
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2004

Efficient Randomized Search Algorithms in Unstructured Peer-to-Efficient Randomized Search Algorithms in Unstructured Peer-to-

Peer Networks Peer Networks

Ronaldo A. Ferreira

Murali Krisna Ramanathan

Ananth Y. Grama
Purdue University, ayg@cs.purdue.edu

Suresh Jagannathan
Purdue University, suresh@cs.purdue.edu

Report Number:
04-022

Ferreira, Ronaldo A.; Ramanathan, Murali Krisna; Grama, Ananth Y.; and Jagannathan, Suresh, "Efficient
Randomized Search Algorithms in Unstructured Peer-to-Peer Networks" (2004). Department of Computer
Science Technical Reports. Paper 1605.
https://docs.lib.purdue.edu/cstech/1605

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EFFICIENT RANDOMIZED SEARCH ALGORITHMS
IN UNSTRUCTURED PEER-TO-PEER NETWORKS

Ronaldo A. Ferreira
Murali Krishna Ramanathan

Ananth Grama
Suresh Jagannathan

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR 004-022
July 2004

Efficient Randomized Search Algorithms III

Unstructured Peer-to-Peer Networks
Ronaldo A. Ferreira Murali Krishna Ramanathan Ananth Grama Suresh Jagannathan

Department of Computer Sciences - Purdue University
West Lafayette, IN, 47907, USA

{rf, nnk, ayg, suresh}@cs.purdue.edu-
Abstract-Searching for objects in unstructured peer

lo-peer (P2P) networks is an important problem, and
one that has received recent attention. In this paper, we
present a simple, elegant, yet highly effective technique
for object location (including rare objects). Our scheme
installs object references at a known numhu of randomly
selected peers. A query to the object is routed to a prede
Icnnined number of random peers, selected independently
of (he installation procedure. The high probability of a
non-empty intersection between these two sets forms the
basis for our search mechanism. We prove analyticnUy,
and demonstrate experimentally, that our scheme provides
high probabilistic guarantees of success, while incurring
minimal overhead.

EITedive realiz.ation of the approach builds on a number
of recent results on generating random walks, and effi
ciently estimating network size for unstructured networks.
The presence of failures (departures) in the network
pose additional challenges. Finally, effective strategies for
installing references (0 replicas are critical for optimizing
the lradeoffbetween installation overhead and search lime.
We address these issues in an analytical framework and
validate our results on a variety of real and synthetic
topologies. Our results generalize to related problems of
estimating and controlling object replication, and elimi
naling duplicates in large-scale unstructured networks.

Index Terms-Syslem design, Simulations. Mathemati
cal optimization, Sl.atistics

I. INTRODUCTION

Search is a fundamental service in peer-to-peer (P2P)
networks, one that has received considerable research
attention [1], [2], [3], [4], [5]. In contrast to structured
networks. search in unstructured networks is consider
ably more challenging because of the lack of global rout
ing guarantees provided by the overlay. In spite of this
apparent disadvantage, unstructured P2P networks have
several desirable properties not easily achieved by their
structured counterparts - they support inherent hetero
geneity of peers, are highly resilient to peer failures, and
incur low overhead at peer arrivals and departures. These

characteristics make unSlrUclured networks attractive to
users who cannot commit their resources for sustail1t:d
periods of time. The attractiveness of these features is
reflected in the popularity of such networks in practice.
Gnutella networks, like Limewire [6], for example, have
peak populations in the order of millions of users.

In typical unstructured P2P networks, such as Gnutella
[7], a peer searches by flooding a (hop) limited neigh
borhood. This method, though simple, does not provide
any guarantee that an object existing in the network
will be found. Moreover, flooding does not scale well
in tenns of message overhead, since each query may
generate a significant amount of traffic. Several recent
studies have addressed these completeness and scalabil
ity issues. In [8], Cohen el al. improve the efficiency of
search in unstructured P2P networks by replication. They
evaluate two different replication strategies, unifonn and
proportional, and conclude that an optimal replication
strategy lies between the two schemes. Their replication
scheme is based on access frequencies of objects. The
focus of our work is on locating any object (independent
of its access frequency) in an efficient manner. In this
sense it complements the work of Cohen and Shenker,
and other replication and caching mechanisms. In [1],
Lv et a1. show that search using random walk can
reduce network traffic by up to two orders of magnitude
when compared with flooding-based techniques. Yang
and Garcia-Molina [9] also present several strategies for
reducing the overhead of search in unstructured P2P
networks. In one approach, called iterative deepening,
a node searches the network by querying all its direct
neighbors (flooding); if the query is not resolved, the
depth of the flooding is incremented. This technique is
related to the expand-ring algorithm proposed in [1].
These schemes aim to provide search success guarantees,
while limiting overall messaging overhead.

The objeclive of providing search guarantees, while
simultaneously minimizing messaging overhead, is im
ponant, and has been solved elegantly for structured

P2P networks. In Lhese environments [3], [4], [5], nodes
participate in more involved protocols for joining and
leaving the network; these protocols guarantee that a well
defined topology is always preserved. A single primilive
is provided to search for an object: given Lhe object name
(or hash code), return the IF addresses of nodes that
currently have a copy of the object. Using a a distributed
hash table (DHT) abstraction these techniques typically
provide an upper bound of O(logn) on overlay hop
count for queries, where n is the total number of nodes
in the network. This upper bound is achieved using
O(logn) routing information per node. Unfortunately,
as mentioned above, even though DHT systems provide
detenninistic location services, they may incur signifi
cant overheads for maintaining the network, and cannot
exploit node heterogeneil:y. For this reason, they are less
suited to environments wiLh frequent node arrivals and
departures.

In this paper, we present a simple, elegant, and highly
effective technique for object location based on a variant
of the birthday paradox. Our scheme, installs object
references at a known number (O(-yJ1l) of randomly
selected peers for small /. By choosing / to be Jln n,
we show that any search will succeed with high proba
bility (w.h.p.').

A query to the object is routed to O(-yJ1l) random
peers, selected independently of the installation pro
cedure. The high probability of a non-empty intersec
tion between these two sets forms the basis for our
search mechanism. Specifically, we prove analytically,
and demonstrate experimentally, that our scheme pro
vides high probabilistic guarantees of success, while
incurring minimal overhead, even for objects with very
low popularil:y (replication). Our experiments also reveal
that even for very small "(, the likelihood of a query
failing is negligible.

While the intuition underlying our search protocol
is easily stated, effective realization of the approach
builds on a number of recent results on generating
random walks. and efficiently estimating network size
for unstructured networks. Gkantsidis et at. [2] show
that it is possible to choose k peers randomly in an
unstructured network by first perfonning a random walk.
of length O(logn)Z and then proceeding with the random
walk for k more hops. The last k peers encountered
in the random walk represent a uniform sample of the

lThroughOUl this paper, w.h.p. (wi,h high probabililY) denotes
probability 1 - *.

2The exaci le~~lh of the random walk involves the second eigen
value (>'2) of the network graph. II is shown in [2J Ihat good global
connectivity Inlnslates into constant),,2, which is the case for P2P
networks.

2

network. A number of researchers have addressed the
problem of estimating network size [10], [11], [12].
In [10], for example, Horowitz er 01. present an esti
mation scheme that allows a peer to estimate the size
of its network based only on local information with
low overhead by maintaining a logical ring. Mayank
et at. [11] propose an estimation scheme based on the
birthday paradox [13][page 45]. The paradox is that for
-Iii independent samples from a population of size n, the
probabilil:y that two samples have the same value is at
least 1/2. A peer estimates the network size by sending
a message on a random walk and using the hop count
when the message returns to the peer. IE is shown that it
takes approximately -Iii hops for a message to return to
its sender. Psaltoulis et at. [12] propose a network size
estimate algorithm for large and dynamic networks by
using sampling techniques.

The presence of node failures or departures (churning)
in the network pose additional challenges to defining a
robust search protocol. To account for this, we derive an
alytic expressions for augmented reference instaUations
as well as refresh procedures. Effective strategies for
installing references to replicas are critical for optimizing
the tradeoff between installation overhead and search
time. If reference pointers are installed by each replica,
the associated overhead is likely to be high for popular
items while yielding limited benefit in terms of search for
less popular objects. Conversely, if none of the replicas
install reference pointers. peers will not be able to find
nearby copies of replicated items. To address this. we
present a novel approach to controlled reference instal
lation. which we demonstrate strikes a desirable balance
between reference installation and search overheads. We
address these issues using an analytical framework, and
validate our results on a variety of real (Gnutella) and
synthetic topologies. In [14], Gummadi et 01. perform a
detailed measurement study of p2p networks. We use the
results on failure characteristics of the peers to evaluate
our search mechanism, when peers fail or depart in the
system.

The techniques presented in this paper generalize to
a number of related problems. These include, estimating
and controlling the replication factor of objects, and du
plicate elimination of object copies in large unstructured
networks. Each of these problems can be accomplished
with limited global knowledge and with a message
complexity of O(-Iii).

A. Technical Contributions

We summarize the main contributions of this paper as
follows:

1) A novel search prolocol to locate any object (in
cluding rare objects) in unstructured P2P networks
that provides high probabilistic guarantees, while
incurring minimal messaging overhead.

2) Analytic and experimental evaluation of aug
mented reference installation and refresh protocols
to account for node failures.

3) Techniques for controlled replication, that balance
overheads of replication and search.

4) Extensions of the algorithm to related problems
in estimating replication factor of objects, and
duplicate elimination.

II. PLACEMENT AND SEARCH PROTOCOLS

As mentioned, the proposed query mechanism relies
on installing a known number of references to each
object randomly across the network. The correspond
ing search algorithm queries an independently chosen
random set of peers. The intersection of these two sets
results in a successful search. We describe each of these
steps in delail.

A. Installing References to Objects

To share its content with Olher peers in the network, a
peer must install references to each of its objects at other
peers. This is similar to the process of publishing content
in structured peer-to-peer networks. The main difference
is that in our approach, a peer p can publish an object
o by installing references to 0 at any random set r p of
peers selected independently of O's identifier (or hash).
There are three kinds of overheads involved due to this
mechanism.

• Memory overhead: Since we install references (and
not replicas of actual objects, since we are con
cerned with locating me object), the memory over
head is not significant.

• Processing overhead: If every peer in the network
installs references at O(vn) (rp = O(J7i)) other
peers for an object, on an average O(.,fii) references
are installed at any peer. When a search message
is received, the peer can perfonn the search in
O(logn) time and when an installation message
is received, it can insert the reference in O(log n)
time.

• Communication overhead: The overhead of messag
ing and keeping information consistenl is the most
important one. It includes overhead for installing
references and searching for objects. Trivially, if
we do not install any references, search overhead
is O(n) and if we install O(n) references, search
is local. In both cases, the communication overhead

3

is O(n) to locate any object in the network. Here,
we show an asymptotically superior scheme which
involves O(J1i) overhead for installing references,
and O(vn) overhead for locating objects.

An object can be published using any form of iden
tification, for example, a file name or meta infonnation
about the object. This is in contrast to structured peer-to
peer networks, where the object and the node identifiers
where it resides are tightly coupled. To provide guaran
tees that content published by a peer p can be found
by any other peer in the network, three fundamental
questions need to be answered:

1) Where should the nodes in r p be located in the
network?

2) What is the size of the set r p?
3) When a peer q attempts to locate an object, how

many peers must q conlact?

The answer to the first question, in our framework,
is extremely simple - we select r p in such a way that
any node in the network has an equal probability of
belonging to the set. This selection criteria is important
for two reasons - it provides a measure of fault tolerance,
i.e., in the event of a node failure, the node can be easily
replaced. Secondly, as we shall see, in an unstructured
network, this facilitates search, as there is no consistent
global routing infrnstrucmre. Since conventional P2P
networks are expected to scale to millions of peers
and nodes only connect to a small set of other nodes,
creating a unifonnly sampled set in the network is not
a straightforward task. To accomplish this, we rely on
the recent work of Gkantsidis et 01. [2], who show that
it is possible to construct a uniform sample of size k in
an unstructured network by performing a random walk
of length n(logn) and then proceeding with the random
walk for k more hops. The last k peers encountered in
the walk represent a unifonn random sample.

The second and third questions above can be answered
using the birthday paradox as described above. This re
sult has been used in various distributed algorithms [15].
[11]. For example, to define a probabilistic quorum,
quorum members are chosen unifonnly at random from
all members in the network, and the quorums have size
,.;n. In [15], Malkhi et 01. show thaI two quorums
chosen in this manner intersect with probability at least
1- e-..,.2. However, this result is presented in the context
of distributed systems in which nodes have complete
knowledge of all other nodes in the system, and in which
the population of nodes is stable.

Using the results above, the protocol used by a peer
to publish its content follows naturally. To guarantee
search success w.h.p., we set, = In n. In this case,

4

C. Object Search

A peer p searches an object in the network by perfonn
ing a random walk. The random walk message contains
the query information and a time-to-live (TTL) field set
to ,.,fii+logn. Nodes along the random walk process the
query by searching their local content and the reference
pointers installed by other peers. If a peer can respond
to a query, it sends the response directly to the querying
peer and stops !.he random walk, Le., it does not forward
the random walk message. If a peer cannot respond to
a query, it decrements the TTL field by one and, if
the resulting value is greater than zero, forwards the
message. If the TIL value reaches zero, the message is
not forwarded. Figure 2 presents the algorithm that needs

Fig. I. Join algorithm.

we achieve an analytic probability of success to be
1 - nJm. In our experiments, we demonstrate that for
typical overlay topologies, even setting, to a small
constant (e.g., 2) results in successful search for all
queries, including queries for unpopular objects. Upon
joining the network, a peer p perfonns a random walk
of length ,.,fii + log n. In the random walk message, p
includes infonnation about its content and asks the peers
along the random walk to install references to its content.
Peers that are reached by the random walk send back to
p their identification (IP addresses). Node p uses these
peers as its set r p. Figure 1 illustrates the algorithm a
peer executes on joining the network. In the algorithm,
M.SSIZE specifies !.he size of the set r p and is used by
peers along !.he random walk to determine if the content
(Contentp) present in the message must be installed or
not. The first log n peers in the random walk do not
install the content, they simply forward the message.

Tlleorem J.' If f is the percent of nodes leaving the
network in a given time period, f * Irpi new references
need to installed after the time period.

Proof: Since peers in the network leave frequently,
a peer p must ensure that approximately ,.,fii peers (l :s:
, < In n) in its set r p are still present in the network

r.-;----:;------------------, to guarantee the high probability of successful searches.
Join of p: As peers in r p are selected uniformly at random from

• Connect to J(peers already in the network. where the network. a node can be easily replaced by selecting
I< is a constant chosen independently by p. uniformly, at random, a new node from the network. If a

• Estimate the network size and assign it to n. percentage f of nodes leave the network. it is expected
• Create a message M as follows: that approximately f percent of the nodes from r p also

M.TIL =logn + Iii leave the network. Therefore. p must periodically select
M.SSIZE = .,fii f *lrpi new peers from the network to replace nodes in

_ M.lype =SEARCH r p that might have left me network. •
_ M.sender = (IPaddTp,PortNop) In [14], Gummadi et al. show that in the Gnutella

M.data = Metadata(O) network 50% of the nodes leave the system every hour.
• Send M to one of its J(neighbors selected un i- If we assume the same departure model, a peer p sharing

formly at random. an object must add ¥ peers hourly to r p'

• If M is answered by a peer at distance i, with
probability -j;; execute the following: B. Controlled Installation of Objecl References

Create a message M' as follows: The question of whether the replica of an object in-
* M'.TTL = log n + ,.,fii stalls a different set of reference pointers is an important
* M'.SSIZE =,.,fii one. If none of the replicas install reference pointers,
* M'.type =INSTALL peers would be routed to possibly distant copies of ob-
* M'.sender =(IPaddrp , PortNop) jects, even though replicas might exist on nearby nodes.
* M'.data = Meladata(O) Conversely, if every replica inserts reference pointers,
Send M' to one of its J(neighbors selected popular objects may attempt to install reference pointers
uniformly at random. on all peers. Neither of these extremes is desirable. To

'--- ~~ -' avoid this situation, we use a probabilistic algorithm to
determine if a node should install reference pointers to
its objects. When a peer p joins the network, it sends
a query for an object using a random walk of length
.,[ii. If the query is unsuccessful, then p installs the
pointers with probability one. If the query is successful
and the responding peer q is at a distance 1 from p
(where distance is the number of hops the random walk
traversed), then p installs the pointers with probability
-jn. We show that this algorithm significantly reduces the
number of reference pointers to popular objects without
significantly impacting the performance of the search
protocol.

Search: To search for an object 0, peer p executes the
steps below:

• Create a message M as follows:

- M.TTL =log n + 'Yvn
- M.type =SEARCH
- M.sender = (IPaddrp,PortNop)
- M.daUl = Metadata(O)

• Send M to one of its J(neighbors selected uni
formly at random.

Fig. 2. Search algorithm.

to be executed by peer p to initiate a search. Figure 3
shows the algorithm executed by peers along the random
walk when a message is received.

D. Analysis of Search Success

Theorem 2: Any object in the network can be found
w.h.p in O(In hl n) hops.

Proof' Let 0 be the object installed at a peer p.
The failure of a search on p's content can be analyzed
by defining an indicator random variable X p in the
following manner:

l,if rpn T q = 0Vq: q =1= p
0, otherwise

where r p is as defined before, and T q is the set of
peers present on the random walk initiated by any peer
q issuing a query.

The probability that Xp is equal to one, i.e., r p

does not intersect willi any T q set, Pr{Xp = IJ =

(_",),.;n
1 - 7 . The expected value of X p , E[XpJ ~

e-"Y~. When i = .JIn n, object 0 cannot be located with
probability k.

Hence, any object in the network can be found w.h.p
in O(vnlnn) hops. •

This analysis shows that search for even rare objects
succeeds w.h.p. The probability of a query succeeding
in our algorithm when the TTL of the random walk
for search is fixed at m is 1 - e-~. For the same
TfL, the probability of the query succeeding in a pure
random walk algorithm, described in [2], is 1 - e-~.

The implications of the difference in these bounds can
be better explained with an example. Consider a scenario
where there are 106 peers in the network and a single
copy of an object is present on a single peer. To search
the object with the TTL set to 10, 000 using a pure
random walk [2], the probabilily that the object is found

5

Process Message: On receiving a message M, peer p
executes the steps below:

• If M.type =INSTALL
- If M.TTL < M.SSIZE

* Install and index the pointers in M.data
locally.

- Sets M.TTL = M.TI1... - l.
- IfM.TTL>O

* Send M to one of its K neighbors selected
uniformly at random.

- Otherwise, do not forward M.

• If M.type =SEARCH.
- Search the local index for M.data.
- If p has a pointer to M.data, it creates n new

message M' as follows:

* M'.type =RESPONSE
* M'.sender =(IPaddrp , PortNop)

* M'.data = (IPaddrq,PortNoq), q is the
peer that has a copy of the object.

* Send M' to M.sender.

- If the query cannot be answered by p,

* Set M.TIL =M.TIL - l.
* Send M to one of its K neighbors selected

uniformly at random.

• If M.type = RESPONSE, it contacts the node ad
dress present in M.data for the object O.

Fig. 3. Algorithm for proccssing mes5llges.

is approximately 0.01. However, using our algorithm
(with i = 2.5), pointers to lhe object are installed at
2,500 peers. The probability that the object is found
using our approach with TI1... set to 2,500 is 0.99.
Therefore, with half of the messages (including the mes
sages for installation of pointers), we guarantee almost
deterministic detection of the object.

III. EXPERIMENTAL EVALUATION

In this section, we study the perfonnance of our
search technique and compare its performance with a
pure random walk algorithm, where reference pointers
to objects are not installed. In [2], Gkantsidis el ai. show
that a pure random walk algorithm3 for searching yields
better performance than search by flooding. Therefore,
we present detailed results of comparisons to the random

JWe refer 10 this algorithm as pure r:mdom walk in the rcst of (he
pllper.

,

I: ..-------- ...,

~-e-.--=---;-~._~~~~

I-

'.

6

Fig. 4. Degree dislribUlion for the three diITerent topologies used in our experiments.

walk algorithm only. Comparisons to flooding-based
schemes show that our technique is significantly superior.
Our simulation setup closely resembles the setup in [2] to
facilitate accurate comparisons between the algorithms.

We simulate the algorithms over three different topolo
gies. The number of nodes in each topology is fixed to
match the number of nodes in a trace of a real Gnutella
network.

1) Real topology trace: This is a partial view of the
Gnlltella network that is available at [16]. The
number of nodes in this particular view is equal
to 30,607. We use this value as reference for the
other topologies in order to compare the impact of
the topologies on the results_ An illustration of this
topology is also available at [16].

2) Random graph: A nonnal random graph with
30,607 nodes generated using the Georgia Tech.
(GT-ITM) topology generator [17].

3) Power-law graph: a random graph where the de
grees of the nodes follow a power-law distribution.
Power-law graphs have been extensively used to
model network topologies. It is believed [14] that
the topologies of peer-to-peer networks can be
modeled using power-law graphs. We generate a
power-law graph with 30,607 nodes, where the
maximum degree is chosen to match the maximum
degree of a node in the Gnutella trace. The node
degrees are chosen from a power-law distribution,
and once the degrees of the nodes are chosen, the
nodes are connected randomly.

The motivation for selecting three different topologies
is to demonstrate that the improvements offered by
our algorithm generalize to various commonly accepted
network models. The node degree distributions for all
the topologies are shown in Figure 4.

In our experiments, we assume that one object is the
target of all searches and that the object is replicated at
a fraction 0 of the peers. The fraction 0 is varied from
0.0033% to 0.12% for most of the experiments. When

o = 0.0033%, there is only one copy of the object in
the entire network. We also consider the case when an
object is extremely popular and is replicated at 50% of
the nodes_ These values are chosen (0 simulate objects of
differing popularity, from very rare objecls to extremely
popular ones.

As is well known, P2P networks are characterized
by a very dynamic population in which nodes join and
leave the network frequently. The dynamic nature of
the network population is believed to be an important
parameter in these systems. In a system that involves
publication of reference pointers, it becomes even more
important to examine the impact of varying conditions.
The different scenarios used to account for node dynam
ics are as follows:

1) Static: All the peers in the system are present with
no departures and change in connections.

2) Dynamic: All the peers in the system are present
throughout the simulation. However, we periodi
cally select two edges at random (selected uni
formly) and exchange their end points. This char
acteristic is closely related to the operation of a
real P2P system, where nodes frequently choose
to reconnect to other nodes. The same scenario is
also used in [2].

3) Failures without updates: In this scenario, when a
peer leaves the network, it is replaced by a new
peer. The neighbors of the new peer are chosen
randomly from the peers in lhe network and are not
related to lhe peer leaving the network. We assume
that the object owners do not leave the network
during the simulation, but peers holding pointers
to the objects can leave. In this specific setup, the
object owner does not update the pointers to new
peers in the network. Pointers to the objecls are
installed only at lhe beginning of the experiment.

4) Failures with updates: This is the same as the
previous scenario, except lhat lhe owner of an
object periodically (after T units of time) installs

7

--._---------,

'" ''--=.=.=.. '="..,-,....~=~.~=....~~.:~..~~

approximately 100 while the pure random walk method
needs approximately 20, 000. This is an improvement of
over two orders of magnitude. The number of hops for
installation of pointers in our method is not accounted
for. Even including the installation of pointers for every
search (the worst case assumption), the average number
of hops will slill be less than 300 (we use, = 1). a 600
fold improvement.

The dynamic scenario is similar to static one as
both the methods involved are random walks and are
independent of edge connections (on an average). When
peers fail without refresh, it can be observed that the
average number of hops has a slight increase. However,
when peers fail with refresh, the average number of hops
decreases slightly due to periodic refreshing of pointers
onto new nodes. Since the owners of the object do
not fail in the network and only the others (including
peers which installed pointers to the object) fail, pure
random walk is not affected by failures without refresh.
When the object popularity increases to 0.12%, the
performance improvement is still more than one order of
magnitude. We can also observe in the figures that the
average number of hops is much smaller than Jnin n (in
this case. 562 approximately), the suggested theoretical
maximum length of the random walk for our protocol.

In the next experiment. we investigate the percentage
of queries that fail when the TIL of the random walk
is bounded. In this scenario. all nodes in the network
issue one query for the object. We assume that the
queries are issued after the object owners have already
installed pointers to the objects. The random walk will
end whenever a response to a query is found or it has
reached its TIL.

Figure 8 shows the percentage of queries failing for
different topologies as a function of object popularity_
We experiment with two values of, (, = 1 and, = 2).

·0' ---=,-=-o=---='-~o~, -oj:;- 002 0... .oo.oo 0.,.--
Fig. 7. Aver.lge number of hops in (he random.graph topology.

'-r----------..-,;====Cl.....--......,........_ .---_ _.----......_--.......,........-_.
F _

''''~,
~.=~.=.==~~--

·oL--,;;;--,;;--,:;---,;;,-...--o',, Olll. 0... 0... ., ...--

Figures 5, 6. and 7 presentlhe average number of hops
to successfully resolve a query as a function of object
popularity for different topologies and compares our
approach to the pure random walk. The average number
of hops is on a log scale. As can be observed for the
slatic case, when the object is present at a single peer, lhe
average number of hops to successfully find the object is

'-r--~-~~-~---'-;====:"l....._---------------,........- --
F •__

--------- ._...:..-=...~=~~~~

~

Fig. 6. Average number of hops in (he power-law topology.

Fig. 5. Avcr.lgc number of hops in the Gnulclla topology.

its pointers in a set of JioV peers picked unifonnly
at random from the network, where f is the
percemage of peers leaving the network in a period
equal to 7. In [14], Saroiu et aJ. show that 50% of
the peers leave the network in a period of one hour.
In this case, f = 50 and 7 = 60.

We first investigate the average number of hops nec
essary to resolve a query. In this scenario, all nodes in
the network issue one query for the object. We assume
that the queries are issued after the object owners have
already installed pointers to the objects. We simulate
random walks of unbounded length, the random walk
stops only when the object or a pointer to it is found.

'"'---
'==~==C".-,~~~"'~~.==

8

I
0"
!,

'.
m_"""" _. m_n_"'_"'_
0.. DO' 0'"-_. .' '"'

• f ==;::;::==;::;::==;::;::==;;:;==;;;::::=;J
:,- oo:z 0.. 000 DOl .0 012--

Fig. 8. Percentage of failures of a query us a fUIl~lion of object popularity. TrL = 'Yvn. lefl, = 1 and right 'Y = 2.

In our approach, when there is a single object present
in the network and 'Y = 1, the influence of topology
is quite significant. The random graph topology has the
lowest failure rate at 15% with the highest being 39%
in a power Jaw topology. We believe that this is a direct
consequence of the power law narure of lhe graph. The
intuitive reasoning is that the random walk needs to take
more hops from a high degree peer to move from one
locality to another (the locality being defined as the con
centration of peers around a high degree peer). Also, this
corroborates our analysis that the probability of failure of
a search is approx.imately equal to ~. Here I = 1 and
the probability of failure is approximately 0.37. With
increase in object popularity, the failure percentage of
our method approaches zero rapidly. Pure random walk
almost always fails when there is a single object in the
network and with increase in object popularity, around
20% of queries are successful. In our approach almost
all the queries are successful when I = 2, while the pure
random gives a maximum of 20% success rate when the
object popularity is increased to the highest value used
in our experiment.

The number of messages per peer, in our approach as
well as the pure random walk approach, is a function of
the degree of a peer in the network. A higher number
of messages are processed by peers with high degree.
In comparison with the pure random walk approach, the
number of messages per peer in our method is at least 20
times and sometimes 900 times less lhan the messages
in pure random walk. Figure 9 shows the number of
messages per peer for different topologies when the
network is static. The number of messages is represented
on a logarithmic scale.

Another parameter that we investigate in our ex:peri
menls is the percentage of peers owning an object thaI
install pointers to an object in the network. In this

scenario, the popularity of an object is varied from
0.0033% to 50%. The experiment is conducted for
different topologies under static conditions. There are
no searches carried out after the installation phase.

Fig. 10. Percent of objecl owners inslalling pointers.

Figure 10 shows, on a logarithmic scale. the percent
age of object owners installing pointers to an object
for different topologies. When almost 50% of the peers
own a copy of the object, only a very small percentage
(0.0002) of the peers owning the object initiate a random
walk to install pointers to the object. This is result is due
to our algorithm for controlling installation of pointers.
In this algorithm, a peer installs pointers to its object
with probability proportional to the length of the random
walk for querying the object.

In the next experiment, we study the changes in
the average number of hops with failing peers. In this
scenario, after lhe completion of the installation phase,
we remove a fraction f3 (0.1% ::; f3 ::; 50%) of peers from
the network. Peers that are owners of the object are never
removed. The same number of peers that are removed

-"- ----- -'-'- ---
9

i
j •

'. '.

----~

Fig. 9. Number of messages per peer.

Fig. II. Average number of hops as a func!ion of failure rale of
peers. when objecl popularity=O.l%.

'.L===,,==,=.==.==..==_==..=:::;.==.=::1_,--

compared to the cost of finding an object using the
pure random walk method.

• The approach is robust under realistic failure mod
els.

• Controlled replication helps in limiting lhe number
of peers having a replicated copy of an object
installing a pointer to it.

IV. ApPLICATION TO RELATED PROBLEMS IN

OBJECT REPLICATION

The general framework presented in this paper can
be applied to a number of related problems. These
include estimation of the number of replicas of an
object, controlling replication for caching mechanisms,
and duplicate elimination. We motivate Ihe imponance
of these problems using a simple example. Consider
an archival P2P system in which each peer archives its
content probabilistically based on the number of peers
that also own the same file in lhe network. If a peer is
not a unique owner of the file, then archiving the file at
each peer independently results in storage redundancy
(albeit to Lhe benefit of improved end-user latency).
Funhennore, it is quite common in a P2P system for
multiple peers to own a copy of the same file. Hence,
it becomes important to estimate the number of copies
present in the network and eliminate redundant copies.

In general, our method can be extended to any op
eration that requires estimating the number of nodes K
interested in perfonning a specific operation with the
following restrictions:

1) The identity of all the nodes involved is not known.
2) Broadcasting over the entire network is not a

plausible solution.
3) Approximate estimation is sufficient.

Each peer interested in perfonning the estimate sends
an estimate message [Q a set of tvn peers chosen
unifonnly at random from the network. This can be
performed by each peer doing an independent random
walk on the network. After this, each peer performs

-~-------. -----

.- ~~~~~-==~r- __-.._ .._---'-'-_._l.orw-...__--------"'-_--.-------_.__._------

.-

Figure 11 shows the average number of hops needed
for a query to be successful as function of peer failures
for different topologies. The object popularity is set
at 0.1%. With increase in the failure percentage, there
is linle increase in the average number of hops for a
successful query using our approach. Pure random walk,
as expected, requires more hops for a successful query.

The conclusions of the experiments are:

• Installing pointers to an object at vn peers selected
unifonnly at random from the network results in
probability of success close to one for queries
initiated from any node in the network.

• The cost associated with a search is drastically re
duced (by orders of magnitude) using our approach
and the number of messages processed per each
peer is reduced as well.

• The cost of the installation phase is negligible when

are immediately reintroduced to keep the network size
constant. The new peers, however, connect to different
peers than the ones leaving the newtork, and do not
posses any pointers to objets. The TTL in this case is
not bounded; a random walk stops only when the object
is found.

V. RELATED WORK

another random walk by sending messages to ,..[ii peers
and requesting them to send back the number of estimate
messages lhey received. Based on this, each peer p

estimates the value as follows. If 1"; is the number
of estimate messages received by peer i, then peer p

'\'.. ..rn Y,.
estimates !(as 6; -1 •, .

Ern Yo
Theorem 3.- If peer p estimates !(as j;~ " then

the standard deviation of the eslimate is given by 'If.
Proof' The estimate problem can be reduced to

a balls and bins problem. Let J(be the number of
peers interested in the estimate. When throwing m balls
randomly into n bins, the probability Pr that a bin has
T balls is approximately the Poisson distribution with
mean ':: . In our problem, the number of balls thrown are
J(* 'Y.,fii, and the number of bins are n. The average
number of balls in each bin is K ·Z...m. Let Yi be a random
variable that denotes the number of estimate messages
received by a peer i, then J(is estimated as follows:

In [8], Cohen et ai. improve the efficiency of search
in unstructured P2P networks by replication. They eval
uate two different replication strategies, uniform and
proportional, and show that both the strategies have the
same average performance on successful queries and
an optimal replication strategy lies between the two
schemes. The replication strategies assume that access
frequencies of the objects are known, and the replication
of an object should be based on its popularity. In our
approach, we do not assume knowledge of object access
frequency, and use replication of pointers to speed up
queries. Moreover, our technique does not distinguish
between frequently and infrequently accessed objects.
An important consequence of our approach is that we
can provide probabilistic guarantees on locating even
rare objects in the network. In this sense it complemenls
the work of Cohen and Shenker, and other replication
and caching mechanisms.

Lv et ai. [1] show, using simulations, that random
walk is a good technique for searching unstructured P2P
networks. They also present a detailed study of search

10

and replicmion in unstrucLUred nelworks, including lhe
square root replication policy developed by Cohen et

ai. [8], and their impact on searches for popular ob
jects. They report that a random walk approach has
better performance compared to the standard approach
of searching by flooding. Their result complements our
work. We show that the random walk approach with
installed references reduces the communication overhead
(messages for installing references and searching for
objects) by an order of magnitude when compared to
pure random walk approach.

In [2], Gkantsidis et aI. perform an extensive study of
mndom walks in P2P networks. The authors explore the
perfonnance of random walks for searching and uoifann
sampling. For searching, the aUlhorn show that random
walks perfonn better !.han flooding when the length of the
random walk is the same as the number of peers covered
by flooding with bounded TTL. Another important result
in the paper is that it is possible to simulate selection of
a unifonn sample of elemems from the entire P2P by

](* r.;; "w'n v. ",,;;; v. rf· d lk f . d I h '"'Yvn = 6;-1 ~i ::::} [(= 6;-1 ~i pe orrnmg a ran om wa 0 reqUire engt. vve use
n ,vn ,2 lhis result in our protocol.

. 2. . In [15] Malkhi et aI. show, based on the birthday para-
The vanance (J' for the esl..lmated value of J(IS: dox, that any two quorums of size!1(.Jii), where quorum

[
L~ ti] _"E7i; VUT[YiJ _ 'Y..fii,vnJ(_ J(~embers ar~ ~icked unif?~.ly at random, intersect with

VaT ,2 - ," - yin - ,2 high probabIlity. ProbabIlistIc quorums were proposed
in the context of distributed systems where nodes have

Hence, the standard deviation is given by E. • complete knowledge about all other nodes in the system,
'Y and the population of nodes is stable. In P2P networks,

it is not feasible for nodes to have complete knowledge
of the network. Moreover, peers leave the network fre
quently. Our protocol is also influenced by the birthday
paradox, but we do not make any assumptions of the
knowledge about other peers in the network, and we
show that our protocol can operate in a dynamic scenario.

Adamic ec ai. [18] propose algorithms for search in
power-law networks. Searches are also perfonned using
random walks, but lhe random walk is biased toward
high-degree nodes. When a node has to forward a query
message, it forwards !.he message to its neighbor of
highest degree. The paper shows that this approach can
improve significantly the search for popular objects. One
shortcoming of this approach is that the high-degree
nodes in the network are responsible for processing the
query load of a significant fraction of the network.

Yang et al. [9] study several search strategies for
unstructured P2P networks. All the proposals (iterative
deepening, directed BFS, and local indices) focus on
searching only, and not on placement. As a result, none
of the proposals can guarantee that rare objects can be
found. Crespo et al. [19] place routing indices (hints)
at each peer, which allows peers to forward queries to

neighbors that are likely to have answers. The random
walk search in [20] also uses hits to improve search.
These approaches do not provide guarantees on the
success of a search. In contrast, there are no hints in our
system (the pointers are answers to queries), we select
neighbors randomly, and provide strong guarantees for
search.

As mentioned earlier in this paper, structured P2P net
works [3], [4], [5] provide strong guarantees for search
in P2P networks by imposing a well defined topology
on the network. Peers and objecLS are assigned hash·
based identifiers and objects are assigned to peers based
on these identifiers. Objects in the network are found
by performing efficient routing protocols that lead to the
peers responsible for storing pointers to the objects. In
addition to the overheads of maintaining a structured
overlay, these methods cannot handle complex queries
efficiently.

VI. CONCLUSION

In this paper, we present the design of an efficient
search protocol for unslluctured P2P networks that pro
vides probabilistic guarantees on the success of a search.
To the best of our knowledge, ours is the first result
that provides (probabilistic) guarantees of detecting even
rare objects in unstructured PZP networks wilh rea
sonable bounds on associaled overhead. Supported by
elaborate experiments, we sliow that our approach is an
improvement, by over an order of magnitude, compared
to the pure random walk method. We also present and
analyze an application of our scheme to the problem of
estimating the number of peers interested in performing
a specific operation, such as duplicate elimination and
controlled replication.

REFERENCES

[I] Q. Lv, P. Cao, E. Cohen, K Li, and S. Shenker, "Searth
and replication in unstructured peer-ta-peer networks," in ACM
ICS'OZ Conference, New York, NY, USA, June 2002.

[2] C. Gkanl5idis, M. Mihail, and A. Saberi, "Random walks in
peer-to-peer ne[Works," in Proceedings of IEEf: lNFoCoM,
2004, Hong Kong, Marth 2004.

[3] 1. Sioica, R. Morris, D. Karger, F. Kaashoek, and H. Bnl
akrishnan, ''Chord: A scalable Peer-To-Peer lookup service
ror internet appliclllions," in Proceedillgs of rhe 2001 ACM
SIGCoMM Conference on ApplicOlio/lS, Tedmologies, Arrlli
/eC/IIres, and PrQ/ocols for Computer COlUnlllnicarion, San
Diego, CA, August 2001, pp. 149-[60.

14] A. Rowstron and P. Druschel, "Pastry: Scalable, Decentrnlized
Object Location and Routing ror Large-Scale Peer-to-Peer Sys
tems," in Proceedings ofthe 2001 ACM SIGCoMM Conference
011 Applicotions, Technologies, Arclritectllres, and Protocols for
Compllfer ComllJllllica/ion, San Diego, CA, August 2001, pp.
247-254.

II

[5} B. Y. Zhao. J. Kubiatowil:7., and A. D. Joseph, '''Tapestry: An
infrastructure ror fault-tolerant wide-area location and rouling,"
Tech. Rep. UCB/CSD-OIOI141, UC Berkeley, Compuler Sci
ence Division, April 2001.

[6J Limewire., ..hup:/Iwww.limewire.coml....
[7J GnutelJa., "hltp:l/gnutelJa.wego.comf," .
[E] E. Cohen and S. Shenker, "Replication strategies in unstructured

peer-Io-peer networks," in ACM SIGCoMM'02 Conference,
2002.

L9J B. Yang and H. Garda-Molina, "Em dent Search in Peer-
to-Peer Networks," in IEEE flrremotionol Conference 011

Dis/ribmed Systems (ICDCS), Vienna, Austria, July 2002.
[10] K. Horowitz and D. Malkhi, "Eslimating network size from

local information," in The flr/onno/ion Processing Letters
JOIln/ol 88(5), December 2003. pp. 237-243.

[II] M. Bawa, H. Garcia-Molina, A. Gionis. and R. MOlwani,
"Estimating Aggregates on a Peer-to-Peer Network.," Technical
Report, Computer Science Department, Stanford University,
2003.

[12J D. Psaltoulis, D. Kostoulas, 1. Gupla, K. Birman,
and A. Demers, "Praclical Algorithms for
Size Estimmion in Large and Dynamic groups.,"
htlp:l/www.cs.comell.edulInfolProjecls/Spinglass/indelt.html.

[13] R. Mmwani and P. R:Jghavan, ,n in Ram/omizell Algorithms.
Cambridge University Press, 1995.

[14] S. Saroiu, P. K. Gummadi, and S. D. Gribble, "A Measurement
Study of Peer-lo-Peer File Sharing Systems," in Proceedings
of MIII/imeilio Compllting ami Networking 2002 (MMCN '02),
San Jose, CA, USA, January 2002.

[151 D. Malkhi, M. Reiter, and R. Wright, "Probabilistic quorum
systems," in Proceedings of /lre 16t1l All/mal ACM Symposilllll
on rhe Principles of Distribmed Compllrillg (PoDC 97). Santa
Barbara, CA, August 1997, pp. 267-273.

[16] Snapshol5 of the GnUlella network. Lirnewirc.org,
''http://crawlcr.limcwire.orgldata.htrnl,'' .

[17] E. Zegum, K. Calvert, and S. Bhauacharjee, "How to Model
an Internetwork," in Proceedings of IEE£ INFOCOM 1996,
March 1996.

[IE] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.
Hubennan, "Search in Power Law Networks," Pllysical Review
E 64, pp. 46135.1-46143.8, 2001.

[19] A. Crespo and H. Garcia-Molina, "Routing indices ror peer
to-peer systems:' in Proceedings of tile The 22nd Imemmional
Conference on Distribllted Compllling Sysrems (ICDCS 2002),
Vienna, Austria, July, 2002.

[20} Freenet., "http;//freenet.sourcdorge.netl," .

	Efficient Randomized Search Algorithms in Unstructured Peer-to-Peer Networks
	Report Number:
	

	tmp.1307986960.pdf.y1Bhn

