477 research outputs found

    A novel hybrid teaching learning based multi-objective particle swarm optimization

    Get PDF
    How to obtain a good convergence and well-spread optimal Pareto front is still a major challenge for most meta-heuristic multi-objective optimization (MOO) methods. In this paper, a novel hybrid teaching learning based particle swarm optimization (HTL-PSO) with circular crowded sorting (CCS), named HTL-MOPSO, is proposed for solving MOO problems. Specifically, the new HTL-MOPSO combines the canonical PSO search with a teaching-learning-based optimization (TLBO) algorithm in order to promote the diversity and improve search ability. Also, CCS technique is developed to improve the diversity and spread of solutions when truncating the external elitism archive. The performance of HTL-MOPSO algorithm was tested on several well-known benchmarks problems and compared with other state-of-the-art MOO algorithms in respect of convergence and spread of final solutions to the true Pareto front. Also, the individual contributions made by the strategies of HTL-PSO and CCS are analyzed. Experimental results validate the effectiveness of HTL-MOPSO and demonstrate its superior ability to find solutions of better spread and diversity, while assuring a good convergence

    OPTIMIZATION OF MULTI-PASS FACE MILLING PARAMETERS USING METAHEURISTIC ALGORITHMS

    Get PDF
    In this paper, six metaheuristic algorithms, in the form of artificial bee colony optimization, ant colony optimization, particle swarm optimization, differential evolution, firefly algorithm and teaching-learning-based optimization techniques are applied for parametric optimization of a multi-pass face milling process. Using those algorithms, the optimal values of cutting speed, feed rate and depth of cut for both roughing and finishing operations are determined for having minimum total production time and total production cost. It is observed that the teaching-learning-based optimization algorithm outperforms the others with respect to accuracy and consistency of the derived solutions as well as computational speed. Two statistical tests, i.e. paired t-test and Wilcoxson signed rank test also confirm its superiority over the remaining algorithms. Finally, these metaheuristics are employed for multi-objective optimization of the considered multi-pass milling process while concurrently minimizing both the objectives

    Optimal Number, Location, and Size of Distributed Generators in Distribution Systems by Symbiotic Organism Search Based Method

    Get PDF
    This paper proposes an approach based on the Symbiotic Organism Search (SOS) for optimal determining sizing, siting, and number of Distributed Generations (DG) in distribution systems. The objective of the problem is to minimize the power loss of the system subject to the equality and inequality constraints such as power balance, bus voltage limits, DG capacity limits, and DG penetration limit. The SOS approach is defined as the symbiotic relationship observed between two organisms in an ecosystem, which does not need the control parameters like other meta-heuristic algorithms in the literature. For the implementation of the proposed method to the problem, an integrated approach of Loss Sensitivity Factor (LSF) is used to determine the optimal location for installation of DG units, and SOS is used to find the optimal size of DG units. The proposed method has been tested on IEEE 33-bus, 69-bus, and 118-bus radial distribution systems. The obtained results from the SOS algorithm have been compared to those of other methods in the literature. The simulated results have demonstrated that the proposed SOS method has a very good performance and effectiveness for the problem of optimal placement of DG units in distribution systems

    Optimizing The Machining Process of IS 2062 E250 Steel Plates with The Boring Operation Using a Hybrid Taguchi-Pareto Box Behnken-teaching Learning-based Algorithm

    Get PDF
    In this article, a new method termed the Taguchi-Pareto-Box Behnken design teaching learning-based optimization (TPBBD–TLBO) was developed to optimize the boring process, which promotes surface roughness as the output. At the same time, the speed, feed, and depth of cut are taken as the inputs. The case examines experimental data from the literature on the boring of IS 2062 E250 steel plates. The proposed method draws from a recent idea on the Taguchi-Pareto-Box Behnken design method that argues for a possible relationship between the Taguchi-Pareto method and the Box Behnken design method. This idea was used as a basis for the further argument that teaching learning-based optimization has a role in the further optimization of the established TPBBD method. The optimal solutions were investigated when the objective function was generated using the Box Behnken design in a case. It was replaced with the regression method in the other case, and the python programming codes were used to execute the computations. Then the optimal solutions concerning the parameters of speed, feed rate, depth of cut, and nose radius were evaluated. With the Box Behnken as the objective function for the TLBO method, convergence was reached at 50 iterations with a class population of 5. The optimal parametric solutions are 800 rpm of speed, 0.06 min/min of feed rate, 1 min for depth of cut, and 0 min for nose radius. On the use of the regression method for the objective function, while the TLBO method was deployed, convergence was experienced after 50 iterations with a class population of 200 students. The optimal parametric solution is 1135rpm of speed, 0.06 min/min of feed rate, 1024 min of the depth of cut, and 0.61 min of nose radius. The speed, depth of cut, and nose radius showed higher values, indicating the use of more energy resources to accomplish the optimal goals using the regression method-based objective function. Therefore, the proposed method constitutes a promising route to optimize further the results of the Taguchi-Pareto-Box Behnken design for boring operation improvement

    Metaheuristic optimization of reinforced concrete footings

    Get PDF
    The primary goal of an engineer is to find the best possible economical design and this goal can be achieved by considering multiple trials. A methodology with fast computing ability must be proposed for the optimum design. Optimum design of Reinforced Concrete (RC) structural members is the one of the complex engineering problems since two different materials which have extremely different prices and behaviors in tension are involved. Structural state limits are considered in the optimum design and differently from the superstructure members, RC footings contain geotechnical limit states. This study proposes a metaheuristic based methodology for the cost optimization of RC footings by employing several classical and newly developed algorithms which are powerful to deal with non-linear optimization problems. The methodology covers the optimization of dimensions of the footing, the orientation of the supported columns and applicable reinforcement design. The employed relatively new metaheuristic algorithms are Harmony Search (HS), Teaching-Learning Based Optimization algorithm (TLBO) and Flower Pollination Algorithm (FPA) are competitive for the optimum design of RC footings

    Stability Enhancement of Power System with UPFC Using Hybrid TLBO Algorithm

    Get PDF
    112–115Power sector's complexity has been increasing due to rising demand—distributed generation and deregulation have greatly increased the complexity of the power system. Flexible Alternating Current Transmission System (FACTS) devices improve the quality of power by increasing the power transfer capability. This paper proposes an optimal power flow analysis using a Modified Teaching Learning Based Optimization (MTLBO) algorithm followed by an optimal placement of UPFC in the system. The proposed analysis has been validated and implemented on an IEEE 30 bus system

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Energy management of micro-grid using cooperative game theory

    Get PDF
    Micro-grid (MG) has been introduced as a low voltage and a very small power system connected to a distribution grid through the point of common coupling. It consists of distributed energy resources (DERs) such as solar Photovoltaic (PV), wind turbine, fuel cell, etc.), interconnected load and energy storage sources. It can operate in grid-connected (i.e. when connected to the main grid) or islanded (i.e. when not connected to the main grid) mode. It has an advantage of utilizing low carbon sources and the possibility of its use in the remote local environment, which means that the transmission infrastructures and their associated costs may be deferred. Although there has been a proliferation of optimization methods of energy management in the MG, most of these methods consider self-interest of the players in profit distribution. Moreover, only a few of them consider a fair profit distribution using Nash bargaining solution (NBS) (i.e. when utility function is linear) leading to even profit distribution and high degree of dissatisfaction. For the MG to achieve better economic outcomes, a novel method based on weighted fair energy management among the participants (i.e. building of different types, such as residential buildings, schools, and shops) is proposed. The novelty of the proposed method lies in the new profit sharing method to favour certain participant by assigning a weight to each participant with cooperative game theory (CGT) approach using generalized Nash bargaining solution (GNBS). The proposed approach achieves a fair (reasonable or just) profit allocation with negotiating power indicator. In this work, a case study of six different participant sites is proposed using the CGT method of energy management. The proposed method is able to cope with the drawbacks of the existing independent method, which negotiate directly with other participants for selfish profit distribution. It is demonstrated that the independent method results in (1) a reduction in the profit of each participant of MG when compared with CGT approach and (2) the variation of transfer prices in some participants having profit below the specified lower bound profit since the method does not take into consideration the lower profit bounds. The use of CGT method (i.e. when participants form a coalition) to finding multi-partner profit level subject to specified lower bounds is demonstrated. This results in (1) increase in the profit of the MG participants (2) maintaining the profit level of all the participants above status-quo profit (lower specified profit bounds) with variation in transfer prices and (3) allowing certain participant to be favoured by assigning higher negotiating power to such participant. To achieve the optimal solution in the proposed method, a teaching-learning-based optimization (TLBO) algorithm is presented to efficiently solve the problem. For TLBO algorithm, no specific control parameters are needed except the number of generations and population size. This is in contrast with other heuristic algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) that require other control parameters (i.e. GA requires selection and crossover operation, while PSO makes use of social parameters and cognitive weight). To demonstrate the effectiveness of the proposed TLBO method, the profit allocations are tested in the grid-connected and the islanded mode using both the CGT and the independent method. In this work, the proposed TLBO method is compared with one traditional method, i.e. Lambda iteration method and two heuristic methods, i.e. PSO and GA. Thus, by using TLBO a considerable amount of computation time is saved. Using the same parameter setting for all the heuristic algorithms used, 20 trials are performed to be able to compare the quality of solution and convergence characteristics. The investigation reveals that TLBO gives the highest quality solutions and better convergence characteristics compared to PSO and GA
    corecore