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Abstract 

Heart rate monitoring provides valuable information about an individual’s 

physiological condition. The information obtained from heart rate monitoring can 

be used for a wide range of purposes such as clinical diagnostics, assessment of 

the efficiency of training for sports and fitness, or of sleep quality and stress levels 

in wellbeing applications. Other useful parameters for describing a person’s 

fitness, such as maximal oxygen uptake and energy expenditure, can also be 

estimated using heart rate measurement. The traditional ‘gold standard’ for heart 

rate monitoring is the electrocardiograph, but nowadays there are a number of 

alternative methods too. Of these, optical sensors provide a relatively simple, low-

cost and unobtrusive technology for monitoring heart rate and they are widely 

accepted by users. There are many factors affecting the measurement of optical 

signals that have an effect on the accuracy of heart rate estimation. However, 

there is a lack of standardized and unified methodology for comparing the 

accuracy of optical heart rate sensors to the ‘gold standard’ methods of 

measuring heart rate. The widespread use of optical sensors for different 

purposes has led to a pressing need for a common objective methodology for the 

evaluation of how accurate these sensors are. This thesis presents a 

methodology for the objective evaluation of optical heart-rate sensors. The 

methodology is applied in evaluation studies of four commercially available 

optical sensors. These evaluations were carried out during both controlled and 

non-controlled sporting and daily life activities. In addition, evaluation of beat 

detection accuracy was carried out in non-controlled sleep conditions. The 

accuracy of wrist-worn optical heart-rate sensors in estimating of maximal oxygen 

uptake during submaximal exercise and energy expenditure during maximal 

exercise using heart rate as input parameter were also evaluated. The accuracy 

of a semi-continuous heart rate estimation algorithm designed to reduce power 

consumption for long-term monitoring was also evaluated in various conditions. 

The main findings show that optical heart-rate sensors may be highly accurate 

during rhythmic sports activities, such as jogging, running, and cycling, including 

ramp-up running during maximal exercise testing. During non-rhythmic activities, 

such as intermittent hand movements, the sensors’ accuracy depends on where 

they are worn. During sleep and motionless conditions, the optical heart-rate 

sensors’ estimates for beat detection and inter-beat interval showed less than 
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one percent inaccuracy against the values obtained using standard measurement 

techniques. The sensors were also sufficiently accurate at measuring the inter-

beat intervals to be used for calculating the heart rate variability parameters. The 

estimation accuracy of the fitness parameters derived from measured heart rate 

can be described as follows. An assessment of the maximal oxygen uptake 

estimation during a sub-maximal outdoor exercise had a precision close to a sport 

laboratory measurement. The energy expenditure estimation during a maximal 

exercise was more accurate during higher intensity of exercise above aerobic 

threshold but the accuracy decreased at lower intensity of exercise below the 

aerobic threshold, in comparison with the standardized reference measurement. 

The semi-continuous algorithm was nearly as accurate as continuous heart-rate 

detection, and there was a significant reduction in the power consumption of the 

optical chain components up to eighty percent. The results obtained from these 

studies show that, under certain conditions, optical sensors may be similarly 

accurate in measuring heart rate as the ‘gold standard’ methods and they can be 

relied on to monitor heart rate for various purposes during sport, everyday 

activities, or sleep. 
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“We choose to go to the Moon! … We choose to go to the Moon in this decade and do 

the other things, not because they are easy, but because they are hard, because that 

goal will serve to organize and measure the best of our energies and skills, because that 

challenge is one that we are willing to accept, one we are unwilling to postpone, and one 

we intend to win...” 

John Fitzgerald Kennedy speech in Houston, on September 12, 1962
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1 Introduction 

Heart rate (HR) is one of the most fundamental techniques for measuring vital signs and 

has been used almost since the dawn of civilization. For example, in ancient Greece, the 

physician and scientist Herophilos (ca. 335 to ca. 280 BC) measured HR by timing the 

pulse using a portable clepsydra (a water clock) (Bedford 1951; Bay & Bay 2010). In the 

17th century, English physician John Floyer constructed “The Physician Pulse 

Watch“ and introduced quantitative HR measurement by counting the number of beats 

per minute (Floyer 1707; Floyer 1710). The modern era of HR monitoring was initiated 

in the late 19th century by William Einthoven’s invention of a technique for measuring the 

electrical activity of the heart (Einthoven 1895). By the late 1930s, Alrick Hertzman per-

formed the first experimental measurements of blood flow with a photoelectric plethys-

mograph (Hertzman 1937; Hertzman 1938). The real milestone in the history of wearable 

HR monitoring, however, came in 1960, when Norman Holter constructed the first port-

able electrocardiographic recorder (Holter 1961). HR monitoring is widely used nowa-

days in various activities, such as sport, but also for assessing people’s general fitness 

and wellbeing, i.e. healthcare. In professional sport training, especially in endurance 

sports, HR measurement is a common support tool for tracking an athlete’s physical 

condition in order to design effective, intensive training programmes which detect and 

prevent overexertion and include suitable recovery periods (Achten & Jeukendrup 2003). 

It is difficult to measure maximal oxygen uptake (VO2max) and energy expenditure (EE) 

in field exercise conditions using standard measurement techniques, but the values can 

be estimated from their relationship with HR (Achten & Jeukendrup 2003). 

For much the same reasons, HR monitoring can be extremely beneficial in monitoring 

the average person’s recreational sport or daily fitness activities. As they are based on 

the physiological response of the whole body, analyses of heart rate variability (HRV) 

derived from beat-by-beat HR monitoring can provide valuable information about a per-

son’s general fitness and current level of physical activity (Mutikainen et al. 2014; Hall-

man et al. 2015), psychological stress (Teisala et al. 2014; Kaikkonen et al. 2017; Fohr 
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et al. 2017), and sleep quality and recovery (Myllymaki et al. 2012; Tobaldini et al. 2013; 

Pietilä et al. 2015). In health care, besides its fundamental diagnostic use for monitoring 

a patient’s vital signs, HR monitoring can also be used for other purposes. It is ideal for 

monitoring the health of out-patients in remote home monitoring, thus enabling early in-

tervention (Merilahti et al. 2009), or as a predictor for various cardiac diseases (Agewall 

et al. 2017). Additionally, when combined with further HRV analysis, it is a useful tool for 

examining the autonomic nervous system (ANS) (Malik 1996; Sztajzel 2004). 

Nowadays, most of the HR monitoring during sport and daily activities is usually carried 

out with devices based on the electrocardiography (ECG) principle. These involve the 

use of chest straps and disposable electrode recorders, and most of them are indeed 

highly accurate. The key benefits of ECG-based HR recorders are their straightforward 

electrical signal acquisition from the body, their relatively simple digital processing and 

their robustness to the effects of motion, especially with regard to the way the devices 

are constructed. Although ECG devices are relatively simple to manufacture, they do 

restrict the wearers. The contact between the skin and the sensors needs to be suffi-

ciently moist to provide good conductivity, which is particularly apparent before starting 

exercise or during long-term monitoring. The wearer’s skin might be irritated by the ad-

hesive used to attach the disposable electrodes, or by the material used for the chest 

strap, particularly during long-term measurements, because a relatively large area of 

skin has to be covered by these sensors. In addition, the position of the chest straps can 

be obtrusive, especially for females.  

The key benefits of optical-based wearable HR monitors are their small size and their 

common and familiar wearing position on the wrist. However, optical HR (OHR) monitors 

have their own limitations, in that the quality of the signal can be affected by the wearer’s 

skin color, the ambient light, and the type and degree of motion.  

Despite their limitations, OHR monitors are becoming more and more popular with the 

general public. In addition, they are being utilised more for research into medical health 

and fitness because of their relative ease of use. However, there are no standardized 

guidelines or procedures on how to objectively evaluate these devices, nor experimental 

platforms for evaluating new medical products. Bassett et al. (Bassett et al. 2012) have 

already emphasized the necessity of testing the fundamental accuracy of wearable sen-

sors used for scientific purposes, and considering their increasingly widespread use, the 

importance of such an objective is growing.  
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The main objective of this thesis is to develop an objective methodology for assessing 

the accuracy of wearable OHR sensors, and to apply this methodology to evaluate the 

accuracy of selected commercially available high-end consumer OHR sensors. 

This thesis is based on five recent research papers published between 2013 and 2017 

which focused on measuring the accuracy of OHR sensors. Three of the publications 

focus on evaluating commercially available OHR monitors during sport activities. In ad-

dition, one of the publications presents the beat-to-beat interval detection accuracy of 

OHR, another shows how power consumption in OHR can be reduced and one describes 

estimation accuracy of the EE and VO2max derived from OHR measurements.  

Following this introductory chapter, Chapter 2 presents the objectives of this thesis. 

Chapter 3 describes the basic physiology of the heart and HR. It then describes the 

principles on which OHR is based, and the principles used for estimating VO2max and EE 

based on HR. Chapter 4 summarizes and analyzes the methodologies used in previous 

studies of optical wearable sensors. Chapter 5 describes an ‘evaluation framework’ for 

the objective evaluation of OHR. Chapter 6 summarizes the results of the cited publica-

tions addressing specific objectives. Chapter 7 discusses the results, the impact and 

limitations of the studies, and possible future directions for further research, and Chapter 

8 summarises the general findings and conclusions. 





 

 

2 Objectives of the thesis 

The main objectives of this thesis are to develop an objective evaluation methodology 

for assessing the accuracy of wearable OHR sensors, and to apply this methodology to 

the evaluation of the accuracy of selected, commercially-available, high-end, consumer 

OHR sensors. The specific objectives of the thesis are: 

1. To develop an objective OHR evaluation methodology that can be used for the 

evaluation of OHR accuracy in various real life situations (Publications I-V) 

2. To evaluate the accuracy of selected high-end OHR devices during sports (Pub-

lications I, II and V) 

3. To evaluate the beat-to-beat accuracy of a selected OHR device during sleep 

(Publication III) 

4. To evaluate the accuracy of EE and VO2max  estimation based on OHR and mobile 

phone-based speed estimation (Publication V) 

5. To evaluate a low-power approach for OHR estimation during everyday use (Pub-

lication IV) 

 





 

 

3 Physiology and measurement principles 

 Heart and heart rate 

The heart is a muscular body organ that pumps blood circulating through vessels in the 

body (Tortora & Grabowski 2003). It is located in the mediastinum and consists of four 

chambers; the right atrium and ventricle, and the left atrium and ventricle (Tortora & 

Grabowski 2003). Blood circulation is important for transporting various substances 

around the body, such as oxygen, carbon dioxide and nutrients, and is vital for regulating 

life processes (Tortora & Grabowski 2003). 

HR is defined as the number of heart contractions per unit of time. The contractions are 

induced by pacemaker cells in the sinoatrial (SA) node of the heart which the other car-

diac muscle cells follow (Vander et al. 1990). The inherent SA heart rhythm rate in the 

absence of any neural or hormonal influences is 100 beats per minute (bpm). HR is 

typically regulated by sympathetic (stimulating) and parasympathetic (inhibiting) activity 

of the ANS. The normal resting HR is below 100 bpm because parasympathetic activity 

has more influence during rest (Vander et al. 1990). In addition, heart rate activity may 

also be modified by various chemicals, drugs, hormones and ions (Marieb 2006). 

Each contraction of the left ventricle ejects blood into the aorta. This results in increased 

blood pressure caused by the hydrostatic pressure exerted by the blood against the inner 

walls of the vessels (Tortora & Grabowski 2003). The factors affecting the magnitude of 

the pulse (the difference between systolic and diastolic pressure) are stroke volume, 

speed of stroke, ejection volume and arterial compliance (Vander et al. 1990). Stroke 

volume depends on the volume of blood in the ventricles before contraction, and the 

input amplitude of the sympathetic nervous system for ventricle contractions (Vander et 

al. 1990). The blood pressure wave is propagated through the arterial system to the 

peripheral arteries (arterioles and capillaries). The alternating expansion and recoil of the 
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elastic arteries creates a pressure wave, which is the pulse (Tortora & Grabowski 2003). 

In a healthy person, the pulse rate (pressure surges per minute) equals the HR (beats 

per minute) (Marieb 2006). There are certain pathophysiological states, such as heart 

arrhythmias (e.g. ventricular fibrillation or sudden heart arrest) or arterial embolism (e.g. 

thromboembolism), which can result in the absence of a pulse in the arteries (Tortora & 

Grabowski 2003). The relative distribution of blood flow to the particular organs is regu-

lated by the change of resistance in the arterioles. In the cardiovascular system, this 

resistance is a measure of the friction between the blood and the walls of the vessels, 

which can impede the flow of the blood (Vander et al. 1990). Blood flow rate to a partic-

ular organ Forgan is directly proportional to the mean arterial pressure (MAP) and the re-

sistance of the organ Rorgan (1).  

𝐹𝑜𝑟𝑔𝑎𝑛 =  
𝑀𝐴𝑃

𝑅𝑜𝑟𝑔𝑎𝑛
 (1) 

Large arteries are reservoirs of pressure in the body (Vander et al. 1990). The resistance 

change in the arterioles is based on the adjustment of their diameter using a smooth 

muscle. When the muscle relaxes it increases the diameter (vasodilation) and when it 

contracts it decreases the diameter of the vessel (vasoconstriction) (Vander et al. 1990). 

These changes are controlled by both local and extrinsic control mechanisms. Local con-

trol mechanisms regulate the blood flow under the following conditions: increased meta-

bolic activity (active hyperemia), which usually demands an increase of blood flow in 

organ tissue; pressure changes, which require the maintenance of a constant blood flow 

(pressure autoregulation); an increase of blood flow after blood supply occlusion (reac-

tive hyperemia); or, vasodilatation, which occurs during inflammation in response to an 

injury (Vander et al. 1990). The extrinsic control mechanisms are based on sympathetic 

nerves controlling blood flow in the skin. In cold weather for example, they trigger a reflex 

increase in sympathetic activity which causes vasoconstriction and reduced blood flow 

to the skin, making the skin feel cold to the touch (Vander et al. 1990; Marieb 2006) This 

reduction in blood flow, called thermoregulation, is the body’s way of retaining the heat 

in the warm blood for the body’s internal organs (Tortora & Grabowski 2003). In contrast, 

in warm weather the increased body temperature inhibits the sympathetic activity, caus-

ing the arterioles to dilate, which enhances circulation in the skin (Vander et al. 1990; 

Marieb 2006). The regulation of blood flow due to vasoconstriction and vasodilation have 

a significant impact on the signal quality in photoplethymographic blood flow measure-

ments (Kamal et al. 1989). 
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A normal HR, or pulse rate, is about 75 beats per minute (bpm) for a body at rest. Rapid 

HR, over 100 bpm, is called tachycardia. Bradycardia is the opposite, meaning a slower 

than normal HR, typically less than 60 bpm (Marieb 2006) and can often be observed in 

endurance athletes (Tortora & Grabowski 2003). The main physical factors that have an 

influence on HR include gender, age, exercise, stress, body temperature or physical 

condition. HR is usually faster in females than males (72 – 80 bpm vs 64 – 72 bpm, 

respectively), while the resting HR of the human foetus is around 140 – 160 bpm. Heat 

can boost the metabolic rate of the heart cells, while cold has an opposite effect and 

decreases the HR. Physical exercise or stress can temporarily stimulate nervous controls 

(sympathetic control) and this can also increase the HR (Marieb 2006). 

Electrocardiography (ECG or EKG) is the standard method for detecting heart activity. 

The principle behind it is to measure the electrical potential generated by the heart mus-

cles during contraction. An electrocardiogram is the recorded signal of heart activity con-

sisting of 5 waves: P, Q, R, S, and T (Figure 1) (Tortora & Grabowski 2003). Inter-beat 

interval (IBI) or RR interval (RRI) is the time between two successive beats (R waves) 

and is measured in milliseconds. Pulse time, derived from the pulse wave, also corre-

sponds to RRI (Figure 2) (Lemay et al. 2014). Beat detection in an ECG signal for RR 

interval estimation can usually be realized by detecting the QRS complex (Pan & Tomp-

kins 1985). The RR interval and the HR value have a non-linear relationship (1/RRI) 

(Korhonen 1997). HRV is the natural variation in time between consecutive beats, and 

is predominantly determined by the extrinsic regulation of the ANS (Shaffer & Ginsberg 

2017). HRV analyses in the time and frequency domain can be utilized for various appli-

cations, such as clinical practice (Malik 1996; Sztajzel 2004), sleep quality measurement 

(Myllymaki et al. 2012), and sport (Aubert et al. 2003). 

 

Figure 1: ECG signal waveform 
From (Tortora & Grabowski 2003). © 2003 
by Biological Sciences Textbooks, Inc. and 
Sandra Reynolds Grabowski. Reprinted by 
permission of John Wiley & Sons, Inc. 

 

Figure 2: ECG and PPG signal, RR interval and pulse 
time. Reprinted from (Lemay et al. 2014) 
© 2014 with permission from Elsevier. 
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 PPG measurement principle 

Photoplethysmography (PPG) is a simple and low-cost, non-invasive, optical measure-

ment technology. The principle behind it is to measure the light propagation in tissue 

during the cardiac cycle by detecting the volume of blood in the microvascular bed tissue, 

which changes with the blood flow (Challoner & Ramsay 1974; Allen 2007). PPG tech-

nology is based on a light beam illuminating the tissue. Some of the light is absorbed in 

the tissue, while some of it is reflected or trans-illuminated to the optical sensors (Lemay 

et al. 2014). PPG has complicated relationships to several biomechanical, optical and 

physiological covariates (Allen 2007; Reisner et al. 2008) but can provide useful infor-

mation about cardiovascular and ANS activity (Kamal et al. 1989). 

The Beer-Lamber law (2) describes the attenuation of transmitted light from the source 

of the light beam to the optical sensor. When a monochromatic light beam, I0, propagates 

in a homogeneous medium, the light intensity, I, decreases exponentially as a function 

of the path length, l, and the light absorption coefficient, α, which is related to the me-

dium’s properties at a specific wavelength. 

𝐼 =  𝐼0𝑒𝛼𝑙 (2) 

The Beer-Lambert law applies to multiple substances absorbing light in a medium, or for 

a sequence of several different media. In both cases, the total absorbance is expressed 

as the sum of the absorbencies of the individual components. According to the Beer-

Lambert law, the sum of the transmitted and absorbed light is equal to the incident source 

light, thus not taking into account scattering or reflection of light. Hence, it is a simplifica-

tion of the actual physical process. 

Because the fundamental Beer-Lambert law expresses the absorbance of light propa-

gated through homogeneous layers (Reisner et al. 2008; Lemay et al. 2014), it cannot 

be directly applied to the absorbance of light in biological structures such as blood, skin 

and other biological tissues, as they are inhomogeneous. This inhomogeneity leads to 

the non-linear absorbance of light and causes complex changes in the light’s reflection 

and absorption, mainly due to movement or to variations in the inhomogeneous struc-

tures (Lemay et al. 2014). The absorbance and scattering of light is also subject to the 

orientation of the red blood cells, which depends on the cardiac cycle (Nijboer et al. 1981; 

Lemay et al. 2014). Living tissue with a blood flow can be modeled as a concatenation 
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of several media (skin layers, tissue, blood, arteries, veins, inter-cellular liquids etc.) or 

blood components (oxyhemoglobin, deoxyhemoglobin) that are characterized by partic-

ular path lengths and light absorption coefficients (Bronzino 1995; Lemay et al. 2014). 

In an approximate model, one layer of a medium represents the veins and arteries, which 

change the absorption of light and the attenuation of transmitted light with pulsatile blood 

propagation invoked by the heartbeat. Increases of the pulsatile blood pressure in the 

vessels modifies their geometry (due to volume change) and their optical properties (due 

to changes in blood composition and concentration) (Lemay et al. 2014). It is the volu-

metric changes of the venous and arterial blood which are the origin of PPG signal vari-

ations (Figure 3) (Lemay et al. 2014). They are usually divided into AC and DC signal 

components. In PPG signals, pulsatile arterial blood is represented with the AC compo-

nent (Challoner & Ramsay 1974), while the “constant” light absorption due to tissue and 

total blood volume (venous blood and diastolic volume of the arterial blood) are repre-

sented with the DC component (Challoner & Ramsay 1974; Lemay et al. 2014). Altera-

tions in the DC level component can be observed due to respiratory rhythm, vasomotor 

activities, thermoregulation, and motion artifacts (Allen 2007). 

A PPG sensor can operate in two different modes: transmission and reflection mode 

(Figure 4). In transmission mode, the tissue is illuminated on one side and the sensor on 

the other side captures the light transmitted through it. This mode can be used in ear 

lobes, index fingers, thumbs, and big toes because the thickness of the tissue allows 

light transmission (Allen 2007). In the reflection mode, an optical sensor is located next 

to the source of light, and the reflected and scattered light is measured. Reflection mode 

PPG sensors can be used on the body, and are typically worn on the hand, wrist, forearm, 

ankle, forehead or torso (Lemay et al. 2014). 

The different optical characteristics of the different layers of human skin involve multiple 

light interaction processes (scattering, absorption, reflection, transmission and fluores-

cence) (R. Rox Anderson & John A. Parrish, 1981), all of which affect the PPG signal. 

The anatomical structure of the human skin consists of three main layers (illustrated in 

Figure 5), all of which impact on the reflective PPG signal (Shi 2009). Although the epi-

dermis, including the stratum corneaum (100 μm thick) contains no blood vessels, the 

dead cells are continually being replaced on its surface and the melanocyte cells in this 

layer produce a dark-brown pigment called melanin, which has an absorbent effect on 

incoming light (Shi 2009). 
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Figure 3: PPG signal components. Reprinted 
from (Lemay et al. 2014) © 2014 

with permission from Elsevier. 

 

Figure 4: Transmission versus reflec-
tance light PPG modes. Re-
printed from (Lemay et al. 
2014) © 2014 with permission 
from Elsevier. 

Thus, it can attenuate a PPG signal by decreasing the signal-to-noise ratio from the 

same-intensity light source. However, the AC component of a PPG signal is not affected 

by this layer. The dermis (1 – 4 mm thick) contains large networks of arterioles, veinules 

and capillaries (Shi 2009). This layer produces the AC component of the PPG signal 

through the scattering effect caused by the interaction between the propagated light and 

the blood. The third layer, subcutaneous tissue, (1 – 6 mm thick) encloses fat, larger 

arteries, veins and nerves and is mainly affected by the thermoregulatory functions of 

the skin and the body. In reflection type sensors, this layer has little effect on the PPG 

signal because the light is back-scattered in the dermis layer (Shi 2009). 

Melanin plays an important role in the optical properties of human skin. The amount of 

melanin determines the color of the skin, as it is the main absorber of light in the visible 

spectrum (R. Rox Anderson & John A. Parrish, 1981). The transmittance of skin can thus 

vary widely between fair- and dark-skinned people (R. Rox Anderson & John A. Parrish, 

1981). However, melanin doesn’t absorb wavelengths uniformly, as is shown by the 

graph in Figure 6. It actually absorbs shorter wavelengths better, but at longer IR wave-

lengths, the absorption of light is almost non-existent (R. Rox Anderson & John A. Parrish, 

1981; Lemay et al. 2014). The haemoglobin in red blood cells (40–45% of the cells) also 

changes the absorption characteristics due to its chemical binding (Shi 2009; Lemay et 

al. 2014). The solid line in the graph in Figure 6 shows the specific absorption spectra of 

saturated oxyhaemoglobin (HbO2) while the dotted line shows the reduced deoxyhae-

moglobin (Hb). Arterial blood absorbance, which is measured with two wavelengths of 

light, red and near infra-red, can be used to estimate the level of oxygen in the blood 

(Webster 1997). 
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Figure 5: Skin anatomy (Jones 
1987 adapted from 
Conrad 1971). 
© 1987 IOP Publish-
ing. Reproduced with 
permission. All rights 
reserved. 

 

Figure 6: Absorption and molar extinction coefficients 
of main biological tissue constituents (H2O, 
Hb, HbO2 and Melanin) at 500 to 1100 nm 
window wavelengths. Reprinted from 
(Lemay et al. 2014) © 2014 with permission 
from Elsevier. 

 Main factors affecting PPG signal quality 

Being based on the interaction of light and biological tissue, PPG measurements are 

sensitive to various factors (Lemay et al. 2014). The earliest experimental optical blood 

flow measurements identified a number of fundamental sources of interference with the 

measurements: movement and contact of the skin relative to the sensing probe, the size 

and depth of the vascular area, variation in the intensity and spectrum of the light source 

used for illumination, and the ratio between reduced and oxygenated hemoglobin on the 

skin’s opacity (Hertzman 1938). The next section describes the main factors impacting 

on the signal quality of the most recently-designed sensors. 

3.3.1 Wavelength and sensor geometry 

Both the wavelength of the light source and the sensor geometry, especially the distance 

between the light emitter and detector, affect the properties and quality of a PPG signal. 
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In the reflectance mode PPG, the depth to which the light penetrates the tissue (pene-

tration depth) depends on the distance between the LED emitter and the photodetector 

(PD) receivers (Lemay et al. 2014). The light follows a banana-shaped curve through the 

tissue from the emitter to the receiver (Reisner et al. 2008). The design and shape of the 

sensor cause the optical shunting effect, which is the amount of direct light travelling 

from the emitter to the detector without propagation over pulsing blood in the biological 

tissue (Webster 1997; Lemay et al. 2014). The optimal distances between a LED source 

and a PD have been shown to be in the range of 6 to 10 mm for IR light (Mendelson & 

Ochs 1988) and ~2 mm for green light (Hwang et al. 2016). 

Several studies which have analyzed the application of different wavelengths for the PPG 

light source (in both hot and cold temperatures) have suggested that it is better to use 

green wavelengths for reflective PPGs. In one study, an examination of the height of 

reflective PPG signal pulses for finger and forearm signals acquired with four different 

wavelengths (blue 480 nm, green 560 nm, red 633 nm, and infra-red 825 nm) at 13°C 

and 42°C peripheral skin temperatures reported the highest AC signal amplitude for the 

green wavelength in both placement and temperature (Lindberg & Oberg 1991). In an-

other study, a comparison of reflected IR (880 nm) and green (525 nm) PPG measure-

ments performed during rest at 15°C and 25°C peripheral skin temperatures on light-

skinned subjects showed over two times higher AC/DC component ratio for the green 

wavelength, especially at lower temperatures (Maeda et al. 2008). Similar results show-

ing a higher AC/DC component ratio for green wavelength PPG signals than for IR sig-

nals have also been observed during rest at normal temperatures, and below 20°C and 

over 38°C (Maeda et al. 2011). The longer wavelengths in the IR range penetrate deeper 

into the tissues (R. Rox Anderson & John A. Parrish, 1981) and produce a more complex 

reflected signal, especially in the presence of motion (Lemay et al. 2014). However, in a 

cold ambient environment, blood microcirculation decreases due to vasoconstriction, 

and it is difficult to reach the deeper tissues that have sufficient blood circulation for PPG 

with shorter wavelengths (Lemay et al. 2014). In addition, dark skin pigmentation (high 

melanin concentration) had a low reflectance of wavelengths shorter than 650 nm (Cui 

et al. 1990). Therefore, dark skin or a cold climate may indicate that IR light is preferable. 

In short, the selection of the right light wavelength depends on the absorbance in the 

skin, the ambient environment and other factors specific to each use case.  

3.3.2 Ambient light  

The interference of ambient light is a significant artifact in PPG monitoring. If the PD is 

exposed to too much ambient light from either a natural or artificial source, its output may 
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be saturated (Webster 1997). Poor mechanical design, or the incorrect attachment of the 

device to the body are typical causes. If the ambient light is very bright, e.g. direct sun-

light, it may pass through the human skin and tissue and be picked up by the PD through 

the tissue. Ambient light interference is common and can significantly deteriorate the 

performance of a PPG monitor unless special care is taken.  

The interference of the ambient light can be categorised according to whether it is static 

or time-varying (Winokur et al. 2015). Static ambient light artifacts are produced by ex-

ternal, high-intensity light sources, such as the sun, which usually increases the DC com-

ponent of the PPG signal. A high DC component in a PPG signal reduces the dynamic 

range of the sensor and may saturate an input analog-to-digital convertor. Time-varying 

ambient light artifacts (e.g. artificial office light) can produce high harmonic frequencies 

(Winokur et al. 2015). These frequencies can distort and interfere with PPG signals be-

cause of PPG’s relatively low measurement sampling rates and the aliasing effect. An-

other common artifact with time-varying ambient light is the “shuttering effect”, which is 

generated by high-frequency changes in the intensity of the ambient light. It occurs when 

the ambient light level changes rapidly from bright light to shadow and vice versa, e.g. 

when running in a forest with bright sunlight shining through the trees. The shuttering 

effect is difficult to filter out, because it is usually modulated in a useful frequency range, 

i.e. one that is close to that of HR.  

The influences of ambient light can be minimized if the sensors are well designed and 

manufactured. Placing a light filter over the PD (Webster 1997) helps to minimize ambi-

ent light interference and improves the final signal SNR by filtering out the longer wave-

lengths of sunlight. Signal modulation techniques combined with higher sampling fre-

quencies and further digital filtering are typical strategies for reducing the effects of am-

bient light in PPG measurements (Patterson et al. 2009; Patterson & Yang 2011; Patter-

son & Yang 2012). Another method for avoiding the interference of ambient light is alter-

native sampling utilizing a charge redistribution technique (Kim et al. 2015). 

3.3.3 Motion artifacts 

The largest category of interferents in PPG signal measurements are motion artifacts. 

Identification and classification of particular motion artifacts in recorded PPG signals var-

ies, not least because motion can come from several different sources at the same time 

(Lemay et al. 2014). For example, there are inner tissue modifications (e.g. motion of the 

muscles and tendons, and compression or dilation of the tissues) generated by body 

movements. There is also the shape of soft tissue (e.g. fat and liquids), which can be 
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changed by gravity or acceleration and whose changes modify the optical paths of the 

transmitted or reflected optical signals (Lemay et al. 2014). With PPG measurements, 

the effect of the binding used to attach the optical probe to the skin can act like a mass 

spring-system, so that local and global movements of the body change the position of 

the sensor relative to the skin. Due to the inhomogenous structure of the tissue’s surface, 

these changes can affect the optical paths (Lemay et al. 2014). The amplitude and wave-

form of a typical optical PPG signal modified by pressure applied to the sensor due to 

the re-distribution of fluid in the tissue occurs as follows (Lemay et al. 2014). The initial 

increase of pressure between the sensor and skin augments the pulsating component of 

the PPG. However, if that pressure rises too far above some threshold value, the pulsat-

ing AC component might decrease due to the blood vessels being squashed. Spigulis et 

al. (Spigulis et al. 2007) demonstrated the effect that a gradual increase in pressure on 

the probe has on PPG signal shape in a reflective multi-wavelength PPG. At shorter 

wavelengths (violet 405 nm and green 532 nm), the influence of higher pressure on the 

probe caused noticeable reductions in both the waveform amplitude and the signal base-

line. However, for longer wavelengths (red 645 nm), which penetrate deeper under the 

skin, only the baseline was reduced. 

Motion artifacts can be classified into three categories based on their rhythmicity and 

frequency of occurrence in typical OHR use-cases (Lemay et al. 2014). First, there are 

rhythmical motion artifacts, which mostly occur during endurance sport activities (e.g. 

walking, running, biking, or swimming). Next are rhythmical intermittent motions artifacts, 

which occur during daily activities (e.g. manual or office work). Lastly are non-rhythmical 

continuous motions which typically occur during ball games, working out in the gym, or 

in many other daily activities (e.g. keyboard typing).  

The influences of motion artifacts can be minimized if the sensors are well designed and 

manufactured. Among the mechanical design issues are the use of lightweight measure-

ment devices to decrease the impact of external forces. The friction used when attaching 

a probe to the hand should compensate for possible displacement from loose sensor 

bindings. The pressure of probe on hand should not be so high as to cause blood vessel 

‘clutching’ (Lemay et al. 2014). The impact that pressure on the probe and the skin has 

on the quality of the output PPG signal quality has been studied several times, but the 

results have been inconclusive (Dresher & Mendelson 2006; Maeda et al. 2013). How-

ever, one study showed that the application of higher pressure on the sensing probe 

improved the sensing signal quality for reflectance pulse oximetry on the forehead (Das-

sel et al. 1995). The importance of establishing optimal sensor pressure has been high-

lighted in a study of arterial stiffness using reflective PPG (Grabovskis et al. 2013). 
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OHR sensors are usually worn on the wrist due to the average user’s acceptance and 

familiarity with such placement (Korhonen et al. 2003). However, a study comparing dif-

ferent sites for a PPG sensor on the body showed that a lateral position on the upper 

arm is the best compromise between a useful PPG signal amplitude and movement ar-

tifacts (Maeda et al. 2011). 

In order for OHR data to be reliable, dedicated signal processing methods are required 

to mitigate the effects that motion has on the signals. Motion artifacts in a recorded PPG 

signal are suppressed, or at least reduced, during the PPG signal enhancing process. 

The algorithms used in this process normally get information about the motion from ad-

ditional motion sensors. Typically, a 3D accelerometer sensor directly measuring propa-

gated motion signals is used for this purpose. Other options include an extra light emitter 

at a different wavelength with minimal attenuation from the color of the blood. Another, 

less common, solution is to integrate a pressure sensor into the optical probe (Lemay et 

al. 2014). The simplest approach is just to discard the segments in which motion artifacts 

are present, but this makes the measurements somewhat less robust. The more ad-

vanced approaches are usually based on the assumption of the stationarity of rhythmical 

motion artifacts and an additive model, which combines the motion artifacts and the HR 

components into one optical signal. The spectrums of both the PPG and motion refer-

ence signals are estimated and the spectral peaks are identified. Then, the PPG signal 

is enhanced by filtering out the rhythmical motion frequencies until only the non-motion 

frequency peaks remain (Lemay et al. 2014). A yet more robust and advanced method, 

which is not limited only to rhythmical motion artifacts, is adaptive filtering (Haykin 2001). 

To do this, one needs to find a model that maps the motion signal into the existing com-

ponents in the PPG signals. Then the motion components are subtracted from the optical 

signals (Renevey et al. 2001). There are many other inventive methods for enhancing 

optical PPG signals, such as: an adaptive comb filter with an adaptive IIR Notch Filter 

structure (B. Lee et al. 2011), adaptive noise cancellation using a normalized least-mean-

square algorithm to attenuate motion artifacts and reconstruct multiple PPG waveforms 

(Fallet & Vesin 2017), a Wiener filter to attenuate the motion artifacts combined with a 

phase vocoder to refine the HR estimate (Temko 2015), or combining temporally-con-

strained independent component analysis and adaptive filters to extract clean PPG sig-

nals from a motion artifact-corrupted signal (Peng et al. 2014).  
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3.3.1 User characteristics 

User characteristics such as skin color (pigment and melanin), age, or gender do have 

an impact on PPG waveform morphology, which in turn affects the quality of the meas-

ured signal. There are no studies focusing on the effect that other skin properties can 

have on PPG signal quality, such as hydration, hairiness, sweating or body mass index 

(BMI)-related parameters.  

The influence of five skin types (Fitzpatrick scale I – V. (Fitzpatrick 1988)) at four light 

wavelengths (blue 470 nm, green 520 nm, red 630 nm, and infrared 880 nm) on reflective 

PPG signal modulation (AC/DC ratio) was investigated with measurements taken at rest 

and during exercise (Fallow et al. 2013). The results of this study showed that green light 

has the best modulation factor at rest regardless of skin type. During exercise, either 

blue or green had the highest signal-to-noise ratio, depending on the skin type. It was 

also noted that the darkest skin type (Fitzpatrick class V) produced the poorest quality 

signal when compared to the other lighter skin types, whether at rest or during exercise. 

Fallow et al. (Fallow et al. 2013) deduced that this was because melanin affects the light 

in the epidermal layer of the skin where there are no blood vessels, and so it is a static 

factor that has the same effect regardless of the conditions. Increased error in HR esti-

mation in subjects with darker skin was also reported during a testing protocol which 

included a variety of exercises (Spierer et al. 2015). Experimental measurements proved 

that Caucasian and Asian skin colors have better skin tissue reflectance than dark skins, 

which have higher pigmentation and melanin concentrations (Cui et al. 1990). The weak 

light reflection from dark skin pigment can be compensated for by applying a stronger 

light source (Cui et al. 1990) because the origin of the AC signal component lies beneath 

the epidermis layer, which doesn’t affect the modulation. Another option for reducing the 

attenuation of the signal from dark skin is to use longer wavelengths close to IR light, as 

these have better skin penetration (Lemay et al. 2014).  

The effects of age are characterized primarily by analyzing the PPG pulse shape. Exam-

ination of the PPG pulse shape measured by a reflective probe on three different body 

parts (fingers, ears and toes) was performed on healthy subjects divided into four age 

groups (younger than 30 years, 30–39 years, 40–49 years and 50 years or older) (Allen 

& Murray 2003). The median differences of the normalized PPG pulse shapes between 

the oldest group and the three younger groups demonstrated evidence of gradual 

changes with age, particularly a decrease in the amplitude. Significant changes in other 

parameters affecting the shape of the PPG waveform were observed with increasing age 

in studies exploring the use of PPG signals to assess arterial stiffness (Brillante et al. 
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2008; Jayasree et al. 2008; Shi et al. 2009; Wowern et al. 2015). All in all, it appears that 

age does have an effect on the shape of the PPG waveform. Changes in the PPG wave-

form, especially the reduction in amplitude, might cause a decrease the AC/DC compo-

nent ratio and also a decrease in the SNR. Gender differences affecting PPG signal 

parameters have only been studied in relation to respiratory rate detection in a reflective 

PPG signal (Nilsson et al. 2006), and no significant difference between the genders was 

found. 

3.3.2 Blood perfusion 

An important physiological factor affecting PPG quality is blood perfusion around the 

sensor area. The PPG signal is particularly sensitive to skin temperature and, more 

broadly, the whole body temperature. Increases in the AC and DC components of the 

PPG signal were observed during experimental measurements performed with increas-

ing ambient temperatures from 15°C to 25°C, resulting in the vasodilation effect (Kamal 

et al. 1989). In a cold environment, typically in a cold room or outdoors, blood perfusion 

on the skin is reduced to minimize the loss of body heat. This reduces variations in blood 

volume close to the skin, and in extreme climates the vasoconstriction may cause these 

variations to disappear altogether. This phenomenon was demonstrated with a compar-

ison of the frequency spectrums of PPG signals from 15°C to 25°C, where the low tem-

perature showed a noticeable decrease of spectral energy in the HR frequency (Kamal 

et al. 1989). A comparison of PPG signal measurements recorded in different seasons 

and ambient room temperatures also reported variations in the PPG signal quality, and 

there is a significant decrease in PPG amplitude during the cold winter season (Ku-

mazawa et al. 1964). Cold conditions reduce the SNR and may cause more artifacts, or 

even a complete loss of the optical signal. Obviously, wearing warm clothes to keep the 

skin warm around the sensor will help to alleviate the problem, as will strenuous physical 

activity which produces energy and heat which raises the body temperature and im-

proves blood perfusion. 

Mental stress has also been shown to have an impact on a PPG signal (Kumazawa et 

al. 1964). One of the first PPG studies showed that acute mental stress causes general 

vasoconstriction in the peripheral vessels and thus reduces the amplitude of a PPG sig-

nal. When the subject grew accustomed to the test, the stress effect was reduced and 

the signal returned to normal values. This shows that the effect is probably more related 

to emotional excitement than to the cognitive process of thinking itself (Kumazawa et al. 

1964). Thus, stress situations might cause a deterioration of the SNR in a PPG signal. 
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 Estimation of VO2max and energy expenditure from heart 
rate 

The main determinants of athletics endurance performance are the following: maximal 

oxygen uptake (VO2max), lactate threshold, running economy, fractional utilization of 

VO2max, and speed during maximal anaerobic test (Paavolainen et al. 1999; Bassett & 

Howley 2000). The VO2max parameter represents cardiorespiratory endurance capacity 

or aerobic power which is capacity of the body to distribute and utilize oxygen during 

maximal exertion involving dynamic contractions of large muscles (Nieman 2011). The 

VO2max measurement is important to describe cardiorespiratory fitness of individuals to 

examine possible risk of premature death from all causes, especially heart diseases 

(Nieman 2011). VO2max can be estimated directly in combination of measuring ventilation 

and analyzing the amount of air exhaled in the form of carbon dioxide in the exhaled 

breath compared to the amount of oxygen in the inhaled breath (Franklin & Balady 2000; 

Nieman 2011). The standard laboratory method of estimating VO2max is to do graded 

aerobic maximal exercise, typically running until the point of total exhaustion. At the point 

of total exhaustion, the subject has reached both VO2max and the maximal attainable HR 

(Nieman 2011). The laboratory method is, of course, impractical for monitoring any un-

controlled activities. However, VO2max can also be estimated during submaximal exercise. 

This is achieved by utilizing the linear relationship between HR, oxygen uptake and work-

load in combination with the maximum age-based HR calculation (Nieman 2011). Reis 

et al. (Reis et al. 2011) used this method to monitor well-trained long-distance runners 

on a running track. They reported a very high linear regression between oxygen uptake 

and HR; HR and running velocity; and, oxygen uptake and running velocity. They con-

cluded that HR can be used to predict the energy demand for a specified running speed. 

Metabolic processes, including exercise, are generating heat which is directly propor-

tional to energy expended (Franklin & Balady 2000). The estimation of energy expendi-

ture (EE) can be used to determine the effect of physical activity (Franklin & Balady 2000). 

Total energy expenditure (TEE) has three components: basal metabolic rate (BMR), the 

thermic effect of food and the EE of the activity (Levine 2005). There are three different 

approaches to measuring EE. The most common method used in sport or research is 

indirect calorimetry (IC) performed with gas exchange analyses (measurement of oxygen 

consumption and carbon dioxide production) (Levine 2005; Nieman 2011). Direct calo-

rimetry is based on measuring the subject’s heat loss rate, which can be done in calori-

metric chambers or with heat suits (Levine 2005). The non-calorimetric methods usually 
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use physiological markers, such as specific hydrogen isotope dilution in the doubly la-

beled method, or the measurement of other physiological variables (Levine 2005). Keytel 

et al. (Keytel et al. 2005) proposed and validated mixed-model equations with user char-

acteristic parameters (gender, height), both with and without the fitness level parameter 

(VO2max) for prediction of EE from HR during physical activity. Their results confirmed a 

strong agreement between predicted EE and reference EE measurement utilising IC and 

both models for EE prediction (with and without VO2max). Charlot et al. (Charlot et al. 

2014) improved the models proposed by Keytel et al. by adding actual running speed, 

resting HR, speed at VO2max or substituting HR with speed. It was concluded that those 

models that included running speeds provided the most accurate EE and the closest 

agreement with the IC method. Altini (Altini 2015) presented models and methods to 

provide accurate EE and VO2max estimation for individuals without requiring individual 

calibration. His protocol was in free-living conditions with wearable sensors measuring 

HR and inertial accelerometry. 





 

 

4 Evaluation of wearable optical heart rate monitors  

Several studies aimed at evaluating the accuracy of ECG-based consumer-wearable HR 

monitors have been published since the mass production of such devices began in the 

1980s. The early studies focused on evaluating chest-strap HR monitors in sports activ-

ities, while later studies also included their use in other applications. Several evaluation 

studies of OHR monitors have been published since 2016 but the main topic of interest 

is still the accuracy of OHR during sport activities. Until very recently, very few studies 

have evaluated other applications of OHR. Several studies have examined the accuracy 

of VO2max and EE estimations on the basis of measured HR, including measurements 

from OHR. The first section of this chapter describes the methods and statistical error 

metrics and then applies them to the estimations of HR and IBI accuracy. The method-

ology and results of the most relevant evaluation studies are then summarised. 

 Methods and metrics used for evaluating the accuracy of 
wearable heart rate monitors 

Various statistics and visual representations have been used to demonstrate the accu-

racy of wearable HR monitors. Typically, slightly different statistics are needed to assess 

the accuracy of HR (in bpm) or HRV (RRI or IBI in ms). The most commonly used statis-

tical methods are summarized in Table 1. The metrics listed in Table 2 can all be used 

to estimate the accuracy of the HR measurements. The relative or absolute number of 

missing, correct, and extra detected beats can also be calculated using the automatic 

method (Parak et al. 2015; Pietilä et al. 2018). This method is based on checking the 

number of corresponding reference beats to one detected beat from the tested device 

within a defined range [t -p ∙l, t + p l], where t is the time when the beat was detected, p 

is a parameter for limiting the search range, and l is the length of IBI (example in Figure 
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7). In this case, the parameter p was empirically set up at 0.5, which corresponds to half 

of the IBI length. The beats at positions t = 1000 ms, 2000 ms and 4500 ms are properly 

detected because they have only one corresponding reference beat. For the beat at po-

sition 𝑡 = 3050 ms, there are two corresponding reference beats, so it is assumed that in 

this case a beat was missed. For the beat at position 𝑡 = 5500 ms, there is no corre-

sponding reference beat, so this is considered to be an extra beat.  

 

Figure 7: Illustrative example of detecting extra and missing beats (Parak et al. 2015). 
© 2015 IEEE. Reprinted with permision. 

The Bland–Altman plot (BA – Plot) is a visualization method used to compare two differ-

ent measurement approaches (Altman & Bland 1983; Bland & Altman 1986), such as 

the results from the tested device and from the reference device (Examples in Figure 8). 

In this graphic method, the differences between the pair values are plotted against the 

averages of the pair values. The graph therefore provides a good illustration of the dif-

ferences in the application of the two different measurement methodologies. The plot 

also contains horizontal lines signifying 95% limits of agreement (LoA) (mean difference 

± 1.96 SD of differences) and the mean difference, which describes the bias (systematic 

measurement error) between the measurement methods. The BA-Plot can be extended 

by displaying the distributions of the mean and the difference of the values (Figure 8b)  
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 Performance evaluation of ECG-based chest-strap HR 
monitors 

There have been numerous studies to evaluate the performance of consumer chest-

strap HR monitors. Some key evaluation studies are summarized in Table 3 in order to 

provide a benchmark for the consumer HR monitor performance and evaluation meth-

odology. It is noticeable that the studies lack a common evaluation methodology, so this 

complicates any comparison of the reported results. The selection of subjects, the testing 

protocol, the signal pre-preprocessing techniques and the statistical methods are not 

standardised. In particular, inappropriate methods of reading data and its synchroniza-

tion between devices highlight relevant discrepancies in the studies. Manual reading of 

the average HR values from a device display and printing the ECG curve for short time 

period (10 seconds) during the last minute of a performed activity was used in two studies 

(Terbizan et al. 2002) and (C. M. Lee & Gorelick 2011). The synchronization of the signal 

between devices was handled with manual alignment of the paired RRI series (Vanderlei 

et al. 2008; Porto & Junqueira 2009; Weippert et al. 2010) or by utilizing temporal event 

markers with corresponding time coordinates (Kingsley et al. 2005). None of the studies 

aimed at evaluating the accuracy of RRI detection took into account any possible inac-

curacies in the internal device clock. In addition, two chest straps were placed on the 

body simultaneously (Weippert et al. 2010), which might cause inaccuracy due to poor 

contact between the strap and the skin. The impact of placing two chest strap simulta-

neously has not been systematically tested. The most commonly applied performance 

evaluation methods for the tested and reference devices in these studies were a graph-

ical representation bias and limits of agreements (LoA) in BA plots, and estimation of the 

correlation coefficients. Five studies examined RRI estimation accuracy and two studies 

evaluated HR measurement only. Most studies have focused on sports activities (typi-

cally endurance training sports such as running, walking or biking), so evaluations of 

everyday use have been scarce. The number of participants varies between 8 and 33 

with often limited population characteristics (age, gender). In general, the studies show 

good agreement and low HR estimation error between chest-strap HR monitors and the 

ECG reference values during sport, with strong correlations during rest r = 0.83 ─ 0.97, 

walking r = 0.82 ─ 0.97, jogging r = 0.87 – 0.9. Accuracy during running, however, ap-

pears to be significantly reduced by very weak to strong correlation r = -0.26 – 0.81. 

Chest-strap HR monitors provide good RRI estimation accuracy during rest with corre-

sponding bias = -1.85 – 0.24 ms and LoA varies in the ranges [-6.37 -1.47] ms and [1.96 

2.67] ms. The overall results of the sport protocol compared to rest monitoring show a 

lower bias = 0.41 – 0.44 ms but an increased LoA variation in the ranges [-15.1 -12.4]  ms 
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and [11.5 14.3] ms. Long-term 24-hours RRI estimation accuracy was examined during 

a non-controlled protocol including common daily activities (Kristiansen et al. 2011). The 

results were calculated using the Deming regression method (Linnet 1993) (intercept = 

1.91 and slope = 0.998) and therefore they are not directly comparable with the other 

studies. There were no systematic differences in HRV between the tested device and 

the reference in this study.
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 Performance evaluation of PPG-based consumer OHR 
monitors 

Although the performance of consumer OHR monitors has lately been the subject of 

rigorously objective study (Table 4 and Table 5), the design of the evaluation protocols, 

the selection and number of subjects, and the evaluation metrics vary widely between 

the studies. As the results for chest strap HR monitors show, it can be difficult to compare 

the outcomes of studies. For example, the number of participants in the studies varies 

from 10 to 68, and although most of the studies typically involve sport activities (14 stud-

ies), there has also been research into the devices’ performance in everyday life (4 stud-

ies), sleep (2 studies), and there have been two in a clinical environment. Two studies 

have evaluated the beat detection and IBI estimation accuracy of wrist-worn OHR de-

vices. Among of all of the studies, the most common performance evaluation metrics 

were Bland-Altman plots (including bias and LoA), estimation of the correlation coeffi-

cient, mean absolute error (MAE) or mean absolute percentage error (MAPE). In several 

studies, the devices’ performance was also evaluated with a t-test comparison of the 

mean difference of the average HR values (Valenti & Westerterp 2013; Olenick et al. 

2015; Spierer et al. 2015; de Zambotti et al. 2016; Boudreaux et al. 2018). This method 

shows if the mean difference between the tested and reference devices is statistically 

significant. However, it is not ideal for our purposes for a number of reasons. First, it 

does not measure the amount of differences between methods. In addition, an increasing 

of number of samples makes the test more sensitive to the difference between the tested 

and reference datasets. Moreover, if the comparison uses the average HR over a long 

time-period (or over several activities), this can mask any inaccuracy in the tested device 

during any one activity. Three of the evaluation protocols had more than one device 

placed on the wrist (Stahl et al. 2016; Shcherbina et al. 2017; Boudreaux et al. 2018). 

However, using more than one device at once on one hand can distort signal quality, 

and this can cause significant inaccuracy in the HR estimation. Synchronization between 

devices was performed by cross-correlating acquired HR data (Hwang et al. 2016; Pietilä 

et al. 2018) or manual timestamp-based alignment (Kroll et al. 2016; Jo et al. 2016; J. 

Lee et al. 2016). The Viterbi (Viterbi 1967) algorithm was applied to align IBI series in 

order to compensate for the differences between the offset and clock drifts of different 

measurement systems (Renevey et al. 2013). The measurements were usually split into 

smaller segment to obtain more accurate statistics for particular activities in the protocols. 

The duration of the HR segments used as inputs for the statistics gathered in Table 4 

and Table 5 varied from 5 seconds to 5 minutes, in addition to which, the methodologies 
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for the synchronization and segmentation of the HR signals were not available for several 

of the studies (Olenick et al. 2015; Stahl et al. 2016; Wallen et al. 2016; de Zambotti et 

al. 2016; Dooley et al. 2017; Shcherbina et al. 2017; Khushhal et al. 2017; Boudreaux et 

al. 2018) which adds to the difficulty of interpreting and comparing all the reported results. 

During sport activities, the results of the studies on OHR performance varied widely; 

MAPE 1.14 ─ 25.38%, strong correlation r = 0.81 ─ 0.97, bias varies from -9.3 to 12.0 bpm 

with a relatively large LoA variation in the ranges [-41.84 -7.0] to [7.3 42.0] bpm. This 

wide range in performance might be caused by the different activities involved in the 

testing protocols (i.e. rest, running, cycling, limb exercises), and of course, the devices 

themselves, because the performance and accuracy of different OHR monitors varies 

widely for a number of reasons, such as the tightness of the bindings, the design of the 

sensor, or the algorithms used. However, daily activities usually include more non-rhyth-

mic movements as a source of possible signal artifacts. The error range in MAPE was 

1.84 – 9.71% in HR estimation. There was very good HR estimation accuracy repre-

sented by very small mean bias; (95% LoA) 0.88 (0.04, 1.72) bpm was measured during 

sleep for healthy adolescents (de Zambotti et al. 2016). Similar results, i.e. a strong cor-

relation r = 0.99 and small bias (95% LoA) -0.05 (-2.454 to 2.43) bpm were reported 

during open and laparoscopy pediatric surgery (Pelizzo et al. 2018). Moderate correla-

tion r = 0.74 and higher mean bias 4.7 ms with wider limits of agreement (95% LoA) (-31 

to 21) bpm were reported during 24 hour-measurements in an intensive care unit testing 

patients with sinus and non-sinus rhythm (Kroll et al. 2016). In another trial, during 8-

hour daily activities measurements were taken to test the difference in the HR measure-

ment error between the non-dominant and the dominant hand, and the devices scored 

MAPE 9.17% vs. 9.71% respectively (J. Lee et al. 2016). Clinically validated OHR has 

shown very good reliability (HR Score < 10 bpm) 93.8% and low estimation error MAE 

3.1 bpm, MAPE 3.1% (Hendrikx et al. 2017). Although some evaluation studies provided 

skin color classification in the subjects’ demographic description (Spierer et al. 2015; 

Hendrikx et al. 2017; Wang et al. 2017; Shcherbina et al. 2017; Khushhal et al. 2017), it 

was not mentioned in the reports of the key results. However, an increase in relative 

mean error associated with darker skin subjects was observed for Mio Alpha OHR during 

sport testing (Figure 9) (Spierer et al. 2015). 

The number of studies evaluating IBI estimation with a wrist OHR is still limited. The 

beat-to-beat estimation accuracy of the PPG wristwatch system and the gold standard 

ECG-based RRI during full night polysomnography showed an overall good agreement 

between both approaches at 0.05 ms ± 18 ms (mean ± SD) and (95% LoA) (-35.7 to 

35.81) respectively (Renevey et al. 2013). The relative amounts of detected beats during 
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a daily protocol for two consumer wrist OHR devices, the PulseOn and Empatica E4, 

against an ECG based RRI recorder were 76.2 – 90.3% and 9.1 – 67.9%, respectively 

(Pietilä et al. 2018). For both devices, the smallest number of correctly detected beats 

occurred during the household chores part of the protocol, which mostly consisted of 

non-rhythmic movements. The devices’ opto-mechanical design and the applied algo-

rithm might explain the significant difference in beat detection accuracy between the 

PulseOn and Empatica E4 devices. Schäfer and Vagedes (Schäfer & Vagedes 2013) 

provided a comprehensive review comparing IBI and RRI estimation between different 

experimental finger PPG-based systems and standard ECG. The studies described in 

the review were typically performed at rest (sitting, standing or supine position) and re-

ported high agreement between mean IBI pairs (average over few minutes) and a con-

sistently strong correlation, r = 0.97 – 0.99 and mean bias, 0.01 – 0.1 ms. Although it is 

difficult to draw quantitative conclusions because of the different testing methodologies, 

it can be concluded that PPG-based IBIs are accurate enough to estimate the HRV for 

a healthy person at rest. There were no conclusive findings about either the position of 

the sensor or the ideal detection algorithm. 

 

Figure 9: Mean error related to skin color type according Fitzpatrick scale (Spierer et al. 
2015). © 2015 Reproduced with permission from Taylor & Francis.
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 Evaluation of fitness parameters based on heart rate 

Bassett et al. (Bassett et al. 2012) have summarized the main issues, recommendations 

and best practices for the calibration and validation of wearable monitors for fitness pa-

rameters, such as VO2max and EE. However, relatively few evaluation studies of con-

sumer OHR wearable monitors have focused on the accuracy of measuring either VO2max 

or EE using the measured HR as an input parameter. There follows a summary of those 

studies in which ECG- or PPG-based consumer HR monitoring devices which calculated 

VO2max or EE were validated against reference measurements. 

Crouter et al. (Crouter et al. 2004) evaluated the accuracy of the EE estimation of the 

Polar S410 chest-strap HR monitor against IC during various exercises using both meas-

ured and predicted VO2max and maximum HR (HRmax) on a group of the 20 participants 

(10 male, age 26.0 ± 3.1 and 10 female, age 23.0 ± 2.4). At first, the participants per-

formed standard sports-medicine procedures based on treadmill running until there was 

volatile fatigue. The initial tests involved lactate level estimation from blood samples and 

IC based on gas analyses of the subjects’ breath. These were used together to estimate 

the true VO2max and HRmax values. In the next stage, the participants performed three 

submaximal exercises corresponding to the ‘moderate’, ‘hard’ and ‘very hard’ levels of 

perceived exertion on a treadmill, an ergo-cycle, and a rowing machine, for nine sub-

maximal bouts. During the submaximal testing the subjects’ EE was measured simulta-

neously with IC and with two Polar S410 HR monitors collecting data; one HR monitor 

was set up to use the predicted VO2max and HRmax, and the other was set up to use the 

measured values. Although there was a strong correlation between the predicted and 

actual VO2max (r = 0.872, P = 0.001) for the males, there was only a moderate correlation 

for females (r = 0.477, P > 0.05). In fact, there were no significant (P < 0.05) differences 

in EE estimation during all the submaximal exercises for males, i.e. in the mean values 

for both measured VO2max and HRmax, and predicted VO2max and HRmax. However, the EE 

estimated for females from the predicted VO2max and HRmax values significantly overesti-

mated the mean EE in all three activities, the treadmill (by 2.4 kcal∙min-1), the ergo-cycle 

(by 2.9 kcal∙min-1), and the rowing machine (by 1.9 kcal∙min-1) (all P < 0.05). The true 

measured valued of VO2max and HRmax for females significantly improved the estimation 

of mean EE for all exercises, but it still overestimated the mean EE on the treadmill (by 

kcal∙min-1) and the ergo-cycle (by 1.2 kcal∙min-1) (P < 0.05).  
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Montgomery et al. (Montgomery et al. 2009) performed an evaluation of EE and VO2max 

predictions of the Suunto HR system against a reference gas analysis system during a 

two-stage incremental running test to establish submaximal and maximal oxygen uptake 

values for a group of 17 well-trained participants, 10 male, (29.8 ± 4.3 years old) and 7 

female (25.6 + 3.6 years old). The EE and VO2max values were calculated at 3 levels by 

the Suunto system software applying these parameters: basic personal information (BI), 

BI + measured maximum HR (BIhr), and BIhr + measured VO2max (BIhr + v). The results 

were obtained using linear regression to estimate standard error of the estimate (SEE). 

The SEE for the VO2max calculations of the Suunto system compared with the true refer-

ence values for BI, BIhr and BIhr+v were 2.6, 2.8, and 2.6 kcal∙min-1 respectively. The SEE 

of the Suunto system’s EE estimation for BI, BIhr and BIhr+v were 6.74, 6.56 and 6.14 kcal 

respectively. It was concluded that the Suunto system underestimated VO2max and EE 

by 6 and 13%, respectively. The particular results showed that the validity of EE and 

VO2max predictions improved with each sequential addition of the measured physiological 

parameters. 

Erdogan et al. (Erdogan et al. 2010) analyzed the EE estimation accuracy of a chest-

strap HR monitor, the Polar S810i against IC during submaximal rowing training with 43 

over-weight and obese adults (16 male, 27 female) 34.9 ± 5.5 years old. At first, the true 

VO2max and HRmax of the subjects were measured using a standardized VO2max test. The 

true measured VO2max and HRmax parameters were used as the input parameters for HR-

based EE estimation and fed into the Polar S810i configuration during another submax-

imal exercise test. The test consisted of a short warm-up period, followed by 10 minutes 

rowing at fixed workloads of 50% (low intensity) and after a 20-minute rest, 10 minutes 

of 70% (moderate intensity) of each subject’s predetermined VO2max. The correlation be-

tween the mean EE assessments of the Polar S810i and IC at both intensities was strong 

r = 0.86 (P < 0.001) and stronger r = 0.95 (P < 0.001), respectively. The BA Plot analyses 

of the EE between the chest-strap HR monitor and IC showed a small mean bias (95% 

LoA) -0.5 (-1.50 to 0.49) kcal∙min-1 at low exercise intensity and an even smaller mean 

bias (95% LoA) -0.2 (-1.35 to 0.95) kcal∙min-1at moderate intensity. 

Robertson et al. (Robertson et al. 2015) examined the accuracy of EE and VO2max as-

sessment using HRV measured with the ECG-based Firstbeat Bodyguard 2 (BG2) de-

vice against IC reference measurements during low-intensity walking and a VO2max run-

ning test on 24 healthy, non-smoking, 22 ± 2.3-year-old non-elite athletes. Moderate cor-

relation r = 0.493, and a small difference in the mean values, 0.61 ml∙kg-1∙min-1 (1.3%), 

between HRV-based and the actual measured VO2max values were reported during 
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VO2max test running. HRV-based EE estimation was performed applying true individually 

measured VO2max and HRmax values, and also using age-based HRmax and training level-

based VO2max parameters. Strong correlations (r = 0.722 at low intensity walking and r = 

0.973 at high intensity running) were reported between both the EE estimations, the true 

measured physiological parameters and the reference method. When user-age based 

HRmax and training level based VO2max  parameters were applied, the EE estimation cor-

relation decreased at low intensity, r = 0.598, but at high intensity there was still a strong 

correlation, r = 0.844. 

Rousset et al. (Rousset et al. 2015) compared the TEE assessment of the Actiheart 

wearable HR monitor against reference measurements in controlled and free-living con-

ditions. The 49 participants spent 17 hours in controlled conditions inside a calorimetric 

chamber performing pre-defined protocol activities including sleep, rest, office work, eat-

ing, walking and running on a treadmill. Furthermore the doubly labeled water (DLW) 

method was applied in free-living condition for 10-days to trace TEE with a group of 41 

participants. In control conditions, an overall MAPE (± SD) 8.6 ± 6.3%, and a BA Plot 

showing a mean bias (95% LoA) 0.03 (-0.39 to 0.32) kcal∙min-1 have been reported. In 

free living conditions, the TEE estimation with the Actiheart wearable HR monitor pro-

duced higher errors than those obtained in controlled conditions MAPE (± SD) 12.8 ± 

9.1%, a higher mean bias 0.07 and (95% LoA) (-0.69 to 0.54) kcal∙min-1. Interestingly, a 

higher TEE MAPE was reported for males than for females in both the controlled (9.7% 

vs. 7.7%) and free living conditions (15.5% vs 10.0%). 

Wallen et al. (Wallen et al. 2016) in their HR estimation accuracy study also evaluated 

the EE estimation accuracy of 4 wrist-worn OHR monitors, Apple Watch, Fitbit Charge 

HR, Samsung Gear S, Mio Alpha in a sport protocol. Their reference was IC with a port-

able gas-analysis system. Table 4 describes the test-subjects’ demographics and the 

protocol activities. Surprisingly, although it was reported that Samsung Gear S does not 

incorporate HR measurement into its EE estimation, it provided the most accurate aver-

age EE estimation at r = 0.86. The correlations between the IC and Apple Watch, Fitbit 

Charge HR and Mio Alpha were ‘very weak’ r = 0.16, ‘moderate’ r = 0.64 and ‘weak’ ρ = 

0.46 respectively. The study suggests that the measurement error in HR and EE estima-

tion may not correlate in all devices. 

Hendrikx et al. (Hendrikx et al. 2017) in a clinical evaluation study of the Philips Health 

Watch wrist-based OHR validated the HR measurement performance and the accuracy 

of the TEE estimation against IC during a protocol which consisted of various daily and 
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sport activities. Detailed descriptions of the participants’ demographics and protocol ac-

tivities are shown in Table 4. The overall TEE estimation errors for the whole protocol 

were MAE (± SD) 27.5 ± 28.7 kcal and MAPE (± SD) 10 ± 8.7%. 

Besides HR accuracy measurements, Dooley et at. (Dooley et al. 2017) also examined 

the EE accuracy of three wrist-based consumer OHRs (Apple Watch, Fitbit Charge HR, 

Garmin Forerunner 225) with 62 participants during a sport protocol, as described in 

Table 4. Their overall results showed a very wide error range in EE estimation accuracy 

(MAPE) for all of three devices: Apple Watch 14.07% ─ 210.84%, Fitbit Charge HR 16.85% 

─ 84.98%, Garmin Forerunner 225 30.77% ─ 155.05%. 

In their consumer evaluation study, Boudreaux et al. (Boudreaux et al. 2018) examined 

the EE of six consumer OHR monitors with 50 participants during ergo-cycle exercise 

with increasing loads and lower and upper limbs resistance exercises (see Table 4). The 

EE estimation error (MAPE) during the ergo-cycle exercises for the Apple Watch Series 

2, Fitbit Blaze, Fitbit Charge 2, Polar A360, Garmin Vivosmart HR and TomTom Touch 

were 21.13%, 72.01%, 75.15%, 38.18%, 63.05% and 41.27%, respectively. Similar EE 

accuracy among all the tested devices was reported during the resistance exercises. The 

MAPEs for the Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar A360, Garmin 

Vivosmart HR and TomTom Touch were 42.69%, 49.07%, 47.85%, 52.95%, 57.02%, 

and 51.54%, respectively. 

Most of the studies evaluated the HR-based VO2max and EE parameters in controlled 

laboratory conditions during VO2max testing or submaximal exercise. This is because spe-

cialized equipment is usually required for the reference measurements, as most IC meth-

ods are based on the gas analysis of breath. A calorimetry chamber (room) and doubly-

labelled water methods were used for reference EE measurements in controlled and free 

living conditions (Rousset et al. 2015). The accuracy and errors of the VO2max and EE 

parameters have been reported using various statistical methods and in different units. 

The most common methods for showing results were the correlation between the tested 

and the reference devices using a Bland-Altman plot as a graphical representation of the 

difference between the measurement techniques, including mean bias and LoA, MAE, 

or MAPE. For chest-strap monitors, a moderate correlation between the IC reference 

and the HR-based predicted VO2max, was reported for females, r = 0.477, and a strong 

correlation, 0.872, for males. In low intensity exercise, chest-strap monitor EE assess-

ments in combination with true measured HRmax and VO2max correlate strongly with the 

true measured IC values, r = 0.722 ─ 0.86. In high intensity exercise there is an even 

stronger correlation, r = 0.95 ─ 0.973. For HR-based EE estimation applying age-based 
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HRmax and training index-based VO2max, there are moderate to strong correlations at low 

and high intensity training, r = 0.598, r = 0.844 respectively. For the total EE assessment 

using ECG-based HR during combined sport and daily activities, the bias varies from 

0.03 to 0.07 kcal with LoA variation between [-0.69 0.39] and [0.32 0.54] kcal, while the 

corresponding MAPE is 8.6 – 12.9%. However, a higher error in the EE estimation for 

males during daily activity protocols has been reported (Rousset et al. 2015) and EE was 

significantly overestimated during sport activities for females (Crouter et al. 2004). There 

are relatively few studies evaluating the fitness parameters utilizing wrist-based OHRs. 

Weak to moderate correlations, r = 0.16 – 0.64, have been reported during sport activities, 

while there is a wide error rate, MAPE 14.07% ─ 210.84%, between consumer wrist-

based OHR monitors which estimate EE based on acquired HR and IC reference meas-

urements. It could be speculated that the larger error levels in the EE assessment MAPE 

149.64% ─ 210.84%, are mainly related to the rest and recovery testing periods of the 

protocols. Nevertheless, during light to moderate exercise, and vigorous exercise, the 

lower error ranges were reported to be MAPE 14.07% ─ 84.98%, and MAPE 19.64% ─ 

30.77% respectively (Dooley et al. 2017). Similar but larger EE estimation error ranges 

during the ergo-cycle and resistance exercises were reported in another study as being  

MAPE 21.13% ─ 75.15%, MAPE 42.69% - 57.02%, respectively (Boudreaux et al. 2018). 

However, the clinically-validated OHR device combined sport and daily activity testing 

protocol achieves an EE estimation with a low MAPE 10.0%, (Hendrikx et al. 2017), 

which accords with the EE assessment of chest strap monitors in similar conditions 

MAPE 8.6 – 12.9%.





 

 

5 Evaluation framework 

The Cambridge Dictionary defines evaluation as “the process of judging something’s 

quality, importance, or value” (Cambridge University Press). 

Wearable OHR monitors can be evaluated with various parameters such as their accu-

racy in measuring the specified variables, their usability, interoperability, wireless con-

nectivity, power consumption, or production costs. This thesis mainly focuses on an ob-

jective evaluation of OHR’s accuracy in measuring the HR and IBI variables. The other 

parameters are not discussed in this thesis. 

The international vocabulary of metrology defines accuracy as “the closeness of agree-

ment between a measured quantity value and a true quantity value of a measurand” 

(Joint Committee for Guides in Metrology 2008). The Oxford Dictionary defines validation 

as “the action of checking or proving the validity or accuracy of something” (Oxford Uni-

versity Press) while the Cambridge Dictionary defines performance characterization as 

“how well a person, machine, etc. does a piece of work or an activity” (Cambridge Uni-

versity Press).  

Despite the popularity and wide use of wearable OHR sensors nowadays and the im-

portance of their accuracy, there are no commonly agreed guidelines or standards for 

the systematic evaluation of their accuracy. Several testing, inspection and certification 

companies offer evaluation, quality-validating services and certification marks for wear-

able consumer technologies (TÜV SÜD; Bureau Veritas). However, their often compre-

hensive testing processes usually involve checking different functionalities according to 

the requirements of international standards, such as battery life-cycle testing, testing the 

radio-frequency wireless equipment, the specific absorption rate, biocompatibility and 

mobile application testing. They also perform optional usability tests including user-
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friendliness, durability and operating instructions (TÜV SÜD) but they do not objectively 

evaluate the accuracy of the devices.  

The International Organization for Standardization (ISO) describes the requirements for 

the performance of medical pulse oximeter equipment including a short specification of 

the pulse rate accuracy (ISO 80601-2-61 2011). The ISO standard 80601-2-61 part 

201.12.1.104 defines the reporting of pulse rate accuracy for medical pulse oximeters 

only as being the root mean squared (RMS) difference of measured paired pulse rate 

values between pulse oximeter equipment and a reference method (ISO 80601-2-61 

2011). However, there are a number of possible reference methods defined in the ISO 

standard: an electronic pulse simulator, an ECG-based HR, a palpated pulse, a thoracic 

auscultation, or another pulse oximeter that compares positively with one of the above-

mentioned reference methods (ISO 80601-2-61 2011). The American Food and Drug 

Administration (FDA) also provides guidelines for testing the accuracy of medical pulse 

oximeters, including pulse-rate measurement (Pulse Oximeters - Premarket Notification 

Submissions [510(k)s] 2013). The guidelines mainly refer to the above-mentioned ISO 

standard 80601-2-61, which describes the performance of pulse oximeter equipment. 

The FDA guidelines recommend testing the accuracy of the pulse rate estimation with a 

functional tester in a normal set-up. The set-up should represent motion or low perfusion 

conditions if the equipment has these features. The FDA also recommends following the 

same ISO-standard accuracy requirements as are defined for assessing the accuracy of 

blood oxygen saturation (SPO2) measurement during motion (ISO 80601-2-61 2011) part 

201.12.1.102 and low perfusion (ISO 80601-2-61 2011) part 201.12.1.103 in ISO stand-

ard (ISO 80601-2-61 2011). However, during SPO2 measurement in low perfusion and 

motion conditions, the ISO standard mainly requires that the methods used to establish 

the accuracy of SPO2 measurement are described and that an indication of pulsatile 

signal strength is provided using percentage modulation of the infrared signal. Both the 

ISO Standard and the FDA guidelines are focused mainly on the measurements of SPO2 

in medical pulse oximeters placed on a finger or an ear. These guidelines for performing 

pulse-rate accuracy testing are not directly applicable for our purposes, i.e. evaluating 

the accuracy of the HR estimation of wearable OHR devices. The ISO and FDA guide-

lines are a good start, but their methodology is created for specific sensor locations (fin-

ger and ear), and do not cover the wrist or the forearm, or the selection of the test sub-

jects. In addition, the specifications for the actual test conditions are imprecise or absent. 

Bassett et al. (Bassett et al. 2012) have also proposed calibration and validation proto-

cols for wearable sensors focused on monitoring physical activity. However, no specific 
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requirements for the HR estimation-accuracy of consumer-wearable devices appear to 

be agreed upon. 

A practical, objective framework for the evaluation of the accuracy of optical HR monitors 

should allow different devices to be quickly and easily compared according to their use-

fulness and their value for a specific use-case, i.e. they should take into account the user 

requirements. For example, the following factors should be taken into account: 

1. Usage conditions – where will the device be used, e.g. during what kind 

of physical activity, what will be the temperature, moisture, ambient light, 

etc. 

2. User characteristics – age, gender, skin color, height, weight, BMI, fit-

ness level, wrist size, health status etc.  

3. Monitoring duration – is the device meant for long-term or episodic use 

4. Accuracy requirements – what level of accuracy is required for the tar-

get use-case 

In spite of the lack of commonly-agreed guidelines for the evaluation of wearable optical 

HR monitors, several evaluation studies with varying methodologies have been pub-

lished recently (section 4.3). In this chapter, an evaluation framework which hopefully will 

be used for further studies is presented. The framework focuses on ensuring the internal 

validity of the evaluation (minimizing systematic error “bias”) while also improving its ex-

ternal validity (generalizability of the results to other conditions).  

The proposed evaluation framework is divided into three main parts: 

1. The design of the evaluation campaign 

2. The execution of the evaluation campaign 

3. The analysis and reporting of the results of the performance and accuracy of the 

device 

The different parts of the framework are described below and recommendations are de-

rived based on scientific principles, empirical experience and information obtained in 

earlier evaluation studies specifically focused on the accuracy of optical wearable HR 

monitoring devices. 
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 The design of the evaluation campaign 

This part of the evaluation framework covers the design of the testing protocol and the 

selection of test subjects and reference devices.  

A key target of the evaluation is its external validity: the extent to which its results are 

generalizable outside the specific study subjects and protocols. To be useful, a good 

evaluation study should carefully define the requirements that are relevant to the target 

use-cases and users, presenting a reasonably wide spectrum of natural variance in dif-

ferent cases while controlling other conditions for repeatability. However, it should be 

noted that any factors which are controlled, while improving the study’s internal validity, 

may reduce its external validity if they include factors which are not well controlled in the 

target use-cases (e.g. usage conditions such as temperature, local blood perfusion, etc.). 

The evaluation campaign should be designed to account for the following factors: 

1. Target user profile – age, gender, health status, skin color, fitness level, height, 

weight, etc.  

2. Usage conditions (activities, environment, duration)  

3. Reference device 

Although consumer-wearable HR monitors are not classed as clinical devices, good clin-

ical practice for investigation of medical devices, and ethical guidelines should be fol-

lowed when evaluating any devices for human subjects (Ethical principles of research in 

the humanities and social and behavioural sciences and proposals for ethical review 

2009; ISO 14155 2011). The evaluation campaigns are performed with the participation 

of human subjects and therefore certain legislation and best scientific practices have to 

be observed. The campaigns should be approved by an agreed-upon competent author-

ity at the local or national level e.g. local ethical review board. Protocols have to be con-

ducted according to the Helsinki declaration (World Medical Association 2013) and sub-

jects have to sign an ‘informed consent’ form. In addition, the purpose of the study and 

the expected outcomes have to be clarified, there must be insurance cover, and the 

responsibilities, risk and benefits of participation have to be clearly defined, as do the 

procedures for the storage and protection of confidential personal data. These require-

ments are typically defined at the national level (Ethical principles of research in the hu-

manities and social and behavioural sciences and proposals for ethical review 2009; 

Clinical trial information leaflet and consent 2016).  
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5.1.1 Design of the testing protocol  

The testing protocol must define the activities and the conditions under which the evalu-

ation is carried out. It must match the requirements mentioned above and fulfill the fol-

lowing criteria: 

1. Standardization  

Refers to which activities are defined to be performed, how accurately, and their 

duration. 

2. Repeatability 

Refers to the reproducibility of the target use-case scenario and the defined ac-

tivities and conditions. 

3. Representativeness 

Refers to definition of usage conditions and possible impact of external factors. 

Controlled or non-controlled protocol execution 

Many of the trials used controlled protocols with continuous supervision, typically speci-

fied indoor gym or lab activities. Although controlled conditions are more standardized, 

repeatable and well-annotated, the external validity of controlled protocols is more diffi-

cult to generalize for common usage conditions and typical user behavior, e.g. supervi-

sion of the test subjects during execution of the test reduces the number of uncontrolled 

hand movements in order to decrease the level of possible artifacts and measurement 

errors. Non-controlled protocols, typically everyday life, sleep or outdoor sports activities, 

without continuous supervision and without any detailed specification of the activities is 

closer to the actual target use-case conditions. However, although the external validity 

of such protocols is higher as they are more representative of the target use-case con-

ditions, they are weaker in terms of repeatability and standardization. Any interpretation 

of the results of non-controlled protocols relies on user-subjective annotations of possible 

unexpected events during the test. 

External environment factors that can affect the signal quality and the accuracy of the 

HR estimation, such as the outdoor temperature or ambient light interference, also need 

to be specified and controlled as closely as possible.  

Testing scenario specification 

The activities in the testing protocol must directly reflect, or at least closely simulate, real 

usage conditions. A typical testing protocol, which describes a protocol derived from 
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sport physiology testing guidelines (Winter et al. 2006; Nieman 2011), is presented in 

Table 6. The main advantages of indoor testing are the fact that it is relatively simple to 

standardize the test conditions (e.g. temperature and ambient light), the researcher has 

full control of how the test is executed, and the tests can easily be repeated. However, 

such protocols control several factors which cannot be controlled during typical real-user 

scenarios (e.g. temperature variations and related variations in skin blood perfusion, var-

ying ambient light level, clothing, activity pattern such as step rate and variations in style 

when exercising, e.g. on a treadmill or an outdoor path, etc.). Although outdoor testing 

better represents real user conditions (outdoor jogging, cross-country skiing, inline-skat-

ing) many external factors may not be controlled and these may vary widely, so such 

evaluation studies require much larger samples and it is more challenging to define the 

practical limitations of the test conditions. Therefore, such evaluations are scarcer. Daily 

activities represent long-term scenarios aimed at revealing any potential inaccuracy in 

the device being tested during random unspecified wrist movements (e.g. washing 

dishes or typing on a keyboard). These scenarios can be performed within defined pro-

tocols in specialized laboratories; unspecified hand movements can be simulated with a 

Rubik’s cube game, for example. Motionless (e.g. sleep or awake rest) protocols are 

used for testing beat-to-beat detection accuracy and the long-term resting HR level with 

an unobtrusively-worn test device.  

It is important to include two special activities at the beginning of the protocol: a warm-

up activity and a synchronization activity. The former aims to standardize the subject’s 

blood perfusion and body temperature, while the latter (e.g. several squats) will help 

synchronize signals between the tested and reference devices during any subsequent 

signal processing.  

The activities in the protocol should be performed in a predefined order to ensure that 

the measurements are standardized and repeatabable. Some activities, typically exer-

cises such as walking or ergo-cycling, might improve blood perfusion, so subsequent 

test activities must take account of this in order to achieve more accurate HR estimation. 

The results estimated according to the example protocol proposed in Table 6 might be 

biased towards a lower measurement error. This is caused by the correlation of human 

HR and running speed while systematically increasing the running speed in the protocol. 

Moreover, no breaks between running speeds are included; these are typical for interval 

training which represents the most difficult testing scenario.  
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Table 6: Example of testing protocol for indoor testing scenario 

Activity Duration 

Synchronization – 5 squats and rest 1 min 

Warm-up exercise – 6 km∙h-1 running 5 min 

Still standing 1 min 

Walking on a treadmill at 3 km∙h-1, 0% inclination 3 min 

Walking on a treadmill at 3 km∙h-1, 10% inclination 3 min 

Walking on a treadmill at 5 km∙h-1, 0% inclination 3 min 

Walking on a treadmill at 5 km∙h-1, 10% inclination 3 min 

Running on a treadmill at 9 km∙h-1, 0% inclination 3 min 

Running on a treadmill at 11 km∙h-1, 0% inclination 3 min 

Rest sitting 4 min 

Cycling 60 rpm, 75 Watts resistance 3 min 

Cycling 90 rpm, 75 Watts resistance 3 min 

Rest sitting 4 min 

 

The order in which the activities are performed in the protocol may affect the results of 

the evaluation. This variation is hard to control unless the order of the activities is ran-

domized. However, randomizing the order of the activities can cause problems for the 

practical execution of the evaluation campaign. The order of the activities in the protocol 

needs to be taken into account in order to reduce the output error, but this can system-

atically and deliberately bias the results. For example, activities designed for testing the 

sensitivity of hand movements’ artifacts performed after a warm-up exercise might in-

crease accuracy of the HR estimation, but decrease the external validity of the protocol. 

5.1.2 Selection of the test subjects  

Non-probabilistic techniques such as convenience, purposive or quota sampling (Mar-

tinez-Mesa et al. 2014) are usually applied when selecting the test subjects. The selected 

test subjects must represent the target-user population in the following key aspects.  

1. Actual health status and fitness level  

2. Age 

3. Gender 

4. Skin color classified according to a defined scale, e.g. the Fitzpatrick scale (Fitz-

patrick 1988) 

5. Wrist circumference and its anatomical shape (bony, normal, fatty) 
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Particular purposive sampling methods such as maximum variation and homogeneous 

or typical-case sampling can be useful to fulfill specific population requirements (Etikan 

et al. 2016). Nevertheless, it must be remembered that it is harder to generalize the 

results of tests using non-probabilistic sampling methods. The minimal required number 

of test subjects depends on the primary aim of this kind of evaluation study, which is to 

provide descriptive statistical outcomes. However, the output error metrics are quantita-

tive variables. It is assumed that evaluation studies of wearable OHR monitors are typi-

cally based on a mixed research design that is based on both quantitative and qualitative 

research approaches. A typical sample size depends on the protocol, but a low range of 

10 to 30 subjects is required to obtain basic evidence and statistics in controlled condi-

tions. However, for non-controlled conditions, or for randomization, much larger samples 

are required. The power analyses for calculating the minimal number of subjects are not 

applicable unless there is sufficient information about the target population. The basic 

empirical research rules for a group of test subjects are to maintain an equal gender 

balance and group the subjects by a maximum ± 10 years deviation from the mean age 

of the sample. In addition, if the aim of the research is to test some special characteristic 

e.g. different skin types, the characteristic should be represented with at least 5 subjects 

per specific property.  

Nearly all measurements are influenced by different sources of variation: biological as-

says include pre-analytical variation, analytical imprecision, analytical bias, within-sub-

ject normal biological variation and between-subject variation (Fraser 2001). Analytical 

imprecision can be reduced by averaging replicates (e.g. repeating measurements) from 

the same sample (Monach 2012). The effects of both within-subject biological variation 

and analytical imprecision can also be alleviated by averaging measures performed re-

peatedly over time (Monach 2012). 

5.1.3 The tested devices  

The tested device has to be used under the same conditions (temperature, moisture) 

and for the same purpose (exercise or daily monitoring) for which it was originally de-

signed according to the user manual. If the device is not operated according to the man-

ufacturer’s instructions, the HR measurement might be inaccurate and this can bias the 

statistics. The device settings for age, gender etc. have to be correct. The device has to 

be attached and worn as defined by the manufacturer, and its position and the tightness 

of the strap(s) needs to be properly checked if the test is to be repeatable. The measured 

variables and their output time resolution should be clearly defined for further statistical 

analyses. It is preferable that the data is automatically gathered from the tested device 
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rather than marking down numbers manually from the device’s display, which might pro-

duce various inaccuracies.  

5.1.4 Reference devices 

The ECG-based reference devices classified as “gold standard” are mandatory: medical 

or scientific ECG recorder, chest-strapped HR monitors or disposable-electrode IBIs re-

corders. Any potential inaccuracy in the reference device includes an additive error in 

the final measurement error of the tested device. Prior evaluation of the ECG-based 

chest-strap or disposable-electrode wearable HR monitors against certified medical ECG 

recorders is recommended as this will reveal any unknown inaccuracies in the reference 

device’s measurements. Several scientifically-evaluated ECG-based wearable HR mon-

itors validated against “gold standard” medical ECG signal recorders are currently avail-

able (Kingsley et al. 2005; Vanderlei et al. 2008; Parak & Korhonen). 

 The execution of the evaluation campaign 

An evaluation campaign should follow good clinical practice for the testing of a medical 

device for human subjects (ISO 14155 2011) in order to preserve the safety of the human 

participants. Operators who conduct controlled protocols have to clearly understand how 

to execute the protocol procedures and the functionality of the tested and reference de-

vices. During non-controlled evaluation protocols it is important to provide all of this in-

formation to the test subjects in advance, especially anything that can help them deal 

with potential problems when doing the test. Any information which deviates from the 

defined protocol must be collected by the operators or the test subjects and reported for 

further analysis and data interpretation. The organizer of an evaluation campaign is 

obliged to supervise and check all the initial conditions, and they should also perform 

random or regular visits to control the evaluation process and avoid any potential errors 

(Delgado-Gonzalo et al. 2018).  
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 Pre-processing the measured signal for evaluation 

5.3.1 Time synchronization 

The measurements of both the tested and reference devices need to be precisely syn-

chronized in order to calculate the statistical error metrics. Improperly synchronized data 

can bias the results. 

Time synchronization between one or several tested devices and a reference device can 

be challenging for HR, especially for beat-to-beat evaluation. Internal device clocks are 

not usually exactly synchronized to each other. There are two main problems with time 

synchronization: 

1. Bias – difference in start time, which is a common problem 

2. Drift – difference in clock rate, usually unimportant for short-term measurements 

but may be relevant for long-term monitoring 

The estimation of the time lag between the measured signals solves the bias problem. 

The time lag can be estimated by computing a cross-correlation of the signals or by 

applying minimal error matching between signals. In both methods, all of the acquired 

signals are resampled at a higher sampling frequency to achieve a precise estimation of 

the time lag. If the devices also provide simultaneous sampling of motion signals (i.e. 

acceleration), the sensor signals should be used within a synchronized activity period of 

the protocol to estimate the time lag (Bannach et al. 2009).  

The clock drift problem is handled by splitting the measured signals into smaller time 

periods. Then the time lag is estimated for each segment separately. Further statistics 

are also calculated within the synchronized segments and finally summarized for the 

overall results. 

Both the reference and tested signals have to be re-sampled at the same regular sam-

pling frequency in order to be able to perform a statistical evaluation of the measurement 

accuracy. If the nominal sampling rate of any device differs from a declared value, it 

should be corrected by a scaling factor which based on the difference between the nom-

inal and declared values. 
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5.3.2 Reference signal processing 

Processing the reference device signals requires that the beats are detected in RAW 

ECG signals to estimate the corresponding IBIs. Manual checks are performed to guard 

against any potential errors with the automatic methods. Kubios HRV, Matlab-based 

HRV analysis software provides suitable methods and a user interface for these pur-

poses (Tarvainen et al. 2014). 

Further IBIs are cleaned up with an appropriate artifact-correction algorithm (Saalasti 

2003; Saalasti et al. 2004). Ectopic beats representing physiological arrhythmia also 

have to be removed from the reference signals with an appropriate algorithm (Mateo & 

Laguna 2003). Then, instantaneous reference HR values are estimated from IBIs, and 

these are further averaged in specific time-windows.  

The instantaneous or time-averaged HR values may also be directly extracted from de-

signed services or the proprietary SW of the reference device, especially for chest-strap 

or disposable-electrodes HR recorders.  

 Evaluating accuracy 

The accuracy of a tested device can be calculated and represented using the various 

statistical metrics and methods defined in section 4.1 of this thesis  

Firstly, it is important to establish a specific time-error range in order to use HR error 

statistical metrics. The recorded data from both the tested and reference devices are 

usually split into short (typically 5 s) time-windows with no overlap. The average HR 

value is estimated within these short time-windows, and these window-averaged HR val-

ues are used as inputs for statistical methods for estimating error metrics.  

The most suitable error metrics for characterizing the accuracy of HR estimation are the 

mean absolute error (MAE), relative or absolute HR scores (named also HR reliability), 

or HR accuracy as a complement of mean absolute error (MAPE). The MAE is a useful 

generic error metric that describes the average difference between the true and esti-

mated HR, and shows the first norm of the average disagreement between devices. The 

absolute HR score < X bpm or relative HR score < X % error is a practical metric which 

describes how often the estimated HR value is as close to the real HR value as is re-

quired for the target use-case. The error acceptance threshold, X, should be selected 
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based on the target use-case. For consumer HR monitoring, 10 bpm can be considered 

a suitable target level for recreational wellness applications. For more demanding appli-

cations, some other levels, e.g. 5% may also be considered. The HR accuracy defined 

as a complement of the relative error (MAPE) can express an appropriate performance 

level for the users of consumer devices. The estimation of IBI accuracy primarily requires 

that the statistics for missing, correct and extra detected beats are calculated. MAE, 

MAPE or a mean ± standard deviation between pairs of IBIs measured by the tested and 

the reference devices are suitable error metrics for describing the accuracy of IBI esti-

mation. Beat detection algorithms do not usually incorporate an artifact-correction 

method for detected beats. It is therefore also possible to determine the efficiency of the 

artifact corrections by comparing the statistical error metrics related to IBI estimation 

accuracy before and after applying beat-detection artifact-correction methods. The 

standard for pulse rate measurement in clinical devices requires that the RMSSD of HR 

pairs is calculated (ISO 80601-2-61 2011). RMSSD measures the standard deviation of 

the prediction errors and is disproportionately affected by larger errors. 

The BA-plot is also an appropriate analytical tool for visually showing agreement be-

tween pairs of tested and reference HR or IBI values, including bias and 95% limits of 

agreement. This method has been widely used and is highly recommended for assessing 

the measurement error in sport medicine (Atkinson & Nevill 1998). However, using a BA-

plot as a method for comparison of different measurement techniques should be consid-

ered carefully because it is not always suitable for all applications, such as an evaluation 

of the cross-validation of regression models (O'Connor et al. 2011), comparison of meas-

urements techniques with different units (Hopkins et al. 2009), or for using a BA plot-

based bias and confidence interval to calibrate the devices (Hopkins et al. 2009; Lud-

brook 2010; Ludbrook 2010). The method can easily be misused and lead to incorrect 

conclusions, especially because of the bias involved in estimating the BA limit of agree-

ments (Ludbrook 2010; O'Connor et al. 2011). Linear regression analysis should be used 

for re-calibrating devices because: it eliminates the impact of substantial random error 

(Hopkins 2004), it better handles problem with proportional bias between measurements 

(Hopkins et al. 2009; Ludbrook 2010), and the regression validity analyses can be com-

bined with published validity regression statistics for the inaccurate measurements in 

order to correctly estimate the validity regression statistics for the new proposed meas-

urement technique (Hopkins et al. 2009). Ludbrook (Ludbrook 2010) has proposed in-

structions on how to properly construct bias and 95% limits of agreement lines in a BA- 

Plot according to the type of application and the distribution of the analyzed data, espe-

cially with regard to the fixed and proportional bias between measurement techniques.



 

 

6 Summary of publications 

 Evaluation of HR, EE and VO2max during sports 

Publications I, II and V evaluated the HR-estimation accuracy of consumer OHR moni-

tors against gold standard ECG-based reference HR measurements. Publication V ex-

amined the accuracy of the EE estimation error using OHR, as well as VO2max estimation 

error based on the OHR and GPS speed estimated with a mobile phone application dur-

ing submaximal exercise. Four different consumer OHR monitors were evaluated in 

these sport-based studies.  

6.1.1 Evaluation methodology 

Table 7 contains summarized descriptions of all the evaluated OHR devices (Figure 10). 

The descriptions of the reference ECG-based devices (Figure 11) are presented in Table 

8. In Publication V, the reference EE was measured with the IC system Metalyzer 3B, 

Metasoft Studio 4.8, Cortex Biophysik, Germany. The blood sample analyses were per-

formed with Biosen C_Line, EKF Diagnostic, Germany, and the outdoor global position-

ing system- (GPS)-based speed was tracked by a reference device Polar V800. The 

speed input values for the VO2max estimation algorithm were calculated in Android QT 

mobility library (The Qt Company) from the GPS location in a Samsung S3 Mini Galaxy 

mobile phone. 

The evaluation protocols in Publications I and II consisted of controlled indoor laboratory 

activities. The protocol for Publication I also included the simulation of hand movements 

during a Rubik’s Cube game and the impact of lying in bed in different positions. Publi-

cation II also evaluated the performance of devices in different non-controlled outdoor 

testing conditions during various sports. The test protocol for Publication V included con-
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trolled VO2max and HRmax maximal testing in sport laboratory conditions and semi-con-

trolled outdoor condition to evaluate the accuracy of VO2max estimation during submaxi-

mal self-paced running in real winter conditions  

Table 7: Properties of the tested devices 

 
Mio Alpha 

Scosche 
myRhythm 

Mio Link PulseOn 

Source light and 
#LEDs 

2 green LEDs 2 IR LEDs 2 green LEDs 
2 green and 1 

IR LEDs 

Number of PDs 1 1 1 1 

Location Wrist Forearm Wrist Wrist 

Band type Rubber silicon Textile Rubber silicon Textile 

Wireless 
connectivity 

Bluetooth / 
ANT+ 

Bluetooth 
Bluetooth / 

ANT+ 
Bluetooth 

Data storing 
 Real time 
streaming 

 Real time 
streaming 

Real time 
streaming 

Internal 
memory buffer 

Display Dot - Matrix LCD No No OLED 

Size  
(w x l x h) [mm] 

44 x 42 x 17 55 x 49 x 13 25 x 46 x 10 29 x 32 x 12 

Weight [g] 56g 29g 33g 29g 

 

Table 8: Properties of the reference devices 

 

Embla  
Titanium 

Firstbeat  
Bodyguard 2 

Polar 
RS800CX 

Garmin 
Forerunner 610 

Device type 
Portable laboratory 
signal recorder 

Chest based  
disposable electrodes  
HR recorder 

Chest strap Chest strap 

Measured  
signals 

2 channel ECG 
RRI, RAW accelera-
tion 

HR / RRI HR / RRI 
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Figure 10: Evaluated OHR devices  
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Figure 11: Reference ECG-based devices  
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Table 9 summarizes the information about the tested devices, the reference devices and 

the characteristics of the participants for the testing protocols in Publications I, II and V. 

The participants were healthy, relatively young or middle-aged non-smoking adults with-

out any health issues. Most of the participants were students and employees at Tampere 

University of Technology, PulseOn and local sports clubs. The testing subjects were 

Caucasian with Fitzpatrick skin scale classifications of 1 – 3. The experimental proce-

dures performed in Publications I, II and V complied with the principles of Helsinki Dec-

laration of 1975, as revised in 2013. All subjects gave informed consent to participate 

and they had a right to withdraw from the study at any time. Their information was anon-

ymized prior the analysis. 

Table 9: Summary of HR performance testing campaigns (Publication I, II and V) 

Pub.  
Tested  
devices 

References  
device 

Testing 
 subjects 

Protocol description 

I 
Mio Alpha  
Scosche 
myRhythm 

Embla Titanium 
N = 21, F = 6, 
age 31.3 ± 10.7  

controlled, sport (rest, walking, jog-
ging, running, Rubik's cube play, 
ergo-cycle), duration 50 minutes 

II 

PulseOn 
Mio Link 

Polar RS800CX 
N = 19, F = 10, 
age 28.30 ± 5.6 

controlled, sport (rest,  walking, jog-
ging, running, ergo-cycle), duration 
39 minutes 

PulseOn 
Polar RS800CX 
Firstbeat Bodyguard 2 
Garmin Forerunner 610 

N = 8, F = 2, 
age 30.9 ± 10.7 

non-controlled, sport (outdoor walk-
ing, running, cycling), totally 24 
events 

V PulseOn Polar RS800CX 
N = 24, F= 11, 
age 36.2 ± 8.2 

controlled, sport (warm-up jogging, 
rest, VO2max running with increasing 
speed by 1 km∙h-1 until volatile fa-
tigue), duration 14 and then 3 
minutes for each speed level 

For further comparison and statistical calculation the analyzed signals were resampled 

at 10 Hz sampling frequency, averaged and smoothed out by moving the average filter 

in a five-second window. Synchronization between the tested and referenced signals 

was performed by applying a cross-correlation function or minimal error matching be-

tween signals. In Publication I, the reference ECG signal analyses were performed by 

the Kubios HRV tool (Tarvainen et al. 2014). The R-Peaks for HR calculation were de-

tected with a built-in QRS detection algorithm (Pan & Tompkins 1985). All the R-peaks 

in the reference signals were verified manually. Physiological arrhythmias (ectopic beats) 

detected by the heart-timing signal algorithm (Mateo & Laguna 2003) were excluded 

from further calculation of the statistical metrics. In Publications II and V, the RR intervals 

recoded with reference devices were corrected by applying an RR-interval artifact-cor-

rection algorithm based on neural networks and a physiological model (Saalasti et al. 

2004) implemented in Firstbeat Sports SW, Firstbeat, Jyväskylä Finland. 
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All of the HR results statistics were calculated in a 5s average HR window without over-

laps. Reliability and accuracy were used as common metrics for comparing the perfor-

mances of the tested OHR monitors between themselves, and for comparing the perfor-

mances of the tested devices and the designated ECG-based reference. In addition, in 

Publication I other metrics such as ME, MAE, MPE and MAPE were estimated. Individual 

results are provided for the different activities in the protocol and the overall results are 

over the whole protocol. In order to make the results of the non-controlled outdoor tests 

in Publication II easier to report and compare, the activities were divided into three main 

groups (running, biking, walking) according to the dominant activity during the measure-

ment period. 

The accuracy of VO2max assessment was verified using age-based HRmax (Tanaka et al. 

2001) and the measured HRmax as input parameters for the computing algorithm. The 

EE estimation was evaluated during light-intensity (before aerobic threshold) and me-

dium- to heavy-intensity (between aerobic and anaerobic threshold) exercise, as is rec-

ommended for physiological exercise testing (Jeukendrup & Wallis 2005; Nummela 

2007). 

The bias, standard deviation, MAE and MAPE were calculated to describe the error be-

tween the EE and VO2max estimated from the OHR device using physiological modelling 

and reference measurements from gas analyses. In addition to error calculation, the sta-

tistical significance of the different measurement methods was verified using parametric 

and non-parametric tests based on the distribution of a particular dataset. The normality 

of the distributions has been tested with the Shapiro-Wilk testing method. The Spearman 

and Pearson correlation coefficients were utilized to examine the agreement between 

measuring parameters from the OHR and the standard reference method. All the statis-

tical tests were two-sided and the significance level was set at p < 0.05. In addition, BA-

plots were used for visual inspection of the agreement between the measurement meth-

ods and datasets. 

6.1.2 Summary of results (HR vs different devices, EE, VO2max) 

Table 10 and Table 11 presents a summary of the main statistical parameters for de-

scribing the accuracy of HR estimation of the devices evaluated in Publications I, II and 

V during different protocol activities.  
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Table 10: Key results of the HR performance of the tested devices (Publication I) 

Table 11: Key results of the HR performance of the tested devices (Publications II and V)  

   PulseOn Mio Link 

Pub.  Activity Reliability [%] Accuracy [%] Reliability [%] Accuracy [%] 

II 

In
d

o
o

r 

Rest 97.9 97.1 97.4 97.3 

Walking 90.8 95.8 73.7 90.2 

Running 99.4 98.0 99.8 98.8 

Cycling 96.0 96.8 97.0 97.7 

Entire Protocol 94.5 96.6 86.6 94.3 

O
u

td
o

o
r 

Walking 94.1 96.6 N/A N/A 

Running 99.1 97.9 N/A N/A 

Cycling 95.2 97.3 N/A N/A 

Mean 97.8 97.6 N/A N/A 

V 

V
O

2
m

a
x
 l

a
b

 Rest when 
standing 

96.9 97.1 N/A N/A 

Ramp-up  
running 

95.3 98.3 N/A N/A 

Entire protocol 95.4 98.1 N/A N/A 

 

Publication I evaluated the Mio Alpha wrist-based and Scoshe myRhythm forearm-based 

OHR monitors. Both devices achieved satisfactory overall performance at 87 ─ 88%, 

within <10% of the score of the true reference. The wrist-based device performed better 

during walking and running activities, while the forearm-based device was more accurate 

during cycling and the hand movement exercises, such as when playing with the Rubik’s 

cube.  

   Scosche myRhytm Mio Alpha 

Pub.  Activity 
HR Score  

< 10% bpm [%] 
Accuracy [%] 

HR Score  
< 10% bpm [%] 

Accuracy [%] 

I 

In
d

o
o

r 

Rest 83.9 94.0 84.9 94.7 

Walking 81.8 89.5 87.2 94.4 

Running 93.3 96.2 96.2 97.6 

Cycling 97.4 98.3 91.7 94.5 

Rubik’s cube 91.8 96.1 72.3 91.6 

Entire Protocol 86.3 93.2 87.5 94.8 
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Publication II evaluated the PulseOn and Mio Link wrist-based OHR monitors. The over-

all reliability parameters for the PulseOn and Mio Link were 94.5% and 86.6% respec-

tively. Both devices were less reliable for walking (PulseOn 90.8%, Mio Link 73.7%). This 

could be due to lower perfusion because of the order of activities in the protocol. The 

non-controlled outdoor testing results showed high reliability > 95% for the PulseOn de-

vice during walking, running and cycling activities. In the study presented in Publication 

V, the PulseOn device accurately measured HR during maximal ramp-up running exer-

cises. The reported results were 95.4% for reliability and 98.1%, for accuracy. 

The overall HR estimation accuracy for all four devices over the entire protocols was in 

the range of 93.2% to 98.1%, corresponding to a MAPE of 6.8% ─ 1.9%.  

The reported EE MAPEs during light-intensity and medium- to heavy-intensity exercise 

were 16.5% and 6.7%, respectively. The MAPEs of the VO2max estimated during submax-

imal exercise compared to the reference measurement using the GPS speed combined 

with individually measured HRmax and age-based HRmax were 5.2% and 5.9%, respec-

tively. The submaximal exercises were performed in outdoor winter conditions. Moderate 

to strong correlations with the reference were observed for both the EE and VO2max pa-

rameters. Table 12 presents the MAPE and the correlation with IC standard reference 

measurements for EE estimation at both exercise intensities, and for the VO2max estima-

tions including both the true measured and age-based HRmax input parameters.  

Table 12: VO2max and EE estimation accuracy key results (Publication V) 

VO2max estimation 

    All Male Female 

Age-based HRmax MAPE [%] 5.9 5.2 6.8 

  Correlation [-1, 1] ρ = 0.87 r = 0.73 r = 0.63 

Measured HRmax MAPE [%] 5.2 4.7 5.8 

  Correlation [-1, 1] ρ = 0.86 r = 0.77 r = 0.69 

          

Energy expenditure  estimation 

    All Male Female 

Light intensity MAPE [%] 13.05 15.28 10.65 

  Correlation [-1, 1] ρ = 0.77 r = 0.88 r = 0.79 

Heavy intensity MAPE [%] 6.7 8.2 5.1 

  Correlation [-1, 1] r = 0.97 r = 0.93 r = 0.99 
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6.1.3 Conclusions 

It can be concluded that optical wearable HR monitors are suitable for monitoring HR 

during endurance-sport exercises. However, their accuracy might significantly decrease 

during non-rhythmic exercises or voluntary hand movements. It is also suggested that 

the optically monitored HR is sufficiently accurate to reliably estimate EE and VO2max if 

analyzed with an appropriate combination of algorithms. The VO2max during submaximal 

running exercise can be reliably assessed using OHR and a mobile phone’s GPS speed 

measurements.  

 Evaluation of beat-to-beat detection accuracy during sleep 
(Pub III) 

Publication III evaluated the accuracy of the beat-to-beat and HRV parameters of the 

PulseOn OHR monitor against ECG-based reference measurements during normal 

sleep conditions. The sleep quality parameters, such as relaxation time, stress time, 

training effect and recovery index (Firstbeat Technologies Ltd.) were also calculated us-

ing PPG and ECG beat detection methods and the results were compared to each other.  

The Firstbeat Bodyguard 2 device (described in Table 8) handled the reference meas-

urement of the RR interval series. Ten healthy volunteers (8 male and 2 female, 35 ± 

10.3 years old) participated in the study as test subjects. In total, 13 recordings were 

performed and the average non-stop recorded sleep time for all the subjects was 5.1 ± 

1.2 hours. The recordings were performed in non-controlled conditions in the subjects’ 

normal bedrooms in their homes. The experimental procedures performed in Publication 

III complied with the principles of Helsinki Declaration of 1975, as revised in 2013. All 

subjects gave informed consent to participate and they had a right to withdraw from the 

study at any time. Their information was anonymized prior the analysis. 

The artifact-correction method (Saalasti et al. 2004) and ectopic beats exclusion algo-

rithm (Mateo & Laguna 2003) were applied to both the PulseOn and reference device 

IBI datasets. An eventual timed drift between the PulseOn and the reference device was 

compensated for by splitting the data into 5-minute intervals. Minimizing the mean differ-

ence between the detected beats was used to synchronise each of these intervals sep-

arately. 
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The proportions of correct, missing and extra detected beats were calculated for the pro-

cessed and synchronized signals. The number of missing and extra beats against the 

reference measurements were determined with the methodology described in detail in 

section 4.1. Moreover, ME, MAE, MPE, MAPE error metrics and a comparison of the 

RMSSD parameters were determined for the corresponding beat intervals.  

Table 13: Beat-to-beat detection accuracy of the PulseOn device 

  Beat–to–beat detection 

 Before artifact  
correction 

After artifact 
 correction 

Correct beats [%] 99.42 99.57 

Extra beats [%] 1.93 0.72 

Missing beats [%] 0.58 0.43 

The results in Table 13 show that even without the artifact-correction algorithm, the 

PulseOn device detected 99.42% of the heartbeats correctly in comparison with the ref-

erence device. After artifact correction of both signals the accuracy increased slightly to 

99.57%, there was a relative decrease of false positive beats from 1.93% to 0.72%, and 

the number of false negative fell from 0.58% to 0.43%.  

Table 14 presents a statistical comparison of accuracy between pairs of synchronous 

IBIs. The five-minute intervals containing only the correctly detected beats by the 

PulseOn device, with one corresponding reference beat, were included in the statistics. 

The overall mean errors ± SD were -0.32 ± 14.40 ms before and -0.33 ± 11.74 ms after 

artifact correction. The results are also shown in the BA Plot (Figure 12), which includes 

the distributions of errors and IBI durations.  

Table 14: Beat-to-beat interval estimation 

  Beat–to–beat interval estimation 

  

Before artifact 
correction 

After artifact 
correction 

ME [ms] -0.32 -0.33 

Error SD [ms] 14.40 11.74 

MAE [ms] 6.68 5.94 

MPE [%] -0.03 -0.03 

MAPE [%] 0.62 0.56 
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Figure 12:  Bland - Altman plot comparing the reference ECG-obtained RRI to the PPG-
obtained IBI, for artifact corrected data. Confidence interval (µ ± 2𝜎) depicted 
by the dashed lines) is [−23.15, 23.83] ms (Parak et al. 2015). © 2015 IEEE. 
Reprinted with permision.  

The RMSSD estimation, which is one of the HRV measures, was compared between the 

detected PPG- and ECG-based IBIs. Very small differences were observed between the 

RMSSD parameter estimated with the PPG-based PulseOn device and the ECG-based 

reference, 4.2 ms for artifact-uncorrected and 3.1 ms for artifact-corrected data respec-

tively. 

Table 15 compares the overall sleep quality parameters determined with Firstbeat Sports 

SW, Firstbeat, Jyväskylä Finland for ECG- and PPG-based IBI series. Since the record-

ings were done at night, the results correspond to the amount of relaxation and the du-

ration of the sleep with a low training effect and low average HR.  

Table 15: Overall sleep parameter comparison between the PulseOn and Reference de-
vices 

  Sleep parameters 

  PulseOn device ECG Reference 

Relaxation time [min] 195.38 196.31 

Stress time [min] 74.53 82.53 

Scaled Recovery index (%) 100 100 
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It may be concluded that the newer PPG-based OHR monitors are suitable not only for 

HR measurement during exercise, but also for monitoring HRV accurately and reliably 

during sleep and no motion. The results show very good accuracy and only a small error 

in beat detection and IBI estimation when compared to standard ECG-based reference 

RRI measurements.  

 Power saving for monitoring daily life (Pub IV) 

Publication IV presented an algorithmic approach to semi-continuous HR monitoring with 

the aim of reducing the power consumption during long-term OHR monitoring. An exper-

imental evaluation of the semi-continuous HR algorithm (“sampled HR”) was performed 

on various datasets containing data from different activities.  

The sampled HR algorithm has been evaluated against continuous OHR estimation and 

an ECG-based reference on various datasets covering a wide range of activities. It was 

expected that the designed algorithm with the aim of a faster convergence time would 

not perform as well as the continuous algorithm. The loss in accuracy was made up for 

by the reduction in power requirements during the HR estimation and the sampling of 

the PPG signal. All of the following analyses and experiments were performed offline. A 

continuous HR was derived from the PPG signal using PulseOn’s PPG algorithm. The 

sampled HR was estimated from the PPG signal using the algorithm presented in the 

publication. 

Figure 13 shows the Sampled HR estimation process in two sampling rounds. The sam-

pling and estimation intervals start at zero seconds and 60 seconds. In the first round, a 

reliable HR was found after 9 seconds. In the second round, no reliable HR was found 

and therefore the algorithm output was the value after 20 seconds of the sampling period. 

The 60-second semi-continuous sampling interval and 20-second timeout were also 

used in offline experiments.  
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Figure 13: Heart-rate estimation example for the proposed algorithm (Tarniceriu et al. 
2016). © 2016 IEEE. Reprinted with permision. 

The OHR device used in this study was the PulseOn. Table 16 presents a summary of 

the four main testing datasets including a description of the activity, the subjects’ de-

mographics, the reference device (details described in Table 8) and the duration of rec-

orded signals. The dataset groups were created according to the main corresponding 

activities. The experimental procedures performed in Publication IV complied with the 

principles of Helsinki Declaration of 1975, as revised in 2013. All subjects gave informed 

consent to participate and they had a right to withdraw from the study at any time. Their 

information was anonymized prior the analysis. 

Table 16: Dataset description used for evaluation of “Sampled HR” Algorithm 

 Datasets descriptions 

Dataset 
name 

Protocol description Subjects Reference device 

Indoor 
lab. 

controlled, sport (rest,  walking, jog-
ging, running, ergo-cycle), duration 
39 minutes 

N = 19, F = 10, 
age 28.3 ± 5.7 

Polar RS800CX 

Outdoor 
non-controlled, sport (outdoor walk-
ing, running, cycling), totally 28 
events 

N = 9, F = 1, 
age 33.5 ± 10.3 

Polar RS800CX 
Firstbeat Bodyguard 2 
Garmin Forerunner 610 

Sleep 
non-controlled, sleep at home, aver-
age time 5.1 ± 1.2 hours per subject, 
and the total duration 66.5 hours 

N = 10, F = 2, 
age  35.9 ± 10.3 

Polar RS800CX 
Firstbeat Bodyguard 2 

Daily 
activity 

non-controlled, daily activity, total du-
ration 17 hours 

N = 3, F = N/A, 
age N/A 

Polar RS800CX 
Firstbeat Bodyguard 2 
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The HR estimation accuracy was reported in the statistical metrics MAE, reliability and 

accuracy. In addition, the following values for the sampled HR were computed: 

 Reliable estimation delay: the average time duration required to obtain a reliable 
HR value. 

 Reliability rate: the percentage of 60-second intervals for which a reliable HR was 

found 

Table 17: Performance comparison between continuous and sampled-mode HR estimation  

Dataset Mode 
MAE 
[bpm] 

Reliability 
 [%] 

Accuracy 
 [%] 

Reliable  
estimation  
delay [s] 

Reliability 
rate [%] 

Indoor lab. 
 

Continuous 3.4 93.9 97.1 N/A N/A 

Sampled 4.2 92.4 96.3 7.8 89.6 

Outdoor 
  

Continuous 3.1 92.8 97.4 N/A N/A 

Sampled 4.5 89.1 96.6 7.1 89.8 

Sleep 
  

Continuous 1.8 98.5 96.6 N/A N/A 

Sampled 1.3 99..5 97.6 9.3 94.4 

Daily activity 
  

Continuous 3.3 93.2 95.4 N/A N/A 

Sampled 2.9 94.7 95.9 10.0 77.1 

The performance results (Table 17) of the sampled HR show slightly higher MAE, and 

lower reliability, during sports activities. However, they show a lower MAE and higher 

reliability during common everyday activities and sleep. The estimation delay of the sam-

pled HR was in the range of 7.1 seconds (sport) to 10 seconds (daily activity). There was 

only a 1% difference in accuracy between the sampled and continuous tracking results 

and the MAE difference was below 1 bpm. If the HR were estimated once-a-minute, the 

reduction in the power consumption of the optical chain would be from 79.7% to 86.5% 

depending on the actual use-case. For longer sampling intervals the reduction could be 

even higher. However, it needs to be remembered that although the sampled HR accu-

racy is similar to the continuous HR algorithm, the availability of reliable HR estimation 

was lower than 80% during everyday activities. In conclusion, the experiments indicated 

that the proposed very-low-power semi-continuous HR algorithm could be used for track-

ing HR trends during 24/7 HR monitoring. The lower performance of the sampled HR 

during sport was caused mainly by the difficulty in correcting the motion errors. Never-

theless, the current results indicate that OHR monitoring could be developed for real 

long-term 24/7 usage without any significant loss of accuracy. 



 

 

7 Discussion 

 Results versus objectives 

The first objective was to develop an objective OHR evaluation methodology that allows 

OHR accuracy to be evaluated in various real life situations (Publications I-V) 

This objective was achieved in the section “Evaluation framework” and Publications I-V. 

There has recently been a rapid increase in the number of available consumer OHR 

monitors, experimental OHR platforms and their use in different applications. However, 

there is a lack of common guidelines for OHR evaluation, which emphasizes the need 

for a unified evaluation methodology built on a scientific approach. The differences be-

tween the devices may be significant and therefore it is important to evaluate each device 

with a coherent evaluation methodology. The objective OHR evaluation methodology 

described in the “Evaluation framework” section was developed based on a comprehen-

sive review of previous evaluation studies that identified the key factors affecting OHR 

with the addition of generic scientific methods.  

The OHR evaluation process was divided into four basic stages: the design of the eval-

uation campaign including protocol design, selection of test subjects and proper refer-

ence devices; the execution of the evaluation campaign using important procedures for 

the operators who must strictly adhere to the instructions in the protocol; pre-processing 

the measured signals for evaluation paying particular attention to the time synchroniza-

tion and the reference signal processing; and accuracy analyses highlighting the most 

suitable error estimation metric. The error metrics MAE and HR score < 10 bpm were 

selected because MAE is a generic error metric describing average disagreement, while 

HR score < 10 bpm is a practical metric showing the length of time when the estimated 

HR is close to the true reference. In addition, Bland-Altman plots were shown to be a 

useful graphical tool for comparison of the agreement between the two methods. The 
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proposed methodology for the objective evaluation of OHR accuracy was progressively 

applied in various consumer OHR evaluation studies in Publications I-V, which allowed 

a straightforward comparison of the key results of the evaluation studies. 

The second objective was to evaluate the accuracy of selected high-end OHR devices 

during sports (Publications I, II and V) 

This objective was achieved in Publications I, II and V. The HR accuracy of four con-

sumer OHR devices, Mio Alpha, Mio Link, Scosche myRhythm and PulseOn were com-

pared against ECG-based HR recorders during a controlled indoor-sport protocol and 

non-controlled outdoor exercises. A straightforward comparison of the results for each 

device and activity throughout the studies was achieved by applying a uniform evaluation 

methodology consisted of similar activities in the testing protocols, similar reference de-

vices and identical statistical metrics. The representative number of test subjects for each 

study emphasized gender and age equality among the test group. The results demon-

strated the high accuracy of the different OHR devices during endurance sport exercises, 

which ranged from 93.2 to 98.1%, corresponding to MAPE 1.9 ─ 6.8%. This is consider-

ably more accurate than the similar sport exercise studies summarized in Table 4, which 

reported a much wider MAPE error range of 1.14 to 25.38%. There were only two studies 

(Stahl et al. 2016; Jo et al. 2016) showing similar MAPE error range from 3.28% to 9.8% 

during endurance exercises. The higher MAPE for the consumer OHR devices in the 

earlier studies may be caused by inappropriate operation of the devices, the design of 

the device itself, or the design and execution of the test protocol. The overall reliability 

achieved for all four of our tested devices in the sport protocols ranged from 86.6 to 

95.4%, which agrees with the results of another study evaluating clinical OHR monitors 

in a combined (sport and simulated daily activity) protocol which had a reliability (HR 

score < 10 bpm) of 93.8% (Hendrikx et al. 2017). Slightly lower reliability in the range of 

80.64 to 90.28 % was reported for OHR devices examined during a simulated everyday-

activity protocol with short exercise extension (Pietilä et al. 2018). It must be noted that 

OHR accuracy may also vary between different OHR brands. This thesis used high-end 

devices but some cheaper devices have produced much worse results in other studies. 

The results of Publications I, II and V show very good accuracy for consumer OHR de-

vices during endurance sport activities consisting mainly of rhythmic endurance exer-

cises such as walking, running or cycling, provided that the devices are used properly 

according to the instructions and in the designed conditions.
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The third objective was to evaluate beat-to-beat accuracy of a selected OHR device dur-

ing sleep (Publication III) 

This objective was achieved in Publication III. It was one of the first OHR evaluations 

focused on beat-to-beat accuracy. The PulseOn OHR was selected to compare the ac-

curacy of OHR beat-to-beat detection with a standard ECG RRI recorder during sleep in 

normal non-controlled conditions at home. The number of missing, extra and correctly 

detected beats for the OHR device was analyzed with an automatic method which com-

pared the reference beats within a specific time range with the detected beats. In this 

study, precise time synchronization of the signals was required to avoid major inaccura-

cies. The accuracy of the IBI estimation of corresponding beats was tested with time-

aligned signals applying general statistical metrics. The results of all the analyses were 

calculated both for artifact-corrected and non-corrected data in order to show the impact 

and efficiency of the artifact-correction algorithm. In addition, estimation of HRV and 

sleep analysis parameters were compared for both the PPG and ECG beat detection 

methods. The results showed a high number of correctly detected beats during no motion 

activity. After applying artifact correction, the number of missing, extra and correctly de-

tected beats for the PulseOn device were 0.43%, 0.72% and 99.57%, respectively. In a 

recent study, Pietilä et al. (Pietilä et al. 2018) evaluated the PulseOn device during a 

controlled daily-activity protocol that included activities with an increased amount of wrist 

motions. After the filtering artifacts had been applied, Pietila et al.’s results showed fewer 

correctly detected beats (76.2 – 90.3%) and higher relative numbers of extra (3.4 – 8.4%) 

and missing (5.9% – 15.4%) beats. Publication III also recognized a low mean bias be-

tween the OHR monitor and the ECG reference, 3.1 ms and (95% LoA) (−23.15, 23.83) 

ms for paired IBIs. In a former study performed during sleep, comparable results were 

reported that showed an even lower mean bias 0.05 ms, but a wider (95% LoA) (-35.7, 

35.81) ms (Renevey et al. 2013). The evaluation study in Publication III demonstrated 

that OHR measurement can provide accurate beat-to-beat detection during sleep, which 

might be  suitable as an input for HRV analyses. The results are in line with other studies 

which have focused on the accuracy of IBI estimations of OHR.  

The fourth objective was to evaluate the accuracy of EE and VO2max estimation based on 

OHR and mobile phone-based speed estimation (Publication V) 

This objective was achieved in Publication V. The EE and VO2max estimation accuracy 

based on OHR were among the first studies of this type, although several ECG-based 

HR VO2max and EE evaluations are available nowadays. The accuracy of the estimation 

of EE and VO2max based on OHR measurement was compared against the standard IC 
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reference method which analyses the gases in the subjects’ breath. Maximal testing pro-

cedures adhering to the guidelines for performing sport exercise were used to estimate 

the reference EE, HRmax and VO2max values. The EE estimation using OHR was meas-

ured during the reference measurement procedure in controlled laboratory conditions. 

VO2max estimation based on OHR and mobile phone-based speed estimation was con-

ducted according to a semi-controlled protocol of submaximal self-paced outdoor run-

ning. The outdoor running part was performed in regular winter training conditions, hence, 

it was a well-approximated testing protocol for real-use scenarios and provides a good 

benchmark for real outdoor training exercises. The EE estimation based on OHR was 

most accurate during heavy-intensity exercise with a MAPE of 6.7%. During light-inten-

sity exercise the MAPE increased to 16.5%. The EE estimates based on OHR and IC 

had strong correlations during light-intensity exercise ρ = 0.77, while at a heavy-intensity 

exercise an even stronger correlation was observed, r = 0.97. These results are well in 

line with studies examining chest-strap-based HR for EE estimation which reported mod-

erate (r = 0.59) to strong (r = 0.975) correlations during low and high intensity exercise, 

respectively (Erdogan et al. 2010; Robertson et al. 2015). However, previous studies 

evaluating EE estimation based on OHR reported higher MAPE rates at both intensity 

levels of exercise, 14.07% ─ 84.98%  and 19.64% ─ 30.77%, for low-intensity and high-

intensity exercise respectively (Dooley et al. 2017). A wide EE estimation error range 

was reported during ergo-cycle and resistance exercises, MAPE 21.13% ─ 75.15%, 

MAPE 42.69% - 57.02%, respectively (Boudreaux et al. 2018). In addition, recent studies 

have only shown weak to moderate correlation r = 0.16 – 0.64 between OHR-based EE 

estimation and IC (Wallen et al. 2016). The higher error rate and inaccuracy of the EE 

estimation in recent studies may be due to the inappropriate operation of the device. 

OHR- and speed-based VO2max estimation during submaximal running can estimate 

VO2max quite accurately. The MAPE was 5.2% for VO2max when an individually measured 

HRmax parameter was used in the estimation. The MAPE increased slightly to 5.9% when 

the age-based HRmax value for VO2max estimation was used. In addition, when the age-

based HR parameter was used, strong to moderate correlations were observed for males 

and females, r = 0.73 and r = 0.63 respectively. These results are in line with the evalu-

ations of VO2max prediction using chest-strap HR, which reported correlations of r = 0.872 

for males and r = 0.477 for females (Crouter et al. 2004). The OHR can be utilized to 

estimate the EE and VO2max parameters in combination with the GPS speed and other 

basic user parameters as long as appropriate algorithms incorporating physiological 

modelling are applied.  
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The fifth objective was to design and evaluate a low-power approach to OHR estimation 

for everyday use (Publication IV). 

This objective was achieved in Publication IV. The semi-continuous HR “Sampled HR” 

estimation algorithm was designed for a low-power approach to OHR estimation during 

long-term daily monitoring. The algorithm’s performance using MAE, reliability and ac-

curacy metrics was evaluated against the average real HR measurements on various 

datasets including indoor and outdoor exercise, everyday activity and sleep. In addition, 

two special metrics were defined to measure the semi-continuous HR performance: es-

timation delay, and reliable estimation delay. The error statistics were compared with 

continuous HR estimations. The algorithm implementation and evaluation was executed 

offline only in a computer environment. The expected relative reduction of power con-

sumption against continuous HR monitoring was also calculated based on the results 

obtained from off-line simulations. An average estimation delay of reliable sampled HR 

variation was from 7.1 seconds in sport to 10 seconds during everyday activities. The 

MAE and MAPE varied throughout all the datasets in the ranges of 1.3 to 4.5 bpm and 

2.4 to 4.6%, respectively. A similar study evaluating minute-by-minute HR estimations in 

free living conditions had a slightly higher MAPE of 9.17% (J. Lee et al. 2016), although 

the algorithm for HR estimation was not presented The simulations in Publication IV 

showed a possible reduction in the power consumption of the optical chain from 79.7% 

to 86.5%. However, it should be noted that with the sampled HR algorithm, HR estimation 

was only available between 94.4% and 77.1% of execution time, which is the price to be 

paid for not running the HR calculation continuously. It was concluded that semi-contin-

uous HR estimation can provide high estimation accuracy and a potential increase in the 

device’s lifetime due to the reduction in power consumption.  

 Impacts of the studies in their research fields 

Until now there have not been any unified guidelines or standards available which can 

be generalized for the OHR evaluation process. The ‘evaluation framework’ in this re-

search defines the key topics of any systematic and objective OHR evaluation and is 

essential for making valid comparisons between studies. The definition of the evaluation 

methodology reflects current needs and takes into account the main factors affecting the 

PPG signal quality. The defined processes and methods are applicable both for con-

sumer OHR monitors and experimental research platforms. Moreover, the procedures in 

the framework can be also used for the comparison and evaluation of various other HR 
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estimations. Bassett et al (Bassett et al. 2012) have already emphasized the importance 

of being able to directly compare the accuracy of evaluations of wearable sensors’ sig-

nals (e.g. for HR) which are used to derive estimates for further parameters (e.g. EE, 

VO2max). Some of the factors that can affect the PPG signal may be put down to inaccu-

racies in the HR estimation. Thus, all researchers should perform ‘unit calibration’ and 

check the accuracy of signals and variables provided by the sensors before executing 

the chosen application (Bassett et al. 2012). The methodology described here has been 

developed and incrementally applied in the presented evaluations. 

The studies in Publications I, II and V showed that consumer wrist-worn OHR devices 

can provide reliable results for HR estimation during indoor rhythmic sports as long as 

the user follows the manufacturer’s instructions. A number of other studies evaluating 

wrist-worn OHR in sport conditions that have been published since this thesis was begun 

report the similar results for reliability and accuracy (Spierer et al. 2015; Jo et al. 2016; 

Stahl et al. 2016; Hendrikx et al. 2017). The OHR accuracy during maximal HR testing 

and outdoor sports conditions have not yet been widely studied. Publications II and V 

showed good OHR reliability during both outdoor rhythmic sports and maximal HR test-

ing. Publication I showed significantly better HR accuracy during non-rhythmic move-

ment with the sensor placed on the forearm rather than the wrist, and this is confirmed 

by a study examining PPG signal quality on different body locations (Maeda et al. 2011).  

Few studies have focused on the long-term IBI accuracy of wrist-worn OHR devices. 

Schafer and Vager (Schäfer & Vagedes 2013) in their review of HRV demonstrated 

agreement between finger-based pulse rate and HRV. In Pub III, the high proportion of 

correctly-detected beats and the small difference between the OHR and ECG IBI values 

supports the assumption that HRV derived from OHR can be utilized during sleep or 

other motionless conditions. The results obtained in Pub III, especially those for mean 

bias and the corresponding limits of agreement in the BA plots, are supported by a similar 

study evaluating OHR during sleep (Renevey et al. 2013). All of the key findings in Pub 

III support the use of OHR-based IBI in any further clinical, sleep, behavioral or other 

studies which need unobtrusive long-term HR monitoring during low motion.  

Pub V presented OHR with a combination of appropriate physiological modelling algo-

rithms, especially during rhythmic sports. These allowed the EE and VO2max to be esti-

mated accurately. The correlations between the OHR-based EE and the VO2max estima-

tions agree with the chest-strap HR-based predictions for the same parameters in previ-

ous studies (Crouter et al. 2004; Erdogan et al. 2010; Robertson et al. 2015). Moreover, 

Pub V also proved that there is a slight error in the VO2max estimations based on OHR 
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and GPS speed during submaximal running in challenging outdoor conditions. Although 

the chest-strap HR-based VO2max estimations have shown a lower error using individual 

true HRmax measurements (Crouter et al. 2004; Montgomery et al. 2009; Erdogan et al. 

2010), no significant difference was found between using true measured HRmax or age-

based HRmax for OHR-based VO2max calculations. Nonetheless, the results in Publica-

tion V demonstrate notably higher accuracy for OHR-based EE prediction than similar 

evaluations performed previously (Wallen et al. 2016; Dooley et al. 2017; Boudreaux et 

al. 2018). Similar error rates in EE estimation were only presented with clinical OHR 

monitor evaluation (Hendrikx et al. 2017). The variation in EE estimation accuracy might 

be caused by differences in the calculation methodology of the different brands. 

A novel approach to reducing power consumption in long-term HR monitoring was pre-

sented and verified on various datasets in Publication IV. The semi-continuous algorithm 

was highly accurate and reliable, and had a low error rate in HR detection making it a 

viable alternative to continuous monitoring. The new parameters, estimation delay and 

reliability, show how effective the semi-continuous algorithm is. They were defined and 

utilized during the simulations of power reduction efficiency and the results show possible 

savings in power consumption due to switching off the optical chain. Therefore, Publica-

tion IV can be seen as a simple framework for evaluating semi-continuous HR algorithms, 

one which didn’t exist before. 

 Limitations of the studies 

In Publications I, II, III, IV and V the demographic parameters of the test subjects were 

too homogenous to evaluate the impact of different skin color and possible skin tissue 

structure changes in old age. The volunteer test subjects in the listed publications were 

healthy, young (20-45 years old) Caucasians with Fitzpatrick skin types I, II and III. This 

cohort of test subjects had very good skin perfusion and provided a high-quality input 

signal for the OHR sensors. It is therefore possible that the final HR estimation error may 

be lower than in other population samples.  

In Publications I, II, III, IV and V the order of activities in the protocol was not randomized. 

This may affect the accuracy of the HR results because the latter activities in the protocol 

may benefit from improved perfusion caused by any elevated physical activity performed 

earlier in the protocol.  
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In Publications I and II, the controlled protocol conditions were limited to indoor laboratory 

protocols, but there were also non-controlled outdoor protocols. However, when the out-

door protocol was performed, the effects of ambient light (sunshine) or low skin perfusion 

(cold weather) could not be tested and controlled. In addition, the test protocols were 

predominantly rhythmic sport activities (e.g. running, walking, or cycling). There were no 

non-rhythmic sports (e.g. ball games, gym exercise) included in the protocols.  

In Publication III, which evaluated the accuracy of IBI, the sample was small (only 10 

subjects). In Publication III, the used reference device recorded only RR intervals and 

therefore it was not possible to verify if all of R-peaks were detected correctly. Therefore, 

the quality of the reference data in this study could not be verified. However, the accuracy 

of RR interval detection was verified and provided on manufactures pages and hence 

the quality was likely high. 

In Publications III and V only one device was tested. This was due to practical reasons, 

as getting the test subjects to wear multiple devices in the laboratory, during outdoor 

exercise and during sleep would have been difficult to oversee and control. This may 

limit the generalizability of the obtained results. 

In Publication VI, a semi-continuous HR algorithm was evaluated in offline simulations. 

The proposed algorithm was not actually used with a real device so there is no reference 

measurement for actual savings in power consumption, nor a comparison of the accu-

racy of real-time device HR estimations with continuous HR estimations. In addition, the 

offline simulation for the semi-continuous HR approach only used one set of optimal 

sampling-interval parameters.  

In Publications II, III and V, BA Plots were used to display the HR, IBI, EE and VO2max 

error without prior inspection of the type of bias (fixed or proportional). However, the BA 

Plot was only used as a visual representation of the error, and not as a method to esti-

mate the limits of agreement; an approach which has often been used in other studies. 

In addition, both methods were measured in the same units and the results were not 

used to calibrate the devices. Hence, the BA plot may be treated as a valid method for 

giving a visual representation of the error regardless of the type of bias.  
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 Directions for future research 

The main focus of the studies in Publications I and II was to evaluate the accuracy of the 

HR estimation of HR sensors during indoor rhythmic endurance sports. The number of 

recorded measurements in outdoor conditions was limited in Publication II. Furthermore, 

little research and development has been done to give reliable results during non-rhyth-

mic motion. Thus, it is important to continue performing evaluations of the accuracy of 

OHR sensors during non-rhythmic sport activities. In addition, more controlled outdoor-

testing protocols are required to investigate the influence of ambient light from direct 

sunshine on a PPG signal, or (as is common in Scandinavia) the poor perfusion caused 

by a cold environment.  

The lower HR estimation accuracy for darker skin colors has been demonstrated in eval-

uation studies done by Spierer et al (Spierer et al. 2015). Thus, there should be more 

evaluations with darker-skinned test subjects under various test conditions. Moreover, it 

would be beneficial to combine testing the effect of skin color on OHR accuracy with the 

impact of using different wavelength light sources. 

The long-term monitoring of out-patients typically requires unobtrusive, user-friendly and 

reliable devices with zero maintenance (Korhonen et al. 2003) and wrist-worn OHR track-

ers are perfect for this. Publication III has already shown good IBI detection accuracy 

with OHR, making it suitable for HRV monitoring during sleep in non-controlled condi-

tions with young healthy adults. Relatively high IBI and HR estimation accuracy with OHR 

has been also shown during a simulated everyday-life protocol (Pietilä et al. 2018). In 

the future it will be really important to perform long-term OHR evaluations in 24/7 non-

controlled protocols to demonstrate their usefulness in the long-term monitoring of re-

mote patients. Obviously, the elderly are the most likely target group for this technology 

in the future. PPG waveform shape and amplitude changes are related to increasing age 

(Allen & Murray 2003) and arterial stiffness (Brillante et al. 2008) and these changes can 

cause various inaccuracies in the measurements. Thus, future evaluations of OHR-

based HR and IBI estimation accuracy should be conducted with older users. Studies 

should also be made with cardiovascular disease patients, or with the sufferers of other 

diseases such as diabetes and neurological disorders. Such studies would improve the 

reliability of this technology. Any future evaluations of OHR sensors, whether for re-

search, sport and fitness, or medicine, should be systematic and comparable. If future 

researchers use the “Evaluation framework” presented here, it will be easier to perform 

objective and comparable evaluations of any new sensors and algorithms. 





 

 

8 Conclusions 

This thesis has presented an objective framework for the evaluation of optical wearable 

HR sensors focused on practical target applications. An evaluation framework describing 

the key procedures for an OHR evaluation methodology has been developed to stand-

ardize and to unify the methods used in future OHR evaluations. The framework was 

developed by identifying the main factors affecting OHR measurements, based on a 

comprehensive literature review and on the practical aspects of OHR technology. The 

methodology was directly applied in five OHR-sensor evaluation studies. The primary 

aim of these studies was to explore the accuracy of HR and IBI detection. The accuracy 

of EE and VO2max parameters based on OHR was also verified. An approach to semi-

continuous HR estimation enabling lower power consumption was designed and evalu-

ated against continuous HR measurements. The following key findings can be drawn 

from the studies included in this thesis:  

 A unified approach based on scientific methods is required for the evaluation of 

OHR sensors so that the results of different studies can easily be compared.  

 It has been proved that OHR sensors can provide reliable and accurate HR esti-

mates during rhythmic sport activities when compared to ECG-based standard 

devices. This has been shown in both controlled indoor and non-controlled out-

door conditions. 

 During sleep (e.g. when the test subject exhibits minimal movement) OHR can 

reliably detect beats from PPG and accurately estimate IBI. 

 IBI based on OHR can be utilized to calculate HRV and sleep quality parameters. 

 EE and VO2max may be accurately estimated on the basis of the OHR measure-

ment in combination with appropriate physiological modelling and the GPS-

measured speed during rhythmic sports. 
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 Semi-continuous HR estimation based on OHR technology provides a way to 

significantly reduce the power consumption. The method has acceptable accu-

racy when compared with continuous HR detection methods during sport, sleep 

or daily activities. However, the savings in power consumption are made at the 

expense of HR availability. 
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Abstract— Wearable monitoring of heart rate (HR) during 

physical activity and exercising allows real time control of 

exercise intensity and training effect. Recently, technologies 

based on pulse plethysmography (PPG) have become available 

for personal health management for consumers. However, the 

accuracy of these monitors is poorly known which limits their 

application. In this study, we evaluated accuracy of two PPG 

based (wrist i.e. Mio Alpha vs forearm i.e. Schosche Rhythm) 

commercially available HR monitors during exercise. 21 healthy 

volunteers (15 male and 6 female) completed an exercise 

protocol which included sitting, lying, walking, running, 

cycling, and some daily activities involving hand movements. 

HR estimation was compared against values from the reference 

electrocardiogram (ECG) signal. The heart rate estimation 

reliability scores for <5% accuracy against reference were 

following: mio Alpha 77,83% and Scosche Rhytm 76,29%. The 

estimated results indicate that performance of devices depends 

on various parameters, including specified activity, sensor type 

and device placement.   

I. INTRODUCTION 

Heart rate monitoring is useful in wide areas including 
clinical medical care, pervasive health care, sports and well-
being.  HR describes an efficiency of cardiovascular system 
and heart functionality. People have been interested in HR 
monitoring since ancient Greek [1]. In 1960s Norman Holter 
invented a portable electrocardiogram (ECG) recorder and a 
HR analyzer [2]. Another milestone happened in 1982 when 
Polar Electro produced the first wearable HR monitor 
designed for sport purposes and based on ECG monitoring 
[3]. Today, ECG based HR monitors utilize usually chest 
strap and are widely available for consumers in affordable 
price. In parallel to chest strap based HR monitors, 
technologies based on photoplethysmogram (PPG) 
acquisition from wrist (REF), forearm (REF) or ear (REF) 
have been introduced. These solutions extend the use cases 
for HR monitoring by offering better comfort and more 
unobtrusive monitoring. 

However, accuracy of these novel technologies has been 
little studied which limits their application especially beyond 
consumer use for recreational purposes. Chest strap based 
HR monitors, e.g. Polar Vantage XL, Polar Accurex, 
Cardioschamp and Cateye PL-6000, had a  correlation >0.90 
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and standard error estimate <5 BPM during rest and 
moderate activity [4]. The best consumer level chest strap 
HR monitors have been found to provide comparable 
accuracy with ambulatory ECG in beat-to-beat detection and 
RR-interval estimation [5, 6]. Correlation coefficient of heart 
rate variability analysis demonstrated satisfactory correlation 
between Polar 810s and reference ECG during rest and 
ercocycling [7]. Another comparison study approves an 
interchangeability using of the Polar S810, Suunto t6 and 
ambulatory ECG system [8]. Smarthhealth watches and Polar 
Vintage XL were successfully validated against ambulatory 
ECG during four different loads on treadmill [9]. 
Comparison of the Actiheart and the Reynolds Holter system 
was performed in normal living conditions during common 
daily life activities [10]. In comparison, HR monitoring 
accuracy during treadmill running with finger 
photoplethymographs was found to be decreased as 
compared against the ECG reference [11]. A comparability 
problem of the Photopletysmography devices validation 
studies are discussed in the comprehensive expertise 
review [12].    

The previous comparison studies are focused mainly on 
the traditional chest strap devices. Especially PPG based 
consumer targeted devices have not been objectively 
validated to date. In this study, we compare the accuracy of 
two different consumer wearable PPG based HR monitors 
during exercise against golden standard i.e. ECG based HR. 
We chose for comparison two different PPG based monitors 
(wrist and forearm worn devices). Materials and methods 

A. Subjects 

Twenty-one healthy volunteers (15 males and 6 females; 
31,3 ± 10,7 years old) volunteered in the study. All 
participants were nonsmokers and they perform weekly some 
kind of physical activity. All subjects gave informed consent 
while participating the study.  

B. Methods 

Table 1 contains detailed description of protocol tasks 
and duration. Total testing time was 50 minutes. Selected 
protocol tasks focus to simulate intensive exercise, rest 
positions including sitting, lying on the bed in different 
positions and standing. Hand movements which can have 
significant impact of results were simulated in Rubic cube 
game play. 
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TABLE I.  TESTING PROTOCOL TASKS AND DURATION 

Activity Duration [min] 

Rest sitting 4:00 

Lying on bed on different positions 6:00 

Standing 1:00 

Walking  3km/h -  0% inclination 3:00 

Walking  3km/h -  5% inclination 3:00 

Walking  3km/h - 10% inclination 3:00 

Walking  5km/h -  0% inclination 3:00 

Walking  5km/h -  5% inclination 3:00 

Walking  5km/h - 10% inclination 3:00 

Running  9km/h -   0% inclination 3:00 

Running 11km/h -   0% inclination 3:00 

Rest sitting 2:00 

Rest sitting and playing with Rubic cube 2:00 

Rest sitting 2:00 

Cycling 60 rpm 3:00 

Cycling 90 rpm 3:00 

Rest sitting 4:00 

C. Data acquisition 

HR was acquired with two PPG based HR monitors: Mio 
Alpha (Mio Global, Canada) and Schosche myRhyhm 
(Schosche Industries, CA, USA) (Figure 1).  

Mio Alpha is worn on wrist and uses green LEDs and a 
photodetector for signal acquisition. Data were transmitted 
from device using the ANT+ technology to Garmin 
Forerunner device. HR data with timestamps were extracted 
from Garmin device for further analysis. Scosche Rhythm is 
worn on forearm and uses infrared LED and a photodetector 
for PPG acquisition. Data were transmitted by Bluetooth 
technology to iCardio Smartphone application where it was 
exported for further analysis. Both of devices were attached 
on subject body according manufacturers’ recommendations.  

The Embla Titanium multi-parameter wearable recorder 
was used for measuring the reference ECG signal. This 
device is designed for acquiring several biosignals including 
the ECG. Two ECG leads were acquired for reference heart 
rate estimation. Disposable electrodes were placed according 
two channels Holter measurement. [13]. Fixing of the 
disposable electrodes and cables were done by the medical 
tape for decreasing level of possible motion and other signal 
artifacts.  

C. Statistical analyzes 

Analysis of the reference ECG signal was performed with the 
Kubios HRV tool [14]. The better ECG RAW signal quality 
channel was selected by visual inspection of both recorded 
channels. The R-peaks were detected in selected channel by 
automatic R-peak detection algorithm which is included in 
HRV tool. In R-peak detection algorithm, QRS complexes 

are re-sampled at 2048 Hz with sinc-interpolation prior to R-
peak detection to reduce the quantization error caused by 
low ECG sampling rate [15]. The all R-peak detections were 
verified manually in the reference signal.  Heart timing 
signals algorithm was used for detection of the arrhythmias 
(ectopic beats) [16]. These beat were excluded from the final 
statistical evaluation and error estimation.  

The evaluated and reference heart rate signals were 
resampled to 10 Hz sampling frequency. HR acquired from 
PPG HR monitors and reference HR were synchronized in 
time by applying cross-correlation function between the 
reference and the target HR and by maximizing the cross-
correlation value at t=0. The signals were smoothed by 
moving average in 5s second window. 

Several HR detection accuracy parameters were 
evaluated for both of tested device.  The successful HR score 
for < 5% and <10% beats per minutes difference against 
reference were calculated in 5s average HR window without 
overlaps. Mean error (ME), mean absolute error (MAE), 
mean percentage error (MPE), mean absolute percentage 
error (MAPE) between the mio Alpha, Scosche Rhythm and 
reference HR were calculated.   

a)  

b)  

c)  

Figure 1.  a) Mio Alpha. b) Scosche myRhythm c) Test configuration
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Figure 2.  A) HR monitoring successful with both devices. B) Wrist based Mio Alpha fails during ergocycling. C) Forearm based Schosche Rhythm failed 

during walking and running, likely due to sensor displacement. D) Both devices show poor performance. 

TABLE II.  MIO ALPHA ERROR STATISTICS AS COMPARED TO 

REFERENCE ECG BASED HR (N=21)   

Activity Mean 

Error 

[bpm] 

Mean 

Error 

[%] 

Mean Abs 

Error 

[bpm] 

Mean Abs 

Error 

[%] 

global -1,21 -1,74 4,43 5,23 

rest -0,20 -0,52 3,92 5,37 

walking -0,89 -1,72 4,98 5,60 

running -2,26 -1,93 2,89 2,37 

cycling -3,76 -4,80 4,64 5,53 

rubic -1,26 -1,83 7,54 8,43 

 

 

  

 

TABLE III.  SCOSCHE MYRHYTHM ERROR STATISTICS AS COMPARED TO 

REFERENCE ECG BASED HR (N=21) 

Activity Mean 

Error 

[bpm] 

Mean 

Error 

[%] 

Mean Abs 

Error 

[bpm] 

Mean Abs 

Error 

[%] 

global 1,11 -1,62 6,82 6,78 

rest 0,07 -1,43 4,83 5,96 

walking 1,83 -3,13 10,48 10,49 

running 3,28 0,63 6,75 3,81 

cycling -0,89 -0,87 1,84 1,73 

rubic 2,59 1,46 4,73 3,94 

 

 



  

I. RESULTS 

Both PPG HR monitors were able to monitor HR during 
exercise but not without errors in some cases. Representative 
examples are presented in Figure 2. HR estimation success 
rates for different activities are reported on Table II. Average 
performance was similar in both devices but Mio Alpha 
performed better during walking and running and Schosche 
Rhythm during cycling and Rubik’s cube. Estimation error 
for Mio Alpha and Schosche Rhythm are presented in Tables 
III and IV, correspondingly. 

 

TABLE II. MIO ALPHA AND SCHOSCHE RHYTHM SUCCESS RATES DURING 

DIFFERENT ACTIVITIES (N=21) 

 Mio Alpha Scosche myRhythm 

Activity score <5% score <10% score <5% score <10% 

global 77,83 87,49 76,29 86,26 

rest 72,53 84,87 69,53 83,88 

walking 76,53 87,18 71,64 81,76 

running 94,58 96,18 90,97 93,26 

cycling 87,71 91,74 92,22 97,43 

rubic 51,46 72,29 80,21 91,88 

IV. DISCUSSION 

We evaluated new PPG based HR monitors against 

reference (ECG) HR. The results show that the PPG based 

HR monitors are able to monitor HR during exercise but not 

without errors. On average, PPG based HR was within 

10bpm from true HR 86-87% of the time. This may be 

considered as satisfactory overall performance. However, 

sometimes the monitors fail to monitor HR and in such cases 

grand errors are seen (see Fig 1).  

Wrist based monitor (Mio Alpha) performed better during 

walking and running while forearm based Scosche Rhythm 

was better during cycling and hand movements (Rubik’s 

cube). It is natural that forearm based sensor is less affected 

by hand movements which certainly occur in Rubik’s cube 

test but likely also during cycling, related to using hands for 

balancing and holding the steering while cycling. Poorer 

performance of the forearm based device during running and 

walking is, however, slightly surprising as forearm should be 

objected to lower level of accelerations than wrist also 

during these activities. The difference may hence be related 

to different implementation issues, such as algorithms used 

to extract HR, or sensor arrangements (e.g. use of different 

wavelengths in PPG acquisition).  

The average performance of both devices was satisfactory 

but momentary grand errors reduce the usefulness of them. 

Our data does not allow to study the exact reasons for 

failures. However, poor sensor placement or attachment, or 

displacement of the sensor during exercising, may explain 

some of the errors. If optical coupling between the sensor 

and the tissue is not maintained steady during the 

monitoring, the loss of signal and hence ability to monitor 

HR will result. 

Our results demonstrate that new PPG based HR monitors 

are becoming a real option for consumer HR monitoring at 

least during exercising, when ultimate performance is not 

required. However, the PPG monitors studied in this paper 

do not yet reach the level of reliability of the chest strap 

based HR monitors. The reduced accuracy is partially 

compensated by better usability and comfort. 
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Abstract— PulseOn is a wrist-worn optical heart rate (HR) 

monitor based on photoplethysmography. It utilizes multi-

wavelength technology and optimized sensor geometry to 

monitor blood flow at different depths of skin tissue, and it 

dynamically adapts to an optimal measurement depth in 

different conditions. Movement artefacts are reduced by 

adaptive movement-cancellation algorithms and optimized 

mechanics, which stabilize the sensor-to-skin contact. In this 

paper, we evaluated the accuracy and reliability of PulseOn 

technology against ECG-derived HR in laboratory conditions 

during a wide range of physical activities and also during 

outdoor sports. In addition, we compared the performance to 

another on-the-shelf consumer product Mio LINK®. The 

results showed PulseOn reliability (% of time with error 

<10bpm) of 94.5% with accuracy (100% - mean absolute 

percentage error) 96.6% as compared to ECG (vs 86.6% and 

94.4% for Mio LINK®, correspondingly) during laboratory 

protocol. Similar or better reliability and accuracy was seen 

during normal outdoor sports activities. The results show that 

PulseOn provides reliability and accuracy similar to traditional 

chest strap ECG HR monitors during cardiovascular exercise.  

I. INTRODUCTION 

Wearable monitoring of heart rate (HR) during physical 
activity and exercising allows real-time control of exercise 
intensity and training effect. Chest strap HR monitors based 
on electrocardiography (ECG) have been the standard for 
sports HR monitoring for 20 years. Chest strap based HR 
monitors typically have a correlation of >0.90 and a standard 
error estimate <5 BPM during rest and moderate activity, 
which is considered sufficient for consumer sports use [1]. 
The best chest strap HR monitors have been found to provide 
comparable accuracy with ambulatory ECG HR monitoring 
[2, 3, 4]. However, discomfort and complication of use has 
limited their popularity among consumers. Optical HR 
monitoring allows an unobtrusive and comfortable alternative 
for HR monitoring during exercise. However, most products 
up to today have suffered from poor reliability and accuracy 
[5]. In this paper, we evaluate a PulseOn optical HR monitor 
and evaluate it against ECG-based HR monitoring as well as 
against another on-the-shelf consumer optical HR monitor 
Mio LINK

®
 in laboratory conditions. We also show that the 

system is robust to real-life outdoor conditions. 
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II. PHOTOPLETHYSMOGRAPHY AND WEARABLE HR 

MONITORING 

A. Physiological Principles 

PulseOn is based on photoplethysmography where skin 
tissue is illuminated with a light source (typically LED) and 
the intensity of light that has propagated through the tissue is 
measured with a photodetector (PD) [6]. The blood volume 
in the small peripheral vessels close to the skin (see Figure 1) 
is varying with the pumping action of the heart and causes 
variations in the propagated light intensity. By analyzing 
these variations it is possible to derive HR. However, there 
are several factors which affect the light propagation and 
hence make reliable optical HR monitoring highly 
challenging. 

 

First, the human skin is a complex non-homogeneous 
structure (Figure 1). Thus, even a small displacement of the 
sensor or a change in the sensor-skin contact may cause 
significant changes in the light propagation path [6]. This 
makes the technology very prone to movement artefacts. 
Furthermore, human physiology, especially temperature 
control, causes peripheral vascular dilatation and constriction 
depending on multiple factors (e.g., environmental 
temperature, intra-body heat production), and hence both the 
volume of blood close to skin and the depth of main 
perfusion varies greatly between conditions and individuals. 
Finally, there are inter-individual differences in the skin and 
tissue structures and thickness of the layers as well as the 
amount of melanin. As a result, the optimal measurement 
depth as well as the strength of the signal varies greatly 
between situations and individuals. Measurement depth may 
be optimized by the selection of the light color (wavelength) 
and design of the sensor layout [6]. The depth of penetration 
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Figure 1. Structure of human skin. The thickness of papillary dermis 

and reticular dermis, where blood flow mainly occurs, vary between 

0.6 and 3mm. When the skin is cold, perfusion in papillary dermis is 

minimal and is reduced also in reticular dermis. 
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of the light into the tissue depends on light wavelength and 
distance between the LED and the PD [6]. Due to optical 
properties of the different components of the tissue, longer 
wavelengths, such as infra-red light (IR), will penetrate 
deeper into the tissue than short wavelengths (e.g., green 
light). In addition, shortening the PD-LED distance will 
reduce the average light propagation path, and vice versa. 
Green light with short PD-LED distance is able to illuminate 
blood flow only very close to skin while IR light and longer 
PD-LED distance provide deeper measurement. However, 
the larger the measurement area is, more prone to movement 
artefacts the measurement is [6]. As a result, green light and 
short PD-LED distance are less sensitive to movement 
artefacts [7] but more sensitive to poor perfusion (e.g., during 
cold skin). Typical optical HR solutions compromise 
between these demands and provide measurement on a single 
wavelength and single PD-LED distance, resulting in a single 
average measurement depth in all conditions and individuals, 
making it sensitive to variations in blood perfusion (e.g., cold 
skin), individual differences, and/or movements. 

Optomechanical design of the sensing device affects the 
signal quality significantly [6]. Reducing the weight of the 
sensing device, reduces forces caused by the movement and 
thereafter the skin-sensor pressure changes during exercise 

B. PulseOn Technology 

PulseOn sensor solution
1
 takes advantage of multiple 

light wavelengths and optimally matched LED-PD distances 
to allow the measurement of blood flow in different tissue 
depths (see Figure 2). It dynamically chooses the optimal 
combination for reliable and accurate HR monitoring. The 
use of green light and short PD-LED distance allows for a 
robust HR monitoring, even during intense movements, while 
the use of IR and longer PD-LED distance allows for HR 
acquisition even during low blood perfusion (e.g., cold skin). 

 

The mechanical design
2
 of the housing and the strap 

provides PulseOn with a stable skin-sensor contact in a wide 
range of conditions without compromising the comfortable 
use. The design also reduces artefacts and improves HR 
reliability. The light weight (29g, including strap) further 

 
1 Patent pending. 
2 Patent pending. 

reduces artefacts and improves usage comfort. Intelligent 
algorithms analyze PD signals and decide the optimal 
measurement combination in each situation. HR detection 
algorithm applies integrated accelerometer data to reduce 
movement artefacts and provides accurate HR estimation 
even during very intensive training, spanning up to full 
running speeds and maximum HR levels. 

III. EXPERIMENTAL VALIDATION 

A. Controlled Laboratory Protocol 

The test group consisted on N=19 healthy volunteers, 
from which 9 are men and 10 women (see Table I). All 
participants were nonsmokers and physically active

3
. 

TABLE I. SUBJECTS’ ANTHROPOMETRIC PARAMETERS 

Characteristic µ ± σ Range  

Age (years) 28.30 ± 5.69 23 – 47  
Height (m) 1.74 ± 0.11 1.55 – 1.90  
Weight (kg) 72.30 ± 12.59 52 – 99  

 

The subjects followed a standardized protocol that 
included a wide set of activities, ranging from sedentary to 
vigorous and causing rapid and wide variations in HR, 
recorded in laboratory settings (see Table II). The treadmill 
and ergocycle used in the execution of the protocol were 
Daum Ergo Run Premium Alpha 24 and the Tunturi Alpha 
300 respectively. 

TABLE II. TESTING LABORATORY PROTOCOL AND DURATIONS 

Activity Duration  

Standing 1min  
Walking on a treadmill at 3km/h, 0% inclination 3min  
Walking on a treadmill at 3km/h, 5% inclination 3min  
Walking on a treadmill at 3km/h, 10% inclination 3min  
Walking on a treadmill at 5km/h, 0% inclination 3min  
Walking on a treadmill at 5km/h, 5% inclination 3min  
Walking on a treadmill at 5km/h, 10% inclination 3min  
Running on a treadmill at 9km/h, 0% inclination 3min  
Running on a treadmill at 11km/h, 0% inclination 3min  
Rest sitting 4min  
Cycling 60rpm* 3min  
Cycling 90rpm* 3min  
Rest sitting 4min  

*Unconditioned males (activity class <5):  50 Watts   
*Unconditioned females (activity class <5):  50Watts  
*Conditioned males (activity class 5 or above):  100Watts 
*Conditioned females (activity class 5 or above):  75Watts  
 

HR signals were acquired with Mio LINK
® 

though a 
Garmin Forerunner 610 (ANT device) and the PulseOn’s HR 
monitor. The chest-strap ECG Polar Electro RS800CX HR 
monitor was used as the reference. This chest strap provides 
an ECG-level accuracy of the HR during sports [4]. PulseOn, 
Mio LINK

®
, and reference HR signals were synchronized in 

time by maximizing the cross-correlation among the signals. 
This process resulted in comparable and time-synced HR 
signals among all devices. Then, data was resampled to the 
same rate and averaged over 5s windows. PulseOn HR 
performance was estimated by the following parameters: 

 Reliability: % of time that the absolute error is smaller 
than 10bpm. 

 Accuracy: (100% - Mean Absolute Percentage Error). 

 
3 All participants gave informed consent to participate in the study. The 

study was conducted according to Helsinki Declaration. 

 
Figure 2. PulseOn sensor solution combines green and IR light with 

optimally matched LED-PD distances. 



  
The reliability provides a sense of the amount of time the 
system is working within an acceptable confidence interval, 
and the accuracy provides a sense of the error committed by 
the system at any point in time.  

We show in Table III the mean performance indicators 
for specific activities (resting, walking, running, and biking) 
as well as global values for the whole protocol. PulseOn had 
significantly better global performance than Mio LINK

®
 

during the protocol (reliability 94.5% vs 86.6% and accuracy 
96.6% vs 94.3% for PulseOn and Mio LINK

®
, 

correspondingly). The difference was mainly caused by the 
walking activity, where PulseOn reaches an average 
reliability of 90.8% and an average accuracy of 95.8% 
whereas Mio LINK

®
 obtains the values of 73.7% and 90.2% 

respectively. 

TABLE III. MEAN PERFORMANCE INDICATORS OF PULSEON AND MIO 

LINK®
 DURING THE LABORATORY PROTOCOL 

Activity 
PulseOn Mio LINK® 

Reliability 
(%) 

Accuracy 
(%) 

Reliability 
(%) 

Accuracy 
(%) 

Rest 97.9 97.1 97.4 97.3 

Walking 90.8 95.8 73.7 90.2 

Running 99.4 98.0 99.8 98.8 

Cycling 96.0 96.8 97.0 97.7 

Protocol 94.5 96.6 86.6 94.3 
 

In Figure 3, we show the Bland-Altman plots comparing 
the error distributions of PulseOn and Mio LINK

®
. As 

expected from Table III, the error distributions for rest, 
running, and cycling are very similar for both devices. 
Walking is the activity that has greater dispersion on both 
devices. However, we can observe a larger dispersion for 
Mio LINK

®
 around the interval [80,140] bpm. This has a 

clear impact on the global performance for the complete 
protocol.    

B. Outdoors Testing 

Subjects from Section III.A were randomly assigned to 
perform physical exercises outdoors. We recorded a total of 
24 events that included track-running, trail-running, urban-
running, walking, track-cycling, and road-cycling. Then, we 
grouped the recordings by their dominant activity in one of 
the following classes: Walking, Running, or Cycling. 

We used the chest-strap ECG Polar Electro RS800CX HR 
monitor to obtain a reference heart rate. The data obtained 
from PulseOn’s HR monitor was averaged over 5s windows 
and resampled in order to match the same sampling rate as 
the reference signal. 

In Table IV, we show mean performance indicators of the 
PulseOn’s HR monitor for each activity category. We can see 
that the values obtained, in terms of reliability and accuracy, 
are equivalent to those found in the controlled laboratory 
protocol of Section III.A. These values validate the 
PulseOn’s HR monitor technology and show that the system 
is robust to real-life outdoor conditions (e.g., changes in 
temperature, wind, non-uniform pace). 

 

TABLE IV. MEAN PERFORMANCE INDICATORS OF PULSEON IN 

OUTDOOR ACTIVITIES 

Main activity 
PulseOn 

Reliability (%) Accuracy (%) 

Walking (N=3) 94.1 96.6 
Running (N=17) 99.1 97.9 
Cycling (N=4) 95.2 97.3 

Mean (N=24) 97.8 97.6 

 

 

 

 

 
 

Figure 3. Bland-Altman plots comparing the reference ECG-derived HR 

to the HR derived from the wrist-devices. The left column compares the 

PulseOn monitor to the reference, and the right column compares the 

Mio LINK® to the reference. The rows from, top to bottom, correspond 

to the following activities: rest, walking, running, biking, and full 

protocol. HRPON, HRMio, and HRref refer to the heart rate estimated with 

the PulseOn monitor, Mio LINK®, and the reference respectively.    



  
In Figure 4, we compare the performance of the PulseOn 

monitor against the ECG-based reference for several outdoor 
activities. The PulseOn’s HR monitor is capable of following 
the reference in stationary situation (e.g., Figure 4B, C, G), as 
well as in fast changing heart rates (e.g., Figure 4E, H). These 
differences are activity-dependent and reflect intrinsic 
characteristics from the type of exercise. For instance, Figure 
4H shows the heart rate while driving a road bike in the city. 
The steep variations of the heart-rate values are linked to 
periods of time where the subject was steady in traffic lights.  

 

IV. CONCLUSION 

PulseOn HR monitor measures blood flow in different 

depths of skin tissue and adapts to different situations and 

individual differences. PulseOn mechanical and sensor 

optimization provide reliability and accuracy comparable to 

ECG based chest belt HR monitors [1, 3, 2, 4] during typical 

cardiovascular exercises.  

The results showed that PulseOn’s mean reliability is 

94.5% with an accuracy of 96.6%, opposed to 86.6% and 

94.3% of Mio LINK
®
. 

We also provided evidence of the robustness of the 

system in outdoor activities such as trail-running, urban-

running, walking, track-cycling, and road-cycling. Under 

these conditions, PulseOn’s HR monitor obtained an 

accuracy of 97.8% and a reliability of 97.6%.  
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Figure 4. Comparison of the performance of the PulseOn monitor 

against the ECG-based reference, for several outdoor activities. A) 

Walking with two stops. B) Outdoor running. C) Outdoor running for 22 

minutes and walking for 3 minutes. D) Outdoor running. E) Trail 

running in Lapland. F) Trail running in Lapland to Kiilopää. G) 

Outdoor cycling. H) Road-biking in traffic. 
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Abstract— Heart rate variability (HRV) provides significant 

information about the health status of an individual.  Optical 

heart rate monitoring is a comfortable alternative to ECG 

based heart rate monitoring. However, most available optical 

heart rate monitoring devices do not supply beat-to-beat 

detection accuracy required by proper HRV analysis. We 

evaluate the beat-to-beat detection accuracy of a recent wrist-

worn optical heart rate monitoring device, PulseOn (PO). Ten 

subjects (8 male and 2 female; 35.9±10.3 years old) participated 

in the study. HRV was recorded with PO and Firstbeat 

Bodyguard 2 (BG2) device, which was used as an ECG based 

reference. HRV was recorded during sleep. As compared to 

BG2, PO detected on average 99.57% of the heartbeats (0.43% 

of beats missed) and had 0.72% extra beat detection rate, with 

5.94 ms mean absolute error (MAE) in beat-to-beat intervals 

(RRI) as compared to the   ECG based RRI BG2. Mean 

RMSSD difference between PO and BG2 derived HRV was 3.1 

ms. Therefore, PO provides an accurate method for long term 

HRV monitoring during sleep. 

 

I. INTRODUCTION 

New wearable sensing technologies provide unobtrusive, 
comfortable and affordable methods for long-term real life 
monitoring of health and physiological status of the users. 
Multiple commercial devices have been recently released 
allowing measurement of e.g. physical activity, heart rate and 
sleep.  However, there is an increasing need to evaluate the 
accuracy of these new technologies and compare them to 
established gold standards.   

 Heart rate variability (HRV) provides significant 
information about the health status of an individual. HRV 
may be used in a wide spectrum of applications, such as 
clinical practice [1], sleep quality measurement [2], and stress 
and recovery analysis [3].  Accurate detection of beat-to-beat 
heart rate is necessary for the analysis of the HRV [4, 5]  
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Several studies have been evaluated chest strap (ECG) 
based wearable heart rate monitors for HRV detection 
accuracy [6, 7, 8, 9]. These devices were usually compared 
against ambulatory ECG recorders in controlled laboratory 
conditions. Published results present high accuracy for the 
estimation of beat-to-beat (RR) intervals using chest strap 
devices, with limits of agreements for group differences of 
less than ±10ms. On the other hand, wearing chest straps is 
uncomfortable in long term heart rate monitoring 
applications, especially during sleep. In addition, dry skin and 
poor skin contact often disturb chest strap based HRV 
monitoring during sleep. 

Photoplethysmography (PPG) provides an alternative 
method to monitor HRV [10, 11,12].  In [13, 14] the accuracy 
of HRV extraction from PPG during sleep was compared 
against ECG based RR Holter recordings. All of the 
mentioned studies used wearable devices based on infrared 
and red LED reflective PPG sensing technology, with 
encouraging results. However, it has been suggested that 
pulse rate variability (PRV) from PPG is sufficiently accurate 
only for healthy (and mostly younger) subjects at rest, HRV 
estimated from PRV tends to be overestimated against ECG 
based values, and motion artifacts lead to inaccurate PPG-
based beat detection [15].  

The aim of this study is to evaluate the accuracy of the 
beat-to-beat detection of the PulseOn (PO) consumer 
wearable optical heart rate monitor. The comparison is 
performed against the Firstbeat Bodyguard 2 (BG2) wearable 
RR interval recorder. The application of Firstbeat beat–to–
beat data artifact correction algorithm, estimation of HRV 
parameters and energy expenditure are also presented in this 
paper.  

II. METHODS 

A. Subjects 

Ten healthy volunteers (8 male and 2 female; 35.9±10.3 
years old) participated in this study. Two male participants 
were ex-smokers. All subjects perform moderate physical 
training weekly. A total of 13 recordings were obtained for 
this study.  

The experimental procedures described in this paper 
complied with the principles of Helsinki Declaration of 1975, 
as revised in 2000. All subjects gave informed consent to 
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participate and they had a right to withdraw from the study at 
any time. Their information was anonymized prior the 
analysis. 

B. Data recording conditions 

Subjects performed the recordings at their homes in 
normal bedroom sleeping conditions. The average non-stop 
recorded sleep time of all subjects was 5.1±1.2 hours. The 
recordings did not span the whole nights due to battery 
limitations. The subjects were instructed to start the 
recordings as soon as they went to bed.  

C. Data acquisition 

PO (PulseOn Technologies Ltd, Espoo, Finland, 
www.pulseon.fi , [accessed 31.03.2015]) is a wearable 
wristband consumer optical heart rate monitor with double 
wavelength technology (green and infrared) and optimized 
optical sensors for high accuracy signal measurements (see 
Figure 1) [14]. The device was worn as instructed by the 
manufacturer on non-dominant hand, about one finger width 
from the wrist bone, and tightened by the subjects so that the 
skin contact was firm but still comfortable for the whole 
night recording. Beat-to-beat HR was detected automatically 
by the device. Data was logged to PO mobile phone 
application and uploaded for further processing offline.    

 

Figure 1.  PulseOn consumer wearable optical based heart rate monitor 
with double wavelenght optical sesing technology 

The reference RR intervals were acquired with BG2 
(Firstbeat Technologies Ltd, Jyväskyla, Finland, 
www.firstbeat.fi , [accessed 31.03.2015]) long term ECG 
based recorder with two disposable electrodes (see Figure 2).  
This device provides standard RR interval precision in 
milliseconds. The beat-to-beat detection accuracy and artifact 
correction algorithm of the selected reference device was 
evaluated in a laboratory protocol study [16]. 

 

Figure 2.  Firstbeat Bodyguard wearable RR intervals recorded based on 

ECG signal aquistion with disposable electrodes 

D. Signal processing 

Firstly, both the data from the PO wrist device and the 
data from the BG2 reference device were processed with the 
Firstbeat artifact correction method [17]. Ectopic beats were 
detected using the algorithm presented by Mateo et al. in [18] 
and excluded from the evaluation. 

Since both devices were not turned on at the same exact 
moment, the streams of data were synchronized with each 
other by minimizing their mean absolute difference.  

Afterwards, to compensate for eventual time drifts 
between PO and BG2 clocks, we split the data in intervals of 
five minutes and performed a new synchronization for each 
interval. 

Using the synchronized PO and BG2 data from each 
interval, we determined the percentage of correctly detected 
beats (true positive), extra beats (false positive), and missed 
beats (false negative). For every PO detected beat, we check 
how many reference beats were detected in the interval 
[𝑡 − 0.5𝑙, 𝑡 + 0.5𝑙], where t is the time when the beat was 
detected and l is the length of the corresponding RR interval. 
If there is only one reference beat within the interval, then it 
is considered detected correctly. If there are more than one 
reference beats, then PO was considered to have missed a 
beat detection. And if there is no corresponding reference 
beat, then PO detected a wrong beat. We present an example 
of this method in Figure 3. For the beat at position 𝑡 = 3050 
ms, there are two corresponding reference beats, so we 
assume that in this case we miss a beat. For the beat at 
position 𝑡 = 5500 ms, there is no corresponding reference 
beat, so we consider this an extra beat. This is not a 100% 
accurate method for beat identification, but, to our 
knowledge, there is no other better automatic way of doing 
this. 

 

 

Figure 3.  Illustartive example of detecting extra and missing beats  

Besides the extra detected and missed beats, we 
determined the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), and the root mean square 
of successive differences (RMSSD). 

Finally, we put together the results from all five-minute 
intervals to obtain the statistics for the whole measurement. 
Because the five-minute intervals which contain extra or 
missed beats also contain more artifacts, in order to reduce 

http://www.pulseon.fi/
http://www.firstbeat.fi/


  

the effect of outliers on the analysis, we did not consider 
them when computing the MAE, MAPE, and RMSSD. 

III. RESULTS 

The size of the used dataset was 223524 heart beats. The 
statistics for both uncorrected and corrected data are 
presented in Table I. 

TABLE I.  USED DATASET 

Error type 
Dataset statistics 

Before artifact 

correction 
After artifact correction 

Heart beats 223524 221390 

Mean [ms] 1071 1062 

Std [ms] 244.16 257.93 

Min. value [ms] 270 399 

Max. value [ms] 2977 2335 

 

Table II provides the summary of the beat detection 
accuracy, for the cases before and after artifact correction.  

TABLE II.  BEAT DETECTION ANALYSIS 

Error type 
Beat–to–beat detection  

Before artifact correction After artifact correction 

Correct beats [%] 99.42 99.57 

Extra beats [%] 1.93 0.72 

Missing beats [%] 0.58 0.43 

 

The results show that PO detects correctly 99.42% of the 

heart beats, relative to the BG2 reference, but also adds some 

extra beats due to movement artefacts. After artifact 

correction, the amount of false positive beats is reduced from 

1.93% to 0.72% (a relative decrease of 62.7%) and the 

amount of false negative beats is reduced from 0.58% to 

0.43% (a relative decrease of 28.3%). This leads to a final 

detection rate of 99.57%.    

 

 

 

Figure 4.  Example showing the RR intervals for 100 heart beats, for POn 
and BG2. The lower graphs shows the instantenuous error between 

synchronous intervals 

B.   Beat–to–beat interval measurement  

After identifying the correctly detected heart beats, we 

used them to analyze the accuracy of the beat-to-beat 

interval estimation. In Figure 4, we show 100 consecutive 

heart beats, estimated using the PO device and BG2 

reference. The top part of the figure shows the duration of 

the RR-intervals, and the bottom part shows the difference 

between synchronous PPG-ECG pairs. 
 

The comparison between synchronous beat-to-beat 
intervals (for all PO detected beats that have only one 
corresponding reference beat) is performed by evaluating the 
mean absolute error and the mean absolute percentage error, 
and the results are given in Table III. 

TABLE III.  INTERVAL DETECTION STATISTICS 

Error type 
Beat–to–beat interval estimation 

Before artifact correction After artifact correction 

ME [ms] -0.32 -0.33 

Error std [ms] 14.40 11.74 

MAE [ms] 6.68 5.94 

MPE [%] -0.03 -0.03 

MAPE [%] 0.62 0.56 

 

The overall mean error is -0.32±14.40 ms before artifact 

correction and -0.33±11.74 ms after artifact correction. This 

information is also presented in the Bland-Altman plot from 

Figure 5. In addition, this figure shows the error distribution 

and the distribution of the RR interval duration. (Because of 

the high similarity of the Bland Altman plots for uncorrected 

and corrected data, we only show the figure for the corrected 

data.) 

 

 

Figure 5.  Bland - Altman plot comparing the reference ECG-obtained RR 

intervals to the PPG-obtained RR intervals, for artifact corrected data. The 

confidence interval (µ ± 2𝜎, depicted by the dashed lines) is 

[−23.15, 23.83] ms. 

 



  

C.  Heart rate variability parameters comparison 

The mean error and the mean percentage error provide us 

with information about how accurately we determine the 

duration of inter-beat intervals. However, by themselves, 

they do not provide information about the heart rate 

variability or about biased measurements.  

One measure which describes HRV is the root mean 

square of successive differences (RMSSD) [4]. We 

computed it for both PO and BG2 measurements[Table IV]. 

The RMSSD difference between the PO measurements and 

the BG2 reference was 4.2 ms (7.00%) for the uncorrected 

data, and 3.1 ms (4.74%)  for the corrected data. 

TABLE IV.  RMSSD STATISTICS 

PulseOn (PPG) RMSSD [ms] 64.18 68.48 

Reference (ECG) RMSSD [ms] 59.98 65.38 

RMSSD difference [ms] 4.2 3.1 

 
In Table V, we provide several examples of parameters 

deduced using the RR intervals from this study. The values 
were determined using the Firstbeat Sports software and 
represent the average for all the subjects. As the recordings 
were done during the night, the relaxation time is 
considerably higher than the stress time, the heart rate is low, 
the training effect is minimal, and the recovery index is high. 

TABLE V.  HEART RATE VARIABILITY PARAMETERS  

 PulseOn Reference 

Relaxation time (min) 
195.38 196.31 

Stress time (min) 74.53 82.53 

Average HR (bpm) 55.84 55.61 

Training effect (1->5) 1.03 1.02 

Scaled Firstbeat Recovery index (%) 100 100 

IV. CONCLUSION 

This study explores the accuracy of RR interval detection 
using PPG based wrist worn device, PO. PO correctly 
detected 99.57% of the heart beats, and had 0.72% extra beat 
detections due to movement artefacts during sleep. The MAE 
was 5.94 ms, and the RMSSD difference against ECG based 
BG2 reference 3.1 ms. As expected, correcting the artifacts 
with the Firstbeat Sports software based artefact correction 
algorithm led to more precise estimation of the beat-to-beat 
intervals, a very noticeable improvement being visible in the 
reduction of extra-detected beats. 

The results demonstrate that new PPG based HR monitors 
are becoming a real option for consumer use, not only for HR 
monitoring while exercising, but also for HRV analysis. PPG 
provides a more comfortable solution, as they do not require 
electrodes to be placed on the body. PO device evaluated in 
this study provides HRV accuracy comparable to ECG based 
devices and is sufficient for reliable HRV monitoring during 
sleep. 
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Abstract— Heart rate (HR) and HR variability (HRV) carry 

rich information about physical activity, mental and physical 

load, physiological status, and health of an individual. When 

combined with activity monitoring and personalized 

physiological modelling, HR/HRV monitoring may be used for 

monitoring of complex behaviors and impact of behaviors and 

external factors on the current physiological status of an 

individual. Optical HR monitoring (OHR) from wrist provides 

a comfortable and unobtrusive method for HR/HRV 

monitoring and is better adhered by users than traditional 

ECG electrodes or chest straps. However, OHR power 

consumption is significantly higher than that for ECG based 

methods due to the measurement principle based on optical 

illumination of the tissue. We developed an algorithmic 

approach to reduce power consumption of the OHR in 24/7 HR 

trending. We use continuous activity monitoring and a fast 

converging frequency domain algorithm to derive a reliable HR 

estimate in 7.1s (during outdoor sports, in average) to 10.0s 

(during daily life). The method allows >80% reduction in 

power consumption in 24/7 OHR monitoring when average HR 

monitoring is targeted, without significant reduction in 

tracking accuracy.  

I. INTRODUCTION 

Heart rate (HR) and HR variability (HRV) are controlled 
by the autonomous nervous system and are modified by both 
internal (e.g. mental stress, relaxation, sleep, alertness) or 
external (e.g. physical load / activity, posture, etc.) factors. 
HR/HRV provide rich information about the physical, 
mental, and health status of an individual. Wearable HR 
monitoring based on chest straps has been used during 
physical exercise to facilitate the control of exercise intensity 
and training effect. Wearable HR/HRV monitoring has also 
been widely used for objective monitoring of physical 
activity [1] and stress and recovery [2]. However, the use of a 
chest-strap or ECG electrodes can cause discomfort, reducing 
the device’s usability and used acceptance, and especially 
long term adherence. If designed as a wristband, optical HR 
(OHR) devices do not suffer from this drawback, 
representing a less obtrusive and more comfortable 
alternative for HR monitoring. Today, the best OHR devices 
provide accuracy comparable to ECG based methods for HR 
during sports [3] and even HRV during low motion 
interference [4]. Hence, OHR monitoring would offer an 
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attractive method for 24/7 monitoring of behaviors, physical 
activity, stress, and health. Unfortunately, due to its 
measurement principle based on optical illumination of the 
tissue, the inherent power consumption of the OHR 
technology is significantly higher than that of the ECG based 
methods.  

Our objective was to develop an algorithmic approach to 
reduce power consumption of the OHR technology in 24/7 
HR monitoring. In this approach, HR is sampled semi-
continuously, and continuous activity monitoring and fast 
adapting frequency domain estimation is used for fast 
convergence of the algorithm to provide a reliable HR 
estimate during various activities. The method was evaluated 
during sports, daily life and sleep. 

II. OPTICAL HEART RATE MONITORING 

Optical HR monitoring is based on the 
photoplethysmography (PPG) principle. Light emitted by a 
LED is transmitted at the surface of the body tissue. During 
the propagation, the light-wave suffers reflection, refraction, 
scattering, and absorption and the resulting signal is detected 
by a photodetector (PD) [5]. The PD can detect reflected light 
(reflectance mode) or back-scattered light (transmission 
mode). Given that the received light intensity depends on the 
variations of the subcutaneous blood flow, and as these 
variations are directly related to heart pulsations, we can use 
the detected signal to estimate the heart rate. 

One of the main problems of PPG measurement is that the 
useful signal is corrupted by ambient light and other electro-
magnetic radiations (ambient light artefacts), by gravity and 
by voluntary and involuntary subject movements (motion 
artefacts). The ambient light artefacts influence can be 
measured using multiplexing techniques and eliminated by 
subtractive techniques [6]. An efficient way to reduce the 
motion artefacts is to use a motion reference signal provided 
by an accelerometer and to perform signal enhancement 
afterwards [7]. In this way, we may obtain reliable HR 
estimates even under intense physical activities.  

The OHR device used in this study is the PulseOn device 
(PulseOn, Espoo, Finland). It is a wearable wristband 
consumer OHR monitor which uses two light wavelengths 
(green and infrared) and has optimally matched LED-PD 
distances to allow the measurement of blood flow in the 
wrist. Both the mechanical casing and the strap are designed 
to provide a stable sensor-skin contact, reducing the artefacts 
[3, 4]. The HR detection algorithm applies the accelerometer 
data to reduce the motion artefacts and provide accurate HR 
estimation for a range of activities from rest or daily office 
routine to intensive training. Added to this, the acceleration 
data is used to determine activity related parameters such as 
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step or calory count. The device can monitor HR, performed 
activity, PPG and accelerometer signals.  

III. POWER CONSUMPTION IMPROVEMENT 

Most algorithms for HR detection from PPG are based on 
frequency domain estimation of the HR frequency in a noisy 
PPG signal. As the PPG signal-to-noise ratio during motion is 
usually poor (even below 1:100) and the signal may include 
several rhythmic components close to the HR frequency due 
to e.g. physical motion artefact, the convergence of the 
algorithms is usually slow.  

We developed a semi-continuous OHR monitoring 
algorithm (“sampled HR”). In this approach, acceleration is 
continuously monitored to estimate the activity status, to 
predict the expected HR level based on activity, and to 
continuously estimate the motion artefact frequency. The 
OHR sensor is sampled semi-continuously in pre-determined 
intervals (e.g., every 60s or 300s, depending on the 
application). When OHR is sampled, the initial HR is 
estimated from the activity to speed up convergence, and the 
frequency content of the motion is used to filter out activity 
related frequencies from the HR spectrum. HR is estimated 
until a reliable HR is achieved or when timeout (P) is reached 
(the HR reliability is estimated based on spectral separation 
of HR and motion related signals in PPG). In this study, we 
chose N = 60 seconds, as one HR estimate per minute still 
provides a reliable description of the heart activity and 
training effect and maintains HR trend information over 24/7. 
We defined an indicator for the HR estimation reliability and 
follow the next steps:  

- Set P to a value higher than the algorithm convergence 
time (e.g., 20 seconds). 

- Every N seconds, repeat: 

1. Start PPG acquisition and optimize PPG 
acquisition parameters for current ambient light 
and motion conditions; 

2. Initialize HR algorithm with predicted HR 
based on activity status; 

3. For each new sample, estimate HR and iterate 
algorithm to remove motion artefact and adapt 
frequency domain estimator to HR frequency; 

4. If a reliable HR value is found, return the value 
and stop estimation; 

5. If no reliable HR value is found after P seconds, 
return the latest HR estimate. 
 

A visual description of the algorithm is given in Figure 1. 
In the estimation interval starting from 0, a reliable HR is 
found after 9 seconds. In the interval starting from 60 
seconds, there is no reliable HR found. In this case, the 
algorithm returns the last estimated value, represented by the 
blue square. 

 

 

Figure 1.  Heart-rate estimation example for the proposed algorithm 

IV. EXPERIMENTAL VALIDATION 

To validate the algorithm, we compare the performances 
of the sampled algorithm against continuous OHR estimation 
and ECG based reference during sports, daily life and sleep. 
As the sampled-mode algorithm was designed with the aim 
of faster convergence, we might expect that its performance 
is not as high as for the continuous-mode algorithm. But this 
should be compensated by reduced power requirements.  

For performance estimation, we compute the following 

parameters: 

 Mean Absolute Error (MAE): average of the 

absolute difference between the reference and the 

estimated HR. 

 Reliability: percentage of time when the absolute 

error is below 10 beats per minute (bpm). 

 Accuracy: 100 – mean absolute percentage error. 

 
In addition, for the sampled mode, we compute 

 Reliability rate: the percentage of 60-second 

intervals for which a reliable HR value was found. 

 Estimation delay: the average time duration 

required to obtain a HR value. 

 Reliable estimation delay: the average time duration 

required to obtain a reliable HR value. 
These measures will be computed for four different 

datasets, covering a wide range of activities. 

The experimental procedures described in the following 

comply with the principles of the Helsinki Declaration of 

1975, as revised in 2000. All subjects gave informed consent 

to participate and they had the right to withdraw from the 

study at any time. 
 

1)  Controlled Laboratory Protocol 
The test group consists of 19 volunteers, 9 male and 10 

female, 28.3±5.69 years old, non-smokers. All subjects 
perform moderate physical activities weekly. Each subject 
followed a protocol including rest, walking and running on a 
treadmill, and ergo-cycling (Table I). The PPG was 
monitored using the PulseOn device, and the ECG-based 
Polar Electro RS800CX [8] was used as reference. 

 



  

TABLE I.  LABORATORY PROTOCOL 

Activity Duration 

Standing   

Walking on a treadmill at 3km/h, 0% inclination   

Walking on a treadmill at 3km/h, 5% inclination   

Walking on a treadmill at 3km/h, 10% inclination   

Walking on a treadmill at 5km/h, 0% inclination   

Walking on a treadmill at 5km/h, 5% inclination   

Walking on a treadmill at 5km/h, 10% inclination   

Running on a treadmill at 9km/h, 0% inclination   

Running on a treadmill at 11km/h, 0% inclination   

Rest sitting   

Cycling 60rpm*   

Cycling 90rpm*   

Rest sitting   
 

1min 

3min  

3min 

3min 

3min 

3min 

3min 

3min 

3min 

4min 

3min 

3min 

4min 

 

2) Outdoor Activities 
The outdoor activities consist of walking, running, and 

cycling, both on and off-road. The test group contains 28 
recordings made by 9 subjects, 8 male and 1 female, 
33.5±10.3 years old, with a total duration of 21.3 hours. The 
used reference was either Polar Electro RS800CX or 
Firstbeat Bodyguard 2, both ECG-based. PPG was recorded 
with the PulseOn device. 

3) Sleep 
The test group consists of 10 volunteers, 8 male and 2 

female, 35.9±10.3 years old, non-smokers. All subjects 
perform moderate physical activities weekly.  A total of 13 
recordings were made. Firstbeat Bodyguard 2 was used as 
reference and PPG was recorded with the PulseOn device. 
Subjects performed the recordings at their homes in normal 
bedroom sleeping conditions. The average non-stop recorded 
sleep time of all subjects was 5.1±1.2 hours, and the total 
recording duration is 65.2 hours.  

4) Daily Activities 
These activities consist of daily office or house work. The 

used reference was either Polar Electro RS800CX or 

Firstbeat Bodyguard 2. The PPG signal was recorded with the 
PulseOn device. These recordings were made by three 
subjects and have a total duration of 17 hours. 

All the analysis were performed offline. HR was derived 
from PPG with PulseOn’s PPG algorithm and with the 
sampled mode algorithm as presented above.  

V. RESULTS 

The performance metrics for each dataset are summarized 
in Table II. The sampled mode algorithm resulted in slightly 
higher MAE and lower reliability during sports but lower 
MAE and higher reliability during daily activity and sleep. 
The average reliable estimation delay varied from 7.1s during 
outdoor sports to 10.0s during daily life. Figures 2-5 show 
one example of continuous and sampled-mode HR estimation 
for each dataset.  The black line represents the reference and 
the green line is the continuous mode estimate. The red dots 
are sampled mode estimates considered reliable. The blue 
dots indicate cases when no reliable HR was found after 20 
seconds (even so, the estimated values are still close to the 
reference most of the time).  

VI. CONCLUSIONS 

We developed and evaluated an algorithm for semi-
continuous OHR monitoring during various activities. The 
results show that very low power semi-continuous OHR 
trending is possible without sacrificing the accuracy of HR 
detection as compared to continuous monitoring. For sports, 
the sampled-mode performance is below the continuous-
mode performance, but this was expected: continuous HR 
tracking is able to correct some errors caused by the motion, 
while in sampled mode this is not possible.  The accuracy 
difference is below 1%, and the MAE difference is below 1 
bpm (note that even the sampled-mode performance is better 
than other optical heart rate monitors [4, 9]). The average 

TABLE II.  PERFORMANCE METRICS FOR THE LAB PROTOCOL, OUTDOOR ACTIVITIES, SLEEP, AND DAILY ACTIVITIES  

 Lab protocol Outdoor Sleep Daily 

N subjects 19 9 10 3 

Duration 

[hours] 

12.3 21.3 65.2 17 

 Continuous 

mode 

Sampled 

mode 

Continuous 

mode 

Sampled 

mode 

Continuous 

mode 

Sampled 

mode 

Continuous 

mode 

Sampled 

mode 

MAE 

[bpm] 
3.4 4.2 3.1 4.5 1.8 1.3 3.3 2.9 

Reliability 

[%] 
93.9 92.4 92.8 89.1 98.5 99.5 93.2 94.7 

Accuracy 

[%] 
97.1 96.3 97.4 96.6 96.6 97.6 95.4 95.9 

Estimation 

delay[s] 
- 8.6 - 8.1 - 9.4 - 12.2 

Reliable 

estimation 

delay[s] 

- 7.8 - 7.1 - 9.3 - 10.0 

Reliability 

rate [%] 
- 89.6 - 89.8 - 94.4 - 77.1 

 



  

estimation duration is 8.6 seconds for the laboratory protocol, 
8.1 seconds for outdoor activities, 9.4 seconds for the sleep 
recordings, and 12.2 seconds for daily activities. If we 
estimate the heart rate every minute, this means a reduction 
of 85.7%, 86.5%, 84.3%, and 79.7% of the optical chain 
power consumption, respectively; for longer sampling 
intervals, the savings are even more significant. Future work 
will focus on further reducing these durations, but the current 
results already allow extending OHR monitoring towards real 
24/7 use without sacrificing accuracy.  
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Figure 2.  Heart-rate estimation example for the laboratory protocol 

 

Figure 3.  Heart-rate estimation example for outdoor activities (walk, run, 

and short break) 

 

Figure 4.  Heart-rate estimation example for sleep 

 

Figure 5.  Heart-rate estimation example for daily activities 
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Abstract

Background: Wearable sensors enable long-term monitoring of health and wellbeing indicators. An objective evaluation of
sensors’ accuracy is important, especially for their use in health care.
Objective: The aim of this study was to use a wrist-worn optical heart rate (OHR) device to estimate heart rate (HR), energy
expenditure (EE), and maximal oxygen intake capacity (VO2Max) during running and to evaluate the accuracy of the estimated
parameters (HR, EE, and VO2Max) against golden reference methods.

Methods: A total of 24 healthy volunteers, of whom 11 were female, with a mean age of 36.2 years (SD 8.2 years) participated
in a submaximal self-paced outdoor running test and maximal voluntary exercise test in a sports laboratory. OHR was monitored
with a PulseOn wrist-worn photoplethysmographic device and the running speed with a phone GPS sensor. A physiological model
based on HR, running speed, and personal characteristics (age, gender, weight, and height) was used to estimate EE during the
maximal voluntary exercise test and VO2Max during the submaximal outdoor running test. ECG-based HR and respiratory gas
analysis based estimates were used as golden references.
Results: OHR was able to measure HR during running with a 1.9% mean absolute percentage error (MAPE). VO2Max estimated
during the submaximal outdoor running test was closely similar to the sports laboratory estimate (MAPE 5.2%). The energy
expenditure estimate (n=23) was quite accurate when HR was above the aerobic threshold (MAPE 6.7%), but MAPE increased
to 16.5% during a lighter intensity of exercise.
Conclusions: The results suggest that wrist-worn OHR may accurately estimate HR during running up to maximal HR. When
combined with physiological modeling, wrist-worn OHR may be used for an estimation of EE, especially during higher intensity
running, and VO2Max, even during submaximal self-paced outdoor recreational running.

(JMIR Mhealth Uhealth 2017;5(7):e97)   doi:10.2196/mhealth.7437
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Introduction

Advances in wearable sensors enable long-term monitoring of
health and wellbeing indicators in various conditions and

activities in both consumers and patients. Recently, significant
progress in the size, power consumption, and accuracy of various
different sensing technologies has led to an introduction of
affordable wearable sensors with a reasonable battery life and
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capability to monitor, for example, physical activity, sleep, heart
function, and so on. However, the reliability and accuracy of
the produced information has been questioned and significant
differences between different brands have been found [1].
Therefore, an objective scientific evaluation of available
wearable sensors is essential for the progress of their use,
especially for health applications such as chronic disease
prevention and management.

Heart rate (HR) monitoring provides valuable information on
physiology and health status during sports, daily life, and sleep.
Chest strap HR monitors have been used during sports to
quantify and control training loads since the late 1980s. The
main limitation for the wide and long-term use of chest strap
HR monitors, especially in female users, is the discomfort that
is caused by the tightness of the chest strap and possible skin
irritations. Therefore, their application has remained relatively
limited, especially in real-life wearable monitoring.

Wearable optical HR (OHR) monitoring technology based on
photoplethysmography (PPG) has been significantly improved
recently because of miniaturized low-power hardware and
improved embedded algorithms. OHR technology can be applied
on almost any part of the body, such as on the wrist, and can
hence overcome some challenges of chest strap HR monitors
in their usability and long-term use. However, relatively few
scientific studies have reported OHR technology performance
and accuracy in laboratory or real-life conditions. Olenick et al
evaluated a Mio Alpha wrist OHR device during a graded
treadmill exercise test until volitional fatigue and found a strong
correlation between OHR and ECG-based HR [2]. In a study
by Parak and Korhonen [3], wrist and forearm OHR devices
were evaluated during multiple physical activities (walking,
running, and biking) with a 5% agreement ranging from 76%
to 78%. Delgado-Gonzalo et al evaluated the accuracy and
reliability of two different wrist OHR devices (PulseOn and
Mio Alpha) against ECG-derived HR in laboratory conditions
during a wide range of physical activities and found the mean
absolute error of PulseOn to be 3% and Mio Alpha to be 6%
during laboratory protocol [4]. Similar or better accuracy was
seen during normal outdoor sports activities [4]. In general,
wrist-worn OHR devices seem to provide good accuracy during
running, but less so in some other activities, such as biking and
weight lifting [5-7]. These studies suggest that the currently
available high-end OHR devices are reaching acceptable
accuracy for HR monitoring during cardiovascular sports such
as running, while different brands and devices may experience
significant differences in their performance.

Exercise HR is itself a valuable parameter. For example, it
allows a real time control of training loads. However, exercise
HR alone is challenging to interpret for users, and an estimation
of more advanced physiological parameters during exercise
would be beneficial to allow a more insightful analysis of the
training. An estimation of momentary oxygen consumption and
total energy expenditure (EE) for each training session and an
estimation of changes in physical performance achieved by
regular training are examples of these insightful parameters. An

indirect calorimeter is one of the most accurate reference
methods for estimating EE. This method is based on the analysis
of respiratory gases and is commonly used in laboratory settings.
HR has also been used for estimating oxygen consumption.
Montgomery et al [8] evaluated the accuracy of oxygen
consumption and EE estimation based on chest strap HR
monitors and found a slight underestimation with a 6%
coefficient of a variation of 6% for oxygen consumption and
13% for EE. Keytel et al [9] reported a correlation coefficient
of .913 between the chest strap HR-based method and indirect
calorimeter-based EE. Running speed can also be used to
estimate oxygen consumption; in runners, a strong correlation
(>.99) has been reported [10,11]. Robertson et al [12] found a
significant correlation between EE estimates based on indirect
calorimetry and a HR chest strap based method during low
intensity exercise and maximum intensity exercise. However,
Wallen et al observed poor accuracy in an EE estimation of four
OHR smart watches as compared with indirect calorimetry [13].

Physical performance may be estimated by the maximal oxygen
consumption (VO2Max) of a person. VO2Max can be measured
directly with an expiratory gas analyzer during a maximal
voluntary exercise test. Running speed may also be used to
estimate VO2Max [14]. By estimating the oxygen consumption
and speed during submaximal exercise, it is possible to estimate
VO2Max without maximal exercise testing [15]. LeBoeuf et al
found good accuracy of an OHR sensor placed in the ear in the
assessment of EE and VO2Max: −0.7 (SD 7.4%) and −3.2 (SD
7.3%) [16]. However, to our knowledge, the accuracy of a
wrist-worn OHR on the estimation of EE, oxygen consumption,
or VO2Max has not been widely studied.

The objectives of the current study were to use OHR to estimate
HR, EE, and VO2Max during running and to evaluate the
accuracy of the estimated parameters (HR, EE, and VO2Max)
against a chest strap HR and respiratory gas analysis derived
from golden reference values.

Methods

Subjects
Twenty-four healthy adults (13 males and 11 females)
participated in the study (Table 1). The inclusion criteria were
age (18-55 years), BMI (18-30), normal self-reported health
status, experience in treadmill running, and a self-estimated
ability and willingness to continue the exercise protocol with
an increasing load until exhaustion. The health status of the
subjects was evaluated in advance through a self-reporting
questionnaire and a verbal interview by a trained sports
laboratory physiologist about the subjects’ capabilities to reach
maximum performance. The subjects provided signed informed
consent to participate in the study and they were told that they
could withdraw from the study or protocol at any time, if they
so desired. The study followed the ethical guidelines of the
Helsinki declaration.
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Table 1. Demographics of the participants.

FemaleMaleAllParameter

111324No. of participants

35.4 (7.2)36.8 (9.1)36.2 (8.2)Age in years, mean (SD)

167.2 (3.5)180.0 (5.6)174.1 (8.0)Height in cm, mean (SD)

61.1 (5.2)76.1 (9.0)69.2 (10.6)Weight in kg, mean (SD)

21.8 (1.7)23.4 (1.8)22.7 (1.9)BMIa in kg/m2, mean (SD)

aBMI: body mass index.

Study Protocol
The study protocol included two parts: (1) a submaximal outdoor
running test and (2) a maximal voluntary exercise test in the
sports laboratory. The submaximal outdoor running test was
performed in regular outdoor conditions in Finland with the aim
of providing data from uncontrolled and sometimes challenging
conditions, where subjects would train and perform their fitness
tests when provided with self-testing equipment, such as a PPG
wrist device and a mobile phone. The data from the submaximal
outdoor running tests was used to estimate VO2Max, based on
wrist PPG and mobile phone GPS data. The maximal voluntary
exercise was performed to provide a standardized reference
(“ground truth”) for VO2Max for each individual and to compare
EE from a wrist PPG against a standard respiratory gas
analysis-based EE reference during running. The order of the
tests was randomized with a maximal time difference of 7 days.

The submaximal outdoor running test was performed on a
pre-defined outdoor track with a flat surface. The subjects were
instructed to run at a self-determined pace for at least 20 min,
targeting moderate to vigorous subjectively assessed intensity,
and to run 5 km. HR was monitored with an optical wrist worn
heart rate monitor (PulseOn, Espoo, Finland) and GPS data with
a mobile phone (Samsung S3 Galaxy Trend). A Polar V800 HR
monitor (Polar Electro, Kempele, Finland) with a built-in GPS
sensor was used as a reference for the distance. The GPS
reference for the distance was necessary, as the subjects
performed the actual running test without continuous supervision
and, hence, had a possibility to vary their running route to some
extent. The PulseOn mobile app was used to track and store HR
and running speed during the test. Field tests were performed
outdoors between November 2014 and January 2015 in Finland
in regular winter training conditions, that is, during days when
it was not raining or snowing, the testing track was not too
slippery to cause health risks, and the temperature was above
-10 °C. The subjects were instructed to wear their own outdoor
sports clothing as appropriate for the current weather during the
test. These conditions are typical outdoor training conditions in
Finland and, hence, provide a good benchmark for challenging
real outdoor training conditions that are faced by ordinary
citizens while training.

The maximal voluntary exercise test was performed in a sports
testing laboratory with a treadmill (OJK-2, Telineyhtymä, Kotka,
Finland). The indoor temperature during the tests was 20 °C.
During the test, the subjects wore a face mask from the
respiratory gas analyzer (Metalyzer 3B, Metasoft Studio 4.8,

Cortex Biophysik GmbH, Leipzig, Germany), the PulseOn wrist
HR device, and a chest strap HR device (RS800CX, Polar
Electro, Kempele, Finland). The treadmill inclination was set
to 0.6°. After setting up the measurement devices and instructing
the user about the study protocol and the use of the treadmill,
the subject performed a warm-up run at 8 km/h for 6 min. Then,
the subject stood still for 6 min and the first blood sample was
taken, after which the actual test started. The running speed was
increased by 1 km/h, which was maintained for 3 min to reach
a stable metabolism at each load. The initial running speed was
set so that the predicted number of loads that the subject would
be able to complete would be between 8 and 10. Between
transitions, the treadmill was stopped for 20-30 s, during which
a blood sample was drawn from the subject’s finger to estimate
the blood lactate (Biosen C_Line, EKF Diagnostic, 42
Barleben/Magdeburg, Germany). The test was continued until
the subject wanted to stop (a stop signal was agreed upon in
advance) or the following end criteria, based on
recommendations by the Finnish Sports Testing Society, were
met: (1) predicted maximum heart rate was reached, (2)
measured VO2 was stabilized or started to decrease, (3) blood
lactate level increased above a threshold, or (4) respiratory
exchange ratio was >1.1. After the test, the subject was allowed
to recover for 3 min, which was followed by a 7 min cool down
jog at a self-selected speed. After this, the final blood sample
was taken.

Energy Expenditure and Maximal Oxygen Intake
Capacity Estimation From Optical Heart Rate
PulseOn OHRs recorded during submaximal and maximal tests
were re-analyzed offline because of the randomized order of
the field and laboratory tests. VO2Max was calculated from the
submaximal test and EE was calculated from the maximal
exercise test. HR, GPS data, and personal subject information
(height, weight, gender, and age) were used for calculations.
Both maximal HR estimated during the maximal exercise test
and maximal HR estimated from the subject’s age (208 − 0.7
× age [17]) were used for the VO2Max calculation. VO2Max
estimated offline from the submaximal test was used for the EE
estimation during the maximal exercise test.

The estimation of total EE was based on a method developed
earlier [18]. Neural networks were used to derive momentary
oxygen consumption (VO2) from HR. Differences in the
HR-VO2 relationship during the different exercise phases (on
and off phases) were included in the model. Personal maximal
HR and estimated VO2Max were used for the calculation of the

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 7 | e97 | p.3http://mhealth.jmir.org/2017/7/e97/
(page number not for citation purposes)

Parak et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


momentary VO2 value. EE was then estimated from VO2,
respiratory quotient (RQ), and caloric equivalent [18]. RQ
describes the ratio between carbon dioxide produced and oxygen
consumed in metabolism, varying from 0.70 to 1.00. RQ has a
well-established deterministic relationship with the caloric
equivalent, which describes the amount of energy expended per
one liter of consumed oxygen, varying from 4.69 to 5.05 kcal/l
O2 [19]. Both exercise intensity and duration affect the RQ and
caloric equivalent. An increase in exercise intensity results in
an increased RQ and caloric equivalent, due to the increased
oxidation of carbohydrate and decreased oxidation of fat. A
prolonged exercise duration has an opposite effect, due to the
increased oxidation of fat and decreased oxidation of
carbohydrate. When the momentary VO2 and caloric equivalent
are known, it is possible to calculate the momentary EE. The
total EE can be calculated by summing up the momentary EE
values.

VO2Max was estimated from OHR and GPS speed recorded
during the self-paced running test by a company (Firstbeat,
Jyväskylä, Finland) [20]. The method is based on a linear
relationship between VO2 and the running speed. First, speed
and OHR data are segmented to different HR ranges and the
reliability of different data segments is estimated by calculating
the correlation between HR and speed and comparing that to
the variance of the data in that segment. In case of a wide
variance and low correlation, the segment is discarded as being
unreliable. Then, the most reliable data segments are used to
estimate VO2Max by utilizing the relationship between HR and
speed. Finally, VO2Max is estimated as the reliability weighted
average of the segments.

Data Analysis
A maximal voluntary exercise test was used to determine the
reference (“ground truth”) VO2Max, as well as measure EE during
the test. EE was measured by averaging the measured EE, based
on a respiratory gas analysis for each minute. Equations defined
by Weir [21] were used to calculate EE, based on respiratory
gas measurements. VO2Max was determined by using criteria
defined by the Finnish Society of Sport Sciences [22].

HR data from a chest belt acquired during the laboratory test
was analyzed with Firstbeat Sports software (Firstbeat,
Jyväskylä, Finland, version 4.5). After applying an artifact
correction algorithm to the signals, the maximum HR value was
observed. A second-by-second chest strap HR was used as a
reference for the OHR signal during the maximal voluntary test,
and the acquired maximum HR value was used as the measured
maximum HR in the further analysis.

Statistical Analyses
The HR estimation accuracy of the wrist PPG device was
estimated during the maximum exercise test by comparing HR
from the wrist PPG device with chest strap-based HR. First, the
data were re-sampled at 1.5 s sampling intervals. HR signals
were synchronized in time by maximizing the cross-correlation
between the signals at t=0. Then, the HR data was averaged
over 5 s non-overlapping windows. HR accuracy was estimated
by the following parameters [3,4].

Reliability: The percentage of time that the absolute error is
smaller than 10 bpm.

Accuracy: The complement of the relative error (ie, 100% mean
absolute percentage error).

The difference between VO2Max estimated with a wrist PPG
device and GPS data during a submaximal test and with a gas
analyzer during a maximal exercise test was compared by
calculating the bias, mean absolute error (MAE), mean absolute
percentage error (MAPE), and correlation coefficient (either
Pearson when data was normally distributed or Spearman when
this was not the case) between the estimates. Bland-Altman
plots were constructed to allow a visual presentation of the
agreement between the two estimation methods and their average
error (bias), as well as 95% confidence limits of agreement.

The difference between EE estimated from the wrist PPG device
and respiratory gas analysis was calculated during the maximum
exercise test. The analysis was carried out separately for light
intensity (below aerobic threshold) and medium heavy intensity
(between aerobic and anaerobic thresholds). The estimation was
only performed from light to medium heavy intensity levels, as
higher intensity levels can change the body acid-base balance,
which can distort the indirect calorimetry method [23]. The
aerobic and anaerobic thresholds of the subjects were determined
by the guidelines of the Finnish Society of Sport Sciences
[22,24]. Bland-Altman plots were generated for a visual analysis
of the error, and bias, MAE, MAPE, and correlation coefficients
were calculated for the data.

The normal distribution of data was examined by the
Shapiro-Wilk test. The difference between the methods was
tested with a paired t test in case normal distribution was
confirmed and with the Wilcoxon signed rank test when normal
distribution could not be confirmed. Pearson correlation
coefficient was computed between normally distributed
parameters, while Spearman rank correlation coefficient was
used for the other parameters not meeting the normal distribution
assumption. The strength of the correlation coefficients was
interpreted based on the following definitions: weak (r ≤.5),
moderate (r=.5–.7) and strong (r ≥.7). All statistical tests were
performed as two-sided and the level of significance was set at
P<.05.

All data analysis was carried out with MathWorks Matlab
(version 8.5). All statistical testing was carried out with IBM
SPSS statistics (version 22).

Results

Heart Rate Accuracy During Treadmill Running
HR estimated with a wrist PPG device appeared to closely
follow HR monitored with a chest strap (Table 2). In most cases,
wrist PPG HR estimated HR accurately over the entire protocol,
even up to maximum HR and running speeds, as shown in Figure
1 (parts A and B). In a few cases, there were occasional outliers,
as shown in Figure 1 (part C: in the worst case, OHR artifacts
during the beginning of the recording are likely related to poor
perfusion before fully warming up, while at the end, the subject
was struggling to maintain the running speed, resulting in
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non-rhythmic hand motions because the subject was aiming to
gain support from the treadmill handles.). This can also be seen
in Figure 2, which presents the Bland-Altman plot of the HR

during the entire laboratory protocol from a wrist OHR device
and chest strap HR.

Figure 1. Comparison of HR from chest strap (black line) and wrist PPG device (red line) during maximum exercise test: (A) best accuracy, (B) average
accuracy, and (C) worst case.
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Figure 2. Bland−Altman plot comparing the wrist PPG device and chest strap HR device during maximum exercise protocol in all 24 subjects (solid
horizontal line: bias, dashed lines: 95% confidence limits of agreement).

Figure 3. Bland−Altman plot comparing the phone GPS distance measured by the PulseOn app and a reference tracker distance estimation during
outdoor running protocol (solid horizontal line: bias, dashed lines: 95% confidence limits of agreement).
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Maximal Oxygen Intake Capacity Estimation
VO2Max estimated with a wrist PPG device and phone GPS data
with a PulseOn app was close to VO2Max measured during
maximum exercise tests in laboratory conditions (Tables 3 and
4). VO2Max estimates were slightly underestimated with the
submaximal test with the PulseOn app with a MAPE of 5.2%
(4.7% for males and 5.8% for females), when measured
maximum HR was used in the estimation. The distance estimated

by a phone GPS was underestimated on average by 5.0%
(−270m) (Figure 3). However, this error did not correlate with
the VO2Max error. When an age-based maximum HR estimate
was used, the error slightly increased (Table 4). There was no
statistically significant difference between the estimates when
the measured maximum HR was used in the estimation. Figure
4 presents the Bland-Altman plot of the VO2Max estimates, which
shows a tendency towards larger errors with lower VO2Max
values.

Table 2. Accuracy of wrist optical heart rate device during treadmill running up to maximum speed.

Accuracy, %Reliability, %Activity

97.196.9Rest when standing

98.395.3Ramp-up running

98.195.4Entire protocol

Table 3. Maximal oxygen uptake (VO2Max) estimated from optical heart rate data and based on measured maximum heart rate value.

Female (n=11)Male (n=13)All (N=24)Performance metric

−0.82−1.28−1.07Bias (ml ·kg−1·min−1)

3.192.422.75SDa (ml ·kg−1 ·min−1)

2.512.292.39MAEb (ml ·kg−1·min−1)

5.84.75.2MAPEc

.42(Te).08(Te).06(Wd)Statistical test (P value)

r=.69, (P<.05) (Peg)r=.77, (P<.01) (Peg)ρ=0.86, (P<.01)(Spf)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.

Table 4. Maximal oxygen uptake (VO2Max) estimated from optical heart rate data and based on an age-based maximum heart rate estimate.

Female (n=11)Male (n=13)All (N=24)Performance metric

−1.46−1.52−1.49Bias (ml ·kg−1 ·min−1)

3.352.702.95SDa (ml ·kg−1 ·min−1)

2.962.582.76MAEb (ml ·kg−1 ·min−1)

6.85.25.9MAPEc, %

.18(Te).07(Te).03(Wd)Statistical test (P value)

r=.63, (P<.05) (Peg)r=.73, (P<.01) (Peg)ρ=0.87, (P<.01)(Spf)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.
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Figure 4. Bland−Altman plot of VO2Max estimates from the PulseOn app (wrist PPG device + phone GPS) during a submaximal exercise test versus
gas analyzer based estimate during maximal exercise tests−dots represent data when age−based maximum HR is used for an estimation, while an asterix
represents estimations based on true measured maximum HR (solid horizontal line: bias, dashed lines: 95% confidence limits of agreement).

Energy Expenditure
Data from one male subject was excluded from the EE
estimation analysis due do failure in respiratory gas analysis
data acquisition, and results are reported for the remaining 23
subjects. Error in the EE estimation was lower (MAPE 6.7%)

in the higher intensity exercise (above the aerobic threshold,
but below the anaerobic threshold), but increased in lower
intensities (Tables 5 and 6, and Figure 5). A wrist PPG device
tended to underestimate the EE during treadmill running. The
correlation with respiratory gas estimated EE was high (>.93)
during higher intensity exercise, especially in females.

Table 5. Statistical error analysis of energy expenditure during light intensity.

Female (n=11)Male (n=12)All (N=23)Performance metric

−9.41−14.24−11.93Bias (kcal)

10.9516.4513.99SDa (kcal)

10.6515.2813.05MAEb (kcal)

16.316.616.5MAPEc, %

.02 (Te).01 (Te)<.001 (Wd)Statistical test (P value)

r=.79, (P<.01) (Peg)r=.88, (P<.01) (Peg)ρ=0.77, (P<.01) (Spf)Correlation coefficiente

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dW: Wilcoxon test.
eT: Paired t test.
fSp: Spearman correlation coefficient.
gPe: Pearson correlation coefficient.

JMIR Mhealth Uhealth 2017 | vol. 5 | iss. 7 | e97 | p.8http://mhealth.jmir.org/2017/7/e97/
(page number not for citation purposes)

Parak et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Bland−Altman plot comparing an energy expenditure estimation with a wrist PPG device and gas analyzer during a maximum exercise
test−the asterisk denotes data before the aerobic threshold, while dots represent data between aerobic and anaerobic thresholds (solid horizontal line:
bias, dashed lines: 95% confidence limits of agreement).

Table 6. Statistical error analysis of energy expenditure during medium heavy intensity.

Female (n=11)Male (n=12)All (N=23)Performance metric

−4.28−6.78−5.58Bias (kcal)

3.1012.249.00SDa (kcal)

4.3410.437.52MAEb (kcal)

5.18.26.7MAPEc, %

.001(Td).08(Td).007 (Td)Statistical test (P value)

r=.99, (P<.01) (Pee)r=.93, (P<.01) (Pee)r=.97, (P<.01) (Pee)Correlation coefficient

aSD: Standard deviation.
bMAE: Mean absolute error.
cMAPE: Mean absolute percentage error.
dT: Paired t test.
ePe: Pearson correlation coefficient.

Discussion

Principal Findings
We estimated HR, EE, and VO2Max based on wrist PPG and
phone GPS speed and evaluated their accuracy during running
based on golden reference methods. OHR appeared to be
accurate during running; the MAPE was 1.9% and reliability
95.4% during a maximal voluntary exercise test. This is well
in line with the earlier results [4] and suggests that high-end

consumer-grade OHR devices are capable of accurately
monitoring HR during running, even up to a maximum HR.

The accuracy of more advanced parameters estimated from
OHR is dependent, both on the accuracy of the OHR and on the
validity of the analytical models. We used an HR-based
estimation of the EE, and an HR and running speed-based
estimation of the VO2Max developed earlier by a company
(Firstbeat, Jyväskylä, Finland), which is widely available in
various sports products. EE estimation with this method has
been validated earlier [8], suggesting a slight underestimation
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of EE by 13% when a chest strap HR was used. In our study,
the overall EE estimation accuracy is well in line with this. EE
estimation was the most accurate during medium or hard
intensity with a MAPE of 6.7% (males 8.2% and females 5.1%).
During light intensity, the error increased to 16.5% (males 16.6%
and females 16.3%). Differences in the EE estimation based on
HR may be related to individual differences in the basic
metabolism, a thermogenesis effect due to diet or metabolic
effect, which affects the body mass ratio [25]. For comparison,
10.1-18.2% MAE has been reported for EE estimation by
activity trackers [26]. The EE estimates based on OHR and
indirect calorimetry had strong correlations for all (N=23)
subjects during light intensity (ρ=0.77), while at a higher
intensity their correlation was close to 1 (r=.97). The results are
comparable to a similar study by Robertson et al [12], who used
a chest strap HR with the same EE estimation method [18] and
reported moderate (r=.57) to strong (r=.85) correlations during
low and high intensity exercise, respectively. However,
significant differences between different OHR devices have
been reported. Recently, Wallen et al studied the EE estimation
accuracy of four different OHR devices against indirect
calorimetry and found only one device (Samsung Gear S) to
have a strong correlation (r=.86) with the reference, while the
other three devices exhibited only a weak correlation to reference
EE [13]. Our results suggest that a wrist-worn OHR may offer
a similar estimation of true EE during running to chest strap
HR based methods when a high quality OHR device and proper
physiological model are applied in EE estimation.

The level of fitness may be quantified by the estimation of
VO2Max. We used OHR and a mobile-based speed estimation
to estimate VO2Max during self-paced outdoor running in real
and challenging outdoor conditions during winter in Finland.
These conditions may be considered the “worst case” training
conditions and, for example, the temperature difference may
increase the observed estimation error for VO2Max. The analytical
method was based on the well-known HR versus speed
relationship and on detecting the most reliable data periods for
VO2Max estimation during the exercise [20]. We compared this
estimate with the golden standard of the VO2Max estimation,
that is, respiratory gas analysis acquired during a maximal
voluntary exercise test in a sports laboratory. The results suggest
that OHR and speed-based VO2Max estimation during self-paced
running are able to quite accurately estimate VO2Max, even in
these challenging outdoor conditions; we found a MAPE of
5.2% (males 4.7% and females 5.8%) for VO2Max when an
individually measured HR maximum was used in the estimation.
When age-estimated maximum HR was used, the error increased
slightly. A significant contribution to the inaccuracy originated
from phone GPS tracking, which underestimated the distance
by 5% on average and led to a corresponding underestimation
of the VO2Max. In addition, during the outdoor testing, there
were challenging weather conditions (cold and winter), which
posed challenges for PPG HR estimation because of potentially
poor perfusion, increasing the potential error for the OHR during
field conditions. These weather conditions may also have
affected the real VO2Max. Also, differences in running efficiency
affect the correspondence between the running speed and the

true physical load, and, hence, increase the error in HR and
speed-based VO2Max estimation. There was also a tendency for
the OHR and speed-based analysis to overestimate the VO2Max
in individuals with a lower real VO2Max. In summary, the results
suggest that the method may be used to estimate VO2Max
relatively accurately during self-paced running, even in
challenging outdoor conditions.

Limitations and Strengths
This study has several strengths, but also weaknesses. To our
knowledge, this is the first study to report both EE and VO2Max
estimation accuracy, based on OHR data. We used a realistic
or even challenging setting (self-paced outdoor running in
winter) to estimate VO2Max. This is a setting that can be applied
by an ordinary user, and as such, the method can be directly
applied by healthy users to estimate their fitness levels. We used
the golden standard (gas analyzer and controlled sports
laboratory with maximal voluntary exercise) as a reference for
EE and VO2Max. The main weakness of the study is that it had
a relatively small study population; however, despite this, the
results can be considered to be at least indicative. In addition,
the outdoor tests were carried out in a challenging environment
(winter, cold, and sometimes potentially slightly slippery roads),
increasing the error of the outdoor VO2Max estimation. On the
other hand, this provides the worst case scenario, and the results
were still within an acceptable error margin. Finally, the study
included only one wrist OHR device, which limits the
generalizability of the results. Only a single device was used
for practical reasons—wearing several devices in both laboratory
and outdoor conditions would have complicated the study
implementation. The PulseOn device was chosen for the study
because, at the time of data collection, to our knowledge, other
available wrist OHR devices did not support estimation of
VO2Max together with accurate data logging capability. However,
the results are not without generalizability. The applied VO2Max
and EE estimation algorithm [18,20] has been validated with a
chest strap HR monitor [12], is commercially widely available,
and could be applied with other accurate OHR devices as well.
Hence, we do not consider the results of the study to be specific
to applied wrist devices only, but to OHR technology in general.

Conclusions
We applied a commercially available OHR device to estimate
HR, EE, and VO2Max during running and evaluated their
accuracy against golden standard methods. The results show
that current high-end wrist OHR devices may provide accurate
HR that can be compared with a chest strap HR, during running,
up to a maximum HR. When combined with proper analytics,
OHR may be used to quite accurately estimate EE, especially
during moderate to medium heavy intensity activities. An
estimation of VO2Max during self-paced outdoor running using
OHR and a mobile phone’s GPS data and proper HR analytics
also allows a relatively accurate estimation of a fitness level
(VO2Max). Wrist PPG devices accompanied by phone apps
provide a reliable alternative for training monitoring in realistic
conditions.
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