and an update interval of 1200s in

FASE+. Table 4.4 presents the results for the RedHat set. Without replication the

failure ratio, that is, the number of queries that exceed their TTL (set to the size

of the network) is above 50%. Churn emphasizes the random behavior seen in the

stable simulations, leading to query hop counts that exceed the TTL. With 0.2%

replication SQR performance increases, but it is significantly lower than in stable

conditions (from, approximately, 120 to 1580 hops); FASE+ shows a performance

under churn as good as SQR in a stable network, in the same conditions.

Chapter 4. Evaluation 47

 0

 50

 100

 150

 200

 250

 300

 350

 10000 12000 14000 16000 18000 20000 22000

H
op

 C
ou

nt

Time (s)

FlatOut, FASE, 0.2%
FlatOut, FASE, 0.4%

FlatOut, FASE+, 0.2%
FlatOut, FASE+, 0.4%

Figure 4.13: Query hop count split in 10 minutes time slots for the FlatOut set.

Table 4.4: FASE+ and SQR subject to churn.
Hop Count Failure Ratio

FASE+ (0.2%, 1 random walk) 108 0
SQR (no replication) 2227 0.0560
SQR (0.2%) 1584 0.001

4.5 Summary

This chapter presented the evaluation of FASE and of the distributed monitoring

algorithm. In the first part of the evaluation, the test methodology was defined

and the parameters that achieved an adequate trade-off between the replication

cost and search efficiency were discussed. During the remainder of the chapter, the

algorithms were tested and compared to the SQR algorithm in stable and churning

networks.

Evaluation showed that FASE presents a valid search strategy. Additionally,

they suggest that increasing the availability of items through replication can be

a better approach for finding rare items when compared to the use of routing

information. It was proved that FASE+ successfully mitigates the effect of churn

in FASE and that it is able to cope with varying levels of churn.

Chapter 4. Evaluation 48

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01% 0.04% 0.08% 0.2% 0.4%

H
op

 C
ou

nt

Replication Ratio

FASE, 1 RW
FASE, 4 RW

SQR

Figure 4.14: Average hop count for FASE and SQR. Logscale on the x axis.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.01% 0.04% 0.08% 0.2% 0.4%

H
op

 L
im

it
90

%

Replication Ratio

FASE, 1 RW
FASE, 4 RW

SQR

Figure 4.15: Hop limit for 90% success for FASE and SQR. Logscale on the x axis.

Chapter 5

Conclusion and Future Work

Attaining scalability, low resource consumption and low query latencies in P2P

systems based on unstructured overlays is challenging. Search protocols such as

the original Gnutella are able to locate content within a low number of hops, but

use resource intensive, unscalable, algorithms. In order to scale, some protocols

build a topology organized in two tiers, with regular and supernodes. The su-

pernode function can be described as a “hub”, connecting regular nodes, indexing

the regular nodes contents and forwarding queries to other supernodes. In this

approach, the supernodes have to offer much more resources than their regular

counterparts, a feature that may not be desired by some users.

Search algorithms that have a moderate resource consumption, such as ran-

dom walks, may require a large number of hops to locate a resource, unless hints

for the best location are provided. However, hints may rapidly become out of

date due to the constant arrival and departure of nodes that characterizes P2P

overlay networks. There is no perfect solution that combines the lowest resource

consumption and query latency and the highest scalability, as structured overlays

are scalable but costly to maintain and have a unpredictable performance when

subjected to churn, and unstructured overlays search methods that achieve better

query performance are usually unscalable and resource intensive.

In this dissertation, we presented the Frequency-Aware SEarch (FASE) al-

gorithm, a search protocol over unstructured, non-hierarchical overlays. FASE

uniformly partitions the nodes and the keys used to locate items in a common

frequency space. The keys are replicated in the nodes that share their frequency.

Queries are mappable into the frequencies of the searched keys and directed to the

Chapter 5. Conclusion and Future Work 50

corresponding nodes. FASE does not impose membership constraints to the nodes

in the overlay.

Evaluation showed that FASE can achieve low hop counts when locating re-

sources in low degree networks where every participant contributes with similar

resources. The efficiency of FASE depends on the balance of the cost of repli-

cation, which happens once in the lifetime of an item, and search, which can be

repeated many times. If an item is to be searched for often, the replication costs

will be progressively lower, as the existence of more pointers, which implies a

higher replication cost, reduces the cost of all the queries.

FASE+, a distributed replica monitoring algorithm for FASE was implemented.

It was proved that this algorithm sustains FASE performance for different rates of

churn with a moderate additional cost.

FASE was compared with the Scalable Query Routing (SQR) algorithm. It

was shown that, in a stable overlay, under similar conditions FASE performance

is close to SQR. However, when the overlay is subjected to churn, FASE performs

better than SQR. The results suggest that, to increase the availability of items

(particularly, rare items), a replication policy is more adequate than the building

of routing indexes.

5.1 Future Work

FASE increases the availability of items using a replication policy. It was shown

that this policy is specially effective at improving the availability of rare items and

more effective than using routing tables (as in the SQR algorithm). However, when

searching for popular items, the validity of both approaches can be questioned as

both imply some overhead and any random search would find the items with some

good probability. SQR could avoid indexing popular items and its search could

be improved using multiple random walks, but it would not be able to leverage

on the search space partition as FASE does. A possible solution to estimate the

popularity of items and, based on that estimate, to adapt the number of pointers

disseminated by FASE, is to passively observe the query message traffic to find the

more frequent search keys (as the popularity of the searches has a close relation

to the availability of the items). This estimate does not need to be accurate but

to fall within the same order of magnitude.

Chapter 5. Conclusion and Future Work 51

FASE+ performs well when using distanced monitoring intervals, but its re-

source usage could be improved. For instance, if a node holding a pointer and

the node holding its backup happen to be neighbors, there is no need to wait for

the update interval to pass (or to establish an additional connection to check the

liveness of the pointer or backup); in this case nodes could detect failed pointers

or backups at the same time they detect membership changes.

We presented an evaluation of FASE based on the message costs and assuming a

constant degree network. The performance of the algorithm in different topologies

as well as an evaluation of the bandwidth and the load at each pear, should receive

further attention in the future.

Chapter 5. Conclusion and Future Work 52

Bibliography

BBC (2008). BBC iPlayer Help - What is peer-to-peer?

Http://iplayerhelp.external.bbc.co.uk/help/download programmes/peer2peer,

viewed at 8 Jun 2008.

Bloom, B.H. (1970). Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM , 13, 422–426.

Broder, A. & Mitzenmacher, M. (2004). Network Aplications of Bloom Fil-

ters: A Survey. Internet Mathematics Vol. I, No. 4: 485-509 .

Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows,

M., Chandra, T., Fikes, A. & Gruber, R. (2006). Bigtable: A distributed

storage system for structured data. Proceedings of the 7th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’06).

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N. & Shenker,

S. (2003). Making Gnutella-like P2P Systems Scalable. In SIGCOMM ’03: Pro-

ceedings of the 2003 conference on Applications, Technologies, Architectures and

Protocols for Computer Communications, 407–418, ACM Press, New York, NY,

USA.

Chen, J., Ramaswamy, L. & Meka, A. (2007). Message Diffusion in Un-

structured Overlay Networks. Sixth IEEE International Symposium on Network

Computing and Applications, 2007. NCA 2007., 126–133.

Cholvi, V., Felber, P. & Biersack, E. (2004). Efficient Search in Unstruc-

tured Peer-to-Peer Networks. In SPAA ’04: Proceedings of the Sixteenth An-

nual ACM Symposium on Parallelism in Algorithms and Architectures , 271–272,

ACM, New York, NY, USA.

Bibliography 54

Clarke, I., Sandberg, O., Wiley, B. & Hong, T.W. (2001). Freenet: A Dis-

tributed Anonymous Information Storage and Retrieval System. Lecture Notes

in Computer Science, 2009, 46–66.

Clip2 (2001). The Gnutella Protocol Specification v0.4.

Http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

Fessant, F., Handurukande, S., Kermarrec, A.M. & Massoulié, L.

(2004). Clustering in Peer-to-Peer File Sharing Workloads. In Proceedings of

the 3rd International Workshop on Peer-to-Peer Systems (IPTPS), San Diego,

USA. (2004).

Garbacki, P., Epema, D.H.J. & van Steen, M. (2007). Optimizing Peer

Relationships in a Super-Peer Network. In 27th International Conference on

Distributed Computing Systems (ICDCS 2007), Toronto, Canada.

Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M. &

Zahorjan, J. (2003). Measurement, Modeling, and Analysis of a Peer-to-Peer

File-Sharing Workload. SIGOPS Oper. Syst. Rev., 37, 314–329.

Indyk, P. & Motwani, R. (1998). Approximate nearest neighbors: towards

removing the curse of dimensionality. In STOC ’98: Proceedings of the thirtieth

annual ACM symposium on Theory of computing , 604–613, ACM, New York,

NY, USA.

Kumar, A., Xu, J. & Zegura, E. (2005). Efficient and Scalable Query Routing

for Unstructured Peer-to-Peer Networks. Proceedings IEEE INFOCOM 2005.

24th Annual Joint Conference of the IEEE Computer and Communications So-

cieties., 2, 1162–1173.

Leitão, J., Pereira, J. & Rodrigues, L. (2007). Hyparview: a member-

ship protocol for reliable gossip-based broadcast. In Proceedings of the 37th

Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works , 419–429, Edinburgh, UK.

Liang, J., Kumar, R. & Ross, K. (2005). The Kazaa Overlay: A Measurement

Study. Computer Networks (Special Issue on Overlays).

Bibliography 55

Lv, Q., Cao, P., Cohen, E., Li, K. & Shenker, S. (2002). Search and

Replication in Unstructured Peer-to-Peer Networks. In ICS ’02: Proceedings of

the 16th International Conference on Supercomputing , 84–95, ACM, New York,

NY, USA.

Márk Jelasity, G.P.J., Alberto Montresor (-). PeerSim: A Peer-to-Peer

Simulator. Http://peersim.sourceforge.net.

Maymounkov, P. & Mazières, D. (2002). Kademlia: A peer-to-peer informa-

tion system based on the xor metric. In IPTPS ’01: Revised Papers from the

First International Workshop on Peer-to-Peer Systems, 53–65, Springer-Verlag,

London, UK.

Qiao, Y. & Bustamante, F.E. (2006). Structured and unstructured overlays

under the microscope: a measurement-based view of two p2p systems that people

use. In ATEC ’06: Proceedings of the annual conference on USENIX ’06 Annual

Technical Conference, 31–31, USENIX Association, Berkeley, CA, USA.

Rhea, S., Geels, D., Roscoe, T. & Kubiatowicz, J. (2004). Handling Churn

in a DHT. In Proceedings of USENIX’04 Annual Technical Conference.

Saroiu, S., Gummadi, P. & Gribble, S. (2002). A Measurement Study of

Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia Computing

and Networking (MMCN ’02).

Sripanidkulchai, K., Maggs, B.M. & Zhang, H. (2003). Efficient Content

Location Using Interest-Based Locality in Peer-to-Peer Systems. In INFOCOM .

Stutzbach, D. & Rejaie, R. (2006). Understanding Churn in Peer-to-Peer

Networks. In IMC ’06: Proceedings of the 6th ACM SIGCOMM Conference on

Internet Measurement , 189–202, ACM, New York, NY, USA.

Stutzbach, D., Rejaie, R. & Sen, S. (2005). Characterizing Unstructured

Overlay Topologies in Modern P2P File-Sharing Systems. In IMC’05: Proceed-

ings of the Internet Measurement Conference 2005 on Internet Measurement

Conference.

Tsoumakos, D. & Roussopoulos, N. (2003). Adaptive Probabilistic Search

for Peer-to-Peer Networks. In P2P ’03: Proceedings of the 3rd International

Bibliography 56

Conference on Peer-to-Peer Computing , IEEE Computer Society, Washington,

DC, USA.

Yang, B. & Garcia-Molina, H. (2002). Improving Search in Peer-to-Peer

Networks. In Proceedings of the 22nd International Conference on Distributed

Computing Systems , 5–14.

	List of Figures
	List of Tables
	Introduction
	Motivation and Contribution
	Organization

	Related Work
	Overlay Topologies
	Peer-to-Peer Networks Characterization
	Participation Dynamics
	Content Distribution

	Search Algorithms
	Flooding
	Random Walks

	Indexing
	Bloom Filters

	Search Protocols in Unstructured Overlays
	Gnutella
	Hierarchical Overlays: Kazaa
	Semantic Communities
	Adaptive Probabilistic Search
	Gia
	Scalable Query Routing

	Summary

	Search In Unstructured Overlays
	Frequency Aware Search
	Assumptions
	Pointer Replication
	Item Retrieval

	Monitoring Algorithm
	Backup Creation
	Stale Items Update

	Implementation
	Key Definition
	Dissemination of Multiple Keys
	Random Walk Forwarding

	Discussion
	Properties
	Number of Frequencies
	Locality Sensitive Hashing

	Summary

	Evaluation
	Methodology
	Experimental Parameters
	Number of Frequencies and Degree

	Stable Network Evaluation
	Churning Network Evaluation
	Churn Model
	Pointer and Backups Evolution
	Query Performance
	SQR

	Summary

	Conclusion and Future Work
	Future Work

	Bibliography

