2,458 research outputs found

    Technical improvements of Windside wind turbine systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    High Performance Power Management Integrated Circuits for Portable Devices

    Get PDF
    abstract: Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application. In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency. The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Control and Optimization of Energy Storage in AC and DC Power Grids

    Get PDF
    Energy storage attracts attention nowadays due to the critical role it will play in the power generation and transportation sectors. Electric vehicles, as moving energy storage, are going to play a key role in the terrestrial transportation sector and help reduce greenhouse emissions. Bulk hybrid energy storage will play another critical role for feeding the new types of pulsed loads on ship power systems. However, to ensure the successful adoption of energy storage, there is a need to control and optimize the charging/discharging process, taking into consideration the customer preferences and the technical aspects. In this dissertation, novel control and optimization algorithms are developed and presented to address the various challenges that arise with the adoption of energy storage in the electricity and transportation sectors. Different decentralized control algorithms are proposed to manage the charging of a mass number of electric vehicles connected to different points of charging in the power distribution system. The different algorithms successfully satisfy the preferences of the customers without negatively impacting the technical constraints of the power grid. The developed algorithms were experimentally verified at the Energy Systems Research Laboratory at FIU. In addition to the charge control of electric vehicles, the optimal allocation and sizing of commercial parking lots are considered. A bi-layer Pareto multi-objective optimization problem is formulated to optimally allocate and size a commercial parking lot. The optimization formulation tries to maximize the profits of the parking lot investor, as well as minimize the losses and voltage deviations for the distribution system operator. Sensitivity analysis to show the effect of the different objectives on the selection of the optimal size and location is also performed. Furthermore, in this dissertation, energy management strategies of the onboard hybrid energy storage for a medium voltage direct current (MVDC) ship power system are developed. The objectives of the management strategies were to maintain the voltage of the MVDC bus, ensure proper power sharing, and ensure proper use of resources, where supercapacitors are used during the transient periods and batteries are used during the steady state periods. The management strategies were successfully validated through hardware in the loop simulation

    Optimal Control of Hybrid Systems and Renewable Energies

    Get PDF
    This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control

    Control and management of energy storage systems in microgrids

    Get PDF
    The rate of integration of the renewable energy sources in modern grids have significantly increased in the last decade. These intermittent, non-dispatchable renewable sources, though environment friendly tend to be grid unfriendly. This is precisely due to the issues pertaining to grid congestion, voltage regulation and stability of grids being reported as a result of the incorporation of renewable sources. In this scenario, the use of energy storage systems (ESS ) in electric grids is being widely proposed to overcome these issues. However, integrating energy storage systems alone will not compensate for the issue created by renewable generation. The control and management of the ESS should be done optimally so that their full capabilities are exploited to overcome the issues in the power grids and to ensure their lower cost of investment by prolonging ESS lifetime through minimising degradation. Motivated by this aspect this Ph.D work focusses on developing an efficient, optimal control and management strategy for ESS in a microgrid, especially hybrid ESS. The Ph.D work addresses this issue by proposing a hierarchical control scheme comprising of a lower power management and higher energy management stage with contributions in each stage. In the power management stage this work focusses on improving aspects of real time control of power converters interfacing ESS to grid and the microgrid system as whole. The work proposes control systems with improved dynamic behaviour for power converters based on the reset control framework. In the microgrid control the work presents a primary+secondary control scheme with improved voltage regulation performance under disturbances, using an observer. The real time power splitting strategies among hybrid ESS accounting for the ESS operating efficiencies and degradation mechanisms will also be addressed in the primary+secondary control of power management stage. The design criteria, stability and robustness analysis will be carried out, along with simulation or experimental verifications. In the higher level energy management stage, the contribution of this work involves application of an economic MPC framework for the management of ESS in microgrids. The work specifically addresses the problems of mitigating grid congestion from renewable power feed-in, minimising ESS degradation and maximising self consumption of generated renewable energy using the MPC based energy management system. A survey of the forecasting methods that can be used for MPC will be carried out and a neural network based forecasting unit for time series prediction will be developed. The practical issue of accounting for forecasting error in the decision making of MPC will be addressed and impact of the resulting conservative decision making on the system performance will be analysed. The improvement in performance with the proposed energy management scheme will be demonstrated and quantified.La integración de las fuentes de energía renovables en las redes modernas ha aumentado significativamente en la última década. Estas fuentes renovables, aunque muy convenientes para el medio ambiente son de naturaleza intermitente, y son no panificables, cosa que genera problemas en la red de distribución. Esto se debe precisamente a los problemas relacionados con la congestión de la red y la regulación del voltaje. En este escenario, el uso de sistemas de almacenamiento de energía (ESS) en redes eléctricas está siendo ampliamente propuesto para superar estos problemas. Sin embargo, la integración de sistemas de almacenamiento de energía por sí solos no compensará el problema creado por la generación renovable. El control y la gestión del ESS deben realizarse de manera óptima, de modo que se aprovechen al máximo sus capacidades para superar los problemas en las redes eléctricas, garantizar un coste de inversión razonable y prolongar la vida útil del ESS minimizando su degradación. Motivado por esta problemática, esta tesis doctoral se centra en desarrollar una estrategia de control y gestión eficiente para los ESS integrados en una microrred, especialmente cuando se trata de ESS de naturaleza. El trabajo de doctorado propone un esquema de control jerárquico compuesto por un control de bajo nivel y una parte de gestión de energía operando a más alto nivel. El trabajo realiza aportaciones en los dos campos. En el control de bajo nivel, este trabajo se centra en mejorar aspectos del control en tiempo real de los convertidores que interconectan el ESS con la red y el sistema de micro red en su conjunto. El trabajo propone sistemas de control con comportamiento dinámico mejorado para convertidores de potencia desarrollados en el marco del control de tipo reset. En el control de microrred, el trabajo presenta un esquema de control primario y uno secundario con un rendimiento de regulación de voltaje mejorado bajo perturbaciones, utilizando un observador. Además, el trabajo plantea estrategias de reparto del flujo de potencia entre los diferentes ESS. Durante el diseño de estos algoritmos de control se tienen en cuenta los mecanismos de degradación de los diferentes ESS. Los algoritmos diseñados se validarán mediante simulaciones y trabajos experimentales. En el apartado de gestión de energía, la contribución de este trabajo se centra en la aplicación del un control predictivo económico basado en modelo (EMPC) para la gestión de ESS en microrredes. El trabajo aborda específicamente los problemas de mitigar la congestión de la red a partir de la alimentación de energía renovable, minimizando la degradación de ESS y maximizando el autoconsumo de energía renovable generada. Se ha realizado una revisión de los métodos de predicción del consumo/generación que pueden usarse en el marco del EMPC y se ha desarrollado un mecanismo de predicción basado en el uso de las redes neuronales. Se ha abordado el análisis del efecto del error de predicción sobre el EMPC y el impacto que la toma de decisiones conservadoras produce en el rendimiento del sistema. La mejora en el rendimiento del esquema de gestión energética propuesto se ha cuantificado.La integració de les fonts d'energia renovables a les xarxes modernes ha augmentat significativament en l’última dècada. Aquestes fonts renovables, encara que molt convenients per al medi ambient són de naturalesa intermitent, i són no panificables, cosa que genera problemes a la xarxa de distribució. Això es deu precisament als problemes relacionats amb la congestió de la xarxa i la regulació de la tensió. En aquest escenari, l’ús de sistemes d'emmagatzematge d'energia (ESS) en xarxes elèctriques està sent àmpliament proposat per superar aquests problemes. No obstant això, la integració de sistemes d'emmagatzematge d'energia per si sols no compensarà el problema creat per la generació renovable. El control i la gestió de l'ESS s'han de fer de manera _optima, de manera que s'aprofitin al màxim les seves capacitats per superar els problemes en les xarxes elèctriques, garantir un cost d’inversió raonable i allargar la vida útil de l'ESS minimitzant la seva degradació. Motivat per aquesta problemàtica, aquesta tesi doctoral es centra a desenvolupar una estratègia de control i gestió eficient per als ESS integrats en una microxarxa, especialment quan es tracta d'ESS de natura híbrida. El treball de doctorat proposa un esquema de control jeràrquic compost per un control de baix nivell i una part de gestió d'energia operant a més alt nivell. El treball realitza aportacions en els dos camps. En el control de baix nivell, aquest treball es centra a millorar aspectes del control en temps real dels convertidors que interconnecten el ESS amb la xarxa i el sistema de microxarxa en el seu conjunt. El treball proposa sistemes de control amb comportament dinàmic millorat per a convertidors de potència desenvolupats en el marc del control de tipus reset. En el control de micro-xarxa, el treball presenta un esquema de control primari i un de secundari de regulació de voltatge millorat sota pertorbacions, utilitzant un observador. A més, el treball planteja estratègies de repartiment de el flux de potència entre els diferents ESS. Durant el disseny d'aquests algoritmes de control es tenen en compte els mecanismes de degradació dels diferents ESS. Els algoritmes dissenyats es validaran mitjanant simulacions i treballs experimentals. En l'apartat de gestió d'energia, la contribució d'aquest treball se centra en l’aplicació de l'un control predictiu econòmic basat en model (EMPC) per a la gestió d'ESS en microxarxes. El treball aborda específicament els problemes de mitigar la congestió de la xarxa a partir de l’alimentació d'energia renovable, minimitzant la degradació d'ESS i maximitzant l'autoconsum d'energia renovable generada. S'ha realitzat una revisió dels mètodes de predicció del consum/generació que poden usar-se en el marc de l'EMPC i s'ha desenvolupat un mecanisme de predicció basat en l’ús de les xarxes neuronals. S'ha abordat l’anàlisi de l'efecte de l'error de predicció sobre el EMPC i l'impacte que la presa de decisions conservadores produeix en el rendiment de el sistema. La millora en el rendiment de l'esquema de gestió energètica proposat s'ha quantificat

    Conducted and Radiated EMI Measurements of Parallel Buck Converters Under Varying Spread Spectrum Parameters

    Get PDF
    The Conducted and Radiated EMI Measurements with Parallel Buck Converters Under Varying Spread Spectrum Parameters research senior project aims to explore the effects from Spread Spectrum Frequency Modulation (SSFM) on the input electromagnetic interference (EMI) or noise of a switching power supply, specifically with LM53601MAEVM hardware. The input EMI is important as the main input bus needs to be clean to provide a reliable source for other sensitive devices connected to it. SSFM can replace a conventional EMI filter and save weight, space, and cost. This project provides a basis in terms of the impacts of variable SSFM in simulation in order to provide an idea for its best application in future hardware implementations. The input voltage requirement for the buck converter is from 5V to 42V with output voltage of 3.6V and maximum output current of 1A. The buck converter should vary the percent modulation of the SSFM for up to +/-4%. Auxiliary circuits that will produce the necessary control signals for varying the percent modulation of SSFM were developed. Simulating LM53601MAEVM hardware with SSFM was not efficient as it required a significant amount of time and computational power. Overall, in terms of EMI, none of the simulations passed automotive CISPR standards, which is one of the potential LM53601 applications. The best results in simulation were at lower input voltages, mid-range loads, and low percentage of SSFM spread. Since EMI depends on layout, physical hardware measurements could provide further insight into the impact of variable SSFM

    A Data Requisition Treatment Instrument For Clinical Quantifiable Soft Tissue Manipulation

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Soft tissue manipulation is a widely used practice by manual therapists from a variety of healthcare disciplines to evaluate and treat neuromusculoskeletal impairments using mechanical stimulation either by hand massage or specially-designed tools. The practice of a specific approach of targeted pressure application using distinguished rigid mechanical tools to breakdown adhesions, scar tissues and improve range of motion for affected joints is called Instrument-Assisted Soft Tissue Manipulation (IASTM). The efficacy of IASTM has been demonstrated as a means to improve mobility of joints, reduce pain, enhance flexibility and restore function. However, unlike the techniques of ultrasound, traction, electrical stimulation, etc. the practice of IASTM doesn't involve any standard to objectively characterize massage with physical parameters. Thus, most IASTM treatments are subjective to practitioner or patient subjective feedback, which essentially addresses a need to quantify therapeutic massage or IASTM treatment with adequate treatment parameters to document, better analyze, compare and validate STM treatment as an established, state-of-the-art practice. This thesis focuses on the development and implementation of Quantifiable Soft Tissue Manipulation (QSTM™) Technology by designing an ergonomic, portable and miniaturized wired localized pressure applicator medical device (Q1), for characterizing soft tissue manipulation. Dose-load response in terms of forces in Newtons; pitch angle of the device ; stroke frequency of massage measured within stipulated time of treatment; all in real-time has been captured to characterize a QSTM session. A QSTM PC software (Q-WARE©) featuring a Treatment Record System subjective to individual patients to save and retrieve treatment diagnostics and a real-time graphical visual monitoring system has been developed from scratch on WINDOWS platform to successfully implement the technology. This quantitative analysis of STM treatment without visual monitoring has demonstrated inter-reliability and intra-reliability inconsistencies by clinicians in STM force application. While improved consistency of treatment application has been found when using visual monitoring from the QSTM feedback system. This system has also discriminated variabilities in application of high, medium and low dose-loads and stroke frequency analysis during targeted treatment sessions.2023-04-2
    corecore