33 research outputs found

    Deep Learning Algorithms for Time Series Analysis of Cardiovascular Monitoring Systems

    Get PDF
    This thesis investigates and develops methods to enable ubiquitous monitoring of the most examined cardiovascular signs, blood pressure, and heart rate. Their continuous measurement can help improve health outcomes, such as the detection of hypertension, heart attack, or stroke, which are the leading causes of death and disability. Recent research into wearable blood pressure monitors sought predominately to utilise a hypothesised relationship with pulse transit time, relying on quasiperiodic pulse event extractions from photoplethysmography local signal characteristics and often used only a fraction of typically bivariate time series. This limitation has been addressed in this thesis by developing methods to acquire and utilise fused multivariate time series without the need for manual feature engineering by leveraging recent advances in data science and deep learning methods that showed great data analysis potential in other domains

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Imaging photoplethysmography: towards effective physiological measurements

    Get PDF
    Since its conception decades ago, Photoplethysmography (PPG) the non-invasive opto-electronic technique that measures arterial pulsations in-vivo has proven its worth by achieving and maintaining its rank as a compulsory standard of patient monitoring. However successful, conventional contact monitoring mode is not suitable in certain clinical and biomedical situations, e.g., in the case of skin damage, or when unconstrained movement is required. With the advance of computer and photonics technologies, there has been a resurgence of interest in PPG and one potential route to overcome the abovementioned issues has been increasingly explored, i.e., imaging photoplethysmography (iPPG). The emerging field of iPPG offers some nascent opportunities in effective and comprehensive interpretation of the physiological phenomena, indicating a promising alternative to conventional PPG. Heart and respiration rate, perfusion mapping, and pulse rate variability have been accessed using iPPG. To effectively and remotely access physiological information through this emerging technique, a number of key issues are still to be addressed. The engineering issues of iPPG, particularly the influence of motion artefacts on signal quality, are addressed in this thesis, where an engineering model based on the revised Beer-Lambert law was developed and used to describe opto-physiological phenomena relevant to iPPG. An iPPG setup consisting of both hardware and software elements was developed to investigate its reliability and reproducibility in the context of effective remote physiological assessment. Specifically, a first study was conducted for the acquisition of vital physiological signs under various exercise conditions, i.e. resting, light and heavy cardiovascular exercise, in ten healthy subjects. The physiological parameters derived from the images captured by the iPPG system exhibited functional characteristics comparable to conventional contact PPG, i.e., maximum heart rate difference was <3 bpm and a significant (p < 0.05) correlation between both measurements were also revealed. Using a method for attenuation of motion artefacts, the heart rate and respiration rate information was successfully assessed from different anatomical locations even in high-intensity physical exercise situations. This study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, showing clear and promising applications in clinical triage and sports training. A second study was conducted to remotely assess pulse rate variability (PRV), which has been considered a valuable indicator of autonomic nervous system (ANS) status. The PRV information was obtained using the iPPG setup to appraise the ANS in ten normal subjects. The performance of the iPPG system in accessing PRV was evaluated via comparison with the readings from a contact PPG sensor. Strong correlation and good agreement between these two techniques verify the effectiveness of iPPG in the remote monitoring of PRV, thereby promoting iPPG as a potential alternative to the interpretation of physiological dynamics related to the ANS. The outcomes revealed in the thesis could present the trend of a robust non-contact technique for cardiovascular monitoring and evaluation

    Electronic devices and systems for monitoring of diabetes and cardiovascular diseases

    Get PDF
    Diabetes is a serious chronic disease which causes a high rate of morbidity and mortality all over the world. In 2007, more than 246 million people suffered from diabetes worldwide and unfortunately the incidence of diabetes is increasing at alarming rates. The number of people with diabetes is expected to double within the next 25 years due to a combination of population ageing, unhealthy diets, obesity and sedentary lifestyles. It can lead to blindness, heart disease, stroke, kidney failure, amputations and nerve damage. In women, diabetes can cause problems during pregnancy and make it more likely for the baby to be born with birth defects. Moreover, statistical analysis shows that 75% of diabetic patients die prematurely of cardiovascular disease (CVD). The absolute risk of cardiovascular disease in patients with type 1 (insulin-dependent) diabetes is lower than that in patients with type 2 (non-insulin-dependent) diabetes, in part because of their younger age and the lower prevalence of CVD risk factors, and in part because of the different pathophysiology of the two diseases. Unfortunately, about 9 out of 10 people with diabetes have type 2 diabetes. For these reasons, cardiopathes and diabetic patients need to be frequently monitored and in some cases they could easily perform at home the requested physiological measurements (i.e. glycemia, heart rate, blood pressure, body weight, and so on) sending the measured data to the care staff in the hospital. Several researches have been presented over the last years to address these issues by means of digital communication systems. The largest part of such works uses a PC or complex hardware/software systems for this purpose. Beyond the cost of such systems, it should be noted that they can be quite accessible by relatively young people but the same does not hold for elderly patients more accustomed to traditional equipments for personal entertainment such as TV sets. Wearable devices can permit continuous cardiovascular monitoring both in clinical settings and at home. Benefits may be realized in the diagnosis and treatment of a number of major 15 diseases. In conjunction with appropriate alarm algorithms, they can increase surveillance capabilities for CVD catastrophe for high-risk subjects. Moreover, they could play an important role in the wireless surveillance of people during hazardous operations (military, fire-fighting, etc.) or during sport activities. For patients with chronic cardiovascular disease, such as heart failure, home monitoring employing wearable device and tele-home care systems may detect exacerbations in very early stages or at dangerous levels that necessitate an emergency room visit and an immediate hospital admission. Taking into account mains principles for the design of good wearable devices and friendly tele-home care systems, such as safety, compactness, motion and other disturbance rejection, data storage and transmission, low power consumption, no direct doctor supervision, it is imperative that these systems are easy to use and comfortable to wear for long periods of time. The aim of this work is to develop an easy to use tele-home care system for diabetes and cardiovascular monitoring, well exploitable even by elderly people, which are the main target of a telemedicine system, and wearable devices for long term measuring of some parameters related to sleep apnoea, heart attack, atrial fibrillation and deep vein thrombosis. Since set-top boxes for Digital Video Broadcast Terrestrial (DVB-T) are in simple computers with their Operating System, a Java Virtual Machine, a modem for the uplink connection and a set of standard ports for the interfacing with external devices, elderly, diabetics and cardiopathes could easily send their self-made exam to the care staff placed elsewhere. The wearable devices developed are based on the well known photopletysmographic method which uses a led source/detector pair applied on the skin in order to obtain a biomedical signal related to the volume and percentage of oxygen in blood. Such devices investigate the possibility to obtain more information to those usually obtained by this technique (heart rate and percentage of oxygen saturation) in order to discover new algorithms for the continuous and remote or in ambulatory monitoring and screening of sleep apnoea, heart attack, atrial fibrillation and deep vein thrombosis

    Evaluation of Wearable Optical Heart Rate Monitoring Sensors

    Get PDF
    Heart rate monitoring provides valuable information about an individual’s physiological condition. The information obtained from heart rate monitoring can be used for a wide range of purposes such as clinical diagnostics, assessment of the efficiency of training for sports and fitness, or of sleep quality and stress levels in wellbeing applications. Other useful parameters for describing a person’s fitness, such as maximal oxygen uptake and energy expenditure, can also be estimated using heart rate measurement. The traditional ‘gold standard’ for heart rate monitoring is the electrocardiograph, but nowadays there are a number of alternative methods too. Of these, optical sensors provide a relatively simple, lowcost and unobtrusive technology for monitoring heart rate and they are widely accepted by users. There are many factors affecting the measurement of optical signals that have an effect on the accuracy of heart rate estimation. However, there is a lack of standardized and unified methodology for comparing the accuracy of optical heart rate sensors to the ‘gold standard’ methods of measuring heart rate. The widespread use of optical sensors for different purposes has led to a pressing need for a common objective methodology for the evaluation of how accurate these sensors are. This thesis presents a methodology for the objective evaluation of optical heart-rate sensors. The methodology is applied in evaluation studies of four commercially available optical sensors. These evaluations were carried out during both controlled and non-controlled sporting and daily life activities. In addition, evaluation of beat detection accuracy was carried out in non-controlled sleep conditions. The accuracy of wrist-worn optical heart-rate sensors in estimating of maximal oxygen uptake during submaximal exercise and energy expenditure during maximal exercise using heart rate as input parameter were also evaluated. The accuracy of a semi-continuous heart rate estimation algorithm designed to reduce power consumption for long-term monitoring was also evaluated in various conditions. The main findings show that optical heart-rate sensors may be highly accurate during rhythmic sports activities, such as jogging, running, and cycling, including ramp-up running during maximal exercise testing. During non-rhythmic activities, such as intermittent hand movements, the sensors’ accuracy depends on where they are worn. During sleep and motionless conditions, the optical heart-rate sensors’ estimates for beat detection and inter-beat interval showed less than one percent inaccuracy against the values obtained using standard measurement techniques. The sensors were also sufficiently accurate at measuring the interbeat intervals to be used for calculating the heart rate variability parameters. The estimation accuracy of the fitness parameters derived from measured heart rate can be described as follows. An assessment of the maximal oxygen uptake estimation during a sub-maximal outdoor exercise had a precision close to a sport laboratory measurement. The energy expenditure estimation during a maximal exercise was more accurate during higher intensity of exercise above aerobic threshold but the accuracy decreased at lower intensity of exercise below the aerobic threshold, in comparison with the standardized reference measurement. The semi-continuous algorithm was nearly as accurate as continuous heart-rate detection, and there was a significant reduction in the power consumption of the optical chain components up to eighty percent. The results obtained from these studies show that, under certain conditions, optical sensors may be similarly accurate in measuring heart rate as the ‘gold standard’ methods and they can be relied on to monitor heart rate for various purposes during sport, everyday activities, or sleep

    REDUCTION OF SKIN STRETCH INDUCED MOTION ARTIFACTS IN ELECTROCARDIOGRAM MONITORING USING ADAPTIVE FILTERING

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in many regions worldwide, accounting for nearly one third of global deaths in 2001. Wearable electrocardiographic cardiovascular monitoring devices have contributed to reduce CVD mortality and cost by enabling the diagnosis of conditions with infrequent symptoms, the timely detection of critical signs that can be precursor to sudden cardiac death, and the long-term assessment/monitoring of symptoms, risk factors, and the effects of therapy. However, the effectiveness of ambulatory electrocardiography to improve the treatment of CVD can be significantly impaired by motion artifacts which can cause misdiagnoses, inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a main source of motion artifact in current ECG monitors. A promising approach to reduce motion artifact is the use of adaptive filtering that utilizes a measured reference input correlated with the motion artifact to extract noise from the ECG signal. Previous attempts to apply adaptive filtering to electrocardiography have employed either electrode deformation or acceleration, body acceleration, or skin/electrode impedance as a reference input, and were not successful at reducing motion artifacts in a consistent and reproducible manner. This has been essentially attributed to the lack of correlation between the reference input selected and the induced noise. In this study, motion artifacts are adaptively filtered by using skin strain as the reference signal. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The optical strain sensor is calibrated on animal skin samples and finally in-vivo, in terms of sensitivity and measurement range. Skin stretch induced artifacts are extracted in-vivo using adaptive filters. The system and method are tested for different individuals and under various types of ambulatory conditions with the noise reduction performance quantified

    Motion Artifact Processing Techniques for Physiological Signals

    Get PDF
    The combination of reducing birth rate and increasing life expectancy continues to drive the demographic shift toward an ageing population and this is placing an ever-increasing burden on our healthcare systems. The urgent need to address this so called healthcare \time bomb" has led to a rapid growth in research into ubiquitous, pervasive and distributed healthcare technologies where recent advances in signal acquisition, data storage and communication are helping such systems become a reality. However, similar to recordings performed in the hospital environment, artifacts continue to be a major issue for these systems. The magnitude and frequency of artifacts can vary signicantly depending on the recording environment with one of the major contributions due to the motion of the subject or the recording transducer. As such, this thesis addresses the challenges of the removal of this motion artifact removal from various physiological signals. The preliminary investigations focus on artifact identication and the tagging of physiological signals streams with measures of signal quality. A new method for quantifying signal quality is developed based on the use of inexpensive accelerometers which facilitates the appropriate use of artifact processing methods as needed. These artifact processing methods are thoroughly examined as part of a comprehensive review of the most commonly applicable methods. This review forms the basis for the comparative studies subsequently presented. Then, a simple but novel experimental methodology for the comparison of artifact processing techniques is proposed, designed and tested for algorithm evaluation. The method is demonstrated to be highly eective for the type of artifact challenges common in a connected health setting, particularly those concerned with brain activity monitoring. This research primarily focuses on applying the techniques to functional near infrared spectroscopy (fNIRS) and electroencephalography (EEG) data due to their high susceptibility to contamination by subject motion related artifact. Using the novel experimental methodology, complemented with simulated data, a comprehensive comparison of a range of artifact processing methods is conducted, allowing the identication of the set of the best performing methods. A novel artifact removal technique is also developed, namely ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA), which provides the best results when applied on fNIRS data under particular conditions. Four of the best performing techniques were then tested on real ambulatory EEG data contaminated with movement artifacts comparable to those observed during in-home monitoring. It was determined that when analysing EEG data, the Wiener lter is consistently the best performing artifact removal technique. However, when employing the fNIRS data, the best technique depends on a number of factors including: 1) the availability of a reference signal and 2) whether or not the form of the artifact is known. It is envisaged that the use of physiological signal monitoring for patient healthcare will grow signicantly over the next number of decades and it is hoped that this thesis will aid in the progression and development of artifact removal techniques capable of supporting this growth

    Sleep-wake stages classification using heart rate signals from pulse oximetry

    Get PDF
    The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.Fil: Casal, Ramiro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Di Persia, Leandro Ezequiel. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentin

    Wearable in-ear pulse oximetry: theory and applications

    Get PDF
    Wearable health technology, most commonly in the form of the smart watch, is employed by millions of users worldwide. These devices generally exploit photoplethysmography (PPG), the non-invasive use of light to measure blood volume, in order to track physiological metrics such as pulse and respiration. Moreover, PPG is commonly used in hospitals in the form of pulse oximetry, which measures light absorbance by the blood at different wavelengths of light to estimate blood oxygen levels (SpO2). This thesis aims to demonstrate that despite its widespread usage over many decades, this sensor still possesses a wealth of untapped value. Through a combination of advanced signal processing and harnessing the ear as a location for wearable sensing, this thesis introduces several novel high impact applications of in-ear pulse oximetry and photoplethysmography. The aims of this thesis are accomplished through a three pronged approach: rapid detection of hypoxia, tracking of cognitive workload and fatigue, and detection of respiratory disease. By means of the simultaneous recording of in-ear and finger pulse oximetry at rest and during breath hold tests, it was found that in-ear SpO2 responds on average 12.4 seconds faster than the finger SpO2. This is likely due in part to the ear being in close proximity to the brain, making it a priority for oxygenation and thus making wearable in-ear SpO2 a good proxy for core blood oxygen. Next, the low latency of in-ear SpO2 was further exploited in the novel application of classifying cognitive workload. It was found that in-ear pulse oximetry was able to robustly detect tiny decreases in blood oxygen during increased cognitive workload, likely caused by increased brain metabolism. This thesis demonstrates that in-ear SpO2 can be used to accurately distinguish between different levels of an N-back memory task, representing different levels of mental effort. This concept was further validated through its application to gaming and then extended to the detection of driver related fatigue. It was found that features derived from SpO2 and PPG were predictive of absolute steering wheel angle, which acts as a proxy for fatigue. The strength of in-ear PPG for the monitoring of respiration was investigated with respect to the finger, with the conclusion that in-ear PPG exhibits far stronger respiration induced intensity variations and pulse amplitude variations than the finger. All three respiratory modes were harnessed through multivariate empirical mode decomposition (MEMD) to produce spirometry-like respiratory waveforms from PPG. It was discovered that these PPG derived respiratory waveforms can be used to detect obstruction to breathing, both through a novel apparatus for the simulation of breathing disorders and through the classification of chronic obstructive pulmonary disease (COPD) in the real world. This thesis establishes in-ear pulse oximetry as a wearable technology with the potential for immense societal impact, with applications from the classification of cognitive workload and the prediction of driver fatigue, through to the detection of chronic obstructive pulmonary disease. The experiments and analysis in this thesis conclusively demonstrate that widely used pulse oximetry and photoplethysmography possess a wealth of untapped value, in essence teaching the old PPG sensor new tricks.Open Acces

    Clinical Decision Support Systems with Game-based Environments, Monitoring Symptoms of Parkinson’s Disease with Exergames

    Get PDF
    Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires constant monitoring to perform medication and therapeutic adjustments. This is due to the significant variability in PD symptomatology and progress between patients. At the moment, this monitoring requires substantial participation from caregivers and numerous clinic visits. Personal diaries and questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are required to better monitor the progress of individual PD patients. A potential contribution towards more objective monitoring of PD is clinical decision support systems. These systems employ sensors and classification techniques to provide caregivers with objective information for their decision-making. This leads to more objective assessments of patient improvement or deterioration, resulting in better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively and regularly provide data for remote monitoring remains a significant challenge. To address this challenge, the goal of this thesis is to combine clinical decision support systems with game-based environments. More specifically, serious games in the form of exergames, active video games that involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. Exergames increase engagement while combining physical and cognitive tasks. This combination, known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are equal or superior to those of traditional rehabilitation. In this thesis, we present an exergame-based clinical decision support system model to monitor symptoms of PD. This model provides both objective information on PD symptoms and an engaging environment for the patients. The model is elaborated, prototypically implemented and validated in the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the risk of falling and the severity of tremor in comparison with clinical standards. We also explore the statistical significance and effect size of the data we collect from PD patients and healthy controls. We demonstrate that the presented approach can predict an increased risk of falling and estimate tremor severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-term randomized clinical trials are required to evaluate the potential of PDDanceCity and PDPuzzleTable for physical and cognitive rehabilitation effects
    corecore