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The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index 
(AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of 
OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider 
the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or 
asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using 
entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. 
The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature 
selection with support vector machine and feature importance with random forest. The algorithms were designed, 
trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross 
validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 
67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the 
possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and 
thus potentially improving the estimation of AHI based on only pulse oximetry.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital
1. Introduction

Sleep plays a very important role in well-being and physiological 
recovery. The gold standard test for the study of sleep pathologies is 
polysomnography (PSG), which consists of the simultaneous recording 
of several physiological signals such as electroencephalography (EEG), 
electrocardiography (ECG), electromiography (EMG), respiratory effort, 
oronasal airflow, peripheral oxygen saturation (SpO2), and electroocu-
lography (EOG), among others. The PSG is supervised by a technician in 
a sleep medical center specially conditioned, and its analysis requires a 
tedious scoring, often by hand with the help of a software [1]. The 
scoring has a lot of variability among different professionals [2]. Due 
to these characteristics and the limited number of beds, the PSG is cost 
intensive and its availability is scarce, generating long waiting lists. Fur-
thermore, many patients are reluctant to spend the night in the sleep 
laboratory or have difficulty to falling sleep [3].

Due to complexity, limited capacity, and high costs associated to the 
PSG, there is an increasing interest in reducing the need for complete 

* Corresponding author at: Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina.
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PSG studies. Many approaches have been proposed to perform screening 
of sleep pathologies. Pulse oximeter is an ideal choice for the screening 
due to its low cost, accessibility and simplicity [3]. For this, it stands 
out among other techniques, such as cardiac and respiratory sounds [4], 
ECG [5], nasal airway pressure [6] and combinations of various signals 
[7].

Total sleep time is an important outcome of PSG for diagnosing sev-
eral sleep disorders. One of these pathologies, in which the authors 
are currently interested, is the obstructive sleep apnea/hypopnea syn-
drome (OSAHS). OSAHS is one of the most prevalent sleep disorders 
[8] and it is characterized by repetitive interruptions of the respiratory 
flow, caused by pharyngeal collapses during sleep. These upper air-
way obstructions produce partial or total reduction in the airflow. This 
syndrome causes increased frequency of awakenings, reduced blood 
oxygen saturation, sleep fragmentation and, consequently, excessive 
daytime sleepiness [9]. Furthermore, it is associated with a high risk 
of acute pulmonary and systemic hypertension, nocturnal arrhythmias, 
ventricular failure and stroke, cognitive decline, and sudden death [10]. 
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The potential social consequences of this disease, such as accidents, in-
creased morbidity and unproductiveness, among others, make it one of 
the main public health problems in the world. The number of patients 
diagnosed and treated for OSAHS has increased drastically in the last 
few years [11, 12]. Sleep apnea can be easily treated applying a con-
tinuous positive airway pressure through the nose using a tight mask 
[9].

The most important index of OSAHS severity is the apnea/hypopnea 
index (AHI), which represents the number of apnea/hypopnea events 
per hour of sleep. The OSAHS is classified as normal, mild, moderate 
or severe if it belongs to the intervals [0, 5), [5, 15), [15, 30) or greater 
than 30 apnea or hypopnea events per hour of sleep, respectively [13]. 
This implies the need to know if the patient was sleeping (in any stage 
of sleep) or awake when an respiratory event was detected.

The upper airway obstructions associated with apnea/hypopnea 
events results in a drop of oxygen saturation levels [14]. Several works 
have been carried out with the aim of detecting these events using pulse 
oximeter signals [15, 16]. In these studies, the oxygen desaturation in-
dex (ODI) is estimated as an approximation to the AHI. However, it 
is important to point out that these works do not take into account 
whether the patient is or not asleep. In some of these works, the ODI 
was reported as a relation between the number of detected desatura-
tions and the total sleep time (TST) estimated using the EEG, which 
was previously assumed as not accessible. In some other publications, 
the total time of the study (TT) was used, which introduces a significant 
bias (the value of AHI will be underestimated by this approach) [17]. 
TST estimation from the same signals used to estimate the number of 
apneas/hypopnea events could improve the reported AHI without in-
creasing the complexity of the study. Being able to estimate the total 
sleep time from signals obtained with a pulse oximeter will be a great 
complement to improve these screening devices.

Although we are focused on the diagnosis of apnea, the results of this 
work may be useful for many other applications. For example, drowsy 
drivers is an important factor in most traffic accidents. Automatic sys-
tems with the goal of detect and prevent sleep are an active research 
field. Most of them use cameras to assess the level of sleepiness by de-
tection of physiological events related to fatigue and drowsiness [18]. 
Due to its characteristics, our algorithm can be part of one of these sys-
tems and provide complementary information. Daily life applications 
related with sleep measures from personal health monitoring devices 
are currently under spotlight [19]. In summary, any critical work in 
which the sleepiness can cause accidents and material or human losses 
can benefit from applications such as the one developed in this paper.

In the literature, there are many researchers addressing the auto-
matic sleep staging problem. The state of the art results are obtained 
using EEG signals, sometimes extracting information from other com-
plementary signals such EOG, EMG, and others. In pursuit of obtain 
home-based diagnosis devices, there are many studies on automatic 
sleep staging with signals whose recording and processing is simpler 
than EEG.

Many authors have studied the dynamic of HR variability, obtaining 
by processing the ECG, during sleep [20, 21]. These works have made 
possible that Adnane et al. [22], Xiao et al. [23] and Yücelbaş [24] used 
ECG to classify the sleep stage. Adnane only considered two classes, 
awake and asleep, while Yücelbaş and Xiao considered three, awake, 
REM and non-REM stages. When their results are analyzed, it can be 
seen that the works that considered longer periods obtained better re-
sults than those that used 30 s segments, based on the rules published 
by the AASM [1]. However, considering longer periods is an unrealis-
tic situation since as the length increases. There is a greater probability 
that the segments contain a mixture of awake and asleep stages. This 
problem will be addressed in more detail in the discussion section.

There are other works that try to exploit the relationship between 
HR and sleep stages in the same way as those that use ECG, but using 
photoplethysmography (PPG). Beattie et al. [25] used PPG signals and 
accelerometer, considering 5 classes. The database was composed by 
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self-reported normal sleepers. The Uçar et al. research [26] used PPG 
and heart rate variability (HRV) from PPG. They classified in awake 
and asleep. An important limitation of all these works is that the size of 
the databases used is small, so it is difficult to clearly determine their 
generalization capability.

Motivated by the drawbacks of screening devices for sleep disorders, 
as well as by the current challenges to estimate sleep measures through 
mobile and wearable devices, and being inspired by these previous re-
searchers, the aim of this work is to classify the sleep stage in awake (W) 
or asleep (S), regardless of the corresponding sleep stage. We only have 
an estimate of the heart rate (HR) from PPG, instead of ECG, which 
is affected by the lower temporal and frequency resolutions. Further, 
we use a large database with the intention that the results have the 
minimum risk of overfitting. The classification will be done applying 
machine learning techniques. In the feature extraction stage, we use 
information theory tools, such as dispersion [27], approximate [28], 
sample [29], fuzzy [30] and Renyi [31] entropies, and methods for 
frequency and time-frequency analysis [32]. Further, classical statistics 
were calculated. We suppose these features can be able to discriminate 
the different dynamics presented in HR series corresponding to awake 
and sleep stages [20, 21]. Then, we applied a feature selection scheme 
together with the classification. Finally, the selected system is tested 
with patients data never used in training.

2. Materials

2.1. Oximetry signals

PPG is an optic measurement technique widely used in both clinic 
and research. It detects changes in blood volume through a device con-
sisting of a light source and a photodetector. The PPG signal results from 
the light interaction with biological tissues, namely, the balance be-
tween scattering, absorption, reflection, transmission and fluorescence 
of the signal. Several physiological variables can be estimated directly 
and indirectly from the PPG signal [33].

The arterial oxygen saturation (SaO2) is the fraction of saturated 
hemoglobin relative to total hemoglobin in blood. The pulse oximeters, 
devices based on PPG, allow a noninvasive estimation of SaO2, com-
monly referred as peripheral oxygen saturation (SpO2), using two light 
sources (red and infrared) that presents absorption differences due to 
the hemoglobin presence [34]. The SpO2 is very useful for the screening 
of OSAHS, since the number of apnea/hypopnea events can be approx-
imate counting the number of desaturations.

In addition, pulse oximeters provide a HR estimation from the pul-
satile component of PPG. The most common algorithms consist of dig-
ital filters and zeros crossing detector [33], although there are many 
research works with the objective of developing algorithms to reduce 
the movement artifacts that greatly affect the signal [35].

2.2. HR and sleep stages

The sleep has an orderly internal structure in which different stages 
are determined. The sleep stages are classified in wakefulness, two stages 
of light sleep, two of deep sleep and rapid eye movement sleep (REM), which 
are differentiated in the basis of typical patterns and waveforms in sig-
nals of EEG, EOC and EMG. These sleep stages are labeled in consecutive 
30 s long segments. This results in a sleep profile or hypnogram.

The regulation of the autonomic nervous system changes with the 
sleep stages. In this way, HR, blood pressure, and respiratory rate de-
crease to adapt a reduced metabolism during sleep. The average HR 
falls steadily from the waking states to deep sleep. During REM, HR 
increases lightly and presents greater variability than during wakeful-
ness [20]. The relationship between sleep stages and HR is shown in the 
Fig. 1. This work is based on these physiological phenomena in order to 
discriminate the states of awake and asleep.
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Fig. 1. Hypnogram and HR. The states of awake (W) and asleep (S) are shown 
in the hypnogram (black). The dynamical changes between these states can be 
noticed in the HR signal (blue).

Table 1

Characteristics of the study population in SHHS Visit 1.

SHHS 1 (min, max)

n 5804
Age (years) 63.1 ± 11.2 (39.0, 90.0)
Female (%) 52.3%
Epworth sleepiness scale 7.8 ± 4.4 (0.0, 24.0)
Arousal index (/hr) 19.2 ± 10.7 (0.0, 110.4)
AHI (/hr) 9.6 ± 12.7 (0.0, 115.8)
TST (min) 587.7 ± 107.6 (35.0, 858.0)
BMI (kg/m2) 28.2 ± 5.1 (18.0, 50.0)
TST/TT (%) 74.2%

2.3. Database

The set of biomedical signals used in this article was obtained from 
the Sleep Heart Health Study dataset. This dataset was designed to in-
vestigate the relationship between sleep-disordered breathing and car-
diovascular consequences. SHHS database is divided into two subsets 
of PSG records, the SHHS Visit 1 and SHHS Visit 2, obtained several 
years later with the aim of studying the evolution of patients. The PSG 
records were acquired automatically at home of patients with supervi-
sion of specialized technicians [36]. Full details can be found in [37].

The SHHS contains several signals corresponding to a PSG study 
collected on twelve channels: SpO2, HR, chest wall and abdomen move-
ment, nasal/oral airflow, body position, EEG (two central, one for re-
dundancy in case of failure/loss), bilateral EOG, chin EMG and ECG. 
The oximeter provides two signals, HR and SpO2, and it also gives a 
quality status signal that provides information about the sensor con-
nection status. In this work only the HR and the quality status signal 
are used. In future works we will incorporate the SpO2 signal to detect 
apnea/hypopnea events.

In SHHS database, SpO2 signals have a sampling rate of 1 Hz, res-
olution of 1% and accuracy of ±2% in the range of 70% to 100%. Their 
performance significantly decreases for values below this range. The 
HR signal based on pulse oximeter has a sampling rate of 1 Hz and a 
precision of 3 beats per minute.

In this work, the SHHS visit 1 was used. According to the SHHS 
1 Protocol, all the records were processed with a software system to 
provide preliminary estimates of the AHI. Then, the recordings were 
manually scored on screen, with annotations of sleep stages, arousals, 
oxygen desaturation, and respiratory events. Table 1 shows a summary 
of the characteristics of the database used. 5000 patients were randomly 
selected to be used in the experiments detailed below. For detail on the 
sleep stage annotation protocol, refer to [36, 37].

3. Methods

3.1. System overview

The scheme of the algorithm is shown in 2. First, the HR signals 
from pulse oximeter were preprocessed and segmented into windows of 
length 𝐿 for the 5000 patients, as indicated below. SHHS dataset was 
3

Fig. 2. Scheme of the algorithm. In the design stage, the feature extraction and 
selection is performed. In the test stage, the design system is tested with new 
data.

splitted into two subsets: 500 subjects were randomly selected in order 
to optimize the design and to select the features (top of Fig. 2), and 
the remaining 4500 subjects were used to train and test the classifier 
(bottom of Fig. 2).

In the design stage, a set of features was extracted from each win-
dow, optimizing its hyperparameters in order to maximize the area 
under ROC curve (AUC) [38]. Then, the features were standardized to 
have zero mean and unit variance. The feature selection was performed 
along with the classification, using two different schemes: forward fea-
ture selection (FFS) and support vector machine (SVM), and variable 
selection based on random forest (RF). The k-fold cross validation tech-
nique was used to validate the classifier performance.

Finally, the best system obtained in the design stage was trained 
and validated with the remaining 4500 subjects using a k-fold approach. 
There is not a formal rule to choose 𝑘 as long as the size of the database 
allows to obtain 𝑘 partitions with a sufficient number of observations 
to calculate the reliable statistics. We set 𝑘 = 10 for this problem based 
on recommendations from [39, 40].

3.2. Preprocessing

The pulse oximeter signals available in SHHS dataset provide a com-
plementary signal with information about the state of the oximeter. The 
status signal was used to mask the HR signal, removing the invalid data. 
Then, we linearly interpolate between the previous and posterior valid 
data.

Then, the HR records were standardized in order to reduce inter-
subject variability. Then, the signals were segmented into non-overlap 
windows of length 𝐿, considering only the segments corresponding 
completely to a single state: awake or asleep. The values of 𝐿 were 
varied from 𝐿 = 30 to 𝐿 = 300 in steps of 30. No other processing for 
artifact or noise reduction was used, as our objective is to keep the 
method as simple as possible, to operate in the raw signal, aiming at 
low power wearable devices.

3.3. Features

The information contained in the HR signal was summarized into 
a set of features based on information theory, frequency and time-
frequency domain, and classic statistics. In total, 70 features were ex-
tracted. A brief description of the most relevant ones is given in this 
section.

3.3.1. Approximate entropy

Approximate entropy (ApEn), introduced by Pincus [28], is a mea-
sure of data regularity. A greater irregularity in a signal produces a 
higher ApEn value, and vice versa. For an N-dimensional time series, 
ApEn depends on three parameters: the embedding dimension 𝑚, the 
embedding delay 𝜏 and the threshold 𝑟. ApEn has been widely used as 
a non-linear feature to classify different dynamics.
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Let 𝑥[𝑛] a time series of length 𝑁 . Then, 𝑀 = 𝑁 − (𝑚 − 1)𝜏 state 
vectors can be reconstructed doing 𝐱𝑚

𝑖
= [𝑥[𝑖], 𝑥[𝑖 + 𝜏], … , 𝑥[𝑖 +(𝑚 −1)𝜏]], 

where 𝑖 = 1, 2, … , 𝑀 [41]. Then, the ApEn is defined as [28]:

ApEn(𝑚, 𝜏, 𝑟,𝑁) = 𝜙𝑚(𝑟) − 𝜙𝑚−1(𝑟), (1)

with

𝜙𝑚(𝑟) = 1
𝑀

𝑀∑
𝑖=1

ln 1
𝑀

𝑀∑
𝑗=1

𝜃(𝑑(𝐱𝑚
𝑖
,𝐱𝑚
𝑗
), 𝑟), (2)

where 𝑑(⋅) is a distance measure between state vectors and 𝜃(⋅) is a 
kernel function. Usually the distance measure is the Euclidean norm or 
the Maximum norm. The most used kernel functions are the Heaviside 
step function [28] and the Gaussian kernel [42].

In this work, the Euclidean norm and Gaussian kernel were used. 
Three features related to ApEn were extracted. The first one is the value 
of ApEn estimated with the parameters 𝑟, 𝜏 and 𝑚 maximizing the AUC. 
The other two features are the maximum of ApEn and the value of 𝑟
where this maximum is located [43]. In these cases, both 𝑚 and 𝜏 were 
selected in order to maximize the AUC, as before.

3.3.2. Sample entropy

ApEn is a highly biased estimator due to the inclusion of self-
matches, and this bias is more noticeable in short data lengths. To 
overcome this limitation, Richman and Moorman proposed the Sam-
ple Entropy (SampEn). SampEn is largely independent of record length 
and shows a higher consistency than ApEn [29]. Following a notation 
similar to that used in ApEn, the equation for determining SampEn is 
given as

SampEn(𝑚, 𝜏, 𝑟,𝑁) = − ln 𝐵
𝑚+1(𝑟)
𝐵𝑚(𝑟)

, (3)

with

𝐵𝑚(𝑟) = 1
𝑀

𝑀∑
𝑖=1

1
𝑀 − 1

𝑀∑
𝑗=1,𝑖≠𝑗

𝜃(𝑑(𝐱𝑚
𝑖
,𝐱𝑚
𝑗
), 𝑟), (4)

where 𝑑(⋅) is a distance measure between state vectors and 𝜃(⋅) is a ker-
nel function. In this work, we chose an Euclidean norm and a Heaviside 
step function.

For high 𝑟 thresholds, SampEn → ApEn, and for small values of 𝑟, 
SampEn has a high variance. As the authors propose, we considered 
only the first 𝑁−𝑚 vectors of length 𝑚 when computing 𝐵𝑚(𝑟), ensuring 
that, for 1 ≤ 𝑖 ≤𝑁 −𝑚, 𝐱𝑚

𝑖
and 𝐱𝑚+1

𝑖
were defined.

3.3.3. Fuzzy entropy

Fuzzy entropy (FuzEn) is analogous to SampEn, but the similarity 
degree (kernel function 𝜃(⋅)) is calculated through a fuzzy function de-

fined by 𝑒−𝑑(𝐱
𝑚
𝑖
,𝐱𝑚
𝑗
)𝑞∕𝑟. According to [30], FuzEn is more consistent and 

less dependent on the data length than SampEn.

3.3.4. Dispersion entropy

SampEn is a powerful tool to assess the dynamical characteristics of 
time series, but it is computationally expensive. On the other hand, per-
mutation entropy (PermEn) quantify the irregularity of the time series 
based on analysis of permutation patterns, which depends on compar-
isons of neighboring values [44]. PermEn does not consider differences 
between amplitudes.

Dispersion Entropy (DE) was proposed to overcome these limitations 
of PermEn and SampEn [27]. For a given time series 𝑥[𝑛] of length 𝑁 , 
the DE algorithm includes the following steps. First, 𝑥[𝑛] is assigned to 
𝑐 classes. For this, 𝑥[𝑛] is mapped to 𝑦[𝑛] from a normal cumulative 
distribution function. Then, each 𝑦[𝑛] is assigned to an integer from 
1 to 𝑐 as 𝑧[𝑛] = round(𝑐𝑦[𝑛] + 0.5) with 𝑛 = 1, 2, … , 𝑁 . Finally, given an 
embedding dimension 𝑚 and delay 𝜏 , the state vectors are reconstructed 
by 𝐳𝑚,𝑐 = [𝑧[𝑖], 𝑧[𝑖 + 𝜏], … , 𝑧[𝑖 + (𝑚 − 1)𝜏]].
𝑖
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Each time series 𝐳𝑚,𝑐
𝑖

is mapped to a dispersion pattern 𝜋𝑣0,𝑣1 ,…,𝑣𝑚−1
, 

where 𝑧𝑚[𝑖] = 𝑣0, 𝑧𝑚[𝑖 + 𝜏] = 𝑣1, … , 𝑧𝑚[𝑖 + (𝑚 − 1)𝜏] = 𝑣𝑚−1. Then, for 
each of 𝑐𝑚 potential dispersion pattern, relative frequency is obtained 
by 𝑝(𝜋𝑣0 ,𝑣1 ,…,𝑣𝑚−1

). Finally, based on the definition of the Shannon en-
tropy, DE is calculated by

DE(𝑥,𝑚, 𝑐, 𝜏) = −
𝑐𝑚∑
𝜋=1

𝑝(𝜋𝑣0 ,𝑣1 ,…,𝑣𝑚−1
) ln𝑝(𝜋𝑣0 ,𝑣1 ,…,𝑣𝑚−1

). (5)

3.3.5. Extension of entropy measures to the joint time-frequency (𝑡, 𝑓 ) or 
time-scale (𝑡, 𝑠) domains

A measure of the uniformity of signal energy distribution in the 
frequency domain can be defined by interpreting a power spectral den-
sity (PSD) as a quasi-probability distribution function [45], and using 
entropy concepts. A larger 𝑓 -domain entropy value implies more uni-
formity and vice versa. These concepts can be extended to (𝑡, 𝑓 ) or (𝑡, 𝑠) 
domains in order to discriminate signals with similar bandwidth, but 
with different variations over time [46]. Let 𝑥[𝑛] be a real time series of 
length 𝑁 and 𝑧[𝑘] its Fourier Transform (FT) of length 𝑀 . The spectral 
entropy (SE(𝑓 )) is defined as

SE(𝑓 ) = −
𝑀∑
𝑘=1

[𝑘] ln[𝑘], (6)

where [𝑘] = |𝑧[𝑘]|2∑𝑀
𝑘=1 |𝑧[𝑘]|2 .

The (𝑡, 𝑓 ) or (𝑡, 𝑠) Shannon entropy is an extension of the (SE(𝑓 )). 
It is obtained by replacing the FT with a time-frequency or time-scale 
distribution 𝜌[𝑛, 𝑘]. The (𝑡, 𝑠) Shannon entropy is

SE(𝑡,𝑠) = −
𝑁∑
𝑛=1

𝑀∑
𝑘=1

𝜌𝑁 [𝑛, 𝑘] ln
(
𝜌𝑁 [𝑛, 𝑘]

)
, (7)

where 𝜌𝑁 [𝑛, 𝑘] = 𝜌[𝑛,𝑘]∑
𝑛

∑
𝑘 𝜌[𝑛,𝑘]

.

These ideas can also be used to extend the Renyi Entropy as

RE(𝑡,𝑠) =
1

1 − 𝑞
ln

𝑁∑
𝑛=1

𝑀∑
𝑘=1

𝜌𝑁 [𝑛, 𝑘]𝑞 . (8)

In this work, we set 𝑞 = 3 [46].
Inspired by these concepts and multiresolution entropy [47], we pro-

pose a measure of entropy through the scales for this application. For 
each scale 𝑘 of the (𝑡, 𝑠) representation 𝜌[𝑛, 𝑘], we calculate an entropy 
value by

RE(𝑡,𝑠)(𝑘) =
1

1 − 𝑞
ln

𝑁∑
𝑛=1

(
𝜌[𝑛, 𝑘]∑
𝑛 𝜌[𝑛, 𝑘]

)𝑞

. (9)

This entropy measure allows to estimate the uniformity of signal en-
ergy distribution for a simple scale. This is maximum when the energy 
is constant over the time.

We normalize 𝜌[𝑛, 𝑘] in order to fulfill the probability density func-
tion properties. Thus, the entropy measure does not vary with the 
magnitude of energy, but is only based on its distribution over time. 
As in the previous case, we set 𝑞 = 3. From now on, these features will 
be called time-scale multiresolution Renyi entropy (TSMRE).

The time-scale distribution was obtained using continuous wavelet 
transform (CWT) using 32 scales and Haar’s wavelet. Although this 
wavelet is very simple, and it has the disadvantage of being discon-
tinuous and therefore not derivable, for this work it was the wavelet 
that showed the best performance. This is due to the fact that the HR 
signal provided by the pulse oximeter has a large quantization step and 
thus can be well approximated by piecewise constant functions.

3.3.6. Lempel-Ziv complexity

Lempel-Ziv complexity (LZ) [48] is a metric that has been widely 
used in biological signals for recognition of structural regularities. The 
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LZ is nonparametric and simple to compute. First, the discrete-time sig-
nal 𝑥[𝑛] is converted into a symbol sequence 𝑃 = 𝑠1𝑠2… 𝑠𝑛 by compar-
ison with thresholds. Then, complexity measure 𝑐[𝑛] can be calculated 
as referenced in [49]. In the context of biomedical signal analysis, typ-
ically the signal is converted into a binary sequence using the median. 
In this work, we obtain better performance setting two thresholds us-
ing 0.33 and 0.66 quantiles. That is, we use a sequence of three different 
symbols.

The features described previously allow to quantify the regularity of 
the data. As we mentioned in the subsection 2.2, the HR shows greater 
variability and mean value during wakefulness. From this, these mea-
sures were proposed in order to exploit this difference in the regularity 
or complexity of the data. These measures have proven useful in sev-
eral works on biomedical signals [50]. Further, our previous work [51]
showed the potential of these features for classification.

3.3.7. Frequency domain based features

Spectral analysis of the heart rate variability signals allows to quan-
tify the influence of the autonomic nervous system [52]. These char-
acteristics are selected here on the assumption that they will provide 
information about the sleep stage, as discussed in [53]. Very low fre-
quency (VLF) (0.003, 0.04] Hz, low frequency (LF) (0.04, 0.15] Hz and 
high frequency (HF) (0.15, 0.4] Hz components were obtained. Further, 
the ratio LF/HF, normalized HF and VF and total power (TP) are used 
[52]. Spectral estimation is performed using periodogram.

3.3.8. (𝑡, 𝑓 ) or (𝑡, 𝑠) signal-based features

We extracted the 15 features discussed in [54] that allow to charac-
terize the non-stationary nature of the HR. This capability is potentially 
useful for discriminating sleep stages. The features are briefly explained 
below.

Several features are based on singular value decomposition (SVD) 
of the (𝑡, 𝑓 ) or (𝑡, 𝑠) representation 𝜌[𝑛, 𝑘]. The SVD divides the 𝑁 ×𝑀
matrix 𝜌 into two subspaces, signal subspace and an orthogonal alter-
nate subspace of the form 𝜌 = 𝐔𝐒𝐕𝐻 , where 𝐔 and 𝐕 are 𝑁 ×𝑁 and 
𝑀 ×𝑀 unitary matrices, respectively. 𝐒 is an 𝑁 ×𝑀 diagonal matrix 
with non-negative real numbers. The diagonal entries of 𝐒 are known 
as the singular values of 𝜌.

The first and second features are the maximum (max𝐒) and variance 
(var𝐒) of the singular values of 𝜌. The third feature is a complexity 
measure given by

ESVD = −
𝑁∑
𝑖=1

�̄�𝑖 log �̄�𝑖, (10)

where �̄�𝑖 =
𝑆𝑖∑𝑁
𝑗=1 𝑆𝑗

.

The fourth feature is the energy concentration measure, and it is 
defined as

ECM =

(
𝑁∑
𝑛=1

𝑀∑
𝑘=1

|𝜌[𝑛, 𝑘]| 12 )2

. (11)

Then, 8 features related to the sub-band energy are obtained inte-
grating over time. That is

SBE𝛿 =
𝑁∑
𝑛=1

(𝛿+1)𝐿∑
𝑘=𝛿𝐿+1

𝜌[𝑛, 𝑘] (12)

where 𝐿 = 𝑀

8 and 𝛿 = 0, 1, … , 7.
Finally, in addition to these features, we calculated (𝑡, 𝑠)-domain 

mean and standard deviation by extension from classical statistics and 
(𝑡, 𝑠) Renyi entropy by equation (8).

3.3.9. Autocorrelation-based features

We extracted some features related to the autocorrelation series. In 
general, the autocorrelation of awake segments has periodicities and 
5

is smoother than asleep segments. In order to differentiate them, we 
compute the first minimum and the first zero-crossing of the series. 
Then, we determine the coefficients of an autoregressive (AR) model 
of order 4 that fits the signal. These coefficients were used as features. 
Finally, we calculate the LZ complexity of the autocorrelation series in 
order to measure the regularity differences.

3.3.10. Statistical features

Further to the above-mentioned features, some classical statistics 
such as mean and standard deviation of the temporal signal were calcu-
lated. These features are useful for discriminate sleep stages (especially 
the mean value), since they vary markedly between sleep and wakeful-
ness.

3.3.11. Summary of features

The obtained features can be summarized in:

• 7 variants of entropy and complexity measures: ApEn, ApEnmax and 
𝑟max, SampEn, FuzEn, DispEn, and LZ.

• 32 entropy measures in the (𝑡, 𝑠) domain: TSMRE.
• 7 frequency domain features: VLF, LF, HF, LF/HF, normalize HF 

and VF, and TP.
• 15 features in the (𝑡, 𝑠) domain: max𝐒, var𝐒, ESVD, ECM, 8 SBE𝛿 , 

mean(𝑡,𝑠), std(𝑡,𝑠), and RE(𝑡,𝑠).
• 7 autocorrelation-based features: first min, first 𝑍𝐶 , 4 AR coeffi-

cients, and LZ of autocorrelation.
• 2 statistical features: mean and standard deviation.

3.4. Feature selection and classification

As mentioned above, a total of 70 features were obtained. However, 
system performance may vary with different combinations of features. 
In addition to potentially worsening performance, the presence of re-
dundant or non-informative features increases the computational cost 
and makes the classifier harder to train by the “curse of dimensionality”. 
A feature selection routine is a popular way to resolve these problems. 
In this work, we propose two different schemes for the feature selection. 
The first scheme is a wrapper method [55] of feature selection and SVM 
and the second scheme is an embedding method that uses RF as classifier.

3.4.1. Forward feature selection and SVM

We use a measure of classifier performance to select the optimal 
subset of features. According to Kohavi and John [56], it is necessary 
to define how to search the space of all possible variable subsets; what 
performance measure to use to guide the search; and which classifier 
to use. An exhaustive search find the global optimum, but the problem 
is NP-hard. To avoid this problem, we implemented a greedy solution 
called forward feature selection.

Let 𝑛
𝑓

and 𝑛
𝑓

be the optimal feature set selected and the remain-
ing features, respectively, in the 𝑛-th iteration. Let 𝑁𝑓 the number of 
total features and 𝜀 an error measure. Let 1

𝑓
= ∅ and 1

𝑓
the set of all 

features. The procedure can be summarized as follows:

1: for 𝑛 = 1 to 𝑁𝑓 do

2: for 𝑅𝑓 ∈𝑛
𝑓

do

3: Provisional set of features: 𝑅𝑓 = 𝑛
𝑓
∪𝑅𝑓

4: Cross validation: Randomly split data set into 𝐾 parts.
5: for 𝑘 = 1 to 𝐾 do

6: Select 𝑘-th subset for testing and the rest for training.
7: Train classifier with train set.
8: Test classifier with test set.
9: Compute the errors 𝜀(𝑘) for all 𝑘.

10: end for

11: Compute the mean error �̄�(𝑅𝑓 ) for all 𝑅𝑓 .
12: end for

13: Find a minimizer 𝑅∗ = argmin𝑅 �̄�(𝑅𝑓 ).
𝑓 𝑓
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14: Update best set of selected features 𝑛+1
𝑓

= 𝑛
𝑓
∪𝑅∗

𝑓
.

15: Update set of remaining features 𝑛+1
𝑓

=𝑛
𝑓
− {𝑅∗

𝑓
}.

16: Save the best result 𝜀min(𝑛) = �̄�(𝑅∗
𝑓
) for all 𝑛.

17: end for

In this algorithm, features are progressively incorporated into larger 
subsets. This method yields nested subsets of features. Finally, an error 
measurement is obtained for each subset and from this, the “optimum” 
set can be selected. While the computational load is less than in an 
exhaustive search, reaching the solution by this method may be slow.

In this scheme we use SVM as classifier [57]. SVM involves the 
optimization of a convex objective function with constraints and it is un-
affected by local minima. SVM produces an optimum separation hyper-
plane through mapping the features in a hyperdimensional space. In this 
work, we use a Gaussian kernel given by 𝐾(𝑥𝑖, 𝑥𝑗 ) = exp{−𝛾||𝑥𝑖 − 𝑥𝑗 ||2}. 
Detailed explanation of SVM can be found in [57, 58].

The measure error 𝜀 was selected with the aim of maximize the 
AUC. Let Se and Sp be the sensitivity and specificity, respectively. Each 
iteration selects the feature that minimizes (1 − Se)2 + (1 − Sp)2, that is, 
the minimum distance to point (0, 1) in the ROC curve. In addition, we 
evaluated the use of a criterion related with the application. We selected 
the feature that minimize the error in estimating the total sleep time per 
patient. However, the results obtained with this last measure will not 
be reported due to poor performance.

3.4.2. Feature importance and RF

For comparison purposes, we consider RF [59] as classifier. In RF, 
we can incorporate the feature selection as part of the training process 
and that is much more efficient because there is no need to retrain 
several times. To do this, after each tree is trained with all features, 
the values of each feature are randomly permuted. The data with the 
permuted variable is run down in the tree and a measure of error is 
calculated. By doing this for all features and calculating the percentage 
increase in misclassification rate compared to the resulting error with 
all variables intact, we can estimate a measure of variable importance.

3.5. Final classifiers

We already described the feature extraction and feature selection. 
The final stage is train and test the classifiers that use the subsets of 
selected features. However, first we need to solve one more problem: 
the class imbalance.

Most of the total recording time corresponds to the asleep stage. 
There are different approaches to prevent the classifier from biasing to-
wards the majority class, such as resample database, synthetic samples 
generation by convex combination, among others. In this work, we used 
two different methods to overcome the drawback of class imbalance. 
The first method is naive: we simply randomly remove samples from the 
majority class until the classes are balanced. This method was applied 
in FFS-SVM and RF with feature importance. In the second method, we 
use the SVM classifier but we impose an additional cost on the model 
for the minority class errors during training [58]. In this way, we can 
bias the classifier to pay more attention to the minority class. We penal-
ized the classification in a ratio that takes into consideration the class 
imbalance.

These balanced strategies were only applied in the training to avoid 
the classifier to have a bias towards the majority class. In the test data, 
no processing is done to balance the classes. In this way the classifier 
will be tested under conditions similar to the real application.

In conclusion, taking into account the feature selection and classi-
fication routines along with the approaches to solve class imbalance, 
we have three algorithms that will be trained and tested: FFS-SVM with 
penalty errors in minority class (FS 1), FFS-SVM with artificial balance 
(FS 2), and feature importance and RF with artificial balance (FS 3).
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4. Results

In this section, we present the results obtained with the three pro-
posed methods, explaining the outcomes of each of the stages that 
compose it.

4.1. Parameters selection

In some features described in previous section was necessary to 
experimentally tune a set of hyperparameters. To find the best com-
bination of hyperparameters a set of experiments was performed over a 
design database (500 patients, which was described in 3.1). All hyper-
parameters combinations were explored using a grid search. First, we 
did a coarse search to get an idea of how the features behaves accord-
ing to the hyperparameters and, then, we did a more detailed search 
to find the optimum hyperparameters. We use the AUC as an objective 
measure of the discriminating capacity of each single feature [38].

As mentioned above, these experiments were conducted for HR seg-
ments with a duration 𝐿 of between 30 and 300 s, in steps of 30. The 
grid search was performed for the features ApEn, SampEn, FuzEn and 
DispEn. In the first three features, 𝑚 was varied from 2 to 8 in steps of 
1, 𝑟 was varied from exp(−7) to exp(4) varying the exponent in steps of 
0.55 and 𝜏 was varied from 1 to 4 in steps of 1. For FuzEn, the exponent 
𝑞 of the kernel function was varied from 2 to 4 in steps of 1. In DispEn, 
𝑐 was varied from 2 to 4 in steps of 1, 𝑚 was varied from 2 to 𝑚max in 
steps of 1, where 𝑚max = floor(log(𝐿)∕𝑐) and 𝜏 from 1 to 4 in steps of 
1. The Gaussian kernel parameter used for SVM was selected varying 𝛾
with the equation 1∕𝑘2, with 𝑘 from 1 to 16 in steps of 2. The optimum 
value was 𝑘 = 8, and consequently 𝛾 = 0.0156.

The hyperparameters that maximize the AUC are very similar for 
different values of 𝐿, but the AUC always increases with 𝐿. The conse-
quences of this will be discussed below.

4.2. Feature selection

In order to discard irrelevant features and generate a set of optimum 
features for a given classifier, the feature selection routines mentioned 
in Section 3 were applied. The methods FS 1, FS 2 and FS 3 were applied 
to the different databases obtained by varying 𝐿. The two methods of 
FFS-SVM were applied as explained above, obtaining 70 nested subsets 
of features. In the RF-based method, we obtain a feature ranking. In this 
case, we did not consider increase the features of one by one, but we 
generated subsets considering groups whose ranking is similar.

The original feature set had high redundancy. Many features are 
from the same family. The experiment results showed that with only 
a few features (approximately 10) performance is close to the best re-
sult obtained. The Fig. 3 shows accuracy, sensitivity and specificity for 
database with 𝐿 = 150 obtained with three methods. Results are very 
similar for the others 𝐿 values.

Based on these results, we selected the first 40 features obtained in 
each method for each database to make the classifier faster and sim-
pler. In the Tables 2, 3 and 4 we show an exhaustive list of the selected 
features by each method. The selected features are generally very sim-
ilar by each method, although the order in which they are selected are 
slightly different by each one. One of the most selected features is the 
mean value of the signal. The mean value of the HR decreases as the 
sleep stage is deeper, as it was established by Penzel [20]. The ApEn re-
lated features were also selected early. Being a measure of regularity, it 
can be able to differentiate the states of awake and asleep. During vigil 
there is associated a greater irregularity of the signal [20], as shown in 
the Fig. 1. There are other features in which it is more difficult to de-
termine a physiological meaning directly. However, it is evident that 
the signal changes, and the features that we are using are able to reflect 
those changes. Although the interpretability of the results is always a 
benefit, it is not necessary that the selected features have a logical in-
terpretation with the application, proof of this are works that use weak 
classifiers or the deep learning approaches [60].
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Fig. 3. Performance (Acc, Se and Sp) versus number of features with FFS-SVM 
with penalty errors in minority class (black), FFS-SVM with artificial balance 
(red), and feature importance and RF with artificial balance (blue).

4.3. Performance in unseen database

In order to evaluate the performance of the developed systems, we 
applied the three algorithms (FS1, FS2, and FS3) to the remaining 
unseen 4500 patients and we performed 𝑘-fold cross validation, with 
𝑘 = 10. We calculated all performances individually (per patient) and 
the reported results were obtained by averaging. In this way, the result 
obtained will be closer to the real application where the objective is to 
estimate the total sleep time per patient.

Table 5 shows the percentage confusion matrix obtained by applying 
the algorithms to the unseen database. The number of false positives 
(FP), true positives (TP), false negatives (FN) and true negatives (TN) 
was calculated for each patient and the averaged values are reported. 
In all algorithms a better performance was obtained in the classification 
of the majority class (when the patient is asleep). The performance also 
increases with the length of the segment 𝐿.
Table 2

Feature ranking. Top 40 features for different 𝐿 using the algorithm FS 1.

𝐿 FS 1
30 mean, ApEn, TSMRE5, LF, LF/HF, max𝐒, 𝑟max, AR coefficient 4, TSMRE26, TSMRE8,

TSMRE27, TSMRE32, SBE1, TSMRE29, TSMRE31, TSMRE1, TSMRE25, first AC min, ESV

60 mean, ApEn, ApEnmax, first 𝑍𝐶, normalize HF, std, TSMRE5, TSMRE17, 𝑟max, SBE1, 
mean(𝑡,𝑠), TSMRE18, SBE3, VLF, TP, LZ, TSMRE19, SampEn, HF, TSMRE14, TSMRE23,

90 mean, ApEn, ApEnmax, first 𝑍𝐶, std, TSMRE3, TSMRE1, SBE8, ESVD, SBE4, TSMRE27
coefficient 3, VLF, TP, LZ of AC, TSMRE13, FuzEn, normalize HF, TSMRE14, HF, me

120 ApEn, mean, first 𝑍𝐶, ApEnmax, std, TSMRE1, SBE5, TSMRE2, SampEn, ESVD, ECM
std(𝑡,𝑠), TSMRE22, TP, VLF, TSMRE24, TSMRE17, FuzEn, TSMRE18, TSMRE19, TSMRE2

150 TSMRE3, mean, TSMRE5, ApEnmax, ApEn, ESVD, var𝐒, first 𝑍𝐶, SBE6, TSMRE1, TSM
TSMRE22, TSMRE8, SampEn, TSMRE6, SBE3, normalize LF, std, TSMRE14, TSMRE17

180 TSMRE3, mean, first 𝑍𝐶, SBE1, LF, SBE4, ApEnmax, TSMRE1, ESVD, ECM, ApEn, TSM
TSMRE18, SBE6, SBE3, TSMRE29, HF, normalize HF, mean(𝑡,𝑠), max𝐒, var𝐒, AR coeffi

210 TSMRE3, mean, LZ of AC, ApEnmax, SBE5, TSMRE1, std, AR coefficient 4, TSMRE11, 
SBE2, TSMRE15, var𝐒, TSMRE8, SampEn, first AC min, SBE6, max𝐒, SBE8, TSMRE14,

240 TSMRE3, mean, first 𝑍𝐶, SBE8, ApEnmax, TSMRE1, ESVD, TSMRE17, LF/HF, std, T
TSMRE15, SBE2, std(𝑡,𝑠), SampEn, SBE7, VLF, TSMRE30, ECM, normalize LF, ApEn, m

270 TSMRE3, mean, LZ of AC, std, SBE5, ApEnmax, first 𝑍𝐶, TSMRE1, TSMRE10, LZ, AR
SBE2, SBE8, TSMRE32, TSMRE30, SBE7, var𝐒, LF/HF, SBE6, SBE3, TSMRE22, VLF, Di
TSMRE29, TSMRE20.

300 TSMRE3, mean, LZ of AC, ApEnmax, TSMRE1, SBE5, AR coefficient 4, std, TSMRE
TSMRE30, HF, AR coefficient 2, TSMRE32, SBE6, TSMRE25, TSMRE15, AR coeffici
TSMRE18, TSMRE11, var𝐒, LF, SBE2.
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In Table 6, we summarized some common performance measures: 
accuracy, sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). These measures were reported for all 
three algorithms applied to databases obtained varying 𝐿. SVM-based 
algorithms are more sensitive and RF is more specific. It is worth noting 
that in this work we take the awake state as a positive class. The better 
accuracy of the classifiers that use SVM is explained by the fact that 
they classify the majority class better, which is the one that ultimately 
has the greater importance in this measure.

5. Discussion

The use of pulse oximetry as the only signal to diagnose OSAHS is 
still controversial. Different devices present a great variability for dif-
ferent situations and patients. The dispersion of obtained values is high. 
The interpretation of the measured desaturations is ambiguous without 
prior knowledge of the device used [61]. In addition, pulse oximetry 
is highly sensitive to motion artifacts [33]. However, significant re-
sults have been obtained through the use of advancing signal processing 
tools. As mentioned earlier, this makes the use of PPG very attractive 
because of its simplicity and low cost, but the algorithms designed have 
great difficulty in meeting its objectives due to the low quality of the 
signal.

Sleep classification is performed primarily using the EEG signal, al-
though information is also extracted from other signals such as EOG, 
EMG to detect movement, among others. Thus, detecting whether a 
signal segment corresponds to awake or asleep from the HR is a very 
complicated task. Although there are changes in the temporal dynamics 
of the HR signal [20], the information we have is much more difficult 
to interpret. If we add to this the low accuracy of the HR reported by 
the pulse oximeter, we can get an idea of the difficulty in reaching an 
acceptable performance. Finally, in addition to all these drawbacks, we 
also have a low sampling frequency of HR, which makes it difficult to 
obtain an adequate feature extraction.

In this work we have developed an algorithm to classify the sleep 
stages in awake and asleep using only HR signals obtained by pulse 
oximetry. To summarize, the main methodological steps that must be 
applied to reuse the proposed scheme with other databases is as follows:
 mean(𝑡,𝑠), HF, LZ of AC, FuzEn, std, TP, TSMRE7, SBE2, var𝐒, VLF, DispEn, RE(𝑡,𝑠), SBE6, 
D, LZ, TSMRE30, AR coefficient 1, TSMRE6, TSMRE23, TSMRE13, TSMRE15, TSMRE14.

SBE8, TSMRE32, TSMRE24, ESVD, SBE6, TSMRE16, std(𝑡,𝑠), TSMRE25, var𝐒, FuzEn, LF/HF, 
 TSMRE21, LZ of AC, SBE7, TSMRE12, TSMRE22, TSMRE15, TSMRE13, TSMRE27.

, SampEn, TSMRE4, 𝑟max, normalize LF, LF/HF, SBE5, LF, SBE6, TSMRE2, TSMRE27, AR 
an(𝑡,𝑠), TSMRE9, TSMRE12, SBE3, SBE2, TSMRE5, SBE1, SBE7, TSMRE19, TSMRE6.

, SBE4, TSMRE16, SBE1, LZ of AC, TSMRE15, first AC min, LF, TSMRE20, TSMRE21, HF, 
7, mean(𝑡,𝑠), TSMRE26, TSMRE23, TSMRE32, SBE6, AR coefficient 4, TSMRE14, SBE3, max𝐒.

RE2, ECM, SBE2, HF, SBE8, 𝑟max, TSMRE9, SBE4, LZ, TSMRE7, LZ of AC, TSMRE12, FuzEn, 
, TSMRE15, TSMRE18, VLF, TSMRE5, TSMRE10, normalize HF, max𝐒, TSMRE31.

RE13, SBE8, TSMRE15, std, SBE2, FuzEn, SBE7, SBE5, VLF, TSMRE2, LZ of AC, TP, std(𝑡,𝑠), 
cient 2, TSMRE31, TSMRE27, normalize LF, LZ, TSMRE14, TSMRE24.

ESVD, ECM, FuzEn, LF/HF, SBE4, TSMRE13, LZ, first 𝑍𝐶, TSMRE2, SBE3, TSMRE12, SBE7, 
 TSMRE5, TSMRE10, 𝑟max, TSMRE19, TSMRE6, TSMRE16, RE(𝑡,𝑠), LF, std(𝑡,𝑠).

SMRE31, TSMRE2, AR coefficient 4, TSMRE28, SBE3, LZ of AC, TSMRE13, RE(𝑡,𝑠), SBE6, 
ean(𝑡,𝑠), TP, TSMRE4, SBE4, SBE5, HF, FuzEn, SBE1, TSMRE18, TSMRE16, normalize HF.

 coefficient 2, ESVD, ECM, AR coefficient 1, SBE4, AR coefficient 4, TSMRE4, TSMRE2, 
spEn, TSMRE27, TSMRE25, TSMRE31, SBE1, first AC min, TP, TSMRE19, AR coefficient 3, 

2, LF/HF, ESVD, ECM, TSMRE10, DispEn, normalize LF, SampEn, TSMRE16, TSMRE12, 
ent 3, mean(𝑡,𝑠), TP, TSMRE4, TSMRE8, std(𝑡,𝑠), TSMRE9, AR coefficient 1, SBE3, VLF, 
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Table 3

Feature ranking. Top 40 features for different 𝐿 using the algorithm FS 2.

𝐿 FS 2
30 mean, ApEn, first 𝑍𝐶, LF, TSMRE10, AR coefficient 4, TSMRE30, 𝑟max, normalize LF, SBE7, SBE1, TSMRE4, std(𝑡,𝑠), AR coefficient 1, std, SBE2, RE(𝑡,𝑠), TSMRE29, TSMRE8, VLF, 

TSMRE3, LZ, max𝐒, TP, TSMRE27, AR coefficient 3, SBE6, DispEn, TSMRE23, TSMRE2, TSMRE21, TSMRE12, SampEn, FuzEn, TSMRE16, TSMRE17, var𝐒, first AC min, ApEnmax, 
ESVD.

60 mean, ApEn, ApEnmax, TSMRE3, SBE5, std, 𝑟max, first 𝑍𝐶, normalize HF, TSMRE8, TSMRE15, TSMRE18, SBE4, TSMRE23, DispEn, TSMRE20, AR coefficient 1, mean(𝑡,𝑠), 
TSMRE28, max𝐒, TSMRE7, VLF, SBE2, first AC min, TSMRE11, SampEn, TSMRE12, TSMRE14, RE(𝑡,𝑠), TSMRE31, LF/HF, SBE6,TSMRE9, TSMRE32, LZ of AC, TSMRE16, ESVD, 
TSMRE1, FuzEn, LF.

90 mean, ApEn, ApEnmax, first 𝑍𝐶, TSMRE6, std, SBE4, ESVD, TSMRE11, TSMRE3, SBE6, SBE2, DispEn, TSMRE20, LZ of AC, TSMRE2, var𝐒, AR coefficients 1, TSMRE5, SBE3, 
max𝐒, mean(𝑡,𝑠), TSMRE24, TSMRE15, TSMRE17, RE(𝑡,𝑠), TSMRE16, LZ, TSMRE23, TSMRE13, TSMRE30, TSMRE19, normalize HF, first AC min, AR coefficients 4, 𝑟max, AR 
coefficients 2, ECM, TSMRE8, TSMRE14.

120 TSMRE3, mean, first 𝑍𝐶, SBE1, normalize LF, SBE7, TSMRE18, ApEnmax, ESVD, TSMRE28, std, TSMRE1, FuzEn, SBE5, TSMRE2, first AC min, 𝑟max, TSMRE27, SBE6, mean(𝑡,𝑠), 
SBE4, TSMRE26, TSMRE21, SBE8, TSMRE31, TSMRE29, TSMRE22, LF, LZ, std(𝑡,𝑠), var𝐒, TSMRE25, TSMRE15, TSMRE8, LZ of AC, TSMRE20, ECM, AR coefficients 2, AR coefficients 
1, TSMRE24.

150 TSMRE3, mean, first 𝑍𝐶, ApEnmax, SampEn, SBE5, ESVD, TSMRE1, TSMRE29, SBE6, SBE1, normalize HF, HF, LZ, LZ of AC, std, TSMRE2, ApEn, TSMRE16, first AC min, LF, 
var𝐒, TSMRE13, TSMRE20, TSMRE31, TSMRE17, LF/HF, TSMRE24, SBE4, ECM, SBE2, normalize LF, FuzEn, TSMRE6, SBE3, RE(𝑡,𝑠), TSMRE15, 𝑟max, SBE8, TSMRE17.

180 TSMRE3, mean, first 𝑍𝐶, SBE1, VLF, SBE5, ApEnmax, FuzEn, SBE4, ESVD, ECM, SBE2, TSMRE1, std, TSMRE29, TSMRE11, normalize HF, DispEn, SBE3, LZ of AC, TSMRE30, 
TSMRE19, SBE8, TSMRE17, SampEn, TSMRE2, SBE6, first AC min, LF, SBE7, std(𝑡,𝑠), var𝐒, LZ, AR coefficients 1, TSMRE13, TSMRE24, max𝐒, TSMRE10, TSMRE23, HF.

210 TSMRE3, mean, LZ of AC, ApEnmax, LF/HF, TSMRE1, SBE6, mean(𝑡,𝑠), ECM, AR coefficients 4, FuzEn, TSMRE12,TSMRE23, SBE7, ESVD, TSMRE2, TSMRE28, std, TSMRE17, 
TSMRE17, SampEn, TSMRE18, 𝑟max, SBE8, LF, VLF, TSMRE27, SBE5, TSMRE4, TSMRE30, first 𝑍𝐶, TSMRE8, TSMRE15, TP, SBE4, std(𝑡,𝑠), LZ, SBE3, TSMRE16, TSMRE5, ApEn.

240 TSMRE3, mean, LZ of AC, SBE5, std, ApEnmax, LF/HF, TSMRE1, ESVD, TSMRE26, TSMRE2, LF, TSMRE30, first ZC, TSMRE13, TSMRE19, ApEn, SBE6, TSMRE31, SBE2, TSMRE24, 
TSMRE10, LZ, SBE8, TSMRE11, ECM, SampEn, AR coefficients 1, TSMRE15, TSMRE28, TSMRE29, var𝐒, FuzEn, AR coefficients 2, max𝐒, SBE7, TP, TSMRE14, TSMRE20, VLF.

270 TSMRE3, mean, LZ of AC, SBE5, std, ApEnmax, ESVD, TSMRE11, RE(𝑡,𝑠), first 𝑍𝐶, ECM, SBE4, TSMRE2, ApEn, TSMRE14, TSMRE9, LZ, AR coefficients 2, LF/HR, AR coefficients 
1, SBE2, TSMRE20, TP, std, SampEn, TSMRE24, TSMRE25, TSMRE17, TSMRE31, SBE3, SBE6, max𝐒, TSMRE7, TSMRE16, SBE7, TSMRE12, TSMRE11, TSMRE13, AR coefficients 3, 
first AC min.

300 TSMRE3, mean, LZ of AC, TSMRE1, ApEnmax, SBE5, ESVD, TSMRE2, LF/HF, ECM, FuzEn, AR coefficients 4, TSMRE14, LF, first 𝑍𝐶, TSMRE16, SBE4, TSMRE26, SBE7, TSMRE29, 
TSMRE19, normalize LF, TSMRE27, SBE2, AR coefficients 2, TSMRE8, DispEn, SBE6, std(𝑡,𝑠), AR coefficients 1, AR coefficients 3, TSMRE13, LZ, var𝐒, TSMRE32, VLF, SBE8, 
TSMRE6, SBE1, ApEn.

Table 4

Feature ranking. Top 40 features for different 𝐿 using the algorithm FS 3.

𝐿 FS 3
30 mean, HF, LF, ApEnmax, TP, std, mean(𝑡,𝑠), VLF, TSMRE6, TSMRE5, TSMRE7, TSMRE8, TSMRE4, TSMRE9, TSMRE10, TSMRE3, TSMRE2, ApEn, ECM, normalize LF, ESVD, var𝐒, 

SBE1, TSMRE1, LF/HF, max𝐒, SBE4, FuzEn, TSMRE12, normalize HF, SBE5, SBE8, TSMRE27, TSMRE11, SampEn, AR coefficients 1, TSMRE26, TSMRE28, SBE7, TSMRE25.

60 mean, ApEnmax, TSMRE1, HF, ESVD, ECM, AR coefficients 1, TSMRE2, TSMRE19, TSMRE16, mean(𝑡,𝑠), TSMRE18, SBE1, TSMRE17, LF, RE(𝑡,𝑠), var𝐒, max𝐒, TP, TSMRE20, 
normalize LF, TSMRE15, VLF, SBE5, std, TSMRE14, TSMRE21, normalize HF, std(𝑡,𝑠), LF/HF, TSMRE22, TSMRE25, TSMRE4, TSMRE24, SBE2, TSMRE23, SampEn, 𝑟max, SBE8, 
TSMRE13.

90 mean, ApEnmax, TSMRE2, TSMRE3, AR coefficients 1, ECM, first 𝑍𝐶, ESVD, HF, SBE1, normalize LF, LF/HF, SBE5, normalize HF, mean(𝑡,𝑠), TSMRE26, TSMRE30, TSMRE25, 
TSMRE27, TSMRE28, TSMRE29, TSMRE31, VLF, TSMRE23, LF, TSMRE24, TSMRE32, TSMRE21, std(𝑡,𝑠), TSMRE22, TSMRE20, TP, max𝐒, TSMRE4, first AC min, std, AR coefficients 
2, AR coefficients 4, TSMRE3, RE(𝑡,𝑠), DispEn.

120 mean, ApEnmax, TSMRE1, TSMRE2, first 𝑍𝐶, AR coefficients 1, ECM, SBE1, ESVD, SBE5, HF, first AC min, normalize LF, AR coefficients 4, mean(𝑡,𝑠), TSMRE32, normalize HF, 
LF/HF, AR coefficients 2, TSMRE30, TSMRE3, SBE8, TSMRE31, VLF, TSMRE4, DispEn, LF, TSMRE22, TSMRE5, SBE2, TSMRE28, TSMRE29, TP, TSMRE26, std, 𝑟max, TSMRE20, 
ApEn, TSMRE24, TSMRE18.

150 mean, ApEnmax, TSMRE1, first 𝑍𝐶, TSMRE2, AR coefficients 1, AR coefficients 4, first AC min, normalize LF, LF/HF, ESVD, SBE1, SBE5, AR coefficients 2, normalize HF, ECM, 
TSMRE3, HF, LF, mean(𝑡,𝑠), TSMRE5, TSMRE4, SBE8, TSMRE32, SBE2, TSMRE31, 𝑟max, VLF, TSMRE28, TSMRE29, TSMRE30, TSMRE26, SampEn, DispEn, TSMRE22, LZ of AC, 
TSMRE24, TSMRE20, TP, TSMRE19.

180 mean, ApEnmax, TSMRE1, first 𝑍𝐶, TSMRE2, AR coefficients 1, AR coefficients 4, first AC min, SBE5, AR coefficients 2, normalize LF, ESVD, SBE1, ECM, normalize HF, LF/HF, 
TSMRE3, HF, SBE8, mean(𝑡,𝑠), TSMRE4, VLF, LF, DispEn, TSMRE30, TSMRE32, SBE2, TSMRE5, TSMRE31, 𝑟max, SBE4, ApEn, TSMRE28, TSMRE27, TSMRE29, LZ of AC, TSMRE7, 
TSMRE6, TSMRE25, SampEn, TSMRE26.

210 mean, ApEnmax, TSMRE1, first 𝑍𝐶, TSMRE2, AR coefficients 1, AR coefficients 4, first AC min, AR coefficients 2, SBE5, normalize LF, SBE1, LF/HF, normalize HF, ESVD, LZ
of AC, ECM, TSMRE3, SBE8, HF, TSMRE32, TSMRE4, TSMRE5, LF, SBE4, SampEn, DispEn, mean(𝑡,𝑠), VLF, LZ, TSMRE6, TSMRE7, SBE6, TSMRE30, TSMRE31, SBE2, 𝑟max, ApEn, 
SBE7, TSMRE29.

240 mean, ApEnmax, TSMRE1, first 𝑍𝐶, AR coefficients 4, first AC min, TSMRE2, AR coefficients 1, AR coefficients 2, SBE5, normalize LF, ESVD, SBE1, LF/HF, HF, normalize HF, 
ECM, TSMRE3, LZ of AC, DispEn, SBE8, TSMRE32, mean(𝑡,𝑠), TSMRE4, VLF, SBE2, TSMRE31, LF, ApEn, TSMRE5, SBE4, 𝑟max, LZ, TSMRE29, SBE6, TSMRE30, TSMRE7, SampEn, 
TSMRE6, TSMRE19.

270 mean, ApEnmax, TSMRE1, first 𝑍𝐶, AR coefficients 4, AR coefficients 1, TSMRE2, first AC min, AR coefficients 2, SBE5, LZ of AC, normalize LF, LF/HF, normalize HF, SBE8, 
SBE1, ESVD, TSMRE3, HF, DispEn, ECM, TSMRE4, SBE4, TSMRE32, TSMRE5, LZ, SBE6, mean(𝑡,𝑠), SBE2, TSMRE31, LF, TSMRE7, ApEn, VLF, SampEn, TSMRE30, 𝑟max, TSMRE6, 
SBE7, TSMRE8.

300 mean, TSMRE1, ApEnmax, first 𝑍𝐶, AR coefficients 4, AR coefficients 1, first AC min, AR coefficients 2, TSMRE2, SBE5, LZ of AC, normalize LF, LF/HF, SBE1, ECM, SBE8, 
normalize HF, ESVD, TSMRE3, DispEn, SBE4, HF, mean(𝑡,𝑠), TSMRE5, 𝑟max, TSMRE7, TSMRE32, SBE2, TSMRE4, SBE6, SampEn, VLF, SBE7, ApEn, LF, TSMRE30, TSMRE31, LZ, 
TSMRE9, SBE3.
8
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Table 5

Confusion matrix of the final results in database of 4500 remaining patients 
for different values of 𝐿. The performance obtained can be seen in shades of 
gray. FS 1: FFS-SVM with penalty error in minority class. FS 2: FFS-SVM with 
artificial balance. FS 3: variable selection with RF. Waking and sleeping states 
are labeled as 𝑊 and 𝑆.

1. Preprocessing HR signals to have zero mean and unit variance and 
segmentation into non-overlap windows of length 𝐿.

2. Feature extraction and hyperparameters optimization using a sub-
set of the database to design the system.

3. Feature selection to obtain the optimum features for the chosen 
classifier.

4. Extraction of the optimum selected features for the chosen classi-
fier using a subset of the database to test the system and train the 
classifier.

In order to reuse the method described in this article with new pa-
tients, it is necessary to apply the preprocessing step so as to standardize 
and segment the signal Then, the selected features with the founded 
optimal hyperparameters should be extracted and used with the trained 
classifier. Although the design described in this work is computationally 
complex, its use is fast once the system has been designed.

We have been anticipating in previous sections the discussion about 
the length 𝐿 of the segment to be classified. Remember that the length 
of the segments used in a hypnogram is 30 s. It is easy to note that the 
smaller 𝐿 makes it easier to translate this scheme to the hypnogram.

To explain this, let the hypnogram 𝐻 be a sequence as 𝐻 =
{𝑡𝑊1

, 𝑡𝑆1 , 𝑡𝑊2
, 𝑡𝑆2 , … , 𝑡𝑆𝑁−1

, 𝑡𝑊𝑁
}, where 𝑡𝑊𝑖

and 𝑡𝑆𝑖 are the lengths of 𝑖-th 
awake and asleep segments. In case of awake, the Fig. 4 shows the per-
centage 𝑃 of the total sleep time only considering segments of length 
greater than 𝐿, that is

𝑃 (%) =
∑
𝑖∈ 𝑡𝑊𝑖∑
∀𝑖 𝑡𝑊𝑖

⋅ 100, (13)

where  is the set of 𝑡𝑊𝑖
> 𝐿. For the case of asleep is analogous.

In the real application, the HR signal is segmented into non-overlap 
windows of length 𝐿, and then the segments are classified obtaining 
the hypnogram. If there are asleep/awake segments of length less than 
𝐿, some windows will not belong to a single state. That is, when 𝐿 in-
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Table 6

Performance of the algorithms in database of 4500 remaining patients for differ-
ent values of 𝐿. FS 1: forward feature selection and SVM with penalty error in 
minority class. FS 2: forward feature selection and SVM with artificial balance. 
FS 3: variable selection with random forest. The best results are highlighted in 
bold type.

Acc Sp Se PPV NPV 𝐿

FS 1 𝟕𝟑.𝟕 𝟖𝟎.𝟗 54.6 𝟒𝟖.𝟔 83.1
FS 2 73.6 80.6 55.0 48.4 83.6 30
FS 3 69.7 72.7 𝟔𝟐.𝟖 43.1 𝟖𝟒.𝟔𝟓

FS 1 𝟕𝟗.𝟒 𝟖𝟔.𝟎 63.8 𝟓𝟖.𝟑 86.5
FS 2 79.2 85.4 64.7 57.6 86.7 60
FS 3 76.6 80.2 𝟔𝟗.𝟖 52.5 𝟖𝟕.𝟔

FS 1 𝟖𝟎.𝟔 𝟖𝟔.𝟎 67.8 𝟓𝟗.𝟑 87.7
FS 2 80.4 85.7 68.2 59.0 87.8 90
FS 3 78.2 81.4 𝟕𝟐.𝟑 54.4 𝟖𝟖.𝟔

FS 1 𝟖𝟏.𝟒 𝟖𝟔.𝟒 70.4 𝟔𝟎.𝟓 88.5
FS 2 𝟖𝟏.𝟒 86.1 70.9 60.3 88.7 120
FS 3 79.4 82.2 𝟕𝟒.𝟒 56.0 𝟖𝟗.𝟒

FS 1 𝟖𝟐.𝟑 𝟖𝟔.𝟕 72.8 𝟔𝟏.𝟖 89.3
FS 2 82.0 86.2 73.3 61.1 89.4 150
FS 3 80.3 83.0 𝟕𝟔.𝟎 57.3 𝟗𝟎.𝟎

FS 1 𝟖𝟑.𝟏 𝟖𝟕.𝟐 74.4 𝟔𝟑.𝟐 89.8
FS 2 82.8 86.7 74.7 62.4 89.9 180
FS 3 81.2 83.8 𝟕𝟕.𝟏 58.6 𝟗𝟎.𝟒

FS 1 𝟖𝟑.𝟔 𝟖𝟕.𝟑 75.9 𝟔𝟒.𝟎 90.3
FS 2 83.4 87.0 76.1 63.4 90.3 210
FS 3 81.9 84.3 𝟕𝟖.𝟑 59.8 𝟗𝟎.𝟖

FS 1 𝟖𝟒.𝟐 𝟖𝟕.𝟕 77.2 𝟔𝟓.𝟐 90.7
FS 2 84.0 87.4 77.3 64.6 90.7 240
FS 3 82.6 84.9 𝟕𝟗.𝟏 61.0 𝟗𝟏.𝟏

FS 1 𝟖𝟒.𝟕 𝟖𝟕.𝟗 78.3 𝟔𝟔.𝟎 91.1
FS 2 84.6 87.8 78.3 65.7 91.1 270
FS 3 83.1 85.3 𝟕𝟗.𝟗 62.0 𝟗𝟏.𝟒

FS 1 𝟖𝟓.𝟐 𝟖𝟖.𝟑 79.0 𝟔𝟕.𝟎 91.3
FS 2 85.0 88.1 79.2 66.7 91.4 300
FS 3 83.6 85.9 𝟖𝟎.𝟑 63.1 𝟗𝟏.𝟓

Fig. 4. The percentage 𝑃 (%) of the total asleep/awake time only considering 
segments of length greater than 𝐿.

creases, the segments with mix awake and asleep stages also increase. 
The classifier was not designed for these mixtures. Fig. 4 shows the 
magnitude of this mixture increment with L. On the other hand, as we 
reported in the results, as we increased 𝐿, the performance of the algo-
rithm improves, because there is more information to detect dynamic 
changes and the features can be calculated more exactly. There is a 
trade-off between the performance and the ability to apply the algo-
rithm in a real situation mediated by 𝐿. When choosing a larger L to 
obtain better classification results, we sacrifice accuracy in the bound-
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Table 7

Comparison with the literature.

Method Signal N. of classes N. of patients Epoch time Acc Se Sp Prec NPV

Beattie et al. [25] PPG + accelerometer 5 60 30 s 90.6 69.3 94.6 70.5 94.3

PPG 2 10 30 s 76.8 76 77 41.2 93.8
Uçar et al. [26] HRV 2 10 30 s 72.4 74 72 35.9 92.9

PPG + HRV 2 10 30 s 76.7 80 76 41.4 94.7

Adnane et al. [22] ECG 2 18 30 s 80 69.1 84.5 64.5 87

Xiao et al. [23] ECG 3 45 5 min 83.9 51.1 90.2 49.58 90.7
ary of the asleep/awake transition and probably will miss some short 
transitions.

The development of this algorithm is at an early stage. Before to 
be applied in clinical practice, it is necessary to perform a large scale 
assessment of the method to validate its use.

As mentioned previously, in this work we used the heart rate signal 
with a sampling frequency of 1 Hz. The AASM stipulates the use of 25
Hz in oximetry as desirable, and 10 Hz as minimum recommended, but 
there are no specific recommendations about the sampling frequency of 
the HR [1]. Considering the range of possibles HR frequencies, there is 
no need for a high sampling frequency.

The use of a different sampling frequency to that we use in this work 
could change the performance obtained, since many features vary with 
the sampling frequency. In the case of applying the designed system to 
signals with a sampling frequency greater than 1 Hz, it will be necessary 
to subsample the signal. Conversely, the use of signals with a sampling 
frequency smaller than 1 Hz is not possible without re-performing all 
experiments to find new optimal parameters.

There are several previous works that perform automatic sleep stage 
classification. EEG is generally used, but several alternatives have been 
proposed for ECG. However, as far as we know, there are not studies 
using only HR from PPG. The comparisons between studies are not sim-
ple. Different signals, databases and number of classes are used. In order 
to compare with our work, in cases where it was necessary, the differ-
ent sleep stages were considered as unique. However, to be fair, we will 
report which works discriminated sleep stages in more detail.

Beattie et al. [25] used PPG signals and accelerometer. In that work 
the authors considered 5 classes. The database used by Beattie was com-
posed of 60 participants were self-reported normal sleepers. We can not 
make a direct comparison because they have additional information. 
They use the PPG signal (not only the HR calculated from it), in ad-
dition to the accelerometer signals. The best accuracy, sensitivity and 
specificity obtained in this work were 90.6%, 69.3% and 94.6% respec-
tively.

Uçar et al. [26] used PPG and HRV from PPG, and the combina-
tion of these two to classify in awake and asleep. The signals used in 
this work contain more information than those of our work. The con-
fusion matrix was not reported in this paper, it was deduced from the 
data reported by the authors. The best accuracy, sensitivity and speci-
ficity were 76%, 74% and 80% respectively. The database used contains 
registers of 10 patients.

Adnane et al. [22] used ECG signal from 18 patients (4 normal sleep-
ers, 6 mixed normal and insomniac sleepers, and 8 insomniac sleepers). 
They only considered two classes. The best accuracy, sensitivity and 
specificity were 80%, 69.1% and 84.5% respectively.

Xiao et al. [23] extracted 41 features from ECG and used RF to dif-
ferentiate among wake, REM and non-REM stages. The results reported 
were 83.94%, 51.15% and 90.15% of accuracy, sensitivity and specificity, 
respectively. The authors only analyzed data labeled with “stationary”, 
that is, they classified 5-minute windows corresponding to a single class.

Yücelbaş et al. [24] used ECG signals and classify the sleep stage in 
wake, REM and non-REM. They used two different databases. In total, 
28 patients were considered. The reported results were discriminated 
by healthy subjects and patients. For the first database, the accuracies 
10
was 87.11% for the healthy and 78.08% for the patient. For the second 
database, 77.02% and 76.79%. The reported data do not allow to com-
pare all performance measures.

The results here obtained are encouraging, because it addresses a 
limitation of all apnea diagnosis methods based only on desaturation. 
The risk of overfitting in our algorithm is minimal, because we use 
a large number of records registered in real conditions. Although we 
have applied strategies to prevent the unbalance of classes, it can be 
seen that in all the developed methods there is still a bias towards the 
majority class that should be addressed in future work.

The Table 7 summarizes similar works. Other related results, even 
obtained with EEG, can be found in [24].

In future work, the algorithm developed for patients will be adapted 
and applied to obtain simplified hypnograms and total sleep time esti-
mation. Finally, the apnea detection and sleep estimation systems for 
OSAHS diagnosis will be evaluated together.

6. Conclusions

In this work, we developed an automatic system to classify the sleep 
stage in awake or asleep using machine learning techniques from pho-
toplethysmographic HR signals. It was shown that information theory-
related features and complexity measures, and their extensions to time-
frequency domain, are useful to differentiate between awake and asleep 
stages. It was shown that very simple and inexpensive signals such as 
those obtained by pulse oximetry can achieve performances comparable 
to those obtained with signals that contain more information. The use 
of a large database allows a good generalization capacity of the devel-
oped method. We developed three alternatives to eliminate the possible 
redundancy of the extracted features, FFS schemes based on SVM and 
variable selection with RF with artificial balance of training data, and 
FFS-SVM with penalty errors in minority class without balanced class. 
The FFS-SVM with penalty error in minority class has slightly better 
performance than the other methods. However, all performances are 
very similar. As future work, we will adapt the algorithm to obtain sim-
plified hypnograms and total sleep time estimation. The ultimate aim is 
to use this algorithm and an apnea event detector for OSAHS diagnosis.
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