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Abstract

Wearable health technology, most commonly in the form of the smart watch, is employed by

millions of users worldwide. These devices generally exploit photoplethysmography (PPG),

the non-invasive use of light to measure blood volume, in order to track physiological metrics

such as pulse and respiration. Moreover, PPG is commonly used in hospitals in the form

of pulse oximetry, which measures light absorbance by the blood at different wavelengths of

light to estimate blood oxygen levels (SpO2). This thesis aims to demonstrate that despite its

widespread usage over many decades, this sensor still possesses a wealth of untapped value.

Through a combination of advanced signal processing and harnessing the ear as a location for

wearable sensing, this thesis introduces several novel high impact applications of in-ear pulse

oximetry and photoplethysmography. The aims of this thesis are accomplished through a three

pronged approach: rapid detection of hypoxia, tracking of cognitive workload and fatigue, and

detection of respiratory disease.

By means of the simultaneous recording of in-ear and finger pulse oximetry at rest and during

breath hold tests, it was found that in-ear SpO2 responds on average 12.4 seconds faster than

the finger SpO2. This is likely due in part to the ear being in close proximity to the brain,

making it a priority for oxygenation and thus making wearable in-ear SpO2 a good proxy for

core blood oxygen. Next, the low latency of in-ear SpO2 was further exploited in the novel

application of classifying cognitive workload. It was found that in-ear pulse oximetry was

able to robustly detect tiny decreases in blood oxygen during increased cognitive workload,

likely caused by increased brain metabolism. This thesis demonstrates that in-ear SpO2 can be

used to accurately distinguish between different levels of an N-back memory task, representing

different levels of mental effort. This concept was further validated through its application to

gaming and then extended to the detection of driver related fatigue. It was found that features

derived from SpO2 and PPG were predictive of absolute steering wheel angle, which acts as a

proxy for fatigue.

The strength of in-ear PPG for the monitoring of respiration was investigated with respect to the

finger, with the conclusion that in-ear PPG exhibits far stronger respiration induced intensity

variations and pulse amplitude variations than the finger. All three respiratory modes were

harnessed through multivariate empirical mode decomposition (MEMD) to produce spirometry-

like respiratory waveforms from PPG. It was discovered that these PPG derived respiratory

vii



waveforms can be used to detect obstruction to breathing, both through a novel apparatus

for the simulation of breathing disorders and through the classification of chronic obstructive

pulmonary disease (COPD) in the real world.

This thesis establishes in-ear pulse oximetry as a wearable technology with the potential for

immense societal impact, with applications from the classification of cognitive workload and the

prediction of driver fatigue, through to the detection of chronic obstructive pulmonary disease.

The experiments and analysis in this thesis conclusively demonstrate that widely used pulse

oximetry and photoplethysmography possess a wealth of untapped value, in essence teaching

the old PPG sensor new tricks.
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Chapter 1

Introduction

1.1 Motivation and objectives

Consumer wearable devices promise to revolutionise the healthcare system, both by empowering

users with knowledge and control over their own health as well as by providing doctors with

valuable 24/7 physiological data that cannot be obtained through patient visits. The quantity of

wearables sold increased almost 20-fold between 2014 and 2021, from 28.8 million units per year

to 533.6 million units per year [1], a growing proportion of which is attributable to ear-based

wearables [2]. With this incredible explosion in health data availability, comes an immense

potential for life saving diagnostics, but also a considerable responsibility to understand the

accuracy and precision of these diagnostics.

Photoplethysmography (PPG), the technology relied upon by smart watches to measure pulse,

has been employed as a non-invasive tool to measure the pulse since the 1930s when it was pub-

lished by Dr. Alrick Hertzman [4]. It works simply by emitting light into the skin and then either

measuring the intensity of light transmitted through the tissue (transmittance photoplethys-

mography) or the intensity of light reflected by the tissue (reflectance photoplethysmography).

When more blood is present, more light is absorbed, resulting in less light reflected back to the

sensor. Thus, PPG effectively measures the pulse. In the 1970s, almost 40 years after the emer-

gence of photoplethysmography, Dr. Takuo Aoyagi utilised PPG at two different wavelengths

1
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In-ear PPG has stronger respiratory intensity variations
(Budidha et al)

Application to blood pressure
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In-ear pulse oximetry has minimal delay
(Davies et al)

In-ear PPG has stronger respiratory amplitude variations
(Davies et al)

In-ear PPG can be used to detect COPD
(Davies et al)

In-ear pulse oximetry can detect mental effort
(Davies et al)

Figure 1.1: A bar graph the showing the quantity of papers, indexed by google scholar, that
utilise in-ear PPG for each year between 2005 and August 2022. Significant time points are
labeled, such as the introduction of in-ear pulse oximetry in 2007 [3].

of light (red and infrared) to non-invasively estimate blood oxygen levels [5]. This invention,

termed pulse oximetry, is now widely used in hospitals in the form of a finger clip to measure

pulse and blood oxygen percentage (SpO2) simultaneously. Photoplethysmography has further

exploded in popularity over the past decade through the rise of modern smart watches, which

rely on PPG to estimate pulse rate and in some cases respiration rate. In the past few years,

several companies, including Bose, have integrated heart rate tracking with headphones, and

Samsung recently filed a patent on earbuds with optical biometric sensing, suggesting that a

migration to ear-based health tracking is around the corner.

The concept of an in-ear pulse oximetry sensor was introduced in the literature in 2007 by
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Vogel at al [3]. For the years between 2007 and 2012, research on in-ear PPG focused mainly

on validation against more commonly used sensor positions such as the wrist and the finger.

In-ear pulse oximetry was then applied to measure oxygen desaturations that occur in patients

with obstructive sleep apnea in 2013 by Venema et al [6]. Important qualities of the in-ear

recording location then emerged in 2014 and 2018 with Budidha et al discovering that in-ear

PPG is both resistant to vasoconstriction that occurs with hypothermia [7] and that it has

stronger respiratory induced intensity variations than the finger [8]. In-ear PPG was then

applied to blood pressure prediction, through the combination of PPG with an inflatable tube,

in 2019 by Bui et al [9]. These developments are summarised in Fig 1.1. Still, compared with

other wearable PPG locations such as the wrist, the in-ear is far less researched. As of August

2022, there are 5-fold more papers relating to wrist PPG than in-ear PPG indexed by google

scholar. The comparative lack of research on in-ear PPG, in light of the prediction that there

will soon be a migration from wrist to in-ear based consumer health sensors, shows a clear gap

for further investigation and forms a strong motivation for this thesis.

The primary objective of this thesis is to show that despite being widely investigated and

utilised for many decades, both pulse oximetry and PPG still possess inherent untapped value.

Through the use of state of the art signal processing methods in combination with the advanta-

geous sensor location of the ear, this thesis sheds light on previously unexplored capabilities of

pulse oximetry from the robust classification of cognitive workload to the detection of chronic

obstructive pulmonary disease (COPD).

1.2 Thesis organisation and contributions

Background theory (chapter 2)

The biological and engineering principles of photoplethysmography and pulse oximetry are

explained in depth. Different recording sites are compared with respect to pulse variations,

respiratory variations, wearability and the prevalence of motion artefacts. The effect of skin

pigmentation on bias in pulse oximetry readings is explained, as well as the mitigation of this
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issue in the context of this thesis. The development of in-ear pulse oximetry hardware for this

project is expanded upon and documented, from the early prototype stages to the Bluetooth

enabled Bioboard. Empirical mode decomposition (EMD), a data driven method for dividing

signals up into physiologically meaningful modes, is explained in depth for both the single

variate algorithm and multivariate algorithm. The random forest (RF) algorithm, used heavily

in this thesis for the classification of cognitive workload, chronic obstructive pulmonary disease

and driver fatigue, is explained in depth. An example of the machine learning classifiers applied

to physiological data is presented, and classifiers different classifier performances are compared.

Part I: In-ear pulse oximetry for the detection of hypoxia (chapters 3 and 4)

Wearable in-ear SpO2 was investigated with respect to finger SpO2 during rest and breath

holds, with the discovery of a 12.4 second delay on average between in-ear recordings and finger

recordings. Moreover, a novel adhesive ear-SpO2 sensor is introduced for continuous wearable

SpO2 measurements during exercise. It is applied to patients with breathing disorders during

six minute walk tests and compared to hospital transmission based pulse oximetry on both the

earlobe and the finger.

Relevant publications:

• H. J. Davies, I. Williams, N. S. Peters, and D. P. Mandic, “In-Ear SpO2: A Tool for

Wearable, Unobtrusive Monitoring of Core Blood Oxygen Saturation,” Sensors, vol. 20,

no. 17, p. 4879, Aug 2020.

Part II: Classification of cognitive workload and fatigue (chapters 5, 6 and 7)

In-ear SpO2 was introduced as a novel tool for the wearable measurement of changes in cognitive

workload. With in-ear SpO2 it was possible to detect minor decreases in blood oxygen that likely

occur from the brains increased consumption of oxygen during increased mental effort. This

principle was used to automatically classify stages of memory task based on features derived

from in-ear SpO2. It was then further applied to the detection of cognitive workload in gaming,

with a comparison temporally across a level of a game and comparisons across different types
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of game. Moreover, the same sensor was then applied to predict driving induced fatigue. A

classifier trained on features from in-ear SpO2 and in-ear PPG was successfully able to predict

periods where there were large absolute steering wheel angles and thus predict when a driver

was more likely to make fatigue related mistakes.

Relevant publications:

• H. J. Davies, I. Williams, G. Hammour, M. C. Yarici, and D. P. Mandic, “In-Ear SpO2

for Classification of Cognitive Workload,” IEEE Transactions on Cognitive and Develop-

mental Systems, in press, 2022.

• H. J. Davies, I. Williams, and D. P. Mandic, “Tracking Cognitive Workload in Gaming

with In-ear SpO2”, In Proc of the 43rd Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) 2022. (To appear)

Part III: Detection of obstructive lung disease (Chapters 8 and 9)

In-ear PPG was investigated with respect to finger PPG for the strength of respiratory mod-

ulations. It was found that in-ear PPG had stronger venous intensity variations induced by

respiration which was in-line with existing literature. Moreover, in-ear PPG was also found

to have stronger pulse amplitude variations than finger PPG. A novel method for producing

detailed respiratory waveforms from PPG was developed, using all three respiratory modes of

PPG through multivariate empirical mode decomposition (MEMD). Using this method in com-

bination with physiologically informed features, it was possible to classify chronic obstructive

pulmonary disease for the first time from PPG-derived respiratory waveforms. This discovery

was further validated through the development of a novel tube-based apparatus for the simula-

tion of obstructive breathing disorders in healthy subjects, enabling the physically meaningful

generation of surrogate data.

Relevant publications:

• H. J. Davies, P. Bachtiger, I. Williams, P. L. Molyneaux, N. S. Peters, and D. Mandic,
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“Wearable In-Ear PPG: Detailed Respiratory Variations Enable Classification of COPD,”

IEEE Transactions on Biomedical Engineering, vol. 69, no. 7, pp. 2390-2400, July 2022.

• H. J. Davies, G. Hammour, H. Xiao and D. P. Mandic, “An Apparatus for the Simulation

of Breathing Disorders: Physically Meaningful Generation of Surrogate Data”, arXiv

preprint arXiv:2109.06699, Sep 2021.

In-ear SpO₂ as a tool for
wearable monitoring of core

blood oxygen

In-ear SpO₂ for the classification
of cognitive workload

Tracking cognitive workload in
gaming with in ear SpO₂

In-ear PPG for the detection of
driver fatigue

An apparatus for the artificial
simulation of breathing

disorders

In-ear PPG for the classification
of COPD

Adhesive ear-SpO₂ to monitor
exercise in patients with

breathing disorders

Chapter 3

Part II: Classification of Cognitive Workload and Fatigue

Part III: Detection of Obstructive Lung Disease

Part I: Detection of Hypoxia

Chapter 5

Chapter 8

Chapter 4

Chapter 6

Chapter 7

Chapter 9

KEY FINDINGSCONTENTS

• Wearable in-ear SpO₂ shows non-inferiority
with the finger for resting blood oxygen
measurements.

• In-ear SpO₂ responds 12 seconds faster on
average than the finger for measures of
hypoxia.

• Adhesive ear-SpO₂ shows non-inferiority
with the finger for detecting drops in blood
oxygen during six minute walk tests.

• In-ear SpO₂ decreases reliably in response to
increased cognitive load.

• With the in-ear SpO₂ signal it is possible to
accurately classify levels of N-back memory
task.

• The in-ear SpO₂ response to cognitive
workload is further evidenced in gaming
tasks.

• In-ear SpO₂ and photoplethysmography
features are capable of predicting steering
wheel angle deviations from driver related
fatigue.

• A novel tube based apparatus allows for the
simulation of obstructive breathing disorders
in healthy subjects.

• PPG waveforms reliably vary in response to
artificial obstruction.

• In-ear PPG shows much larger intensity and
amplitude based respiratory variations than
finger PPG.

• Detailed in-ear PPG respiratory waveforms
enable the classification of chronic
obstructive pulmonary disease.

-



Chapter 2

Background theory

Chapter overview

In this chapter, the principles behind photoplethysmography and blood oxygen estimation from

infrared and red light based photoplethysmography are explained in detail. Moreover, a review

of PPG sensor positions in the literature and their various benefits and downfalls are examined

with respect to arterial pulse variations, venous respiratory variations, wearability and motion

artefacts. The progression in hardware from prototype towards a portable Bluetooth in-ear

SpO2 sensor are detailed, and linked to their implementation in different chapters of this thesis.

The sensitivity of the specific PPG chip that has been used is examined in relation to true blood

oxygen saturation values as per the United States Food and Drug Administration guidelines.

This is then related to the effects of skin pigmentation on SpO2 calculation and it is explained

that for the key findings of this thesis, which rely on relative estimation of SpO2 and not absolute

values, the bias related to skin pigmentation would not impact the results. Next, the signal

processing and machine learning methods implemented in this thesis, namely empirical mode

decomposition for extraction of respiratory variations and the random forest for classification

of cognitive workload and chronic obstructive pulmonary disease, are explained in depth along

with the rational for choosing them over other methods.

7
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2.1 Principles of photoplethysmography

2.1.1 Photoplethysmography and pulse oximetry

The “pleth” in plethysmograph stems from the Greek word “plethusmos” meaning “increase”,

which in the case of plethysmograph means the measurement of increases in blood volume

[10]. Photoplethysmography (PPG) is the non-invasive measurement of these changes in blood

volume through changes in light absorption. Photoplethysmography can work with two different

methods; the first being the measurement of transmission of light through tissue by placing a

light-emitting diode (LED) on one side of the tissue and a photodetector on the opposite side

of the tissue to measure the light transmitted through. This is referred to as transmittance

photoplethysmography and usually involves a clip on sites such as the finger or earlobe. The

second method involves the placement of an LED and a photodetector in close proximity on the

same side of the tissue, visualised in Fig 2.1, and thus in this case the photodetector measures

the light reflected back by the tissue. This is referred to as reflectance photoplethysmography

and allows the sensor to be placed anywhere on the body with unobstructed skin.

When more blood is present, more light is absorbed by the tissue, and in turn less light is

transmitted through the tissue or reflected back to the sensor. There are multiple ways in

blood volume changes, the most obvious of which being pulsatile changes in arterial blood

due to heart beats. There are however also changes in both venous and arterial blood volume

that occur due to breathing. Photoplethysmography is extremely effective at measuring these

volume changes, making it a useful tool for the measurement of pulse and respiration.

Photoplethysmography can be measured with a broad range of light wavelengths, but commonly

utilises either green light or red and infrared light. Importantly, the absorbance of blood with

respect to light changes depending on both the properties of the blood and the wavelength

of light. A useful example of this is the absorbance spectra of red and infrared light for

oxygenated haemoglobin and deoxygenated haemoglobin, shown in Fig 2.2. Haemoglobin is a

protein which forms one of the building blocks of red blood cells and allows red blood cells

to transport oxygen from the lungs to tissues throughout the body. Oxygenated haemoglobin
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Figure 2.1: An illustration of reflectance photoplethysmography (PPG). Light emitting diodes
(LEDs) emit light through the skin into the vascular tissue beneath it. Depicted in the form of
blood vessels are the venous blood, with a darker blue indicating more blood, and the arterial
blood, with a darker red indicating more blood. A photodetector is placed next to the LEDs
to measure the light that is reflected back. Depicted beneath are the light intensity waveforms
measured by the photodetector, including the venous component and the arterial component.
When more blood is present (a darker colour) more light is absorbed and thus less light is
reflected back to the sensor. In this example the arterial component is a real world in-ear PPG
waveform, with its characteristic carotid artery pressure waveform.

absorbs a higher proportion of infrared light than red light and deoxygenated haemoglobin

absorbs a higher proportion of red light than infrared light. When there is a higher absorbance

of a particular wavelength in the blood, the change in amplitude of the light reflected back to

the sensor is even greater with each pulse. This means that the recorded pulse amplitude of red

light is increased when blood oxygen decreases, and decreased when blood oxygen increases;

the opposite being true of infrared light. Given this, when both infrared and red light PPG is

used simultaneously, the ratios of amplitude can be used to estimate blood oxygen percentage

(SpO2). Using PPG to measure SpO2 is referred to as pulse oximetry.
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Figure 2.2: An illustration of the absorbance (also known as the extinction coefficient) of
oxygenated haemoglobin and deoxygenated haemoglobin for red (660nm) and infrared (880nm)
wavelengths of light. It is highlighted that when deoxygenated haemoglobin is dominant (low
blood oxygen), red light absorbance is highest and infrared light absorbance is lowest, and when
oxygenated haeomoglobin is dominant (high blood oxygen) red light absorbance is lowest and
infrared light absorbance is highest. This principle forms the basis for estimating blood oxygen
(SpO2) with photoplethysmography at red and infrared wavelengths of light, known as pulse
oximetry.

2.1.2 The position of PPG

A reflectance photoplethysmography sensor can be placed on any area of the body where skin

is accessible, but not all PPG sensor positions are created equal and different areas of the body

have very different outcomes for the PPG signal. Positioning of a reflectance PPG sensor is a

trade off between four major factors:

• Strength of pulse variations (Arterial)

• Strength of respiratory variations (Venous)

• Wearability

• Prevalence of motion artefacts
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One of the most common PPG positions is the finger with transmittance via a finger clip.

Whilst the finger position provides strong pulse variations, it gives poor respiratory intensity

variations [11] which are based on variations in venous blood volume. In contrast, the forearm

provides poor pulse variations (arterial blood volume changes) and the strongest respiratory

intensity variations [11], likely due to the proximity to large veins. The ear location tends to

have a balance of good respiratory variations and pulse variations [8] [12]. Artefacts are another

consideration, with positions such as the wrist being corrupted by some of the most frequent

artefacts, including typing, writing, general hand movements and general arm movements. The

ear artefacts are different but still common, corresponding to talking, chewing and most facial

expressions. Positions such as the shoulder and forehead [13] have the least common artefacts,

such as upper arm movements in the case of the shoulder and eyebrow movements in the case

of the forehead. Finally, for PPG one of the most important considerations is wearability.

Sensor positions such as the wrist (watch based) and the ear canal (headphone based) have

the highest wearability. Positions such as the forehead and finger (clip based) have some of

the lowest wearability, given the obstruction to daily life in the case of the finger clip, and

the potential stigma that could come with wearing PPG device on the forehead in the case

of forehead PPG. It is important to note that as devices get miniaturised, wearability issues

diminish. The Oura Ring [14] is a good example of this, as it packages a PPG sensor into a

ring whilst maintaining a week long battery life, thus making the finger a viable wearable PPG

location. These comparisons are summarised below in Table 2.1. One of the aims of this thesis

is to more thoroughly investigate the in-ear recording site for the PPG modality and to harness

the advantages to expand on the capabilities of PPG sensors.

Position Pulse Respiration Artefacts Wearability

Finger [11, 12] Best Poor Common: Typing, writing, hand movements High (ring [14]), Low (clip)
Wrist [11] Good Adequate Common: Typing, writing, hand movements High

Forearm [11] Poor Best Common: lower arm movements Moderate
Shoulder [11] Good Good Uncommon: whole arm movements Low

Ear [8, 12] Good Good Common: Talking, chewing, facial expressions High
Forehead [11, 13] Good Adequate Uncommon: eyebrow expressions Low

Table 2.1: A summary of PPG sensor positions across four major dimensions, namely the
strength of pulse variations, the strength of respiratory variations, the presence of artefacts and
the wearability. All four of these factors should be considered when designing a PPG sensor
for a specific purpose.
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2.1.3 Hearables: the ear as a recording site for brain and cardiac

signals

Hearables, otherwise known as smart headphones, are earbuds which have the capability of

monitoring neural and physiological function. The concept of Hearables has risen in popularity

in part due to ear-EEG technology [15] [16]. Electroencephalography (EEG) refers to the

monitoring of the electrical signals of the brain, which aggregate in specific frequency bands

due to the rates of firing of neurons. Whilst scalp EEG involves multiple electrodes positioned

across the scalp, the ear-EEG provides a wearable solution through a single channel ear based

sensor. This has applications to drowsiness detection [17], automatic sleep staging [18], user

authentication through biometrics [19], measuring evoked potentials [20] and many more. With

two in-ear sensors, this can be extended to monitoring electrocardiography (ECG) through ear

pieces, otherwise known as ear-ECG [21]. In the future, an integration of ear-EEG and in-ear

pulse oximetry will allow for full polysomnography (clinical grade sleep monitoring) from a

single in-ear sensor.

2.2 In-ear PPG hardware

The hardware in this section and throughout this thesis was developed thanks to the tireless

work of Dr Ian Williams.

2.2.1 Initial prototype board

For the initial exploration of in-ear photoplethysmography, the in-ear sensor consisted of a long

prototype board with the MAX30101 chip by Maxim Integrated (San Jose, California, United

States), decoupling capacitors and level shifting circuitry that enabled digital communication

between 1.8 V and 3 V domains, shown in Fig. 2.3(a). This prototype board was embed-

ded inside a foam earplug as shown in Fig. 2.3(b), and, although it was comfortable, the end
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(a) (b) (c)

Figure 2.3: The first stage prototype in-ear photoplethysmography sensor. (a) The initial PPG
sensor printed circuit board. (b) The PPG sensor within a viscoelastic foam earplug. (c) The
in-ear PPG prototype being worn in the ear.

result was large which lead to some obstruction of hearing. The prototype in-ear photoplethys-

mography is shown in Fig. 2.3(c). This initial prototype was used to evaluate in-ear PPG

through measurement of pulse transit time (PTT) between the heart and the ear, detection of

an arrhythmia and comparison with chest electrocardiography for measurements of heart rate

variability (HRV) [22].

2.2.2 In-ear PPG and the Bioboard

Figure 2.4: The in-ear photoplethysmography sensor. (a) The sensor placement within the ear
canal, with the major arteries supplying the brain and the ear highlighted. (b) Zoom-in of
the pulse oximetry sensor, with a form factor of a viscoelastic memory foam earbud. (c) The
Bioboard, enabling the simultaneous recording of multiple electrical inputs and photoplethys-
mography, with the option of wireless Bluetooth recordings or wired recordings via micro-USB.
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The next step of development saw most of the circuitry condensed within a device named the

Bioboard, that has dual electrical and PPG recording capabilities, along with an accelerometer

and microphone to record movement. Some of the PPG circuitry was migrated away from the

in-ear position and to the Bioboard, allowing the in-ear sensor to be miniaturised and resulting

in a form factor much closer to an in-ear headphone as shown in Fig. 2.4(a,b). The MAX30101

digital PPG chip continued to be used, consisting of red (660 nm) and infrared (880 nm) light

emitting diodes as well as a photo-diode to measure the reflected light. The PPG chip has

dimensions of 5.6 mm × 3.3 mm × 1.55 mm, with the entire in-ear “Hearables” sensor having

dimensions of 19 mm × 10 mm × 7 mm with a medium sized earbud. The earbud used was

identical to the buds used in consumer in-ear headphones, shown in Fig. 2.4(b). This ear plug

had sizes of small, medium and large to improve comfort of use for each user.

The Bioboard, shown in Fig. 2.4(c) greatly enhanced portability of the in-ear photoplethysmog-

raphy owing to it’s relatively small size (4.3cm by 4.5cm). The Bioboard is generally clipped to

clothing at the point of the shoulder or the neck, and has the option to send data via Bluetooth

or through a micro-USB connection. The in-ear photoplethysmography sensor shown in Fig 2.4

was used to monitor cognitive workload and respiratory diseases. For experiments detailed in

chapters 3, 5 and 9, the MAX30101 sensor was used in conjunction with a large data-logging

circuit board and data was stored on an SD card. For the experiments detailed in chapters

4, 6, 7 and 8, the Bioboard was utilised, allowing for the data to be visualised on a computer

monitor during the recordings.

2.2.3 Adhesive PPG

Given that SpO2 derived from pulse oximetry relies on accurate measures in pulse amplitude for

its calculation, it is extremely sensitive to motion artefacts. When motion artefacts are sparse,

such as when a subject is sitting still, these artefact regions can be removed and interpolation

can fill in the gaps. However, during tasks involving continuous movement, such as walking, the

majority of the amplitude envelope for the SpO2 calculation can become corrupted. With this in

mind, we introduced an adhesive backed behind the ear sensor for the continuous measurement
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(a) (b) (c)

Figure 2.5: The adhesive behind the ear photoplethysmography sensor. (a) The view of the
sensor from the side, showing that the sensor is hidden and discrete. (b) The view of the
sensor from behind, showing the attachment of the sensor behind the ear. (c) Zoom-in of the
reflectance pulse oximetry sensor, on top of an adhesive plaster. The chip itself has dimensions
of 5.6mm x 3.3mm x 1.55mm.

of blood oxygen in scenarios such as the 6 minute walk test. The discrete form factor and

the behind the ear position are highlighted in Fig. 2.5(a,b). The sensor board backed with an

adhesive plaster is shown in Fig. 2.5(c). The principle of an adhesive secured PPG sensor is that

movement between the sensor and skin is significantly reduced even during full body motion.

With a strong enough adhesive and small enough form factor, motion between the sensor and

the skin could conceivably be reduced to the point where it is practically non-existent during all

artefact inducing movements. This adhesive behind the ear PPG sensor was used in conjunction

with the Bluetooth enabled Bioboard for highly portable recordings.

2.2.4 The sensitivity of SpO2 readings and skin colour

Implementations of the MAX30101 chip by Maxim Integrated have been approved by the

United States Food and Drug Administration (FDA) for SpO2 measurements from both the

wrist and finger. In terms of error, the FDA guidelines as of 2018 specifically state that the
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overall root mean square error for blood oxygen estimates must fall below 3.5% for reflectance

pulse oximetry [23]. It is important to note that this applies to full systems and not just the

chip, and that the in-ear system presented in this thesis has not been validated as per FDA

regulations. Whilst we do broadly discuss agreement between absolute values of finger pulse

oximetry and our in-ear pulse oximeter, the key SpO2 related findings in this thesis are the

SpO2 delay and in-ear SpO2 decreases with increased mental effort, both of which depend on

relative values of SpO2 and not accurate absolute values.

It is well known that skin colour can bias pulse oximetry readings. Both melanin and deoxy-

genated haemoglobin have a high absorbance of red light, and therefore darker skin can change

the path at which the light takes through tissue. This can result in a higher SpO2 estimate for

subjects with darker skin. This bias is known to occur primarily when blood oxygen saturation

is low [24], which can mean that those with darker skin are less likely to receive life saving

oxygen when it is needed. Given this, FDA guidelines (which the MAX30101 sensor adheres

to) state that a pulse oximetry device must tested on a subject pool where at least 15% of

subjects have darker skin pigmentation [23]. In this thesis, diversity of skin colour was present

in hospital cohorts where low blood oxygen saturation was examined, but sample sizes were too

small to draw conclusions on the effects of skin colour on in-ear SpO2 estimation. Notably, the

conclusions that this thesis makes relating to in-ear SpO2, namely the SpO2 delay and relative

SpO2 change under cognitive workload, would be unchanged by the effects of skin colour on

absolute values. Whilst it is a step forward that the FDA ensures approved pulse oximeters

are tested on darker skin pigmentation, the effects of bias are still likely within the tolerance

margins. It is my opinion that future pulse oximetry sensors should consider auto-calibration

to a users skin pigmentation, and that this would reduce the likelihood of bias.

2.3 Empirical mode decomposition

Empirical mode decomposition (EMD) is a data driven (empirical) method for splitting a signal

(decomposition) into components (modes) that can vary temporally in amplitude and frequency
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[25]. These components are referred to as intrinsic mode functions (IMFs). Because of its data

driven nature, EMD can decompose signals that are non-linear and non-stationary, making it

particularly useful for physiological signals such as electroencephalography [26] [27] [28]. This

is in contrast to the Fourier transform; the projection of a signal on to sine and cosine basis

functions which are assigned different weights to represent the different frequency components

in the signal. The Fourier transform works best for linear and stationary data.

2.3.1 Univariate EMD

Algorithm 1 Empirical mode decomposition [25]

Input: f(x)
(i) Define a proto-IMF as fi(x) = f(x) and let i = 1;
(ii) Identify all local extrema of fi(x);
(iii) Interpolate the maxima Envmax(x) and minima Envmin(x) of fi(x);
(iv) Find the mean envelope, Envelopei(x) = (1/2)(Envmax(x) + Envmin(x));
(v) Determine the residual: Residuali(x) = fi(x) − Envelopei(x);
(vi) Let fi(x) = Residuali(x);
(vii) Repeat steps (ii)-(vi) until Residuali(x) satisfies the IMF criteria;
(vii) Let fi+1(x) = fi(x) −Residuali(x) and increment i;
(viii) Repeat steps with (ii)-(vii) until fi+1(x) is a monotonic residue or trend.

Within the single channel EMD algorithm, listed under Algorithm 1, firstly a proto-IMF is

defined as the original signal. All local extrema are extracted and interpolated separately

to give a signal envelope. The mean of these upper and lower envelopes is calculated and

removed from the proto-IMF, leaving a residual signal. The proto-IMF is then redefined as

the residual. These steps of envelope removal are repeated until the proto-IMF satisfies the

following conditions: i) the number of extrema and zero crossings must differ by at most one

(giving an oscillatory signal) and ii) at any point the mean value of the maxima and minima

envelope must be zero. When the proto-IMF satisfies these conditions it represents a valid IMF,

and is removed from the original signal. The steps are repeated again on the signal with the

IMF removed, and IMFs are continually extracted (sifting) until a monotonic residue or trend

is left. This algorithm is further demonstrated in Fig. 2.6, in which a signal f(x) is decomposed

into 3 intrinsic mode functions.
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Figure 2.6: An illustration of the empirical mode decomposition (EMD) sifting process, decom-
posing a signal in red into its three intrinsic mode functions (IMFs) in purple. A signal f(x)
(top, red) is split into its mean envelope Envelope1(x) (left,blue) and a residual Residual1(x)
(right, pink) which satisfies the IMF criteria. The mean envelope then becomes the new signal
f2(x) and the process is repeated, resulting in another sinusoidal IMF and a linear trend which
is the final IMF.
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2.3.2 Multivariate EMD
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Figure 2.7: An illustration of the multivariate empirical mode decomposition (MEMD) sifting
process in three dimensions, decomposing a signal in red into its three intrinsic mode functions
(IMFs) in purple. A signal f(x, y, z) (top, red) is split into its mean envelope f2(x, y, z) (middle,
red), and a residual IMF1(x, y, z) (right, purple) which satisfies the IMF criteria. The process
is then repeated on f2(x, y, z), resulting in another IMF and a linear trend which is the final
IMF.

Multivariate empirical mode decomposition (MEMD) takes the univariate EMD algorithm and

generalises it to multi-channel data [25]. There are no conditions on the number of extrema

and zero crossings for an IMF in the MEMD algorithm as extrema cannot be properly defined

in multivariate signals [29], but the condition on the mean envelope being zero at any point still
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stands. Multivariate EMD works by firstly generating a hypersphere of Q uniformly sampled

points, based on a low discrepancy Hammersly sequence. Discrepancy refers to a lack of balance

between two sets, and in this case low discrepancy means that the number of samples in a set

will be proportional to the size of the set. If two sets of the same size are selected, they

should therefore have a similar number of samples. In other words, low discrepancy quasi-

random sequences have a roughly even distribution of sample points, which is favourable to

truly random sequences in which there can be large gaps with no samples [30]. The Q-point

Hammersly sequence is used to project the multivariate signal onto Q single dimensions. The

envelope is then extracted for each of these single dimensional projections and the mean is

taken across the Q direction vectors [25]. This multivariate sifting process is repeated and

IMFs are extracted according to the satisfaction of the MEMD IMF condition. A common

application of MEMD is to scalp-based electroencephalography data given the many channels

and the non-stationarity of EEG [31] but it has also been applied in numerous other scenarios,

from material fault diagnosis [32] to soil water prediction [33]. The multivariate EMD sifting

process is demonstrated in three dimensions in Fig. 2.7.

Multivariate empirical mode composition can encounter the problem of mode mixing, in which

two IMFs that are close in frequency and amplitude mix together. One way of avoiding this

problem is by adding noise channels to increase the degrees of freedom that MEMD has for

extracting IMFs. This technique is referred to as noise assisted multivariate empirical mode

decomposition (NA-MEMD) [31].

In this thesis, NA-MEMD was applied successfully to extract respiratory variations from PPG

in the context of classifying chronic obstructive pulmonary disease (COPD) and these results

are explained in depth in chapter 9. Empirical mode decomposition can also be used to estimate

instantaneous frequency, by performing the Hilbert transform on each IMF independently [34].

There are many other methods for estimating instantaneous frequency, a notable example being

the commonly used smoothed Wigner-Ville distribution [35][36] which essentially computes

the Fourier transform of the local auto-correlation of a signal, and is smoothed to minimise

the cross-term interference (the result of the correlation of two separate signal components).

The motivation for employing MEMD in this thesis was not its application to instantaneous
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frequency. Instead, MEMD was chosen for its ability to extract physically meaningful modes

in the time domain, allowing specific time domain characteristics to be extracted such as time

spent breathing in as a function of a complete breathing cycle. Whilst the vast majority of

research and consumer products focus heavily on extracting respiratory rate from PPG, it was

physically meaningful time domain features that enabled our success in classifying COPD.

2.4 Machine learning

Many machine learning techniques are data hungry; a statement that is especially true of deep

learning techniques. The vast majority of the work in this thesis is at the proof of concept

stage, involving small self-recorded data sets without access to so called big data. To this end,

the focus throughout this thesis has been on the engineering of physically informed features in

combination with machine learning classifiers that have a strong ability to generalise, such as

the random forest.

2.4.1 Random forest

Decision tree

A decision tree classifier [37] uses several decision ”nodes” to split data with the goal ending

in only pure leaf nodes, defined as nodes which contain only one class of data. An example of

this is shown in Fig. 2.8, which shows three boundaries for classification resulting from a tree

with three decision nodes. Decision trees commonly select and learn these decision nodes based

off maximising information gain, otherwise known as a reduction in entropy from the decision

node (parent) to the subsequent nodes (children). Entropy is defined as follows:

Entropy =
K∑
i=1

−pilog(pi) (2.1)

where pi corresponds to the probability of class i and K is the number of classes.
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Figure 2.8: A diagram explaining the decision tree for classification. (a) The resulting clas-
sification boundaries of a decision tree trained to discriminate been class 1 (red) and class 2
(green). All data points that fall within the blue shaded area will be classified as class 2. (b)
The decision tree that produces the classification boundaries, with three decision nodes.

The information gain for a given decision node is the difference between the entropy of the

parent node and the weighted sum of entropy from the resulting child nodes, therefore defined

as follows:

IG = Entropy(Parent) −
∑

wn × Entropy(Childn) (2.2)

where wn corresponds the relative number of data points associated with the child node Childn.

The maximum information gain is 1, which would correspond to a parent node having an

entropy of 1 and both children nodes having an entropy of 0. This would occur if the class

distribution was equal in the parent node and the children nodes both had a single class, thus

going from no discrimination between classes to perfect discrimination.

It is important to note that decision trees are greedy, which is to say that once information

gain has been maximised the algorithm does not retrace it’s steps and reassess previous nodes.

Generally decision trees are very likely to overfit to training data, resulting in great performance

on training data but poor performance on new data.
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Random forest

A random forest is a collection of many random decision trees [38]. It is less sensitive to

training data than a single decision tree, making it less prone to overfitting. The first aspect of

randomisation is in its use of a random subset of features to create each decision tree, ensuring

that different trees see different features and thus trees have less correlation with each other.

Random forests also use bootstrapping followed by aggregating, collectively known as bagging.

Bootstrapping involves the random selection of data, where duplicates can occur. In this case

each tree sees different data, further reducing the chance of overfitting to the data. When

testing, a classification decision is made based on the most frequent decision across all trees,

otherwise known as aggregating.

Adaptive boosting

Adaptive Boosting (AdaBoost) [39] is a boosting algorithm that weights the output of several

weaker classifiers to perform a classification [40]. The weak classifiers used in AdaBoost are

usually decision trees with a single split, known as stumps, but many other base classifiers can

be used with the AdaBoost algorithm. There are two key parts to the AdaBoost algorithm;

firstly, base classifiers are weighted so that some have more say over the classification than

others and secondly, each new classifier is evaluated and weighted considering the errors of the

previous classifier. AdaBoost starts with the base classifier that best classifies the data on it’s

own and then works through the rest of the base classifiers.

The weighting for each classifier is calculated as follows:

Wi =
1

2
log

(
1 − errori
errori

)
(2.3)

where Wi corresponds to the weight for the classifier, and errori corresponds to the total error

(proportion of incorrectly classified samples) of the classifier. For example, if a classifier with

two classes has an error of 0.5, corresponding to random performance, its weighting would

be zero as it contributes nothing to the overall classification. Moreover, if a classifier reliably
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performs worse than random, its weighting would be negative as we want to do the opposite to

what the classifier tells us.

If a base classifier performs well but for a few data points, then the data points that it fails

to classify will have an increased weighting in the overall dataset. When bootstrapping is

performed on the data to create samples to evaluate the next base classifier, the data points

with increased weight are more likely to occur multiple times and thus have more influence

over the subsequent base classifiers weighting. Aggregation of the weighted results of all base

classifiers occurs to make the final classification for a given data point.

Whilst decision trees and commonly stumps are uses in conjunction with AdaBoost, there is

scope for using random forests themselves as the base classifier, with slightly improved accuracy

over a random forest alone [41]. Given the aggregation of several forests, stability of estimation

is also improved, with the downside of added computational time.

Summary

Classifier RF DT MLP LDA KNN SVM

Test Accuracy 90.20% 77.86% 77.94% 54.11% 71.69% 71.94%
Train Accuracy 100.00% 100.00% 85.97% 55.00% 85.91% 78.17%
Test Accuracy σ 2.91% 3.48% 7.05% 2.15% 3.39% 3.12%
Train Time (s) 0.477 0.030 1.044 0.004 0.000 0.973
Test Time (s) 0.004 0.000 0.001 0.000 0.008 0.027

Table 2.2: A summary of classification outcomes for several classifiers applied to the four
category cognitive workload dataset outlined in Chapter 5, all calculated across 10 fold cross
validation. Included is the mean testing accuracy, the mean training accuracy, the standard
deviation of the testing accuracy, the mean training time and the mean testing time.

In this thesis a range of classifiers from random forest (RF), random forest with AdaBoost,

support vector machine (SVM), linear discriminant analysis (LDA) and multilayer perceptron

(MLP) were applied to several problems including automatic sleep staging [42, 43], classification

of cognitive workload [44], prediction of steering wheel angle with the onset of fatigue in driving

and the classification of chronic obstructive pulmonary disease [12]. In all cases the random

forest and boosted random forest performed best out of the classifiers tried, likely due to their

strong ability to generalise, which is especially important on small datasets where there is a
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greater chance of overfitting. An example of these results compared across the aforementioned

classifiers and also the decision tree (DT) and K-nearest neighbours (KNN) classifiers, applied

to the four stage memory task classification problem detailed in Chapter 5, is provided in

Table 2.2. It is clear that both the RF and DT classifiers possess sufficient degrees of freedom to

easily discriminate between different classes in the training data, shown in their perfect training

accuracy. Decision trees are well suited to problems involving physiological variables, as they

are set up to capture the interactions between then. If heart rate is already high in one subject,

then perhaps the relative increase in stress of a cognitive workload task wont lead to a further

increase in heart rate, or if absolute SpO2 is low in another subject, then perhaps there will not

be a minor decrease in in-ear SpO2 with increased cognitive load. These interactions are further

influenced by changes in breathing and sympathetic tone. The sequential hierarchical decisions

built into the decision tree easily capture these dependent interactions between physiological

features, where other classifiers can struggle. In the example shown in Table 2.2, the application

of ensemble learning across many trees in the random forest reduces the chance of overfitting

and significantly increases training accuracy, making it a natural choice for physiological data

sets such as this one.



Part I

In-ear pulse oximetry for the detection

of hypoxia
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Chapter 3

In-ear SpO2 as a tool for wearable

monitoring of core blood oxygen

Chapter overview

The non-invasive estimation of blood oxygen saturation (SpO2) by pulse oximetry is of vital

importance clinically, from the detection of sleep apnea to the recent ambulatory monitoring of

hypoxemia in the delayed post-infective phase of COVID-19. In this chapter, the goal was to

investigate the feasibility of SpO2 measurement from the ear canal as a convenient site for long

term monitoring, and perform a comprehensive comparison with the right index finger—the

conventional clinical measurement site. During resting blood oxygen saturation estimation, a

root mean square difference of 1.47% was found between the two measurement sites, with a

mean difference of 0.23% higher SpO2 in the right ear canal. Using breath holds, we observe the

known phenomena of time delay between central circulation and peripheral circulation with a

mean delay between the ear and finger of 12.4 s across all subjects. Furthermore, lower photo-

plethysmogram amplitudes from the ear canal are documented and ways to mitigate this issue

are suggested. In conjunction with the well-known robustness to temperature induced vasocon-

striction, this makes conclusive evidence for in-ear SpO2 monitoring being both convenient and

superior to conventional finger measurement for continuous non-intrusive monitoring in both

clinical and everyday-life settings.
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3.1 Introduction

One of the major roles of blood is to supply oxygen to tissues throughout the body. This

is achieved through the protein haemoglobin within red blood cells, which has a high affinity

to oxygen. Thus, as blood passes through capillaries in the lungs, the haemoglobin in red

blood cells binds to oxygen which is subsequently pumped through arteries via the heart and

transported to various tissues. The maintenance of a high arterial blood oxygen saturation is

therefore extremely important, as otherwise tissues cease to be adequately supplied. The term

blood oxygen saturation specifically refers to the proportion of haemoglobin in the blood that

is carrying oxygen [45], and is given by

Oxygen Saturation =
HbO2

HbO2 + Hb
, (3.1)

where Hb refers to haemoglobin not bound with oxygen and HbO2 refers to haemoglobin bound

to oxygen.

Arterial blood oxygen saturation is typically measured using pulse oximetry which gives a

percentage estimate (SpO2). It has been established that those with a healthy respiratory

system typically exhibit SpO2 values of 96–98% at sea level [46]. According to the World Health

Organisation, hypoxia is defined as a blood oxygen saturation level of less than 94%, while a

blood oxygen level of less than 90% may indicate the need for clinical action [47]. Hypoxic

SpO2 readings are a sign of hypoxia without breathlessness in COVID-19 patients [48, 49]

where the major respiratory failure peaks 10 days after initial infection [50]. Indeed, in the case

of COVID-19 it is strongly recommended that patients receive supplemental oxygen if their

SpO2 reading falls below 90% [51]. Hypoxic SpO2 levels may also occur in other examples of

respiratory failure [52] and during breathing obstruction which is common in sleep apnea [53].

In practice, the SpO2 levels are calculated indirectly, through photoplethysmography (PPG),

the non-invasive measurement of light absorption (usually red and infrared) through the blood.

In short, when more blood is present, less light is reflected, so given a pulsatile increase in blood

volume with each heart beat, PPG effectively measures the pulse. Depending on the level of

blood oxygen saturation, the PPG measurements also experience a change in the ratio of light

absorbance between the red and infrared light. Namely, the extinction coefficient of oxygenated

haemoglobin with red light (≈ 660 nm) is lower than it is for deoxygenated haemoglobin, and the
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reverse is true for infrared light (≈ 880–940 nm) [54]. Thus, a simultaneous measurement of the

absorbance of both infrared and red light allows for an estimation of blood oxygen saturation.

Calculation of blood oxygen saturation, referred to as the ‘ratio of ratios’ method, will be fully

explained in the Methods section.

Reflective PPG can be measured from any site with skin that has vasculature [11], but is,

for convenience, commonly measured from the fingers (usually the index finger), wrist and

earlobe. This convenience comes with some disadvantages pertaining to 24/7 continuous mea-

surements, which include the intrusive nature of measurements given that living life with a

finger or earlobe clip is problematic, and also poor sensor skin contact and motion artefacts in

the case of the wrist.

Other devices such as wearing a helmet for behind the ear [55] or a headband for the fore-

head [56], whilst providing good quality signal, giving a proxy for core blood oxygen rather

than peripheral and being less obstructive to daily life, are less suitable for 24/7 use as they

can be perceived as stigmatising which decreases adherence to wearing the device in the patient

and consumer populations.

On the other hand, the recent interest in the development of Hearables [16], has promoted

the ear canal as a preferred site for the measurement of vital signs in eHealth technology.

Indeed, the ear canal represents a unique opportunity for physiological measurements, due to

its proximity to the brain (ear-EEG [57]), the property of the ear canal to act as a shield from

external electrical noise (nature-built Faraday cage [16]), and the general fixed position of the

head wrt. vital signs and neural function, as the head does not move much in daily life unlike

sites such as the wrist. Owing to these desirable properties, the ear-canal has been established

as a feasible wearable site by ear-EEG [57, 18] and ear-ECG [16].

When it comes to ear-PPG, unlike the finger PPG signal and the earlobe signal, it has been

shown that the ear canal offers a photoplethysmogram which is stable and resistant to changes

in blood volume which occur during hypothermia [58]. This is because peripheral areas of the

body experience restricted blood flow during the cold, whereas the ear canal, being a narrow

cavity surrounded by skin, maintains internal blood flow levels. Additionally, this makes the ear

canal a preferred site for accurate core body temperature measurement. The PPG from the ear

canal has also been shown to be far more sensitive than earlobe and finger PPG to amplitude

variations that arise from respiration, thus allowing for a better measurement of respiration
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rate [8]. Furthermore, a significant delay has been observed between earlobe/behind-the-ear

pulse oximetry, and pulse oximetry on the hand or the foot for detection of hypoxemia (low levels

of blood oxygen) [59, 55], which is primarily caused by the distance from the core blood supply.

Although never previously shown, a similar fast response time was hypothesised from the ear

canal given that its vasculature is supplied by the carotid artery, as is the brain. The robustness

of the PPG signal from the ear canal, the faster expected SpO2 response time to changes in

blood oxygen levels, the opportunity for a proxy to brain oxygen saturation levels and the

potential for relatively non-intrusive 24/7 ambulatory monitoring of patients with breathing

disorders form the motivation for this research into ear canal pulse oximetry. The aim of this

study is therefore to investigate the feasibility, establish technical characteristics, and identify

advantages in the recording of SpO2 from the ear canal, compared with the most commonly

used site, the right index finger.

3.2 Materials and methods

3.2.1 Hardware

The hardware used in this chapter is detailed in chapter 2, section 2.2.2, with the data from

the in-ear sensor being stored directly on an SD card.

3.2.2 Experimental protocol

The recordings detailed in this chapter were performed under the 881/MODREC/18 ethics

approval, and all subjects gave full informed consent. The participants in the recordings were

14 healthy subjects (7 males, 7 females) aged 19–38 years. Two PPG sensors were used per

subject, one secured within the right ear canal and the other to the right index finger; both

sensors recorded simultaneously. The subjects were seated in front of a monitor during the

recording where a video guided them on when to breathe normally, as well as when to exhale

and hold their breath. The position of the sensors, monitor and recording device relative to the

subject is shown in Fig. 3.1. This video included a built in countdown, so that at every stage

of the protocol, depicted in Fig. 3.2, the subject knew the amount of time left. The experiment

lasted for 435 s, consisting of 120 s of normal breathing, 3 repeats of 5 s of exhaling and
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Figure 3.1: Simultaneous photoplethysmography (PPG) recording from the ear canal and finger.
One PPG sensor is placed in the right ear canal, and another is attached to the right index
finger. The simultaneous recordings are linked via a circuit board which logs the respective
data streams on SD cards. The subjects are instructed on when to breathe normally, exhale
and hold their breath via a video played on a monitor (see Fig. 3.2 for the protocol), with a
built in countdown to reflect the elapsed time in each phase.

20 s of breath holding with 60 s of normal breathing between, and a final 120 s of normal

breathing, as depicted in Fig. 3.2. The exhale before the breath hold was included because if

the oxygen from the lungs is expelled before holding one’s breath, there is a sharper desaturation

in blood oxygen than if a subject did not exhale first, thus allowing for clearer comparisons of

sensitivity between the different measurement sites. Furthermore, in a real world scenario, such

as obstructive sleep apnea, the lungs would not be filled with oxygen before the obstruction

to inspiration occurred, making the conventional breath hold, where a subject inhales before

holding their breath, less realistic. Subjects were also told to hold down a button, connected

to the circuit board, from the moment they started exhaling until they stopped the breath

hold. This was necessary, in order to know precisely when the subject was holding their breath,

as reaction times would add uncertainty if the instructional display was used as the ground

truth.



32 Chapter 3. In-ear SpO2 as a tool for wearable monitoring of core blood oxygen

Normal 
Breathing

60 s

Exhale

5 s

Holding 
breath

20 s

Normal 
Breathing

120 s

Normal 
Breathing

120 s

n = n + 1

if n < 3

if n = 3

n = 1

Figure 3.2: Flow diagram of the experiment, outlining the sequence of participants’ breathing.
The duration of each stage is provided beneath in seconds. The exhale and breath holding
stages are repeated three times, the 60 s normal breathing is repeated twice, and 120 s of
normal breathing occurs both at the start and at the end of the experiment.

3.2.3 Extraction of the SpO2 signal

The ratio of absorbance of infra-red to red light within the PPG sensor changes depending on

the proportion of haemoglobin that is oxygenated in the blood. This change can be quantified

through the so called ratio of ratios metric [60], given by

R =
ACred

DCred

ACinfrared

DCinfrared

. (3.2)

An empirically derived linear approximation can then be used to calculate an SpO2 value as

a proxy to oxygen saturation. Using the manufacturer’s suggested calibration [61], the SpO2

value was calculated as

SpO2 = 104 − 17R. (3.3)

To obtain the alternating current (AC) components within the PPG measurements, the raw

signals were firstly band-pass filtered between 1 Hz and 30 Hz. Peak detection was then
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Figure 3.3: Examples of the alternating current (AC) and direct current (DC) waveforms within
a PPG measurement, from both the right ear canal and the right index finger. The amplitude of
PPG is recorded arbitrary units of light intensity, proportional to the count of photons reflected
back to the photo-diode. For simplicity, this is referred to as ‘amplitude’. The amplitude is
lower in the right ear canal for both the red and infrared signals, but the signal is clear and
usable. The maximum to minimum amplitude was designated as the AC signal amplitude,
which is divided by the DC signal in the ratio of ratios metric to calculate SpO2.

performed on the infrared and red AC filtered signals to find their peaks and troughs; this was

achieved using the inbuilt MATLAB by MathWorks (Natick, Massachusetts, USA) function

findpeaks, with a minimum peak prominence of 150 arbitrary units for the infrared signal

and 30 arbitrary units for the red signal. The same procedure repeated on the same signals,

but scaled by −1, to find the troughs. Next, the peak values and trough values were separated

and interpolated, before their absolute values were added together to give a constant estimate

of the AC amplitude. The direct current (DC) components were obtained by low-pass filtering

the raw signals at 0.01 Hz. These waveforms are shown in Fig. 3.3.

3.2.4 Data Analysis

Resting SpO2 Comparison

The resting SpO2 was calculated over the 60 s section of normal breathing before the first

exhale began. This time was ascertained from the timing of the first button press, explained in

the Experimental Protocol subsection. The SpO2 signal from the finger and ear were averaged

individually over this 60 s window to give a resting blood oxygen comparison for each of the
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Figure 3.4: Exemplar SpO2 recording following the breath hold protocol (see Fig. 3.2).
The breath holds (starting with the exhale and finishing at the end of the breath hold) are
designated with the shaded regions. The SpO2 recorded from the right index finger is denoted
by the solid blue line, and the SpO2 recorded from the right ear canal by the solid red line.
The three significant drops in SpO2 levels correspond to the three breath holds. The breath
holds also vary slightly in length as they adhere to when the subject holds down a button
rather than the set time of the instructional display, thus mirroring the true breath hold dura-
tion more accurately.

measuring sites for every subject. The root mean square difference in average resting SpO2 was

then calculated across all subjects, as well as the mean difference across all subjects.

SpO2 Delay

The blood oxygen estimation delay was calculated using the button release point as the marker

for minimal blood oxygen, corresponding to the point at which the breath hold ends. The time

between this point of minimal blood oxygen and the first trough of the SpO2 waveform for the

ear and the finger was then used to calculate the SpO2 delay for the ear, the finger and then

the relative delay between the ear and the finger. Three measurements for delay were taken for

each measuring site, one for every consecutive breath hold as shown in Fig. 3.4. The mean of

these three recorded delays was taken to give an average delay for each measurement site for

each subject. The range, on a per subject basis, was taken as a measure of variability within

the recordings for each subject. The distribution of mean delays was analysed against age and

sex, whereby a paired sample t-test was employed to compare male and female delays while

Pearson’s correlation coefficient was utilised to determine if subject age was correlated to delay.
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3.3 Results

For rigour, and to demonstrate non-inferiority of in-ear pulse oximetry to finger pulse oximetry,

the experimental results span three major aspects related to the feasibility of in-ear PPG; these

are the comparison of resting oxygen levels against standard finger PPG, the respective delays

in detection of hypoxic events and the corresponding PPG signal amplitudes.

3.3.1 Resting oxygen comparison
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Figure 3.5: Mean resting SpO2 levels taken for each individual subject for the right ear canal
(red circles) and the right index finger (blue crosses). The mean was taken across the 60 seconds
of SpO2 data before the first breath hold sequence. The area within the two green dotted lines
represents the healthy blood oxygen range of 94–100%.

The difference in resting SpO2 between the right ear canal and the right index finger across

all subjects had a root mean square value of 1.47% with a mean difference of 0.23% higher

saturation in the ear. The distribution of resting values across subjects is provided in Fig. 3.5,

and shows that all resting SpO2 values were within the physiologically healthy range of 94–100%,

and therefore there was a complete agreement between the ear canal and finger as measuring

sites on whether or not a subject had ‘healthy’ blood oxygen levels.

3.3.2 Blood Oxygen Delay

The mean relative time delay per subject between the ear and finger pulse oximetry, in other

words the time it took from detecting minimal blood oxygen in the ear to detecting minimal

blood oxygen in the finger, ranged from 4.18 s to 24.2 s. The mean relative delay across all

14 subjects was 12.4 s, with a mean relative delay of 9.67 seconds for the female subjects
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Figure 3.6: The absolute blood oxygen delay from the button press to the finger (blue), to the
ear (red) and the relative delay between the ear and the finger (purple), shown for every subject.
Male subjects are designated with [M] and female subjects with [F]. The delay is calculated
from the time that the breath hold stops (true minimum blood oxygen) to the time at which
the measuring site detects a minimum in SpO2. Error bars are included to show the range of
the three delay measurements for individual subjects.

and a mean relative delay of 15.13 s for the male subjects. The mean female relative delay

was significantly lower than the mean male relative delay (P= 0.03). The SpO2 delay values

for all subjects are shown in Fig. 3.6, highlighting the large inter-subject variability in SpO2

delay and moreover the large inter-trial variability in the ear canal vs finger delay for many

individual subjects.
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Figure 3.7: Boxplots of the mean absolute delays, for all subjects, between the right ear canal
and the right index finger. The top and bottom of each coloured box represent respectively
the upper and lower quartiles, the dotted lines represent the median, and the whisker lines
extending out of the box represent the range. In our data, there is no overlap between the
range of absolute delay from the ear canal and the absolute delay from the right index finger.

Across our 14 subjects there was no overlap between the absolute SpO2 delay from the right

ear canal and the right index finger, as shown in Fig. 3.7. The absolute delay from the right

ear canal had a mean of 4.35 s, with a range of 0.97–7.31 s. The absolute delay from the right
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index finger had a mean of 16.75 s, with a range of 8.52–28.14 s. When separated by sex,

the mean absolute delay from the finger was 14.0 s for the female subjects and 19.5 s for the

male subjects (P = 0.03). The mean absolute delay from the ear canal was 4.3 s for females

and 4.4 s for males, as summarised in Table 3.1. Furthermore, there was no correlation found

between age and oxygen delay across the participants.

Relative Finger Ear Canal

Female 9.70 ± 4.07 14.00 ± 4.25 4.33 ± 2.37
Male 15.13 ± 6.76 19.49 ± 6.28 4.36 ± 1.42
Total 12.40 ± 6.06 16.75 ± 5.88 4.35 ± 1.88

Table 3.1: Summary of mean (± standard deviation) SpO2 delay values (seconds).

For rigour, the SpO2 delay between the left and right ear canal was also examined for a single

subject, giving a mean delay of 0.46 s from the left ear canal to the right ear canal across the

three breath holds, suggesting that measuring SpO2 from the left ear would yield a similar

response time to the right ear, if not slightly faster.

3.3.3 Photoplethysmogram amplitude
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Figure 3.8: The mean resting maximum to minimum AC amplitude of the photoplethysmog-
raphy signal for all subjects. These values were measured from the 60 s of filtered PPG data
before the first breath hold and were normalised to the maximum mean AC amplitude across
all subjects.

It was observed that 13 out of 14 subjects had a higher AC PPG amplitude from the right index

finger than the right ear canal with the mean finger PPG amplitude 2.35 times higher than for

the ear canal. Fig. 3.8 presents the individual normalised resting infrared PPG amplitude for

the finger and ear canal results for all 14 subjects. In the case of finger amplitude, males had

a mean finger amplitude of 1.28 × 103 with a standard deviation of 0.76 × 103, compared with
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females who had a mean finger amplitude of 0.90× 103 and a standard deviation of 0.49× 103.

In the case of ear amplitude, males had a mean ear amplitude of 0.59 × 103 with a standard

deviation of 0.40× 103, compared with females that had a mean finger amplitude of 0.33× 103

and a standard deviation of 0.12×103. Neither sex difference between finger amplitudes and ear

amplitudes was statistically significant, with P = 0.14 and P = 0.05 respectively. Importantly,

even in the lowest amplitude cases, the in-ear PPG signals were effective for peak detection

and thus usable for the calculation of SpO2.

Placement Fast Response Robust to Temperature

Finger No No

Earlobe Yes [59] No

Ear canal Yes Yes [58]

Table 3.2: Summary of different SpO2 qualities for the finger, earlobe and ear canal.

3.4 Discussion

3.4.1 Resting SpO2

Blood oxygen saturation measurements from the right ear canal and the right index finger

were comparable at rest, with a minimal systematic offset between the two, indicated by the

mean difference of 0.23% higher resting SpO2 in the right ear canal, as shown in Fig. 3.5.

The variability between the two measurement sites, indicated by the root mean square difference

of 1.47%, is to be expected, given that mean SpO2 values were shown to vary as much as 0.9%

even across fingers on the same hand [62]. The blood oxygen saturation delay between the ear

and the finger may also be a source of error when using the same absolute 60 s time window

for comparison, although given that the window was long in comparison with the SpO2 delay

and the fact that resting values stay fairly constant, this source of error should be minimal.

Both sensor positions were in 100% agreement concerning the patients having healthy SpO2

levels of 94 to 100%. The established similarity in the resting oxygen saturation values with

the commonly used right index finger location are a first step towards validating the ear canal

as an alternative measurement site for pulse oximetry.
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3.4.2 SpO2 delay

Our results indicate a mean oxygen saturation delay between the right ear canal and the right

index finger of 12.4 s. In other words, a steep drop in SpO2 is detected on average 12.4 s faster

from the right ear canal than it is from the right index finger, with two subjects exhibiting over

20 s faster detection from the right ear canal. The faster response from the ear-canal strongly

recommends the incorporation of in-ear SpO2 measurements into so-called Hearables, as there

are many situations where fast SpO2 response time is critical, such as improving outcomes

during neonatal resuscitation [63] and closed loop automatic oxygen therapy [64]. Moreover,

this opens the avenue to aid comparison of sleep stage scoring and sleep apnea events by aligning

changes in SpO2 to the correct 30 s sleep epoch [65].

A large inter-subject variability was found in both the absolute oxygen delay to the right ear

canal and the absolute oxygen delay to the right index finger. On average, the female subjects

had lower relative oxygen delay between the ear and the finger, caused by the much smaller

absolute delay to the right index finger in combination with an almost identical absolute delay

to the right ear canal. We hypothesise that this could be related to males being taller on

average and therefore having longer arms, which would give oxygenated blood further to travel

from the heart to the fingers. Variations in height and arm length may also explain some of

the large inter-subject variability in absolute SpO2 delays. With a taller subject we would

expect on average a longer distance for blood to travel to both the ear canal and the fingers,

but no correlation was found between the absolute delay to the ear and absolute delay to the

finger. One relevant factor was average heart rate across the trials, which was found to have a

significant moderate positive correlation with absolute delay to the ear (R = 0.56, P = 0.03),

but was not correlated with absolute delay to the finger. Importantly, age was not found to be

a correlating factor to oxygen delay in our subjects. Future work must consist of investigating

the efficacy of in-ear SpO2 as well as the SpO2 delay in older cohorts that may have underlying

respiratory conditions, and not just young healthy subjects. The natural question arises, could

SpO2 delay be an indicator of the health of a patients circulatory system?

Whilst not as precise as arterial blood gas analysis, this is the first attempt to measure the

blood oxygen delay to the ear itself. Importantly it should be noted that although the ear canal

responds faster to changes in blood oxygen and much more closely resembles core blood oxygen

than peripheral sites such as the finger, it is still not instantaneous, with our results showing a
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mean blood oxygen delay to the ear of 4.35 s.

3.4.3 Photoplethysmogram amplitude

The in-ear PPG in this study was found to have consistently smaller amplitudes from the ear

canal when compared with the finger. The three reasons for a lower PPG amplitude are: (1)

less vascular density of the tissue (2) poorer sensor contact with the skin and (3) arterial pulse

pressure amplitude. Considering that the ear and fingers are both common PPG placement

sites, given the high density of arterioles and capillaries [66, 67], the most likely explanations

for a lower PPG amplitude are therefore sensor placement issues within the ear canal and a

lower carotid arterial pulse amplitude compared to the radial artery in the arm.

The large variability in ear canal sizes was somewhat mitigated by different available earbud

sizes, but even with the smallest earbud some subjects found it difficult to insert the sensor

fully into the ear canal. Some subjects with wider ear canals also noted that the sensor became

looser during the trial. These issues did not affect the conclusive nature of this feasibility study

and will be addressed in future with an improved sensor design, such as by employing ear-hooks,

commonly used with sports headphones, to stabilise the position of the sensor within the ear.

Even disregarding placement issues, a lower PPG pulse magnitude may be expected from the

ear canal given a higher pressure wave amplitude in the radial artery of the wrist leading to the

fingers, compared to the carotid artery leading to the ear canal [68]. This is also evidenced by

the broader peak from the ear canal, shown in Fig. 3.3, which is a characteristic of the pressure

wave found in the carotid artery.

Importantly, despite a lower signal amplitude, all data recorded from the ear canal was func-

tional for peak detection of the AC PPG signal and therefore the SpO2 calculation.

3.5 Chapter conclusions

There is a growing need for improved non-intrusive wearable SpO2 recording across many dif-

ferent scenarios, from the monitoring of sleep apnea to the tracking of vital signs of outpatients

with a threat of respiratory deterioration, such as those with general breathing disorders or
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those recovering from COVID-19. To this end, the possibility of estimating blood oxygen satu-

ration from the ear canal was investigated in healthy subjects and it has been comprehensively

demonstrated that the ear can be considered non-inferior compared with conventionally used

finger pulse oximetry, with a significantly faster response time averaging 12.4 s. The results have

indicated that the favourable speed of in-ear pulse oximetry, in conjunction with the previously

documented advantage of resilience to changes in circulation associated with environmental

temperature changes (summarised in Table 3.2), may offer significant clinical advantages and

a proxy to brain oxygen levels. Given its privileged position on the human body and a fixed

distance to vital signs during most daily activities and while sleeping, the ear canal may even be

a superior site for measurement of SpO2 in the scenario of 24/7 continuous monitoring. In an

era of urgency for enhanced tracking of hypoxia and increasing use of smart devices for health

monitoring, this proof of concept study provides a compelling argument for the integration of

ear canal pulse oximetry into current state-of-the-art Hearables [16].



Chapter 4

Adhesive ear-SpO2 to monitor exercise

in patients with breathing disorders

The recordings in this chapter were performed with the help of Professor Nicholas Peters, Dr

Patrik Bachtiger and Dr Manisha Gandhi at the National Heart and Lung Institute and Dr

Philip Molyneaux, Dr Mairi MacLeod and Dr Suhani Patel at the Royal Bromptom Hospital.

Chapter overview

An ability to monitor respiratory diseases with a non-invasive wearable sensor would provide

immense value for disease management, detection of exacerbations and even the recovery of pa-

tients in the aftermath of COVID-19. To this end, we monitor SpO2 in patients with respiratory

diseases, both at rest with our wearable in-ear sensor and during six minute walk tests with an

adhesive based ear sensor. Our results show minimal bias between wearable reflectance pulse

oximetry sensors and hospital grade transmission sensors, with 0.24% lower mean SpO2 in the

wearable sensor at rest, and 0.48% less of a mean drop in SpO2 from the wearable sensor during

the 6 minute walk tests. Variability was high with root mean square differences of 2.76% and

2.75%, but this is expected given a multitude of factors from positional variability to circulation

at the probe site. This work paves the way for a future adhesive “SpO2 patch” for 24/7 unob-

trusive monitoring of respiratory disorders, for detection of exacerbation and improvements in

chronic respiratory disease management.

42
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4.1 Introduction

Patients with breathing disorders, such as severe chronic obstructive pulmonary disease (COPD)

or idiopathic pulmonary fibrosis (IPF) can suffer from hypoxic levels of blood oxygen during

exercise or even at rest in extreme cases. With in-ear pulse oximetry showing promise for the

rapid detection of low blood oxygen in healthy subjects, the next logical step was to validate

it clinically in patients that experience low blood oxygen without the need for a breath hold.

4.1.1 The six minute walk test

Six-minute walk tests [69] are commonly performed in respiratory wards to measure the impact

of exercise on patients with respiratory disorders, with the collection of data on blood oxygen

saturation, heart rate, subjective exertion in terms of breathlessness [70] and total distance

walked. Blood oxygen percentage and heart rate, usually measured via a hospital grade trans-

mission pulse oximetry finger or earlobe probe, are recorded at the start, end and at every 1

minute interval between. Breathlessness is also recorded on a scale from 1-10 at the same time

and distance is noted down at the end of the walk. If blood oxygen levels get low in the absence

of symptoms then it is not recommended that the doctor or clinician stop the walk test [71]

but patients themselves are allowed to stop at any time.

Currently blood oxygen is sampled every minute, but a continuous measure of blood oxygen,

such as from our ear probe, would provide clinicians with richer information on the dynamics

of blood oxygen and the interplay between blood oxygen percentage and heart rate.

4.1.2 The problem of motion artefacts

Reflectance pulse oximetry is very sensitive to motion artefacts, with tiny movements between

the skin and the sensor having the potential to completely corrupt segments of data. Calculation

of heart rate is generally robust to motion artefacts given that it relies purely on pulse timing

and not amplitude information, which is why reflectance photoplethysmography in devices such

as smart watches provide a continuous measure of heart rate. On the other hand, the calculation

of SpO2 relies on the amplitude of each pulse, which is extremely sensitive to motion artefacts.
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This is why smart devices that do measure blood oxygen, such as the Apple watch, advise users

to remain still over a period of 15 seconds for a single calculation of blood oxygen. In the case

of in-ear pulse oximetry and smart watches, artefacts are generally too great whilst walking

for continuous SpO2 measurements to be accurate. To this end, we implemented an adhesive

based behind the ear pulse oximeter for the walk tests, which sufficiently limited the movement

between the sensor and the skin, allowing for a continuous measure of SpO2 and heart rate.

4.2 Methods

4.2.1 Hardware

For resting recordings, our general in-ear SpO2 sensor was used [72]. For the 6 minute walk

tests, an adhesive backed behind the ear PPG sensor was used, as detailed in chapter 2, section

2.2.3 and visualised in Fig. 2.5. The photoplethysmography chip is the MAX30101 by Maxim

Integrated (San Jose, CA, USA) with red (660nm) and infrared (880nm) light emitting diodes

as well as a photo-diode to measure the reflected light. The in-ear sensor was connected to a

small circuit board attached to the subjects clothing which transmitted the data wirelessly via

Bluetooth to a laptop.

4.2.2 Experimental protocol

The recordings in this chapter were performed under NHS research ethics approval 20/SC/0315.

For the resting recordings, blood oxygen was recorded at rest over a period of 2 minutes, with

both our in-ear sensor [72] and a hospital grade finger clip sensor simultaneously. For the six

minute walk tests, subjects walked back and forth between two cones placed 30 meters apart.

The subjects either walked for 6 minutes, or stopped early due to breathlessness or discomfort.

During the walk, blood oxygen was recorded with our adhesive-based ear-SpO2 sensor, alongside

a hospital grade earlobe or finger probe. Values from the hospital probes were recorded at the

start and end of the walk, as well as once every minute during the walk.
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4.2.3 Signal processing and analysis

SpO2 was extracted based on the ratio of red to infrared light, otherwise known as the ratio of

ratios [72]. Artefacts were removed and interpolated based on an assumed Gaussian distribution

of regular peak magnitudes. Motion artefacts were removed by calculating a z-score for the

peak magnitude of the current peak, based on the sample mean and standard deviation of the

10 peaks before. A z-score threshold was determined for each individual case and if the z-score

of the current peak was above this threshold it was removed and linear interpolation was used.
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Figure 4.1: Mean resting SpO2 levels for patients with various breathing disorders. Results are
shown for each individual patient for the wearable in-ear probe (red circles) and the hospital
finger probe (blue crosses). The mean was taken across the 120s seconds of SpO2 data for each
sensor position. The area within the two green dotted lines represents the healthy blood oxygen
range of 94-100%.

In the case of the resting comparisons the mean SpO2 was calculated using the whole 2 minute

period, for both the hospital grade finger probe and our continuous in-ear probe. For the

6 minute walk tests the difference in SpO2 between the start and the end of the walk was

compared for both our wearable behind the ear probe, and the hospital clip finger and ear

probes.

The root mean square difference between the wearable ear-SpO2 and the hospital probes was

calculated to assess variability in measurements, and the mean difference was calculated to

assess if there was bias between the two measurements.
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Figure 4.2: Comparisons in SpO2 changes between a wearable adhesive based behind the ear
pulse oximeter and hospital transmission based pulse oximeters positioned either on the ear or
finger, for patients with breathing disorders undergoing six minute walk tests. (a) Boxplots
for the change in SpO2 from the start to the end of the walk test, for the wearable ear-pulse
oximeter (left) and the hospital probe (right) across 7 patients. (b) Scatter plot showing change
in SpO2 induced by the six minute walk test for the wearable ear-pulse oximeter against change
in SpO2 for the hospital probe, positioned either at the earlobe (red) or the finger (blue), for
each of the 7 patients.

4.3 Results

The resting hypoxia results, presented in Fig. 4.1, show a rank order agreement between the

hospital grade finger probe and the wearable in-ear probe. The root mean square difference was

2.76% when including all results, and 1.53% when removing patient 5 which saw an abnormally

large difference in recorded values. The mean difference between the two probes was -0.24%.

The six minute walk test results, visualised in Fig. 4.2, show broad agreement in exercise

induced blood oxygen desaturations between the wearable adhesive ear-SpO2 probe and both

the ear and finger based hospital probes. There was a root mean square difference of 2.75%

between the wearable ear reflectance probe and the hospital transmission probes and 0.48% less

decrease in SpO2 from the wearable probe, although this is likely due to two large decreases of

12% and 11% disproportionately lowering the mean hospital value. Notably, Fig. 4.2(a) shows

that the median decrease in SpO2 measured with the wearable probe is 1.27% greater than that

measured with the hospital probe.
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4.4 Discussion and conclusion

On real world data, wearable ear-based pulse oximetry shows minimal bias but high variability

when compared with hospital transmission based probes. High variability is somewhat expected

from different probe sites, given that there are also notable differences in blood oxygen satura-

tion recordings from fingers on the same hand. For resting comparisons, in the case of patient

5 specifically, the finger transmission probe shows far lower values. Whilst the reason for this

cannot be known for certain, it is highly likely that circulation was poor in this patients fingers

which lead to an abnormally low reading on the finger pulse oximeter. For rigorous conclusions

to be drawn future work should compare with an invasive arterial line as the gold standard,

but it should be noted that in the case of walk tests this is not feasible.

Importantly, the wearable adhesive probe sufficiently mitigates motion artefacts, allowing for a

continuous recording of SpO2. This however is not a perfect solution; artefacts can still dominate

if the adhesive is not secure and if there is less blood perfusion to the back of the ear when the

patient is cold. Future research could focus on recovering a more robust photoplethysmography

waveform in the presence of artefacts, rather than just discarding the artefacts. One possible

method is leveraging the two different wavelengths of PPG (red and infrared) with multi-

channel empirical mode decomposition. If artefacts are slightly different between the two due

to a different diode position, then the shared information that is extracted should be the pulse

waveform in both channels. Another method would rely on the characteristic PPG waveform

being robust in it’s characteristics, similar to electrocardiography (ECG). It is feasible that a

recurrent neural network could learn the waveform features and thus extract the underlying

pulse waveform whilst removing noise [73]. In the future, patients with chronic respiratory

disorders could be provided with an adhesive “SpO2 patch” for 24/7 unobtrusive monitoring of

respiration, pulse and blood oxygen, similar to a glucose monitoring in patients with diabetes.

It is likely that this data would enable an early warning system for respiratory exacerbations.
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Classification of cognitive workload and

fatigue
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Chapter 5

In-ear SpO2 for the classification of

cognitive workload

Chapter overview

The brain is the most metabolically active organ in the body, which increases its metabolic

activity, and thus oxygen consumption, with increasing cognitive demand. This motivates us

to question whether increased cognitive workload may be measurable through changes in blood

oxygen saturation. To this end, we explore the feasibility of cognitive workload tracking based

on in-ear SpO2 measurements, which are known to be both robust and exhibit minimal delay.

We consider cognitive workload assessment based on an N-back task with randomised order. It

is shown that the 2 and 3-back tasks (high cognitive workload) yield either the lowest median

absolute SpO2 or largest median decrease in SpO2 in all of the subjects, indicating a robust

and measurable decrease in blood oxygen in response to increased cognitive workload. This

makes it possible to classify the four N-back task categories, over 5 second epochs, with a mean

accuracy of 90.6%, using features derived from in-ear pulse oximetry, including SpO2, pulse rate

and respiration rate. These findings suggest that in-ear SpO2 measurements provide sufficient

information for classification of cognitive workload over short time windows, which promises a

new avenue for real time cognitive workload tracking.

49
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5.1 Introduction

Cognitive workload is defined as a the level of mental effort undertaken by an individual in re-

sponse to a task. The mental effort is usually related to working memory, and thus corresponds

to the utilisation of brain resources [74]. Cognitive workload affects almost every task-related

aspect of our daily lives, from general learning to driving to internet browsing. The ability to

accurately measure cognitive load would yield manifold benefits, as too little cognitive workload

leaves us vulnerable to distraction, whereas too much cognitive workload makes us prone to

making mistakes. Depending on the task a person is engaged in, these mistakes can be more

benign, such as less efficient studying, through to life threatening as is the case with driving and

the possibility of fatal accidents. The ability to accurately measure and predict cognitive work-

load would therefore make possible personalised task adaptation, together with the associated

benefits on an individual and a societal level, from increasing productivity to decreasing the

likelihood of mistakes. Classification of cognitive workload therefore promises immense benefit

in diverse areas ranging from driver safety to augmenting human capability with closed loop

brain computer interface.

5.1.1 Physiological methods for cognitive workload tracking

It is natural to attempt to track cognitive workload based on scalp electroencephalography

(EEG), with examples including the classification of skilled vs bad driver performance [75] and

the prediction of performance in working memory tasks [76]. Scalp EEG has proven effective

at discerning the relevant brain activity changes that arise from changes in cognitive workload,

with Johannesen et al achieving 84% accuracy when it came to classifying performance in

different stages of a working memory task[76]. Scalp EEG is obtrusive and thus impractical

for daily life applications, while discrete and non-stigmatising wearable solutions are still being

developed, such as Hearables [16] and ear-EEG [57] [18].

In recent years, eye gaze tracking has become a useful tool for estimating cognitive workload,

such as in classification of cognitive workload as well as predicting correctness in an N-back

task whilst in a driving simulator [77] [78]. Wang et al achieved an F1 score of 0.71 when

distinguishing low and high levels of cognitive load during an N-back task, with 5 second

windows of gaze information, and this increased to an F1 score of 0.88 when using 20-second
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windows [77]. However, the ways to measure gaze and pupil dilation inevitably involve cameras;

these are generally fixed and positioned to track the face and eyes and can be embedded into

glasses for wearable gaze tracking.

Other sensing modalities relevant for the estimation of cognitive load include electrocardiog-

raphy (ECG) and photoplethysmography (PPG) and the use of the corresponding heart rate

metrics to classify cognitive workload in a range of scenarios, including driving whilst perform-

ing an N-back memory task [79], taking maths tests of varying difficulty [80] and when engaging

in a partially automated task with a machine based component [81]. Using ECG data, Tjolleng

et al achieved an accuracy of 82% when distinguishing between three levels of cognitive load

based on an N-back task [79]. Whilst ECG and PPG are both less obtrusive in daily life than

scalp EEG, and offer a wearable solution to cognitive workload tracking, it remains unclear

whether the documented increases in heart rate are associated with the stress of performing

well during higher cognitive workload tasks [21] [82], or indeed the increased cognitive workload

itself. Namely, heart rate is known to correlate strongly with stress level whilst driving, as well

as skin conductivity (sweat level) [83]. For the purpose of rigorous cognitive workload tracking,

it is therefore important to consider tasks whereby the aspect of stress that a maths test or

driving may cause is reduced, whilst still maintaining the ability to vary cognitive workload.

Functional magnetic resonance imaging (fMRI) reliably measures changes in blood flow to

different regions of the brain, and due to this it can be considered a gold standard for detecting

changes in cognitive workload [84]. However, MRI scanners are not portable or wearable,

and thus using fMRI to track cognitive workload does not make sense in real world scenarios.

Moreover, due to the strong magnetic field required for the MRI scanner to work, it is not

feasible to validate wearable cognitive workload trackers during simultaneous fMRI.

5.1.2 Protocols for inducing changes in cognitive workload

Arithmetic tasks

Arithmetic tasks are great for inducing constant cognitive workload and can be adapted to have

many difficulty levels, examples of which include stating if numbers are divisible by a divisor

that increases in size [85] or adding two numbers with an increasing number of digits [86]. A
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major downside to using arithmetic tasks is that they also tend to induce stress. Participants

are likely to feel judged on their mathematical ability and therefore may put increased pressure

on themselves to perform well. An example of this is a paper which used ECG to classify the

increased cognitive workload of a maths test provided to students, but used heart rate and

heart rate variability metrics (primarily associated with stress) to distinguish these scenarios

[80].

Real-world of simulated virtual reality tasks

Real-world and simulated virtual reality task allow for cognitive workload tests that are specific

to a specific vocation and thus have real-world applicability. Examples of this include driving

[75] and surgery [87]. Importantly, VR tasks are immersive which limits external stimuli and

distractions and may lend itself to a more consistent cognitive workload output. With specific

tasks however, they are usually only useful in subjects which have prior training with that task,

such as air traffic controllers using an air traffic control simulator [74].

The N-back task

The N-back task involves a subject recalling something, such as a number [88] or letter [74], that

they saw or heard N-steps back depending on the stage of N-back that the subject is in. For

example, for a sequence of numbers 8, 7, 3, 5, where 5 was given last, the correct 0-back response

is 5, 1-back is 3, 2-back is 7, and 3-back is 8. Generally, the N-back task is only performed to a

maximum level of 3-back. The N-back task is good at inducing cognitive workload given that

it provides 4 clear levels of workload and that there is usually a marked subjective increase

in difficulty between 0-back and 3-back. Moreover, N-back tasks can easily be introduced as

a secondary task that is performed at the same time as a more specific primary task [77] [89]

[79]. The downside of the N-back task is that subjects can become easily distracted, or may

have to mentally refresh and for example wait for 3 new windows to pass in the middle of a

3-back task. This lends itself to areas of low cognitive workload in regions which were designed

to induce consistently higher cognitive load. Despite the issue of distraction, N-back tasks are

excellent for inducing quantifiable levels of cognitive load, require minimal training and likely

induce less stress than tasks such as driving or arithmetic tests. For these reasons, our version
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of an N-back task was implemented in this chapter.

5.1.3 The brain, oxygen and cognitive workload

The brain is the most metabolically active organ in the human body. At rest, the brain

consumes 20% of the body’s oxygen [90] and this percentage increases with increased cognitive

demand. Oxygen restriction has significant effects on cognitive function; for example, less

oxygen delivery to the brain has been observed in those with memory impairments [91] [92].

Moreover, the administration of oxygen, through the breathing of supplemental oxygen and the

associated increase in blood oxygen, has been shown to result in a significantly better memory

performance and faster reaction times [93] [94] [95] [96].

Functional near-infrared spectroscopy (fNIRS), a tool for measuring oxygenation of tissue and

thus oxygen consumption, has shown increases in oxygen consumption of the brain with an

increase in cognitive workload in drivers [97]. Furthermore, fNIRS has helped to detect increased

oxygenation of specific brain regions (such as the left inferior frontal gyrus, involved in language

processing) with an increase in the difficulty of a letter based N-back memory task in pilots

[74]. This motivates us to investigate whether these changes in oxygen consumption are also

observable in spectral analysis of blood, or if they manifest themselves through changes in

breathing rate or breathing magnitude.

Given that the brain is the most metabolically active organ in the body and that it increases

oxygen consumption with cognitive workload, we here hypothesise that increased cognitive

workload may be measurable through blood oxygen saturation. Considering that wearable in-

ear pulse oximetry provides a robust SpO2 signal with minimal delay, we set out to answer

whether in-ear pulse oximetry can be used to accurately classify different levels of cognitive

workload, and furthermore can this classification be performed in an almost real-time fashion?
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5.2 Methods

5.2.1 Hardware

The hardware used in this chapter is detailed in chapter 2, section 2.2.2, with the data from

the in-ear sensor being stored directly on an SD card.

MATLAB 2018a by MathWorks (Natick, MA, USA) was used to create a graphical user interface

which refreshed four single digit numbers every 5 seconds on a screen in front of the subject.

The MATLAB program also communicated with an Arduino Uno by Arduino (Somerville, MA,

USA) with each refresh, which in turn communicated with the data logging circuit board with

an electrical pulse to align the PPG data to each 5 second window.

5.2.2 Experimental protocol

Laptop

Data logging circuit board

In-ear sensor

Microcontroller

Figure 5.1: Illustration of the recording of in-ear SpO2 during an N-back task. The SpO2

sensor links to a circuit board which logs the data stream and also accepts input from the
microcontroller. The four single digit numbers displayed on the laptop refresh every 5 seconds,
and communicate this refresh time to the microcontroller, which in turn sends an electrical
pulse to the circuit board to align the task with the physiological data.

The recordings in this chapter were performed under the Imperial College London ethics com-

mittee approval JRCO 20IC6414, and all subjects gave full informed consent. The participants

in the recordings were 10 healthy subjects (5 males, 5 female) aged 22 - 29 years. A single
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PPG sensor was used per subject and was safely secured within the right ear canal. The sub-

jects were seated in front of a monitor during the recording where a MATLAB graphical user

interface updated with 4 randomly generated single digit numbers every 5 seconds, as shown

in Fig. 5.1. Subjects were asked to count the number of odd numbers and, depending on the

N-back trial, they were tasked with entering the current number of odd numbers using the

keyboard (0-back), the previous number (1-back), the number 2 steps back (2-back), or the

number of odd numbers 3 steps back (3-back). Each trial lasted for 5 minutes and 40 seconds

(68 5 second epochs), with 6 epochs used for calibration, leaving 62 epochs for analysis. Four

trials were performed by each subject, corresponding to the four levels of N-back task that

were presented in a quasi-randomised order. Each subject was given between 5 and 10 minutes

rest between trials, and allowed to practice until they were confident with the tasks before the

recordings started.

5.2.3 Signal processing

Extraction of the SpO2 was performed according to Chapter 3, subsection 3.2.3. The peak

detection procedure of the AC infrared troughs was also used to calculate pulse rate, given that

the PPG peak from the ear canal is broader than the peak from the finger (a characteristic of

the pressure wave found in the carotid artery) and would thus give a noisy pulse rate estimate.

An example of the photoplethysmography pulse signal from the ear is shown in Fig. 5.2a.

Fluctuations in the baseline of ear-PPG due to inspiration and expiration have been evidenced

as far stronger from the ear-canal than from the finger [12] [8]. For the calculation of respiration

rate, the raw PPG signal was first band-pass filtered between 0.2Hz and 30Hz, followed by a

moving average filter with a 150 sample window (corresponding to 2.4 seconds). Peak detection

was performed using the MATLAB function findpeaks with a minimum peak prominence of 10,

to give respiration peaks. The difference of the timings of these peaks was then used to give a

breathing interval, shown in Fig. 5.2b. The inverse of the interval signal was then multiplied

by 60 to give breathing rate (in breaths per minute). The amplitude values of the respiration

peaks were also used as an estimate of breathing amplitude. No epochs of data were discarded,

even in the presence of motion artifacts.
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Figure 5.2: Overview of the signals recorded from in-ear photoplethysmography. (a) Both the
red and infrared AC photoplethysmography signals, bandpass filtered between 1Hz and 30Hz
for the calculation of heart rate and SpO2. (b) The infrared in-ear PPG signal bandpass filtered
between 0.2 and 30Hz with the respiration modulation superimposed in black.

5.2.4 Feature extraction

For each 5-second epoch, 21 time domain features (13 SpO2 based features, 5 pulse based

features and 3 breathing based features) were extracted. Frequency-based features were not

used as the 5-second window is too short for reliable heart rate variability metrics from PPG.

Five features were calculated using both the 5-second epoch and the calibration data from the

start of the task. This was particularly important in the case of SpO2, as although healthy SpO2

levels generally fall within a small range of 94-100%, the changes we detected due to cognitive

load were less than 1%. Whilst absolute values are adequate for testing and training on the

same subject, features that are relative to a calibration period are more useful for generalising



5.2. Methods 57

Table 5.1: Summary of features used for the classification of cognitive workload with 10-fold
cross validation.

Category Features

SpO2 SpO2 mean, relative change in SpO2,
red amplitude mean, infrared (IR) amplitude mean,
relative change in red amplitude,
relative change in IR amplitude,
red AC/DC ratio mean, IR AC/DC ratio mean,
red peak prominence mean, IR peak prominence mean,
red/IR AC ratio mean, red amplitude variance,
IR amplitude variance.

Pulse Heart rate mean, relative change in heart rate,
pulse full-width-half-maximum (FWHM) mean,
pulse width ratio† mean, pulse width ratio variance.

Breathing Breathing rate mean, relative change in breathing rate
breathing amplitude mean.

† Pulse width ratio is the ratio between the FWHM of the peak and the FWHM of the
trough, giving a systolic to diastolic duration ratio.

across subjects. The 21 features used are summarised in Table 5.1.

SpO2 features

The SpO2 mean was calculated based on the ratio of ratios defined in chapter 3. Infrared

amplitude mean and variance were defined as the mean and variance of the infrared light peak

amplitudes when the infrared signal has been band-pass filtered between 1Hz and 30Hz, and the

red amplitude mean and variance were defined as the mean and variance of the red light peak

amplitudes when the red signal has been filtered in the same way. Alternating current to direct

current (AC/DC) ratios were defined as the mean peak amplitudes after band-pass filtering

between 1Hz and 30Hz, divided by the mean of the signal low-pass filtered at 0.01Hz. Peak

prominence was defined as the peak value minus the minimum of the signal, either between two

peaks that had larger peak values than itself, or across the whole signal if it was the highest

peak. All relative features were calculated as the feature minus the same feature calculated

from the 6 calibration epochs at the start of the task.
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Pulse features

Pulse based features were calculated from the infrared light signal band-pass filtered between

1Hz and 30Hz, shown in Fig. 5.2(a). Heart rate is defined as 60 divided by the peak to peak

time interval in seconds. The mean heart rate across the 5-second window and mean relative

heart rate compared with the initial calibration period were used as features. The pulse width

was implemented using the full-width-half-maximum (FWHM), defined has the width of the

peak at half of the peak height relative to the rest of the signal [98]. Pulse width ratio is the

ratio between the FWHM of the peak and the FWHM of the trough, giving a systolic (heart

beating) to diastolic (heart resting) duration ratio given by

Widthsystolic

Widthdiastolic

≃ FWHMpeak

FWHMtrough

(5.1)

where FWHM is the full-width-half-maximum which was used as pulse width [98]. Both the

mean and variance of the pulse width ratio were used as features.

Breathing features

Breathing related features were calculated from the infrared light signal band pass filtered

between 0.2Hz and 30Hz and moving average filtered over a window of 2.4 seconds, resulting

in a similar respiratory modulation signal to the example shown in Fig. 5.2(b). The breathing

rate was calculated as 60 divided by the interval in seconds between breathing modulation

peaks. The mean of this across the 5-second interval was used as mean breathing rate, and

relative breathing rate was calculated as the mean breathing rate of the current segment minus

the breathing rate of the calibration period. Breathing amplitude mean was calculated as the

mean peak amplitude of the breathing modulation signal.

5.2.5 Classification and evaluation

A random forest classifier with AdaBoost was employed from the publicly available scikit-learn

Python toolbox [99]. For the random forest base, the number of trees was set to 50, the class

weight was set to ‘balanced subsample’. For the AdaBoost framework, the random forest was
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set as the base classifier, the maximum number of estimators was set to 50, the learning rate

was set to 1.0 and the real boosting algorithm “SAMME-R” [100] was used.

Ten-fold cross-validation was employed on the fully shuffled data for the case of four-category

classification (0-back, 1-back, 2-back, 3-back). Leave-one-subject-out cross-validation was em-

ployed on two-category classification (0-back and 3-back). All 21 features were used in ten-fold

cross-validation, but only the mean SpO2, the relative change in SpO2 and the mean heart rate

were used in leave-one-subject-out cross-validation. In the case of 10-fold cross-validation, the

maximum number of features was set to 10 while for leave one subject out cross-validation the

maximum number of features was set to 3, as only 3 features were used. Class-specific accuracy

and overall accuracy were used as metrics to evaluate classification performance.

Given the three categories of features used (pulse, SpO2 and breathing), feature importance

by means of a reduction in tree impurity was calculated for each feature. This was used to

ascertain the relative contribution of SpO2 derived features compared with conventionally used

features such as heart rate and breathing rate.

5.3 Results

The mean mistake percentages across subjects for each N-back stage were 4.0%±3.3%, 4.8%±

4.3%, 17.1%±14.4% and 29.4%±21.1% for 0-back, 1-back, 2-back and 3-back tasks, respectively.

The substantial increase in mistakes between 1-back, 2-back and 3-back tasks indicates that

the 3-back and 2-back tasks were difficult enough to create a meaningful increase in cognitive

workload.

5.3.1 Change in blood oxygen, heart rate, breathing rate

The mean recorded SpO2 across all subjects and trials was 97.0% ± 1.7%, the mean heart rate

was 76.7±11.4 beats per minute, and the mean estimated breathing rate was 13.5±3.3 breaths

per minute. All results therefore fell into the physiologically expected range.

We observed a decrease in median SpO2, relative to the start of the task, with every increase

in N-back difficulty. The median SpO2 relative to the start of the N-back task was +0.373%,
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Figure 5.3: Box plots of the relative change in SpO2 (left, red), heart rate (middle, purple) and
breathing rate (right, blue) from the in-ear sensor, split into N-back categories and including
each 5 second epoch. The top and bottom of each box represent respectively the upper and
lower quartiles, the center notches of each box designate the median, and the whisker lines
extending out of the box the range.

+0.101%, +0.099% and -0.102%, for 0-back, 1-back, 2-back and 3-back respectively, as shown

in Fig. 5.3. Moreover, for the most difficult 3-back task either the median SpO2 or median

SpO2 relative to the start of the task was the lowest out of all tasks in 8 out of the 10 subjects,

while in the remaining two subjects this occurred for the 2-back task. Similarly, the overall

median heart rate was highest in the 2-back and 3-back tasks, but on an individual subject

basis the highest median heart rate only occurred in the 3-back task in 5 out of 10 subjects. A

slight decrease in median breathing rate was also observed with the 3-back task.

Correlations between the task median relative change in SpO2 and the task median heart rate,

and both N-back difficulty and proportion of errors, were also examined. Fig. 5.4 highlights the

prominence of a medium negative correlation between the median relative change in SpO2 and

N-back difficulty (r = -0.45, p = 0.004) and between the median relative change in SpO2 and the

proportion of errors (r = -0.34, p = 0.031). Similarly, there was a medium positive correlation

between the median heart rate and N-back difficulty (r = 0.35, p = 0.027) and between the

median heart rate and proportion of errors (r = 0.416, p=0.008). The strongest correlation

was therefore seen between a decrease in relative SpO2 and increase in workload. Importantly,

relative SpO2 was more correlated with workload than with errors and the opposite was true

of heart rate. A negative correlation was seen between median breathing rate and workload,
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Figure 5.4: Scatter plots of median relative change in SpO2 (red) and median heart rate (pur-
ple) against N-back level and proportion of errors, with trend lines (black) and correlation
coefficients and p values superimposed. (a) Median relative change in SpO2 against N-back
level. (b) Median heart rate against N-back level. (c) Median relative change in SpO2 against
proportion of errors. (d) Median heart rate against proportion of errors.

but this correlation was not significant (r = -0.28, p = 0.086).

Fig. 5.5 further demonstrates the high separability of 0-back and 3-back tasks with SpO2

features, through a two-dimensional kernel density plot of mean SpO2 and relative change in

SpO2.
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Figure 5.5: Two-dimensional contour plots of the kernel density estimates for mean SpO2,
and relative change in SpO2, derived from all of the 5 second epochs of data. The kernel
density estimates are plotted independently for two categories: 0-back (black dotted line) and
3-back (red solid line). Kernel density was normalised between 0 and 1 for each category,
and the corresponding values for each contour line shown are marked within the contour lines
themselves.

5.3.2 Classification

Shuffled ten-fold cross-validation

With ten-fold cross-validation, shuffled across all participants, we were able to classify the 5-

second 0-back epochs with an average accuracy of 93.4%, 1-back epochs with an accuracy of

89.2%, 2-back with 89.5% and 3-back with 90.2%, giving a total average classification accuracy

of 90.6%. The largest errors occurred with the miss-classification of 1-back as 3-back and vice

versa, with larger errors also occurring between 0 and 1, 1 and 2, and 2 and 3. Classification

accuracy was notably better for 0-back and 3-back tasks, as evidenced by the full confusion

matrix averaged across 10-fold cross validation in Fig. 5.6(a).

Averaged feature importance (according to reduction in tree impurity in the random forest)

across each fold for ten-fold cross-validation was calculated with the top 10 features presented

in Fig. 5.7. The two most important features for classification in the case of shuffled ten-

fold cross-validation were the mean heart rate and the mean SpO2. Moreover, 6 of 10 most
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Figure 5.6: Classification accuracy of SpO2 based cognitive workload estimation. (a) Mean
confusion matrix for the results of ten-fold shuffled cross-validation in four-category prediction
(0-back, 1-back, 2-back and 3-back). The rows correspond to the true N-back category, and the
columns to the category predicted by the classifier. (b) Classification accuracy for testing on
each subject, with the classifier trained exclusively on the other 9 subjects (red bars) and the
N-back error ratio between the 0-back and 3-back tasks for each subject (blue circles). An error
ratio of 1 means the same number of errors were made on the 3-back task as on the 0-back.

important features were derived from SpO2.

Leave-one-subject-out cross-validation

Binary leave-one-subject-out cross validation with 3 features had varied performance, but per-

formed well across the majority of subjects, with 6 subjects having an mean accuracy greater

than 77.9%, and 4 of those subjects having an accuracy greater than 85%. The 6 subjects with

highest classification accuracy made an average of 15 times more errors in the 3-back task,

reflected in a low 0-back to 3-back error ratio, and the 4 subjects with the lowest classification
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Figure 5.7: Feature importance for the 10 most significant features out of the 21 features
considered during 10-fold cross validation. Feature importance was derived from the reduction
in tree impurity based on the contribution of each feature to the random forest classifier. The
features were split into three categories, depending on the physiological metric from which they
were derived. The SpO2 features are shown in red, pulse features are in purple, and breathing
features are in blue.

accuracy made an average of 2 times more errors in the 3-back task, reflected in a high 0-back

to 3-back error ratio. The accuracy percentages for testing on each subject, along with the

0-back to 3-back error ratios are shown in Fig. 5.6(b). Notably mean SpO2 and the relative

change in SpO2 were the most valuable features in terms of reducing tree impurity in binary

leave-one-subject-out cross validation.

5.4 Discussion

In general, an increase in cognitive workload led to a decrease in the measured in-ear SpO2

levels. The decrease in the measured in-ear SpO2 with increased cognitive workload was con-
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sistent across all 10 subjects, with the lowest median relative change in SpO2 or the lowest

median absolute SpO2 occurring in the 3-back or 2-back tasks in all subjects. This demon-

strates the robustness of the in-ear SpO2 response to changes in cognitive workload, compared

with the commonly used metric of heart rate, where an increase in heart rate did not neces-

sarily correspond to increased cognitive workload. As expected, errors were highly correlated

with increased cognitive workload due to the increased task difficulty. Importantly, the relative

change in SpO2 was more correlated with the level of N-back task than it was with the propor-

tion of errors made, and the opposite was true for the heart rate. A possible reason for this is

that some subjects became stressed when making errors, thus triggering an increase in heart

rate [21]. Whilst it is important to note that we did not provide live feedback to participants

when they made errors, during an N-back memory task it is feasible that subjects were aware

of when they have forgotten a number. In this particular experiment, the memory aspect of the

task contributed more to errors than the counting of the odd numbers, as evidenced by an in-

crease in the mean error rate from 4% to 29% between the 0-back and 3-back tasks. Critically,

this highlights in-ear SpO2 as a metric which tracks cognitive workload irrelevant of stress.

Furthermore, the correlation between the relative change in SpO2 and an increase in cognitive

workload was the strongest and most significant correlation found.

The robustness of the measured SpO2 changes were further reflected in the high classification

accuracy. With ten-fold cross-validation, the 5-second epochs of in-ear data achieved an average

classification accuracy of 90.6% across the four N-back task categories, with the two most

important features for classification being the mean heart rate and the mean SpO2. The

performance of leave-one-subject-out cross-validation using the two categories of 0-back and 3-

back was less consistent, but was reasonably good in the majority of subjects, with an accuracy

of 77.9% and above in 6 subjects, 4 of which achieved a classification accuracy of over 85%.

Notably, the leave-one-subject-out evaluation was implemented with just 3 features, the mean

SpO2, the mean heart rate and the relative change in SpO2. In this case, the most important

features were the SpO2-derived features. Our average classification accuracy across unseen

subjects with a 5-second window (70.1%) is comparable to that of gaze and pupil derived

features (70.4%) [101] and the reported accuracy achieved by fNIRs when training and testing

on the same subject (63.5% and 78% with 15-second to 25-second windows respectively) [102].

In general, cognitive workload tasks induce different levels of cognitive workload in different
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people, which is evidenced through the large standard deviation in mistakes, suggesting highly

subjective levels of difficulty. The physiological response to increased cognitive workload also

varies widely between different people. The ability of leave-one-subject-out training to perform

well when testing on a majority of the 10 subjects conclusively demonstrates a robustness

in the SpO2 response to changes in cognitive workload that becomes visible even across a

few subjects. Importantly, in the subjects where the classifier performed poorly, there were

comparable errors between the 3-back and 0-back tasks and the absolute errors for the 3-

back task were low. This indicates that both tasks were found to be comparatively easy, and

classification performance was reduced because the experiment failed to induce large changes

in cognitive workload. The overlap in task difficulty across subjects was further exaggerated

when comparing 0-back to 1-back, or 2-back to 3-back, making full four category leave-one-

subject-out classification unfeasible.

In our data, the in-ear SpO2 decrease in response to cognitive load is visible within the first two

5-second segments of increased cognitive load and this decrease tends to accumulate gradually

across the trial. This is comparable to galvanic skin response which has a response time to

emotion evoking stimuli in the range of 1 to 5 seconds [103] and a tonic response in the range of

10 to 100 seconds [104]. Notably, in-ear SpO2 is slower than more instantaneous measures such

as EEG which has a response time on the order of hundreds of milliseconds [105] and therefore

it is recommended that in-ear SpO2 be used to measure sustained periods of cognitive load in

the period of tens of seconds and longer for maximal effectiveness, rather than to explore the

cognitive load induced instantaneously by a single stimulus.

The median relative decrease found in in-ear SpO2, between a memory task difficulty of easiest

to hardest, was 0.47%. If we consider a example in-ear PPG waveform with a relatively low

(but not uncommon) infrared peak to peak amplitude of 150, a red peak to peak amplitude

of 50, and a noise floor of 10 arbitrary units, the influence of noise would result in an average

fluctuation of 1.5% in SpO2 as per the calculation in Chapter 3 subsection 3.2.3. For this

reason, any results pertaining to relative SpO2 were always averaged over many peaks and not

taken from single peak calculations. This is another reason why it is recommended that in-ear

SpO2 be used to measure sustained periods of cognitive workload.

Whilst it has been demonstrated that in-ear SpO2 is an effective measure for distinguishing

aggregate levels of cognitive load, a limitation when compared with more sophisticated measures
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such as fMRI and fNIRs is that in-ear SpO2 cannot distinguish the type of cognitive load, such

as whether cognitive load is induced by increased memory demands (as is the case with an N-

back task) or induced by audio/visual feedback or motor control. In uncontrolled environments

where external stimuli are a factor, it would therefore be difficult to relate in-ear SpO2 measured

cognitive load changes solely to a single task.

It is also important to note that the external carotid artery supplies the ear canal with oxygen,

whereas the internal carotid artery supplies the brain with oxygen. More experimentation is

needed to ascertain the extent to which the observed robust decrease in in-ear SpO2 is caused by

the increased oxygen consumption of the brain, as opposed to other physiological factors. The

impact of sympathetic tone was investigated but a change in heart rate variability metrics was

not found to be predictive of an increasing cognitive load in this study. Further investigation

is also needed to determine whether this SpO2 response is specific to the ear canal.

5.5 Chapter conclusions

A proof of concept for cognitive workload estimation using a novel wearable in-ear pulse oxime-

try sensor has been introduced. Pulse oximetry from the ear canal has been shown to be capable

of discriminating between 4 categories of cognitive workload based on an N-back task over 5-

second epochs, with a mean accuracy of 90.6%. High cognitive workload in the 2-back and

3-back tasks has led to either the lowest median absolute SpO2 or largest median decrease in

SpO2 in all of the subjects, therefore demonstrating a robust decrease in measured blood oxy-

gen in response to increased cognitive workload. We conjecture that the decrease in measured

SpO2 with increased cognitive load could be related to the increased oxygen consumption of the

brain under increased cognitive demands, and to this end we have examined the predictability

of the change in in-ear SpO2 in response to changes in cognitive workload. The consistency

of the SpO2 response has been further evidenced by an ability to generalise across subjects,

even in a relatively small subject pool. In combination with the previously documented rapid

reaction speed of in-ear SpO2 measurements [72], this indicates the promise of in-ear SpO2

as a tool for close to real-time cognitive workload classification. Overall, this pilot study has

established in-ear SpO2 as an effective tool for classification of cognitive workload, to be used

alone or in combination with commonly used workload tracking equipment such as EEG and



68 Chapter 5. In-ear SpO2 for the classification of cognitive workload

ECG, or within the emerging multi-modal Hearables.



Chapter 6

Tracking cognitive workload in gaming

with in-ear SpO2

Chapter overview

The feasibility of using in-ear SpO2 to track cognitive workload induced by gaming is investi-

gated. This is achieved by examining temporal variations in cognitive workload through the

game Geometry Dash, with 250 trials across 7 subjects. The relationship between performance

and cognitive load in Dark Souls III boss fights is also investigated followed by a comparison of

the cognitive workload responses across three different genres of game. A robust decrease in in-

ear SpO2 is observed in response to cognitive workload induced by gaming, which is consistent

with existing results from memory tasks. The results tentatively suggest that in-ear SpO2 may

be able to distinguish cognitive workload alone, whereas heart rate and breathing rate respond

similarly to both cognitive workload and stress. This study demonstrates the feasibility of low

cost wearable cognitive workload tracking in gaming with in-ear SpO2, with applications to the

play testing of games and biofeedback in games of the future.

6.1 Introduction

Physiological feedback promises to revolutionise how players interact with games, from more

insightful information during play testing, through to adapting game parameters during game

69
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play. It can serve to provide insight into a player’s stress level, emotions, arousal level and

cognitive workload (also known as mental effort in response to a task). Low cognitive workload

indicates either a lack of focus and/or an easy task, while high cognitive workload indicates

intense focus and/or a challenging task. Accurate tracking of cognitive workload in gaming

would therefore provide valuable insights into both player effort and game difficulty.

The brain is the most metabolically active organ in the body and increases its oxygen consump-

tion with increased cognitive workload. This has been shown through functional near-infrared

spectroscopy (fNIRS) and has also been detected reliably through the measurement of minor

decreases in in-ear SpO2 in response to N-back memory tasks [44]. It is therefore our hypothesis

that in-ear SpO2 may have a similar response to cognitively demanding games which require

intense audio-visual processing and coordination.

6.1.1 Physiological monitoring in gaming

As gaming has continued to advance over the last two decades, so has the desire for integrated

biofeedback with the goal of a more rewarding and personalised user experience. Heart rate,

derived from either electrocardiography (ECG) or photoplethysmography (PPG), is one of

the most commonly monitored physiological metrics. It has been used to modulate game

difficulty [106] and can effectively distinguish different stress responses across games (Mortal

Kombat and Tetris) through the use of heart rate variability metrics [107]. Similarly, measuring

perspiration from the hands through the skin conductance level (SCL) is an effective tool for

estimating physiological arousal, and consequently it has been used to adapt parameters of

the survival horror game Left 4 Dead [108]. A combination of heart rate, SCL and facial

electromyography (EMG) may be able to achieve more detailed measures of arousal and emotion

for the modulation of gameplay [109] but this requires extensive training to learn a users

individual physiological responses.

Scalp electroencephalography (EEG) has shown increased theta power (indicating both in-

creased mental workload and fatigue) in the sports game Mario Power Tennis [110] and the

puzzle game Kirby’s Avalanche [111]. Functional near infrared spectroscopy (fNIRs) has shown

increased oxygen concentration in frontal lobe brain tissue during both fighting and puzzle genre

games [112], indicating that as with N-back tasks [74] brain oxygen consumption also increases
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during gaming. Whilst scalp-EEG and fNIRS give robust measures of cognitive workload, they

are expensive and, largely, lack portability.

We here build upon our work on low cost wearable in-ear pulse oximetry, which has shown sen-

sitivity in the detection of minor drops in blood oxygen level with increased cognitive workload

induced by N-back memory tasks [44], to investigate its utility for tracking cognitive workload

in response to gaming.

6.2 Methods

6.2.1 Hardware

The hardware used in this chapter is detailed in chapter 2, section 2.2.2. The in-ear sensor

was connected to the Bioboard, attached to the subjects clothing, which transmitted the data

wirelessly via Bluetooth to a laptop. The PPG was sampled at 50Hz.

6.2.2 Experimental protocol

The recordings detailed in this chapter were performed under the Imperial College London

ethics committee approval JRCO 20IC6414, and all subjects gave full informed consent. The

participants in the recordings were 7 healthy subjects (4 male, 3 female) aged 18 - 30 years. All

7 subjects played the game Geometry Dash (RobTop Games) and one subject also played Dark

Souls III (FromSoftware Inc) and Five Nights at Freddy’s (Scott Cawthon). Geometry Dash

(GD) is a music/runner genre game where players click to jump on platforms and avoid objects.

Dark Souls III (DS3) is an action role-playing genre game where players have to dodge, block

and attack challenging enemies. Five Nights at Freddy’s (FNAF) is a survival horror genre

game which triggers jump scares when a player loses.

In GD, players repeated a level 5 times, followed by a minimum of 1 minute of rest, and repeated

this process at least 5 times for a minimum of 25 trials per person. When a player completed

level 1, they moved on to level 2. A total of 250 trials were recorded, 218 of which were on

level 1, and 32 on level 2. With DS3 the subject repeated the first area of the game, involving
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a mini-boss followed by a main boss with much easier enemies between. When the subject

completed the area or died, the game was restarted. The area was repeated 8 times, resulting

in 42 minutes of game play. With FNAF the subject played until losing or completing a level,

followed by a minimum of 2 minutes rest and this was repeated 5 times. Rest periods were

slightly longer in FNAF than in GD given that the level duration was longer and fatigue needed

to be mitigated. All rest times were more than sufficient for physiological signals to return to

baseline levels.

6.2.3 Signal processing

SpO2

Blood oxygen percentage (SpO2) was calculated based on the alternating current to direct

current ratios of infrared and red light [72], otherwise known as the ratio of ratios described

in Chapter 3, subsection 3.2.3. Artefacts were removed by calculating a z-score for the current

peak magnitude value, based on the sample mean and standard deviation of the 10 peaks

before. A z-score threshold (usually 3) was determined for each individual and if the z-score of

the current peak was above this threshold it was removed and linear interpolation was used.

Heart rate

The ear-PPG has a characteristic carotid pulse pressure waveform with troughs that are sharper

than the peaks and thus peak detection was performed on the troughs of the PPG signal. Peaks

were detected using the MATLAB function findpeaks, with a minimum peak prominence of

between 30 and 100 for the infrared signal and 10 and 50 for the red signal. Sixty was divided

by the inter-beat time interval to give a heart rate value in beats per minute.

Breathing rate

The three respiratory modes present in PPG, namely the intensity variations, pulse amplitude

variations and pulse interval variations [12], were combined in 16 second intervals using noise-

assisted multivariate empirical mode decomposition (NA-MEMD) [29]. Intrinsic mode functions
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(IMFs) were selected if the peak frequency was between 0.18 and 0.8Hz, and subsequently

summed for a clean respiratory waveform for each mode [12]. Peak detection was performed

on the amplitude and interval variation modes, and the inter-peak interval was averaged across

the modes to give an estimated time interval between breaths. The respiratory rate was then

calculated as 60 divided by this interval, giving respiratory rate in breaths per minute.

6.2.4 Analysis metrics

Relative SpO2, relative heart rate and relative breathing rate were all calculated as the mean

during game play minus the mean during the last 30 seconds of the resting interval. The full

game play duration was used for both GD and DS3, whereas the last 3 minutes of game play

was used for FNAF. This is because FNAF levels are comparatively long and the vast majority

of action occurs in the final 3 minutes. Using relative SpO2 instead of absolute SpO2 was

particularly important given that the in-ear SpO2 response to cognitive workload is usually less

than a percentage point, and the baseline across individuals can vary from 94-100%.

Relative SpO2 across time was calculated for level 1 of GD and compared with the frequency

at which players failed in each 10 second time interval. For DS3, relative SpO2 was calculated

for each boss fight and plotted against performance. Performance was calculated according to

Performance =
HitsDealt–3(HitsTaken)

Duration
(6.1)

where ‘HitsTaken’ is weighted higher than ’HitsDealt’, given that being hit by the boss deals

far more damage and is therefore more costly than the benefit of the player dealing a single hit.

Finally, the metrics of relative SpO2, relative heart rate and relative breathing rate were com-

pared across the three different games genres for a single subject.

6.3 Results and discussion

On average, SpO2 dropped relative to baseline in both level 1 and 2 of Geometry Dash as

visualised in Fig. 6.1a, indicating that playing GD increased cognitive workload. Across 218
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Figure 6.1: Distribution of SpO2 during Geometry Dash game play relative to the resting
interval before, using 250 trials across 7 subjects. (a) Median (red solid line) and interquartile
range (shaded area) of relative SpO2 during level 1 of Geometry Dash, with frequency of fails
for each 10 second time window (grey). (b) Box plot of relative SpO2 during level 2 of Geometry
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Figure 6.2: Bar graph showing SpO2 of boss fights in Dark Souls III relative to the easier game
play before. Mini-boss fights are shaded pink with a solid black outline. Boss fights are shaded
pink with a dotted red outline. Performance is plotted on the same graph in blue according to
equation (1). Mini-boss performance is shown with light blue circles, whereas boss performance
is shown with blue diamonds.

trials, the median SpO2 was consistently low between 25 and 55 seconds. The highest frequency

at which players failed was between 0 and 20 seconds, which also corresponded to a period where

relative SpO2 was close to zero (no change in cognitive load). A possible explanation is that

a lack of focus lead to players failing early in the easier section of the level. The highest

median relative SpO2 occurred at the end of the level between 70 and 90 seconds, but this was

calculated using only a couple of trials given that only 2 players reached this point of the level.

It is important to note whilst the in-ear response to high cognitive workload is visible within 5

to 10 seconds, it is not instantaneous and the latency varies across individuals. It is therefore

best used to indicate broad time periods of increased cognitive load rather than specific time

points. Out of 32 trials in level 2, the median relative SpO2 was -0.11% with an interquartile

range of -0.24% to 0.01%, as shown in Fig. 6.1b. This indicates that level 2 of Geometry Dash
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Figure 6.3: Box plots of the relative change in SpO2 (top, red), heart rate (middle, purple)
and breathing rate (bottom, blue) from the in-ear sensor, for the three games Geometry Dash
(GD), Dark Souls III (DS3) and Five Night’s at Freddy’s (FNAF). The top and bottom of
each box represent respectively the upper and lower quartiles, the solid center lines of each box
designate the median, and the whisker lines extending out of the box represent the range.

consistently increased cognitive workload in participants.

Overall, the boss and mini-boss fights of DS3 induced a median relative SpO2 of -0.24%, with

an interquartile range of -0.84% to 0.00%, indicating consistent increases in cognitive load

compared with the easier game play between the boss fights. As expected, performance tended

to increase with subsequent attempts. There was no clear relationship between cognitive load

and performance, as shown in Fig 6.2. Whilst in theory, higher cognitive load means more

focus which would result in better performance, higher focus is also required if a player is less

practiced at a game and thus more likely to perform badly. In the final 4 attempts, relative

SpO2 gradually decreases whereas performance remains high, indicating that as the subject
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became more practiced at the game, they required less focus to perform well.

All three games induced consistent increases in heart rate and breathing rate, but only GD and

DS3 induced a median decrease in in-ear SpO2, as shown in Fig. 6.3. Whilst this is consistent

with GD and DS3 being known for requiring high levels of mental effort, it should be noted

that the change in SpO2 between groups was not statistically significant. Increases in cognitive

workload are known to increase heart rate, but stress in the absence of cognitive workload can

also lead to increases in heart rate. The horror game FNAF is known for intense scares but

can require comparatively less focus than GD or DS3. This is reflected in a consistent increase

in heart rate and breathing rate, likely due to stress, but no consistent change in in-ear SpO2,

indicating no consistent change in cognitive workload.

6.4 Chapter conclusions

In this feasibility study, we have employed a low cost wearable in-ear SpO2 sensor for the

detection of cognitive workload in gaming. Similar to its performance in N-back memory trials

[44], in-ear SpO2 has been shown to reliably respond to increased mental effort in cognitively

demanding games. This is evidenced by a robust decrease in in-ear SpO2 across 250 trials of the

popular music/runner genre game Geometry Dash. A similar cognitive workload response is

shown in the action role playing game Dark Souls III, where we find that changes in cognitive

workload levels do not necessarily correspond to changes in performance. Moreover, early

results tentatively indicate that decreases in in-ear SpO2 might distinguish cognitive load on

its own, whereas breathing rate and heart rate increase in response to both cognitive load

and stress when gaming. In conclusion, in-ear SpO2 shows promise as a tool for physiological

feedback in games of the future.



Chapter 7

In-ear PPG for the detection of driver

fatigue

Chapter overview

A system to warn drivers of a fatigue has huge potential for preventing road traffic collisions

and in turn saving lives. To this end, we investigate wearable in-ear PPG for physiological

signs of driver related fatigue and the ability to predict periods of fatigue through poor driving

performance. Our findings across 7 subjects, each engaged in monotonous driving in a simulator

for 1 hour, indicated significant increases in both subjective fatigue (Chadler fatigue scale) and

performance related fatigue (absolute steering wheel angle). Moreover, we find that several

physiological features derived from in-ear PPG change significantly with increased fatigue. The

median in-ear SpO2 decreases by a percentage point across the duration of the trial, possibly

suggesting an increased cognitive load required to drive safely when fatigued. Moreover, we see

an increase in both low frequency (LF) and high frequency (HF) heart rate variability power,

suggesting that there may be an increased frequency of both periods of stress and periods of

drowsiness with time spent driving. Absolute steering wheel angle was thresholded so that 30

second epochs above the steering threshold were labelled as fatigued epochs. Probability was

extracted from classifiers trained on these epochs and correlated with true absolute steering

wheel angle, yielding a Pearson’s correlation coefficient of 0.42 for a 30 second window, and

0.81 when smoothed over a 5 minute window. This proof of concept study demonstrates the

promise of wearable in-ear PPG for the detection of driver fatigue.

77
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7.1 Introduction

Fatigue of drivers is a major contributor to death on the roads. Across all road traffic accidents

in the UK in 2017, if the accident was fatal it was twice as likely to be due to fatigue when

compared with non fatal accidents [113]. Furthermore, a 1995-2001 study of 15 motorways and

A-roads in the UK reports that 17% of road traffic crashes and 24% of fatal road traffic crashes

were caused by driver sleepiness [114]. Moreover, a recent meta analysis of studies that used

surveys to assess sleepiness at the wheel reports that sleepiness behind the wheel increases the

risk of motor vehicle accidents with an odds ratio of 2.51 [115].

7.1.1 What is fatigue?

The Oxford dictionary definition of fatigue is “extreme tiredness resulting from mental or

physical exertion or illness”. In general fatigue is defined in the following ways, a subjective

feeling of sleepiness, a physiological state of weakness in the muscles and central nervous system,

a measurable decrease in performance or a combination of all of the above. Moreover, fatigue can

be either acute from inability to recover over a short time period or chronic from a cumulative

build up of acute fatigue [116]. Fatigue is not to be confused with drowsiness, which can

fluctuate rapidly over a period of seconds [117], whereas mental fatigue does not [118]. This

is best understood through the common experience of rest and inactivity having the potential

to increase drowsiness but decrease fatigue [117]. Driver fatigue can generally be broken down

into two categories: sleep/wake related mechanisms and driving factors such as length of time

behind the wheel and monotonous conditions [119].

7.1.2 How can we assess fatigue?

Subjective methods

It is common to use questionnaires to assess sleepiness, such as the Epworth Sleepiness Scale

[120]. However, there also exists several questionnaires to assess fatigue [121]. Many of these

questionnaires focus on fatigue in general life [122] and fatigue in chronic diseases [123] [124],

over long time scales. This is less useful in terms of continuous assessment of fatigue during
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an activity such as driving, but the result of a questionnaire such as the Fatigue Severity Scale

(FSS) [125] [123] and the Chadler Fatigue Scale (CFS) [122] can indicate the likelihood of driver

fatigue and fatigue related driving accidents [126].

Performance based methods

One method to assess fatigue when driving is through reaction time (RT). Ting et al assessed

reaction time in a driving simulator by displaying red circular images on screen and requiring

the subject to switch of an indicator when the images were presented. It was found that RT

increased with driving duration, and that RT could be classified as unsafe after approximately

80 minutes of monotonous highway driving [127]. Another popular method to classify fatigue

through performance is through measurements of steering wheel movement. Thiffault et al

showed that the frequency of large steering wheel movements (6- 10) increased as a sign of

fatigue [128]. This is related to reaction time, as when it takes longer to react to an incoming

object or change in road direction, larger more abrupt steering wheel movements must be made

to compensate. An issue with using performance to assess driver fatigue is that when perfor-

mance starts to decline it may already be too late in terms of road traffic accident prevention.

A system to indicate fatigue before the subsequent decline in performance would be safer.

Physiological methods

Electroencephalography (EEG) is a reliable method to detect drowsiness, sleep, and fatigue.

EEG signatures that may indicate fatigue include those seen in the sleep/wake transition N1

sleep stage, which is classified by increased theta band activity (4-7Hz) and a decrease in

alpha band activity (8-13Hz) [65]. However, the presence of alpha merely indicates a relaxed

wakefulness and not the ability to react fast to incoming stimuli. In fact, research shows that

the frequency of alpha spindles seen in EEG increases with braking reaction time [129], likely

caused by increased duration of eye blinks. In general fatigue is most commonly indicated by

increases in delta (0.5-4Hz), theta and also alpha band activity [130]. It has also been reported

that increases in the alpha power band can occur approximately 20s before a visual task mistake

[131], indicating that with EEG it may be possible to predict decreased performance before it

occurs.
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Electrocardiography (ECG) has been thoroughly investigated as it pertains to driver fatigue. It

has been reported that during prolonged night driving heart rate decreases [132]. Furthermore,

the investigation of heart rate variability (HRV) whilst driving indicates that low frequency HRV

power (0.04-0.15Hz) tends to increase as a driver becomes more fatigued, the high frequency

HRV power (0.15-0.4Hz) tends to decrease [133]. These findings show an increase in sympathetic

nervous system activity and a decrease in parasympathetic nervous system activity, indicating

an increase in stress as the driver becomes more fatigued.

Cameras which examine gaze parameters and facial movements, such as the percentage of eyelid

closure over the pupil, over time (PERCLOS) and yawn frequency have been used to indicate

driver fatigue with high probability [134] [135]. Many studies which evaluate driver fatigue use

PERCLOS as a ground truth for fatigue [136], and camera based commercial driver fatigue

warning systems are available. Despite the high accuracy, gaze tracking, whilst useful and

accurate, is perhaps unlikely to be accepted wide-scale by consumers given concerns over the

camera data privacy [137].

Administering 30% oxygen to drivers has been shown to mitigate the effects of driver fatigue

[138]. Moreover, a loose correlation has been shown between SpO2 and driver fatigue, but

this correlation was not significant and was only discovered through driving at high altitude

[139]. That being said, fatigue was only assessed subjectively in this study using the Karolinska

Sleepiness Scale [140], and low resolution finger SpO2 was monitored which is known to have

a large delay compared with core SpO2 values [72]. By using a performance measure of driver

fatigue, such as steering wheel angle deflections, and in-ear SpO2, we may be able to use SpO2

to predict driver fatigue in real time. Furthermore, in-ear pulse oximetry can also measure

respiration rate and heart rate, and thus in-ear SpO2 can be combined with other metrics such

as heart rate variability features to improve the predictive power of the single in-ear sensor.

7.2 Methods

7.2.1 Experimental protocol

The recordings detailed in this chapter were performed under the Imperial College London

ethics committee approval JRCO 20IC6414, and all subjects gave full informed consent. 7
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subjects (6 male, 1 female, 23-28 years old) were recruited for the recordings and asked to sign

a consent form. Subjects were not screened for prior driving experience, due to the lack of skill

required to operate the simulator, and were not screened for sleep disorders. The recordings

were carried out at midday for a duration of 1 hour. For the duration of the hour, subjects

were told to adhere to a constant speed and to stay in the middle of the lane as well as passing

through the blocks which were positioned in the middle of the lane at regular intervals. Subjects

were allowed a brief trial run before the experiment began, in which they familiarised themselves

with the simulator.

7.2.2 Driving simulator

Fove VR Headset

Logitech G27
Steering Wheel

Pedals

Vision Racer Seat

Figure 7.1: Custom built driving simulator, with Vision Racer seat and pedals, a Logitech G27
steering wheel and a FOVE virtual reality headset. Adapted from Vito Amadori et al. [78]

A Vision Racer and Logitech G27 steering wheel assembled for a custom built driving simulator

shown in Fig. 7.1. This was equipped with a FOVE virtual reality headset with eye tracking
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capabilities. The driving environment was designed in unreal engine and consisted of a large

oval track with a series of blocks in the center of the lane that the subject had to drive through.

A speedometer was also displayed in the driver’s field of view so that the driver could maintain

a constant speed. To enhance immersion a sunset time of day was simulated in the virtual

environment with a light source consisting of dim orange light that was placed close to the

horizon.

7.2.3 Data acquisition

Psychological data

The Chadler fatigue questionnaire [122] was completed by each participant directly before and

after the experiment to help ascertain subjects’ perception of their own fatigue before and after

the hour in the driving simulator. Each of the 11 questions about fatigue, such as “do you have

problems with tiredness?” and “do you have difficulties concentrating?” is answered as either

“less than usual”, “no more than usual”, “more than usual” and “much more than usual”,

corresponding to scores of 0, 1, 2 and 3 respectively.

Performance data

Data on road position was acquired from the driving simulator, along with the angle of the

steering wheel. Simulator data was sampled at approximately 60Hz.

Physiological data

Wearable in-ear PPG [72] [12] was recorded for the duration of the experiment, providing

measures of pulse, respiration and in-ear SpO2. These were sampled at 50Hz.



7.2. Methods 83

7.2.4 Analysis

Psychological data

A summed Chadler fatigue scale score was taken for each individual before and after the

experiment, with a minimum of zero, indicating no fatigue, and a maximum of 33 indicating

extreme fatigue.

Performance data

Steering wheel deflections were calculated as the absolute mean corrected steering wheel angle.

A small consistent steering wheel angle was required given that the track was circular, and thus

this mean angle was removed before the absolute angle was used as a performance indicator.

Frequency of large steering wheel angles has been shown to be predictive of driver fatigue [128].

Physiological data

In-ear PPG data were divided into 30 second segments and physiologically relevant features

were calculated for each segment. Features were divided into 4 groups, in-ear SpO2 based

features, pulse based, breathing based and movement based. The SpO2 features consisted of

the mean SpO2 and the variance of SpO2. The pulse-based features consisted of the mean heart

rate, the variance of the heart rate. Four heart rate variability features were also used including

the root mean square of the pulse interval signal defined as follows

√√√√ 1

N

N∑
i=1

(PIi)2 (7.1)

where PI corresponds to the pulse interval signal, defined as a signal consisting of time difference

between each pulse, sampled at the time point of each pulse and then resampled to a frequency

of 4Hz.

Heart rate variability frequency domain features were also used, including low frequency power,

relating to sympathetic nervous system activity [141], defined as follows
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Table 7.1: Summary of features used for the classification of fatigue induced steering wheel
angles when driving.

Category Features

SpO2 SpO2 mean, SpO2 variance
Pulse Heart rate mean, heart rate variance,

Root mean square of pulse interval, low frequency (LF) power,
high frequency (HF) power, LF/HF power ratio,

Breathing Breathing rate mean, breathing rate variance,
Movement Motion artefact prevalence,

∫ f=0.15Hz

f=0.05Hz
PSDPI(f) (7.2)

and high frequency power, relating to parasympathetic nervous system activity [141], defined

as follows

∫ f=0.4Hz

f=0.15Hz
PSDPI(f) (7.3)

where in both cases PSDPI corresponds to the power spectral density of the pulse interval

signal sampled at the time point of each pulse and then resampled to a frequency of 4Hz.

The final heart rate variability feature implemented was the low frequency to high frequency

power ratio (LF/HF ratio), relating to the balance between sympathetic and parasympathetic

nervous system activity. The breathing based features consisted of the mean breathing rate and

the variance of the breathing rate. The movement based feature implemented was the prevalence

of motion artefacts, calculated as peaks that in the AC photoplethysmography signal that had

a z-score of 4.5 or higher when compared to the mean and standard deviation of the previous

10 peaks. All of the features implemented are summarised in Table 7.1.

Features were then compared across the beginning of the trial (5-15 minutes), the middle of the

trial (30-40 minutes) and the end of the trial (50-60 minutes). The first 5 minutes of data were

not used in this analysis given that subjects could have heightened excitement or anxiety due

to the novelty of starting the experiment. One-way ANOVA was performed across the three

time windows of features across all subjects to determine if the differences in the physiological

features at different time points were statistically significant.
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7.2.5 Prediction

Given that the frequency of large steering wheel angles is predictive of fatigue [128], the assump-

tion was made that if the mean absolute steering wheel angle exceeds a certain level in a given

window that this could be labelled as fatigue. Importantly, this was chosen over percentage of

eye lid closure (PERCLOS) as a ground truth, because we are distinctly interested in the fatigue

associated performance decreases as these are what ultimately lead to crashes. Being fatigued

does not necessarily result in an increased steering wheel angle, and an increased steering wheel

angle similarly does not necessarily mean that the subject was in a state of fatigue. However,

being in a state of fatigue does increase the probability that a subject will have an increased

absolute steering wheel angle. To this end, classification was evaluated through the correlation

between classifier probability of fatigue, and true absolute steering wheel angle.

An absolute angle threshold of 2.7 degrees was chosen, whereby mean absolute angles above the

threshold resulted in the window being labelled as “fatigued” and mean absolute angles below or

equal to the threshold resulted in the window being labelled as “not fatigued”. This threshold

resulted in approximately 12% of 30 second data segments being labelled as “fatigued” and

88% being labelled as “not fatigued”.

Two classifiers were compared for the prediction of fatigue. The first classifier was a random

forest with AdaBoost (RF) was implemented via the scikit-learn Python toolbox [99]. For the

random forest base, the number of trees was set to 50, the class weight was set to “balanced

subsample” and the maximum number of features was set to 5. For the AdaBoost framework,

the random forest was set as the base classifier, the maximum number of estimators was set

to 50, the learning rate was set to 1.0 and the real boosting algorithm “SAMME-R” [100]

was used. The second was a support vector machine (SVM) implemented with a radial basis

function, a kernel coefficient that scales inversely to the number of features multiplied by the

variance and a regularisation parameter of 1.

Classifiers were trained and tested with 7-fold shuffled cross validation, and classifier proba-

bilities were extracted for each epoch for comparison with true absolute steering wheel angles.

Both the classifier probabilities and absolute steering wheel angles were smoothed with varying

window sizes by implementing a moving average filter, from no smoothing to a window size of

0 (corresponding to the minimum epoch size of 30 seconds) to 10 (corresponding to 5 minutes).



86 Chapter 7. In-ear PPG for the detection of driver fatigue

The Pearson’s correlation coefficient was calculated between classifier probabilities and steering

wheel angles for each of these window sizes, to determine how predictive classifier probability

was of true steering wheel angle and thus driver fatigue related performance metrics.

7.3 Results

5-15 mins 30-40 mins

(a)

(b)

50-60 mins
0

2

4

6

8

A
bs

ol
ut

e 
an

gl
e 

(d
eg

re
es

)

Across trial absolute steering wheel angle, p = 1.4e-05

Pre-trial Post-trial
10

15

20

25

30

C
F

S
 S

co
re

Chadler Fatigue Scale Questionaire, p = 0.00911

Figure 7.2: Results of subjective and performance related measures of fatigue across 7 subjects,
with p-values from one-way ANOVA shown in the titles. (a) Boxplots of the Chadler fatigue
scale (CFS) score across each participant before (left, green) and after (right, red) the trial.
(b) Boxplots of absolute steering wheel angle across each participant 5-15 minutes (left, green),
30-40 minutes (middle, amber) and 50-60 minutes (right, red) into the trial.
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7.3.1 Subjective and performance based fatigue

All 7 subjects reported an increase in fatigue as indicated by the Chadler Fatigue scale (CFS)

questionnaire. As shown in Fig 7.2(a), the median CFS score was 12 before the trial, with

an interquartile range of 11 to 12.75, indicating that the majority of answers to fatigue based

questions were “no more than usual”. Importantly, post trial the median CFS score was 17,

with an interquartile range of 15 to 21.5, indicating that for some fatigue related questions

subjects answered “more than usual” or “much more than usual”. The increase in subjective

fatigue was highly significant, with a p value of 0.009.

In addition, the probability of an increased absolute steering wheel angle increased throughout

the duration of the trial. The majority of 30 second epochs had no increase in absolute steering

wheel angle across the duration of the task, as to continue to navigate the track effectively

steering wheel had to be relatively consistent. This is reflected in only a minor increase in

the median angle from the start of the trial (5-15 minutes), to the middle of the trial (30-

40 minutes) and to the end of the trial (50-60 minutes). However, as the trial went on the

likelihood of occasional large deflections in steering wheel angle increased significantly, which

is evidenced by the upper quartile of absolute steering wheel angle increasing from 1.4 degrees

at the start of the trail, to 1.7 degrees at the middle of the trial and 2.7 degrees at the end

of the trial, as shown in Fig 7.2(b). The distribution of absolute steering wheel angles across

all subjects in the beginning middle and end of the trials was examined via one-way ANOVA

yielding a p-value of 1.4 × 10−5, showing that the recorded difference in steering wheel angle

was statistically significant.

7.3.2 Physiological fatigue

In-ear SpO2 showed a consistent decrease across the duration of the trial, with the median

in-ear SpO2 decreasing from 97.5% (5 - 15 minutes) to 96.4% (50 - 60 minutes). The change

in in-ear SpO2 was statistically significant with a p-value of 8.3 × 10−5. The median heart

rate showed an increase across the trial from 67.4 beats per minute (5-15 minutes) to 71.4

beats per minute (50 - 60 minutes) but this increase was not statistically significant, with a

p-value of 0.051. There were minor changes in the median breathing rate, from 0.33 Hz (5-15

minutes), to 0.31Hz (30-40 minutes) to 0.34Hz (50-60 minutes). The differences in breathing
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Figure 7.3: Boxplots of physiological features derived from in-ear PPG across 7 subjects un-
dergoing an hour long monotonous drive in a driving simulator, with p-values from one-way
ANOVA displayed in the titles of the plots for each feature. For each feature there is a boxplot
for 5-15 minutes (left, green), 30-40 minutes (middle, amber) and 50-60 minutes (right, red) into
the trial. From top to bottom, left to right, the features displayed are as follows: In-ear SpO2

mean, heart rate, breathing rate, low frequency heart rate variability power (LF power), high
frequency heart rate variability power (HF power), LF/HF power ratio and motion artefact
prevalence.
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rates across different periods of the trial were statistically significant with a p-value of 0.023

but had no consistent direction. All heart rate variability power spectral density features had

statistically significant changes across the trail, with a consistent increase in low frequency (LF)

power across the trial (p = 1.1 × 10−4), a consistent increase in high frequency (HF) power

(p = 2.3 × 10−5) and a slight increase in the LF/HF ratio (p = 0.0024). Finally, there was

a statistically significant increase in the prevalence of artefacts in the PPG signal across the

trial (p = 0.0025), but, given that the vast majority of epochs had no artefacts, the median

prevalence remained 0% through the trial. The distribution of physiological features across the

trial is summarised in Fig. 7.3.
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Figure 7.4: Plots of classifier probability across the duration of each trial for both random forest
(RF, blue solid line) and support vector machine (SVM, blue dotted line) classifiers, against
true absolute steering wheel angle (pink, solid line). The plots are smoothed over a 2.5 minute
window and are shown individually for all 7 subjects.
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Figure 7.5: Plots of Pearson’s correlation coefficient between classifier probability and true
absolute steering wheel angle, against window length for both the random forest classifier (RF,
blue solid line) and support vector machine classifier (SVM, blue dotted line). P-values for
each correlation are also displayed in pink.

7.3.3 Classifier prediction

Both the random forest (RF) and support vector machine (SVM) demonstrated an ability

to predict absolute steering wheel angle through probability of fatigued steering wheel angle.

Probabilities for both classifiers and the true absolute steering wheel angles, smoothed over a

2 and a half minute window, for all 7 subjects, are shown in Fig. 7.4. Visually, it can be seen

that when there is a consistent increase in absolute steering wheel angle, such as in subjects 4

and 7, there also an increase in classifier probability. Examination of the Pearson’s correlation

between predicted probability and true absolute angle yielded moderate correlations from 0.46

and 0.42 for 30 second windows with the RF and SVM classifiers respectively, up to strong

correlations of 0.81 and 0.74 for 5 minute windows for the RF and SVM classifiers respectively.

The Pearson’s correlation coefficient and corresponding p-value for each window size and each

classifier is shown in Fig 7.5.

7.4 Discussion

All subjects showed an increase in subjective fatigue through the Chadler Fatigue Scale, thus

indicating that the experimental protocol did an adequate job of inducing fatigue. Similarly,
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increases in steering wheel angle across trial correlate with what is expected of an increase in

driver fatigue [128]. It is however important to note that, as illustrated in Fig. 7.4, only 2 of

the 7 subjects saw consistently high absolute steering wheel angles towards the end of the trial,

associated with extreme fatigue, to the point where they even crashed the vehicle.

In terms of the physiological data recorded with in-ear PPG, there was a significant increase in

low frequency heart rate variability power and in the LF/HF ratio, inline with results also seen

by Zhao et al [133]. However, we also saw a significant increase in HF power, which was not seen

by Zhao et al. In our case this means that whilst the balance of nervous system activity became

more sympathetic dominant as the driver became more fatigued, there were periods of both

increased sympathetic activity and increased parasympathetic activity. A possible explanation

for this is that there were periods where the driver was stressed, for example being frustrated

at the task and/or making mistakes (LF power increased), and there were also periods of

drownsiness (HF power increased) [141] and both of these periods of stress and drowsiness

increased in frequency with time spent in the simulator.

Moreover, we saw a robust and highly significant decrease in in-ear SpO2 with time spent

driving. Notably, the decrease in median in-ear SpO2 was a single percentage point over the

duration of the experiment, and thus with a conventional discrete measure of SpO2 this drop

would likely have gone unnoticed. This echos previous results with decreases in in-ear SpO2 with

cognitive workload [44], indicating that there could have been an increased cognitive demand

associated with adhering to both a constant speed and to the center of the track when fatigued.

Both the in-ear SpO2 and heart rate variability based features proved useful for the prediction of

steering wheel angle. A random forest classifier trained on the physiological features achieved a

strong Pearson’s correlation coefficient of 0.81 between predicted probability and true absolute

steering wheel angle, when smoothed over a 5 minute window. This result is particularly

meaningful when considering that labelling physiological data as fatigued based on an increase

in steering wheel is an assumption which doesn’t always hold true. Whilst the probability of

large steering wheel angle deflections is increased with fatigue, fatigue doesn’t guarantee a large

steering wheel angle, with the majority of angles being normal even when fatigued. Similarly,

a large steering wheel angle could occur when not fatigued. Despite this, classifier probability

is strongly predictive of true absolute steering wheel angle, indicating that a driver fatigue

warning system based on wearable in-ear PPG is possible. It is important to note that in our
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data, due to only 2 subjects showing extreme fatigue and thus consistently high steering wheel,

leave one subject out training was unworkable. This model would need to be able to generalise

to unseen subjects for maximal applicability in real-world driving scenarios.

7.5 Chapter conclusions

Features derived from in-ear PPG, including in-ear SpO2 and heart rate variability metrics,

change significantly with fatigue induced by a driving simulator. Moreover, classifiers trained

on these features are strongly predictive of absolute steering wheel angle, of which increases are

associated with fatigue. In the real world, alerting a driver to an increased probability of fatigue

related performance decreases would help to prevent road traffic collisions and ultimately save

lives. These early findings indicate the promise of a wearable and discrete in-ear PPG sensor

for the detection and warning of driver fatigue.



Part III

Detection of obstructive lung disease
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Chapter 8

An apparatus for the artificial

simulation of breathing disorders

Chapter overview

The rapidly increasing prevalence of debilitating breathing disorders, such as chronic obstruc-

tive pulmonary disease (COPD), calls for a meaningful integration of artificial intelligence (AI)

into healthcare. While this promises improved detection and monitoring of breathing disor-

ders, AI techniques are almost invariably “data hungry” which highlights the importance of

generating physically meaningful surrogate data. Indeed, domain aware surrogates would en-

able both an improved understanding of respiratory waveform changes with different breathing

disorders, and enhance the training of machine learning algorithms. To this end, we introduce

an apparatus comprising of PVC tubes and 3D printed parts as a simple yet effective method

of simulating both obstructive and restrictive respiratory waveforms in healthy subjects. Inde-

pendent control over both inspiratory and expiratory resistances allows for the simulation of

obstructive breathing disorders through the whole spectrum of FEV1/FVC spirometry ratios

(used to classify COPD), ranging from healthy values to values seen in severe chronic obstruc-

tive pulmonary disease. Moreover, waveform characteristics of breathing disorders, such as a

change in inspiratory duty cycle or peak flow are also observed in the waveforms resulting from

use of the artificial breathing disorder simulation apparatus. Overall, the proposed apparatus

provides us with a simple, effective and physically meaningful way to generate faithful surrogate

breathing disorder waveforms, a prerequisite for the use of artificial intelligence in respiratory
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health.

8.1 Introduction

The prevalence of obstructive breathing disorders, such as chronic obstructive pulmonary dis-

ease (COPD) and asthma, is increasing rapidly [142], whilst other breathing disorders such as

the restrictive pulmonary fibrosis (PF) continue to suffer from poor clinical outcomes and a lack

of treatment options [143]. Therefore, the understanding of breathing mechanics and resulting

respiratory waveforms for different breathing disorders is paramount for the classification of

breathing disorders, both in terms of screening and identifying their severity. To this end, we

propose an apparatus for the artificial generation of obstructive breathing disorder waveforms

through healthy subjects and mechanisms for reliably generating the whole spectrum of disease

severities.

8.1.1 Changes to breathing with obstruction and restriction

Chronic obstructive pulmonary disease (COPD) is caused by an increased inflammatory re-

sponse in the lungs which leads to obstructed airflow [144]. Chronic obstructive pulmonary

disease encompasses both emphysema, defined by a breakdown in the elastic structure of the

alveolar walls [145] and bronchitis, defined by increased mucus secretion in the lungs [146].

When we expire, the airways narrow due to reduced pressure, and thus if airway obstruction

exists it is exaggerated during expiration. This explains why patients with COPD generally

take longer to breath out than breathe in, and can generate higher inspiratory peak flows than

expiratory peak flows. The COPD can be diagnosed with a spirometry test, which measures

the ratio of volume during forced expiration in one second (FEV1), against forced vital capac-

ity (FVC). Practically those with COPD usually exhibit FEV1 to FVC ratios of less than 0.7

[147], but COPD is more specifically defined by different severities. According to the Global

Initiative for Chronic Obstructive Lung Disease (GOLD) COPD is severity should no longer be

labelled based on spirometry alone, but spirometry can be split into 4 major categories based

on a percentage of expected FEV1 for patients age, gender and height. A mild FEV1 is defined

as ≥ 80% of the expected value, moderate is defined as between 50 and 79%, severe is 30%-49%
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and finally very severe is defined as less than 30% [148]. The increased effects of obstruction

during expiration also lead to a decreased inspiration time (TI) in comparison with the overall

breathing time (TTOT) as it takes longer to breathe out. The ratio TI/TTOT, known as the

inspiratory duty cycle, is lower in patients with COPD [149] [150].

This is in contrast to restrictive lung disease, an example of which is pulmonary fibrosis (scaring

of the lungs). In this case, there is no obstruction of airways, but a restriction that applies

equally to both inspiration and expiration. Whilst diagnosis of pulmonary fibrosis requires a

multidisciplinary approach, such as the use of CT scans [143], spirometry tests will generally

show healthy FEV1/FVC ratios, but with a lower peak flow for both inspiration and expiration

as well as a greatly reduced vital lung capacity.

Figure 8.1: Block diagram (top) and physical realisation (bottom) of the proposed breathing
disorder simulation apparatus. (a) The mouth input. (b) One-way valves in different directions
for inspiration and expiration, comprised of a low density foam plug, a cone shaped funnel
with a hole that is slightly smaller in diameter than the plug, and a fine mesh with allows air
through but not the plug. (c) Tubes for both inspiration and expiration which can be easily
swapped out for tubes of different diameter, allowing for independent control of resistances to
inspiration and expiration. (d) A digital flow meter to record spirometry waveforms.

8.1.2 Artificial changes to breathing resistance

Resistance to breathing has been considered both to measure the strength and endurance

of lungs in subjects, and also as a potential avenue to train lungs for increases in strength

and endurance. A portable apparatus for collecting respiratory gas was designed in the early
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Figure 8.2: Tidal breathing results from using the apparatus with 4 different inspiration to
expiration obstruction ratios across 10 subjects. (a) Exemplar spirometry waveform with an
8mm inspiratory tube and 8mm diameter expiratory tube giving a balanced obstruction ratio.
Positive flow corresponds to inspiration and negative flow corresponds to expiration. (b) Ex-
emplar spirometry waveform with an 8mm inspiratory tube and 3mm diameter expiratory tube
giving an unbalanced obstruction ratio. (c) Boxplots of inspiratory duty cycle (%), referring
to the proportion of overall breathing duration spent in inspiration, across 10 subjects and
4 different inspiration:expiration tube diameter ratios. (d) Boxplots of inspiratory amplitude
ratio, referring to peak inspiratory flow divided by peak expiratory flow, across 10 subjects and
4 different inspiration:expiration tube diameter ratios. (e) Boxplots of sample entropy (scale 1,
tolerance = 0.2) across 10 subjects and 4 different inspiration:expiration tube diameter ratios.

1970s, comprising of tubes with 32mm diameter (giving negligible resistance to breathing)

and a one-way valve so that gas could be stored when breathing out, but new air would be

breathed in [151]. This apparatus was adapted in the mid to late 1970s by replacing the 32mm

inspiratory tube with different smaller tube diameters (14mm, 11mm or 8mm), and breathing

under different inspiratory resistances was examined in endurance athletes [152]. A similar

apparatus with four different inspiratory tube sizes was used to investigate the lung strength

of a group of British coal miners over the age of 45 [153]. More recently, resistance has been

applied to both inspiration and expiration through masks that have multiple inspiratory and

expiratory valves, with the desire to train lungs for increased strength and endurance [154].

Different from the existing set-ups, the apparatus presented in this chapter is capable of pro-

viding different resistances to both inspiration and expiration independently, with the aim of

simulating the respiratory waveforms of different breathing disorders.
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Figure 8.3: .
Example plots of maximally forced breathing for a single subject across 5 different expiratory
tube diameters from 25mm to 3mm, with a fixed inspiratory tube diameter of 25mm providing
low obstruction to inspiration. (a) Flow-volume loops for different expiratory tube diameters,
showing a decreased flow for a given volume with a decrease in expiratory tube diameter.
(b) Simultaneously recorded ear-photoplethysmography waveforms during maximally forced
breathing with each tube diameter, showing an increase in both PPG intensity and duration
with a decrease in tube diameter.

The so enabled simulation of breathing disorders through healthy subjects has the following

benefits:

• Ability to collect vast amounts data by expanding the subject pool to include healthy

individuals;

• Full control over breathing resistances for both inspiration and expiration;

• Multiple obstructive breathing disorders of different severities can be investigated on the

same healthy individual, thus keeping individual physiological differences constant;

• A controlled environment makes it easier to investigate how other physiological measures

vary with resistance to breathing;

• A physically meaningful way to generate surrogate breathing disorder waveform data for

both training and testing machine learning models.
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Figure 8.4: Calculated FEV1/FVC ratios across 6 expiratory tube diameters from 25mm
to 3mm with an inspiratory tube diameter fixed at 25mm, plotted for 5 different subjects.
Highlighted as shaded colours are the 4 different obstruction severities at the corresponding
FEV1/FVC ratio, with blue indicating mild obstruction, green indicating moderate obstruc-
tion, orange indicating severe obstruction and red indicating very severe obstruction.

8.2 Apparatus design

The apparatus consists of 3D printed parts and PVC tubes. It has a single input tube which

a subject breathes in and out of. This is connected to two one-way valves facing in opposite

directions to switch the airflow path depending on inspiration and expiration. The valves

consist of low density foam plug in a 3D printed cone shaped funnel with a hole slightly smaller

than the diameter of the plug. Securing the ball in the funnel is a fine mesh in which air can

pass through but the ball cannot. Depending on the orientation of the valve, either positive or

negative airflow will seal the hole with the ball, thus preventing air from passing through. It is

important that the plug is light so that it will move easily to the hole under low pressures.

Connected to the inspiratory valve is an inspiratory tube which can be varied in diameter, as

is the case with the expiratory valve and expiratory tube. The largest tube diameter is 25mm,

which is considered as very low resistance to breathing. The smallest tube diameter used is

3mm, which provides very challenging resistance to breathing. To minimise the resistance of

the whole apparatus, 3D printed parts also have an internal diameter of 25mm. Both the
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inspiratory and expiratory tubes are then connected to an output tube which leads into a

SFM3200 digital flow meter by Sensiron (Stäfa, Switzerland) to record the breathing flow. The

entire apparatus is shown in Fig. 8.1. The digital flow meter was connected to an Arduino

Uno by Arduino (Somerville, MA, USA), which sampled flow values at a sampling frequency

of 20Hz and displayed them on a computer monitor.

The apparatus was evaluated with tidal breathing in 10 subjects (5 male, 5 female) aged 18-30

years, across 4 different inspiration to expiration tube diameter ratios, and further evaluated

with maximal forced breathing in 5 subjects (3 male, 2 female) across 6 different tube diameters

for measurements of FEV1/FVC ratios.

The recordings detailed in this chapter were performed under the Imperial College London

ethics committee approval JRCO 20IC6414, and all subjects gave full informed consent. Trial

recordings were performed on 8 subjects (4 male, 4 female) aged 18-25 years, and included

normal breathing under different resistances, as well as breathing in and out as hard as possible

for both FEV1/FVC measurements and peak expiratory and inspiratory flow measurements.

Photoplethysmography was recorded from the ear simultaneously [72] [12] during all recordings

to gain insight into the effects of varying obstruction on thoracic pressure waveforms.

8.3 Results and discussion

Small decreases in the expiratory tube diameter in relation to the inspiratory tube diameter

resulted in changes to tidal breathing waveforms that are typical of patients with obstructive

breathing disorders such as chronic obstructive pulmonary disease (COPD). Example spirome-

try waveforms in Fig. 8.2(a,b) show the roughly symmetric breathing patterns when obstruction

to inspiration and expiration is balanced (a) and the characteristic longer expiration time and

reduced expiratory flow when obstruction to expiration is exaggerated with a tube diameter of

only 3mm (b). Furthermore, these results are consistent across all 10 subjects, with Fig. 8.2(c)

showing a decrease in inspiratory duty cycle (percentage of overall breathing time spent in-

spiring) as obstruction to expiration is increased and Fig. 8.2(d) showing an increase in the

inspiratory amplitude compared with expiratory amplitude with increased obstruction. The

median duty cycle of 34.4% for the 8mm:3mm inspiration to expiration diameter ratio echoes

the duty cycle of COPD patients, which were found to be around 35% at rest [149]. Results also
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display a gradual decrease in sample entropy with increased obstruction to expiration, shown

in Fig. 8.2(e). Sample entropy is a measure of the complexity of a signal, and thus it is natural

that sample entropy would decrease with increased obstruction, as obstruction decreases the

degrees of freedom for breathing and in turn makes breathing patterns more predictable. Sim-

ilar reductions in sample entropy have been shown in the breathing patterns of patients with

COPD, with sample entropy decreasing as COPD severity increases [155].

The broad range of obstruction achievable by the apparatus is exemplified by the volume flow

loops in Fig. 8.3(a), which show decreased flow for a given volume with decreased tube diameter.

This is specific to expiration due to the inspiratory tube diameter being kept constant whilst

the expiratory tube diameter was varied, resulting in substantial changes to the expiration side

of the volume flow loop with minimal changes to the inspiration side of the volume flow loop.

It should be noted that the volume flow loops in Fig. 8.3(a) also illuminate two important lim-

itations of the apparatus. Firstly, whilst flow values are expected to decrease, overall recorded

expiratory volumes should not decrease with tube diameter, given that this would not effect

lung volume. The apparent reduction in recorded volume shown in the volume flow loops is

due to leakage of the system at higher pressures, and could be rectified straight-forwardly with

more robust materials and valves and joiners printed to more precise specifications. The second

limitation is that the tube apparatus impedes breathing with a constant level of obstruction

for a given tube diameter, whereas in reality as we expire the airways continue to narrow in

proportion to lung volume decreasing. Obstruction in patients with COPD therefore increases

further with continued expiration, resulting in a concave inflection in real-world volume flow

loops that isn’t captured by this apparatus.

Whilst tube diameter decreases, larger photoplethysmography (PPG) intensities are generated

over a longer period of time, as shown in Fig. 8.3(b). Thoracic pressure increases as we expire

to push air out of the lungs and this in turn increases venous return and fills peripheral venous

beds at the site of the PPG probe. Increased PPG intensity thus reflects increased thoracic

pressure and, as expected, thoracic pressure over time increases in proportion to increased

obstruction simulated by smaller tube diameters, as increased pressure is required to force air

through a smaller tube. Through measuring PPG, it is clear that the apparatus can simulate

different thoracic pressure profiles internally based on changes in external obstruction.

The apparatus was able to achieve a wide range of FEV1/FVC ratios across all subjects, with
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an example of the varied ratios in 5 subjects across 6 different expiratory tube diameters shown

in Fig. 8.4. The maximum FEV1/FVC achieved was 0.98 with the 25mm diameter tube, and

the minimum achieved was 0.12 with the 3mm diameter tube. Importantly, artificially induced

FEV1/FVC ratios were able to cover the full range of ratios across mild, moderate, severe and

very severe. This indicates the promise of the tube based apparatus for simulating a full range

of disease severities in each individual, and in turn vastly expanding the quantity of obstructive

breathing disorder data available.

8.4 Chapter conclusions

We have demonstrated a simple yet effective method of simulating both obstructive and re-

strictive respiratory waveforms in healthy subjects with the use of a tube-based apparatus.

Independent control over both in inspiratory and expiratory resistances allows for the simu-

lation of respiratory waveforms corresponding to obstructive breathing disorders with a wide

range of FEV1/FVC ratios, from healthy values through to values seen in very severe chronic ob-

structive pulmonary disease. Notably, this makes it possible for obstructive breathing disorders

at a range of severities to be investigated in the same individual, allowing the waveform differ-

ences due to different tube resistances to be isolated whilst individual physiological differences

are kept constant. Importantly, this apparatus provides us with a physically meaningful way

to generate surrogate breathing disorder waveforms for testing and training machine learning

models for classification of breathing disorders. Finally, this apparatus could serve the educa-

tional purpose of illuminating the difficulties that patients with breathing disorders face, both

for public health awareness and as a persuasive argument against behaviours which increase

the risk of breathing disorders such as smoking.



Chapter 9

In-ear PPG for the classification of

COPD

Chapter overview

An ability to extract detailed spirometry-like breathing waveforms from wearable sensors promises

to greatly improve respiratory health monitoring. Photoplethysmography (PPG) has been re-

searched in depth for estimation of respiration rate, given that it varies with respiration through

overall intensity, pulse amplitude and pulse interval. We compare and contrast the extraction

of these three respiratory modes from both the ear canal and finger and show a marked im-

provement in the respiratory power for respiration induced intensity variations and pulse am-

plitude variations when recording from the ear canal. We next employ a data driven multi-scale

method, noise assisted multivariate empirical mode decomposition (NA-MEMD), which allows

for simultaneous analysis of all three respiratory modes to extract detailed respiratory wave-

forms from in-ear PPG. For rigour, we considered in-ear PPG recordings from healthy subjects,

both older and young, patients with chronic obstructive pulmonary disorder (COPD) and id-

iopathic pulmonary fibrosis (IPF) and healthy subjects with artificially obstructed breathing.

Specific in-ear PPG waveform changes are observed for COPD, such as a decreased inspiratory

duty cycle and an increased inspiratory magnitude, when compared with expiratory magni-

tude. These differences are used to classify COPD from healthy and IPF waveforms with a

sensitivity of 87% and an overall accuracy of 92%. Our findings indicate the promise of in-ear

PPG for COPD screening in the consumer wearables market, through the long term analysis

103



104 Chapter 9. In-ear PPG for the classification of COPD

of the balance between inspiration and expiration timing. Moreover, this could be used for un-

obtrusive respiratory monitoring in ambulatory scenarios, where patients respiratory patterns

are assessed over the course of days and weeks.

9.1 Introduction

Monitoring of respiration is being integrated rapidly into consumer wearables, with respiration

rate being a standard feature in many smart watches. Whilst continuous unobtrusive moni-

toring of respiration rate is a valuable tool in both the consumer and patient health tracking

domains, much of the respiratory information that can be derived from breathing waveforms

remains untapped. To this end, we explore a relatively new tool for non-invasive respiratory

monitoring in the form of in-ear photoplethysmography (PPG). For rigour, we use reference

spirometry as a gold standard to test the extraction accuracy of the three major respiratory

modes at three different frequencies from in-ear PPG: i) intensity variations, ii) pulse amplitude

variations, and iii) pulse interval variations. Furthermore, we compare the spectral respiratory

power from simultaneous ear canal PPG and finger PPG recordings across the three major

respiratory modes. A novel method for extracting respiratory waveforms from PPG is next

presented, which involves a data driven multi-scale algorithm, empirical mode decomposition

(EMD) [25]. This waveform extraction technique allows for a simultaneous intrinsic scale-wise

analysis of multi-channel data, and is applied to extract resting respiratory waveforms from

in-ear PPG in both healthy subjects and patients with breathing disorders, such as chronic

obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). This analysis

is shown to allow for the detection of chronic obstructive pulmonary disease from in-ear PPG.

9.1.1 Respiration and photoplethysmography

Photoplethysmography (PPG) refers to the non-invasive use of light to detect changes in blood

volume by transmitting light through tissue and measuring the amount of light that is absorbed.

When more blood is present, more light is absorbed and thus less light is reflected back to the

sensor.

When we inspire, a decrease in intrathoracic pressure is created to pull air into the lungs. This



9.1. Introduction 105

decrease in pressure is passed to the central veins and therefore central venous pressure also

decreases. This, in turn, increases venous return and drains venous beds at the site of the PPG

probe, thus modulating the DC component of the PPG signal [156]. Right ventricular stroke

volume also increases with the increased venous flow to the heart, sending more blood to the

lungs for the uptake of oxygen. In turn, left ventricular stroke volume is decreased, leading

to a decreased pulse amplitude observed through the AC component of PPG [157] [158]. This

is accompanied by an increase in heart rate, otherwise known as respiratory sinus arrhythmia

(RSA) [159], which causes a decrease in the interval between pulses in the PPG signal. The

opposite of these effects can be observed during expiration. Three major respiratory modes are

therefore present in PPG during respiration [160]:

1. Respiratory induced intensity variations (RIIVs) which are generated by changes in venous

pressure which modulate the DC component of photoplethysmography, and are therefore

accessible directly from the raw-PPG signal.

2. Pulse amplitude variations due to changes in left ventricular stroke volume, which can be

obtained from the envelope of the AC filtered PPG signal.

3. Pulse interval variations generated through respiratory sinus arrhythmia. These can be

obtained by measuring the interval between consecutive pulses.

It should also be noted that there are prominent low frequency variations which also occur

in the PPG signal, related to sympathetic tone. These low frequency variations usually peak

at 0.1Hz [161] [157], with harmonics at 0.2Hz which can negatively impact the extraction of

respiratory signals.

An extensive literature exists on estimating respiration rate from PPG, usually from the finger

but also from the forearm [156], wrist [162] and multiple other body positions such as the

earlobe, forehead, neck [163] and chest [164]. The PPG yields high respiration rate accuracy in

all three PPG respiratory modes [165], in both healthy subjects and subjects with breathing

disorders, such as chronic obstructive pulmonary disease (COPD) and asthma [166]. It should

be noted that accuracy decreases at high breathing frequencies, above 0.3Hz [167], which is

likely due to a low pass filter effect [168] of the transfer function from thoracic pressure to

venous return, and the reality of only having a few pulses per breath to sample from for pulse

interval and pulse amplitude variations at higher frequencies.
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Moreover, it has been shown that errors across the three respiratory modes are comparable

when it comes to calculation of respiration rate [169]. This gives a strong argument for the

utility of all three modes given the presence of different artefacts, the variability across subjects

and the variability across different respiration frequencies and body positions [170]. Research

suggests that the spectral power of respiration in PPG is far larger from regions of the head

[171], ear [8] and shoulders [11] than the finger. Furthermore, an analysis on spectral power of

the PPG at different body positions, namely the forearm, wrist, finger, forehead and shoulder,

indicates that the forearm had the highest respiration power but the lowest pulse power, likely

due to its close proximity to large veins which may improve the power of RIIVs induced by

venous pressure changes; the shoulder and forehead maintain both high respiratory power and

pulse power, while the finger had the lowest respiratory power [11].

With photoplethysmography at the forearm, it has been documented that the respiration in-

duced intensity variations (RIIVs) are effective enough to detect amplitude changes in breathing

and also simulated apnea with temporary breath holds [156]. However, changes in duty cycle or

higher order statistics such as skewness have not been studied in RIIVs. Moreover, despite er-

rors in respiration rate estimation being similar across the three major PPG respiratory modes,

when it comes to the magnitude of respiratory variations, they are far more pronounced in ve-

nous return than in changes in stroke volume, usually by an order of magnitude [172]. This, in

addition to the fact that the sample frequency of pulse amplitude and frequency variations are

limited to the pulse rate, suggests that RIIVs may be superior for detecting detailed waveform

changes in respiration.

In terms of sex and age differences in respiratory signals from PPG, literature suggests that

the pulse interval variations may be more pronounced in females than in males [170], and more

pronounced in the young than in the elderly [173], but that there is no significant difference in

the RIIVs with age or sex [174].

9.1.2 In-ear photoplethysmography

As previously discussed, current research suggests that PPG from the ear canal is far more

sensitive to intensity variations that arise from respiration [8] than the finger PPG, which

is inline with similar results for shoulder and forehead PPG [11]. However, this increase in
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respiratory power has only been documented through respiratory induced intensity variations

in the raw PPG signal. To address this issue, we examine the spectral power across all three

PPG respiratory modes in both in-ear PPG and finger PPG. Furthermore, in-ear PPG has only

been used to estimate respiratory rate [6], but has not been used for insight into the respiratory

waveform itself. In this chapter, we set out to show that in-ear PPG possesses sufficient

respiratory waveform information for the screening of obstructive breathing disorders.

9.1.3 Change in breathing with COPD

The prevalence of respiratory diseases has grown by 39% in the last 3 decades [142], with nearly

1 in 5 people in the UK having had a diagnosis of asthma, chronic obstructive pulmonary disease

or another respiratory illness [175].

Chronic obstructive pulmonary disease (COPD) is a debilitating illness caused by an increased

inflammatory response in the lungs which leads to obstructed airflow [144], particularly during

expiration. Chronic obstructive pulmonary disease is generally diagnosed with spirometry, by

measuring the ratio of volume during forced expiration in one second (FEV1), against forced

vital capacity (FVC), whereby COPD is defined as FEV1/FVC<0.7. This obstruction during

expiration leads to an increased respiratory rate (tachypnea), with a decreased inspiration time

(TI) in comparison with the overall breathing time (TTOT). The ratio of TI/TTOT in COPD,

otherwise known as the inspiratory duty cycle, is therefore decreased at rest and during exercise

[149] [150], with values of around 0.35 seen at rest compared with 0.42 in healthy patients

[149]. This change in duty cycle is a major difference seen in obstructive lung disease when

compared to restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF), where, due

to the restriction to both inspiration and expiration, the FEV1/FVC remains higher [176].

Pulmonary fibrosis usually has an increased respiratory rate, and lower respiratory volume, but

no significant change to the duty cycle.

Other methods of classifying respiration in COPD include examining the sample entropy of

flow signals [155], where the sample entropy decreased with an increasing severity of COPD

due to fewer degrees of freedom with constrained breathing. Moreover, in the PPG domain,

a combination of pulse, respiration rate, and SpO2 (derived from pulse oximetry) has been

used to predict exacerbations in COPD patients with moderate accuracy [177], and PPG has
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recently been used to estimate lung compliance in lung disease [178]. To our knowledge, there

has not yet been a successful classification of COPD from PPG-derived respiratory waveforms,

and to address this void we both explore the valuable respiratory properties of in-ear PPG and

employ these in patients to examine and classify COPD.

9.2 Materials and experimental design

9.2.1 Hardware

The hardware used in this chapter is detailed in chapter 2, section 2.2.2. In the simultaneous

in-ear PPG and finger PPG recordings, the MAX30101 photoplethysmography chip was secured

to the right index finger. Both the in-ear PPG sensor and finger sensors were wired to a purpose

built circuit board which stored the data on an SD card.

For simultaneous spirometry and in-ear PPG recordings, a SFM3200 flow meter by Sensiron

(Stäfa, Switzerland) was used to measure breathing flow with an airtight connection to a tube

into which the participant breathed, whilst a nose clip restricted nasal breathing. The SFM3200

was connected to an Arduino Uno by Arduino (Somerville, MA, USA) which recorded the flow

rate values. The Arduino was also used to send out electrical pulses to the PPG recording

circuit at semi-regular time intervals, so that the two data streams of PPG and airflow could

be time aligned.

9.2.2 Experimental design

The recordings in this chapter were performed under the IC ethics committee approval JRCO

20IC6414, and the NHS Health Research Authority 20/SC/0315. All subjects gave full informed

consent.

Simultaneous spirometry and in-ear PPG

Simultaneous in-ear PPG and spirometry was used to evaluate presence of respiratory frequen-

cies in the three respiratory modes of intensity, pulse amplitude and pulse interval. This was
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achieved across three different frequencies corresponding to slow, moderate and fast breathing

rates. Furthermore, simultaneous in-ear PPG and spirometry recordings were used to evaluate

the extraction of the examined breathing waveforms: i) normal breathing and ii) breathing with

a duty cycle typical to severe chronic obstructive pulmonary disease (COPD). In both the cases

of frequency and flow waveform, the spirometer served as the ground truth. The participant

in these recordings was a healthy male aged 25 years. The participant had the in-ear photo-

plethysmography sensor placed in the right ear canal, whilst breathing into the spirometer. In

both cases of breathing at different frequencies and with different characteristic waveforms, the

subject was informed of when to inspire and expire using a timed on-screen animation. For the

frequency recordings, the animation aided the subject in breathing at frequencies of 0.18Hz,

0.25Hz and 0.33Hz, corresponding to 10.8 breaths per minute, 15 breaths per minute and 20

breaths per minute, respectively. The subject adhered to each frequency for 2 minutes, with

30 seconds rest between different frequencies. For the simulated low inspiratory duty cycle

breathing, the base frequency was 0.2Hz and the subject adhered to a breathing timing ratio

that was 1:3 inspiration to expiration, for 120 seconds.

Simultaneous in-ear and finger PPG

The participants in the recordings were 14 healthy subjects (7 males, 7 females) aged 19 -

38 years. Two PPG sensors were used per subject, the first safely secured within the right

ear canal, as shown in Fig. 2.4, and the second secured to the right index finger. Subjects

were in a seated position and were instructed to breathe normally for 120 seconds, whilst

photoplethysmography was recorded from simultaneously from both the ear and finger. Out

of the 14 subjects, 3 subjects were discarded from analysis as they showed no clear respiratory

peak in the frequency domain. The 11 subjects used for analysis consisted of 6 males and 5

females aged 19 - 28 years.

Resting recordings in older healthy subjects and patients with breathing disorders

The participants in these recordings were split up into 2 groups, an older healthy subset of 4

subjects (2 males, 2 females) aged 56 - 62 years, and a subset of 6 subjects with respiratory

disease (3 males, 3 females) aged 53 - 88 years. Out of the patients with respiratory disease, 4
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patients had chronic obstructive pulmonary disease and 2 patients had idiopathic pulmonary

fibrosis. Continuous PPG was measured from the ear canal of subjects at rest for 2 minutes

using our in-ear PPG sensor.

Artificially obstructed breathing

The participants in these recordings were 6 healthy subjects (4 males, 2 females) aged 23 - 30

years. Participants were asked to breathe in through a tube of internal diameter 8mm and

length 300mm, and breathe out through a tube of internal diameter 5mm and length 300mm,

giving a ratio of resistance from inspiration to expiration of 25
64

≈ 0.4. The tubes were linked with

one-way valves in opposite directions so that breathing would automatically switch between the

two tubes when switching from inspiration to expiration [179]. Continuous PPG was measured

from the ear canal of subjects whilst they breathed through the tubes for 2 minutes.

9.3 Signal processing

9.3.1 Extraction of respiratory modulations from PPG
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Figure 9.1: Normalised power spectral density (PSD) between 0.15 and 0.4Hz of each respiratory
mode from in-ear PPG: Respiration induced intensity variations (blue, left), pulse amplitude
variations (purple, middle) and pulse interval variations (red, right). The normalised PSD for
each recording and respiratory mode is compared with the normalised PSD of the ground truth
spirometry in each plot, which provides the true frequency distribution of respiration for that
recording. The top row corresponds to recordings with a breathing rate of 0.18Hz, with the
middle row and bottom row to 0.25Hz and 0.33Hz respectively.
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The three major respiratory modes in photoplethysmography are: i) respiration induced inten-

sity variations (RIIVs) which are accessible from the raw PPG, ii) pulse amplitude variations

and iii) pulse interval variations, both accessible from the AC component of PPG. The extrac-

tion of the RIIV waveforms can be achieved via band-pass filtering or by adaptive methods such

as empirical mode decomposition which will be described in full in the next section. However,

for the purpose of spectral comparisons, the RIIV can be observed by taking the periodogram

of the unfiltered PPG signal, whereby the signal is first detrended to remove the drifts and

ensure that the periodogram is not biased at 0Hz.

To extract the AC component of the PPG signal, the detrended PPG was band-pass filtered

between 0.9 and 30Hz. Peaks and troughs were then extracted from the pulse signal using

the MATLAB by MathWorks (Natick, MA, USA) function findpeaks, with a minimum peak

prominence of 150 arbitrary units. For the pulse amplitude variations, the envelope of the pulse

signal was calculated by interpolating the peaks at 62.5Hz, and interpolating the troughs at

62.5Hz, and then summing up their absolute value. The time values of the troughs were used

for the pulse interval variations as, due to the characteristic pulse waveform from the ear [72],

the troughs are less sensitive to noise. The pulse interval signal was calculated as the time

between consecutive pulses at the time point of each trough, and interpolated at 62.5Hz to

match the sampling frequency of the PPG signal. Fig. 9.1 shows exemplar periodograms of

the three respiratory modes, indicating that the normalised power spectral density has good

adherence to the ground truth spirometry across all respiratory modes and across the three res-

piratory frequencies of 0.18Hz, 0.25Hz and 0.33Hz. The largest disparity between the estimated

frequency and ground truth was an error of 0.003Hz (0.18 breaths per minute) that occured

with the pulse interval mode at 0.33Hz breathing. The periodograms were, however, taken over

long time periods of 100 seconds and the recordings were performed with minimal movement,

providing an ideal situation for good frequency adherence. Over shorter time periods and with

motion artefacts, adherence to the ground truth periodogram would be lower.

9.3.2 Respiratory power comparisons: ear vs finger

From the 120 second photoplethysmography recordings of normal breathing, the two modes of

pulse amplitude variations and pulse interval variations were extracted from the ear and finger

as described in the previous subsection. The analysis considered the final 84 seconds (5250
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samples) in an attempt to mitigate the conscious effects on breathing that can occur when

first being told to breathe normally. All three modes were detrended to remove the mean,

and power spectra of the three modes were then assessed for a shared respiratory peak. The

recording was discarded if there was no clear shared peak present across modes on both the

ear and finger recordings. A clear respiratory peak was observed in 11 out of the 14 recorded

subjects. The normalised peak value was calculated by taking the power spectral density

(PSD) value of the respiratory peak and dividing it by the sum of the power spectral density

from 0Hz to 2Hz. The respiratory PSD ratio was then calculated by dividing the normalised

peak from the ear by the normalised peak from the finger, and log10 of the ratio was taken to

make the distribution of ratios proportional in each direction. Accordingly, a negative value

represented a greater relative respiratory power from the finger, a positive value represented a

greater relative respiratory power from the ear, and a value of zero represented no difference

between the two recording sites. This method is similar to methods previously employed in the

literature, with the difference in that it focuses on a defined respiratory peak rather than on

overall power in the frequency band. This choice was made as in general especially with the

respiration induced intensity variations, much of the power in the respiration frequency band

can be from higher harmonics of low frequency variations. Moreover, normalising by the sum of

the power spectral density helped to mitigate differences in signal quality that could occur from

inadequate placement of either sensor. Importantly, our analysis looked at all three respiratory

modes, rather than just the respiration induced intensity variations.

9.3.3 Empirical mode decomposition for respiration

Empirical mode decomposition (EMD) employs a nonlinear data driven filter-bank structure to

deconstruct time domain signals into data-adaptive narrow-band amplitude and frequency (time

series) components, known as intrinsic mode functions (IMFs) [25]. Since the IMFs obtained by

empirical mode decomposition are data driven and thus physically meaningful, empirical mode

decomposition has proven effective at decomposing nonstationary and multi-scale physiological

data, such as electroencephalography (EEG) into different frequency bands [26] [27] and at

extracting respiration rate from PPG [180]. The EMD, multivariate EMD (MEMD) and noise-

assisted multivariate EMD (NA-MEMD) algorithms are detailed in Chapter 2, section 2.3.

To extract respiratory waveforms from PPG, we employed the raw photophlethysmography sig-
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Figure 9.2: Noise assisted multivariate empirical mode decomposition (NA-MEMD) of in-ear
PPG for a subject breathing with an atypical 1:3 inspiration to expiration time ratio. Indicated
are the detrended in-ear PPG (top, black), the breakdown of the in-ear PPG into intrinsic mode
functions (top middle) with the respiratory IMFs highlighted in blue, the reconstructed in-ear
PPG respiratory waveform (bottom middle, blue) and the reference spirometry flow signal
(bottom, red). For convenience, the PPG waveform is flipped so that peaks correspond to
inspiration and troughs correspond to expiration.

nal, the pulse interval variations and the pulse amplitude variations as the three main channels

in NA-MEMD, given that the commonality between the intensity mode, the pulse amplitude

mode and the pulse interval mode is the respiratory information. Therefore, rather than using

different recording channels as our inputs, our main inputs are instead all derived from the same

PPG signal. Five white Gaussian noise channels are added to improve frequency localisation

and reduce the mode mixing between the IMFs. This produces IMFs for each of the three respi-
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Table 9.1: Summary of the features used for the classification of COPD.

Category Features

COPD based skewness, duty cycle,
max− | min |, normalised max− | min |†

General Standard deviation, kurtosis,
spectral skewness, breathing frequency

† Normalisation corresponds to division by the standard deviation.

ratory modes. Only the IMFs for the raw PPG signal were used to reconstruct the respiratory

waveform, given that the intensity based modulations are not limited in sample rate to the

pulse frequency and therefore contain more detailed high frequency respiratory information. A

respiratory IMF was defined as an IMF with over a third of its spectral power between 0.2Hz

and 0.6Hz, allowing higher frequency respiratory detail to be captured. The respiratory IMFs

were then summed to reconstruct the respiration signal. This achieved physically meaningful

respiratory waveforms which vary both in amplitude and frequency across the respiratory band.

An example of NA-MEMD decomposition and reconstruction is shown in Fig. 9.2. The subject

adhered to a 1:3 inspiration to expiration time ratio, similar to respiratory waveforms typical of

severe chronic obstructive pulmonary disease. It can be seen that despite the lowest frequency

respiratory IMF capturing the base frequency of respiration, it lacks the detail captured in

the higher frequency IMFs which help to illuminate the difference in inspiration to expiration

time ratio. This is an argument for using methods such as empirical mode decomposition over

standard filter banks when trying to extract physically meaningful respiratory waveforms.

9.3.4 Classification of COPD

For the classification of chronic obstructive disease we focused extracting features based on the

COPD waveform, given that we desire to be able to classify COPD not just in comparisons

with healthy data but relative to other respiratory diseases. Whilst respiration frequency itself

is an important feature in assessing respiratory health, both COPD and pulmonary fibrosis

lead to an increase in breaths per minute, making it a poor feature for distinguishing between

the two when used alone.

Six in-ear PPG recordings were used from ear finger comparisons and labelled as young and

healthy. Therefore in total there were 6 young healthy subjects aged 21 - 28 years, 4 older
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healthy subjects aged 56-62 years, 4 subjects with COPD aged 55 - 88 years and 2 subjects

with idiopathic pulmonary fibrosis (IPF) aged 61 and 68 years. The 120 second recordings of

PPG data from each subject were trimmed to remove motion artifacts occurring at the start and

end of the recordings, and pulse interval and pulse amplitude variation signals were extracted.

The NA-MEMD was then performed on the PPG, pulse interval and pulse amplitude signals for

each subject independently. Respiratory signals were then reconstructed from the respiratory

intrinsic mode functions, and 15-second epochs without the presence of motion artifacts were

selected. Each 15-second epoch was rounded off so that the number of breathing cycles was an

integer; in this way, 15 segments were extracted for COPD, 10 for IPF, 18 for young healthy

and 16 for older healthy, resulting in a total of 59 segments. During inspiration, the raw PPG

decreases in intensity, and therefore for convenience the waveforms were flipped so that peaks

represented peak inspiration, and troughs represented peak expiration.

Features were chosen by accounting for the principle that COPD mainly obstructs expiration,

and thus expiration takes up a larger proportion of the total breathing time, while resting

inspiratory flow rates are usually higher than expiratory flow rates. The skewness, duty cycle

and the difference between the maximum value and the absolute of the minimum value were

extracted as COPD related features. Skewness is defined as

S(y) =
E(y − µ)3

σ3
(9.1)

where S(y) denotes the skewness of a signal y, E(x) represents the expected value of x, µ is

the mean of the signal y, and σ is the standard deviation of y. Distributions with a longer

positive tail than negative tail therefore have a positive skewness, and distributions with a

longer negative tail have a negative skewness. Similarly, distributions that are symmetrical

have zero skewness.

In this implementation, duty cycle was defined as time spent in inspiration divided by the total

respiratory time. Given that the respiration induced intensity variation of PPG is a proxy for

flow rate and assuming the mean flow rate is zero, time spent above the mean of the flipped

waveform corresponds to inspiration, and time spent below the mean to expiration. Thus,

inspiratory duty cycle was calculated by dividing the number of samples above the mean by

the total number of samples as follows
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D(y) =

∑N
n=1 H(y(n) − µ)

N
(9.2)

where D(y) corresponds to the duty cycle of a signal y, N represents the sample number, µ is

the mean of the signal y, and H represents the Heaviside function. Overall, a total of 8 features

were used for classification, and are summarised in Table 9.1.

For classification, features were used to train a random forest classifier, employed using the

scikit-learn Python toolbox [99]. For the random forest base, the number of trees was set to

50, the class weight was set to ‘balanced subsample’ and the maximum number of features

was set to 3. Binary classification was performed with the COPD data being labeled as such,

and the young healthy, older healthy and IPF data being labelled as non-COPD. Both leave-

one-segment-out and leave-one-subject-out cross validation methods were used. In the case

of leave-one-segment-out, a summed confusion matrix was used to evaluate performance, and

in the case of leave-one-subject-out the mean classifier probability for COPD was taken over

all segments for that subject, and an ensemble average was taken over 5 different train-test

realisations.

9.4 Results

9.4.1 Spectral power of in-ear PPG vs finger PPG

The log10 ear to finger respiratory power ratios for the three respiratory modes of respiration

induced intensity variations (RIIVs), pulse amplitude variations and pulse interval variations

for 11 subjects are presented in Fig. 9.3(a). The boxplots presented in Fig. 9.3(b) show median

log10 ratio values of 0.927 for RIIV, 0.463 for pulse amplitude variations and -0.002 for pulse

interval variations, corresponding to an average of an 8.5-fold increased RIIV power from the

ear compared to the finger, a 2.9-fold increase in pulse amplitude power from the ear and no

change in the power of the pulse interval variation between the ear and the finger. A one

sample t-test rejected the null-hypothesis that the log10 ratios had a distribution mean of zero

in the case of the RIIV and pulse amplitude ratios (p = 0.0008, p = 0.01) and did not reject

the null hypothesis in the case of the pulse interval power ratios (p = 0.79). When comparing

the ratios and normalised respiratory peak values across the sexes (5 female, and 6 male) the
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Figure 9.3: The log10 of the respiratory power spectral density ratio between the ear and
finger, for each respiratory mode of respiration induced intensity variations (RIIV) (blue), pulse
amplitude variations (purple) and pulse interval variations (red). (a) The log10 ratios for each
respiratory mode presented for all 11 subjects. (b) Boxplots showing the distribution of log10

ratios for each respiratory mode. Values of zero represent equal relative respiratory power for
both the ear and finger, whereas values of 1 represent a 10-fold increase in relative respiratory
power from the ear and values of -1 represent a 10-fold decrease in relative respiratory power
from the ear.

only significant difference found was an increased pulse interval variation power in the finger in

females compared with males (p = 0.04) and whilst an increased pulse interval variation power

was also seen in the ear in females, it was not significant (p = 0.15).

9.4.2 Classification of COPD from in-ear PPG

The COPD data in general showed higher skewness than non-COPD data. Fig. 9.4 exempli-

fies that the COPD waveform is more likely to have higher amplitude inspiratory peaks when

compared with expiratory troughs, thus giving the waveform distribution a positive tail and

therefore a positive skew as highlighted through the histograms. The distribution of skew-

ness between older healthy, young healthy, COPD and IPF is summarised in the boxplots in

Fig. 9.5(a), and shows that overall the skewness of COPD segments tends to be higher with

a median of 0.23 and an interquartile range of 0.20 to 0.48, compared with an older healthy

median of -0.14 and IQR of -0.23 to 0.02, a young healthy median of -0.03 and IQR of -0.20 to

0.02 and an IPF median of -0.05 and IQR of -0.24 to 0.11. The change in duty cycle in COPD

from in-ear PPG was less pronounced than the difference in skewness, but in general TI/TTOT

was lower in COPD as shown in Fig. 9.5(b). The median duty cycle in COPD was 46.7%,

compared with 50.0%, 51.4% and 50.5% in the older healthy, young healthy and IPF subjects,
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Figure 9.4: Exemplar in-ear PPG respiratory waveforms and their corresponding probability
density estimates shown in the form of histograms, for the case of a patient with COPD (top,
blue) and a young healthy subject (bottom, green). Skewness values for each presented wave-
form are shown in the histogram plots, with a skewness of 0.52 for the COPD in-ear PPG
waveform and -0.02 for the young healthy in-ear PPG waveform.

respectively. The distribution of normalised difference in inspiratory and expiratory magnitude

was similar to skewness, with values above zero corresponding to increased inspiratory magni-

tude and values below zero corresponding to increased expiratory magnitude. Fig. 9.5(c) shows

that COPD skewness values trend higher with a median of 0.37 and an IQR of 0.30 to 0.86,

compared with an older healthy median of -0.32 and IQR of -0.56 to -0.08, a young healthy

median of -0.03 and IQR of -0.29 to 0.16 and an IPF median of 0.17 and IQR of -0.42 to 0.19.

Artificial obstruction mirrored COPD across all features, with a median skewness of 0.26, a

median duty cycle of 47.0% and a median normalised difference in inspiratory and expiratory

magnitude of 0.41, compared to median values of 0.23, 46.7% and 0.37 in COPD.

All features were calculated on clean segments of data, with segments with motion artefacts
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Figure 9.5: Boxplots of COPD related features extracted from in-ear PPG recordings for older
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Figure 9.6: An exemplar in-ear PPG derived COPD respiratory waveform, with the correspond-
ing COPD features calculated with a sliding 500 sample (8 second) window. For each feature,
highlighted with dotted lines are medians from the COPD recordings (blue) and the medians
from the young healthy data set (green). The pink shaded section highlights the presence of
motion artefacts in the data, and the corresponding distortion to the calculated features.

being ignored. Fig. 9.6 highlights that motion artefacts can distort the features, with an example

of feature calculation in an artefact corrupted COPD recording. It is shown that features diverge

from what is expected for COPD towards what is expected for young healthy participants when

a motion artifact is present, which in this case would lead to miss-classification.

Average classification accuracy for leave-one-segment-out cross validation was 92%, with class

specific accuracy of 87% for COPD, and 93% for non-COPD. These results are presented in the

confusion matrix in Fig. 9.7(a). Moreover, classification of COPD had a precision of 81% and

an F-score of 84%. In the leave-one-subject-out cross validation results, the COPD probability

was extracted from the random forest classifier and the mean was calculated across testing

segments for each subject, with the ensemble average of this probability then taken over 5

realisations. The 4 COPD subjects had the 4 highest classifier probabilities of COPD, as

shown in Fig. 9.7(b). In both cases of leave one subject and leave-one-segment-out, the 2 most
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Figure 9.7: Classification of COPD from in-ear PPG respiratory waveforms. (a) The mean
confusion matrix for leave-one-segment-out cross validation, with the rows corresponding to
the true COPD and non-COPD allocations, and the columns corresponding to the predictions
of COPD and non-COPD. (b) The mean COPD probabilities extracted from the random forest
classifier across each segment for a given subject, and ensemble averaged over 5 realisations.
The error bars correspond to the standard deviation of the segment mean over 5 realisations.
The COPD subjects are designated in blue, IPF in red, older healthy in yellow and young
healthy in green.

important features for classification, based on the reduction of tree impurity in the random

forest, were the skewness and the normalised difference between the maximum and absolute

minimum.
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9.5 Discussion

9.5.1 Spectral power of in-ear PPG vs finger PPG

The increased respiration induced intensity variation power of roughly 8.5-fold that we see from

the ear over the finger is in good agreement with Budidha et al [8], Nilsson et al [11] and Shelley

et al [171], but is in contrast to the findings of Charlton et al [173]. In addition, we also see in

increased spectral power of pulse amplitude variations due to respiration from the ear, again

in contrast to Chartlon et al [173], and no change in power for pulse interval variations. In

the case of the work by Charlton et al, the authors explain that the difference may be due an

increased signal to noise ratio from the finger sensor, whereas we have accounted for differences

in signal quality in our calculations. One possible explanation for the increased power that

we see in the amplitude variations from the ear is that the ear canal vasculature is in close

proximity to the carotid artery, and therefore a more exaggerated pulse amplitude variation

might be expected.

Moreover, we do not see a significant difference in RIIVs between the sexes for the ear or finger

sensors which is in agreement with Nilsson et al [174]. Similarly we do not see a significant

difference in the pulse amplitude variations between sexes from the ear and finger, and we do

not see a significant difference in the pulse interval variations between sexes from the ear. We

do, however, see a significantly higher respiratory power for pulse interval variations in the

finger from females, which is in agreement with Li et al [170].

9.5.2 Classification of COPD from in-ear PPG

In the extracted in-ear PPG respiratory waveforms, we found an increased skewness of the

data distribution towards inspiration, higher inspiratory magnitudes compared with expiratory

magnitudes and decreased inspiratory duty cycle in those with COPD, compared with young

healthy subjects, older healthy subjects and patients with IPF. Theoretically, these differences

were expected, given COPD manifests itself in obstruction to expiration which results in a

lower FEV1/FVC when testing with spirometry, and therefore in a shorter time spent inspiring

and a higher peak inspiratory flow compared with expiratory flow at rest. Importantly, when

breathing was artificially obstructed with tubes that restricted expiration more than inspiration,
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the analysis showed the same trends as with COPD. This provides further justification that the

chosen features discriminate obstructive breathing disorders. The duty cycle differences were

not as pronounced from the ear-PPG as those from chest wall measurements in the literature

[149] [150], and were higher for all COPD and non-COPD subjects. In the case of the recorded

1:3 inspiration to expiration example, presented in Fig. 9.2, the flow data had a inspiratory

duty cycle 26%, whereas the in-ear PPG extracted waveform had a calculated duty cycle of

37%. Similarly, flow data had a skewness = 1.5 compared with a skewness = 0.9 in the in-ear

PPG waveform. This is evidence for waveform differences in breathing being less pronounced

from the in-ear PPG than in the ground truth air flow, and is a possible explanation for why

the differences from the ear waveforms recorded in COPD patients are less pronounced than the

chest wall measurements in the literature. A similar duty cycle and skewness to the extracted

in-ear PPG waveforms was achieved by low-pass filtering the spirometry flow data in Fig .9.2,

with a cut off frequency of 0.33Hz. This is evidence that the reduction in COPD differences

shown from in-ear PPG is likely caused by the transfer function from thoracic pressure to

venous return which has low-pass filter effects [168]. This effect may also be exaggerated by

patients with COPD on average having higher resting respiration frequencies.

Analysis of data corrupted by artefacts, shown in Fig. 9.6, highlights that motion artefacts can

indeed distort the extracted features, and thus for the classification of COPD it is recommended

that artefact corrupted segments are discarded. This however, does not affect the utility of the

proposed methodology, as with this method classification can be performed on data recorded at

rest where artefacts are far less common than during movement such as walking. Furthermore,

with only a few clean breathing cycles required to achieve an accurate prediction, the negative

impact of artefacts is further reduced. Motion artefacts are generally of a broadband nature,

with a peak frequency that is at least an order of magnitude higher than the peak frequency

of PPG derived respiratory waveforms; this makes it straightforward to identify and reject

artefact-corrupted segments.

Using features extracted from in-ear PPG waveforms segments that were less than 15 seconds

long, a random forest classifier was able to distinguish between COPD and non-COPD with a

specificity of 87% and overall accuracy of 92% in leave-one-segment-out cross validation. More-

over, the fact that the highest mean classifier probabilities all occurred in COPD subjects with

leave-one-subject-out cross validation demonstrates that the in-ear PPG features, described in
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this chapter, are robust enough to generalise across COPD patients even with only 3 training

subjects. Notably, COPD was classified against the young healthy data, older healthy data

and IPF patient data, which reinforces our claim that we are detecting COPD and not just

differences that could occur in general breathing disorders or with age. Importantly, this indi-

cates that the respiratory variations detected in the in-ear PPG are strong enough to preserve

information that goes beyond the respiration frequency. With more subjects, the accuracy and

ability of the model to generalise would likely increase further.

9.6 Chapter conclusions

We have demonstrated the principle and robustness of in-ear PPG as a tool for detecting

respiration frequency. It has been shown to exhibit increased spectral power over the finger

PPG due to respiration for both respiration induced intensity variations and pulse amplitude

variations. Further, we have introduced a novel method for extracting respiratory waveforms

from PPG, based on noise assisted multivariate empirical mode composition (NA-MEMD), and

have proven that so extracted in-ear PPG breathing waveforms contain sufficient information to

detect differences that occur with obstructive breathing disorders such as chronic obstructive

pulmonary disease (COPD). This has been further validated quantitatively when classifying

COPD against healthy subjects and subjects with pulmonary fibrosis, and through comparison

with artificially obstructed breathing. This has indicated the promise of in-ear PPG as a means

for both screening and ambulatory monitoring of patients with respiratory disorders, and as a

tool for detailed breathing analysis in consumer wearables which goes beyond just respiration

frequency.
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Conclusion

10.1 Conclusions and applications

The objective of this thesis has been to extend the capabilities of photoplethysmography and

pulse oximetry, by both leveraging the advantageous location of the ear for physiological record-

ings and by applying state of the art signal processing methods. A wearable in-ear pulse oxime-

try sensor has been utilised to comprehensively investigate blood oxygen estimation from the

ear canal, finding that the ear is non-inferior to the conventional finger recording site. Moreover,

it has been found that the ear responded 12.4 seconds faster on average to changes in blood

oxygen, likely due in part to its proximity to the brain and thus high priority for oxygenation.

The fast response time of in-ear SpO2 could be applied in scenarios where a low latency blood

oxygen measure is critical, such as neonatal resuscitation and closed loop automatic oxygen

therapy. Low latency in-ear SpO2 would also be useful for the quick detection of sleep apnea

events in polysomnography, along with the added benefit of being wearable. Furthermore, it

has been demonstrated that adhesive ear-based pulse oximetry is capable of detecting exercise

induced decreases in blood oxygen in patients with breathing disorders in a continuous fashion,

opening the door for unobtrusive ambulatory monitoring of lung disease.

The unique position of in-ear pulse oximetry has been further examined in the context of

cognitive workload. The brain is the most metabolically active organ in the body, with high

oxygen demands that increase many fold with increased mental effort. It has been found that

in-ear SpO2 was sensitive enough to detect these changes in oxygen demand in the blood, with
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increased cognitive workload robustly leading to a decrease in in-ear SpO2. Using this discovery,

in-ear SpO2 has allowed for reliable discrimination between levels of an N-back working memory

task, resulting in high accuracy classification of cognitive workload from a single wearable in-ear

sensor. This concept has been explored further in relation to gaming, with games that require

high mental effort showing consistent decreases in in-ear SpO2. The detection of cognitive

workload with a wearable in-ear SpO2 sensor has a clear application to the “playtesting” of

games, as well as to the further study of cognitive workload in scenarios where wearability

of a sensor is paramount, such as surgical training and aviation. Additionally, this concept

has been extended from the tracking of cognitive workload, to the prediction of fatigue in

driving. This thesis has demonstrated, through the use of a single wearable in-ear PPG sensor,

that it is possible to accurately predict the likelihood of large steering wheel angle deflections

when driving and, by extension, predict when a subject is fatigued. In the UK approximately

24% of fatal road traffic collisions are caused by driver sleepiness [114] and in 2016 there were

an estimated 1.35 million road traffic deaths worldwide [181]. An automatic fatigue warning

system utilising a cheap wearable sensor therefore has the potential to save many thousands of

lives.

Photoplethysmography (PPG) also allows for monitoring of respiration, mainly through varia-

tions in venous blood volume, but also through changes in pulse magnitude and pulse interval.

This thesis has shown that both respiration induced intensity variations in venous blood volume

and respiration induced pulse magnitude variations are far stronger from in-ear PPG when com-

pared conventional finger based PPG. Through the novel application of multivariate empirical

mode composition, it has been shown that detailed spirometry-like respiratory waveforms can

be extracted from in-ear PPG. Using this method in combination with features derived from

common breathing patterns of chronic obstructive pulmonary disease sufferers, this thesis has

demonstrated for the first time that it is possible to automatically detect COPD against other

diseases from PPG derived respiratory waveforms. This has been further confirmed and devel-

oped through the creation of a novel tube based apparatus for the simulation of obstructive lung

diseases in healthy subjects. The tube based apparatus is useful in the generation of physically

meaningful surrogate data, but also has a clear application to the education and awareness of

breathing disorders through the experience of obstruction to breathing. Chronic obstructive

pulmonary disease is the third leading cause of death worldwide [182], with as much as 78%

of sufferers remaining undiagnosed [183]. The application of wearable PPG for the detection
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of COPD could significantly reduce this percentage, in turn informing users to treatment. The

detection of COPD in those that are undiagnosed promises to reduce the risk of exacerbation

and death [183] and thus this technology could help prevent millions of deaths worldwide.

10.2 Advice to future researchers

My advice for research on wearable sensors, based on my personal experience from my PhD

studies, is that if you have an idea, test it in yourself as soon as possible. If it works on you,

test it on other people. If it works with other people, then design a study around it. Ideas

will come if you are proactive with reviewing the literature and are familiar with any gaps

that are present, and the ability to test things quickly will help ensure that minimal time is

wasted on things that don’t work. Moreover, testing wearable sensors such as PPG on yourself

is an excellent and easy way to familiarise yourself with physiological data, and this hands

on approach is essential for getting to grips fast with bio-signal processing algorithms and for

understanding the properties of the data that you will be working with. One thing I would

emphasise is that, whilst not as important during initial testing of ideas, protocols should be

extremely well thought out before recording for a larger study, as the time cost of getting

something wrong and having to re-record data can be huge. In my PhD research, the first

set of cognitive workload data I recorded had a sequential order of N-back tasks, and thus

conclusions could not be drawn on whether the changes I recorded were related to increases in

mental effort at the final stages, or due to mental fatigue built up throughout the recording.

For this reason, I had to re-record this experiment with a randomised N-back order which, in

the context of the COVID-19 lock-downs, took an extra 6 months to complete. In this example,

a more thought out initial protocol design would have saved me a lot of time and effort.

10.3 Future work

Mapping the SpO2 delay

Existing literature has explored the delay between the hand and the foot for SpO2 readings [59]

and in this thesis we have analysed this phenomenon in depth pertaining to the ear canal [72].
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We have found a large variability in oxygen delay between the ear and the finger (12.4 ± 6.1

seconds) across all subjects. Whilst some of this variability was explainable by the sex of the

subject, a proxy for height differences and therefore change in distance between the ear and

the finger, this cannot account for all of the variability. There is a possibility that SpO2 delay

could relate in part to the cardiovascular health of an individual, as well as other physiological

variables such as blood pressure. To this end, the delay from multiple sources, including both

ears, should be recorded to form an individualised SpO2 delay map for each individual, at

rest and post exercise. This map could then be compared to several measures of cardiovascular

health, including blood pressure, in order to further investigate the role of cardiovascular health

in oxygen delay.

Long term unobtrusive monitoring of respiratory diseases

This thesis saw the development of an adhesive pulse oximetry patch which allows for the

monitoring of SpO2 during hospital based walk tests with minimal motion artefacts. The next

step is to apply this in an ambulatory scenario, with long term monitoring of patients with

breathing disorders over the course of hours or days. Wearable pulse oximetry can provide

continuous measures of blood oxygen that were discussed in chapter 4, along with features of

detailed respiratory variations that are indicative of lung obstruction, presented in chapter 9.

Moreover, the results from artificial obstruction shown in chapter 8 indicate that it is possible

to assess changes in thoracic pressure that occur due to obstruction of the lungs, and that PPG

alone could be used to infer important clinical parameters such as forced expiratory volume in

1 second. It is my opinion that the combination of PPG as a proxy for wearable spirometry

and sensitive blood oxygen measures could provide vital information for the prediction of life

threatening exacerbations that can occur in respiratory diseases. The same information could

also be used to provide a ground truth for the effectiveness of drugs that are employed to treat

COPD or cystic fibrosis. Deploying this technology in patients for home monitoring is the

key next step for this research, and it is my opinion that this has a very real chance of both

improving quality of life and saving lives of those suffering from chronic respiratory diseases.
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Wearable pulse oximetry artefact removal with Multivariate EMD

It is my opinion that motion artefacts present the biggest hurdle for the translation of much

of the research in this thesis into real world consumer wearables. For the calculation of SpO2

specifically, precise amplitude ratios are required, making them highly sensitive to artefacts.

The same is also true for the COPD detection features described in chapter 9. Significant re-

search effort should be spent on both the mitigation of in-ear PPG artefacts (through hardware

and positioning) and on artefact removal either in an on-line fashion or during post processing

of data. For artefact removal, multivariate empirical mode decomposition works well when the

shared information across channels is the signal of interest. In the context of pulse oximetry,

both the red and infrared channels share the same pulse trace at different amplitudes. With

both red and infrared channels, and channels at other wavelengths (such as green), an accurate

pulse intrinsic mode function could be extracted allowing for more stable measures of SpO2

during motion artefacts. This concept could be extended further with multiple sensor positions

around the ear, which would share the same pulse waveform but experience motion artefacts

sufficiently differently to aid their removal.

Further investigation of the relationship between SpO2 and cognitive workload

This thesis has introduced the novel use of in-ear SpO2 for the classification of cognitive work-

load, but with this discovery come questions about its physical mechanisms. The main question

remains as to whether or not the SpO2 change is present across the body, or if it is local to the

ear canal. It could indeed be local, given the proximity of the ear to the brain, but an argument

against this is that the ear canal is supplied by a separate branch of the carotid artery than the

branch that supplies the brain. Another plausible explanation is that, given the minimal delay

and the sensitivity of in-ear SpO2, it is able to pick up tiny changes in SpO2 that might not

be measurable from the finger. In order to investigate this, future work must integrate pulse

oximetry sensors simultaneously at several positions on the body, as shown in Fig 10.1(a).

Moreover, one of the flaws of cognitive load experiments is that cognitive load cannot be

perfectly controlled with respect to external stimuli and distraction. A potential way to combat

this is through cognitive load experiments in immersive virtual reality (VR) environments. This

could be achieved with a VR based N-back task, VR flight simulators, an example of which is
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Figure 10.1: Further investigation of in-ear SpO2 for cognitive workload with virtual reality
(VR) applications. (a) Experimental set-up with a subject wearing a VR headset for immersive
cognitive load experiments, with PPG (labelled in red) attached simultaneously to the forehead,
in-ear, behind the ear, finger and wrist, all attached to a single circuit board which will relay
the PPG data wirelessly to a computer via Bluetooth. (b) An example VR flight simulator
from microsoft (Credit: Microsoft, https://news.xbox.com/en-us/2020/12/22/microsoft-flight-
simulator-virtual-reality-update-available-now/). (c) An example of puzzle solving in VR, with
the game Cubism (credit: Vanbo LLC/META/Occulus,
https://www.oculus.com/experiences/quest/2264524423619421).

shown in Fig 10.1(b), VR puzzle games, an example of which is shown in Fig 10.1(c) and even

VR based surgery [87]. Future investigations of SpO2 and cognitive workload could consider

the implementation of VR based tasks to induce cognitive load.

Closing the loop: in-ear PPG for automatic detection of driver fatigue

This thesis has shown the potential of in-ear PPG, both through in-ear SpO2 and heart rate

variability metrics, for the prediction of large steering wheel angles when driving. When subjects

become more fatigued, the probability of large steering wheel angle deflections increases and so

does the probability of crashes. Thus, by training a classifier on steering wheel angle as a label,

the classifier can become a tool for automatic detection of fatigue. Whilst this currently works

well with fully shuffled training, it cannot work as a fully fledged real world system until the
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classifier can perform well on unseen subjects. To achieve high accuracy of leave one subject

out testing, future work must carry out further recordings to increase the quantity of fatigued

subject data. Future work can also experiment with individually calibrated features, similar

to the features applied in Chapter 5 for the classification of cognitive workload, as calibrated

features make it easier for a classifier to generalise to unseen subjects. The primary goal of

future work in this area should be to close the loop by using a trained fatigue prediction classifier

simultaneously with in-ear PPG in an automatic fatigue warning device, with the aim to help

prevent road traffic collisions and ultimately save lives.



Appendix A

Probabilistic transition net for

automatic sleep staging

Summary

Automatic sleep staging provides a cheaper, faster and more accessible alternative for evalu-

ating sleep patterns and quality compared with manual hypnogram scoring performed by a

clinician. Traditionally, classification methods treat sleep stages independently of their tempo-

ral order, despite sleep patterns themselves being highly sequential. Such independent sleep

stage classification can result in poor sensitivity and precision, in particular when attempting to

classify the sleep stage N1, otherwise known as the transition stage of sleep which links periods

of wakefulness to periods of deep sleep. To this end, we propose a novel transition sleep clas-

sification method which aims to improve classification accuracy. This is achieved by utilising

both the temporal information of previous stages and treating the transitions between stages

as classes in their own right. Simulations on publicly available polysomnography (PSG) data

and a comprehensive performance comparison with standard classifiers demonstrate a marked

improvement achieved by the proposed method in both N1 sensitivity and precision across all

considered classifiers. This includes an increase in N1 precision from 0.01% to 36.75% in an

MLP classifier, and an increase in both accuracy and Cohen’s kappa value in two of the three

classifiers. Overall best mean performance is obtained by transition classification with a ran-

dom forest classifier (RF) which achieved a kappa value of κ = 0.75 (substantial agreement),

and an N1 stage precision of 58%.
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A.0.1 Introduction

With the key role of sleep in cardiovascular health [184] and consolidation of memory [185], poor

sleep quality and lack of sleep place a huge burden on society in terms of both public health

and economic costs [186]. In consumer health, the demand for sleep measurement is reflected

in the increasing popularity of sleep tracking apps [187] which attempt to assess sleep quality

and duration; however, these do not report accuracy that is considered clinically relevant [188].

In medical practice, sleep disorders, such as obstructive sleep apnoea, can be diagnosed after

the patient is observed sleeping overnight at a sleep clinic whilst polysomnography (PSG) is

recorded. The PSG includes the physiological modalities of electroencephalography (EEG),

electrocardiography (ECG), electromyography (EMG), airflow and blood oxygen percentage,

and the 30 second traces of such data are scored by a Clinician based on the American Academy

of Sleep Medicine manual [65]. Each 30 second epoch of sleep is assigned a sleep stage of either

wake (W), non rapid eye movement (N1, N2, N3) or rapid eye movement (REM) [189], to

yield a scored hypnogram. Stages N2 and N3 represent deeper sleep which is characterised

by low frequency EEG activity, whereas REM sleep is characterised by mixed frequency EEG

and lower EMG amplitude [189]. Given that the clinician must manually score many hours of

data for a single recording, this method is very time consuming and expensive and thus not

practically scalable to very large numbers of patients or eHealth applications. To this end,

automatic sleep staging provides a way of classifying sleep stages without the involvement of a

clinician, by using supervised machine learning methods. Automatic sleep staging can only be

effective if its accuracy is comparable to a clinician’s scored hypnogram, and should ideally be

orders of magnitude faster than human scoring.

Classic machine learning approaches, such as linear discriminant analysis (LDA), support vector

machines (SVM) and artificial neural networks (ANN) have traditionally been used to tackle

the problem of automatic sleep staging. Deep learning solutions also exist that achieve high

accuracy [190] but are computationally complex and expensive to implement. The difficulty

with all classification solutions is that they tend to suffer from poor N1 accuracy, as it occupies

only 5% of overall sleep duration [191] and has the lowest rate of scoring agreement between

different human sleep scorers [192]. However, the N1 stage is of particular interest to overall

sleep health as a high proportion of N1 represents frequent arousals that are indicative of a

sleep disorder. Furthermore, N1 is also heavily related to drowsiness [17]. This is why N1 is
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referred to as the transition stage of sleep, given that it represents the transition between wake

and sleep.

Another issue is that in conventional automatic sleep stage scoring, the 5 stages of sleep are

classified independently, whereas when a clinician scores sleep stages manually they also rely

on the knowledge of previous epochs and look for transitions between them. To this end, we

propose a new automatic sleep stage classifier by considering the transitions between stages as

additional independent classes in classification. These transition classifications are then used

to improve N1 classification accuracy and precision, and show clear promise to increase overall

sleep stage classification accuracy.

A.1 Transition model of sleep

W N1 N2 N3 R
W 86.24 8.11 4.67 0.15 0.83
N1 8.91 57.30 28.09 0.01 5.69
N2 2.89 0.01 92.84 3.33 0.94
N3 1.30 0.00 6.39 92.27 0.04
R 2.23 0.81 1.17 0.00 95.79
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Figure A.1: Percentage of current states of sleep given the previous state, obtained from the
manually scored hypnograms in the CCSHS data set [193] [194].

Traditionally, automatic sleep staging is performed in the same way as the majority of clas-

sification problems, by considering the different stages as independent of previous and future

stages. In reality, all stages of sleep are highly dependent on the previous stage, as shown in

Fig. A.1 which gives the percentage of current states for a given previous state as obtained from

scored hypnogram data. From Fig. A.1 for example, the wake (W) stage frequently transitions

into N1 and N2 but rarely transitions to N3 or REM, and REM is likely to transition to W

or N2, but unlikely to transition to N3 or N1. It is also clear that the most likely transition

scenario is remaining in the same stage. Given this interdependence between classes, we set

out to investigate whether a transition model of sleep could be used to increase classification
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accuracy.

A.1.1 Previous modelling of sleep stage transitions

Previous work includes hidden Markov model (HMM) based smoothing which uses a transition

matrix from the training data and an emission matrix from the classifier to apply the well

known Viterbi HMM decoding algorithm and find the most probable sequence of events [195].

Implementation of HMM smoothing was shown to significantly increase accuracy and Cohen’s

kappa value, on average. However, in subjects for whom sleep was highly fragmented HMM

smoothing tends to eliminate this fragmentation thus decreasing accuracy and kappa values.

Further work involves the combination of smoothing and a most probable path calculation using

Dijkstra’s algorithm [196].

A.1.2 Transition state features

To be able to effectively predict transitions between different sleep stages, the features during

transitions must be sufficiently different from the features during the main stages. Fig. A.2

highlights the differences in the probability density of feature values between the W, N1, N2

stages and the transitions between them. As expected, the distribution for the transition

between W and N1 falls between the distributions for W and N1, and the same is true of N1

and N2.

A.1.3 Transition probability model

Given the importance of transitions between stages, it is natural to ask whether a classifier

can also be used to predict the probability of transitioning from one state to another. In other

words, a classifier can be trained to predict 25 different classes (all 5 sleep stages and the 20

transitions between them) rather than just 5. The classifier then gives transition probabilities

and class probabilities, and the final stage prediction becomes a combination of both these sets

of probabilities as follows:



136 Appendix A. Probabilistic transition net for automatic sleep staging

Figure A.2: Probability density estimates of different sleep stages for scale 1 permutation
entropy. (a) The standard 5 class model, (b) Three of the standard classes (W, N1, N2) with
the N1 to N2 and W to N1 transitions included.

P (Ci|Ci−1) = P (Ci−1Ci) × P (Ci) (A.1)
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where Ci represents one of the 5 sleep stages, Ci−1 the previously classified sleep stage, Ci−1Ci

the transition from the previous class to class i, and P the probability of the class occurring in

relation to other classes. This calculation is repeated for all 5 classes and the class with the

maximum probability is chosen.

A.1.4 Pruned transition probability model

Although the proposed model at first appears rather complex, Fig. A.1 shows that certain

transitions such as N3 N1 are extremely unlikely, and can be ignored by the model. This

leaves us with a much simpler but accurate pruned transition model. Mathematically, if a

connection is not present between Ci−1 and Ci then P (Ci−1Ci) = 0, as shown in Fig. A.3.

W N1 N2 N3 REM
W P P P X X
N1 P P P X P
N2 P X P P P
N3 P X P P X
REM P P P X P

Current

Pr
ev

io
us

Figure A.3: Pruning table, showing connections that are included in the pruned model (P) and
connections that have been removed (X).

A.2 Implementation

A.2.1 Preprocessing and feature extraction

We used data from the Cleveland Children’s Sleep and Health study [193] [194]. Bandpass

filtering was implemented between [0.5]Hz and [30]Hz, and a total of 82 features were formed

from the multi-scale entropy calculations and spectral edge frequencies, according to [197]. Two

subjects were also removed due to a lack of REM sleep, giving a total of 513 subjects.
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W N1 N2 N3 REM
W 0 1 2 13 17
N1 3 4 5 13 6
N2 7 4 8 9 10
N3 11 4 12 13 17
REM 14 15 16 13 17
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Figure A.4: The relabelling protocol for the data, showing the transitions that have been pruned
in grey.

A.2.2 Classifiers

To implement the transition model, training data was first relabeled to include the 5 classes of

sleep and the 20 transitions between these classes. Out of 20 possible transitions, 7 were not

considered as independent classes as these were very rare. This meant that many transitions,

according to Fig. A.4, were simply given the same label as the current class. Different classifiers

from the freely available Sklearn Python toolbox [99] were then used to classify these 18 classes,

namely random forest (RF), linear discriminant analysis (LDA), and multi-layer perceptron

(MLP). The hyper-parameters were set as follows: RF had 500 estimators with a max depth of

500 and a balanced class weight, LDA had the default options of a singular value decomposition

solver and a tolerance of 1 × 10−4 and the MLP used a limited memory Broyde-Fletcher-

Goldfarb-Shannon (L-BFGS) solver with a regularization parameter of 1 × 10−5 and hidden

layer sizes of 50, 50.

A.2.3 Transition probability classification

The first epoch, usually the wake stage, W, was classified by using the maximum probability

out of W, N1, N2, N3 and REM. In the pruned transition model, these correspond to the

probabilities of classes 0, 4, 8, 13 and 17 which serve as good approximations to the 5-class

model, given that once in a class the most likely scenario by far is to remain in that class

(Fig. A.1). For the next epoch, W now becomes the previous state. Therefore, in the pruned

model there are now 3 stages to consider, W, N1 and N2. The probability of transitioning from

W to N1 is given by the probability of Class 1, the probability of transitioning from W to N2
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is given by Class 2 and the probability of transitioning from Class W to itself is simply the

previous probability of Class 0 multiplied by the current probability of Class 0, given that it is

the probability of being in Wake multiplied by the probability of being in Wake again. These

probabilities are then multiplied again by the current Class Probabilities 4, 8 and 0, that is

P (N1i|Wi−1) = P (Wi−1N1i) × P (N1i) (A.2)

P (N2i|Wi−1) = P (Wi−1N2i) × P (N2i) (A.3)

P(Wi|Wi−1) = P (Wi−1Wi) × P (Wi)

≈ P (Wi−1) × P (Wi)
2

For each subsequent class, these calculations are performed again for each relevant class ac-

cording to the transitions included in the pruned model (Fig. A.3).

Each method was evaluated using 5 fold cross validation to test that the results were consistent

across the whole data set. The overview of this proposed sleep classification implementation is

given in Fig. A.5.

A.3 Results

RF LDA MLP
Measurement R T R T R T

Accuracy(%) 82.60 83.39 79.20 78.46 75.55 78.75
Kappa 0.744 0.753 0.697 0.688 0.645 0.688

N1 Sensitivity (%) 7.41 20.11 7.23 31.31 0.06 11.21
N1 Precision (%) 38.66 58.11 27.30 27.91 0.01 36.75

N1 F1 Score 0.111 0.283 0.099 0.268 0.001 0.160

Table A.1: Comparison of performances of the standard (R) and transition classification (T)
with different classifiers.

Table. A.1 shows that random forest (RF) and multi-layer perceptron (MLP) both exhibit an

increase in overall performance when equipped with transition classification, whereas linear

discriminant analysis (LDA) shows a slight decrease in general performance. The MLP setup
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Figure A.5: Flow diagram of the proposed transition probability implementation.

shows the greatest increase in general performance, with an average increase in accuracy of

3.2% and an average increase in kappa of 0.043.

In summary, for all classifiers we observed an increase in N1 accuracy, N1 precision and N1

F1 score with the proposed transition classification. Precision is also important as it indicates

that a classifier is better at recognising a particular class, rather than just blindly increasing

the frequency at which it assigns a particular class label. For MLP, the increase in N1 precision

was 36.74% and for RF we had an increase of 19.45%, while LDA gave a slight increase in N1

precision of 0.61%.

Although transition classification significantly boosts N1 sensitivity across all classifiers, the
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W N1 N2 N3 R W N1 N2 N3 R
W 87.40 0.87 7.48 0.50 3.75 W 88.21 1.07 8.05 0.60 2.07
N1 23.11 7.39 19.27 0.06 50.16 N1 32.11 19.89 27.33 0.06 20.61
N2 2.29 0.24 87.64 3.43 6.40 N2 2.16 0.33 89.47 2.98 5.06
N3 0.45 0.00 15.80 83.72 0.03 N3 0.41 0.01 16.59 82.97 0.02
R 3.63 0.73 14.92 0.08 80.65 R 3.02 1.34 17.35 0.04 78.25

W N1 N2 N3 R W N1 N2 N3 R
W 87.32 0.87 7.59 0.48 3.73 W 88.18 1.10 8.00 0.59 2.13
N1 22.92 7.41 19.20 0.06 50.40 N1 32.01 20.11 27.08 0.05 20.74
N2 2.28 0.24 87.65 3.43 6.40 N2 2.18 0.33 89.44 2.99 5.07
N3 0.43 0.00 15.83 83.71 0.03 N3 0.52 0.00 16.65 82.79 0.03
R 3.67 0.76 14.95 0.08 80.55 R 3.12 1.37 17.29 0.03 78.19

W N1 N2 N3 R W N1 N2 N3 R
W 81.61 2.36 7.23 1.22 7.57 W 67.93 17.02 9.22 0.87 4.97
N1 21.22 7.23 13.05 0.21 58.28 N1 15.95 31.31 21.86 0.10 30.78
N2 2.70 0.40 83.43 3.34 10.13 N2 2.35 0.87 84.16 2.98 9.64
N3 0.47 0.01 20.69 77.97 0.86 N3 0.48 0.01 21.04 77.50 0.96
R 4.08 1.22 11.71 0.21 82.77 R 2.89 2.69 10.92 0.11 83.39

W N1 N2 N3 R W N1 N2 N3 R
W 77.20 0.08 10.99 1.66 10.07 W 83.43 1.07 10.14 0.89 4.46
N1 27.10 0.06 15.31 0.44 57.08 N1 48.53 11.21 18.62 0.15 21.48
N2 3.66 0.01 79.11 8.85 8.37 N2 4.02 0.33 85.04 4.73 5.88
N3 0.82 0.00 22.80 75.84 0.54 N3 0.70 0.00 24.48 74.61 0.21
R 5.99 0.03 13.36 0.82 79.81 R 7.32 2.06 13.00 0.23 77.40
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Figure A.6: Average cross validated confusion matrix results for all classifiers. Left: Traditional
5 stage classification results, right: Transition classification results.

effectiveness is highly dependent on the choice of classifier. In the case of LDA, it may be that

it lacks the sufficient degrees of freedom to effectively distinguish between a state of wake and

transitions from wake, such as wake to N1. This theory is reinforced when the LDA confusion

matrices are examined in Fig. A.6, as they show that the increase in N1 classification accuracy

is accompanied with a significant decrease in wake classification accuracy.

A.4 Chapter conclusions

By equipping sleep stage classifiers with the combination of knowledge about a previous stage

and the prediction of transitions between sleep stages, we have been able to achieve increases
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in overall classification accuracy as well as vast improvements in N1 stage sensitivity, F1 score

and precision. The proposed method is very intuitive and can thus be adopted into many other

state-of-the-art classification methods, to further improve automatic sleep staging performance.



Appendix B

Example ethics application

This appendix details the relevant information from our general Hearables ethics application,

approved by the Imperial College Research Ethics Committee. This application was designed

to encompass general physiological recordings for some of the studies on in-ear PPG and SpO2

presented in this thesis, as well as studies pertaining to wearable ECG and EEG recordings.

B.1 Project summary

Electrocardiography (ECG) and electroencephalography (EEG) are the respective non-invasive

recordings of the electrical activity from the heart and the brain and are usually performed by

placing electrodes on a participant’s arms or chest (for ECG), or head (for EEG). Mechanoplethys-

mography (MPG) measures pulse non-invasively with a mechanical transducer (microphone)

that detects the pulsation of blood vessels, and photophethysmography (PPG) measures pulse

non-invasively by emitting light through the skin. Blood Pressure (BP) measures the pressure

of circulating blood on blood vessels; a digital blood pressure monitor will be used to measure

blood pressure, or alternatively BP will be calculated digitally through the Pulse Arrival Time

(PAT), a delay in peaks between the ECG and MPG/PPG. A respiration belt will be used to

measure non-invasively the thoracic, abdominal respiratory movements and respiration rate. A

thermometer will be used to measure skin surface temperature and an accelerometer will be

used to monitor head motion. Gaze behavioural recording by gaze tracker requires no attach-

ment on the eyes of subjects that monitors the gaze trajectories and duration. This project will

143
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investigate the use of vital signs (heart signals, respiration, BP, temperature) and brain signals

to detect cognitive parameters, such as drowsiness (i.e. sleepiness), mental workload/stress,

emotion arousal, variation of concentration over time and physical fitness. The designed ex-

periments would detect the decrements in cognitive function, arising due to sustained mental

work in a controlled laboratory setting. Importantly, we are comparing the ability of wearable

sensors (using the ear as our measurement site) with the current gold standard sensors such as

scalp EEG, chest ECG, and finger PPG, which are all obtrusive to daily life. It is our hope

that the wearable signals can give us enough information to make the assessments of cognitive

load, mild stress and fatigue, and therefore medicine can begin to move away from cumbersome

obtrusive physiological monitoring methods towards less obtrusive wearable solutions.

Markers for cognitive parameters will be investigated using the obtained data. Performance

parameters, such as response time and error rates, during a mathematical, reading or video

game task will be used to draw inferences about the participant’s cognitive state. In the

Brain Computer Interface (BCI) research, responses to audio, video and audiovideo stimuli

shall be investigated, and optimal electrode positions will be determined for extracting relevant

electrophysiological activity. The optimal parameters for the stimuli which facilitate a high BCI

rate for the participants will also be considered. Traditional and novel mathematical techniques

will be applied to the recorded ECG and EEG data for analysis, e.g. blind source separation

for the removal of eye movement artefacts from the EEG.

Recent reports and studies have indicated that the prevalence of excessive mental workload and

stress has been increasing; drowsiness and poor concentration have also been cited as growing

problems in high pressured occupations. Brain computer interfacing enables biofeedback to

indicate cognitive overload. Hence the potential social outcomes of this project are huge.The

findings from this project will be presented at conferences and published in journals, contribut-

ing to the literature investigating the manifestation of psycho-physiological states in ECG and

EEG. The findings from this project will also have a wide impact in high pressured sectors such

as healthcare, teaching, the military and motor-car racing by enabling the measurement and

identification of excessive cognitive load.
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B.2 Participant recruitment

Participants for this project will be recruited from the student population of Imperial College

through the dissemination of participant information sheets explaining the investigation. Co-

investigators will be disseminating the information sheets in person and via email.

The participant inclusion criterion is as follows:

• Participants able to provide informed consent for study participation.

• Participants aged 18 years and older.

The participant exclusion criterion is as follows:

• Participants with epilepsy.

• Participants with dyscalculia: Dyscalculia is a specific and persistent difficulty in under-

standing numbers which can lead to a diverse range of difficulties with mathematics.

• Participants with a history of sensitive skin.

B.3 Informed consent

1. All participants will receive an information sheet prior to the commencement of the ex-

periment, outlining the aims of the investigation and the data collection procedure. The

experiment will then be further explained to the participant verbally, with the opportunity

for them to ask questions, before being asked to sign the participant consent form.

2. It is explained on the participant information sheet that participants can withdraw from

the study at any time, and their recorded data will be removed.

3. Vulnerable persons will not be recruited in this study.

4. Participants for this study will be recruited from the student population of Imperial

College, and it is expected that all participants will have sufficient comprehension of the

English language. However, if it is clear to the investigating researchers that a participant
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does not understand the information provided, the participant will be discharged from

the study.

B.4 Ethical Summary

To the best of the PIs’ knowledge the ethical issues associated with the project are minimal as

it involves healthy participants and it will use either CE approved equipment or low voltage

commercial sensor chips for the purposes they have been designed for – ECG, EEG, MPG, PPG,

BP and respiration monitoring systems are harmless and are already commercially available for

personal use (lifestyle health apps and gaming), e.g. EMOTIV Epoc, http://www.emotiv.com/,

or g.tec, www.gtec.at. Determining cognitive parameters like overload and brain computer

interfacing do not involve any ethical issues, and none of the sensors/hearables are medical

devices.

All devices/sensors used are commercially available and are used for their intended purpose,

that is, sensing/recording from human skin. The earplugs we use are also either commercial

viscoelastic earplugs or are made of a material which is intended to be used for earplugs or

sensing from human skin. Therefore, the proposed Hearables in-ear sensors combine these

earplugs and sensors, while maintaining their intended use/operation.

The study will involve a short arithmetic test, a light physical step exercise, facial expressions,

head movements, basic daily life activities (speaking, chewing, walking) and video simulations,

so no participants with a history of dyscalculia, cardiac disorders, or epilepsy will be recruited.

Similarly recording EEG requires a conductive gel to be applied to the skin, so to minimize the

risk of skin irritation, no participants with a history of sensitive skin will be recruited.

B.5 Mitigation of ethical issues

B.5.1 Collection of sensitive information

The aim of this study is to record vital signs and brain signals from participants to assess the

manifestation of cognitive load and stress in the recorded signals.
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To mitigate the ethical issues related to the collection of sensitive information, all collected

data will be pseudo-anonymised, such that the participants’ data, and resulting findings will

not be identifiable. In addition, participants can ask for their data to be withdrawn from the

study up until the collected data is pseudo-anonymised. If a participant requests to withdraw

from the study, their data will be removed from the study dataset.

B.5.2 Researcher in position of authority

The participants in this study will be recruited from the student population of Imperial College;

it is therefore highly probable that the participants may be undergraduate or postgraduate

students under the supervision or guidance of the researcher.

To minimise the pressure applied to the participant, care will be taken to ensure that the

Principal Investigator is not present during the recruitment and conduction of the experiments.

B.5.3 The potential to induce stress

The aim of this study is to assess the manifestation of stress in heart and brain signals, and stress

will be induced through the use of mental arithmetic tests, step-exercises, and temperature

variation (e.g. the cold-stressor test, where appropriate).

However, to ensure that the participants are not excessively stressed, the level of difficulty of

the mental arithmetic test will be matched to the participant’s ability, which will be estimated

from the participants course of study. The step exercise will also be low-intensity (walking

pace), while the cold stressor test includes putting a hand into a bucket of cold water.

B.5.4 Use of non-CE approved electronics

The custom electronics uses commercial sensors that are all low voltage (3.3V maximum) and

the systems have been designed in accordance with best practice and recommended circuits

from the sensor datasheets.
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B.5.5 Incidental findings

It is possible that abnormal heart activity or oxygen levels could be discovered during our

recordings, but this is not a medical investigation and thus we will not be exploring the subject’s

health. If any abnormality is found, the subject will be informed and then has the option to

request medical tests with their general practitioner. Care will be taken not to alarm or upset

the participant if a case such as this arises, as abnormal heart activity, such as arrythmia, is

very common (roughly 5% of the population) and benign in the vast majority of cases.

B.6 Mitigation of risks

1. Discomfort and skin irritability may result from the use of conductive gels or plasters for

participants with sensitive skin. To minimize this possibility, participants with sensitive

skin will not be recruited for the study. In addition, some modern EEG systems use salty

water or dry electrodes which do not irritate skin.

2. The study is non-invasive with low risk. Participants will be allowed to withdraw from

the study at any time should they feel uncomfortable. Participants with a history of

epilepsy will not be recruited in this study, as the experiments that present a video game

or simulation with flashing visual stimulus to the participant could pose a danger to

epileptics.

B.7 Confidentiality and Management of personal and

other research data

1. Personal data will be collected from all recruited participants.

2. Participants’ ID, age, sex, and recorded signals will be collected. The key linking the

subject ID and participant name will be maintained by a named researcher.

3. Personal data will not be shared outside the research team.

4. Data will be pseudo-anonymised such that only the assigned participant ID, age and sex

of the participant is known to the researchers.
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