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ABSTRACT OF THE DISSERTATION 

CONTROL AND OPTIMIZATION OF ENERGY STORAGE IN AC AND DC POWER 

GRIDS 

by 

Samy Gamal Faddel Mohamed 

Florida International University, 2019 

Miami, Florida, USA 

Professor Osama A. Mohammed, Major Professor 

Energy storage attracts attention nowadays due to the critical role it will play in the 

power generation and transportation sectors.  Electric vehicles, as moving energy storage, 

are going to play a key role in the terrestrial transportation sector and help reduce 

greenhouse emissions. Bulk hybrid energy storage will play another critical role for feeding 

the new types of pulsed loads on ship power systems. However, to ensure the successful 

adoption of energy storage, there is a need to control and optimize the charging/discharging 

process, taking into consideration the customer preferences and the technical aspects. In 

this dissertation, novel control and optimization algorithms are developed and presented to 

address the various challenges that arise with the adoption of energy storage in the 

electricity and transportation sectors. 

Different decentralized control algorithms are proposed to manage the charging of a 

mass number of electric vehicles connected to different points of charging in the power 

distribution system. The different algorithms successfully satisfy the preferences of the 

customers without negatively impacting the technical constraints of the power grid. The 

developed algorithms were experimentally verified at the Energy Systems Research 
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Laboratory at FIU. 

In addition to the charge control of electric vehicles, the optimal allocation and sizing 

of commercial parking lots are considered. A bi-layer Pareto multi-objective optimization 

problem is formulated to optimally allocate and size a commercial parking lot. The 

optimization formulation tries to maximize the profits of the parking lot investor, as well 

as minimize the losses and voltage deviations for the distribution system operator. 

Sensitivity analysis to show the effect of the different objectives on the selection of the 

optimal size and location is also performed. 

Furthermore, in this dissertation, energy management strategies of the onboard hybrid 

energy storage for a medium voltage direct current (MVDC) ship power system are 

developed. The objectives of the management strategies were to maintain the voltage of 

the MVDC bus, ensure proper power sharing, and ensure proper use of resources, where 

supercapacitors are used during the transient periods and batteries are used during the 

steady state periods. The management strategies were successfully validated through 

processor in the loop simulations. 
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Chapter 1 Introduction 

Energy storage will be the cornerstone in the future energy transition, providing 

services throughout the electricity system value chain and into the end-user sector [1]. The 

increasing demand for more flexibility in the power system, the dramatic changes in the 

transportation sector to mitigate the climate change, and the important inter-linkages 

between sectors are the major drivers behind the evolving interest in the energy storage in 

the energy transition map. 

A considerable renewable energy curtailment has been reported in recent years [2]. The 

power curtailment is primarily driven by the unmatched generation and demand hours, 

where the increase in the electricity generation, coming from renewable resources, occurs 

during the low-demand period. This represents a waste of energy and inefficient operation 

of the overall resources in the power sector. Energy storage can greatly reduce the level of 

power curtailment by charging during the high generation periods and discharging during 

the low generation periods.  

The increasing concerns about climate change and the need to decarbonize the 

transportation sector, as a major reason for CO2 emission, is also pushing toward more 

adoption of energy storage in the future transportation sector. The increasing role and 

interest in batteries can be witnessed by examining the new production capacity for 

batteries of electric vehicles (EVs). For example, the projected annual production of 35 

GWh of cells by Tesla Gigafactory captured the news in 2016. The planned capacity 

expansion of energy storage by 2021 now totals over 220 GWh, with more than half 

planned in China. 
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Energy storage can also provide additional services to the energy system by integrating 

the electricity, heating & cooling, gas, and transportation sectors. Such technologies can 

help provide competitive flexibility to the electricity system and can transfer the share of 

renewables originally generated in the electricity sector to other sectors.  

To see the different applications where energy storage can be used, the types of 

different energy storage devices and their capabilities will be briefly presented. Then, the 

applications of the different energy storage devices will be discussed. 

1.1 Types of Different Energy Storage Devices 

Generally speaking, the different technologies of energy storage devices can be 

classified based on their storage principle, as shown in Figure 1.1. The members of each 

type may change with the technological developments. However, these five types reflect 

the main storage principles. The provided examples under each type are not meant to be 

comprehensive. The different types of energy storage are: 

1. Mechanical energy storage, which combines several principles ranging from 

potential energy in pumped hydro storage, the volume and pressure work of 

air/liquid in compressed air/liquid energy storage to the rotational energy of a 

mass in flywheels. 

2. Electrical energy storage, which stores electricity in the form of electrons. It 

can be stored as an electric field in the case of supercapacitors and a magnetic 

field in the case of a super conducting magnetic coil. Usually the energy 

capacity of this electrical storage is limited, but it has a high-power density.  
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Figure 1.1: Energy storage classifications 

3. Electrochemical energy storage that covers the different types of batteries. In 

this type of storage, the chemical energy is stored and converted to electrical 

energy and vice-versa in electrochemical reactions. The batteries can be 

conventional ones or flow batteries. Flow batteries differ from conventional 

rechargeable batteries in that the electroactive materials are not all stored within 

the electrode but, instead, are dissolved in electrolyte solutions that are stored 

in tanks [3]. Flow batteries offer valuable operational advantages, since they 

work at ambient temperatures, and their power and energy storage 

characteristics are independently scalable.  
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4. Chemical energy storage, which stores the energy in a chemical form that might 

be liquid, gaseous or solid, and the energy is also released in chemical reactions. 

The most common form of it is the hydrogen storage and synergetic natural gas. 

They usually have a high-energy density and provide a variety of transport 

options. 

5. Thermal energy storage, where the energy can be stored in the sensible heat or 

the latent heat or using a thermos-chemical process. In general, thermal storage 

is quite cost-effective compared to other storage options.  

While each storage type can be used on its own, hybrid types of storage devices can 

also be used. They are usually used to combine the different advantages of each type in a 

complementary way, which can result in a better utilization, and increase the lifetime and 

efficiency of the storage system. For example, a high-energy density storage like batteries 

can be combined with a high-power density, such as supercapacitors or flywheels, to form 

a complementary hybrid energy storage system. Figure 1.2 shows the characteristics of the 

different types of energy storage. The figure shows that they vary greatly in the 

charging/discharging time (from seconds to days) and their output power (from watts to 

gigawatts).  Pumped storage and compressed air energy storage systems are often termed 

“bulk energy storage,” since they generally store larger amounts of energy than battery 

storage systems. Some energy storage technologies and applications are well established, 

while others are in various stages of research and development [4]. 

The current worldwide usage of the different storage types is shown in Table 1.1. The 

Table shows that the current capacity of energy storage is 196.348 GW. Although the 
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dominant type of energy storage is pumped hydro storage, representing 94.3% of the total 

installed capacity, it is not expected that pumped hydro technology will evolve and develop 

more in the future since it is already a mature technology that has been used for decades. 

Electrochemical energy storage is expected to dominate the future sales of the storage 

market. This is basically driven by the fast expansion in the transportation sector, with the 

Lithium-Ion battery as the most promising battery type so far. The cost of Li-Ion batteries 

fell by as much as 73% between 2010 and 2016 for transportation applications [3]. 

 

 

Figure 1.2: Performance characteristics of different energy storage types [6]  
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Table 1.1: Current usage of storage technologies a  

Technology Type Projects Rated Power (MW) 

Electro-chemical 1074 4460 

Pumped Hydro Storage 352 185193 

Thermal Storage 220 4031 

Electro-mechanical 73 2588 

Hydrogen Storage 14 22 

Liquid Air Energy Storage 2 5 

1.2 Applications of Energy Storage 

Energy storage devices have many applications in the energy sector. However, the 

majority of applications are in the electricity sector, where the energy storage can provide 

many capacity and ancillary services. The main services that can be provided by the energy 

storage in the electricity sector are shown in Figure 1.3. Broadly speaking, the application 

of energy storage can be divided into utility applications and transportation applications. 

1.2.1 Utility Applications 

The adoption of energy storage in modern power systems is growing due to the 

increasing levels of stability problems. The main job of a storage plant in the power grid is 

to enhance the power quality and ensure load-generation balance. Although renewable 

energy sources are environmentally beneficial, their intermittent nature causes voltage and 

frequency fluctuations in the grid. This represents a significant barrier to their widespread 

adoption and replacement of fossil-fuel-based generation [5].  

a DOE online visualization: https://www.energystorageexchange.org/projects/data_visualization 
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With high penetration of renewable energy resources, the ability of the conventional 

generators to match the intermittent generation and demand becomes an important concern. 

Utilities in the United States have expressed concerns about their systems “bottoming out” 

due to the minimum generation requirements during overnight hours, and being unable to 

accommodate more intermittent renewable generation during these times. The repetitive 

cycling and high-frequency MW power changes are another pressing issue because they 

can cause damage to the generation plants. With the exception of fast-starting reciprocating 

engines, most conventional plants have minimum up-and-down times, and require several 

hours to restart—at considerable cost [1]. When used in the power system, energy storage 

can provide multiple benefits to the electric utility, helping them integrate more renewable 

resources. Energy storage can be used to ensure the frequency stability of system and 

provide more system inertia. 
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Figure 1.3: Services that can be provided by the energy storage 
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Energy storage can provide multiple services to electric utilities, ranging from bulk service, 

such as the energy arbitrage, deferring the transmission and distribution upgrades to power 

quality and behind-the-meter end-users services. In addition, energy storage can provide 

regulation and spinning reserve services in the whole-sale market, providing more 

opportunities and more room for revenue. 

1.2.2 Transportation Applications 

Energy storage devices will play a critical role in the future transportation sector. 

Electric vehicles, as moving energy storage, are going to play a key role in the terrestrial 

transportation sector. Other energy storage devices, such as large batteries, flywheels and 

supercapacitors, will play another key role in space and maritime ship power systems.  

The main drivers behind electrifying the transportation sector are to reduce oil-

dependency, reduce the greenhouse emissions, and increase the overall efficiency of the 

system. When it comes to the terrestrial transportation sector, there are two ways to store 

electricity and shift from the oil-driven internal combustion engines (ICE). One way is to 

switch from oil-derived fuels to one of several electricity-derived fuels, either gaseous or 

liquid, with hydrogen receiving the most attention in recent years. The other way is to store 

the electricity on-board, primarily using batteries, and use the stored electricity to drive an 

electric motor. Based on the way of generating the on-board electricity and the type of the 

driving engine, the vehicle can be either a pure battery electric vehicle (BEV) or a plugin 

hybrid electric vehicle (PHEV) that uses both stored electricity and an ICE or fuel cell 

engine. The required power and discharging/charging periods for the different terrestrial 

transportation means are shown in Figure 1.4. 
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Figure 1.4: Characteristics of the different terrestrial transportation means [6] 

At the end of 2016, the global electric vehicle fleet reached a total size of 2 million 

vehicles (including battery EVs and plugin hybrid vehicles). A representative from the 

Natural Resources Defense Council estimated that the Chinese electric vehicle regulation 

could result in the production of more than 1 million electric vehicles per year by 2020 [4]. 

In the case of maritime applications, the presence of on-board energy storage will be 

critical in the next generation of all electric ships [7]. This is driven by the growth of the 

on-board auxiliary electric loads, the emerging types of pulsed loads, and the capacity 

needed to support the propulsion system. Energy storage will be needed in both the 

commercial sector and for military applications. 

For the commercial sector, the major driver will be the fuel economy. Instantaneous 

fluctuations of the on-board demand (e.g, dynamic positioning) will break the balance 

between the power generation and demand. Since the currently used diesel generators are 
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designed to work in their fixed high-efficiency area and modulate the number of running 

engines to achieve optimal load matching, the instantaneous fluctuations will reduce the 

fuel efficiency. Thus, the use of fast controllable storage devices will help meet the load 

fluctuations and increase the efficiency of the system. 

For military applications, energy storage devices will be mainly used to increase ship 

survivability and to enable high-energy pulsed loads. Without the energy storage devices, 

the shipboard generators would need to be significantly oversized to support the emerging 

high-energy pulsed loads, which will increase the initial and operational costs of the 

system. 

1.3 Problem Statement 

Adopting a large number of different storage devices in the transportation sector will 

bring many benefits to the energy sector in general, and will greatly change the current 

electricity sector, bringing more opportunities and challenges.  

On the one hand, the impacts of vehicles’ electrification on the distribution system will 

be magnificent and complex. A large number of electric vehicles that are charging at the 

same time might overload the system, which could reduce the lifetime of distribution 

transformers, and cause repetitive connection/disconnection of voltage control units. In 

addition, distribution system upgrades might be necessary, causing large investments in the 

infrastructure.  

Moreover, providing charging stations for residential and commercial parking lots 

needs to be carefully studied and addressed. Electric vehicles’ charging stations are more 
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complicated than conventional gas stations because electricity is a commodity that will not 

be stored, and the operator of the parking lot needs to satisfy multiple charging requests 

from different vehicles with different preferences. In addition, the vehicles are expected to 

be parking for longer time periods.  

Also, when parked, electric vehicles can provide multiple grid services. With smart 

control of the charging process, electric vehicles can be considered as dispatchable-loads. 

If the vehicles are allowed to discharge, they can be considered as prosumers in the 

distribution system, providing valuable services to the operator of the system.  

On the other hand, future electric ships will be a large-scale power system with complex 

and different loads. One potential solution to ensure load-generation balance and increase 

fuel efficiency will be a distributed energy storage system, which is based on a cluster of 

large or small storage systems, using different kinds of energy storage devices. At present, 

the most promising, dominant energy storage devices for maritime applications are 

batteries, supercapacitors, and flywheels [7]. Energy management and control of the 

system will be a crucial task for the successful adoption of the storage devices. The on-

board storage system should enable multiple functions, such as providing power to un-

interruptible loads during power outages, supporting mission loads, and providing system 

stability. 

1.4 Research Objectives 

    The main objective of this dissertation is to develop control and optimization 

algorithms to facilitate the adoption of storage devices in the transportation sector without 

negatively impacting the power grid. Also, the dissertation investigates how the storage 
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devices can help improve the power system’s efficiency. The dissertation focuses on the 

use and management of batteries in electric vehicles and the use of hybrid energy storage 

in shipboard power systems.   

The control and management strategies should satisfy the customer and/or operator 

preferences, the system technical constraints, and the involved economic issues. From that 

perspective, decentralized control algorithms are appropriate solutions that can reduce the 

drawbacks of centralized algorithms, such as the large investment required for the 

communication infrastructure. Also, they do not suffer from the single-point failure 

problem, in case of the loss of the main communication link. In decentralized or distributed 

control algorithms, the charging/discharging reference decision is not processed and 

generated using the aggregator or the system operator. Instead, the aggregator or the system 

operator generates some sort of a signal to incentivize the participating storage units to do 

a certain action. However, each unit decides on its charging/discharging rate based on its 

own preferences, and no private information is sent back to the aggregator or the operator 

[7]. Based on that, the major aspects of the dissertation are: 

1. Studying the effect of uncoordinated charging of a substantial number of electric 

vehicles that are dispersed in the power grid. 

2. Developing a proper control framework and evaluating it experimentally. 

3. Designing an intelligent control algorithm to make the best use of distributed electric 

vehicles in demand-side management. 

4. Formulating a multi-objective optimization problem to optimally allocate and size an 

electric vehicles’ parking lot. 
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5. Developing an energy management framework for multiple sources and energy 

storage to meet the pulsating load demand of a ship power system. 

 

1.5 Original Contribution of this Dissertation 

The main goal of the research work in this dissertation is to facilitate the integration of 

electric vehicles (EVs) into the transportation sector without negatively impacting the 

power grid, and to make the best use of energy storage in shipboard power systems in the 

presence of the high demand of pulsed loads. To achieve that, a thorough analysis of the 

impacts of the uncoordinated charging of electric vehicles dispersed in different locations 

of the distribution system is done. The analysis is done, using simulation, on an 18-bus 

distribution system, including the modelling of both the primary and secondary distribution 

system. Also, the analysis is verified experimentally using a small-scale laboratory 

distribution system with multiple Lithium-Ion batteries and converters. The results showed 

that the uncontrolled charging of electric vehicles will have severe impacts on the 

distribution system, causing high system peaks and severe under-voltage problems. The 

results also emphasized the fact that future charging stations must follow the standard 

charging arrangement at unity or 0.95 capacitive power factors, or repetitive operations 

will be needed from the voltage control units in the system, which will reduce the lifetime 

of the power system components.  

To mitigate the negative impacts of the uncoordinated charging of EVs, an autonomous 

control algorithm is developed to ensure the proper charging of EVs without negatively 

affecting the power system. The algorithm takes into consideration the preferences of the 
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EV owners, as well as the system’s technical constraints, such as voltage limits. The 

algorithm is validated experimentally. In addition, the algorithm is verified in the presence 

of distributed generation units. The results showed that the proposed algorithm can ensure 

fair charging among the different EVs connected to the system without violating the grid’s 

technical constraints. 

For electric utilities that incorporate demand-side management (DSM) programs, EVs 

could become either a burden or an advantage, depending on their charging control strategy 

and the signaling of the DSM program. Therefore, a decentralized fuzzy-based controller 

is proposed to successfully integrate and coordinate the charging of EVs, while providing 

grid services, if needed by the power grid operator. Also, a new DSM scheme that is 

capable of benefiting from EVs as prosumers, which can provide grid services, is suggested 

and tested. The new scheme effectively helped mitigate the system peaking and avoided 

introducing new peaks “the rebound effect.” The new scheme is compatible with the 

current DSM infrastructure and does not need any further investments. 

Usually, the EV owners will primarily prefer to charge their vehicles at homes. 

However, many EV owners do not have a private parking space. Therefore, there will be a 

need for non-residential charging stations in other places, such as work, business districts, 

near bulky public transportation stations, and other public facilities. To that end, this 

dissertation proposes a multi-objectives optimization methodology to optimally allocate 

and size future EV parking lots. The proposed algorithm takes into consideration the 

economic aspects of the parking lots, such as maximizing the profits of the investor of the 
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parking lot, and at the same time the technical aspects of the distribution system, such as 

minimizing the voltage deviations and power losses in the system. 

In addition to the control and optimization of the charging of EVs, investigating the use 

of hybrid energy storage in a shipboard power system is performed.  

Due to the nature of the emerging pulsed loads connected to the shipboard medium 

voltage direct current (MVDC) power systems, conventional generators are not able to 

respond to the high ramping rate of these types of loads. Therefore, the existence of energy 

storage systems will be mandatory for the successful and smooth operation of the MVDC 

system.  

To ensure a satisfactory performance of a MVDC power system with pulsed loads, an 

energy management strategy to control the operation of a combination of supercapacitors 

and batteries is developed. The objectives of the management strategy are to maintain the 

voltage of the MVDC bus, ensure proper power sharing, and ensure proper use of 

resources, where supercapacitors are used during the transient periods and the batteries are 

used during the steady state periods. To achieve these objectives, a modified droop-based 

control algorithm supported by a signal processing tool, such as the mathematical 

morphology gradient algorithm (MMGA), and state machine logic were designed and 

tested on a notional MVDC shipboard power system. The management strategy is validated 

through FPGA in the loop. 
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Also, an artificial intelligence-based algorithm is developed to add a level of robustness 

and intelligence to the shipboard power system. The algorithm is tested under different 

loading conditions and different states of charges of the storage devices.  

The results showed that the proposed algorithms can successfully insert/remove the 

appropriate storage device during the transient and the steady state periods. In addition, 

they are able to maintain the voltage of the MVDC bus in the case of an 

overcharged/undercharged storage unit, while not negatively affecting the storage devices. 

1.6 Dissertation Organization 

Chapter 2 provides an overview about the different types of EVs and their different 

applications in the power grid. Also, the chapter presents a comprehensive literature review 

about the different control and optimization techniques that are used to manage the 

charging of EVs.  

Chapter 3 studies the impact of the uncontrolled charging of EVs on the distribution 

system using MATLAB/Simulink. In this chapter, an automated charge controller is also 

proposed to ensure fair charging among the different EVs without mitigating the 

distribution system.   Sensitivity analysis is performed to study the effect of the controller 

parameters on the charging of EVs and the distribution system. 

Chapter 4 provides an experimental verification of the impacts of the uncontrolled 

charging of EVs. In addition, an experimental validation of the automated controller, 

discussed in chapter 3, is presented. 

Chapter 5 introduces a decentralized fuzzy-based controller to successfully integrate and 

coordinate the charging of EVs. The chapter also investigates the effect of the charging of 
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EVs under different DSM schemes. In addition, a new DSM scheme that is capable of 

benefiting from EVs, as prosumers that can provide grid services, is proposed and tested.  

Chapter 6 proposes a Pareto-based multi-objective optimization formulation to optimally 

size and allocate a commercial EV parking lot. The optimization formulation tries to 

maximize the profits of the investor of the EV parking lot, as well as minimize the losses 

and voltage deviations for the distribution system operator. Sensitivity analysis to show the 

effect of the different objectives on the selection of the optimal size and location is also 

performed. 

Chapter 7 presents an improved decentralized control algorithm for the charging of EVs 

in a microgrid. The algorithm is based on the Additive Increase - Multiplicative Decrease 

(AIMD) algorithm, which is commonly used for the management of communication 

network congestions. The algorithm is tested using a co-simulation platform, where a real-

communication network is used with MATLAB via the Data Distribution Service (DDS) 

middleware. 

Chapter 8 provides an overview about the MVDC ship power system and its different 

components. Also, the effect of the pulsed loads on the system is investigated and mitigated 

using a battery system as an initial study.  

Chapter 9 provides a decentralized droop-based control algorithm with the MMGA as a 

signal processing technique. The algorithm is used to manage a hybrid energy storage 

system that is used to mitigate the effect of integrating the pulsed loads into the MVDC 

ship power system. The control algorithm is validated using FPGA in the loop simulation. 
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Chapter 10 adds a level of intelligence to the shipboard power system by using fuzzy 

logic as an expert system to decide on the charging/discharging reference for the different 

storage devices on the shipboard. 

Chapter 11 concludes this dissertation and gives insight on the future work. 
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Chapter 2 Charge Control and Operation of Electric Vehicles in Power 

Grids 

Electric Vehicles (EVs) and hybrid Electric vehicles (HEVs) are going to reshape the 

future of the transportation sector. However, adopting large numbers of EVs and HEVs 

will impact the electric utilities as well. Managing the charging/discharging of substantial 

numbers of distributed batteries will be critical for the successful adoption of EVs and 

HEVs. Therefore, this chapter presents a literature review about the recent control and 

optimization strategies for managing the charging/discharging of EVs. The chapter covers 

different control and operation strategies reported in the literature, as well as issues related 

to the real time dispatching of EVs in the smart grids. In addition, challenges related to the 

stochastic nature of the driving characteristics of EVs are considered.  

2.1 Introduction 

The increased concerns about greenhouse emissions and the signing of the 21st 

Conference of the Parties (COP21) agreement in Paris in December 2015 by 175 countries 

[8], [9] reaffirms the urgent need to strengthen the global response to climate change. The 

electricity and transportation sectors are major players in achieving the objective of 

limiting the rise of the average earth temperature to 2 °C. Electric Vehicles (EVs) and 

hybrid EVs (HEV) are seen as the main contributors to achieving that objective, as they 

reduce the carbon emissions in the transportation sector, which are responsible for almost 

one quarter (23%) of greenhouse emissions [10]. EVs help increase the energy efficiency 

since the electric motors used in EVs are more efficient than the internal combustion 

engines used in conventional vehicles. Also, EVs will help in the reduction of greenhouse 
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emissions in the electricity sectors by supporting the integration of renewable energy 

resources in the global power generation mix. As such, EVs can increase the energy 

independence of nations by reducing the need for oil in the transportation sectors. They 

also help in increasing the quality of air in large polluted cities, which was one of the 

reasons for the Chinese national plan of “ten cities and thousands units” to promote the 

penetration of EVs into the public transportation sector (e.g., buses and taxis) across more 

than 25 cities. 

With that increasing interest and growing deployment of electric vehicles, there will be 

a need to develop algorithms to control the charging/discharging of large numbers of EVs. 

EVs, from the power system point of view, can be regarded as a producer or consumer 

(known as prosumer), depending on their operational mode of charging or discharging. 

Considerable numbers of EVs bring challenges or opportunities to the smart grid, 

depending on their control strategy. On one hand, they can cause negative impacts on the 

grid. These impacts can range from line overloading in both primary and secondary 

distribution systems to transformers overloading [4,5], line losses [13], low voltages and 

voltage unbalances [14]. On the other hand, EVs, as controllable loads, can provide more 

flexibility to the system operator in demand-side management by better valley filling, peak 

shaving, and increasing the system efficiency [15]. Also, they can provide ancillary 

services to the grid, such as regulation and reserve services [16]. This is especially 

important for power systems in the presence of a high share of intermittent renewable 

energy resources, where the system inertia is a big challenge. A considerable group of EVs 
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can help mitigate the inertial loss by behaving as a large storage unit [17]. EVs can also be 

valuable for local voltage and reactive power support [18]. 

2.2 Types and Usage of Vehicles 

At the beginning of the 20th century, the automobile began to dominate transportation, 

with three types of vehicles competing for market share, which are steam-powered engines, 

internal combustion engines (ICEs) and electric vehicles (EVs). Initially, electric vehicles 

fared well in comparison to competitors, with a smooth, quiet ride, no tailpipe emissions, 

and relatively reliable starting for higher expense [19]. Despite the general acceptance with 

the public, EVs faced several drawbacks, some of which are still present to date, including 

relatively short driving range and unavailability of convenient, cost-effective charging 

stations beyond the major population centers. Because of these shortcomings, ICEs became 

much more attractive in comparison to EVs when the electric starter was invented in 1912, 

replacing a difficult to operate and often dangerous crank starter [19]. With ICEs’ easy 

starting and EVs’ limited distance per battery charge, the EV was fast becoming a niche 

market. 

However, nowadays, with the rapid improvements in the battery technology in terms 

of higher battery density and lower costs (as shown in Figure 2.1), EVs have come into the 

picture again. In addition to these technological improvements, the need to mitigate climate 

change and air pollution will lead to deploying more EVs in the future. Figure 2.2 shows 

the evolution of the global EV stock and the distribution of EVs in different countries. The 

pattern shown in Figure 2.2 depicts that more EVs will be adopted in the future. Also, the 
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introduction of more public charging stations, which will be explained later, helped make 

the EVs more acceptable. 

 

Figure 2.1: Evolution of battery energy density and cost [10] 

 

When only considering plug-in electric vehicles (PEVs), electric vehicles whose 

batteries can be charged by plugging into the electricity grid, vehicles can be divided into 

battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) [20]. The 

rated capacity, maximum charging rate and electric mileage range of some types of 

commercially available EVs [21] are shown in Table 2.1. Other types are available in [21] 

as well. 

To increase the acceptance of EVs, EV manufacturers and different municipalities 

started to install and provide incentives for the installation of EV charging stations. Mainly, 

there are three types of charging stations, which are AC level 1, AC level 2, and DC fast 

charging. AC level 1 and 2 charging stations feed the EV with an AC current that is 
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converted to DC current using the onboard charging equipment, where the charger is 

onboard in the vehicle. They differ in their voltage and current ratings. The third type, DC 

fast charging, provides high DC current to the vehicle. Due to the large current, the DC fast 

charger must be off-board [22]. Details about the different charging stations are given in 

Table 2.2. The expected spread of the different charging stations according to their 

convenience is illustrated in Figure 2.3. 

 

Figure 2.2: Evolution of the global electric car stock, 2010-16 [10] 

 

Table 2.1. Commercial EV examples [21] 

Model Type 
Capacity 

(kWh) 

Charging Rate 

(kW) 

Electric 

Range 

(miles) 

Price ($) 

Nissan Leaf BEV 30 6.6 107 $29,000 

Tesla model S BEV 100 10 315 $71,000 

Chevrolet Bolt BEV 60 7.2 238 $37,500 

Toyota Prius PHEV 9 3.3 25 $28,000 

Ford Fusion Energy PHEV 7 3.3 19 $33,900 
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Table 2.2. Charging stations characteristics [22] 

Charging Level 

Vehicle Range Added per 

Charging Time and 

Power 

Supply Power 

Unit Cost 

Range Per 

(Single Port) 

AC Level 1 

4 miles/h @ 1.4 kW 120 V/20 A 

(14–16 A 

continuous) 

$300–$1500 
6 miles/h @ 1.9 kW 

AC Level 2 

10 miles/h @ 3.4 kW (208/240)VAC 

(16–80 A 

continuous) 

$400–$6500 20 miles/h @ 6.6 kW 

60 miles/h @ 19.2 kW 

DC Fast Charging 

24 miles/h @ 24 kW 208/240)VAC 3-

phase 

~(20–400 A AC) 

$10,000–

$40,000 
50 miles/h @ 50 kW 

90 miles/h @ 90 kW 

 

 

Figure 2.3: Likelihood of the use of charging infrastructure [22] 

 



 

 

25 

 

2.3 Control and Operation of Electric Vehicles 

To date, most EVs operate in the unidirectional energy flow only, where the energy is 

coming from the grid or the source to charge the EVs in what is known as grid to vehicles 

(G2V) [23], [24]. However, in the future, with more EVs on the road and more 

development in the communication infrastructure, other operational modes that allow for 

bidirectional energy flow to and from the vehicles can be feasible. These other operational 

modes can be divided into vehicle to grid mode (V2G), vehicle to building mode (V2B) 

[25]–[27], and vehicle to vehicle mode (V2V) [28]. In the V2G mode, aggregated power 

from a group of EVs can be used to support the grid by providing regulation services (to 

stabilize the voltage and frequency) or reserve services (to meet the sudden increase in 

demand or outage of generation unit) [29]–[32]. In these cases, the EV owners must be 

given proper incentives to allow the discharging of their EVs. However, the management 

of such process will not be done through the owners themselves since a single EV cannot 

provide sufficient power to the grid. This can be done through a third party, or agent. This 

third party can be an aggregator or a parking lot operator, which coordinates the charging 

of EVs. 

In the V2B mode, the EV or the EVs can be integrated in the building energy 

management to minimize the cost of electricity for the owner or to use the EV as a storage 

to store excess power from renewable energy resource that might be on the top of the 

building (e.g., photovoltaic modules), and provide this energy back when there is a deficit 

in the supply. 
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In the V2V mode, energy flow among different EVs is allowed. This can be used by a 

parking lot operator that tries to maximize its profits by purchasing energy from the energy 

market and allocating this energy among the EVs according to the different owners’ 

preferences. In all cases of bidirectional power flow, battery degradation costs and reduced 

life time should be taken into consideration. Therefore, to control and coordinate the power 

flow, different control and optimization algorithms have been introduced in the literature. 

These algorithms vary widely between just mitigating the negative impacts of EVs’ 

charging on the power grid to making profits by the EV owners via participating as 

distributed resources [33]. 

In the first part of this chapter, a general categorization for EV charge management 

algorithms is discussed. In the second part, the stochastic and the real-time dispatching 

issues related to EV charge management are explored. 

2.3.1 Deterministic Control Approaches 

Integrating large numbers of EVs to the smart grid can cause considerable negative 

impacts. While the global, or system-wide, negative impacts on the bulk power system are 

likely only at large EV penetration levels [34], localized impacts on the distribution system 

are expected to be more significant even at moderate penetration levels. However, it was 

shown that with adequate management, the negative impacts of EVs can be reduced and 

the penetration depth of electric vehicles can be increased [35]. Several strategies have 

been introduced in order to control EV charging to prevent negative impacts on the grid. 

These can be classified into centralized, decentralized, and autonomous charging control 

strategies. 
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2.3.1.1 Centralized Charging Control 

Many methods of EV charge management have focused on centralized control methods 

[29]–[32]. In centralized scheduling and control, the control algorithm of EVs is done 

centrally after collecting all the information about the EVs’ status and owners’ preferences, 

as well as other system data, such as market prices, system constraints, and loading. The 

central controller can be an aggregator or the system operator. Centralized controllers 

usually result in the optimal utilization of the system resources but need a mature 

communication infrastructure [36]. Figure 2.4 shows a schematic for the centralized control 

method, where all data from the different participants in the system are sent to the main 

controller that processes all the data and sends back reference signals to be followed by 

different entities. 

 

Figure 2.4: Centralized controller schematic 
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In [29], the authors used a control algorithm that uses the EV as another voltage control 

device in the system to mitigate the intermittency of distributed solar generations. The 

control algorithm consists of two stages, where the coordination between the EVs and the 

on-line tap changing transformer is done in the first stage. Then, in the second stage, a 

correction is made to the EV charging/discharging to provide a fast response to the 

fluctuation in the solar energy. The algorithm performed well in mitigating the over-

voltage/under-voltage problems in the system. However, the mobility of the EVs was not 

taken into consideration. 

Electric vehicles on a large scale were used to provide frequency regulation (FR) in the 

utility grid in [30], in which the authors presented a coordinated control strategy for large-

scale EVs, BESSs (Battery Energy Storage Station) and traditional FR resources involved 

in automatic generation control (AGC). It was shown that EVs and BESS can provide a 

fast response in the case of a disturbance of short period but if the disturbance continued 

for longer period, only the AGC will participate in the response continuously. In [31], the 

effect of EVs in providing ancillary services with wind integration was investigated. It was 

shown that the regulation power requirements from conventional generators were greatly 

reduced with the integration of a V2G system participating in load frequency control. In 

[32], a V2G algorithm was developed to optimize energy and ancillary services scheduling 

for a third party, called the aggregator. An optimal bidding formulation for EVs performing 

regulation up and down with only unidirectional power flow was developed. The 

simulations were performed on a simulated market with constant prices of regulation 

services over the study year. 
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None of the V2G studies in [30]–[32], however, addressed charging impacts on the 

distribution system and they require significant communication bandwidth to frequently 

dispatch the EVs . Additionally, the optimization requires significant computational power 

by the centralized controller 

In [37], a multi-objective optimization was used to coordinate the charging of the plug-

in EVs in a way that satisfies the network technical constraints, as well as the customer 

convenience. Heavy communication between the EV customers, vehicle coordinator and 

energy hub operator at the distribution system company is required. It also requires the 

knowledge of load profiles. 

In [38], [39], economic-based charge control was investigated. It was found that price-

based methods can sometimes cause distribution system overloads in the night hours due 

to low system prices. The method requires good communication infrastructure to perform 

well. In [40], a three-level hierarchical control algorithm was proposed for coordinating 

EVs’ charging at the provincial-level in China. The user preferences are sent from the lower 

level from the different charging stations to a higher level on the municipals level, where 

these data are added to other non-EV loads and pricing times, and finally all the data from 

the different municipals are sent and processed by the provincial-level operator. The 

algorithm is good for a vertically integrated utility system, where the conventional power 

system architecture is still being followed. Rebound effects, where there is a sudden load 

increase/decrease due to the instantaneous connection/disconnection of a considerable 

number of EVs in the low/high price period, were considered. The rebound effects were 
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solved using the proper coordination from the upper municipal level coordinator. However, 

there was no consideration for the generation and network constraints. 

Three approaches were studied in [41]; dumb charging, dual tariff policy and smart 

charging. Voltage profiles and line congestion levels were evaluated, for the peak load 

hour, and for grid technical limits checking. Also, network power losses were evaluated 

for a typical daily load profile. Smart charging with hierarchical centralized control showed 

the best performance, and it showed that the voltage is the limiting factor for higher 

integration of EVs. 

Communication with the transformer substation for the sake of fair charging of electric 

vehicles as soon as possible was investigated in [42]. The connection rate of EVs keeps 

increasing until the set point limit is reached, and then it varies up and down to maintain 

the set point level. At the end of each minute interval, the chargers will again attempt to 

connect with a connection rate probability. The random process, used for connecting the 

electric vehicles, ensures that each of the EVs has fair access to the available power. In 

[43], the authors proposed a centralized charging control that allows the EVs to find, via a 

distributed communication network, either the closest charging station, and then only be 

allowed to charge if there are no network constraints, or the charging station that will allow 

for the quickest charge. 

In [44], an algorithm that provides real time energy management for a grid connected 

charging park was proposed. The algorithm uses a fuzzy controller to yield the charging 

rate of each PHEV based on the current and estimated power needed by the PHEVs, the 

estimated power generated by the PV, and the daily energy tariff. In case of high system 
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loading, the output of the fuzzy controller is modified to avoid negative impacts on the 

grid. 

A market mechanism for the optimal allocation of the charging capacity to the vehicles 

was proposed in [45]. The main purpose of the developed mechanism was to allow the 

owners of the vehicles to express their individual preference, as well as ensure network 

stability. The author tried to open the door for multi-tiered user plans, in which different 

users can be offered different resource allocation based on their preference, and their 

willingness to pay. At the same time, network constraints, such as total network loading, 

voltage drop and phase unbalance, were taken into consideration. 

In [46], a central electric vehicle charging optimization algorithm was proposed. The 

optimization was based on a receding horizon linear optimization problem. The authors 

took into consideration constraints such as the transformer and line limitations, phase 

unbalance and voltage stability within the network. As a simplification for the problem, 

the authors used a DC-equivalent model for the distribution network. Later, the algorithm 

was applied to the actual distribution network. In making this decision, the authors were 

looking not just at the current point in time, but at the best possible solution for a finite 

future charging horizon in discrete intervals, since underlying conditions may change 

unexpectedly (such as vehicles arriving or departing). 

Although centralized control strategies can result in the optimal utilization of the 

system resources, they have a number of disadvantages: 
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1. The need for large investment in the communication infrastructure, especially at the 

distribution level. 

2. An enormous number of messages need to be communicated within a very limited 

period of time, which might cause communication issues, such as high latency and low 

quality of service. 

3. High computation burden for processing a large amount of data. 

4. Loss of the main communication link or problems with the central controller might 

have severe consequences on the system integrity. 

5. User privacy issues since the central controller has access to the data of all users. 

2.3.1.2 Decentralized Charging Control 

Other EV charge strategies have focused on decentralized control algorithms that use 

reduced communication infrastructure and computational burden. In decentralized, or 

distributed control, the charging/discharging reference decision is not processed and 

generated using the aggregator or the system operator. Instead, the operator generates some 

sort of a signal to incentivize the participating EVs to do a certain action [47]. However, 

each EV decides on its charging/discharging rate based on its own preference, and no 

private information is sent back to the aggregator or the operator [48]. Other works use 

multi-agent control algorithms [49]. A multi-agent system consists of two or more 

intelligent virtual or physical entities that cooperate and interact with each other to achieve 

certain objectives related to their environments [50]. A schematic for the multi-agent 

approach is shown in Figure 2.5. 
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Figure 2.5: Decentralized controller schematic 

A decentralized controller using price-driven coordination between the utility and the 

EVs was considered in [11]. The authors used two gradient optimization methods, one that 

is based on the cost and the other based on a primal-dual approach, to minimize the total 

load variance in the distribution network. They assumed a uniform fleet with each car 

having a maximum capacity of 1.96 kW. The proposed approach changes the feedback 

control signal of each EV, taking into consideration the state of the feeder supplying the 

EV. Although the method converges to a near-optimal load variance while ensuring that 

the capacity of the feeders are not overloaded, special care should be given to the algorithm 

step size to ensure convergence.  

An electric vehicle for charging and discharging in the household was considered in 

[48]. In this study, the impact of price-based demand response strategies on smart 

household load pattern variations was assessed. A forecasting procedure using a hybrid 
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wavelet transform-based artificial neural network was considered to accurately consider 

the price elasticity of demand. The household load datasets are acquired to perform optimal 

appliance scheduling, considering an hourly varying price tariff scheme. The algorithm 

presented in [51] was based on EVs setting their own charge profiles according to price 

forecasts. In [52], a two-stage control algorithm was used to coordinate the charging of 

EVs in the presence of multiple aggregators. The algorithm takes into consideration the 

network constraints. A third-party price coordinator was introduced to generate a fair price 

signal between the distribution system operator, who tries to efficiently operate the system 

without violations, and the aggregators, which try to charge the EVs according to their 

preferences and with the lowest cost. Although the method achieves satisfactory results, 

the used linear programming model and assumptions did not accurately characterize the 

charging process of the EVs by neglecting mobility aspects and battery efficiency. 

In [53], a large population of plug-in electric vehicles was used to mitigate wind 

intermittency and frequency regulation. Each EV adjusts its charging or discharging power 

in response to a communal virtual price signal and based on its own urgency level of 

charging. The proposed scheme created a cost-saving opportunity for both the EV owner 

and the utility. In [54], a pricing scheme that conveys price and quantity information to the 

load aggregator (LA) was developed and compared with the pricing-only scheme. It was 

shown that the price/quantity scheme is insensitive to the regularization penalty and 

requires less computation capability than the pricing-only scheme. The pricing scheme was 

used to minimize the charging costs for the EV owner. If the objective was changed to 

profit maximization for the utility, the method loses its beneficial properties. 
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Game theory has been recently used by multiple researchers [55]–[60] to coordinate 

the charging process of EVs by achieving the Nash equilibrium, where no player has 

anything to gain by changing his/her own strategy. In [55], the coordination of EVs was 

performed using non-cooperative games to minimize generation cost. In [56], optimal 

demand-side management (DSM) is achieved using a model derived from game-theory. 

Each consumer’s scheduler is required to broadcast its consumption schedule to all other 

participants in the DSM program. In [60], a mean field game theoretic approach was 

proposed to control the charging of the EVs without increasing the grid peak and taking 

the customers` preferences into consideration. 

In [61], a distributed framework was suggested to charge the EVs at comparable 

charging rates without overloading the upstream service transformer. In [62], two electric 

vehicle charging algorithms were proposed, one centralized and one distributed. Their 

performances, in simulations that used real vehicle data, were compared on a model that is 

based on a real low-voltage network in northern Melbourne, Australia. The proposed 

algorithm for distributed charging used probability criteria to decide whether the vehicle 

will be charged or not. This probability is based on the node voltage and the state of charge 

(SOC) of the battery. It does not take into consideration the maximum charging rate. The 

method can be used only up to 25% penetration level, and it is sensitive to the location of 

vehicles in the network; when vehicles are connected near the far ends of the network, there 

is a significantly increased risk of voltage drop. 

In [63], [64], control of energy flow between EVs and the grid has been demonstrated 

using fuzzy logic controllers (FLC), mainly for voltage compensation and load flattening. 
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The proposed technique assumes that the EVs are available to be charged and discharged. 

It also assumes that all EVs in a certain area will charge from a certain charging station, 

and the charging station will work most likely as an aggregator. In [65], the effectiveness 

of distributed additive increase and multiplicative decrease (AIMD) charging algorithms 

at mitigating the impact of domestic charging of EVs on low-voltage distribution networks 

was investigated. The proposed method tries to achieve fair charging among different 

vehicles without violating the voltage constraint or overloading the substation, and, at the 

same time, it took into consideration the time-of-use prices. To achieve the mentioned 

objectives, a simple radial communication between the distribution station and the vehicles 

is used. 

These, and other similar decentralized charging methods, rely on reduced 

communication infrastructure from the utility or the aggregator, even if there is no 

communication from the EVs back to the grid. Although, the decentralized control 

algorithms reduce the need for expensive communication infrastructure and the 

computation burden, they have the following disadvantages: 

1. They do not always ensure optimality and best use of resources. 

2. They may result in a rebound effect, which can be harmful to the system. 

3. They have a limited ability in participating in ancillary service markets. 

4. They are vulnerable to changes in customers’ behavior. 

2.3.1.3 Autonomous Charging Control 

Autonomous charging control algorithms were considered in the literature as a part of 

decentralized algorithms but with no communication at all. However, due to the increased 
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work in that type of controllers, it is preferred to consider them as a third type of control 

algorithm. Autonomous controllers can be the first step for integrating a considerable 

number of EVs in the absence of communication infrastructures in the distribution systems 

in many countries. An autonomous controller mainly depends on local inputs to decide on 

the charging/discharging rate. Also, an autonomous controller can be viewed as a lower 

layer of a more comprehensive decentralized strategy, where decisions should be taken on 

the secondary distribution system instantaneously. An example of an autonomous droop 

controller is shown in Figure 2.6. 
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Figure 2.6 : Autonomous droop controller (POC: point of charging) 

 

In [66], a voltage-constrained local optimization of EV charging was suggested. Each 

EV in the system optimizes its own charging, aiming to maximize its charging rate while 

not violating nodal voltage or feeder loading constraints. However, it does not consider the 

fairness of charging and battery SOC of each EV. In fact, a comparable performance can 

be obtained using simpler control structures. 
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In an autonomous controller, provision of ancillary services, such as secondary and 

tertiary frequency regulation, are harder to do due to the absence of communication, hence 

the direct coordination of the charging/discharging of EVs. However, the primary 

frequency and voltage regulations are possible using the droop controllers [67], [68]. A 

voltage-feedback control structure for EVs in a distribution system was suggested in [69]. 

However, the issue of fairness among EVs connected to different buses in the system was 

not addressed. SOC dependency of charging rate was not considered, either. Fair charging 

means that EVs with similar initial SOC should charge at the same charging rate 

irrespective of their location in the distribution system. Since some of the EVs are 

connected to the upstream buses near the substation, they have the advantage of having a 

higher charging rate due to the higher voltage than those connected to downstream buses. 

In [70], the authors propose an active power/frequency (P—f) droop control strategy to be 

implemented at the EV coupling inverter, where the EV will autonomously adapt its power 

output based on the microgrid frequency. This work proposed the use of this control 

strategy during service restoration. In [71], the authors proposed an autonomous distributed 

V2G control scheme, where electric vehicles supply a distributed spinning reserve 

according to the frequency deviation at the plug-in terminal. The authors in [72] proposed 

a method that uses only local information, which is the node voltage, SOC and the time of 

required charging given by the user. Based on that information, the algorithm controls the 

charging rate. It uses an averaging technique method to find the set-point voltages used in 

the controller that mainly depend on historical data. Fairness was not completely proved in 

the results. In [73], the author proposed an effective, autonomous, voltage-based control 

scheme for charging electric vehicles. This control scheme coordinates the charging among 
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the EVs connected to the distribution nodes in a fair manner so that voltage violations are 

avoided. The proposed method uses constant gain values and the upstream point charges 

faster than the downstream one. In [74], the author developed an autonomous voltage 

feedback control structure for EV charging based on the model in [73]. This control 

structure relies on the local voltage measurement, where the EV is plugged in. It compares 

the system measured voltage at the point of charging with a predefined reference voltage. 

The drawback of the proposed algorithm is that it needs to update the reference set point 

with each seasonal variation, and the upstream point charges relatively faster than the 

downstream one. In [75], [76], a new voltage-based EV charger was proposed. The 

controller used local voltage as one of the inputs and the state of charge as the second input. 

Then, a nonlinear exponential controller decides on the charging rate based on the inputs. 

The aim of this work was to eliminate the need for seasonal changing of the controller set-

points mentioned in the previous autonomous work. This is done by keeping the voltage 

set-point as a constant value for all the EVs at the different buses, and relaxing the 

controller sensitivity to the voltage to ensure fair charging among the EVs.  

Fuzzy-based controllers were introduced in [77] to maintain the MVDC voltage and 

the battery SOC within proper thresholds, and to keep the power balance stable among the 

units of fast charge and the rest of the charging stations. 

Autonomous charging algorithms eliminate the need for the communication 

infrastructure and can also be used as the first layer of hierarchical control algorithms, 

where decisions should be done at the local levels. Also, an autonomous control algorithm 

is the only option for utilities with no available communication infrastructure at the 
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distribution level. However, if an autonomous control algorithm is used alone, it will have 

the following disadvantages: 

1. Lack of the optimal operation of the system. 

2. Lack of ability to participate in ancillary service markets. 

3. May result in a rebound effect. 

4. Vulnerable to changes in customers’ behavior. 

Based on the above discussion about the different types of controllers that are used to 

manage the charging of EVs, a summary of the different papers discussed above is given 

in Table 2.3 below. Also, proper classification of control algorithms and their compatibility 

with both vertically integrated and restructured utility systems can be reached. 

Depending on the utility structure, communication infrastructure, electricity market 

design and the level of sector liberalization, one or more of the controllers` types can be 

used. On one hand, multiple central aggregators can be used in a restructured utility system 

to achieve the reliable and cost-effective operation of their zones. On the other hand, one 

central controller can be used to control the vertically integrated system. 

As the future electric utilities move toward more deregulated ones, decentralized and 

multi-agent systems will be more suitable due to their several advantages. For instance, 

current demand-side management programs can send minimum signals to provide 

guidance to a decentralized controller that makes the final decision locally. 

Autonomous controllers can be the first step for integrating a considerable number of 

EVs in the absence of communication infrastructure in the distribution system in many 

countries. Also, having autonomous control at the lowest level of the 
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centralized/decentralized controller is advantageous since it reduces the communication 

traffic with the V2G aggregator. 

 

Table 2.3: Summary of the discussed control techniques 

Ref. 

Number 
Technique Used 

Bidirectional  

Battery 

Flow 

Utility 

Constraints  

Consideration 

Centralized Techniques 

[29] 
Rolling Scheduling Using Linear 

Programming 
✓ ✓ 

[30] Tie-Line Bias Control ✓ ✗ 

[31] Tie-Line Bias Control ✓ ✗ 

[32] Linear Programming ✓ ✗ 

[37] 
Multi-Objective Optimization Using 

Particle Swarm 
✗ ✗ 

[38] 
Non-Linear Programming Using 

GAMS 
✗ ✓ 

[39] Linear Programming ✗ ✗ 

[40] Quadratic Optimization ✗ ✗ 

[41] Linear Programming ✗ ✓ 

[42] 
Additive Increase, Multiplicative 

Decrease Algorithm 
✗ ✓ 

[44] Fuzzy Control ✗ ✗ 

[45] Linear Programming ✗ ✓ 

[46] 
Receding Horizon Using Linear 

Programming 
✗ ✓ 

Decentralized Techniques 

[10] Gradient Optimization ✗ ✓ 

[48] 
Artificial Neural Networks- Wavelet 

Transform 
✓ ✗ 

[49] Hybrid-PSO& Linear Programming ✗ ✗ 

[51] Linear Programming ✗ ✗ 

[52] Linear Programming ✗ ✓ 

[53] Congestion Pricing Algorithm ✓ ✓ 

[54] Game Theory ✗ ✗ 

[55] Non-Cooperative Game Theory ✗ ✗ 

[56] Game Theory ✗ ✗ 

[57] Game Theory ✗ ✗ 
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[58] Non-Cooperative Game Theory ✗ ✗ 

[59] Normalized Nash Game ✗ ✗ 

[60] Stochastic Mean Field Game Theory ✗ ✗ 

[61] 
Additive Increase, Multiplicative 

Decrease Algorithm 
✗ ✗ 

[62] Probability Theory ✗ ✓ 

[63] Fuzzy Control ✓ ✓ 

[64] Fuzzy Control ✓ ✓ 

[65] 
Additive Increase, Multiplicative 

Decrease Algorithm 
✗ ✓ 

Autonomous Techniques 

[66] Linear Programming ✗ ✓ 

[67] Droop Controller ✓ ✓ 

[68] Droop Controller ✓ ✓ 

[69] Droop Controller ✗ ✓ 

[70] Droop Controller ✓ ✓ 

[71] Droop Controller ✓ ✓ 

[72] If-Then Rules ✗ ✓ 

[73] Proportional Controller ✗ ✓ 

[74] Droop Controller ✗ ✓ 

[75] Exponential Controller ✗ ✓ 

[76] Exponential Controller ✗ ✓ 

[77] Fuzzy Controller ✗ ✓ 

 

2.3.2 Real-Time and Stochastic Operation Approaches 

When dealing with real-world scenarios, the optimal operation of EV charging 

becomes more challenging. Since in real-time (RT), the aggregator or the operator receives 

a regulation signal update once every 2–6 s, the RT strategy needs to be computationally 

efficient. In addition, this strategy must ensure meeting the regulation signal while 

considering EV characteristics and EV owners’ preferences. 

Moreover, different kinds of uncertainties are involved in the scheduling process. 

Generally, there are three major types of uncertainties when dealing with EV charging. 
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These types are: renewable energy uncertainties [78], market uncertainties [79], and EV 

mobility uncertainties [80]. An aggregator or system operator should take into account 

these kinds of uncertainties during the scheduling of EV charging/discharging. Also, the 

communication latency and EV owner preference should be considered. 

As a market participant who contributes to energy and ancillary service markets, an 

electric vehicle aggregator (EVA) or operator is required to submit energy schedules to the 

wholesale energy market and capacity schedules, e.g., frequency regulation and reserves. 

These schedules are submitted to the concerned markets on the day-ahead. In real-time, if 

no ancillary service is requested by the system operator, the EVA is expected to abide by 

its own energy schedules. However, if an ancillary service, e.g., frequency regulation, is 

requested, the EVA is expected to follow the ancillary service command signal. This is 

performed by moving some or all EVs above or below their scheduled charging rates. A 

brief timeline for the operation of the electric vehicle aggregator or the system operator is 

shown in Figure 2.7. 

The EVA, therefore, needs day-ahead (DA) and real-time (RT) charge management 

strategies. The DA strategy concerns the optimal schedules of energy and regulation 

capacities that the EVA sends to the corresponding markets on the day-ahead. Then, the 

EVA needs a RT strategy for EV dispatching that helps deciding which EVs should be 

moved from their DA scheduled charging rates and by how much. 
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Figure 2.7: Timeline of the day-ahead and real-time markets 

 

2.3.2.1 Day-Ahead Scheduling with Uncertainties 

Uncertainties, if not included in the day-ahead scheduling, might greatly affect the 

system performance from the economic and technical standpoints. To deal with 

uncertainties, several modelling methodologies have been developed, such as probabilistic 

methods [81], stochastic optimization [82], robust optimization [83], and fuzzy 

optimization [24], [84]. 

Managing a large number of hybrid EVs at a city parking lot was considered in [81]. 

The authors tried to maximize the available energy in the EV for the next time step, taking 

into account the different uncertainties of the driving characteristics, such as the arrival 

time, departure time, and initial state of charge. 

These data were based on normal distribution curves that were validated using actual 

transportation statistics. The drawback of the proposed algorithm is the need for a high 
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computation requirement to process large amount of data. Minimizing the overall load 

variance in the presence of demand response was considered in [82]. The stochastic nature 

of the availability (arrival and departure times) of the EVs was considered, but the energy 

uncertainties were not taken into consideration. In [85], a binary particle swarm 

optimization with adapting differential evolution was proposed to handle the uncertainties 

associated with renewable energy. The authors tried to minimize the cost of generating the 

electric power from the conventional fossil units by using the flexibility of the EVs to 

accommodate as much renewable power as possible. In [86], the authors used 

unidirectional V2G to mitigate the risk of energy trading by a load-serving-entity (LSE), 

which uses thermal and wind power sources, and has a high penetration of EVs. Mixed- 

integer stochastic programming is used to formulate the problem of coordinating V2G with 

energy trading with an objective of finding the optimal bids that will maximize the LSE 

profits. In [87], [88], a bi-layer optimization technique was used to accommodate 

renewable energy to enhance the gird performance in the presence of EVs. Robust 

optimization that handles the uncertainties in prices for V2G optimization was considered 

in [89]. In [85]–[89], EV mobility and energy uncertainties were not taken into 

consideration. In [83], robust optimization was suggested to coordinate EVs scheduling 

with thermal generators to provide ancillary services to the grid. The proposed robust 

optimization algorithm can lead to conservative solutions. 

 A hierarchical optimization algorithm for scheduling the EVs for profit maximization 

while satisfying the transformer constraints was considered in [90]. It was assumed that the 

energy and the availability of the EVs are stochastic based on probability distribution. The 
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drawback of the proposed algorithm is that the computation burden increases exponentially 

with the number of the EVs and the length of the operating time frame.  

Most of the algorithms mentioned previously focus on a large number of EVs, whether 

they were coordinated by the utility or an aggregator. For these cases, the EV characteristics 

and mobility can be forecasted with a reasonable accuracy due to the law of large number. 

This is not the case for a small number of EVs, like the case of a parking garage, with a 

limited number of EVs. This problem still needs more investigation.  

EV parking garage scheduling in a city using historical data of EV mobility and parking 

patterns was considered in [91]. The authors tried to maximize the total profits and the total 

number of EVs that fulfill their requirements. The operator schedules the charging from 

the time point at which the electricity price is the cheapest, irrespective of the EV time 

availability, which is risky and sub-optimal. In [80], fuzzy optimization was used for 

dealing with the uncertainties associated with EV mobility and market prices. The authors 

turned the deterministic optimization problem into a fuzzy optimization problem to handle 

the different uncertainties of EVs, while trying to maximize the profits of an EV parking 

lot. Although the methodology took into consideration the uncertainties of EVs and market 

prices, renewable energy uncertainties were not considered. A stochastic model for 

capturing the behavior of EVs was considered in [92]. To simplify the model, the whole 

EV fleet was considered to be the same.  

2.3.2.2 Real-Time Dispatching 

Once day-ahead scheduling has been submitted, the aggregator or the operator needs 

to abide by his bidding in the real-time; otherwise, a penalty will be applied. Therefore, 
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there is a need for real-time dispatching algorithms to ensure proper operation of the 

system. 

A number of studies reported in the literature relied on real-time incremental dispatch 

methods in the context of optimal schedules. That is, it was assumed that the aggregator 

would send dispatch signals to all participating EVs in order to respond to 

regulation/reserve deployment commands requested by the system operator. A major issue 

with incremental dispatch, also called droop-based dispatch, is that the charging stations 

required for incremental power changes are more expensive than the simpler charging 

stations that accept on/off commands only. This is because additional hardware is needed 

to modulate charge rates continuously. Also, standard charging stations commercially 

available today do not support the communication requirements needed for continuous 

modulation of charge rates [93]. Another issue is that a new dispatch signal needs to be 

sent to every EV participating in V2G at every regulation command instance, which has a 

high resolution of 2–6 s. 

Lately, some authors presented algorithms for managing EV charging that are suitable 

for RT adoption. In [94]–[97], RT charge management mechanisms were proposed. 

However, provision of regulation services was not considered in [94]–[96], and market 

mechanisms were not considered in [97]. In [98], a three-stage framework for DA and RT 

charge management for an EVA providing regulation services is presented. However, it 

involves a large number of parameters that need to be set carefully to warrant a successful 

outcome. In [99], the suggested framework employs model predictive control (MPC) to 

obtain the RT charging set point for each EV. In [98], [99], all participating EVs have to 

be updated every time a regulation signal is received by the EVA, which increases the 



 

 

48 

 

communication burden. In [100], another framework for DA and RT EV charge 

management is proposed in the presence of significant renewable penetration.  

Considerable attention has been paid in the literature to the impact of communication 

on the power system control. This is motivated by the fact that higher communication 

traffic can result in higher latency, which may have a de-stabilizing effect on the power 

system. This is especially true for frequency regulation, or load frequency control (LFC), 

of bulk power systems and microgrids. In addition, a high communication traffic requires 

communication channels with high bandwidths and gives rise to high communication 

power consumption. 

New emerging concepts that use developments in radio frequency identification and 

the 5G technologies have started to gain traction in the literature [101]. To address the 

abovementioned challenges, there must be robust and low-cost communication 

infrastructures that can support rapid and secure information exchange, as well as 

consistent and efficient design of communication protocols and architectures. The internet 

of things and cloud computing, based on the 5G technologies, as new computing models, 

could accelerate the establishment of such infrastructures. The internet of things is a new 

concept that attempts to combine multiple aspects and technologies coming from different 

approaches. According to the International Telecommunication Union, the internet of 

things is defined as “a technological revolution that represents the future of computing and 

communications, and its development depends on dynamic technical innovation in a 

number of important fields, from wireless sensors to nanotechnology” [102]. Omnipresent 

computing, pervasive computing, internet protocol, sensing technologies, communication 
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technologies, and embedded devices are merged together in order to form a system where 

the real and digital worlds meet and are continuously in symbiotic interaction [103], [104]. 

In [105], the authors proposed the use of internet of things to provide an automatic EV 

charging management. The objective of their scheme was to coordinate the charging of 

large-scale EVs in multiple residential buildings by leveraging the fast-distributed 

optimization capability of the alternating direction method of multipliers. 

 A platform that allows battery analysis and control of the charging and discharging 

processes through a web application using pre-defined profiles was introduced in [106]. A 

new communication architecture based on cloud computing was proposed in [107], where 

the authors presented a scheduling algorithm in order to attribute priority levels and 

optimize the waiting time to plug-in at each charging station. The potential of V2G services 

supported by the fog-based and cloud-based hybrid computing model in 5G networks was 

investigated in [108]. The authors considered the high mobility of EVs and the dynamics 

of the mobile computing resources in their investigation, and some possible solutions were 

suggested. To enable flexible and efficient connections, quality of service guarantee, and 

multiple concurrent support requests, the authors in [109] proposed the software-defined 

internet of vehicles, which is able to tackle the above-mentioned issues by adopting the 

software-defined networking framework. Despite the initial work to employ the advantages 

of the 5G and the internet of things in EV charging, more work is needed to fully explore 

the potential of these innovative technologies. 

In addition to the internet of things, other studies have addressed the impact that the 

performance of the communication infrastructure has on the smart grid. In [110], LFC 

performance has been examined, considering a number of communication-network 
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characteristics, such as latency, bandwidth, and change in communication topology. The 

need for strict latency requirements in smart grids was emphasized in [111]. A model for 

communication latency as applied to the smart grid was introduced in [112]. A method was 

presented in [113] for estimating the delay margin requirements for the stability of the LFC 

loop. In [114], the impact of communication delays on the LFC of islanded microgrids is 

studied. 

Recognizing the impact of communication networks’ performance on the smart grid, 

few studies have presented methods for scheduling EV charging with low dispatch signal 

traffic. The main focus of [115] was to provide a valley-filling schedule for typical peak-

valley daily residential profiles. It offered a user-oriented approach designed to satisfy the 

EV owner, while minimizing the variance and peak of the aggregated load profile as 

desired by the grid operator. In [116], another approach to manage the charging for valley-

filling was put forward. The work presented in [115],[116] did not tackle the provision of 

frequency regulation, which is very challenging due to the high resolution of the regulation 

signals. 

In [117], a simple discrete algorithm was proposed for an aggregator-driven RT charge 

dispatch of an EV fleet that provides regulation services. The suggested algorithm used a 

few heuristic rules to decide which EVs sholud be turned ON/OFF in order to meet the 

regulation signal under reduced dispatch traffic. Because it was based on heuristics, 

dispatch traffic optimality and fairness were not guaranteed. Generally, there are potential 

gains that can be made through optimizing the EV dispatch to perform regulation and 

reserves services. If EVs are charged more efficiently, additional savings in the 

communication bandwidth requirements can be achieved. 
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2.4 Conclusion 

This chapter surveyed the recent research activities related to charge management of 

electric vehicles in a smart grid environment. The impact of EV charge management on the 

smart grid is first presented. Then, EV charge management strategies are divided into three 

categories. Centralized EV charge control, which requires a well-developed 

communication infrastructure, is highlighted. Decentralized charge control, which has 

limited communication requirements, is then discussed. In addition, communication-free, 

autonomous EV charge control is explored. The different approaches reported in the 

literature for addressing the stochastic nature of EV charge control process are overviewed. 

Special emphasis is also given to the issue of strategies suitable for real-time EV charge 

dispatch. 
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Chapter 3 An Automated Charger for Large Scale Adoption of Electric Vehicles    

The penetration of electric vehicles (EVs) is expected to increase in the future. With 

more EVs on the road, more loads will be added to the distribution system, which will 

affect the system voltage and loading. This chapter studies the impact of the EVs on the 

distribution system and provides an automated controller that satisfies the customer 

requirements and mitigates the negative impacts of the charging of EVs on the system. The 

controller takes into consideration the system voltage, the customer requirements and the 

state of charge (SOC) of the battery. The controller is tested using a large-scale distribution 

system in MATLAB/Simulink. To show the interaction between the local distributed 

generation and the EV charging, the controller is tested in the presence of distributed 

generation units. Sensitivity analysis is also performed to study the effect of the controller 

parameters on the charging of EVs and the distribution system. 

3.1 Introduction 

Electric vehicles (EVs) have attracted a lot of attention in the recent years and their 

adoption is expected to increase soon. This is mainly due to the several advantages 

associated with EVs in the transportation sector.  For example, EVs are more energy 

efficient and they can use the clean energy, such as renewable energies for charging, and 

thus can significantly reduce the consumption of fossil fuels. However, with the increase 

in the number of EVs in the power grid, there will be a need for charging algorithms that 

can manage the charging of a substantial number of EVs connected to the power grids. 

Distribution systems will be the first part of the power grid where the impacts of EVs will 

be witnessed.  As mentioned in the previous chapter, these impacts can range from line 
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overloading in both primary and secondary distribution systems to transformers 

overloading [11], line losses [13], low voltages, and voltage unbalances [14].  In the 

literature, many charging control algorithms were developed.  

Generally, the suggested centralized controllers have the advantage of ensuring the 

most efficient and optimal use of the system. However, they have major drawbacks, such 

as the loss of the main communication link with the system operator, which could paralyze 

the entire system. Also, centralized controllers need large investments in the 

communication infrastructure, associated security measures, and high computation 

capabilities.  Therefore, the decentralized controllers were developed in the literature as an 

alternative to the centralized ones. Decentralized controllers require less communication 

infrastructure and the amount of the exchanged information is less, thus the computation 

burden is reduced. In addition, the privacy of the EV owners is protected since there is no 

need to exchange all the information with system operator.  

As mentioned before, decentralized controllers can be divided into decentralized 

controllers with communication and decentralized controllers without communication 

(called autonomous). A two-stage control algorithm for the coordination of energy between 

multiple EV aggregators was proposed in  [52]. A third-party price coordinator is 

introduced to generate an appropriate price signal between the system operator and the 

different aggregators so that each party satisfies its objective in a non-discriminatory way. 

Fuzzy logic controllers were used in [118], [119] to control the flow of energy between the 

grid and the EVs.  
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Since the communication infrastructure is not mature in many distribution systems and 

a substantial number of the owners of EVs are expected to charge their EVs at their homes, 

decentralized controllers without communication (autonomous) have been developed. In 

[73], [120] the authors have proposed an autonomous voltage-based control scheme for 

charging EVs. This control scheme effectively coordinates charging among the EVs 

connected to the distribution buses. However, the proposed algorithm needs to update the 

set-points of the controller with each seasonal variation, and the upstream point charges 

relatively faster than the downstream one. In [75],  a technique for EV charge management 

with variable gain is introduced to manage the EV charging. The controller depends on a 

non-linear empirical exponential function that might cause delay in the real-time operation, 

and there is no systematical method to derive the controller-governing equations. 

 In [121], an autonomous charging control algorithm that enables flexible charging of 

EVs is proposed. The algorithm decides on the charging rate of the EV according to the 

free capacity between the feeder maximum current limit and the non-EV load currents. The 

proposed algorithm was validated experimentally using an EV that is connected to the 

home charger. Although the method provides charging flexibility for the home owner, if it 

is widely used, its impacts on distribution grids are not favorable from the distribution 

system operator’s (DSO) point-of-view.  

In [66], a voltage-constrained local optimization of EV charging was suggested. Each 

EV in the system optimizes its own charging, aiming at maximizing its charging rate, while 

not violating the nodal voltage limits or the feeder loading constraints. However, it does 

not consider the charging fairness and battery state of charge (SOC) of each EV. In fact, 
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comparable performance can be obtained using simpler control structures.  A voltage-

feedback control structure for EVs in a distribution system was suggested in [122]. 

However, the issue of fairness among EVs connected to different buses in the system was 

not addressed in [122]. SOC dependency of charging rate was not considered, either.  

Fair charging means that EVs with similar initial SOC should charge at the same 

charging rate, irrespective of their location in the distribution system. Since some of the 

EVs are connected to the upstream buses near the substation, they have the advantage of 

having higher charging rates due to the higher voltage compared to those connected to the 

downstream buses.  

In [123], the authors proposed an autonomous approach for the management of local 

voltages, utilizing the concept of sensitivity analysis. Results from time-series analyses 

reveal its effectiveness in managing the constraints. In [69], a droop-based controller was 

proposed to manage  the charging  of EVs in distribution systems. However, the problem 

of the sensitivity of EV charging with the location was not considered. This resulted in a 

discriminatory charging among the EVs. Also, the SOC of the battery was not considered, 

which reduces the lifetime of the battery. 

In this chapter, an autonomous linear controller is proposed to manage the charging of 

a substantial number of EVs in a residential distribution system. The charger and its 

embedded controller require no communication. Unlike the droop controller in [69], the 

fairness of charging among different EVs, where the charging process is very sensitive to 

the charging location, is considered. Also, state of charge dependency is taken into 

consideration as well. The charger takes into consideration the owner requirements and 
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mitigates overloading and under-voltage problems in the distribution system. The 

controller and the charger are tested on a large-scale system through simulation.  

3.2 Electric Vehicle Charging Control  

The EV charger converts the AC current coming from the grid to a controlled DC 

current in order to charge the batteries. Therefore, the EV is seen from the grid as a current 

source [124]. EV battery charging control aims at charging the EVs by satisfying the 

customer requirements, and without violating the voltage standard of the grid. Taking the 

grid status into consideration will help ensure that the feeder losses are reduced and 

overloads are avoided [13].  

For a given distribution transformer, the loads consist of both controllable and non-

controllable loads. By controlling the loading level, the voltage profile of the system can 

be improved since it is in a direct relation with its loading levels. In this chapter, it is 

assumed that the only controllable loads are the EVs. 

 Figure 3.1 shows a block diagram for the proposed EV controller, which decides on 

the charging rate 𝐼𝑟𝑒𝑓 based on the voltage at the point of connection (POC) and the state 

of charge (SOC) of the EV connected to that POC. The SOC of the battery is estimated 

using the Coulomb counting method, where the charging energy in the battery can be 

monitored through the common procedure of summing the current exchanged versus the 

usable capacity. Coulomb-counting uses a timing reference and integrates the current over 

a fixed sampling period to determine the capacity that was added [125]. The 𝑆𝑂𝐶(𝑡) online 

algorithm is: 
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             𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶𝑥(𝑡0) + ∫
 𝐼𝑏𝑎𝑡

3600𝐸𝑢𝑠𝑎𝑏𝑙𝑒

(𝜏)𝑑𝜏     
𝑡

0

 
(3.1) 

 

 

where  𝑆𝑂𝐶𝑥(𝑡0) is the initial SOC voltage-based assessment of the battery that is 

added to current integrated over a 1-second 𝑑𝜏. 𝐼𝑏𝑎𝑡 is the battery current and 𝐸𝑢𝑠𝑎𝑏𝑙𝑒 is the 

usable capacity in Ampere-hours. Once the SOC is known, it will be converted to a 

percentage, which will be used by the controller, by dividing it by the maximum usable 

capacity of the battery.  

𝑆𝑂𝐶𝑖(𝑝. 𝑢) =
𝑆𝑜𝐶(𝑡)

𝐸𝑢𝑠𝑎𝑏𝑙𝑒
    

(3.2) 
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Figure 3.1: Proposed EV controller  
 

Once the SOC is known, it will be used by the controller, along with the voltage at the 

POC in per unit, to decide on the charging current in per unit. The output from the controller 
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is multiplied by the maximum charging current of the battery 𝐼𝑚𝑎𝑥 to obtain the real 

charging reference 𝐼𝑟𝑒𝑓. When the reference current is obtained, it will be compared with 

the output current from the DC-DC converter 𝐼𝐿, and the error between them will go to a 

PI controller that will enforce the converter to follow the reference value. 

The proposed controller represents a linear relationship between the EV charging rate 

and the voltage at the POC. The output of the controller is continuous as long as the state 

of charge SOCi < 80%, and there is no voltage violation (the voltage is higher than 0.95 

p.u). The value of 0.95 p.u voltage was chosen since it satisfies the ANSI standards [126], 

and 80% state of charge was chosen as the maximum value of charging to increase the 

lifetime of the battery [127], [128].  

 The regulated charging rate 𝐼𝑟, can be represented as a function of the voltage variation 

(∆𝑉𝑖), as shown in Figure 3.2 (a), and described as follows:  

      𝐼𝑟_∆𝑣 = {

𝐼𝑚𝑖𝑛                                            ∆𝑉 ≤ ∆𝑉𝑚𝑖𝑛

𝑚1∆𝑉 + 𝑘1                   ∆𝑉𝑚𝑖𝑛 < ∆𝑉 ≤ ∆𝑉𝑐

𝑚2∆𝑉 + 𝑘2                   ∆𝑉𝑐 < ∆𝑉 ≤ ∆𝑉𝑚𝑎𝑥

𝐼𝑚𝑎𝑥                                            ∆𝑉 > ∆𝑉𝑚𝑎𝑥

         
 

(3.3) 

 

 

   where,  

  𝑚1 =
𝐼𝑐− 𝐼𝑚𝑖𝑛

∆𝑉𝑐−∆𝑉𝑚𝑖𝑛
,        𝑘1 = 𝐼𝑚𝑖𝑛 − 𝑚1 ∆𝑉𝑚𝑖𝑛 

(3.4) 

, 𝑚2 =
𝐼𝑚𝑎𝑥 − 𝐼𝑐 

∆𝑉𝑚𝑎𝑥 − ∆𝑉𝑐
, 𝑘2 = 𝐼𝑐 − 𝑚2 ∆𝑉𝑐 

where          

∆𝑉𝑖 = 𝑉𝑖 −𝑉𝑟𝑒𝑓,𝑖 , 𝑉𝑟𝑒𝑓,𝑖 is the voltage reference set-point.  
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Note that the voltage reference, Vref,i, will be constant at 0.95 p.u for all the EVs in the 

system. This eliminates the need for the seasonal changing and the extra tuning proposed 

in [120]. This voltage reference will be kept constant in all cases regardless of seasonal 

variations, which is highly desirable.  
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Figure 3.2 a) Rate of charge voltage control logic   b) Rate of charge SOC control logic                                                          

 



 

 

60 

 

𝐼𝑚𝑖𝑛  and 𝐼𝑚𝑎𝑥 are the minimum and maximum acceptable limits of charging rate, 

which are defined based on the charger limits. 𝐼𝑐 is the current that corresponds to the 

voltage point ∆𝑉𝑐, which is the critical point where the voltage at the POC is high enough 

to allow increasing the charging rate of the EV near the maximum value. ∆𝑉𝑚𝑖𝑛 and ∆𝑉𝑚𝑎𝑥 

are the minimum and maximum acceptable limits of the voltage variations. From the 

system’s point of view, the first objective of the controller is to avoid under-voltage 

problems in the system. It is not preferred that the EV charger increases the charging when 

the bus system voltage is near the minimum system standard voltage (0.95 p.u). Therefore, 

∆𝑉𝑚𝑖𝑛 is set to start the increase of the charging rate if the voltage is higher than 0.954 p.u. 

∆𝑉𝑐, is set to increase the charging rate near the maximum charging when the system 

voltage is high enough, in that case 1.04 p.u and above. If the voltage is higher than the 

maximum system standard voltage (1.05 p.u) and  ∆𝑉𝑚𝑎𝑥 is reached, the charger will charge 

at the maximum charging rate in order to absorb the extra power in the system. 

Fairness is another important objective during the charging of the EVs. The charging 

of each EV to obtain acceptable bus voltages should be decided in a way that it does not 

consistently make the charging of one EV comparably faster than another EV according to 

its location in the network. It is not appropriate that EVs connected to downstream load 

bus, i.e. lower voltage, suffer from much lower regulated charging rates than those 

connected to the upstream load bus, i.e. higher voltage. Therefore, the charging can be 

improved by using a charging rate function that is not excessively sensitive to the voltage 

level. It is only when the voltage is considerably high that the charging rate should increase. 

This is done by choosing the appropriate values of ∆𝑉𝑐 𝑎𝑛𝑑 𝐼𝑐 . 
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A third objective, that will contribute to decide on the charging rate of the EV, is the 

dependence on the SOC of the EV. It is desirable that the EV having lower SOC should be 

allowed to charge at a higher charging rate, and as its SOC increases, the charging rate 

decreases slowly, as depicted in Figure 3.2 (b). This also helps increase the battery lifetime 

by reducing the charging rate greatly when the battery is near the maximum capacity. 

Therefore, for an EV with a current SOCi, the current draw as a function of the SOCi is 

stated as follows: 

𝐼𝑟_𝑠𝑜𝑐 = {

𝐼𝑚𝑎𝑥                                                      𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑖𝑛

𝑚3𝑆𝑂𝐶 + 𝑘3                 𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝐼𝑚𝑖𝑛                                                      𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑚𝑎𝑥

 

(3.5) 

where,  

𝑚3 = −(
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛 

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛
) , 𝑘3 = 𝐼𝑚𝑖𝑛 − 𝑚3 𝑆𝑂𝐶𝑚𝑎𝑥 

(3.6) 

SOCmin and SOCmax are the actual apparent SOC limits to the EV owners, which are 

usually different from the physical zero and full SOC. SOCmin  is usually in the range (10%-

20%) of the battery capacity since it is harmful to fully discharge the battery, and SOCmax 

is in the range (80%-90%) of the battery capacity since it is harmful to overcharge the 

battery. The final rate of charge 𝐼𝑟𝑡 from the above equations is given in (3.7). 

𝐼𝑟𝑡 = 𝑘 ∗  𝐼𝑟_∆𝑣 ∗ 𝐼𝑟_𝑠𝑜𝑐 ∗ 𝐼𝑚𝑎𝑥 (3.7) 

where, k is an empirical factor that was determined by trial and error. It is used to tune the 

final charging rate based on the battery type. 𝐼𝑟_∆𝑣, 𝐼𝑟_𝑆𝑂𝐶  are the reference current 

components coming from the voltage and SOC logics. 𝐼𝑚𝑎𝑥 is the maximum charging 

current of the battery. It is used to change the per unit reference current into an actual one. 

The control scheme is further modified in order to include any possible preference of the 
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EV owner. Accommodating the owner preference is done by making the EV current draw 

dependent on the remaining uncharged battery capacity, if needed. Thus, the minimum 

current draw for each EV is defined as the average value required over the remaining 

charging interval given in (3.8), where  𝑆𝑂𝐶𝑥(𝑡𝑒𝑛𝑑) and  𝑆𝑂𝐶𝑥(𝑡0) are the required final 

and the initial SOC, respectively. dt and st are the required departure and start times. 

𝐼𝑟𝑒𝑓 = max(𝐼𝑟𝑡,
  𝑆𝑂𝐶𝑥(𝑡𝑒𝑛𝑑)− 𝑆𝑂𝐶𝑥(𝑡0)

𝑑𝑡−𝑠𝑡
)  ,  𝐼𝑟𝑒𝑓 ≤ 𝐼𝑚𝑎𝑥 (3.8) 

 

3.3 Simulation Benchmark Description 

This section describes the simulation system that is used to test the impact of the EVs 

and the validity of the proposed controller on the power grid, where the EVs are connected 

to different buses. Figure 3.3 (a) shows a 3-phase unbalanced primary residential 

distribution system that has 18 buses. This system was introduced in [129] and was used 

for testing the EVs in [13]. Figure 3.3 (b) shows the secondary distribution system, which 

has multiple splice boxes and houses connected directly to the distribution transformer 

through triplex lines at a nominal service voltage of 240 V. The parameters of the system 

are presented in Table 3.1. The system consists of 1020 houses with load profiles based on 

Residential High Winter Ratio (ResHiWR) found in the system of the Electric Reliability 

Council of Texas (ERCOT) [130]. The loads have five-minute resolution data. The system 

is assumed to have 510 EVs connected at different houses. This corresponds to a 50% 

penetration depth. This level of penetration depth is reported to cause significant problems 

to the distribution system [13]. It is assumed that each EV has 24 kWh maximum capacity 

and 6.6 kW maximum charging rate, which emulates the 2013 Nissan Leaf. For the steady 

http://www.ercot.com/
http://www.ercot.com/
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state analysis in the distribution system, the EVs are modeled as controlled current sources, 

where each source is fed by its reference from the controller. This is done to reduce the 

computational burden and time of the simulation.  

3.4 Simulation Results  

The controller performance is validated through simulation on MATLAB/Simulink. 

Multiple simulation cases are done to show the validity of the proposed controller. 

3.4.1 Control Performance in the Absence of Distributed Generation Units 

To show the merits of the  proposed controller, it will be compared to the case of 

uncontrolled charging, and the case of using a traditional droop-based control proposed in 

[69], where the charging rate is a constant multiplied by the voltage at the point of 

connection. Since the droop controller in [69] resulted in under-voltage problems, it has 

been modified in this chapter to stop charging if there is an under-voltage problem in the 

system.  

 

Table 3.1: Secondary network parameters 

Parameter Value 

EV Charger Penetration 50% 

Distribution Service Transformer 150 kVA,         %Z = 1.8 

Secondary Conductor (transformer to splice 

box) 

350 Al, 4/0 Al Neutral 

Service Conductor (to the houses) #2 Al 

No. of customers 1020 
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Figure 3.3: a) Primary distribution systems   b) secondary distribution systems 
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The penetration depth of EVs is assumed to be 50%, which represents a high 

penetration level of EVs that will cause negative impacts on the grid. The EVs are 

connected randomly to the different houses at the secondary distribution transformer. It is 

assumed that the owners of the EVs will prefer to charge their vehicles after they come 

back from work during the night hours, where the low time-of-use tariff is applied. 

Therefore, the plug-in times of the EVs are assumed to follow a normal distribution 

centered around 8 pm with a standard deviation of one hour. The initial SOCs of the 

batteries are assumed to be in the range of 30-50%. The number of owners with a preferred 

charging preference is assumed to be 20%. Other owners are assumed to desire to fully 

charge their batteries by early morning. The battery will be charged to a maximum of 80% 

of its rated capacity. This is to increase the lifetime of the battery.  

Figure 3.4 shows the primary transformer loading in the different cases, which are the 

uncontrolled charging, the droop-based controlled charging, and the proposed controller. 

It can be seen from the figure that the total loading (PEV+PNonEV) is significantly 

increased when the EVs are allowed to charge without any control. The system peak 

increases from merely 3000 kW to 4000 kW. This will cause significant voltage drops, 

below 0.95 p.u, as depicted in Table 3.2, which violates the ANSI C84.1 standards [126]. 

This also increases the losses and the operating cost of the system due to the need for 

operating a number of expensive, fast generators.  When a control is applied, the system 

peak becomes around 3500. This reduces the operating cost of the system and does not 

negatively impact the system voltages, as shown in Table 3.2. Figure 3.5 shows the voltage 

at two selected houses in the system. The upper one, shown in Figure 3.5 (a), corresponds 
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to a house that is connected to the most upstream bus 2 in the system, which is connected 

directly to the primary distribution transformer. The later, shown in Figure 3.5 (b), is 

connected to a downstream bus 6, which suffers from voltage drops across the feeders.  

Figure 3.5 clearly shows that without any control, the voltages at the houses’ level will be 

negatively impacted. However, most of the negative impacts will be at the downstream 

houses, where the voltage can go as low as 0.92 p.u. The figure also shows that the droop 

and the proposed controllers succeed in limiting the under-voltage problems in the system, 

where the lowest voltage does not go below 0.95 p.u. This is also shown in Table 3.2. So 

far, both the droop-based and the proposed controllers succeed in shaving the system peak 

and limiting the voltage drops in the system. However, a major difference between the two 

controllers can be seen in Figure 3.6 and Table 3.3. 

 

 

Figure 3.4: Primary transformer loading in kW 
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Figure 3.5: Voltages at the secondary distribution transformer 

a) Upstream house    b) Downstream house 

 

Figure 3.6: SOC of a) EVup    b) EVdown 
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Table 3.2: Lowest voltages at the buses of the Primary distribution system in p.u.  

Bus 

No# 

Uncontrolled 

case 

Droop 

controller 

Proposed 

controller 

Proposed/Renewable 

2 0.975 0.981 0.980 0.982 

3 0.959 0.970 0.969 0.971 

4 0.958 0.969 0.969 0.971 

5 0.936 0.956 0.954 0.956 

6 0.933 0.953 0.952 0.954 

7 0.932 0.953 0.952 0.953 

8 0.931 0.953 0.952 0.953 

9 0.975 0.980 0.980 0.981 

10 0.962 0.969 0.969 0.971 

11 0.956 0.964 0.964 0.967 

12 0.954 0.962 0.962 0.965 

13 0.953 0.961 0.961 0.964 

14 0.954 0.962 0.962 0.965 

15 0.956 0.964 0.963 0.967 

16 0.955 0.965 0.964 0.967 

17 0.955 0.964 0.964 0.967 

18 0.955 0.964 0.964 0.967 

 

 

Table 3.3: Time to finish charging for the up and downstream EVs in hours 

 EVup EVdown Time 

difference 
Uncontrolled case 1.783 1.783 0 

Droop controller 1.783 4.233 2.45 

Proposed controller 4.175 4.925 0.75 

Proposed/Renewable 4.142 4.383 0.242 



 

 

69 

 

Figure 3.6 shows that in the case of no control on the charging, both EVs charge as fast 

as possible with the same charging rate without any consideration to the status of the grid. 

When the droop-based control (dashed green curve) is used, the EV that is connected to 

the upstream house (EVup) charge much faster than the downstream one (EVdown). This 

is unfair. This happens because the upstream EVup has the advantage of higher supply 

voltage compared to the downstream EVdown. Since the droop-based controller is highly 

sensitive to voltage variations, it results in a discriminatory charging among the EVs, where 

the EVs that are connected to higher voltage buses in the system charge much faster than 

others. When the proposed controller is used (dashed red curves), both EVup and EVdown 

charge with a semi-equal charging rate. These results are also depicted in Table 3.3, which 

shows the time difference between the two EVs with extreme cases. It is obvious from 

Table 3.3 that the droop-based control results in a great bias to the upstream EV, where the 

time difference between the two EVs is 2.45 hours. When the proposed controller is used, 

the time difference between the two EVs becomes less than one hour (45 minutes). It is 

worth mentioning that all EVs finish charging before early morning. 

3.4.2 Control Performance in the Presence of Distributed Generation Units 

So far, the results discussed the performance of the proposed controller without the 

presence of distributed generation (DG) units. However, future distribution systems are 

expected to have more penetration of local distributed generation units. The presence of 

the DG, especially when the DG share is significant, will impact the power distribution 

system operation and control. It is therefore deemed necessary to evaluate the impact of 

increased DG on the distribution systems. Among the different DG technologies, the effect 
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of wind energy will be evaluated in this chapter.  Wind energy is chosen due to the high 

potential of wind energy and its significant share in many countries nowadays. Also, wind 

is a very variable resource. Solar energy is not investigated here due to the assumption that 

the EVs are charging according to the time-of-use tariff, where the electricity prices are 

low during the night, and the EVs are charging at homes from 6 pm to 6 am.  

The performance of the proposed controller with and without wind energy is compared. 

A sample power generation from the ERCOT system that is used in this work is shown in 

Figure 3.7.  Since there is local generation at the house level, the loading on the primary 

distribution transformer will be less. This is shown in Figure 3.8, where the primary 

transformer loading in the presence of wind energy is less when compared to the case of 

the proposed controller without renewable. Since some of the loads will be fed locally, the 

voltage drop across the feeders will be less. This will result in improving the voltages at 

the downstream houses, as shown in Figure 3.9. Due to the voltage improvement, the EVs 

at the downstream houses will charge faster. 

 It should be noted that the improvements in voltage will affect the charging of the most 

vulnerable EVs more, and will have less impact on the EVs that are already at a good 

voltage condition, which is desired. This is shown in Figure 3.10 and Table 3.3, where the 

time difference between the two EVs has reduced from 45 minutes to only 14 minutes, 

which is highly recommended for non-discriminatory charging among the EVs. 
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Figure 3.7: Wind power generation 

 

Figure 3.8: Primary transformer loading in the presence of distributed generation 
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Figure 3.9: Voltages at the secondary distribution transformer in the presence of 

distributed generation    a) Upstream house.    b) Downstream house 

 

Figure 3.10: SOC in the presence of distributed generation   a) EVup    b) EVdown 
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3.4.3 Control Performance in the Case of Fast Charging in a Weekend 

In this case, the behavior of the controller is investigated when the owners of the EVs 

want to charge at a faster rate during the morning hours or weekends. A selected full day 

load profile for a weekend from the same ERCOT system is used. Also, the availability 

matrix of the EVs was adjusted so that the EVs can be plugged-in at the houses during the 

morning hours. Before presenting the results, it is worth stating that the final reference 

current decided by the controller takes into consideration, not only the voltage at the point 

of connection and the SOC of the battery, but also the customer requirements in terms of 

how much energy is needed and at what time. According to Equation (3.8), the control 

scheme includes any possible preferences of the EV owner. 

 Accommodating the preferences of the owner is done by making the EV current draw 

dependent on the remaining uncharged battery capacity, if needed. If the owners wanted to 

reach a certain final 𝑆𝑂𝐶𝑥(𝑡𝑒𝑛𝑑) by a certain departure time dt, the controller will calculate 

the current that is needed to achieve these requirements(
  𝑆𝑂𝐶𝑥(𝑡𝑒𝑛𝑑)− 𝑆𝑂𝐶𝑥(𝑡0)

𝑑𝑡−𝑠𝑡
). Once the 

required current is calculated, it will be compared to the one obtained from the controller. 

Then, the final reference current to the converter will be the maximum of both. This ensures 

that the requirements of the customers are satisfied. In order to test this case and to be in 

line with the previously presented results, owner requirements for the EVup are added to 

charge in the early morning to 80% (maximum capacity chosen in the chapter) in only two 

hours. Also, a requirement of a maximum three-hour charging is added for the downstream 

EVs. Other EVs have requirements that range from three to seven hours randomly.  
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Figure 3.11: a) Primary transformer loading in kW     b) SOCs of the two selected EVs         

c) Voltages at the POCs 

 

Figure 3.11 (a) shows the load profile of the primary transformer during a day-time 

with the majority of EVs charging during the day-time. Figure 3.11 (b) &(c) show the SOC 

accumulation of the two selected EVs (EVup and EVdown), and the voltage profiles at 

their points of connection. The figure shows that the controller has the ability to achieve 

fast charging if the EV owner wanted to. Figure 3.11 (b) shows that EVup was able to 

finish charging within two hours (8-10 am), as the owner requires. The same applies for 

EVdown with three-hour charging (from 8-11 am). Figure 3.11 (c) shows that the voltage 

profiles are still healthy. This happens regardless of the fast charging required by the EVs 
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because the system loading during the weekend is less stressful than the weekday. 

However, if all EVs wanted to charge at very high rates at the same time, the system voltage 

will be compromised.  

3.5 Sensitivity Analysis 

In this section, the sensitivity of the proposed controller will be tested. Two cases are 

evaluated in this section, which are the sensitivity of the controller to changes in the 

maximum required final state of charge SOCmax, and the sensitivity of the controller to 

design parameters (∆𝑉𝑐 , 𝐼𝑐). 

3.5.1 Sensitivity of the Controller to the Maximum Required Final State of Charge 

In this case, different simulations are presented to show if the controller will be affected 

by the limit SOCmax. In all cases, the non-EV loading, availability of the EVs and the 

parameters of the controller are kept the same. However, the limit SOCmax is changed to be 

the same for all the EVs, with values 80%, 85%, 90%, 95%, and 100% in each simulation 

case. The results for the different simulations are shown in Figure 3.12 and Figure 3.13. 

Figure 3.12 shows the voltage profile of one of the phases at the upstream bus 2 and the 

downstream bus 6, while Figure 3.13 shows the average SOC of all EVs connected to these 

two buses with different SOCmax. The figures show that the control algorithm is not affected 

by the maximum limit SOCmax. This limit only affects how much energy is required from 

the system. The more the required energy is, the more the stress on the system is, and the 

longer the charging time is. From the figures, it is clear that as SOCmax increases, the voltage 

at the different buses decreases. Also, the EVs take a longer time to charge. 
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Figure 3.12: Effect of the changes of SOCmax on the system voltages 

(a) Voltage profile at upstream bus 2         (b) Voltage profile at downstream bus 6 

 

Figure 3.13: Effect of the changes of SOCmax on the controller behavior 

(a) SOC of EVs at upstream bus 2 (b) SOC of EVs at downstream bus 6 
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3.5.2 Sensitivity of the controller to design parameters (∆𝑽𝒄 , 𝑰𝒄) 

It was previously mentioned that 𝐼𝑐 is the critical charging point at which the voltage 

at the point of connection is high enough to allow increasing the charging rate of the EV. 

𝐼𝑐 is basically the current point on the curve that corresponds to ∆𝑉𝑐 (𝑉𝑐 − 𝑉𝑟𝑒𝑓), shown in 

Figure 3.2 (a) , which is the voltage at which the controller changes from the small slope 

line of the curve (the blue one) to the large slope one (the red one). Switching between the 

two slopes is meant to increase the charging rate if the voltage is healthy enough 

(considered 1.04 p.u in this chapter). The determination of this voltage is important. It 

represents a compromise between the speed of the charging process and the fairness among 

the EVs. Since there are variations in the voltages at different buses of the system, where 

the upstream buses have much higher voltage compared to the downstream ones, it is 

important to charge the EVs within reasonable times and in a non-discriminatory way as 

well.  

On one hand, if the value of this transition voltage 𝑉𝑐 is chosen to be 0.99 p.u, for 

example, the upstream EVs will be able to charge during a short period of time, but the 

fairness among the EVs will be worse because the difference in time to full charge among 

the upstream and downstream EVs will be larger. This happens because the charging rate 

of the upstream EVs will increase, but the downstream ones will have the same slower 

charging rate because it is rare that the voltage at the downstream buses have values higher 

than 0.99 p.u during the charging of the EVs. 

On the other hand, if the value of this transition voltage 𝑉𝑐 is chosen to be 1.04 p.u, for 

example, all the EVs will almost charge at the same slow charging rate, which will improve 
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the fairness but will result in longer charging periods for all the EVs. Therefore, the choice 

of the 𝑉𝑐 (in other words the pairs (∆𝑉𝑐, 𝐼𝑐)) is a compromise between the speed of charging 

and the fairness. 

 Since the proposed work in this chapter is concerned with EVs at the residential sector, 

where most of the EVs will charge during the night times, the priority is given to the 

fairness issue more than the speed of charging. That is why  𝑉𝑐 is chosen to be 1.04 p.u. 

However, it is easy to change that in the design.  

Figure 3.14 and Figure 3.15 shown below depict the voltages at the points of connection 

and the SOCs of the upstream and downstream EVs (EVup and EVdown) for different 

cases of 𝑉𝑐 (1 p.u, 1.01 p.u, 1.02 p.u and 1.03 p.u) for the same non-EV loading condition. 

All the other operating conditions are kept the same as well. The figures clearly show that 

most of the changes occur at the upstream EV while almost no changes occur to the 

downstream ones. The value of 𝑉𝑐 has a minor effect on the system voltage, as shown in 

Figure 3.14.  

The most important note from the results is that the choice of the value of 𝑉𝑐 has an 

impact on the fairness. As shown in Figure 3.15, as the value of 𝑉𝑐 increases, the EV takes 

a longer time to charge, where that time is almost equal to the downstream ones.  Also, as 

the value of 𝑉𝑐 decreases, the fairness is degraded because the upstream EV will charge 

faster.  
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Figure 3.14: Voltage at the secondary distribution transformer with different values of Vc 

a) Upstream house.    b) Downstream house 

 

Figure 3.15: SOCs with different values of Vc 

a) EVup.    b) EVdown 
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3.6 Conclusion 

This chapter presented an automated controller to allow the adoption of a large number 

of EVs in the power grid. The chapter showed the negative impacts of opportunistic 

uncontrolled charging of EVs on the power grid using the simulation. A proposed 

controller that controls the charging of EVs, taking into consideration the customer 

requirements, the grid status, and the state of charge of the battery, is validated. The 

simulation results showed that the controller can successfully charge the EVs without 

negatively impacting the grid. The controller was also compared to other controllers. The 

results showed the superiority of the proposed controller in terms of the fair charging 

among the different EVs, ensuring smooth charging. The proposed controller was also 

tested in the presence of distributed generation units. The results showed the good 

performance of the controller and its ability of taking advantage of the presence of local 

generation to charge the EVs in a faster manner. In addition, the sensitivity of the controller 

to the design parameters was tested. It was found that the control algorithm is not affected 

by the maximum limit SOCmax. This limit only affects how much energy is required from 

the system. The more the required energy is, the more the stress on the system is, and the 

longer the charging time is. The pair (∆𝑉𝑐, 𝐼𝑐) represents a compromise between the speed 

of the charging process and the fairness among the EVs. Since the priority is given to the 

fairness issue more than the speed of charging.  𝑉𝑐 is chosen to be 1.04 p.u. However, it is 

easy to change that in the design.  
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Chapter 4 Experimental Verification and Control of the Impact of Charging of 

Electric Vehicles on Power Grids    

The anticipated increase in the number of Electric Vehicles (EVs) will have various 

impacts on the power system. These impacts include both the system loading conditions 

and power quality issues. This chapter provides insights on the impacts of EVs charging 

using a small-scale laboratory distribution system. The chapter shows experimental results 

about the effect of the charging of EVs on the system loading and voltage levels at different 

nodes of the distribution system. In addition, an experimental validation of the proposed 

linear controller, discussed in the previous chapter, is presented. The proposed controller 

is compared to the conventional droop-based controller experimentally. Moreover, the 

proposed controller is tested in the presence of an inverter-based distributed generation.  

4.1 Introduction 

With more adoption of EVs, the number of batteries that need to be charged from the 

power grid will increase. The load of a single EV that is charged by a level 2 charger can 

double the peak consumption of a homeowner [131]. Therefore, large-scale deployment of 

EVs is likely to cause negative impacts on the power grid, if not properly managed. These 

negative impacts include increasing the system peak load, increasing the system losses, 

and causing power quality problems, such as voltage sags. Many researchers tried to 

address the various impacts of EVs on the power grid. A test platform that includes three 

Li-ion batteries was developed in [132].The aim of the test was to study the impact of smart 

charging and fast charging on the power system, on the battery state of health and 

degradation, and to find out the limitation of the batteries for future smart grids. In [133], 
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the authors assessed the impact of the large-scale adoption of EVs on the Hellenic 

distribution network. The analysis took into consideration the driving profiles of EVs, their 

types and road conditions. It was observed that EV charging causes under-voltage problems 

in rural lines and overloading in urban lines. Also, active power losses were found to 

significantly increase under opportunistic (dump) charging. 

In [134], the authors tried to identify and mitigate the impacts of EV load charging on 

a residential distribution circuit. The impacts of on-board single-phase charging on a 

Flemish residential grid was considered in [69], where the authors studied the effect of 

droop-based charging of EVs.   Probabilistic load flow studies were performed in [135] to 

study the impacts of the charging on the low distribution networks. The primary concern 

of that approach was to determine the correlation between the different variables. Two 

autonomous plug-and-play charging scenarios were compared with a standard charging 

arrangement, and the correlation between the households and the EV charging loads was 

taken into consideration. So far, the experimental study of the impact of EVs on the 

distribution systems did not get enough investigation. In [121], an experimental study and 

control was done on a real-estate feeder capacity during the charging of an EV. However, 

the impacts of charging the EVs on the system level were not investigated. Therefore, the 

experimental verification of the impacts of EVs needs more investigation. 

4.2 TestBed-Setup 

In this section, the experimental set-up that is used to verify the impact of the charging 

of EVs will be presented. Details about the step by step connections and software can be 

found in the appendices. 
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Also, the design of the DC-DC converter that is used to control the charging of the EV is 

explained in this chapter. 

4.2.1 System Description 

The system, shown in Figure 4.1, is developed at the Energy Systems Research Laboratory 

(ESRL) at Florida International University (FIU) [136] to verify the impact of the charging 

of EVs, and to test the validity of the proposed controller to mitigate these impacts. This 

small-scale distribution system features controllable dynamic loads, a 3-phase grid 

connection with the utility, and a controlled grid-tied inverter that emulates renewable 

energy resources. The configuration of the distribution system and its different components 

are controlled through solid state switches that are monitored and controlled by a NI 

LabVIEW data acquisition platform. Figure 4.1 (a) shows the schematic of the system that 

is used. It consists of a 3-phase 4-bus system, two dynamic loads, two 3-phase rectifiers, 

two DC-DC converters, two lithium ion (Li-ion) batteries and a grid tied 3-phase inverter. 

The components of the system are shown in Figure 4.1 (b,c,d). The experimental system 

emulates a radial distribution system. The EVs are connected at different buses to show 

how the charging of an EV will be impacted by its location in the system. One EV is 

connected directly to the utility at bus 1 and the second EV is connected to the down-stream 

bus 4. The former will be referred to as EVup and the latter as EVdown.  The battery of 

each EV is connected to the system through a 3-phase rectifier and a DC-DC converter. 

The control and monitoring of the batteries are done through dSPACE 1104, while the 

dynamic loads are controlled to generate variable load profiles through the LABVIEW 

platform.    
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Figure 4.1: Experimental setup 

a) Schematic diagram   b) Four bus system with data acquisition   c) Battery charger 

d) Loads and sources. 

 

4.2.2 Electric Vehicle Charger 

The developed design for the EV charging converter is as shown Figure 4.2. The 

converter is designed using the buck-boost topology to provide a bi-directional power flow 

to charge/discharge the battery. However, since this study is focusing on the impacts of the 

charging of EVs, the converter will be used in the buck mode only and its equivalent circuit 

in the buck mode is depicted in Figure 4.2  (b). The complete design equations and analysis 

of the converter can be found in [137]. In this topology, the DC link of the DC-DC 

converter is interfaced to the AC grid through a six-pulse uncontrolled full wave rectifier. 

The converter is designed and implemented in a modular manner for ease of assembly, 

diagnostics, and maintenance. Two fast IGBT modules with anti-parallel diodes are used. 

The converter is implemented in two main separable parts. The first one is the main board, 
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which is responsible for carrying the power components (capacitors, switches, heat sink 

and inductor). The second one has the control, protection and the driving circuits. Different 

protection functions are provided to disable the IGBT gate signals and protect the system. 

These functions are over-voltage, over-current and IGBT driver error.  A varistor is 

connected at the low voltage side, which is battery terminals, to protect the battery against 

over-voltages, where it is known that Li-ion batteries are sensitive to over-voltages. The 

converter parameters are listed in Table 4.1, where Rout and Cout are the resistance and 

capacitance of the output capacitor. Similarly, Rin and Cin are the resistance and capacitance 

of the input capacitor and Rl and L are the resistance and inductance of the inductor. Fs is 

the switching frequency. The rated tested power of the converter is 1250 W. 

 

Table 4.1: DC-DC converter parameters 

DC Bus Voltage 300 V 

Cout 1200 μF 

Rout 0.008 Ω 

L 12.7mH 

Rl 0.125 Ω 

Cin 1200 μF 

Rin 0.008 Ω 

Fs 10kHz 

Rated Power 1250 W 
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Figure 4.2: DC-DC converter 

a) Schematic diagram. b) Equivalent circuit in buck mode during the ON state c) 

Hardware implementation. 

 

4.3 Results 

This section presents the experimental results. First, the impacts of uncontrolled 

charging of EVs on the distribution system will be presented and discussed. Second, the 

ability of the proposed controller, illustrated in the previous chapter, to mitigate these 

impacts will be demonstrated. 
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In this experiment, the EVs are emulated using Li-ion batteries with 51.8 nominal 

voltage and a maximum capacity of 21 Ah, each. The dynamic load patterns are programed 

using labVIEW to emulate load patterns, such as in [138],  in the residential distribution 

sector during the night hours. A large number of owners might charge their vehicles during 

the night when the electricity prices are low. The load profiles are shown in Figure 4.3. 

Since the simulation, in the previous chapter, was for 13 hours from the beginning of the 

evening to the early morning, the time scale of the experiment is done to be a down-scale 

of this period, where it is assumed that each minute in the operation of the testbed is equal 

to 15 minutes of the simulated distribution system. Therefore, the total time of the 

experiment is designed to be 52 minutes and the batteries are plugged in at t=12 minutes 

of the operation time.  The initial state of charge of the batteries is 52%. Due to hardware 

limitations of the maximum loading of the testbed, the maximum charging current of the 

EVs is set to be C/2, which is equivalent to 11.5 A.  The charging current of the battery is 

forced using a PI controller, which is used to generate the reference for the pulse width 

modulation (PWM) of the DC-DC converter. 

4.3.1 Impact of Uncontrolled Charging 

Figure 4.4 shows the effect of the charging of EVs on the system active and reactive 

powers. The figure clearly shows that the system loading has increased, where the peak 

load increased from 1375 W without EVs to almost 2790 W in the presence of EV charging.  

It is worth noting that not only the active power has increased, but also the reactive power 

has increased significantly. In the case of the absence of EVs, the only consumed reactive 

power is 102 var, which is consumed by the inductances of the transmission lines. In the 
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presence of EVs, the system reactive power has significantly increased to 1600 var. This 

is due to the use of uncontrolled rectifiers. This shows the importance of using controlled 

inverters in the charging process of EVs, to take into consideration the reactive power flow 

during the charging process. Otherwise, large amounts of reactive power will be consumed 

from the grid. In other words, future charging stations must follow the standard charging 

arrangement at unity or 0.95 capacitive power factors [135]. 

Figure 4.5 shows the voltage profiles at Bus 1 without and with the charging of EVs. 

The figure shows that the charging of EVs causes voltage drops, where the minimum 

voltage dropped from 0.984 p.u to 0.966 p.u. 

 

Figure 4.3: Dynamic load patterns 
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Unlike the upstream Bus 1, Figure 4.6 shows that the voltage sag at the downstream Bus 

4 is more severe, where the minimum voltage dropped from 0.952 p.u to 0.908 p.u. This 

happens due to the voltage drops across the feeders that result in a much lower voltage at 

Bus 4. This shows the need for more voltage support units in future distribution systems 

that will accommodate EVs. Otherwise, consumers far from the substation might suffer 

from severe voltage sags, and the end-user voltages might not satisfy the ANSI standards 

[126]. 

 

 

Figure 4.4: a) System active power   b) System reactive power 
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Figure 4.5: Voltage profiles at upstream Bus 1 

 

Figure 4.6: Voltage profiles at downstream Bus 4 
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Finally, Figure 4.7 shows the current, voltage and SOC of the battery during the 

charging process. It shows the uncontrolled dump charging, where the current is high and 

constant during the charging period. Also, it shows the increase in the battery voltage and 

SOC during the charging. It is worth mentioning that a maximum of 80% SOC is assumed 

during the experiment to increase the lifetime of the battery since charging high currents 

to the batteries at a high SOC degrades the battery and reduces its lifetime [128]. 

 

Figure 4.7: Battery performance 

 

4.3.2 Experimental Validation of the Proposed Controller 

In this section, the ability of the proposed controller, illustrated chapter 3, to mitigate 

the negative impacts of the charging of EVs will be demonstrated. Different cases are 

 1 13 26 39 52
-20

0

20
Batttery Current

A

 1 13 26 39 52
54

56

58
Battery Voltage

V

 1 13 26 39 52

60

80

100

Time (minutes)

Battery SOC

%

(a)

(b)

(c)



 

 

92 

 

validated (conventional droop-based controller and the proposed one), and the performance 

of the proposed controller is tested without distributed generation and in the presence of 

distributed renewable generation. 

Figure 4.8 shows the grid loading for all the different cases. It is obvious from the figure 

that, if the EVs are allowed to charge opportunistically at a very high charging rate to finish 

as soon as possible, there will be high peaking in the system. If the control is applied, the 

peak load reduces to around 2000 W for both the droop controller and the proposed one. 

Figure 4.9 (a) and Figure 4.9 (b) show the voltage profiles at the upstream and downstream 

EVs in the system for phase b, respectively. Figure 4.9 shows that when the EVs are not 

controlled, the upstream bus was impacted by the EV charging, however the impact is not 

as drastic as the downstream one, where the voltage goes below 0.92 p.u when the system 

is at its peak.  When the control is applied, the voltage profile is improved and it is limited 

to 0.95 p.u as a minimum value. If the voltage is going to be lower than the 0.95 standards, 

the charging rate of the impacted EV reduces to avoid under-voltage problems. 

Figure 4.10 (a) and Figure 4.10 (b) show the 3-phase voltages at the upstream bus 1 

and the downstream bus 4 for the case of the proposed controller. They show that none of 

the phases suffer from under-voltage problems, which is desired and follows the ANSI 

standards. 

To have a better understanding of the charging process, in this section, the charging 

current profile over time will be considered instead of the SOC plots. This will give a closer 

look at how the different controllers behave. 
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Figure 4.11 (a) and Figure 4.11 (b) show the charging currents of the two EVs for the 

different cases.  It is obvious from the figure that in the case of uncontrolled charging, both 

EVs charge at a high current with the same value. This is shown by the black profiles in 

Figure 4.11. When the droop controller is applied, the upstream EV charges at a higher 

charging current compared to the downstream one. This is shown in the green dashed 

profiles in Figure 4.11. For the case of the droop controller, during the period t= 13 to t= 

25, the voltages at bus 1, where the upstream EV is connected, and at bus 4, where the 

downstream EV is connected, are around 0.982 and 0.958, respectively. 

 

 

Figure 4.8: Experimental total grid load 
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Figure 4.9: a) Phase b voltage profile at the upstream bus 1                       

        b) Phase b voltage profile at the downstream bus 4 
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Figure 4.10: a) Voltage profiles at upstream bus 1 for the proposed controller 

b) Voltage profiles at downstream bus 4 for the proposed controller 
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Figure 4.11a) Charging current of the upstream EV 

b) Charging current of the downstream EV 
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Although the difference between these two voltages is not very high, it results in a high 

charging current for the upstream EV compared to the downstream one. The ratio of the 

charging current is almost two to one.  For the same period, the voltages at buses 1 and 4 

for the case of the proposed controller are 0.985 p.u and 0.954 p.u, respectively. Although 

the difference between these two values is almost similar to the case of the droop controller, 

both EVs charge with a semi-equal charging rate, which is fair and highly desirable.  Also, 

Figure 4.11 shows that the proposed controller takes the SOC of the battery into 

consideration. It is desirable to decrease the charging current of the battery as the SOC 

increases. This will increase the lifetime of the battery. This is clear in the red curve in 

Figure 4.11, where the charging current of the battery decreases over time.   

During the period t=25 to 27, the voltage at downstream bus 4 is 0.95 p.u for both the 

droop controller and the proposed one. Therefore, both controllers reduce the charging rate 

of the downstream EV to avoid any negative impact on the grid. This is shown in Figure 

4.11 (b), where the charging current drops to be around 1.7A for both the droop and the 

proposed controller. 

During the period t=27 till the end, the droop controller abruptly increases the charging 

current from around 3.8 to 7 A, which is not recommended, especially when the battery is 

near full charging. This happens because during this period, the non-EV loads have 

decreased. This resulted in improvements in the voltages. Since the droop controller is 

highly sensitive to the voltage, it resulted in this abrupt increase in the charging current. 

This does not happen in the case of the proposed controller where the smooth charging is 

continued. Table 4.2 shows the time that the EVs take to fully charge. It is obvious from 
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the table that the proposed controller results in fairer charging among the two EVs. The 

time difference between them is 2.71 minutes compared to 9.79 minutes in the case of the 

droop controller. 

Finally, the 3-phase inverter is used to emulate the distributed generation unit and inject 

the power profile shown in Figure 4.12. Since the load at bus 4 is partially fed from the 

inverter, the voltage drop across the feeders decreases. This results in the voltage 

improvements shown by the dashed blue curve in Figure 4.9. Due to this voltage 

improvement, the downstream EV charge at a faster rate, as shown in Figure 4.11 and Table 

4.2. The time difference between the two EVs reduces to 0.53 minutes.  

 

Figure 4.12: Renewable energy power profile 
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Table 4.2: Time to finish charging for the upstream and downstream EVs in minutes 

 EVup EVdown Time difference 

Uncontrolled case 20 20 0 

Droop controller 26.42 36.21 9.79 

Proposed controller 34.57 37.28 2.71 

Proposed/Renewable 33.49 34.02 0.53 
 

4.4 Conclusion 

This chapter presented an experimental validation about the impacts of the uncontrolled 

charging of EVs on the distribution system. The results showed how the active and reactive 

powers of the system will be affected by the charging of EVs. A deduction has been reached 

that future charging stations must follow the standard charging arrangement at unity or 

0.95 capacitive power factors. In addition, the results showed that the charging of EVs will 

cause voltage sags at the different buses, especially the downstream buses, which will have 

the most drastic voltage drops.  

The experimental results demonstrated that the proposed controller can successfully 

charge the EVs without negatively impacting the grid. The controller was compared to 

other controllers, and the results showed the superiority of the proposed controller in terms 

of the fair charging among the different EVs and ensuring smooth charging. Compared to 

the other conventional controller, the proposed one decreased the charging current of the 

battery as the SOC increases, which increases the lifetime of the battery.  

Moreover, the proposed controller was tested in the presence of distributed generation 

units. The results showed the good performance of the controller and its ability of taking 

advantage of the presence of local generation to charge the EVs in a faster manner. 
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Chapter 5 Automated Distributed Electric Vehicle Controller for Residential 

Demand-Side Management     

Electric vehicles (EVs) are recently gaining traction in the power sector due to the 

various challenges and opportunities they provide to utility operators. For electric utilities 

that incorporate demand-side management (DSM) programs, EVs could become either a 

burden or an advantage depending on their charging control strategy and the signaling of 

the DSM program. This chapter introduces a decentralized fuzzy-based controller to 

successfully integrate and coordinate the charging of EVs. The controller operates in an 

autonomous mode, which reduces the monetary cost of the communication overhead and 

preserves bandwidth. The proposed controller takes into consideration the owner 

requirements in terms of energy needed and time to charge, the voltage at the point of 

connection with the grid, and the pricing signal coming from the utility. The controller is 

tested under different DSM programs that exist in the literature. This chapter also proposes 

a new DSM program that is capable of benefiting from EVs as prosumers that can provide 

grid services.  

5.1 Introduction 

In today’s dynamic grid, end users have migrated from being passive system elements 

to becoming active actors playing a major role in the grid operation and control through 

demand-side management (DSM) programs [139], [140]. With DSM programs, power 

system operators provide incentives for their customers to force certain energy 

consumption patterns as much as possible. This can be done by providing changing price 

signals throughout the day that are intended to guide the power consumption to obtain a 
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total demand that better matches the power generation. DSM proved its effectiveness in 

peak shaving and load shifting to non-peak hours, which increases the system reliability 

and stability. This also defers the investment needed in peaking generation, along with 

bringing several environmental benefits [141]. Most of the previously used DSM programs 

focused on industrial large customers to produce significant changes on the system level. 

The exact terms of the contract are determined a priori, and the system operator performs 

direct actuations of industrial loads, when needed, upon the contract. 

In the recent days, more research has focused on DSM for residential customers [142]–

[145]. This was facilitated by the wide adoption of smart metering, introducing time-

varying prices, such as time-of-use pricing, and integrating renewables to active 

distribution networks. However, the successful deployment of DSM programs on 

residential customers needs more attention because it is not appropriate to perform direct 

actuation on loads since it will represent an invasion of the user privacy. Moreover, direct 

load actuation will need large investments to provide the required additional 

communication infrastructure and control technologies for each user. Therefore, there is a 

need for a decentralized demand- side management in the residential sector. Decentralized 

controllers have the ability to make decisions on the local level without the need for 

extensive communication with other entities.  

In the residential sector, EVs are going to represent large loads that are added at the 

house level compared with other appliances. Therefore, there is a need to carefully control 

the charging of EVs. Also, unlike other loads at the house level, an EV has the ability to 

feed power back to the grid, which makes it a unique appliance that should be taken care 
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of at the residential sector, where most of the EVs will be charging during the nights when 

the owners of the EVs come back home. 

In [146], the residential sector participation in DSM was incentivized in a non-

discriminatory way by providing different individualized DSM prices for each user based 

on the history of his/her behavior and convenience. To achieve these objectives, heavy 

communication and data analysis are required from the SCADA system. In [147], the 

authors considered using a retired EV battery as an energy storage for DSM; however, only 

a single house was considered in that study. In [37], a multi-objective optimization is used 

to coordinate the charging of the plug-in EVs in a way that satisfies the network technical 

constraints, as well as the customer convenience. Heavy communication between the EV 

customers, vehicle coordinator and the Energy hub operator at the distribution system 

company is required. The former also requires the knowledge of the load profiles.  

In [148], [149], the economic feasibility of demand management pricing schemes was 

investigated. In [150], dynamic energy management in a decentralized way was introduced. 

The authors aimed at testing the different time-of-use policies and to avoid the rebound 

effect. They introduced a new policy that uses multi time-of-use tariffs (MTOU), where 

each group of residential customers receives the time-of-use tariff with a one-hour delay 

from the previous group. In [15], the authors addressed the problems of centralized EV 

charging algorithms under a realistic communication infrastructure, where the number of 

messages to be exchanged is limited. This was done using a two-stage dual coordination 

using multi-agents.  In [56], an optimal DSM is achieved using a model derived from game-

theory. Each consumer’s scheduler is required to broadcast its consumption schedule to all 
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other participants in the DSM program.  Electric vehicles for charging and discharging in 

the households were considered in [48]. In this study, the impact of price-based demand 

response strategies on smart household load pattern variations was assessed. The household 

load datasets were acquired to perform optimal appliance scheduling considering an hourly 

varying price tariff scheme.  

In this chapter, a decentralized controller is proposed to make the best use of the EVs 

under DSM programs.  The contribution of the chapter is twofold. First, the proposed 

controller is a decentralized one. That is, the controller will make all the decisions at the 

local level, which minimizes the cost of the communication infrastructure and in a way that 

is compatible with the current demand-side infrastructure. It also takes into consideration 

the customer satisfaction in a fair manner, and the grid voltage standards that are defined 

by the ANSI C84.1-2006 code [126].  The proposed decentralized controller is tested and 

analyzed under different DSM programs presented in the literature.  It is also tested in the 

presence of voltage control units and in the presence of distributed generations as well. 

Second, a new DSM program is proposed that is capable of benefiting from the fact that 

EVs can act as a controllable continuous energy consumer (load) or producer (source) 

without significant changes to the current DSM infrastructure. 

5.2 Proposed Decentralized Controller 

In this section, the different parts of the proposed controller will be explained. 

5.2.1 Controllers Inputs and Outputs  

The success of any demand-side management program in the residential sector is 

contributed to its ease of use by the customers without any invasion to their privacy, 
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fairness to all the customers connected to the system, its infrastructure cost, and its ability 

to bring benefits to the system operator. In that paradigm, with the proper control algorithm 

and DSM program, EVs can be effective in reducing the electricity bills for the customers, 

and to provide flexibility to the distribution system operators. To do so, the direct 

objectives of the EV battery controller are to satisfy the requirements of the owner of the 

EV, try to minimize its negative impact on the system voltage, and to minimize the cost of 

the charging by following the price signals that are coming from the grid operator. 

Therefore, the inputs to the controller will be the customer requirements, the voltage at the 

point of connection (POC), and the price signal coming from the grid, as shown in Figure 

5.1. These three values with a voltage set-point (Vref) will be the inputs to a fuzzy controller 

that will decide on the charging/discharging rate based on the coming inputs.  The fuzzy 

logic controller is used in this chapter because it can be designed without the need for 

training data, as long as we know the domain we are modelling and its reaction or rules. 
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Figure 5.1: Decentralized controller block diagram 
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It has the advantage of its interpretability and simplicity since it allows modelling using 

near natural language rules and can handle the different circumstances that might arise in 

real systems.  

The first input to the fuzzy controller is the requirements of the EV owner, which will be 

given by the two different inputs. These two inputs are the required final state of charge 

and the required departure time. Based on these data, the required power draw (𝑃𝐷𝑟𝑖) by 

the EV to satisfy the owner’s desire is defined by the following equation: 

𝑃𝐷𝑟𝑖 =
𝑆𝑂𝐶𝐹𝑖 − 𝑆𝑂𝐶𝐼𝑖

ℎ𝑟𝑖
 

(5.1) 

where SOCF and SOCI are the required final and initial state of charge, respectively. hr is 

the number of hours before the departure time of the EV. It is the difference between the 

required departure time and the time the EV started parking, as shown by relation (5.2), 

where dt and st are the departure and start times, respectively. 

ℎ𝑟𝑖 = 𝑑𝑡𝑖 − 𝑠𝑡𝑖 (5.2) 

The value of the power draw should be modified, as given in equation (5.3), to ensure 

that the customer requirement is within the acceptable value of the EV battery 

characteristics. 

𝑃𝐷𝑖 = min(𝑃𝐷𝑟𝑖, 𝑃𝑟𝑚𝑎𝑥𝑖) (5.3) 

where 𝑃𝑟𝑚𝑎𝑥𝑖 is the maximum charging rate of the ith EV battery. 𝑃𝐷𝑖 is the safest power 

draw of the ith EV that can satisfy the requirements of the owner. It is the minimum of the 

power required by the owner and the maximum charging rate of the battery. This is to 

ensure that the power required at each hour does not exceed the maximum charging rate of 
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the battery. It is assumed that the charger can handle this power. This 𝑃𝐷𝑖 is normalized 

before entering the controller. The fuzzy controller will decide on the priority of charging 

of the different EVs based on that normalized value. As a general rule, the higher the value 

of 𝑃𝐷𝑖 is, the higher priority the EV owner should have. Higher values of 𝑃𝐷𝑖 means either 

the EV owner wants to charge as soon as possible or the amount of energy required to be 

charged in the battery is large, and vice versa. The value of 𝑃𝐷𝑖 will help prioritize the EV 

flexibility in contributing to the DSM.  

The second input to the fuzzy controller is ∆𝑉, which is: 

∆𝑉𝑖 = 𝑉𝑖 − 𝑉𝑟𝑒𝑓,𝑖 (5.4) 

Where Vi is the measured voltage at the point of connection (POC) in p.u. Vrefi is a 

reference set-point that will be sent by the system operator. This value can be kept constant 

all the year or changed seasonally depending on the system behavior. 

The basis for selecting the voltage set-points is that, EVs connected across the 

distribution system contribute almost equally in the DSM, irrespective of their charging 

point location. If all voltage set-points are set identically, the EVs connected to downstream 

POCs (or those connected to the primary buses through long secondary wiring) will 

generally be at a disadvantage compared with those connected to upstream POCs (or have 

short secondary wiring). Therefore, as a rule of thumb, the more downstream the POC is, 

the lower the voltage set-point should be. To select these voltage set-points to achieve that 

goal, the historical value of the daily minimum voltage Vmin,d,i is tracked. This typically is 

associated with the daily peak period. These minimum voltage values are averaged out for 

several days. This average value is then used as a voltage set-point, or a voltage reference, 
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Vref,i. This reference voltage needs to be constrained by the minimum permissible voltage 

level 0.95 p.u. That is,  

𝑉𝑟𝑒𝑓,𝑖 = max (
1

𝐷
∑ 𝑉𝑚𝑖𝑛,𝑑,𝑖

𝐷
𝑑=1 , 0.952 ) (5.5) 

where D is the number of days. A value of 0.002 p.u is added to the minimum permissible 

voltage level as a safety margin. The advantage of this method is that it is simple and 

systematic. 

The third input to the fuzzy controller will be the time-of-use tariff (TOU) coming from 

the system operator, which will be a signal with a certain value for on-peak periods and 

another one for off-peak periods [151]. In some cases, a third signal that represents critical 

peaking pricing (CPP) can be sent. The output from the controller will be the charging/ 

discharging rate of the EVs. 

5.2.2 Fuzzy Controller Design 

The fuzzy controller has three inputs and one output. Each of the controller inputs and 

the output will have its membership functions. The power draw input, which represents the 

owner requirement, will have a membership function, as shown in Figure 5.2. The EV 

owners’ requirements are divided into five different priorities. Extra Low (EL) represents 

that the EV owner is not in a hurry or does not need a large amount of energy. This type of 

customer shows a great desire to participate in the DSM to charge his/her battery with the 

lowest cost. Extra High (EH) represents a customer with extremely high demand who does 

not care about the cost. His priority is to charge the EV as soon as possible. The other three 

memberships are in the middle of the two extreme cases. Based on their energy 

requirement, they will be divided to Low (L), Medium (M) and High (H). 
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The voltage memberships are depicted in Figure 5.3. The Zero (Z) membership function 

represents operating close to the normal operating conditions. Positive Low (PL) represents 

that the voltage is in a very good condition within the acceptable limits, while Positive 

High (PH) represents the case of over-voltage (above 1.05 p.u). Similarly, Negative Low 

(NL) represents that the voltage is near a bad condition, while Negative High (NH) 

represents the case of under-voltage (below 0.95 p.u).  

The time of use tariff is almost a certain signal that has a certain meaning. It can mean 

either connection in the off-peak period or disconnection in the on-peak period and 

sometimes it can refer to a critical peak or emergency, as shown in Figure 5.4. In this work, 

these signals are translated to the fuzzy controller as Charging (CH) for the off-peak period, 

No Charging (NC) for the on-peak period and Discharging (DS) for the critical peak.  

 

L EHM

0.6

EL H

0.3.1 0.5 0.80.7 0.9 10.40.20 PD

Figure 5.2: Fuzzy membership function of power draw (PD) 
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Figure 5.3: Fuzzy membership function of power draw (∆𝑽) 
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Figure 5.4: TOU signals 
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Figure 5.5: Fuzzy membership function of the charging rate (Pr) 
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Table 5.1: Rules when TOU is (CH) on left and when TOU is (DS) on the right 

Δ V

EL

L

M

H

EH

Z PL PH

LC

LC

LC

HC

HC

LC

LC

HC

HC

HC

HC

HC

HC

HC

HC

PD

 

Δ V
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M

H
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NH NL Z

HD

Z

Z

Z

LDHD
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HDHD

LD

LD

LD

Z

Z

PD

 

 

 

Table 5.2: Rules when TOU is (NC) 

Δ V

EL

L

M

H

EH

NH NL Z PL PH

Z

LC

Z

HC

ZZ

Z Z

ZZ

Z

Z

Z

LC

HC

Z

Z

Z

HC

HC

Z

Z

Z

HC

HC

PD

 
 

Finally, the output membership functions are divided into five memberships that range 

from the maximum charging rate (HC) to the maximum discharging rates (HD), as shown 

in Figure 5.5. The value of the charging/discharging rate Pr at the output will be decided 

based on the inputs and the rules in Table 5.1 and Table 5.2. It should be mentioned that it 

is unexpected that the system operator will send a TOU signal that means off-peak 

(charging) while the system is in a bad voltage condition (NL) or suffering from under 
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voltage (NH). Similarly, it is not expected that the TOU signal will be on-peak or critical 

peaking while the system is in a good voltage condition or in an over-voltage condition. 

Table 5.1 shows the rules for the incoming TOU (CH) on the left and for the incoming 

TOU (DS) on the right. When the TOU signal is (CH), it shows that EV owners with 

priorities (H) and (EH) will always charge at a very high charge rate (HC) while other 

priorities will charge at moderate levels depending on the voltage status. When the TOU 

signal is (DS), EVs with priorities (EL) and (L) will participate the most in the discharging 

process since they are flexible, while EVs with priorities (H) and (EH) will not participate 

in the discharging process. Other statuses will be defined based on the voltage difference 

value. When the incoming TOU signal is (NC), rules in Table 5.2 will be applied. It shows 

that almost all the EVs will take no action except that the EVs with priorities (EH) will 

charge regardless of the signal. 

It is worth mentioning that the controller will try to satisfy the time and energy 

constraints of EVs with priorities (H) and (EH) since they are willing to pay more money 

to finish. However, for other priorities (EL, L, M), the controller will satisfy their energy 

requirement, but may deviate the required finishing time since those owners are more 

interested in reducing their bills.  

The output of the fuzzy system will be in per unit. Therefore, it will be multiplied by 

the maximum charging rate (𝑃𝑟𝑚𝑎𝑥𝑖), as shown in Figure 5.1, to obtain the actual value. 
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5.3 Description of Test System 

The configuration of the distribution test system is shown in Figure 5.6 and Figure 5.7. 

It is the same system that was adopted in the previous chapters. More details about the 

system voltage level and parameters can be found in chapter 3. 
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Figure 5.6: Primary distribution system 
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Figure 5.7: Secondary distribution network topology 
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5.4 Results 

The proposed controller is validated through simulations using Matlab/Simulink, where 

several simulations are conducted. In this study, the only assumed controllable loads are 

the EVs and the time span of the simulation is for one day starting at 6 a.m. till 6 a.m. of 

the next day. The initial SOC is assumed to be a random value between (30-60%) while 

the final SOC is assumed to be a random value between (70-100%). The required number 

of hours to charge the EV to the final SOC is assumed to be a random number between 

three and seven hours.  Only some of the results corresponding to buses 2 and 6 are 

presented. The former is the most upstream primary load bus with the highest voltage, 

where the selected EVup is connected, while the latter is a downstream bus, where the 

selected EVdown is connected.  The minimum voltages at the different buses for the 

simulation period will be given as well. To validate the controller, six different cases are 

simulated:  

A. Uncontrolled charging to show the effect of integrating a large number of EVs to the 

distribution system. 

B. Conventional TOU tariff to show what was reported by many researchers that 

conventional TOU will result in a “rebound effect.” 

C. Multi-group TOU tariff to introduce flexibility to the system and at the same time avoid 

the rebound effect. 

D. A new suggested DSM program to show how the EVs, as prosumers, can increase the 

system flexibility, support the grid in case of peak periods, and avoid the rebound effect. 

It will be referred to as multi-group TOU with critical peaking (MTOUCP). 
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E. In the presence of voltage control units such as capacitor banks to see the controller 

performance when the voltage is controlled by the operator. 

F. In the presence of distributed generation units such photovoltaic (PV) units to see the 

performance of the controller when there is a local generation at the house. 

5.4.1 Uncontrolled Charging 

In this test, the EVs will be allowed to charge at the maximum charging rate to finish 

charging as soon as possible. The impact of uncontrolled charging of EVs on the system is 

depicted in Figure 5.8 and Figure 5.9. The left-hand side of Figure 5.8 shows how severely 

the voltage drops at a downstream house in the system, where the voltage goes far below 

the 0.95 p.u. Without EVs, the voltage is in a good condition, as shown in the right-hand 

side of Figure 5.8. This is also shown by comparing the primary buses voltages in the 

second and third columns of Table 5.3. This is also confirmed in Figure 5.9, where it is 

obvious that the total system load has increased due to the EV loading. This increase in 

loading leads to severe voltage drops, more line losses, and the need to run expensive peak 

generating units. 

  

Figure 5.8: Voltage profiles at the secondary selected POC. Left: in the presence of 

EVs. Right: without EVs 
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Figure 5.9: Total system loading in case of uncontrolled charging 

 

5.4.2 Controller Performance under Conventional TOU Tariff 

In this test, the proposed controller is used under the conventional time of use tariff, 

shown in Figure 5.10, where a peak time is assumed from (6 a.m to 10 a.m) and another 

peak from (6 p.m to 10 p.m) [151]. It is assumed that the EVs will not play any role in the 

morning peaking since all the EVs are assumed to be fully charged before people go to 

their work, and there is no desire to discharge the vehicles. However, it will have a great 

impact in the evening periods [150]. 

Figure 5.11 shows the EV loading, Non EV loading and the total system loading. It is 

obvious that the TOU signal defers the EVs’ charging away from the system peak time. 

However, another peak is introduced in the next few hours due to the large loading that is 

connected to the system (the newly coming EVs and the deferred ones) at the same time. 
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This is what is called the “rebound effect,” and it is confirmed by many researchers [146], 

[150]. It is worth mentioning that if the conventional critical peaking pricing tariff known 

as CPP, where a signal is sent for a half or an hour that matches the system peak or in case 

of emergencies to alert customers to turn off the loads or to support the system is applied, 

the rebound effect will exist as well. Figure 5.12 shows the voltage profiles at the secondary 

sides of the two selected POCs (EVup and EVdown). It shows that the controller in the 

presence of the time of use tariff keeps the voltage within the standards. This is also shown 

by comparing the fourth column of Table 5.3 with the case of uncontrolled charging in the 

third column. The rate of charge in terms of the SOC is depicted in Figure 5.13. It shows 

that the EVs almost stop charging during the peak time, as shown on right hand side of 

Figure 5.13. It also shows that both the EVup and EVdown charge at the same rate 

regardless of their location, which is highly desired and fair.  

 

Figure 5.10: Conventional TOU tariff 

 6am 12pm  6pm 12am  6am
-5

0

5

10

Time



 

 

117 

 

 

Figure 5.11: Total system loading under conventional TOU tariff 

 
 

 

 

 

 

Figure 5.12: Voltage profiles at the selected POCs under conventional TOU tariff 
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Table 5.3: Minimum voltages at the primary buses under different cases 

Bus 

number 

Without 

EVs 

Uncontrolled 

charging 

conventional 

TOU 

Multi-

group 

TOU 

MTOUCP 

2 0.9839 0.9794 0.9826 0.9838 0.9842 

3 0.9741 0.9661 0.9718 0.9739 0.9745 

4 0.9736 0.9654 0.9713 0.9735 0.9741 

5 0.9612 0.9493 0.9575 0.9609 0.9616 

6 0.9591 0.9463 0.95515 0.9586 0.9595 

7 0.9587 0.9460 0.9546 0.9583 0.9590 

8 0.9585 0.9453 0.9545 0.9579 0.9589 

9 0.9834 0.9789 0.9821 0.9833 0.9837 

10 0.9746 0.9672 0.9723 0.9744 0.9750 

11 0.9708 0.9622 0.96804 0.9705 0.9712 

12 0.9692 0.9599 0.9664 0.9690 0.9696 

13 0.9682 0.9584 0.9653 0.9680 0.9686 

14 0.9691 0.9597 0.9662 0.9688 0.9694 

15 0.9705 0.9618 0.9677 0.9703 0.9709 

16 0.9710 0.9624 0.9686 0.9709 0.9715 

17 0.9709 0.9622 0.9684 0.9707 0.9713 

18 0.9708 0.9621 0.9683 0.9706 0.9713 

 

  

Figure 5.13: Left: SOC of the two selected EVs.  Right: the average SOC of all EVs 

connected to bus 2 and 6 under conventional TOU tariff 

 

5.4.3 Controller Performance under Multi-group TOU Tariff 
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reduce the peak demand feeding costs.  The introduction of conventional TOU or CPP rates 

in the network, where each consumer automatically decides on the demand according to 

his/her needs by responding to the same signal may actually exacerbate the basic issue that 

the demand-side management program was supposed to address.  

To avoid the rebound effect, the idea of a multi-group time of use tariff was developed 

in [150]. It is a mean to smooth the aggregated demand and avoid the rebound effect in a 

way that is compatible with the current infrastructure of the DSM. 

The idea of Multi-group TOU depends on introducing a delay for the off-peak signal that 

is sent. For example, the customers of the system will be divided to several groups. The 

first group will receive the off-peak TOU signal and after an hour, the second group will 

have the signal, followed by the third group after two hours. It should be mentioned that 

when the second and third groups have the off-peak signal, the first group is still having it. 

Multi-group TOU is done to avoid having the whole controllable loads connected to the 

system at the same time. To be completely fair with all customers, the groups can be 

exchanged on a periodic basis. For example, after four months, the second group can 

receive the first TOU signal instead of the first group, and so on. The multi-group TOU 

that is used here is shown in Figure 5.14, where there is an hour time delay in receiving the 

off-peak TOU signals between the three groups. The three groups to which the system was 

divided are given in Table 5.4. The upstream bus 2 and the downstream bus 6 were put in 

the same group to ensure that they will receive the same TOU signal. Hence, the 

comparison of the SOC of the EVup and EVdown will be fair. 
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Figure 5.15 shows the EV loading, Non EV loading and the total system loading. It is 

clearly obvious that the controller stopped charging during the system peak period and at 

the same time, with multi-group TOU structure, the rebound effect does not exist anymore. 

The EVs’ loading comes on different stages, which helps avoid overloading the system 

and, at the same time, behaves in a better way for valley filling. 

Figure 5.16 presents the effect of the multi-group TOU on the two-selected extreme 

POCs, where it shows that the voltage has a further improvement compared to Figure 5.12. 

This is confirmed by the primary buses’ voltages in column 5 in Table 5.3. Figure 5.17 

presents the SOC of the EVs. It is almost the same as Figure 5.13. It means that the system 

operator will get the benefits of multi-group TOU without negative impacts on the 

customers. 

So far, most of the demand-side management programs used to deal with the residential 

customers as loads that consume power (whether it is controllable or not). However, with 

more EVs in the distribution system, the current programs should consider the presence of 

small distributed prosumers, such as EVs that can help the system operator during the peak 

hours. 

This can be done using the current infrastructure by the new proposed method, multi-

group TOU with critical peaking (MTOUCP). To convince the EV owners to support the 

grid during the peak times or emergencies, more incentives should be given to them (i.e 

reducing the cost of electricity prices even more during the off-peak hours for registered 

houses with EVs in the DSM program). 
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Table 5.4: Different TOU groups 

Group number Buses numbers 

1 2,6,10,16,17,18 

2 3,4,5,7,8,9 

3 11,12,13,14,15 

 

Figure 5.14: Multi-group TOU tariff 

 

Figure 5.15: Total system loading under Multi-group TOU tariff 

 6am 12pm  6pm 12am  6am
-5

0

5

10

Time

 

 

(group1)

(group2)

(group3)

 6am 12pm  6pm 12am  6am
0

1000

2000

3000

4000

Time

L
o

a
d

(k
W

)

 

 

EV

NonEV

Aggregated



 

 

122 

 

 

Figure 5.16: Voltage profiles at the selected POCs under Multi-group TOU tariff 

 

  

Figure 5.17: Left: SOC of the two selected EVs.  Right: the average SOC of all EVs 

connected to bus 2 and 6 under Multi-group TOU tariff 
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5.4.4 Controller Performance under Multi-Group TOU with Critical Peaking 

(MTOUCP) 

The multi-group TOU with critical peaking (MTOUCP) is a combination of the critical 

peaking pricing tariff (CPP) and the multi-group TOU presented in the previous section. It 

combines the virtues of the two programs. 

A critical TOU is sent during the peak period of the system to alert the customers to 

turn off some of their devices or use the EV to support the grid. Multi-group is used to 

distribute the burden among the different groups during the on-peak time and to defer the 

signal during the off-peak time to avoid the rebound effect. Figure 5.18 shows the TOU 

rates that are used in this section, where a half an hour delay between the different groups 

is used during the critical-peak period and an hour delay during the off-peak period. These 

delays can vary from a system to another, depending on the system loading behavior. 

Figure 5.19 shows that the system peak loading is shaved due to the CPP signal and the 

rebound effect is avoided due to the multi-group TOU. The load peaking is reduced by 100 

kW. However, more reduction can be obtained by synchronizing the critical-peak TOU 

signal to be at the same time for the three groups, if needed. Figure 5.20 shows the voltage 

improvement due to the use of MTOUCP. A voltage improvement can also be noticed in 

last column of Table 5.3.  Figure 5.21 depicts the SOC profile under the MTOUCP. It 

shows that the SOC decreases during the peak period due to discharging the EVs. 

Therefore, there will be a small-time delay till the EVs finish charging. However, the rate 

of charge for the EVs connected to the up and down-steam of the system is almost the 

same.  
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Figure 5.18: Multi-group with critical peak TOU tariff 

 

 

Figure 5.19: Total system loading under Multi-group with critical peak TOU tariff 
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Figure 5.20: Voltage profiles at the selected POCs under Multi-group with critical 

peak TOU tariff 

  

Figure 5.21: Left: SOC of the two selected EVs.  Right: the average SOC of all EVs 

connected to bus 2 and 6 under Multi-group with critical peak TOU tariff 
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installing voltage control units. In this chapter, shunt capacitors are considered to be 

connected at bus 5. This bus is a downstream bus and supporting the voltage at this bus 

will improve the voltage not only at this bus but also at buses 6, 7, and 8, which suffer from 

low voltages due to the voltage drop across the feeder. The total available capacity of the 

capacitors is assumed to be 1 MVAR. The capacitor variation step is equivalent to 0.1 

MVAR, which causes an increase/decrease of about 0.007 per unit voltage [75]. The 

capacitor bank is assumed to be controlled by an autonomous feedback controller whose 

voltage set point is 0.99 p.u and bandwidth is 0.007 p.u. Figure 5.22 depicts the voltage 

profiles at the upstream and downstream houses. Comparing Figure 5.22 to Figure 5.20, it 

is noted that the voltage at the downstream house has improved due to the presence of the 

shunt capacitor. The corresponding steps of the three-phase shunt capacitor are shown in 

Figure 5.23. Due to the voltage improvement at the point of connection at the downstream 

house that is connected to bus 6, the charging rate will increase according to the controller 

logic. A comparison between the charging of the downstream EV without and with the 

connection of the shunt capacitor is shown in Figure 5.24. It is obvious from the figure that 

the charging rate has increased and the EV finishes charging in less time without mitigating 

the system voltage.   

5.4.6 Controller Performance in the Presence of Distributed Generation Units 

To take into consideration the presence of the distributed generation units in the 

distribution system, the controller performance is tested in the presence of the rooftop PV 

system. The PV penetration is  assumed to be 5%, which is more than double the current 
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penetration depth of the PVs in the northwestern energy, where the load profiles, in this 

study, are based on [152]. 

 

Figure 5.22: Voltage profiles at the selected POCs under Multi-group with critical 

peak TOU tariff in the presence of shunt capacitors 

 

Figure 5.23: Steps of the shunt capacitor at bus 5 
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Figure 5.24: SOC of the downstream EV (EV down) without and with shunt capacitor 

(SC) at bus 5 

 

Figure 5.25 shows a scaled solar energy profile for a sample summer day in this region 

[153]. The solar PVs are scattered among the different houses in the system, and their 

energy represents 5% of the total energy. Since solar energy will feed some of the loads 

during the morning hours, the power supplied through the primary distribution transformer 

will be reduced. This is illustrated in Figure 5.26, where it is obvious that the transformer 
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morning hours, there will be a voltage improvement. This is depicted in Figure 5.27. This 
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hours when the owners of the EVs come home, the charging process of the EVs will not 

be highly impacted by the presence of the PVs, which generate power during the morning 

hours only.  This is shown in Figure 5.28, where the average rate of SOC is almost the 

same with and without PV systems. 

 

Figure 5.25: Solar power profile 

 

Figure 5.26:  Aggregated load at the primary distribution transformer 
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Figure 5.27: Voltage profile at the downstream EVdown 

 

Figure 5.28: Average SOC of the downstream EVs at bus 6 
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5.5 Conclusion 

An effective decentralized fuzzy-based controller for electric vehicle charging is 

proposed in this chapter. The proposed controller, while requiring minimum real-time 

communication that already exists in the current DSM infrastructure, effectively 

coordinates the charging process among the different EVs connected to the system in a fair 

manner. It takes into consideration the customer charging requirements, the system voltage, 

and the cost of customer bills, depending on the coming price signal from the system. The 

results proved that a better valley filling can be obtained, and the voltage can be maintained 

within the standard limits. The controller was analyzed under different DSM schemes and 

showed how the different DSM schemes can affect the system loading and voltage.  

From these analyses, a new scheme that is called a multi-group TOU with critical 

peaking (MTOUCP) is proposed. The new scheme can effectively help mitigate the system 

peaking and avoid introducing new peaks “the rebound effect.” The new scheme is 

compatible with the current DSM infrastructure and does not need any further investments. 

The proposed scheme brings some benefits to the utility operators by allowing the EVs to 

discharge some of the energy to support the power grid during high-peak periods. However, 

proper incentives should be given to convince the owners of the EVs to use their batteries 

to provide ancillary reserve services to the system.  

The controller performance was also tested in the presence of voltage control units, 

such as capacitor banks, and in the presence of distributed generation units, such as 

photovoltaic systems. The proposed controller gave satisfactory results in both cases. 



 

 

132 

 

Chapter 6 Bi-Layer Multi-Objective Optimal Allocation and Sizing of Electric 

Vehicle Parking Garage 

The anticipated increase in Electric vehicles’ (EVs) adoption necessitates the need for 

electrified transportation infrastructure to charge these vehicles. Although the EV parking 

garage can represent a good investment opportunity, it brings more challenges to the 

distribution system operator. Therefore, the allocation and sizing of the parking garage 

should be carefully planned. The planning process should take into consideration the 

economic aspects of the investor, as well as the technical aspects of the distribution system. 

In this chapter, a bi-layer multi-objective optimization problem is formulated to optimally 

allocate and size an EV parking garage. The optimization formulation tries to maximize 

the profits of the investor of the EV parking garage, as well as minimize the losses and 

voltage deviations for the distribution system operator. Dealing with these contradicting 

objectives simultaneously will results in a set of Pareto solutions. A decision-making 

criterion based on statistics is used to decide on the optimal location and size of the parking 

garage. Sensitivity analysis to show the effect of the different objectives on the selection 

of the optimal size and location is also performed. 

6.1 Introduction 

With the increase of the penetration level of electric vehicles (EVs), there will be a 

great need for charging stations’ infrastructure to provide power to those vehicles [154]–

[156]. The EV owners will primarily prefer to charge their vehicles at homes. However, 

many EV owners do not have a private parking space. Therefore, there will be a need for 

non-residential charging stations in other places, such as work, business districts, near 
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bulky public transportation stations, and other public facilities. While the EV parking lot 

(PL) may represent a promising investment in the near future, it might bring some 

challenges to the distribution system designer/operator due to the large loading that can be 

added to the system. Therefore, the optimal sizing and allocation of an EV public PL will 

be a problem of great interest. Allocation and sizing of energy storage was widely 

investigated in the literature [157]–[159]. Optimal sizing for large energy storage as a price 

maker that can play a role in the electricity market was also considered in [160]. In [161], 

a second-order cone programming (SOCP) was used to optimally plan and operate the 

energy storage system in a localized isolated distribution network. In [162], a fuzzy particle 

swarm optimization (FPSO) algorithm was used to optimally operate the energy storage 

system to mitigate the risks faced by the distribution companies in electricity markets. 

While it seems that EV PL is more or less a conventional energy storage unit, it has many 

additional aspects that should be considered. These aspects include: 1) the different 

preferences of the EV owners that the PL operator should satisfy, 2) having a 

heterogeneous mix of batteries with different capacities and maximum charging rates and, 

3) the uncertainty associated with the vehicles’ availability. In addition, PLs are expected 

to be close to the load centers, which mean they will have diverse impacts on the 

distribution system. Therefore, more attention should be paid to the optimal sizing and 

allocation of PLs. Some researchers tried to consider that problem in the literature. Optimal 

coordination for operational planning of EVs in the microgrid was considered in [163]. The 

authors used an economic method called Sortino ratio to maximize the profits per unit risk, 

while the size and location of the EVs were assumed as a priori. In [164], an Analytic 
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Hierarchy Process (AHP) was used to determine the optimal weighting coefficient for each 

objective in a mutli-objective problem to determine the optimal site and size of PLs. In 

[165], the authors developed a two stage multi-objective formulation to optimally allocate 

a PL, taking network constraints into consideration. However, the optimal profit of the PL 

was obtained in the first stage, then optimal allocation and sizing were done in the second 

stage. This neglects the mutual effect that the optimal sizing and allocation might have on 

the profits in the first stage. The authors in [166] investigated the allocation problem of EV 

PLs in a distribution network, but they just addressed the technical aspect of the problem, 

and no economic aspects were considered.  

In this chapter, a bi-layer multi objective optimization for optimal sizing and allocation 

of a commercial PL is considered. The problem formulation takes into consideration 

multiple EVs with different characteristics (battery capacities and maximum charging 

rates) and customer preferences (energy and departure times). The formulation looks at 

both the economic aspects trying to maximize the PL profits, as well as the technical 

aspects trying to minimize the losses and voltage deviations in the distribution system at 

the same time.  In addition, sensitivity analysis to show the effect of the different objectives 

on the selection of the optimal size and allocation is performed. 

6.2 Methodology 

Due to the growth in the number of electric vehicles, more electrified PLs will be needed 

soon. Therefore, the problem of optimally allocating an electric vehicle PL will be of 

special interest. From one side, the PL might represent a large load to the system since it is 

preferred from the PL investor’s point of view to charge the maximum possible number of 
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EVs in the shortest possible time to increase the revenues. From the other side, the 

distribution system operator would like to minimize the system losses and voltage 

deviations. This necessitates the need to optimally size and allocate the PL during the 

planning stage to achieve these contradictory objectives. This represents a reasonable 

potential for using the Pareto-based method, as it gives a set of optimal solutions (Pareto 

front), which helps realize the different trade-offs between the considered objectives [167]. 

In the near future, where the market environment of ancillary services is not fully 

developed in most of the places, it is expected that the EV PL will operate like the 

conventional diesel charging station, where the PL purchases its energy from the wholesale 

market, and then sells this energy to the EVs at a pre-defined charging tariff. Therefore, in 

this chapter, the PL is assumed to do only energy arbitrage, where a unidirectional power 

flow is assumed.  

The case of an EV PL is more complicated than conventional charging stations because 

electricity is a commodity that will not be stored (the PL is not expected to have dedicated 

energy storage), and the PL operator needs to satisfy multiple charging requests from 

different EVs with different preferences. In addition, the EVs are expected to be parking 

for longer time periods. Therefore, the PL is anticipated to try to optimally schedule the 

charging of the EVs, taking the electricity market prices and the preferences of the EV 

owners into consideration.  

The first step in the planning of the EV PL is to model the PL behavior and calculate its 

expected revenues. However, some of the parameters of the PL model like the maximum 

power (power size) of the PL will be determined by the distribution system operator who 
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will try to minimize the system losses and voltage deviations. The optimization procedure 

that will be used is shown in Figure 6.1, where a bi-layer optimization method is 

introduced. The proposed method aims at maximizing the PL profits, as well as minimizing 

the losses and voltage deviation of the distribution system simultaneously. 

Higher Layer Optimization 
Meta-Heuristic (NSGA-II)

Lower Layer Optimization 
using Linear-programming 

(CVX)

Solve the power 
flow

Set the maximum 
power of the 
Parking Lot.

Set the location of 
the Parking Lot.

Total Profile ΔV PLoss 

`

Generation n

n+1

 

Figure 6.1: A flow chart for the proposed bi-layer optimal planning procedure 

 

 The optimization procedure will first start with a random size and candidate location 

and pass these values to the second layer, where the PL scheduling problem will be solved 

and give the expected profit. At the same time, using the given size and location, the power 
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flow problem will be solved, and the voltage deviations and line losses will be obtained.  

The three calculated values: profits, voltage deviations, and line losses will be passed to 

the first stage, which will evaluate and sort the different solutions and decide whether to 

go to the next iteration process or not, and what will be the new size and location for the 

next iteration step. The process will be continued until a maximum number of iterations is 

reached. 

The presented problem in this chapter is a multi-objective optimization problem (MOOP) 

with three objective functions; maximizing the PL profit, minimizing the voltage 

deviations, and minimizing the power losses in the distribution system accommodating the 

PL. In many studies, the aggregate weight functions method is used to solve the MOOP. 

In this method, the MOOP is relaxed to be a single objective through assigning a weight 

vector to the objectives and adding them altogether. Then, the problem is solved using any 

of the single objective techniques. Despite the simplicity of this method, it suffers from 

major drawbacks including, but not limited to: 1) the difficulty of the appropriate 

assignment of the weights, 2) the solution is changed by changing the weight vector, and 

3) its failure to generate feasible solutions on the nonconvex portions of the optimum 

solution front [168], [169]. Furthermore, it generates only one solution, which significantly 

limits the options in the decision making process [170]. Whereas in the Pareto optimality 

(PO) based methods, a set of points that all fulfill the definition of an optimal solution and 

meet the problem constraints are obtained. This set of optimal solutions is known as the 

Pareto Front (PF).  
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Different methods were proposed in the literature to generate the PF, among these 

methods, Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been one of the 

most successful techniques. The NSGA-II is an extension of the GA and uses an elitism 

approach and sorting algorithm to determine the Pareto Front (PF) [171]. Following the 

determination of the PF, a decision-making criterion is utilized to select a single solution 

between the different obtained trade-offs. 

6.3 Problem Formulation 

6.3.1 Objective Function of the Parking Lot  

For the case of an EV PL, the expected operational income for a certain day (INC) comes 

from charging the EVs at a pre-defined tariff, which will depend on the required departure 

and start times. This is shown in equation (6.1). 

𝐼𝑁𝐶(𝑑) = ∑ ∑ 𝛿𝑖 ∙ 𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡 ∙ 𝐸𝑉𝑃𝑒𝑟𝑡𝑡𝑖   (6.1) 

where i is the EV index, t is the time period, and d is the day index. INC is the operational 

income of the PL, 𝛿 is the charging tariff, AV is a binary factor indicating the vehicle 

availability (0 is unavailable and 1 is available), PR is the charging rate and 𝐸𝑉𝑃𝑒𝑟 is the 

percentage of the remaining EVs after unexpected departure.  

The operational cost of the PL, shown in equation (6.2), comes from purchasing the 

required energy from the market to charge the EVs. 

𝐶𝑂(𝑑) = ∑ ∑ 𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡 ∙ 𝜋𝑡 ∙ 𝐸𝑉𝑃𝑒𝑟𝑡𝑡𝑖   (6.2) 

where CO is the operational costs of the PL and 𝜋 is the market energy price. The 

availability index 𝐴𝑉𝑖𝑡 is used to ensure that the charging of the EV will represent a revenue 
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or a cost only if the EV is available. 𝐸𝑉𝑃𝑒𝑟𝑡 is a parameter used to take into consideration 

the possibility of unexpected departure of the EVs [80]. It can be estimated by considering 

the percentage of the EVs that is remained for charging as represented by equation (6.3), 

which is a function of the accumulated probability of the unexpected departure of the EVs 

at a certain hour (Depit). The value of Depit is a function of the time of the scheduled trip 

for each EV during the day, as depicted in equation (6.4).  

𝐸𝑉𝑃𝑒𝑟𝑡 = 1 −
1

𝑁𝐸𝑉
∑ 𝐷𝑒𝑝𝑖𝑡

𝑁𝐸𝑉
𝑖=1                                  ∀ 𝑡 (6.3) 

𝐷𝑒𝑝𝑖𝑡 = ∑ 𝐷𝑒𝑝𝑖(ℎ) ,𝑡
ℎ=1                                   ∀ 𝑖, 𝑠𝑡 ≤ 𝑡 ≤ 𝑑𝑡  (6.4) 

where st and dt are the starting and departure times of the EVs. NEV is the number of the 

charging stations in the lot. The total revenue for a certain day is the difference between 

the income and the cost, as illustrated in (6.5). 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 (𝑑) = 𝐼𝑁𝐶(𝑑) − 𝐶𝑂(𝑑)  (6.5) 

In order to estimate the annual revenue, weighted representative days are used [172]. 

Each representative day is weighted by a factor Kd, and the sum of all factors is equal to 

the total number of days in the year (which is 365). The days are chosen in such a way to 

represent the weekdays and weekends in the different seasons. For a number of 

representative days (DY), the one-year revenue is given in (6.6).  

The PL investment cost includes the costs of charging stations and the laboring for 

installation, some auxiliary materials, and permits, as given in (6.7). Hence, the total profit 

from investing in an EV PL for the project time span is given by (6.8). 
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𝑌𝑒𝑎𝑟𝑙𝑦_𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝐾𝑑 ∙ 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 (𝑑)𝐷𝑌
𝑑=1   (6.6) 

𝐼𝑁𝑉 = (𝐻𝐷 + 𝐼𝑁𝑆) ∙ 𝑁𝐸𝑉 (6.7) 

𝑇𝑜𝑡𝑎𝑙𝑝𝑟𝑜𝑓𝑖𝑡 = (∑ (1 + 𝑑𝑟)−𝑦𝑦𝑟𝑠
𝑦=1 ∙ (𝑌𝑒𝑎𝑟𝑙𝑦𝑟𝑒𝑣𝑒𝑛𝑢𝑒)) − (𝐼𝑁𝑉 + 𝑀𝑇𝐶)  

(6.8) 

where INV, HD and MTC are the investment, hardware of the charging station, and 

maintenance costs, respectively. NEV is the number of the charging stations in the lot. INS 

represents the installation and permit costs. dr is the discount rate and yrs is the number of 

operational years and y is the year index. Finally, the PL objective function can be 

formulated as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙_𝑝𝑟𝑜𝑓𝑖𝑡)  (6.9) 

6.3.2 Objective Functions of Distribution System Operator 

6.3.2.1 First Objective: 

Connecting the PL to the distribution system can cause severe voltage drops not only on 

the bus where it is connected, but also on other busses depending on the power flow in the 

network. This occurs especially at the peak hours, either when the PL is full (many cars are 

charging), or when the other loads in the distribution system are at their peaks.  Therefore, 

it is required to optimize the PL location and the size to minimize this voltage deviations 

upon energizing the loads. The reference value for the bus voltage is taken as 1 p.u and the 

objective function for voltage deviation is given in (6.10), where 𝑉𝑗 is the voltage at bus j 

and 𝑉𝑟𝑒𝑓 is the reference voltage. 𝑁𝑏 is the total number of buses in the system.   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ (𝑉𝑗 − 𝑉𝑟𝑒𝑓)
2𝑁𝑏

𝑗=1   (6.10) 
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6.3.2.2 Second Objective: 

In the second objective function, it is required to minimize the total active power losses 

in the systems, as given in (6.11). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 3. 𝐼𝑚
2 . 𝑅𝑚 

𝑁𝑙
𝑚=1   (6.11) 

where m is the distribution line index, 𝐼𝑚, 𝑅𝑚 is the current flowing through and the 

resistance of distribution line m, respectively. 𝑁𝐿 is the number of the distribution lines 

6.3.3 Decision Variables 

The decision variables in this problem are:  

• Location of the PL in the distribution network: A decision variable 𝑥𝑃𝐿 is 

assigned to control the location of the PL, where 𝑥𝑃𝐿 ∈ {𝑁𝑏} .  

• Maximum power of the PL: A decision variable 𝑃𝑃𝐿
𝑚𝑎𝑥 is assigned to control the 

maximum size of the PL.  

6.3.4 Constraints 

6.3.4.1 Parking Lot Constraints 

The PL is subjected to some operational constraints as follows: 

𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡  ≥ 0                                                 ∀ 𝑖, 𝑡 (6.12) 

𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡 ≤ 𝑃𝑅𝑚𝑎𝑥                                         ∀ 𝑖, 𝑡 (6.13) 

∑ (𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡 ∙ 𝜂 )∆𝑡 + 𝑖𝑛𝑖𝑡_𝑠𝑜𝑐𝑖𝑡 = min(𝑓𝑖𝑛_𝑠𝑜𝑐 , 𝐵𝐶𝑖)                    ∀ 𝑖  (6.14) 

∑ 𝐴𝑉𝑖𝑡 ∙ 𝑃𝑅𝑖𝑡𝑖  ≤ 𝑃𝑃𝐿
𝑚𝑎𝑥                                      ∀ 𝑡  (6.15) 

where 𝑖𝑛𝑖𝑡_𝑠𝑜𝑐𝑖 is the initial state of charge,  𝜂 is the charging efficiency and ∆𝑡  is the 

charging duration.  
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Constraint (6.12) is imposed to force unidirectional charging of the EVs since the PL 

is assumed to do unidirectional flow only. Constraint (6.13) is to limit the charging rate of 

any EV to its maximum charging rate 𝑃𝑅𝑚𝑎𝑥. Equation (6.14) is meant to satisfy the EV 

owner’s preference. It means that the EV should be charged to the required final state of 

charge (fin_soc) at the required time, where the summation over t means charging over the 

required period (dt-st). If the EV owner does not have any energy requirements, the 

maximum battery capacity (𝐵𝐶𝑖) is assumed.  

Finally, the summation of the charging power for all EVs at any hour should not exceed 

the maximum capacity of the parking lot 𝑃𝑃𝐿
𝑚𝑎𝑥, as given in (6.15). This maximum size of 

the PL will be determined in a way that maximizes the investor’s profits and minimizes the 

losses and voltage deviations of the distribution system.  

6.3.4.2 Distribution System Constraints 

Constraints (6.16) and (6.17) are the power balance equations in the system, where PGj 

and PDj are the active powers into bus j from generator g and load d, respectively. The same 

notation holds for the reactive power constraints in (6.17). G and B is the distribution line 

conductance and suceptance, respectively. 

∑ 𝑃𝐺𝑗
𝑁𝐺
𝐺=1 − ∑ 𝑃𝐷𝑗

𝑁𝐷
𝐷=1 − 𝑃𝑃𝐿

𝑚𝑎𝑥 = 𝑉𝑗 ∑ 𝑉𝑗′.
𝑁𝑏
𝑗′=1 [𝐺𝑗𝑗′ 𝑐𝑜𝑠(Ɵ𝑗 − Ɵ𝑗′) +

𝐵𝑗𝑗′ 𝑠𝑖𝑛(Ɵ𝑗 − Ɵ𝑗′)]  

(6.16) 

∑ 𝑄𝐺𝑗
𝑁𝐺
𝐺=1 − ∑ 𝑄𝐷𝑗

𝑁𝐷
𝐷=1 = 𝑉𝑗 ∑ 𝑉𝑗′ .

𝑁𝑏
𝑗′=1 [𝐺𝑗𝑗′ 𝑠𝑖𝑛(Ɵ𝑗 − Ɵ𝑗′) − 𝐵𝑗𝑗′ 𝑐𝑜𝑠(Ɵ𝑗 −

Ɵ𝑗′)]  

(6.17) 
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Since the system understudy in the chapter is a primary distribution system, the allowed 

voltage variations are set from V𝑚𝑖𝑛 = 0.9 p.u. to V𝑚𝑎𝑥 =1.1 p.u as follows:  

V𝑚𝑖𝑛 ≤ V𝑗 ≤ V𝑚𝑎𝑥 (6.18) 

Constraint (6.19) is limiting the apparent power flow in the distribution lines 𝑆𝑚 to 

be below the allowed limits 𝑆𝑚
𝑚𝑎𝑥 to avoid any thermal issues.  

|𝑆𝑚| ≤ 𝑆𝑚
𝑚𝑎𝑥                                                             ∀m ∈ Nl (6.19) 

Constraints (6.20) and (6.21) are assuring that the operation point of the generator is 

within its safe operating region. 

𝑃𝐺
𝑚𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺

𝑚𝑎𝑥                                            ∀G ∈ NG (6.20) 

𝑄𝐺
𝑚𝑖𝑛 ≤ 𝑄𝐺 ≤ 𝑄𝐺

𝑚𝑎𝑥                                         ∀G ∈ NG (6.21) 

6.4 Case Study and Results 

The PL is assumed to have a maximum of 500 charging stations, where the charging 

stations are assumed to be the commercial level 2 stations given in Table 6.1 and can supply 

three different levels of power. Details about level 2 charging stations for commercial 

purposes can be found in [154]. The different costs associated with level 2 charging stations 

can also be found in [154]. It is assumed that the PL is located in Texas, where grants from 

the Alternative Fueling Facilities Program to provide 50% of the cost of alternative fuel 

facilities is applied [154] . In addition, the PL is assumed to be in a city center near work 

areas and shopping malls. Therefore, the EVs are expected to be parking for long time 

periods.  



 

 

144 

 

It is also assumed that the EV fleet that is using the PL consists of three different types 

of EVs, which are Tesla Model S, Mitsubishi i-MiEV and Nissan leaf with percentages of 

30%, 20% and 50%, respectively. The technical specifications for the batteries of those 

vehicles are given in Table 6.2. To generate different profiles (Availability, initial and 

required final state of charge, required departure time) for the different EVs, Monte Carlo 

Simulation was used. The probabilistic model found in [173] for the arrival of the EVs in 

a business district is used to generate the availability matrix for the EVs in the PL. It is 

based on a truncated normal distribution, which was validated using a historical data of a 

parking deck. The initial state of charge is modeled as a random variable under log normal 

distribution found in the same reference [173], while the final state of charge was assumed 

to be between (70-100%). It is assumed that the PL will charge the EVs with a tariff based 

on how fast they want to charge their required energy according to Table 6.3. 

Historical hourly market prices from ERCOT, Texas [174] are used, where the PL is 

assumed to be. The discount rate over the planning horizon is assumed to be 5%, and the 

planning span is assumed to be 15 years. The PL scheduling problem is solved using the 

CVX toolbox, which is a MATLAB based modelling system for convex optimization 

[175]. The parameters of the NSGA-II is set as follows: the maximum number of 

generations is 50 and the number of individuals in each generation is 50. The IEEE 30 bus 

system [176], shown in Figure 6.2, is used as the primary distribution system. 
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Table 6.1: Description of level 2 charging station power and charging times 

Charging level Vehicle Range added Supply power 

AC level 2 

10 miles/hour @ 3.4kW 

208/240VAC/20-100 A 

(16-80) A  continuous 

20 miles/hour @ 6.6kW 

60 miles/hour @ 19.2 kW 

 

Table 6.2: EVs characteristics  

 Maximum Charging Rate (kW) Maximum Capacity (kWh) 

Tesla Model S 20 85 

Mitsubishi i-MiEV 3.3 16 

Nissan leaf 3.3 24 
 

Table 6.3: charging tariff 

𝛿 (¢ /𝑘𝑊ℎ) Time to finish (hours) 

15 t ≥  8 

20 4 < t <  8 

25 t ≤  4 
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Figure 6.2: IEEE 30 bus test case 
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 The power flow problem is solved using MATPOWER toolbox [177]. In order to obtain 

the solution in a reasonable time, the optimization problem is solved on eight representative 

days, two days are selected to represent each of the four climate seasons. One day is 

representing the weekend and the other day is representing the weekday. In order to have 

an accurate representation for a real-world case, a real hourly load profile for the same days 

of the market price mentioned before is obtained from [178], and added to the system. The 

addition of this load profile helps in capturing the variable loading conditions of the 

distribution system to be considered in the optimization process. In this specific problem, 

the candidate buses to allocate the PL in the optimization problem is limited to the load 

buses. The problem is a mixed integer with non-linear constraints. To have a 

comprehensive understanding of the effect of the three different objectives on the optimum 

size and location, multiple cases will be processed. First, the problem will be solved as a 

multi-objective problem using Pareto optimization. Then, sensitivity analysis will be 

performed, where the conventional genetic algorithm (GA) will be used. In this sensitivity 

analysis, only one objective will be considered at each time to see its effect on the optimal 

size and location decision. 

6.4.1 Pareto Multi-Objective Optimization 

In this case, the three objectives will be used simultaneously, and the different trade-

offs will be obtained and sorted using the NSGA-II. The optimization problem resulted in 

obtaining eight Pareto fronts (PFs). The eight PFs are depicted in Figure 6.3 (a) through 

(h). Each PF is a set of optimal solutions of a single representative day.  
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(g) (h) 

 

Figure 6.3: 3D Pareto fronts for PL allocation and sizing problem, (a) day one 

(winter-weekday), (b) day two (winter-weekend), (c) day three (spring-weekday), (d) 

day four (spring-weekend), (e) day five (summer-weekday), (f) day six (summer-

weekend), (g) day seven (fall-weekday), (h) day eight (fall-weekend). 

 

 

Figure 6.4: Side projection for the 3D Pareto front for day one showing the relation 

between two of the objectives 

 

Figure 6.3 (a) shows the PF obtained for day one, which represents a typical working 

day in the winter season. It can be seen that the PL profit is varying between 873.5 $/day 
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and 967.7 $/day. It can also be realized from the 3D figure that increasing the PL profit is 

associated with an increase in the voltage deviation and the power losses of the distribution 

system. This is well justified because the objective of the optimization algorithm is 

increasing the revenues through increasing the maximum power allocated for the PL, which 

represents an additional load to the system. Therefore, improving one objective in the 

design process (monetary profit) worsens the other two objectives (voltage deviations from 

the nominal values and the power losses). This leads to realizing the different trade-offs in 

the design process using the proposed Pareto-based framework. It should be noted that the 

obtained PFs yield a different shape (flipped shape). This is due to the fact that, in this 

specific problem, one objective is maximized whereas the other two are minimized. 

Furthermore, the objectives are explicitly contradicting. 

By comparing the obtained PFs to each other, certain differences can be identified. 

These differences are due to: 

 1) The difference in the number of EVs using the PL from a weekday to a weekend, 

where  Figure 6.3  (a, c, e, g) represent weekdays while  Figure 6.3  (b, d, f, h) represent 

weekends. 

 2) The difference in the loading profile of the distribution system from season to season.  

For example, on one hand, comparing Figure 6.3 (a) and  Figure 6.3 (b) show that the 

profit is less during the weekend because the number of cars is less. On the other hand, 

comparing Figure 6.3 (a) with Figure 6.3 (e) shows that the power losses in the summer 

day, Figure 6.3 (e), is much higher. This is because, the overall loading of the distribution 
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system is higher during the summer in the area under study. This yields higher losses in 

the system. Figure 6.4 depicts a 2D projection for the PF shown in Figure 6.3 (a). The 

figure shows the relation between two objectives, which are the voltage deviation and the 

profit. The presented set of fronts emphasizes the integrity of the presented design method, 

as it incorporates several factors and targets different objectives simultaneously. 

At this point of the planning stage, several solutions are obtained. However, only one 

solution is required by the decision maker to be implemented. This requires a decision-

making criterion to select a single solution among the obtained PFs.  

In this chapter, a decision-making criterion that is based on a histogram of the most 

appearing solution in the PFs, obtained over the year, is utilized.  Figure 6.5 and Figure 6.6 

show histograms for the chosen candidate buses and optimal sizes obtained from the 

different Pareto front trade-offs. From Figure 6.5, it is obvious that bus 3 and bus 21 are 

the most frequent selections to allocate the PL. Figure 6.6 shows that sizes of 0.5 MW, 1 

MW, and 2 MW are the most frequent optimal sizes.  

Further analysis for the power flow and the optimal scheduling of PL is done using 

these optimal candidate locations and sizes. It is found that although the 0.5 MW is the 

most frequent size, it will result in a huge reduction in the profits. This is mainly due to the 

small size of the PL, which will reduce the PL ability to charge a large number of vehicles 

at the same time. This 0.5 MW size is frequent because it is the best fit for the weekends, 

where the number of electric vehicles is less, hence the maximum load is less. However, 

for weekdays it will fit for some of the individuals in the solutions, which minimizes the 
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losses and deviation and greatly sacrifices the profits. Therefore, this optimal size will be 

discarded, as it will greatly reduce the profits. 

 The second two optimal sizes of 1 MW and 2 MW is then tested. It is found that the 2 

MW size will result in higher profits, however the increase in profits is not high enough to 

justify the associated increase in power losses and voltage deviation. The yearly and the 

total profits over the project planning span is given in Table 6.4. 

Load flow studies are performed to obtain the losses and voltage deviations for the two 

optimal sizes (1 and 2 MW), and the two optimal locations (bus 3 and bus 21). It is found 

that bus 21 results in higher losses and voltage deviation, which means that bus 3 is the 

optimal site, where the PL can be located.  

The profits and the maximum voltage deviations at bus 3 is given in Table 6.5 for the 1 

and 2 MW sizes. Figure 6.7 shows a comparison of the distribution system losses for the 1 

and 2 MW sizes when the PL is connected at the optimal location at bus 3. It is obvious 

from Table 6.5 that the 2 MW size results in higher profits than the 1 MW size, but from 

Figure 6.7, it also results in higher losses over the course of different days. 

 

Table 6.4: Profits for the one and two MW optimal sizes 

 1 MW 2 MW Difference 

Yearly Profit 323469.9 

 

327163 

 

3693.072 

 
Total Profit 1615107 

 

1653440 

 

38332.83 
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Figure 6.5: Histogram of the obtained optimal candidate buses 

 

 

Figure 6.6: Histogram of the obtained optimal sizes 
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Table 6.5: Profits and maximum voltage deviations for optimal sizes at bus 3 

 1 MW  2 MW 

 Profit ($) ΔV (p.u)  Profit ($) ΔV (p.u) 

day 1 960.729 0.072  967.725 0.072 

day 2 673.505 0.071  675.779 0.071 

day 3 985.665 0.079  997.308 0.079 

day 4 653.968 0.080  653.974 0.080 

day 5 964.647 0.093  988.309 0.093 

day 6 627.756 0.092  628.026 0.092 

day 7 998.801 0.083  1012.100 0.084 

day 8 677.911 0.072  678.021 0.073 

 

Figure 6.7: Distribution system losses for the 1 and 2 MW sizes at bus 3 
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6.4.2 Sensitivity Analysis Using Single Objective Optimization 

In this section, the effect of the three different objectives on the selection of the optimal 

size and location is tested. These three objectives are the minimization of the voltage 

deviations, minimization of the power losses, and the maximization of the profits. The 

problem here is solved as a single objective optimization problem using the genetic 

algorithm, where only one objective is selected each time. The obtained results from the 

three cases is shown in Table 6.6. 

From the table, it is obvious that for the cases of minimization of voltage deviations or 

losses minimization, the optimal size will be the same, which is 0.6 MW. This size will 

yield a feasible solution for the PL profit maximization problem for all days.  It will also 

result in the lowest voltage deviations and losses. This is well justified since selecting the 

lowest feasible size (for the PL operator to make profits) will be preferred for the sake of 

voltage deviations and losses minimization.  

Also, the table shows that while the voltage deviations and losses minimization have 

the same preference toward the size, they have a different preference toward the optimal 

location. While voltage deviations minimization results in bus 21 as an optimal location, 

the loss minimization problem results in bus 3 as the best location. It is worth mentioning 

that both the optimal sizes and locations appear as potential candidates in the multi-

objective problem in the previous section. From the point of view of profit maximization 

as a single objective problem, Table 6.6 shows that the 2.5 MW size will be the optimal 

size for the PL owner. This is justified since increasing the PL size will result in a higher 
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profit. The table also shows that the profit maximization has the same preferred optimal 

location as the losses’ minimization problem. 

Table 6.6: Optimal size, location, and profits obtained from the single objective 

problem 

 Size (MW) Bus location Total profits 

Voltage 

minimization 

0.6 21 1503700 

Losses 

minimization 

0.6 3 1503700 

Profit 

maximization 

2.5 3 1663000 

 

From the analysis mentioned before, a main observation can be made as follows: 

The multi-objective Pareto optimization problem almost gave all the solutions obtained 

using the single objective problems shown in the sensitivity analysis. This proves the 

superiority of the proposed algorithm and problem formulation in giving all the possible 

trade-offs compared to the single objective problem, which gives limited options. This is 

because in the single objective problem, only one solution is obtained. This solution 

performs well in favor of one of the participating parties while causing a negative impact 

on the other party. This was obvious from Table 6.6, where the first two cases (voltage 

deviations and losses minimization) selected the 0.6 MW size, as the optimal size. This 

size satisfies the system operator requirements, while it badly impacts the PL investor. The 

same applies for the third case, where the profits were maximized by increasing the size, 

neglecting the negative effects of this size on the distribution system. Unlike the single 

objective problem that gives one solution, the Pareto multi-objective problem gives all the 

possible trade-offs, allowing the different parties to see all the options and apply further 

analysis to choose the best compromise. 
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6.5 Conclusion 

In this chapter, a bi-layer multi-objective optimization problem is presented to allocate 

and size an EV PL while considering its impacts on the distribution system. The 

optimization problem is solved to maximize the profits of the PL investor, as well as 

minimize the losses and voltage deviations for the distribution system. Therefore, the 

benefits of all the parties are fulfilled in this study. The proposed method, to solve the 

problem, is based on the Pareto concept, in which a set of optimal solutions is obtained. 

The results showed the different trade-offs that might be induced while dealing with the 

contradictory objectives. A solution that achieves the best profit while keeping the voltage 

deviations and power losses minimum is selected based on a statistical decision-making 

criterion. 

 Also, sensitivity analysis to show the effect of the different objectives on selecting the 

optimal size and location was performed. The results showed that each objective will result 

in the optimal size and allocation from one perspective for one of the participating parties, 

neglecting the negative impact on the other party.  

The results showed that the multi-objective Pareto optimization problem almost gave all 

the solutions obtained using the single objective problems shown in the sensitivity analysis. 

This proves the superiority of the proposed algorithm and problem formulation in giving 

all the possible trade-offs compared to the single objective problem, which gives limited 

options. 
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Chapter 7 Co-Simulation of Improved AIMD Algorithm for Decentralized 

Charging of Electric Vehicles 

Mass adoption of Electric Vehicles (EVs) will bring some challenges to the operators 

of electric utilities. This chapter proposes a decentralized control algorithm to manage the 

charging of distributed EVs. The proposed algorithm is inspired by the Additive Increase 

- Multiplicative Decrease (AIMD) algorithm, which is commonly used for the management 

of communication network congestions. The improved algorithm takes into consideration 

the preferences of the owners of the EVs. Also, it eliminates the overloading and the under-

voltage problems that might be associated with the charging of EVs. The proposed 

algorithm is validated using a co-simulation platform, where the power components are 

simulated using MATLAB/Simulink and is linked to embedded microcontrollers over a 

real-time communication network via the Data Distribution Service (DDS) middleware. 

7.1 Introduction 

As mentioned in previous chapters, decentralized control algorithms of EV charging can 

be divided into two categories: 1) Decentralized autonomous control, which is fully 

independent of any communication [179]. In this type of control, the decisions are made 

locally based on local measurements of the controlled process or system. 2) 

Communication-assisted decentralized control, which depends on information exchange, 

over communication channels, between the system operator/aggregator and the charging 

stations [180], in addition to the local measurements. While the first type is suitable for 

utilities that do not have any communication infrastructure, it does not result in the most 

efficient use of the system resources. Unlike the first type, the second type requires a 
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communication link, which gives the system operator more observability, and results in a 

better utilization of the system resources. 

Most of the autonomous control algorithms reported in the literature are based on droop 

control [181], [182]. In [181], the authors proposed a power/frequency droop control 

algorithm, where the EV autonomously adapts its output power based on the frequency of 

the microgrid. In [182], a voltage-feedback control for charging the EVs was suggested. 

However, the issue of fair charging among the EVs connected to the different buses in the 

system was not addressed.  

In addition to the autonomous controllers, many researchers developed decentralized 

control algorithms that use low bandwidth communication [48]. One of the algorithms that 

is suggested for communication-assisted decentralized control is the Additive Increase - 

Multiplicative Decrease (AIMD) algorithm. The AIMD ensures fair distribution and 

efficient usage of the power. The AIMD algorithm is originally used for congestion 

management in computer networks [183]. It was first applied to manage the charging of 

EVs sharing a limited resource in [180], [184]. In [180], the authors considered the problem 

of adjusting the charging of the EVs to achieve fair charging among them without 

exceeding a total capacity constraint, and with a unidirectional communication from the 

system operator to the EVs. They used the AIMD algorithm as a decentralized control 

algorithm, which requires minimal communication. In [184], the authors extended the work 

presented in [180] in different charging scenarios, while considering time-varying 

resources. The performance of the AIMD-based EV charging over a communication 
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network was considered in [185], where the authors used a co-simulation model using 

OPNET to test the real-time application of the AIMD over a wireless network.  

The control of the connection/disconnection rate of the EVs was suggested in [186]. 

Instead of controlling the charging rate of the EVs, the authors in [186] increase the 

connection rate of the EVs by one, as long as the total power demand is less than a certain 

value. Once the power limit is exceeded, the controller disconnects the EVs, one by one, 

till the system restores its healthy state. 

None of the aforementioned works, that used the AIMD algorithm, considered the 

network dynamics and the under-voltage problems that might occur in the grid. To take the 

grid voltage-constraints into consideration in addition to the power limit constraint, the 

authors in [187], [188] proposed an enhanced AIMD that charges the EVs in a fair manner, 

taking into consideration the grid voltage and transformer power constraints. Although, the 

authors have described the functionality of the proposed algorithm, they did not describe 

the physical implementation of the communication infrastructure, which is needed to 

support the proposed algorithm. Also, they did not consider the customer’s preference. 

Similar concepts of the AIMD that take the local voltages into consideration were used for 

the management of battery storage devices that support the grid in [189]. Due to the scope 

of the work, the effects of the owner preference were not considered. 

Accordingly, this chapter proposes an AIMD-based decentralized control algorithm for 

charging the EVs, taking the grid voltage and capacity constraints into account. The 

proposed algorithm also considers the preferences of the owner of the EVs in terms of the 

energy and time required to finish the charging. The proposed algorithm is validated using 
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a co-simulation platform, using the Data Distribution Service (DDS) as a link between the 

simulated power system and the embedded microcontrollers, to study the performance of 

the algorithm over a real communication network. The dynamics of the power network are 

considered in the model as well. 

7.2 Controller Description 

The AIMD algorithm was originally used for managing the congestion in the 

communication networks to guarantee efficient use of the available bandwidth and ensure 

fair distribution among the users [183]. The AIMD algorithm has its own advantages, such 

as the decentralized actions, eliminating the need for a heavy communication 

infrastructure, low computation burden, since each entity decides on its own control action 

locally, and scalability, which provides great flexibility to system operators. 

Similar to the fair distribution of the communication bandwidth, large-scale penetration 

of EVs into the power grid with limited generation resources will require fair EV charging 

and addressing the grid constraints. Therefore,  the AIMD was adapted and applied to 

manage the charging of EVs by Studli in 2012 [180]. The basic idea of the AIMD algorithm 

in charging the EVs was to ensure that the maximum capacity of the transformer, or the 

power allocated to a certain area, will not be exceeded, and at the same time this power is 

used in the most efficient way. The algorithm was used in a decentralized way to ensure 

fair distribution of the available power among the EVs. 

The original idea of the AIMD algorithm is to increase the charging rates of the 

connected EVs, gradually, with an additive constant (𝛼), in kW/s. When the maximum 
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capacity of the system is reached, the EVs decrease their charging rates by a multiplicative 

factor (𝛽). 

 Once the system is not overloaded, the algorithm starts increasing the charging rates 

again using the additive constant, and so on. The change from the increase to the decrease 

phase is based on an event trigger, which will be sent to all the EVs by the system operator, 

when the total power consumed by the EVs exceeds the system’s capacity. This event is 

called capacity or power event.  

The algorithm in its original form is fully decentralized, where the charging rates are 

decided upon locally based on the additive and multiplicative constants that are the same 

for all the EVs in the system, to ensure fair distribution of power. The communication is 

only used when an event is triggered, and it is a unidirectional and low bandwidth 

communication.  

It was shown in previous studies that the algorithm was able to ensure that the system is 

not overloaded and the allocated power to the different EVs is almost the same. However, 

the algorithm in its original form cannot ensure that the voltages at the different buses in 

the system are within the standards.  

To consider the system voltages and the capacity, other authors [187] suggested that the 

EVs can send their voltages at the point of charging to the system operator, and these values 

will be compared to the standards. An event will be triggered if the total charging power 

exceeds the system capacity or if there is an under-voltage at any of the buses. The event 

will be triggered even if there is under-voltage at only one bus in the system. This is done 
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to distribute the burden of the under-voltage problem among all the EVs. Otherwise, the 

EVs at the far end of the feeder, away from the generation station or the substation, will 

always lack behind other EVs, because of the voltage drops across the feeders. 

To improve the algorithm and ensure its validity, this chapter proposes that the algorithm 

could be improved by ensuring that overloading and under-voltages are avoided, and the 

owners’ preferences are taken into consideration, simultaneously.  The proposed improved 

algorithm is shown in Figure 7.1. Its communication implementation will be discussed in 

the next section. The controller first checks if there is an event or not. The event can occur 

due to exceeding the power or the voltage limits.  If no event trigger is received from the 

system operator, the controller checks the state of charge (SoC) of the battery. If the battery 

is not fully charged (SoC <80%), the controller will start charging and increases the 

charging rate gradually with an additive factor (𝛼). 

To consider the owner’s preferences, the additive parameter (𝛼) will be tuned to be 

linearly proportional to the desired charging rate CR*, as shown in Figure 7.2. This reflects 

the required energy and the time desired by the owner. Therefore, each EV will have its 

own (𝛼), based on the owner’s requirements.  

If an event is received, the controller will enter the decreasing phase. To avoid 

undercharging problems, and to increase the lifetime of the battery, the controller will first 

check the SoC of the battery. If the battery is under-charged (SoC <20%), it will be 

excluded from the decreasing phase, and it will continue charging with the same rate.  
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Figure 7.1: A flow chart for the improved AIMD algorithm 
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Figure 7.2: The relation between the required charging rate and the addition factor 



 

 

164 

 

Otherwise, it will decrease its charging rate by a multiplicative factor (𝛽). The loop will 

continue as long as the battery does not reach the energy level required by the EV owner. 

7.3 Co-Simulation System Description 

A co-simulation setup was developed to evaluate the developed controller over a real 

communication network. As seen in Figure 7.3, the power system components are 

simulated on MATLAB/Simulink. The adopted system is composed of 4 busses. To 

accommodate the anticipated large-scale penetration of EVs, it is assumed that there is an 

EV on every bus in the system. The system has a detailed model of the power electronics, 

such as the DC-DC converters and rectifiers that are connected to the batteries of the EVs. 

An EV Agent is assigned to each EV to control its charging process, based on the proposed 

control strategy in this chapter. The Agents  of the EVs are interfaced with the FIU 

Testbed’s communication network through the MATLAB DDS Toolbox [190]. The 

Agents in this work exchange information with the system operator, which is an embedded 

microcontroller running on a Linux Kernel, over the Testbed’s communication network. 

In practice, there are two main different types of communication network architectures 

for industrial control systems. The first one is the client-server-type network, which is 

commonly used in Supervisory Control and Data Acquisition (SCADA) systems. For data 

to be transferred in such networks, clients need to initiate requests to a server, reducing the 

flexibility and reliability of the decentralized controllers [191]. The server in the SCADA 

system is a bottle-neck from the communication perspective, and makes the network prone 

to a single-point-of-failure. Contrary to that, the peer-to-peer-type networks, that are the 

second type of industrial control networks, create direct connections between the network 
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nodes, eliminating the need for a server. Therefore, to meet the requirements for the 

proposed decentralized controller, the communication infrastructure is built based on the 

Data Distribution Service (DDS) standard. 

In the proposed communication infrastructure, the Agents in the simulation environment 

and the system operator exchange messages via the DDS middleware. DDS is a data-

centric middleware that utilizes the publisher/subscriber model for decentralized and 

distributed control applications. As depicted in Figure 7.3, DDS gives communicating 

nodes an abstraction level by providing a relational data model in a decentralized data 

space, which decouples applications in both time and space. In other words, for a given 

network, a global data space, which includes different data topics, is introduced. Each data 

topic in the global data space has a predefined set of data types. 

In this chapter, three data topics were created. The EV Topic holds a data structure 

containing the EV ID and the voltage at the point of connection in per unit. The Power 

Topic and the Events Topic hold data structures with total power and events, respectively. 

All the EV Agents publish the voltage in per unit at their points of connection and the EV 

IDs to the EV Topic. The power Agent publishes the total consumed power to the Power 

Topic. On the other hand, the system operator subscribes to the EV Topic and Power Topic 

and publishes its decision to the Events Topic. Finally, the EV Agents subscribe to the 

Events Topic and take the appropriate control actions on the simulated power system.  
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Figure 7.3: Co-simulation setup 
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7.4 Results 

To validate the proposed control algorithm, it was implemented and tested in the co-

simulation platform shown in in Figure 7.3. The validation is performed under different 

loading conditions and in the presence of renewable generation units. To test the ability of 

the controller in avoiding overloading and under-voltage problems, and ensuring fair 

distribution of power, four different cases are presented: 

1. The effect of uncontrolled charging of EVs. 

2. The controller performance when considering power events only. 

3. The controller performance when considering power and voltage events. 

4. The controller performance when considering power and voltage events, taking into 

consideration the EV owner preferences. 

In this section, it is assumed that the minimum allowed voltage at the different buses is 

0.955 p.u. This voltage limit satisfies the ANSI C84.1-2006 standards. The maximum 

allowed total power is chosen to be a normalized value of 100%.  

7.4.1 Effect of Uncontrolled Charging of EVs 

To show the effect of opportunistic charging on the adopted system in this chapter, the 

EVs are allowed to charge at high rates to finish as soon as possible. As depicted in Figure 

7.4 (a), the uncontrolled opportunistic charging results in under-voltage problems, 

especially at the downstream busses, such as Bus 3, where the voltage goes as low as 0.94 

p.u. The under-voltage problem is best witnessed at the downstream bus because of the 

voltage drops across the feeders, which result in low voltages at the end users downstream.  
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Also, Figure 7.4 (b) shows that the main substation, feeding the different loads in the 

system, is heavily overloaded due to the uncontrolled charging of the EVs. This highly 

degrades the system lifetime and may result in related thermal disconnection issues at the 

substation. Figure 7.5 shows the charging currents of the different EVs and their SoCs. The 

figure shows that the EVs charge at high rates to finish as soon as possible. The minor 

changes in the charging currents among the EVs are contributed to the different voltages at 

the different buses that produce different rectified DC voltages at the inputs of the DC-DC 

converters. 

7.4.2 Controller Performance When Considering Power Events Only 

In this section, the proposed AIMD algorithm is used. The only variable that will generate 

event triggers is the power. It is assumed that the system operator will try to maintain the 

total power of the system to be equal to or less than 100% of the total capacity of the 

substation. Figure 7.6 (a, b) show that although the voltage at the downstream bus goes 

below 0.955 p.u for some periods of time, the total power is always maintained to be less 

than 100%, which ensures that the system is not overloaded. Figure 7.6 (c) shows the event 

triggering signals that are sent from the system operator to all the EVs connected to the 

system over the communication network. The event triggering is aligned with the power 

events when the total power hits the 100% limit. 

Figure 7.7 shows the complete fairness of the proposed algorithm, where all the EVs 

charge by the same charging rate and finish at the same time. 



 

 

169 

 

Although the AIMD algorithm in its original form eliminates overloading the system and 

ensures fair distribution of power, it does eliminate the under-voltage problems and is not 

able to take the customer’s preferences into account. 

 

 

Figure 7.4: a) Voltages at the different buses. b) System loading in case of opportunistic 

charging (Limits: Black-Dashed Line) 
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Figure 7.5: Currents and SoCs of the different EVs in case of opportunistic charging 

 

7.4.3 Controller Performance When Considering Power and Voltage Events Only 

In this case, the system operator will trigger an event whenever there is a power 

overloading or under-voltage problems at any of the buses. Figure 7.8 shows that the 

overloading problem is avoided, and all the voltages are higher than 0.955 p.u., as set in the 

design. Figure 7.8 (c) shows that all the events are triggered whenever the voltage at the 

downstream bus touches the 0.955 boundary. This illustrates that the under-voltage problem 

can be a tighter constraint in some cases and it cannot be captured by power events designs 
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only. Figure 7.9 also shows that the fair distribution of power is ensured and all the EVs 

finish charging at the same time. 

Comparing Figure 7.8 (b) to Figure 7.6 (b) shows that taking the voltage constraint into 

account results in less utilization of power. Less utilization of the available power produces 

delays in the end of charge time of the EVs, as shown in the SoC plot of Figure 7.9 compared 

to Figure 7.7. 

 

Figure 7.6: a) Voltages at the different buses. b) System loading c) Events in case of 

AIMD with power event (Limits: Black-Dashed Line) 
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Figure 7.7: Currents and SoCs of the different EVs in case of AIMD with power event 

 

Therefore, it seems that ensuring the voltage limits in the power system using the AIMD 

algorithm might compromise the end of charge time of the EVs. Therefore, the case of 

taking the customer’s preferences into account is of great importance for the practical 

validation of the AIMD algorithm. 
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7.4.4 Controller Performance While Considering the Preferences of the EV Owner  

In this section, the owners of the EVs are assumed to have certain charging preferences. 

It is assumed that two EVs (EV2 and EV3) would like to finish charging by the end of the 

simulation time and the other two EVs (EV1 and EV4) would like to finish within 5 and 6 

simulation seconds, respectively. Figure 7.10 (a, b) illustrates that there are no system 

overloading or under-voltage problems regardless of the fact that some of the EVs consume 

higher power at the beginning to finish faster. The event triggering in Figure 7.10 (c) is 

contributed to both power and voltage events. During the first 5 seconds, the events occur 

due to power triggering, where the power limit was reached multiple times due to the high-

power consumption of the EVs. During the remaining period, the event triggering occurs 

due to voltage problems.  

 

Figure 7.8: a) Voltages at the different buses. b) System loading c) Events in case of 

AIMD with power and voltage events (Limits: Black-Dashed Line) 
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Unlike the previous case, taking the customer’s preferences into account pushes the 

system to better utilization of the available power to satisfy the customer preferences, while 

avoiding the overloading and under-voltage problems, simultaneously. The charge currents 

and SoCs of the different EVs are shown in Figure 7.11. From the figure, it is obvious that 

the EVs are able to charge within the required time frames. 

 

 

Figure 7.9: Currents and SoCs of the different EVs in case of AIMD with power and 

voltage events 
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Figure 7.10: a) Voltages at the different buses. b) System loading c) Events in case of 

AIMD with power and voltage events with owner preferences 

 

Figure 7.11: Currents and SoCs of the different EVs in case of AIMD with power and 

voltage events with owner preferences 
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7.5 Conclusion 

In this chapter, a decentralized control algorithm for managing the charging of distributed 

EVs is proposed. The proposed AIMD algorithm is validated using a co-simulation platform 

that uses a real communication network based on the DDS standard. Unlike the work that 

is reported in the literature, the proposed AIMD algorithm in this work is able to ensure that 

overloading and under-voltage problems are avoided. The proposed algorithm was tested 

under different cases. It was first tested in the case of considering only power events. This 

case showed that the original AIMD algorithm can avoid overloading the system, but it fails 

in ensuring the healthy states of the voltages at the different buses in the system.  

Then, the controller is test while considering both power and voltage events in the system. 

It was found that the voltage event can be a limiting factor as it imposes a stricter constraint 

than the power, and it results in more multiplicative decrease events.  

Finally, the proposed controller was tested to see its ability to take the preferences of the 

owners of the EVs into account, in terms of the needed energy and required time, without 

mitigating the system loading or voltages. It was found that taking the customer’s 

preferences into account, using the proposed algorithm, pushes the system to better 

utilization of the available power to satisfy the customers’ preferences. 

 Also, the algorithm is able to fairly distribute the available power among the users. Due 

to its simplicity and decentralization, the proposed algorithm can be easily scaled to 

accommodate any number of EVs in the system. 
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Chapter 8 Medium Voltage Direct Current Shipboard Power Systems  

Medium voltage direct current (MVDC) systems are gaining more interest in maritime 

ship power systems. This is due to the nature and the amount of the onboard electrical 

demand. Therefore, a proper modelling and control of the different components of the 

shipboard power system should be carefully addressed. This chapter provides an overview 

on the MVDC all electric ship (AES), describing differences of the maritime MVDC 

systems compared to their counterparts of terrestrial MVAC systems. Also, a brief 

description of the different components of the AES power system is presented. To show 

the challenge of controlling and maintaining the voltage of the MVDC bus of the onboard 

power system, in the presence of the highly power consuming pulsed loads, a case study 

on the control of the onboard storage system is performed.  

A benchmark of a MVDC power system is developed and used to test the control 

algorithm. The purpose of the controller is to ensure the load-generation balance, maintain 

the MVDC bus constant, and ensure proper power sharing among the storage devices. To 

reduce the complexity of the control algorithm and ensure proper illustration of the 

challenge and the solution, this chapter focuses only on the control of battery storage 

devices. Hybrid types of storage systems will be considered in the following chapters. 

8.1 Introduction 

The next generation of ship power system is adopting more electrical energy that 

increases complexity of the supply and the control process of the isolated marine power 

system. This is mainly driven by the increasing electrical demand and the nature of 

anticipated new types of loads, such as electromagnetic aircraft launch system (EMALS). 



 

 

178 

 

These kinds of loads draw intermittent pulses of power from the system [192]. Due to the 

need of high power supply and flexibility in All Electric Ship (AES) power system, 

medium voltage direct current (MVDC) systems are going to be viable options [7]. The 

MVDC power system has multiple advantages against the MVAC system. These 

advantages include: 

1. The replacement of bulky transformers with the compact power electronics.  

2. Increased fuel efficiency and elimination of the synchronization problems.  

3. Reducing the risk of systematic disintegration while supporting the 

emerging pulsed loads.  

4. Easier parallel connection or disconnection for dc power sources. 

In terms of the differences between the onboard ship power systems and the 

terrestrial MVAC systems, there are distinct differences among them. Changes in loads 

(per unit magnitude of step loads) on shipboard systems represent a larger percentage of 

available stored energy than in terrestrial systems. Additionally, a MVDC system utilizes 

high speed switches and power electronic converters in the majority of its power 

transmission paths. This is in contrast to the terrestrial power grid, where relatively few of 

the transmission paths have power electronic devices [192]. The power electronic 

switching changes the dynamic nature of the power system significantly and leads to states 

whose derivatives vary continuously. Moreover, there are differences in the physical nature 

of the instabilities. For example, the electrical frequencies of the generators in a MVDC 

system are well decoupled from the MVDC bus, which eliminates the problem of rotor 

angle and frequency instability inherent in the terrestrial. 



 

 

179 

 

8.2 Components of MVDC Ship Power System 

A notional functional block of a ship MVDC power system is presented in Figure 8.1. 

The functional blocks are defined as follows [192]: 

• Shore power interface, which is primarily a power source that adapts electric energy 

from the utility system on shore to MVDC (e.g., interface transformer + rectifier). 

• Power generation that is primarily a power source that converts prime energy from fuel 

into MVDC (e.g., gas turbine + PM generator + rectifier). 

• Energy storage that is a stand-alone power source that primarily provides power to the 

system when needed but also draws power from the system to recharge (e.g., a battery 

with a bidirectional DC/DC converter). 

• Pulsed load is a stand-alone load center that primarily draws intermittent pulses of 

power from the system [such as electromagnetic aircraft launch system (EMALS)]. 

• Propulsion system, which is a load center that draws power from the system for 

propulsion of the vessel. It may also provide power during certain maneuvers, such as 

crash back (e.g., a motor drive inverter + propulsion motor). 

•  Ship service that is a load center that draws power from the system to power ship 

services within zones (e.g., DC/DC converter for in-zone distribution of LVDC, DC/AC 

inverter for in-zone distribution of LVAC). Note that “ship service” modules may take 

power from either the MVDC bus or from in-zonal energy storage systems, as shown in 

Figure 8.2.  

• Dedicated high-power load, which is a stand-alone load center that draws 1 MW or more 

of power in steady-state operation (e.g., 3 MW radar sensor array). 
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• MVDC bus that is a functional block that allows interrupting and isolating sections of 

the MVDC system (e.g., mechanical disconnect, solid-state DC breaker). In addition, 

each functional block in the system can connect, disconnect, and isolate itself from the 

system through its own means (e.g., a “power generation” module should have at least 

a disconnect switch at its DC output). 

 

Figure 8.1: Functional diagram of MVDC shipboard power system [192] 

In the case of maritime applications, the onboard energy storage systems (ESS) are 

taking on a pivotal role in the next-generation AES. For U.S. navy surface combatants, the 

main reasons for an ESS are twofold: 1) to enhance survivability and 2) to enable high-



 

 

181 

 

energy pulsed loads [7].  The second reason is mainly driven by the nature of the response 

time of the generator sets to power fluctuations, which is low to moderate. Sudden demands 

or rejections in DC bus power caused by step-loads from pulsed load devices or the loss of 

a generator set are met through the use of quick response energy storage devices. 

Furthermore, energy storage devices may be used to enable a dark ship system restart. All 

energy storage devices, such as capacitor banks or batteries, charge from, and discharge to, 

the MVDC distribution bus via bi-directional DC/DC converters. 

 

 

Figure 8.2: Architecture of a MVDC system with different zones [192] 

8.3 Control of Batteries on MVDC Shipboard Power System 

Due to the anticipated use of new types of pulsed loads on AES, and the limited 

capabilities of the onboard gas-driven generators, in terms or ramp rates, there is a need for 
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automatic control algorithms that should provide smooth insertion and removal of power 

sources and sharing of loads, as desired. 

In this chapter, an automatic decentralized controller for fair power sharing among 

batteries on the MVDC ship power system is illustrated and tested. The controller requires 

no communication or knowledge of the generator and load currents. It can ensure load-

generation balance for normal operating conditions and during feeding the pulsed loads. It 

also ensures that the MVDC bus voltage is within the  IEC 60092-101 standards [192]. The 

controller is based on a two-function controller that uses the concept of virtual impedance 

controller [193], and the exponential SOC controller [76]. To avoid unnecessary 

discharging of the batteries, the controller uses state machine logic to ensure efficient use 

of the energy storage units. In the next section, a benchmark MVDC system will be 

presented and followed by the proposed controller description. 

8.4 Notional MVDC Test-Bench Description 

The test-bench MVDC ship power system is shown in Figure 8.3. To meet the total 

installed demand of the loads, two large capacity “main” generator sets (36 MW) can be 

supplemented with two or more small capacity “auxiliary” generator sets (4 MW) [192]. 

The generators are connected to a controlled rectifier. This allows more fuel efficiency 

since the generators are not obligated to operate at a fixed speed anymore. The ship is 

driven using a propulsion system that uses induction motors. The propulsion system 

represents 80% of the total ship power system loads [194]. The radar system represents a 

standalone load that draws around 3 MW in its steady state operation. Ship service loads 

are supplied from the MVDC through DC/DC or DC/AC converters. Pulsed loads represent 
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a load center that draws intermittent pulses from the system. It draws power in the range 

of 2 MW within one second.   

The generators on the ship power systems are designed to supply the continuous loads 

that are connected to the system. Also, the response time of the gas-driven generators is 

slow. Therefore, sudden load additions or rejections to the MVDC bus, caused by step 

changes coming from the pulsed loads, are met by the batteries. It is worth mentioning that 

in this chapter, the batteries connected to the system are oversized to be able to provide the 

required high power density during the transient period.  
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Figure 8.3: Notional MVDC test bench 

To maintain the MVDC bus voltage within the standards and to increase the lifetime 

of the batteries, proper energy management and control of the batteries are required. 

Therefore, the next section will provide an illustration for the proposed controller.  
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8.5 Controller Design 

To ensure adequate operation of the MVDC AES in the presence of large pulsed loads, 

there is a need for proper control of the batteries. The battery storage system needs to be 

fast and reliable to meet the system needs, and its controller needs to achieve certain 

objectives that ensure the proper operation of the overall system. 

The controller should ensure load-generation balance and avoid unnecessary 

discharging/charging of the batteries to increase the lifetime of the system. Therefore, there 

is a need for an automatic decentralized algorithm that should provide smooth insertion 

and removal of the batteries [192]. Decentralized control algorithms usually have the 

ability to provide a fast response and they are less expensive than the centralized ones. 

Due to the nature of the decentralized controller, it does not know about the capability 

of the connected generators. For example, when a large load is added to the system, it will 

cause a momentary voltage drop on the MVDC bus. This may prompt the batteries to start 

discharging regardless of the fact that the generators can supply this added load. Therefore, 

the control algorithm should satisfy the following objectives: 

• Ensures load-generation balance. 

• Ensures proper power sharing among the batteries. 

• Avoids unnecessary discharging/charging of the batteries. It is only when there 

is a deficit/surplus, the batteries will be used. 

The proposed controller that satisfies these requirements is shown in Figure 8.4. It 

consists of an outer droop-exponential controller that tries to ensure load-generation 

balance and equal power sharing among the batteries.  The droop-exponential controller is 

followed by a state machine logic that takes the reference current from the controller IDE 
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and decides if this value will be passed to the PI controller or it will be manipulated to 

avoid unnecessary discharging/ charging. Once the final reference current Iref  is obtained, 

it will be compared to the converter current and the error will be passed to a PI controller 

that will force the converter to follow the reference value of the current. The details of the 

various parts of the controller are as follows: 

8.5.1 Droop Exponential Controller 

This part of the controller is a combination of the virtual resistance droop controller 

that is used for equal power sharing in the DC micro-grids and the exponential controller 

that tries to take into consideration the state of charge of the battery when deciding on the 

current reference value of the controller. The droop exponential part of the controller is 

shown in Figure 8.5. The current reference value of the controller IDE is coming from two 

parts: The first one is based on the value coming from the droop part, shown in Figure 8.6 

(a), while the second part is coming from the exponential part, shown in Figure 8.6 (b). 

The multiplication by the base current Irbase , shown in Figure 8.5, is meant to change from 

the p.u unit value, coming from the controller into an actual value in Ampere. The base 

current value is equal to the maximum allowed current that can be charged/discharged 

into/from the battery. 
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Figure 8.4: Schematic diagram of the proposed controller 
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Figure 8.5: Droop exponential controller 
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Figure 8.6: (a) Virtual impedance droop controller (b) Exponential controller 

During the discharging of the batteries, the reference current will be managed partially by 

the droop controller. Therefore, the MVDC bus voltage is given by relation (8.1), where 
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Rdc is the virtual resistance of each droop control loop, ID is the portion of the output current 

that is coming from the droop control part. Vdc is the voltage at the common MVDC bus 

and Vref  is the voltage reference for the MVDC bus.  

𝑉𝑑𝑐 = 𝑉𝑟𝑒𝑓 − 𝐼𝐷𝑅𝑑𝑐 (8.1) 

 

To take into consideration the state of charge of the battery, the battery current is 

measured and the state of charge (SOC) of the battery is estimated according to relation 

(8.2): 

𝑆𝑂𝐶 = 𝑆𝑂𝐶(0) − ∫
𝐼𝑏𝑎𝑡

𝐶𝑏𝑎𝑡

𝑡

0

 𝑑𝑡 
 

(8.2) 
 

where SOC(0) is the initial state of charge of the battery, Ibat is the battery current and Cbat 

is the battery capacity. Once the SOC is estimated, it will be used in the second exponential 

part of the controller.  

It is desired that the battery with the highest SOC should discharge faster than the others 

to ensure the balance among the batteries and increase the lifetime of the overall storage 

system. In case of charging, it is required that the battery with the lowest SOC be charged 

faster than the others. Therefore, the controller will decide on part of the IDE current based 

on the SOC based on the following equation: 

 

𝐼𝐸 = 𝑒𝑥𝑝𝛼∙𝑆𝑂𝐶𝑝.𝑢 (8.3) 
 

where exp(.) stands for the exponential function and SOCpu,i = SOCi/Cbat. This relation is 

depicted in Figure 8.6 (b). This relation will bias the effective discharging rate toward the 

highest charged battery.  
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It is worth noticing that in this chapter, the droop controller is designed in a unidirectional 

way, where it is designed to support the grid during the voltage drops (i.e: to manage the 

discharging of the batteries). The bidirectional case will be considered in the next chapter.  

In the case of battery charging in this chapter, the charging current will be manipulated by 

the state machine logic. 

 The final reference current coming from the droop-exponential controller is as illustrated 

in relation (8.4): 

𝐼𝐷𝐸 = 𝐾 ∙ 𝐼𝐷 ∙ 𝐼𝐸 ∙ 𝐼𝑟𝑟𝑏𝑎𝑠𝑒 (8.4) 

where K is a constant value that increases/decreases the reference value based on the battery 

type and rating. ID is the part of the controller current that is coming from the droop relation 

and IE is the part of the controller current that is coming from the exponential relation. Irbase 

is equal to the maximum allowable current of the battery.  

Once the reference current IDE is obtained, this value will be passed to the state machine 

logic that will generate the final reference value Iref to the PI controller.  

8.5.2 State Machine Logic 

The state machine logic is responsible for generating the final charge/discharge 

reference current Iref to the PI controller.  It is shown in Figure 8.7.  The inputs to the state 

machine logic are the discharge reference from the droop-exponential controller, the 

change in the voltage of the MVDC bus (Vt - Vt-1) and the SOC of the battery. 
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Figure 8.7: State machine Logic 

 

The main function of the energy storage is to maintain the MVDC bus constant and to 

ensure load-generation balance. Mainly, the energy storage system will be used when there 

is a deficit in the generation, especially while feeding the intermittent pulsed loads. The 

charging of the batteries will occur when there is a surplus of energy that will be detected 

by the change of the bus voltage.  

Once there is a change in the MVDC bus voltage, the state machine logic will be 

activated and receive the discharge reference current IDE. To avoid unnecessary discharging 

of the batteries, the reference current IDE will go to the discharge decrementing block, 

which will reduce the reference current and wait for a few microseconds. The change in 
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voltage will be detected after that waiting time (the delay). If the voltage has decreased by 

reducing the discharge reference current, this indicates that the system needs the support 

from the batteries. Therefore, the controller will stop decrementing the discharging current.  

If the voltage did not change or it increased, this means that the generators are supporting 

this extra load. Therefore, the discharging current will be decremented till it reaches zero. 

In the case of the increase in the MVDC voltage, the state machine will switch to the 

charging mode, where it will increase the charging reference current through the charge 

incrementing block. This block will increase the charging current, based on a pre-designed 

relation inside the state machine, then it will check the change of the MVDC voltage after 

each increment to ensure that the charging of the batteries does not negatively impact the 

voltage of the MVDC bus. If the SOC of any battery is below 20%, this battery will not 

participate in the discharge process. Similarly, if the SOC of the battery is higher than 80%, 

this battery will not participate in the charging process.  

8.6 Testing of the Proposed Control Algorithm 

To validate the proposed controller, it was implemented and tested in the notional MVDC 

system given in Figure 8.3. To test the ability of the controller for proper power sharing, it 

is assumed that the storage system consists of two large batteries. Each one of them has a 

rated capacity of 800 Ah and a nominal voltage of 800 V. The batteries are assumed to have 

a maximum current of 2400 A. The validation is performed under different loading 

conditions and different state of charges of the batteries. 



 

 

191 

 

8.6.1 Controller Performance with Equal SOCs of the Batteries 

First the controller performance is tested when the two batteries have equal state of 

charge of 50% of their capacities. Figure 8.8 shows the loading connection/disconnection 

process, where there is a propulsion system load of 6400 A connected to the system at the 

beginning.  The system continues to start operation. At t=0.7 sec, service loads of 1000 A 

are added to the system. It is worth mentioning that the generators can feed loads up to 

8000 A when the generators reach their maximum capacities. Therefore, as long as the 

current is less than 8000 A, the batteries should not supply any current.  

At t=1.5 sec, a radar system load of 600 A is added to the system. From 1.5 to 2 seconds, 

the generators are working at their rated power. Figure 8.9 and Figure 8.10 show that during 

this period (0-2 seconds), the batteries are idle. At t=2 sec, a pulsed load of (400 A) is 

added for one second. Since the generators are already running at their rated capacities, the 

batteries should supply the extra load to ensure load-generation balance. This is shown in 

Figure 8.9 (a), where the two batteries start to discharge. This is also verified by the 

decrease in the SOCs in Figure 8.10. Since both batteries have the same initial SOC, Figure 

8.9 (a) shows that both batteries feed the same amount of current. This ensures equal load 

sharing among the batteries and increases the lifetime of the system.  

It is worth mentioning that a high current of 1000 A is drawn from the batteries because 

they are connected at the low-voltage side of the converter, and the discharge of the battery 

is associated by a decrease in the battery voltage, as shown in Figure 8.9 (b). After the 

pulsed load is disconnected at t=3 sec, the batteries are smoothly disconnected as well since 

the generators can feed the existing loads. At t=3.5 sec, another load is disconnected, which 

means that there is a surplus of energy that can be used to charge the batteries. Therefore, 



 

 

192 

 

the batteries are smoothly connected again but in the charging mode in this case. Figure 

8.9 (a) shows that the currents of the batteries become negative (which means charging) 

after t =3.5 sec. Both batteries charge with the same current, which is desirable. Figure 8.9 

(b) shows that the voltages of the batteries increase after t= 3.5 sec. The charging process 

is also confirmed by the increase in the SOC, as depicted in Figure 8.10.  Finally, Figure 

8.8 (a) shows that regardless of the different loading condition on the ship power system, 

the MVDC bus voltage is kept constant and within the standards.  

 

 

Figure 8.8:  Case of equal SOCs a) The MVDC bus voltage.  b) Total load current. 
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Figure 8.9: Case of equal SOCs a) Battery current.  b) Battery voltage. 

 

Figure 8.10: Case of equal SOCs a) SOC of battery 1. b) SOC of battery 2. 
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8.6.2 Controller Performance with Different SOCs of the Batteries 

In this test, the same loading conditions are applied but the initial SOC of the two 

batteries are different, where the first battery has a higher initial SOC of 75% of its capacity 

while the second battery has only 45% of its capacity. The same loading conditions of the 

previous section are applied. Figure 8.11 (a) shows that the MVDC bus voltage remains 

constant with the different loading conditions, which confirms the good performance of the 

controller in the case of different SOC of the batteries.  

At t= 2 sec, when the pulsed load is connected and the generators can no longer support 

this extra load, the two batteries start to discharge to maintain the load-generation balance. 

Since the first battery has a higher SOC, its contribution in supporting the system is higher, 

as shown in Figure 8.12 (a), where the discharge current of battery 1 is 1500 A while the 

discharge current of battery 2 is 400 A. This is also shown by the difference in the drop of 

the battery voltage in Figure 8.12 (b), where the drop in the voltage is higher for battery 1 

compared to battery 2.  

The decrease in the SOC of the batteries during the period 2-3 seconds is shown in 

Figure 8.13. At t=3 sec, the pulsed load is disconnected. Therefore, the batteries are 

disconnected as well. At t=3.5 sec, when another load is disconnected, both batteries start 

to charge. However, since battery 2 has lower SOC, its charging current is higher than that 

of battery 1, which is desirable. Figure 8.13 depicts the increase of the SOC of the batteries 

after t=3.5 sec. It illustrates that the rate of the increase in the SOC is higher for battery 2 

compared to battery 1. This is due to the higher charging rate of battery 2.  
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Figure 8.11: Case of different SOCs a) The MVDC bus voltage.  b) Total load current. 

 

Figure 8.12: Case of different SOCs a) Battery current.  b) Battery voltage. 
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Figure 8.13: Case of different SOCs a) SOC of battery 1. b) SOC of battery 2. 

8.7 Conclusions 

In this chapter, an overview of the advantages and the components of a maritime MVDC 

ship power system is presented. Also, an initial validation of an automated decentralized 

controller for the onboard battery storage in the presence of pulsed loads is proposed. The 

controller is based on a combination of virtual impedance droop control and SOC 

exponential control to support the system and ensure proper power sharing. State machine 

logic was used to avoid unnecessary discharging of the batteries. The results showed that 

the controller ensures load-generation balance, and the voltage of the MVDC is kept 

constant. It also ensures proper power sharing among the batteries, which increases the 

system lifetime. This is also important for the reliable and economic operation of the ship 

board power system. 
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Chapter 9 Decentralized Control Algorithm for the Hybrid Energy Storage of 

Shipboard Power Systems   

This chapter proposes a decentralized control algorithm for the future MVDC 

shipboard storage system to enhance the onboard survivability. This chapter provides a 

more comprehensive control strategy that aims at coordinating the charging of a hybrid 

energy storage, consisting of multiple batteries and supercapacitors. 

The control algorithm takes decisions based on local measurements, which makes it 

robust against cyber-attacks and able to provide fast response. The voltage profile of the 

MVDC bus has sufficient information about the system status, which is utilized for 

managing the hybrid energy storage system.  Insertion/removal of the storage devices, such 

as batteries and supercapacitors, is made according to the mathematical morphology-based 

voltage processing and state-machine logic algorithms. To ensure proper power sharing, 

an adaptive droop control is used, taking into consideration the state-of-charge of the 

storage units. FPGA in the loop validation results confirm the ability of the proposed 

controller to maintain the MVDC bus voltage and the adequate operation of the storage 

entities simultaneously. 

9.1 Introduction 

As mentioned in the previous chapter, the MVDC power system has become the 

preferred solution for future all electric ships (AES). This stems from the fact that future 

AES will have new types of emerging loads that are mostly DC loads. Also, it allows 

efficient operation of the generators, since it eliminates the need for synchronization among 

the different generators [195]. Due to the high ramping rate of the emerging pulsed loads 
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on the AES, currently used diesel or gas-driven generators do not have the capabilities to 

feed them [196]. Although the ramp-rate of these generators can be relaxed to follow the 

behavior of the pulsed loads, the lifetime of these generators will be severely reduced due 

to the wear and tear [197], [198]. Therefore, storage devices on a MVDC shipboard are 

going to play a vital role in the successful operation of the MVDC ship power system. To 

study, control and analyze future MVDC systems, authors started to develop models and 

designs of future AES. Designing and modelling of a MVDC AES was considered in [196], 

[199]. In [199], for example, a model for the shipboard MVDC power system for dynamic 

analysis was proposed. The authors suggested an analytical time domain modelling 

technique to facilitate the analysis of the generator transient.  

Also, several types of controllers have been proposed to ensure load-generation balance 

on the MVDC power system. The MVDC ship power system with energy storage devices 

and pulsed loads was considered in [200], [201], where centralized controllers were 

proposed to manage the charging/discharging of the hybrid energy storage system. Using 

the information about the currents of the generators and loads, the controller decides on 

reference values for the hybrid storage system. In [202], [203], the authors proposed a 

model predictive centralized controller to coordinate the operation of the energy storage 

devices. The main purpose of the controller was to mitigate the fluctuations in the 

propulsion system. In [204], a centralized controller was proposed to manage the fault ride 

through-capability of the converters connected to the storage system. In [205], the author 

proposed a master-slave control technique to ensure proper power sharing among the 

interconnected converters. Nonetheless, the slave controllers cannot operate independently 

without the master controller, and they cannot react to the load power variation, which 
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reduces the reliability. Hierarchical control algorithms were proposed in [206]–[208] to 

manage the power flow. In [206], a hierarchical optimization technique was used to control 

the power flow in the presence of pulsed loads. However, the issue of managing hybrid 

energy storage devices with different characteristics was not considered. In [207], a 

cooperative asymmetrical droop controller was used to allow the gensets of the MVDC 

power system to work in their most efficient operational points, while the hybrid energy 

storage system was used to absorb the fluctuations. No pulsed loads were considered, and 

the power sharing among storage devices of the same type was not considered as well. In 

[208], the authors focused on the higher layer of a hierarchical control architecture for 

managing the energy allocation to meet the ramp rate of load devices. It collects data from 

the generators and the loads to decide on the participation of the storage system. In [209], 

the authors investigated the mutual interactions of the LVAC and MVDC networks, taking 

into consideration the effect of distributed control actions where information is exchanged 

among neighbors in the control network. Energy storage was not considered.  

Generally, centralized and hierarchical controllers ensure the optimal use of resources 

on the ship. However, the cost and the complexity of the controller increase nonlinearly as 

the number of system components increases. Also, there is always the risk of 

communication failure with the higher-level controller. This is of significant importance in 

mission-oriented applications, especially in the presence of the current issues of cyber-

attacks. Therefore, decentralized controllers have become a potential solution for these 

issues. Due to the need for an automatic control algorithm [192] that ensures smooth 

insertion/ removal of loads, this chapter proposes a decentralized controller to manage the 

charging/discharging of multiple hybrid energy storage systems. The proposed controller 
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aims at ensuring load-generation balance and proper operation and power sharing among 

the different storage devices. To be able to decide on the proper use of the storage devices, 

the controller does fast signal processing of the voltage signature of the MVDC bus, and 

to ensure adequate power sharing, the controller uses an adaptive droop controller to decide 

on the current reference of the different storage devices. The controller was validated using 

FPGA in the loop to ensure its effectiveness.  

9.2 Test-Bench System 

In this chapter, the previously used notional MVDC system is expanded to include the 

batteries, as well as the supercapacitors. The expanded system is shown in Figure 9.1, and 

details about the rated power of the different components are given in Table 9.1. A 

simplified circuit diagram of the system is also shown in Figure 9.2. The parameters of the 

circuit are depicted in Table 9.2. 

 

Table 9.1: MVDC system parameters 

Type 
Quantity 

Power 

(MW) 

Maximum 

Current 

(A) Main Generators 2 36 7200 

Auxiliary 

Generators 

2 4 800 

Propulsion Motors 4 32 6400 

Radar System 1 3 600 

Service Loads - 5 1000 

Pulsed Loads 1 2 400 

Batteries 2 - ±1600 

Supercapacitor 2 - ±2400 
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Figure 9.1: Expanded notional MVDC ship power system 
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Figure 9.2: Simplified circuit of the system 

Table 9.2: MVDC circuit parameters 

𝐸𝑏 800 V 

𝐶𝑖𝑏 6000 𝜇𝐹 

𝑅𝐿𝑏 0.125 Ω 

𝐿𝑏 6.35 𝑚H 

𝐶𝑜𝑏 1200 𝜇𝐹 

𝐿𝑘𝑏 30 𝜇H 

𝐶𝑆𝐶 100 F 

𝐶𝑖𝑆𝐶 6000 𝜇𝐹 

𝑅𝐿𝑆𝐶 0.125 Ω 

𝐿𝑆𝐶  1.5875 𝑚H 

𝐶𝑜𝑆𝐶 1200 𝜇𝐹 

𝐿𝑘𝑆𝐶 30 𝜇H 

𝐸𝑑 4.16 kV 

𝐶𝑓 105 mF 

𝑅𝑓 .05 Ω 

𝐿𝑓 0.73 mH 
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9.3 A comprehensive Decentralized Energy Management 

This section illustrates a decentralized controller, where each of the storage units has its 

own controller. The controller decides on the reference current based on the local 

measurements only. This reduces the complexity of the controller and results in a faster 

response. In addition, it is not vulnerable to cyber-attacks. The main objectives of the 

controller are ensuring constant voltage on the MVDC bus, proper load sharing, and proper 

use of the storage units. Proper use of the storage units means that the high ramping 

supercapacitors should be used during the transient periods due to their high-power density, 

while high-energy density components, such as the batteries, should be used during the 

steady state periods, when there is power deficit or surplus. Also, proper use means that 

the controller should avoid the overcharging or undercharging of the storage unit.  

To achieve the abovementioned objectives, the controller consists of four main parts, as 

shown in Figure 9.3. These parts are the outer adaptive droop controller, state machine 

logic, mathematical morphological gradient algorithm (MMGA), and PI-based current 

controller. It is worth mentioning that the MMGA is used only for the management of the 

supercapacitors. 

The purpose of the MMGA of the supercapacitor is to provide fast detection of the 

transient changes, and to clarify whether it is a load insertion or removal. MMGA is not 

used in the management of the batteries because steady state voltage changes can easily be 

detected by the state-machine logic, as it will be shown later.    

Generally, the controller collects the voltage of the MVDC bus and the state of charge 

(SOC) of the storage unit. Then, it decides on the initial reference value 𝐼𝑟𝑒𝑓𝑥. This value 
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is forwarded as one of the inputs to the state machine logic. The purpose of the state 

machine logic is to decide if this value will be passed or blocked based on the nature of the 

change in voltage, whether it is a transient or steady state change, and based on the limits 

imposed on the SOC of the storage unit. Once the final reference current 𝐼𝑟𝑒𝑓,𝑓𝑖𝑛𝑎𝑙 is 

obtained from the state machine logic, it will be compared to the output current of the 

storage unit 𝐼𝑖𝑛𝑗,𝑥. Finally, the error will be passed to a PI controller that will force the DC-

DC converter to follow the reference value 𝐼𝑟𝑒𝑓,𝑓𝑖𝑛𝑎𝑙.  
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Figure 9.3: Controller schematic for the hybrid energy storage 

Details about the different components of the controller are as follow: 
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9.3.1 Mathematical Morphological Gradient Algorithm 

In order to detect the fast changes in the load, the MMGA is used to extract the high-

frequency components of the voltage signal. Compared to the passive filter methods and 

integral based-techniques, the MMGA requires a smaller time window of few samples to 

capture the transients.  In addition, the integral algorithms, such as Fourier Transform (FT) 

and Wavelet Transform (WT), depend on the conversion to the frequency domain, while 

MMGA deals directly with the time domain. MMGA depends on the set theory and uses 

the shape of the signal to extract the relevant feature structure. It has many applications in 

image processing [210]. 

MMGA has two basic morphological operators, dilation and erosion, which form a dual 

transform. The dilation operation is an expanded form of the input signal shape using a 

Structuring Element (SE). The erosion operation is a shrinking form of the input signal 

using the SE. The SE is a small set (shape) used to probe the signal. The SE has many 

shapes, like flat, square, circle and diamond. The selection of the SE shape depends on the 

application. In this work, as a signal processing tool, the flat shape is adopted as a 

structuring element (SE). The flat shape is a single dimension vector, where the length of 

the SE is chosen according to the required captured feature.  

Mathematically, let 𝑓 be an input signal with 𝑝 samples and 𝑔 is the SE with 𝑠 samples, 

which is a fraction number of p. The dilation and erosion are defined as given in relations 

(9.1) and (9.2).  

(𝑓⨁𝑔)(𝑝) = max{𝑓(𝑝 + 𝑠) + 𝑔(𝑠) | (𝑝 + 𝑠) ∈ 𝐷𝑓 , 𝑠 ∈ 𝐷𝑔} (9.1) 
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(𝑓 ⊝ 𝑔)(𝑝) = min{𝑓(𝑝 + 𝑠) − 𝑔(𝑠) | (𝑝 + 𝑠) ∈ 𝐷𝑓 , 𝑠 ∈ 𝐷𝑔} (9.2) 

where ⨁ and ⊝ are the dilation and erosion, respectively. The processed signal and 

the structuring element sampling are defined in 𝐷𝑓 and 𝐷𝑔 domains, respectively.  

To detect the high-frequency components, the morphological gradient is utilized. It is 

defined as the arithmetic difference between the dilation and the erosion operations with 

the same SE. The morphological gradient 𝐺 provides a depression for the steady state 

components (details) and an enhancement for the high-frequency changes (edges), and it 

can be defined as follows: 

𝐺(𝑓) = (𝑓⨁𝑔) − (𝑓 ⊝ 𝑔) (9.3) 

One of the main advantage of the MMGA is that the SE can be defined to discriminate 

between the positive changes (ascending) and the negative changes (descending), which 

reveals the type of the change in the input signal. Therefore, MMGA can detect the nature 

of the change, whether it is load insertion or removal. Furthermore, the strength of the 

change is reflected on the magnitude of the gradient to provide more correlation with the 

filtration process. 

9.3.2 Modified Droop Controller  

The same design of the adaptive droop controller adopted in the previous chapter is 

used here. The values of the different constants are chosen in a way that makes the value 

of the modified virtual resistance much larger than the resistance of the line connecting the 

converters to the MVDC bus [211] to ensure equal power sharing. 
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Once the reference current Iref,,x is obtained, it will be fed to the state machine logic, 

which will take the final decision to pass or block this value.  

9.3.3 Extended State Machine Logic 

Since the characteristics of the storage devices are different, where the supercapacitors 

are high-power density devices and the batteries are high-energy density devices, there is 

a need for a decision-making algorithm that decides which one will be used and when. 

Therefore, state machine logic, as a decision-making tool, is used in this work. Because 

supercapacitors can discharge high amounts of power within a short period of time, it is 

recommended that it should be the storage device that is used during the transient periods. 

Batteries, high-energy density devices, are more suitable to react during the steady state 

periods, where there is a sustained deficit/surplus power in the system. In order to utilize 

the battery or the supercapacitor, two different state machine logics are implemented in the 

controller. The first one, shown in Figure 9.4, defines the battery charging/discharging 

decision logic. The inputs are the previously calculated reference current Iref,b, the battery’s 

state of charge SOCb and the bus voltage Vdc. The required output is the final value of 

battery reference current Iref,final, which is initialized by zero. The algorithm has three states 

and each state has a decision (discharging, charging and no action). The algorithm iterates 

over time for the bus voltage Vdc. If the bus voltage Vdc  ≤ Vmin for a few microseconds, a 

power deficit is confirmed and a flag is up to indicate the need for power support. Then, 

the battery capacity is checked, and if SOC ≥ 20, the discharging process is initiated with 

Iref,final = Iref,,b. If there is not enough capacity, then the final battery reference is set to zero. 
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The discharging state is declared when Vdc  ≥ Vmax for a few microseconds. If such a 

state is detected, the second flag is up, and checking the battery capacity starts. If the SOC 

< 80, and surplus power in the system is confirmed, the charging process will start and 

Iref,final is equal to Iref,,b. The final state of no action is always active if the bus voltage is 

within the limits or the momentary transient occurs.  

The second algorithm, shown in Figure 9.5, is applied for the supercapacitors’ control. 

The supercapacitors’ transactions mainly depend on three inputs, which are load 

insertion/removal detection, the pre-calculated supercapacitor’s reference current and its 

state of charge. Like the battery logic, the supercapacitor has the same three decisions of 

charging, discharging and no action.  

If the load insertion, through the MMGA, is confirmed and the supercapacitor has a 

good state of charge (SoC ≥ 20%), the discharging process is initiated. Otherwise, Iref,final 

is set to zero. Similarly, when the load removal is noticed, the supercapacitor’s capacity is 

checked. If it has the ability to be charged (SoC < 80), the charging process is commenced 

and the final reference current is set to Iref,SC,. In case of no confirmation of the load 

insertion/removal, the controller assigns Iref,final to zero. The state machine does not have 

the ability to detect fast transients, therefore it needs a confirmation from the MMGA 

algorithm to know the time of the transient and its nature (addition/removal). 

9.3.4 Stability Test 

In this section, the stability of the proposed controller is investigated. A lumped state-

space model of the system is given in equations (9.4) - (9.7), where 𝑥̂𝑥 is the energy storage 

state vector, 𝑢̂𝑥 is the input vector, and the major parameters are 𝐴𝑥 and 𝐵𝑥. 
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Figure 9.4:  State-machine logic of the battery 
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Figure 9.5: State-machine logic of the supercapacitor 
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𝑥̂𝑥 = [𝐼𝐿𝑥 𝑉̂𝑖𝑥 𝑉̂𝑥 𝐼𝑥]
𝑇 (9.4) 

𝑢̂𝑥 = [𝐷̂𝑥 𝑉̂𝑑𝑐]
𝑇 (9.5) 

𝐴𝑥 =

[
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(9.6) 

𝐵𝑥 =

[
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𝑇

 

 

(9.7) 

The subscript x can refer to the battery or the supercapacitor. In order to ensure the 

stability, the system is perturbed around the operating point. 

Figure 9.6 and Figure 9.7 show a comparison of bode plots for the small-signal model 

before and after applying the proposed controller for the battery and the supercapacitor, 

respectively. In Figure 9.6, the bode plot for the battery output voltage to duty cycle transfer 

function depicts that the system is unstable before applying the controller by recording 

12.2 𝑑𝐵 for the Gain Margin (G.M) and −72.3° for the Phase Margin (P.H). After applying 

the controller, the system becomes stable and the bode margins G.M and P.M are 11 𝑑𝐵 

and 89.9°, respectively. The bode diagram of the current control loop is shown in Figure 

9.6 (b). It is modelled by the transfer function of the battery output current to the duty cycle. 

The figure shows the stable behavior of the current controller. 
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Figure 9.6: Bode plots for the battery storage stability performance before and after the 

controller 
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Figure 9.7: Bode plots for the supercapacitor storage stability performance before and 

after the controller  
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Similarly, the supercapacitor stability behavior is analyzed by deriving the transfer 

functions of the output voltage to duty cycle and the output current to duty cycle from the 

small-signal state-space model. Figure 9.7 (a) illustrates the unstable performance of 

voltage with respect to duty cycle change before applying the controller. Then, the 

controller reshapes the model to obtain a stable operation and approximately doubles the 

G.M and derives the P.M back to around 90°. The current control loop is already stable 

before the controller, but the steady state error is slightly improved after applying the 

controller, as shown in Figure 9.7 (b). 

9.4 Results 

The proposed controller is validated through FPGA in the loop, where the control 

algorithm is embedded on the FPGA chip, while the power components are on 

Matlab/Simulink. The connection between the FPGA and the PC is done through the JTAG 

connection. The used FPGA chip is a low-cost, small-sized FPGA module integrating a 

Xilinx Artix-7 and Quad-SPI flash memory for configuration and operation [212]. The 

numbers of look-up tables, flip flops and DSP capability, which are required for controlling 

one battery unit, are shown in Table 9.3. The complete design is composed in standard 

Vivado using VHDL for the Xilinx Artix-7 35T Arty FPGA. The top-level design of the 

controller in Vivado is shown in Figure 9.8. The FPGA is provided with a 25 MHz (40 ns) 

clock source to serve as the primary clock for all internal logic. All numerical operations 

in the engine are performed with fixed-point logic. 

 To show the merits of the proposed controller, it is compared to a conventional droop 

controller with a fixed pre-designed slope. The slope of the conventional droop controllers 
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is done assuming the existence of multiple storage units (two of each type in this work). 

The proposed and the conventional controllers are tested under the same loading conditions 

and SOCs of the storage units. Two cases are presented in this section to validate the 

performance of the controller. 

9.4.1 Controller Performance in the Presence of Overcharged/Undercharged 

Batteries 

In this case, one battery has 85% initial state of charge while the other one has 15% 

state of charge. The supercapacitors have equal SOCs of 50%. This is done to test the 

ability of the controller in maintaining the steady state voltage of the MVDC bus under 

extreme conditions. 

Table 9.3: Resource usage of the proposed controller on the FPGA 

Type 
Utilization % 

LUT 5632 27.08 
FF 5901 14.19 

DSP 27 30 
 

 
Figure 9.8: Top level design of the controller in Vivado 
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The loading conditions are shown in Figure 9.9 (a). The changes in the figure correspond 

to load additions at times t=0.7, 1.5, and 2 sec and load removals at t=3 and 3.5 sec. It 

should be noted that during the period t= 2 to 3 sec, a pulsed load of 1 MW is added, and 

the total system loading is beyond the capabilities of the generators. 

Figure 9.9 (b) depicts the voltage of the MVDC bus under the different loading 

conditions. From the figure, it is obvious that the proposed modified droop controller 

results in a better steady state bus voltage especially during the period t=2-3 sec, while the 

conventional droop results in less voltage. This happens due to the steady state contribution 

of the batteries during this period, which is shown in Figure 9.10. Since one of the batteries 

(Battery 2) has 15% initial SOC, it cannot help support the system during this period. 

Therefore, the first battery needs to support as much as possible.  

Since the conventional droop controller does not take into consideration the SOC of the 

storage units, its reference value depends only on the pre-designed slope. It is worth 

mentioning that the conventional droop controller is designed assuming the existence of 

two batteries. Therefore, the reference value of the first battery with the 85% SoC is of 

moderate current of 1000 A, which is not sufficient to support the system and maintain the 

MVDC bus at 5 kV. Unlike the conventional controller, the proposed approach takes into 

consideration the SOC of the battery and has a variable slope line. Since Battery 1 has 

sufficient energy, the reference current is set to a very high discharging rate of 1500 A. 

This is shown in Figure 9.10.  

The advantages of taking the SOC into consideration also appear during the period t= 

3.5-4.5 sec, where two loads were removed at t= 3 sec and t= 3.5 sec, which results in a 

power surplus in the system. During this period, the proposed controller charges the 
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undercharged battery (Battery 2) at a high rate compared to the conventional one, which is 

desirable. This shows the superiority of the proposed controller in maintaining the steady 

state MVDC bus voltage under severe conditions and achieving proper power sharing 

among the batteries. 

During the period t=3- 3.5 sec, the currents of batteries are zero because the generation 

is equal to the load. The SOCs of the batteries are shown in Figure 9.11, where the effect 

of the differences in the reference currents is clear. The figure illustrates that the decrease 

in the SOC of Battery 1 is higher, in the case of the modified controller, during the period 

t= 2-3 sec, since the discharging current is higher. Also, the increase in the SOC of Battery 

2 during the period t=3.5- 4.5 sec is higher because the charging current is higher.  

 

 
Figure 9.9: a) Loading Power.                 b) MVDC bus voltage. 
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Figure 9.10: Output currents of the batteries 

 

 

Figure 9.11: State of charge of the batteries 
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To show the functionalities of the state-machine logic and the current control loop, a 

comparison between the reference and the actual currents is shown in Figure 9.12. The 

figure illustrates how the actual discharging current of Battery 1 smoothly follows the 

reference signal coming from the state-machine logic. The same applies for the current of 

Battery 2 as well during the charging mode.   

The performance of the supercapacitors is depicted in Figure 9.13 (a). The figure shows 

that the proposed algorithm is successful in achieving fast detection of the transient periods 

and the nature of load changes (load additions or removals). The figure shows that during 

the periods of load additions at t= 0.7, 1.5 and 2 sec, the supercapacitor discharges a high 

current to support the system, and during the period of surplus power at t=3.5 sec, it charges 

with a high current to absorb the surplus power. 

 

Figure 9.12: Reference and actual currents of the batteries for the case of the 

proposed controller 
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The conventional controller followed the same pattern as the proposed controller, with 

less currents except at t=2 sec, where the conventional droop sent a zero reference. 

The SOC of the supercapacitor is shown in Figure 9.13 (b). The figure shows that the 

modified controller results in higher discharging/ charging current than the conventional 

controller. The results of one supercapacitor is shown here because both supercapacitors 

have the same behavior since they have the same initial SOCs.  

To show the functionalities of the state-machine logic and the MMGA, Figure 9.14 

illustrates the performance of the different blocks of the proposed controller of the 

supercapacitors.  Figure 9.14 shows the reference current coming from the voltage droop 

control phase of the proposed controller, the final reference signal coming from the state-

machine logic to the PI controller, and the actual current from the supercapacitor. Also, the 

triggering signal coming from the MMGA to the state machine logic is provided. 

 
Figure 9.13: a) Output currents of the supercapacitors. b) state of charge of the 

supercapacitors 



 

 

220 

 

 

Figure 9.14: a) Output of the voltage droop block. b) Triggering of the MMGA block. c) 

Reference and actual currents of the batteries for the case of the proposed controller 

 

Generally speaking, the supercapacitor is a high-power density storage device that 

should support the system during the transient period, where there is a high ramping load 

added/removed, and there is a need for the high power storage to match this high ramping.  

Figure 9.14 (a) shows that the droop phase of the control algorithm always produces a 

reference signal, and this reference has high values during the load addition/removal 

instants at t= 0.7 , 1.5, 2, 3, 3.5 sec. Figure 9.14 (b) shows the triggering signals coming 
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from the MMGA to the state-machine logic. The function of the MMGA is to perform fast 

signal processing and to detect the transient changes and their types, whether it is a load 

addition or removal. The figure clearly shows that the MMGA is successful in detecting 

the load addition instants at t =0.7, 1.5, 2 second, as shown in blue in Figure 9.14 (b). Also, 

the MMGA is successful in detecting the load removal instants at t= 3, 3.5 sec, as shown 

in orange. This is reflected in generating the reference signals from the state-machine logic 

at the right instants and with the right mode (discharging or charging), as depicted in Figure 

9.14 (c).  

The state-machine logic does not generate a reference signal at t= 3 sec regardless of the 

fact that the coming signal from the MMGA is to insert and charge the supercapacitor, 

considering that there will be power surplus due to the load removal at this time instant. 

This happens because at this time instant, not only is there a load reduction, but also Battery 

1 at this point is turned off because there is no need for supporting the system anymore. 

This reduces the amount of extra power in the system. In other words, the disconnection of 

Battery1 counteracts the load removal, making the total surplus power almost zero. 

Therefore, the MVDC voltage at this time instant witnesses a small and very fast over-

voltage spike. This does not need any kind of support from the supercapacitor. That is why 

the state-machine logic produces a zero-reference signal during this time instant. 

In terms of the comparison between the actual current of the supercapacitor and the 

reference signal, the actual current generally follows the reference signal at all the time 

instants except at t=0.7 sec. This exception happens because at this time instant, the state-

machine logic results in a very high reference current that is beyond the maximum current 

that can be obtained from the supercapacitor. Since there is a saturation imposed over the 
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PI controller, it does not follow the reference signal and remains within the permissible 

level. It is worth mentioning that the PI controller is designed to give a maximum current 

of the supercapacitor of ±2100 A, while the coming signal from the state machine is -3200 

A. The reference value of the state machine is based on the droop control phase that does 

not have any kind of constraints on the reference values. The saturation of the PI controller 

helps protect the storage device from discharging/charging excessive amounts of currents. 

This helps increase the lifetime of the storage device. 

9.4.2 Controller performance in case of middle levels of SOCs 

In this case, one battery has 65% initial state of charge, while the other one has 40% 

state of charge. The same applies for the supercapacitors. This is done to test the ability of 

the controller to maintain the voltage of the MVDC bus, and ensure proper power sharing 

among the storage units. The same loading conditions are applied here and shown in Figure 

9.15  (a). As illustrated in Figure 9.15 (b), both the conventional and the proposed 

controllers are able to maintain the voltage of the MVDC bus. 

However, a careful look at Figure 9.16 shows the advantage of the proposed controller. 

Since the first battery (Battery 1) has a higher initial SOC of 65%, it is expected that this 

battery will discharge more current when supporting the system is needed and be charged 

less in case of power surplus. Figure 9.16 shows that although the conventional droop 

controller maintains the voltage of the MVDC bus, it does not ensure proper power sharing 

among the batteries. Both batteries discharge/charge with the same currents (600 A), which 

is not desirable.  
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Unlike the conventional controller, the proposed one maintains the voltage of the MVDC 

bus and ensures proper power sharing, where the highly charged battery discharges 887 A 

during the period t =2-3 sec compared to 443 A from the less charged battery. During the 

period t =3.5-4.5 sec, where there is a power surplus, the highly charged battery1 charges 

at 857 A, while the less charged one is charged at 1413A. This is shown in Figure 9.16, 

and its effect on the SOC of the batteries is witnessed in Figure 9.17.  

 

 
Figure 9.15: a) Loading Power.                 b) MVDC bus voltage. 
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Figure 9.16: Output currents of the batteries 

 

Figure 9.17: State of charge of the batteries 
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For the transient periods, Figure 9.18 depicts that the supercapacitors are inserted in the 

proper times and a good current sharing among them is also achieved using the proposed 

controller, where the highly charged supercapacitor discharges more current during the 

power deficit period and charges less current during the power surplus period compared to 

the less charged supercapacitor. The conventional controller followed the same pattern as 

the proposed controller, with less currents, neglecting the differences in the SOCs, except 

at t=2 sec, where the conventional droop sent a zero-reference value neglecting the small 

fast transient instant. Finally, the SOCs of the supercapacitors are shown in Figure 9.19, 

where the difference in the reference currents affected the rate of change of the SOC of the 

supercapacitors.  

 

Figure 9.18: Output currents of the supercapacitors 
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Figure 9.19: State of charge of the supercapacitors 

9.5 Conclusions 

In this chapter, a decentralized control strategy for the hybrid energy storage system, 

connected to a MVDC shipboard, is introduced. The proposed controller takes decisions 

on the local levels based on the SOC of the storage unit and the signature of the voltage at 

the MVDC bus. The controller employs MMGA and state machine logics to detect changes 

and decide on the addition/removal of the storage unit. The results showed the capability 

of the proposed approach in maintaining the voltage and ensuring proper power sharing 

among the storage devices. Also, it can successfully insert/remove the appropriate storage 

device during the transient and the steady state periods. In addition, the proposed controller 

was able to maintain the voltage of the MVDC bus in case of overcharged/undercharged 

storage unit, while not negatively affecting the storage devices. 
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Chapter 10 Intelligent Power Management for the Hybrid Energy Storage of the 

Ship Power System 

This chapter tries to avoid the complexity of designing the adaptive droop-based 

controller by replacing it with a more intelligent fuzzy-based controller. Unlike the droop-

controller, the fuzzy controller is easier to design through IF-THEN conditioning rules. In 

addition, the design of the fuzzy controller is done to differentiate between the normal 

conditions of the storage units and the case of overcharged/undercharged unit. This highly 

simplifies the design of the state machine logic in the next stage, removing the need of the 

state machine logic to check on the state of charge of the storage unit. 

Also, the proposed technique in this chapter replaces the mathematical morphology 

methodology that was introduced before with a simple high-pass filtering process. This 

reduces the complexity of the computation and processing time of the controller. 

The proposed algorithm is presented and validated on the same notional MVDC system 

introduced in the previous chapters with the same loading and operating conditions. 

10.1 Introduction 

Given the economic aspects and the slow response time of the gas-driven generators on the 

ship compared to the nature of pulsed loads, energy storage devices will be a corner stone 

in the successful operation of MVDC ship power systems. 

In this chapter, an intelligent decentralized energy management algorithm for the onboard 

hybrid storage system is proposed. The chapter provides an alternative intelligent technique 

to the droop-based controller that was provided in the previous chapter. In addition, the 

proposed intelligent algorithm replaces the mathematical morphology algorithm by using 
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a simple high-pass filter to differentiate between the high and low frequency components 

of the voltage signal. The objective of the algorithm, in this chapter, is to ensure load-

generation balance in the presence of pulsed loads and maintain the voltage of the MVDC 

bus within acceptable limits, according to the IEC 60092-101 standards[192][193][194]. 

Also, the proposed technique aims at ensuring proper power sharing among the storage 

devices and avoiding deep-discharging or over-charging of the storage devices using the 

intelligent fuzzy system. The proposed technique is validated on a notional MVDC power 

system that involves different sources and loads.  

10.2 A comprehensive Decentralized Energy Management 

Due to the inevitable presence of pulsed-loads on an AES MVDC bus, to maintain load-

generation balance, the management strategy is required to have certain functionalities. As 

mentioned earlier, gas-driven generators are not cost-effective when used to feed 

temporarily pulsed loads. Also, they have a slow response time, in the range of 8-12 secs. 

Therefore, energy storage systems will be the main source for feeding the pulsed-loads. It 

is, thus, necessary that under all operating conditions, the strategy maintains load-

generation balance, ensures proper power sharing among the storage devices on the ship, 

ensures the proper use of the storage type, and avoids unnecessary charging/discharging of 

the storage unit (to increase their lifetime). 

To satisfy the aforementioned requirements, in this chapter, an intelligent decentralized 

controller is proposed. A decentralized controller was implemented due to its ability to 

make decisions on the local level (in the test system, by processing the local voltage and 

SOC measurements of energy storage devices) without the need to communicate with other 
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components of the system. The decentralized nature of the proposed controller reduces the 

computation burden, the fact that makes it adequate for real-time operation. 

As shown in Figure 10.1, the proposed controller is composed of three parts. The first 

part is a Fuzzy Inference System (FIS). The FIS decides on the charging/discharging 

reference set-points of the batteries and the supercapacitors. The second part is the filtered 

voltage signal. In this work, a high-pass filter is used to distinguish between the high-

frequency transient needs and the low-frequency steady state needs. On one hand, the 

output signal after filtering the voltage of the MVDC bus (VHP) is used to control the 

insertion/removal of the supercapacitor. This is done because supercapacitors are high-

power components, which have the ability to charge/discharge high currents to support the 

system during the transient times.  

On the other hand, the difference (Vdiff) between the original voltage measurement of the 

MVDC bus and the filtered one will represent the steady state needs. Therefore, it is used 

to control the insertion/removal of the batteries, which are high-energy density. The third 

part of the controller is the state-machine logic. This part of the controller is important 

because it is responsible for the further processing of the output of the FIS and the filtered 

signals, deciding if the charging/discharging processes will actually occur based on the 

need of the system or not to avoid unnecessary usage of the energy storage devices. 
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Figure 10.1: Proposed controller block diagram 

Details about the different components of the proposed strategy and their design are 

presented in the following sections: 

10.2.1 Intelligent Fuzzy Inference System 

First, a fuzzy controller is selected because of its ability to handle all possible 

uncertainties in the system via a simplistic IF-THEN approach. The proposed FIS takes the 

SOC of the battery/supercapacitor and the original voltage of the MVDC bus as inputs, as 

shown in Figure 10.1. 

The FIS gives the current Iref,x as its output, which represents the charging/discharging 

set-point of the batteries/supercapacitors. The subscript x can refer to a battery or a 
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supercapacitor. The decision of the fuzzy output set-point is a result of processing the 

inputs through the two groups of membership functions. 

As seen in Table 10.1, the voltage membership functions are divided into three levels: 

Low (L), Medium (M), and High (H). This is done to ensure that the voltage of the MVDC 

bus is kept constant. Low voltage levels are selected to trigger the discharging process to 

support the system. Medium voltage levels ensure that no action is required. High voltage 

levels trigger the charging process to absorb the surplus power. 

Similarly, the membership functions for the SOC are divided into three levels. This is 

done to ensure proper power sharing and avoid the undercharging/overcharging of the 

storage device. It is required that the storage unit with higher state of charge contributes 

more in the discharging processes, whereas the one with lower state of charge has charging 

favorability over the others. This helps increase the lifetime of the storage system’s devices. 

The different membership functions are shown in Figure 10.2. 

Figure 10.3 is a rule surface, which represents the rules that govern the decision of the 

FIS. 

Table 10.1: Ranges of Membership Functions 

 L M H 

V (V) V < 4975 4975 ≤ V < 5025 V ≥ 5025 

𝑺𝑶𝑪𝒙 (%) SOC < 25 25 ≤ SOC < 70 70 ≤ SOC ≤ 100 

 

• In case of low voltage on the MVDC bus, the batteries/supercapacitors are 

discharging. However, the contribution of each battery/supercapacitor is decided 

based on its SOC. 
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• In case of high voltage on the MVDC bus, the batteries/supercapacitors are 

charging. However, the rate of charge of each battery/supercapacitor is prioritized 

based on its SOC. 

• In case of the medium MVDC bus voltage levels, which are around 5KV, the 

batteries/supercapacitors remain idle. 

• In case of overcharged storage unit, it will not participate in the charging process. 

Similarly, in case of undercharged unit, this unit will not participate in the discharging 

process.   

 

L M

70

H

25 50 754020 SOC (%)

50255000 507549754925 Voltage (V)
(a)

(b)

L M H

 

Figure 10.2: Fuzzy membership functions 
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Figure 10.3: Fuzzy rule surface (Iref,x in p.u) 

10.2.2 High-Pass Filtering 

A high-pass filter, with a cut-off frequency of 20 Hz, is used as a mean to separate the 

high-frequency components of the voltage of the MVDC bus. The voltage of the MVDC 

contains valuable information about the system status, where each load addition or removal 

will be reflected on the voltage, causing either a momentarily change or steady-state change 

in case of power deficit or surplus. By extracting the momentarily changes (transient 

moments), the proper use of the supercapacitors can be ensured.  

The difference between the original signal and the filtered one is assumed to represent 

the steady-state needs. This information is used to control the insertion/ removal of the 

batteries. 

Although the reference signal is obtained from the FIS and the distinction of the 

transient and steady-state is obtained by the filter, there is a need for a decision-making 
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tool to read these values and to compare the filtered signal to certain limits to decide on the 

final reference value Iref,final for each storage unit. 

10.2.3 State Machine Logic 

The battery storage operation mode is defined according to the state machine logic in 

Figure 10.4. Typically, the control logic is continuously affected by the system 

requirements based on voltage low-frequency component 𝑉𝑑𝑖𝑓𝑓. The controller modes of 

operation include discharging, charging and no action. First, the final reference current is 

initialized as 𝐼𝑟𝑒𝑓,𝑓𝑖𝑛𝑎𝑙 to zero, then the low-frequency component of the voltage is 

compared with minimum threshold voltage and if 𝑉𝑑𝑖𝑓𝑓 ≤ 𝑉𝑚𝑖𝑛, the voltage deficit status 

is detected. A delay of 60 µs is used to make sure that the change is a real steady-state need. 

After the delay, the voltage 𝑉𝑑𝑖𝑓𝑓 is checked again, and if it is less than the minimum 

threshold, the power deficit is confirmed, and the reference current is assigned to be the 

value that is calculated by the fuzzy controller.  

Similarly, the mode of operation in the charging is activated when  𝑉𝑑𝑖𝑓𝑓 > 𝑉𝑚𝑎𝑥 and the 

power surplus case is confirmed. Then, the reference current is captured from the fuzzy 

controller. For both the charging and the discharging modes, if the condition does not hold, 

the final reference is set to zero. In addition, if the voltage 𝑉𝑚𝑖𝑛 ≤  𝑉𝑑𝑖𝑓𝑓 ≤ 𝑉𝑚𝑎𝑥, the mode 

is no action and the final reference is set to zero. 

Figure 10.5 illustrates the state machine logic of the supercapacitor operation. By the 

same approach, after initialization, the high-pass filtered voltage 𝑉𝐻𝑃 is compared to lower 

and upper thresholds. If the  𝑉𝐻𝑃 is less than or equal to the lower threshold 𝑉𝑙𝑜𝑤𝑒𝑟, the 
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discharging mode is activated. However, if   𝑉𝐻𝑃 is larger than the upper threshold 𝑉𝑢𝑝𝑝𝑒𝑟, 

the discharging mode is launched. Finally, if  𝑉𝐻𝑃 recorded a value that is within the lower 

and the upper thresholds, the mode becomes no action with a zero-reference current. 

Initialization
𝐼𝑟𝑒𝑓 ,𝑓𝑖𝑛𝑎𝑙 = 0 
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?

𝐼𝑟𝑒𝑓 ,𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑟𝑒𝑓 ,𝑏  

Is
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𝐼𝑟𝑒𝑓 ,𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑟𝑒𝑓 ,𝑏  𝐼𝑟𝑒𝑓 ,𝑓𝑖𝑛𝑎𝑙 = 0 
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?
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Figure 10.4: Battery state machine logic 
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Figure 10.5:  Supercapacitor state machine logic 
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Finally, the PI controller receives difference between the final reference  𝐼𝑟𝑒𝑓,𝑓𝑖𝑛𝑎𝑙 and 

the converter current 𝐼𝐿, and forces the converter to follow the reference value. 

10.3 Results 

The proposed controller is validated through simulations using the notional MVDC ship 

power system presented in the previous chapter. The same loads and sources, with the same 

ratings, are used. The maximum current that can be obtained from the generators is 8000 

A, which is enough to supply the propulsion system, radar system and the service loads. 

However, it is not enough to supply the pulsed loads. Otherwise, a voltage drop will occur. 

Also, it is not economical to oversize the generators to feed the loads that consume energy 

for only a few seconds. Therefore, a hybrid storage system that consists of two batteries 

and two supercapacitors is used to supply the pulsed load. A hybrid system is used because 

of its ability to combine the advantages of the supercapacitors and the batteries, meeting 

the transient and steady state needs. The output current of the storage system is controlled 

using the PWM of the DC-DC converters.  

The proposed controller is validated under different loading conditions and different 

levels of the SOCs. In this study, the initial SOCs of the batteries are chosen to be 85% and 

15%, to validate the performance of the proposed controller in the case of extreme 

conditions, such as an overcharged/undercharged battery. The initial SOCs of the 

supercapacitors are chosen to be 50% each. This is done to show the ability of the controller 

in ensuring equal power sharing when the storage devices have the same SOC.  

The stepwise loading profile, depicted in  Figure 10.6 (a), shows the loading conditions 

at different time steps, where the propulsion system is first connected, then at t= 0.7 sec, 
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service loads are connected, followed by the radar system at t= 1.5 sec, and the pulsed load 

at t= 2 sec. The pulsed load is connected for one second, up to t= 3 sec, then it is 

disconnected, followed by another partial disconnection of some of the service loads at t= 

3.5 sec.   

Figure 10.6 (b) shows that the voltage of the MVDC bus is maintained almost constant 

and within the IEC 60092-101 standards regardless of the different loading conditions. 

To show a detailed explanation of the different stages of the proposed methodology, in 

this section, the obtained reference value from the FIS block, the final reference value 

obtained from the state machine logic, and the actual current that is drawn by the storage 

devices, are shown.  

Figure 10.7 (a) shows the output of the fuzzy block of the first battery. The figure shows 

that the fuzzy generates a discharging signal at t= 2 sec due to the low voltage, of the 

MVDC bus, caused by the insertion of the pulsed load. Figure 10.7 (b) shows the final 

reference signal that is processed by the state machine logic and the actual current that is 

discharged by the battery. Figure 10.7 (b) shows that the state machine logic generates the 

appropriate reference signal for the right time period. Since at t= 2 sec, there is a power 

deficit, and the first battery has 85% SOC, this means that the battery has enough capacity 

and should support the system. Therefore, the state machine logic generates the maximum 

possible discharging current from the battery, which is 1600 A. The figure also shows that 

the reference value is not generated instantly at t= 2 sec. This delay occurs because the 

state machine logic waits for a few microseconds, and then observes the bus voltage one 

more time before it decides to insert the battery. This action is required to ensure that the 
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battery will not be used during the transient periods. Only when there is a steady state 

power deficit, the battery should be used. 

 

Figure 10.6:       a) Loading power.                 b) MVDC bus voltage. 

 

Figure 10.7:  Output currents of the different stages for the first battery controller 
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When the pulsed load is disconnected at t = 3 sec, and the generators can supply the loads, 

the reference value becomes zero, and the battery is disconnected. At t= 3.5 sec, another 

load is disconnected. Regardless of the voltage increase at t = 3.5 sec, the fuzzy logic 

generates a zero-reference value because the first battery is almost fully charged (85% 

SOC), and it cannot support the system during this period of power surplus. Otherwise, the 

lifetime of the battery will be degraded. This zero-reference value is generated by the fuzzy 

logic block. 

In addition, Figure 10.7 (b) shows that the actual current follows the reference value, and 

the PI-based current controller can provide fast response and support the system, ensuring 

constant voltage of the MVDC bus. 

For the second battery, which has 15% SOC, Figure 10.8 (a) shows that the fuzzy logic 

only generates a reference value when there is a power surplus at t= 3.5 sec, and the battery 

should absorb this extra power. The fuzzy reference signal is zero at the point of inserting 

the pulsed load at t= 2 sec because the second battery is undercharged and cannot support 

the system during the power deficit phase. Figure 10.8 (b) shows that the final reference 

value generated by the state machine logic starts at t= 3.6 sec until the end of the simulation, 

when there is a power surplus in the system. The state machine logic generates a very high 

reference current of -1600 A because the battery has a low SOC and can absorb a large 

amount of power. The state machine logic waits for few microseconds before deciding on 

the final reference value to make sure that it is a steady state surplus power, and not a quick 

transient case. The figure also shows that the actual current of the battery follows the 

reference value. 
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Figure 10.9 shows the progress of the SOCs for the two batteries during the simulation 

period. It shows the decrease in the SOC of the first battery during the discharging phase 

(t = 2-3 sec), and the increase in the SOC of the second battery during the charging phase 

(t = 3.5 -4.5 sec). During the other periods, the batteries are idle, either because there is no 

action required or the battery cannot charge/discharge during certain periods.  

These results show the ability of the controller in taking the correct fast response of 

charging/discharging, while not mitigating the lifetime of the batteries or the voltage of the 

MVDC bus. 

The response of the supercapacitors is shown in Figure 10.10 - Figure 10.12. Figure 10.10 

shows the details of the controller of the first supercapacitor. The figure shows that the 

fuzzy block responds to any transient voltage oscillation and provides a reference value. 

However, the state machine logic, with the help of the signal that is coming from the high-

pass filter and the thresholds, decides which signal to pass or to block.  

Since there is a transient with each load addition at t = 0.7, 1.5, and 2 sec, the state 

machine inserts and passes the discharging signals during these time instants, as shown in 

Figure 10.10 (b). The supercapacitor, a high-power density storage, can provide a high and 

fast current. This is shown in the figure, where the supercapacitor discharges a high 

pulsating current of 2000 A.  
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Figure 10.8: Output currents of the different stages for the second battery controller 

 

 

Figure 10.9: State of charge of the batteries 
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For the load removal instants at t= 3 and 3.5 sec, the state machine also provides a high 

charging current of -2000 A at t= 3.5 sec. The state machine does not provide a reference 

signal at t= 3 sec, regardless of the input signal that is coming from the fuzzy block, because 

the voltage oscillation at this instant is not high. This happens because during this time 

instant, a load is disconnected and also the first battery that was supporting the system is 

disconnected as well. Therefore, the effect of load disconnection is counteracted by the 

disconnection of the first battery, making the voltage oscillation small.  

Since the capacitor has 50 % SOC, it supports the system with almost the same current 

value during the discharging and the charging phases. This guarantees a good utilization of 

the supercapacitor.  

  Figure 10.10 (b) also shows that the actual current can successfully track the reference 

value, providing appropriate support for the system.  

Figure 10.11 shows that the second supercapacitor follows the same trend as the first one 

because both supercapacitors have the same initial SOCs. This validates the ability of the 

proposed technique in ensuring equal power sharing when the storage devices have the 

same energy capacity.  

This is also demonstrated by Figure 10.12 that shows the SOC progress of the two 

supercapacitors. The figure shows that both supercapacitors have the same SOC progress, 

which is desirable and helps increase the overall lifetime of the storage system.  
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Figure 10.10: Output currents of the different stages for the first supercapacitor 

controller 

 

 

Figure 10.11: Output currents of the different stages for the second supercapacitor 

controller 
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Figure 10.12: State of charge of the supercapacitors 

10.4 Comparison Between the Proposed Fuzzy and the Modified Droop Algorithms 

In this section, a comparison is done to compare the proposed intelligent technique in 

this chapter and the modified droop-based controller that was proposed in the previous 

chapter. 

Figure 10.13 shows that both techniques are able to maintain the voltage of the MVDC 

bus to be within the standards. Both techniques result in almost the same voltage profile. 

Similarly, Figure 10.14 shows that both techniques almost result in the same reference 

currents for the battery, except a minor time delay in the current of the second battery. This 

delay does not affect the acceptable performance of the system.  

Figure 10.15 shows the currents of the supercapacitors for the two techniques. The 

currents are the same, except for the fact that the modified droop controller does not insert 
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the second supercapacitor at t = 2 sec. This also does not affect the acceptable performance 

of the system. 

 

Figure 10.13:  MVDC bus voltage for the droop and fuzzy-based controllers 

 

Figure 10.14:  Comparison of the batteries’ currents for the droop and fuzzy-based 

controllers 
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Figure 10.15:  Comparison of the supercapacitors’ currents for the droop and fuzzy-based 

controllers 

 

Although both controllers bring about almost the same performance, there are 

significant differences in the complexity of the design and operation time. On one hand, 

the fuzzy controller is easier to adjust through simplistic conditioning rules. Also, the 

replacement of the mathematical morphology by a simple high-pass filter reduces the 

complexity of the distinction process between the steady-state and transient needs, which 

results in a simpler design of the state-machine logic in the next stage of the controller. On 

the other hand, although the fuzzy is easier to design and adjust, it is more complex in terms 

of the computation burden and the needed memory to allocate the control design.  

To summarize, each of the proposed techniques has its pros and cons. If an easier, 

flexible design is required, the intelligent technique will be helpful. However, if the 
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memory allocation or the processing time is a barrier, the modified droop controller will 

be helpful in that case.  

10.5 Conclusions 

This chapter proposed a decentralized intelligent strategy for the onboard hybrid energy 

storage system to ensure the load-generation balance of the isolated MVDC ship power 

system. The strategy makes decisions on the local level without the need to communicate 

with other components of the system. The technique takes into consideration the voltage 

of the MVDC bus and the state of charge of the storage devices. The performance was 

validated under different loading conditions and SOCs of the storage devices, and the 

results showed the ability of the technique to ensure load-generation balance, maintain the 

voltage of the MVDC bus constant, and ensure the proper power sharing among the storage 

devices. The results showed the ability of the controller to ensure healthy operation of the 

storage system by avoiding undercharging/overcharging and ensuring equal power sharing 

among the storage devices that have the same SOCs. 

The proposed intelligent controller is also compared to the adaptive droop controller. 

Although both controllers bring about almost the same performance, there are significant 

differences in the complexity of the design and operation time. 

The proposed intelligent fuzzy controller is easy to design, and the operating condition 

rules are more flexible and can be modified using a semi-natural language. The main 

disadvantage of the fuzzy controller is its memory allocation size that needs to be more to 

accommodate the different rules and conditions. 
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Chapter 11 Conclusions and Recommendations for Future Work 

11.1 Conclusions 

This dissertation provided different solutions related to the control and optimization 

aspects of energy storage devices in the AC and DC power grids. Regarding the use of the 

energy storage in the AC power grid, this dissertation investigated, from different 

perspectives, how electric vehicles will reshape the future of the power systems by 

introducing new challenges and opportunities.  

Firstly, the impact of the uncontrolled charging of EVs on the distribution system was 

evaluated. The results showed how the active and reactive powers of the system will be 

affected by the charging of the EVs.  It was found that uncontrolled charging can cause a 

significant increase in the line loadings and power losses.  

So far, the experimental study of the impact of EVs on the distribution systems did not 

get enough investigation in the literature. In [121], an experimental study and control was 

done on a real-estate feeder capacity during the charging of an EV. However, the impacts 

of charging the EVs on the system level were not investigated. Therefore, the experimental 

verification of the impacts of EVs was considered in this dissertation. 

The experimental results demonstrated that future charging stations must follow the 

standard charging arrangements at unity or 0.95 capacitive power factors. Otherwise, high 

amounts of reactive power will be drawn from the system, leading to severe voltage sags, 

and will cause considerable and repetitive use of the voltage support units in the system. 
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The voltage sags will be witnessed the most at the downstream end-users, far from the 

substation, where the voltages might be below the minimum standard limit. 

Secondly, to manage the charging of a mass number of dispersed electric vehicles into 

the distribution systems, which do not have mature communication infrastructure, an 

autonomous EV controller was developed. Unlike the droop controller in [69], the fairness 

of charging among different EVs, where the charging process is very sensitive to the 

charging location, was considered. Also, state of charge dependency was taken into 

consideration as well. The charger took into consideration the owner’s requirements and 

mitigated overloading and under-voltage problems in the distribution system. The 

controller and the charger were tested on a large-scale system through simulation. 

Also, the performance of the controller was evaluated in the presence of renewable 

distributed generation. It was found that the proposed controller was able to take advantage 

of the local generation by increasing the charging rate whenever there is available local 

generation.  

In addition, the sensitivity of the proposed controller was tested. Two cases were 

evaluated, which are the sensitivity of the controller to changes in the maximum required 

final state of charge SOCmax, and the sensitivity of the controller to design parameters 

(∆𝑉𝑐 , 𝐼𝑐). The results showed that the control algorithm was not affected by the maximum 

limit SOCmax. This limit only affected how much energy is required from the system. The 

more the required energy is, the more the stress on the system is, and the longer the 

charging time is. 
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It was also shown that parameters (∆𝑉𝑐 , 𝐼𝑐) represent a compromise between the speed 

of the charging process and the fairness among the EVs. Since there are variations in the 

voltages at different buses of the system, where the upstream buses have much higher 

voltage compared to the downstream ones, it was important to charge the EVs within 

reasonable times and in a non-discriminatory way as well. Since the proposed work in 

chapter 3 was concerned with EVs at the residential sector, where most of the EVs charge 

during night times, the priority was given to the fairness issue more than the speed of 

charging.  

In terms of actual validation, the proposed control algorithm was successfully verified 

through a laboratory-scale experimental distribution system with multiple dynamic loads, 

rectifiers, DC-DC converters and an inverter-based distributed generation. The algorithm 

achieved a good performance by charging the li-ion batteries without any negative impacts 

on the grid. The results confirmed the superiority of the proposed autonomous controller 

compared to other autonomous controllers that are reported in the literature.  

To consider the control of dispersed electric vehicle, participating in the demand-side 

management (DSM) in distribution systems that have a mature communication 

infrastructure, a decentralized fuzzy-based controller was proposed to successfully 

integrate and coordinate the charging of EVs. The objective of the controller was to ensure 

a fair charging of EVs at different point of connections in the distribution grid, where 

voltage conditions might not be the same. 

The proposed fuzzy-based controller, while requiring minimum real-time 

communication that already exists in the current DSM infrastructure, effectively 
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coordinated the charging process among the different EVs connected to the system in a fair 

manner. The controller took into consideration the customer’s charging requirements, the 

system voltage, and the cost of customer bills, depending on the coming price signal from 

the system. The results proved that a better valley filling can be obtained, and the voltage 

can be maintained within the standard limits.  

In addition to the control strategy, the successful deployment of DSM programs in 

residential distribution systems needs more attention because it is not appropriate to 

perform direct actuation on loads since it will represent an invasion of the user privacy. 

Moreover, direct load actuation will need large investments to provide the required 

additional communication infrastructure and control technologies for each user. Therefore, 

a new DSM scheme that is capable of benefiting from EVs as prosumers, without invading 

the privacy, was proposed. The new scheme effectively helped mitigate the system 

peaking, and avoided introducing new peaks “the rebound effect.” The new scheme is 

compatible with the current DSM infrastructure and does not need any further investments.  

This dissertation also proposed an improvement to the existing decentralized AIMD 

algorithm that was recently used to manage the charging of EVs while ensuring the best 

utilization and safety of the power system. None of the reported work in the literature, that 

used the AIMD algorithm, considered the network dynamics and the under-voltage 

problems that might occur in the grid. To take the grid voltage-constraints into 

consideration in addition to the power limit constraint, the authors in [187], [188] proposed 

an enhanced AIMD that charges the EVs in a fair manner, taking into consideration the 

grid voltage and transformer power constraints. Although the authors have described the 
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functionality of the proposed algorithm, they did not describe the physical implementation 

of the communication infrastructure, which is needed to support the proposed algorithm. 

Also, they did not consider the customer’s preferences. Similar concepts of the AIMD that 

take the local voltages into consideration were used for the management of battery storage 

devices that support the grid in [189]. Due to the scope of the work, the effects of the owner 

preference were not considered.  

This dissertation proposed an improved algorithm that took into consideration the 

system loading limits, as well as the voltage limits at the different buses. In addition, the 

proposed algorithm took the preferences of the owners of EVs into account. The proposed 

algorithm was validated through a co-simulation platform, where the power components 

are simulated using MATLAB/Simulink and is linked to embedded microcontrollers over 

a real-time communication network via the Data Distribution Service (DDS) middleware. 

The results showed that the proposed algorithm was able to charge the different EVs 

without overloading the system or causing any voltage sags at any of the buses. The 

preferences of the owners of the EVs were also ensured by the proposed algorithm.  

When it comes to the charging of a large number of EVs that are located and charging 

from the same parking lot (PL), the allocation and sizing of the EV parking lot need to be 

carefully considered.  

Some researchers tried to consider that problem in the literature. Optimal coordination 

for operational planning of EVs in the microgrid was considered in [163]. The authors used 

an economic method called Sortino ratio to maximize the profits per unit risk, while the 

size and location of the EVs were assumed as a priori. In [164], an Analytic Hierarchy 



 

 

253 

 

Process (AHP) was used to determine the optimal weighting coefficient for each objective 

in a mutli-objective problem to determine the optimal site and size of parking lots. In [165], 

the authors developed a two stage multi-objective formulation to optimally allocate a PL, 

taking network constraints into consideration. However, the optimal profit of the PL was 

obtained in the first stage, then optimal allocation and sizing were done in the second stage. 

This neglects the mutual effect that the optimal sizing and allocation might have on the 

profits in the first stage.  

To consider that problem, a bi-layer multi-objective optimization for the sizing and 

allocation of a commercial parking lot was developed. The formulation looked at both the 

economic aspects, trying to maximize the parking lot profits, as well as the technical 

aspects, trying to minimize the losses and voltage deviations in the distribution system at 

the same time. Pareto-based optimization was used to generate the different possible 

solutions. Then, a statistics-based decision-making algorithm was used to select the optimal 

solution among the different compromises. The problem formulation was also solved as 

three different single objective problems, and a comparison and analysis among the 

different obtained solutions were presented. A final optimal size and location was obtained. 

 It was found that, under the current available prices and incentives, the investment in 

commercial parking lots does not seem to be profitable. This is mainly due to the very high 

initial investments and the required maintenance. This means that the government or the 

EV manufacturers will need to provide more incentives to make the investment in parking 

lots more profitable. Another possible solution to consider is how the profits will be 
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impacted if the parking lot investor tries to use the parked EVs as energy storage devices 

and participates in the ancillary services market. 

In addition to the control and optimization of the energy storage in the AC grid, the 

dissertation also considered the control of the hybrid energy storage devices in the DC 

power grid.  

Due to the nature of the emerging pulsed load connected to the medium voltage direct 

current (MVDC) power system, conventional generators are not able to respond to the high 

ramping rate for this type of loads. In that domain, the control of the storage devices on a 

MVDC ship power system was investigated. To that end, an overview of the different 

components of the ship power system was presented. Then, different control algorithms of 

a hybrid energy storage system, consisting of batteries and supercapacitors, were designed 

and validated.  

Generally, centralized and hierarchical controllers ensure the optimal use of resources 

on the ship. However, the cost and the complexity of the controller increase nonlinearly as 

the number of system components increases. Also, there is always the risk of 

communication failure with the higher-level controller. This is of significant importance in 

mission-oriented applications, especially in the presence of the current issues of cyber-

attacks. Therefore, decentralized controllers have become a potential solution for these 

issues. 

In that domain, an adaptive droop controller was proposed to maintain the voltage of 

the MVDC bus while ensuring proper use of the different energy storage devices. 
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Insertion/removal of the storage devices, such as batteries and supercapacitors, was made 

according to the mathematical morphology-based voltage processing and state-machine 

logic algorithms. The controller was validated through processor in the loop simulation. 

The controller could successfully insert/remove the appropriate storage device during the 

transient and the steady state periods and ensured proper power sharing among the different 

devices.  

In addition to the adaptive droop controller, an artificial intelligence-based controller 

was proposed to achieve the same control objectives by using simpler if-then fuzzy based 

rules. The fuzzy controller was also able to achieve smooth and reliable operation of the 

ship. While the fuzzy controller is easier in its design and can provide more flexibility in 

the design options, it requires a larger processing time and memory allocation to achieve 

the same objectives that can be easily realized using the adaptive droop controller.  

11.2 Recommendations for Future Work 

This dissertation covered several aspects related to the control and optimization of 

energy storage devices. Despite the proposed solutions in this dissertation and the influx 

of research activities on the topic of controlling the energy storage and EVs in recent years, 

a number of interesting questions are yet to be addressed properly and comprehensively.  

Most of the works either ignored, or only partly addressed, the impacts of the 

communication infrastructure on EV charge management. The integration of more 

thorough models for the communication infrastructure into the EV charge strategies is still 

needed. This detailed communication modeling is especially important for EV charge 

management policies that facilitate the provision of ancillary services to the grid. The 
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issues of communication channel bandwidth limitation, latency, and bit rate, among others, 

can have a profound impact on the EV responsiveness.  

Another pressing issue is the development of reliable planning tools for EV charge 

control, aggregation, and EV-rich system modeling. For example, distribution systems’ 

planning models for utilities that anticipate a significant penetration of EVs into their 

system is yet to be developed. These models are instrumental for distribution system 

planners to help them make more informed long-term decisions, such as sizing and siting 

of distribution substations, sizing and routing of medium voltage feeders, sizing and siting 

of volt/var control devices, and so on. An EV aggregation investment planning model that 

addresses the concerns of an investor interested in EV aggregation is also largely absent. 

Another issue that is only partially addressed is the interaction of the stochastic natures 

of EVs, renewable energies, especially wind and solar energy, and conventional unit 

commitment. Due to the stochastic nature of renewable energies and EVs, old conventional 

methods for optimal unit commitment should be re-adapted to consider these stochastic 

entities to ensure the optimal and reliable operation of the grid.  

Moreover, for electric vehicles participating in the DSM programs, proper incentives 

should be given to the EV owners. The investigation of constructing these incentives to be 

effective for both the utility operator and the customers will be an interesting point to study. 

Since the residents of some areas will be high-income residents while other areas might 

have middle or lower-income residents, the design of the incentive structure must include 

the social studies and other related disciplines to ensure a proper structure that will be fair 

for all the customers. 
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Also, driver-less EVs are expected to be a disruptive technology in the coming years. 

Although some research activities have lately dealt with driver-less EVs, very little has 

been reported on the impact of a large fleet of these EVs on the local grid. The possibility 

of utilizing driver-less EVs to the grid advantage is a ripe research area. Charge strategies 

that are suitable for this type of EVs, considering their unique characteristics and 

limitations, are greatly needed. For example, for a fleet of shared autonomous EVs, when 

to dispatch each EV for transportation purposes and when to park it for charging is an 

interesting question yet to be addressed properly. The fact that autonomous EVs can be re-

located effortlessly provokes the thought of using them as mobile sources for power 

injection to improve the distribution system’s resilience. 

When it comes to the use of the hybrid energy storage to ensure load-generation balance 

in MVDC ship power system, there is a great lack of a comprehensive modelling of the 

future MVDC ships. Comprehensive modelling is needed, especially the behavior of the 

constant power loads and pulsed loads, and how they can mitigate the stability of the ship 

power system when both are active. Any control functionality cannot be fully validated 

without a comprehensive modelling of the different components on the ship. 

Also, fault-ride through capabilities on the system level is largely absent for the MVDC 

AES. The control and protection schemes need to be developed and studied, taking into 

consideration the zonal isolation protection and the presence of fast switching power 

electronics components.  
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Appendices  

Operating the Charge Control Algorithm for Electric Vehicles 

1. Introduction 

In order to test the developed control algorithm for the charging of electric vehicles 

without risk and prevent any mistakes, one should follow the complete procedure explained 

in this section. The first step is to check all the physical connections of the batteries, the 

grid, the loads and control boards. Then, the software on both the LabVIEW and the 

dSPACE 1104 should run and start collecting the measurements.   

2. Hardware Connection of the System 

As shown in Figure 1, the system under study consists of two dynamic loads, two 

Lithium-Ion batteries that are connected using two three phase Diode rectifiers and DC-

DC converters. The way to connect the system is as follows: 

2. Make sure you disconnect Generator 1 and connect the 3-phase utility connection 

instead. In this study, the effect of electric vehicles on the distribution system is 

studied and controlled. Therefore, a utility connection should be used. 

3. Make sure that the high-side terminals of the batteries are connected to the DC side 

of the rectifiers.  

4. Double check that the positive terminal of rectifier is connected to the positive 

terminal of DC-DC converter as shown in Figure 2.  The same applies for the 

negative terminal. Wrong connection might damage the DC-DC converter. 
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Figure 1: System Schematic 

Note that the positive terminal of the rectifier is the black wire while the negative 

terminal is the white wire.  

5. Connect the 3-phase terminal of one of the rectifiers directly to the utility through the 

solid-state switch 0320A. The 3-phase connection of the other rectifier is connected 

far from the utility connection through the solid-state switch 0380C. 
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Figure 2: 3-phase Rectifier Connection 

Make sure to connect the rectifiers at the correct side of the solid-state switch to have 

a control on its insertion and removal through the LabVIEW. Otherwise, the rectifier will 

be directly connected to the AC source. 

6. As shown in Figure 2, to collect the voltage of the AC side and feed it to the dSPACE, 

a voltage sensor board is connected to measure the line-line voltage of the AC side. 

The sensor’s connection to the rectifier is shown in Figure 2. 

7. Connect the voltage and current measurements on each of the DC-DC converter to 

the ADCH ports of the dSPACE, shown in Figure 3. These measurements are 
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collected using the sensors that are embedded on the DC-DC converter. As shown in 

Figure 4, the DC-DC converter has two current measurements for the input and 

output currents and a voltage measurement of the battery side. These sensors are 

connected to the sensor terminals, shown on the right side of Figure 4. These 

terminals should be connected to three different ADCH points on the dSPACE. 

8. From the dSPACE, two connections are taken from the PWM ports to a voltage 

amplifying circuit, shown in Figure 5. This circuit is used to amplify the PWM 

signals, coming from the dSPACE, to the level that is required by the driver circuit 

of the DC-DC converter. 

9. The output of the amplifying circuit should be connected to the PWM ports on the 

DC-DC converter. 

It is worth mentioning that only the buck-mode PWM port (the bottom one of the PWM 

ports in Figure 4) is used. The other PWM is connected directly to the ground. 

Analog to Digital 

channels

Connected to 

the sensor 

Terminals

PWM pins 

connected to 

the amplifying 

circiut

 

Figure 3: dSPACE 1104 
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Figure 4: DC-DC converter Terminals 

10. Connect a two port DC supply to the driver circuit supply ports on the DC-DC 

converters. The DC supply should be adjusted to give +15, 0, -15 Volt. Increase the 

voltage gradually till you reach these values. If the supply voltage increased abruptly 

and became higher than 15 volts value, the driver circuit will be damaged. 

11. Once the rectifiers and the measurements are well connected, the low voltage sides 

of the DC-DC converters can be connected to the batteries.  

Since this experiment focuses on the effect of charging the electric vehicles, each of 

the batteries is connected to the low-voltage side of the DC-DC converter through a 

diode. The diode should be in the forward-bias mode during the charging mode of  
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Figure 5: A circuit for amplifying the PWM signal 

 

the batteries (from the grid to the battery), and in the reverse-bias mode during the 

discharging. This is done to prevent the batteries from supplying the output 

capacitors of the converters, which might represent a hazard of discharging into the 

user when the experiment is not into operation. 

12. Again, double check that the positive terminal of battery is connected to the positive 

terminal of the low-voltage side of the DC-DC converter through the diode. Note that 

the positive terminals of the DC-DC converters are red while the negative terminals 

are black. The same applied to the batteries.   

After making sure that all the hardware connections are done appropriately, you can go 

to the software part and make sure that the appropriate loads and control algorithm are 

used. 
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3. The Software Part of the Algorithm 

13. From the main computer of the testbed, open the LabVIEW and select the file Hariri 

that contains the appropriate programmed interface for this experiment. 

14. From that file, open the SCADA file, the DAQ file and generation control file. The 

SCADA file should be as shown in Figure 6. 

15. From the Window tab in the SCADA interface, open the Block Diagram to see the 

programming of this interface. 

 

Figure 6: SCADA interface of the testbed 
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16. In the Block Diagram window, double check that there are two while loops for the 

loads L1 and L2. These loops are designed to generate variable automatic load 

profiles during the experiment. It should be as shown in Figure 7.  

17. To make sure that the data are collected and saved during the experiment, the Block 

Diagram window should contain data collection blocks, as shown in Figure 8. 

The data collecting is designed to collect the active and reactive powers and the three-

phase voltages (Magnitudes and Angles) at the sensors 0320A, 0040A, 0380C, and 

0050B. 

18. After making sure that the dSPACE is programmed and you ready to start the 

experiment, from the LabVIEW, you should turn on the appropriate solid-state 

switches 0320A, 0320B, 0230C, 0040B, 0380A, 0380B, 0380C, and 0050B. 

19. Also, using the load auto switch, shown in Figure 6, you should select the pattern 

mode. 

20. To start logging the data, you should turn on the data logging switch, shown in Figure 

6. 

 

Figure 7: Loops to generate automatic variable load profiles 
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Figure 8: Data collecting blocks for saving the real-time measurements  

21. To make sure that the dSPACE is ready, open MATLAB/SIMULINK at the 

computer that the dSPACE cable is connected to. 

22. Open the SIMULINK file that contains the control algorithm. It should be like Figure 

9. This Figure shows the upper layer of the algorithm and shows all the input and 

output ports from the measurements and to the PWM block. 

This layer contains the measurements that are calibrated to reflect the actual values 

before the analog to digital conversion, the voltage and current protection of the battery, 

the control algorithm, and the PI current controller. 
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Figure 9: Upper layer of the algorithm in MATLAB/SIMULINK  

23. Build this model to embed it on the dSPACE. 

24. From the start menu, open the control desk. 

25. From the file tab in the control desk, open the appropriate experiment file. It should 

open the window that is shown in Figure 10. 

26. Start the dSPACE program from the control desk. 

27. To start collecting the result, start the animation mode. 
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Figure 10: Control desk of the developed algorithm 
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