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Abstract 

 

Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several 

physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires 

constant monitoring to perform medication and therapeutic adjustments. This is due to the significant 

variability in PD symptomatology and progress between patients. At the moment, this monitoring 

requires substantial participation from caregivers and numerous clinic visits. Personal diaries and 

questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity 

in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are 

required to better monitor the progress of individual PD patients. A potential contribution towards 

more objective monitoring of PD is clinical decision support systems. These systems employ sensors 

and classification techniques to provide caregivers with objective information for their decision-

making. This leads to more objective assessments of patient improvement or deterioration, resulting in 

better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively 

and regularly provide data for remote monitoring remains a significant challenge. To address this 

challenge, the goal of this thesis is to combine clinical decision support systems with game-based 

environments. More specifically, serious games in the form of exergames, active video games that 

involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. 

Exergames increase engagement while combining physical and cognitive tasks. This combination, 

known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized 

clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are 

equal or superior to those of traditional rehabilitation. 

 

In this thesis, we present an exergame-based clinical decision support system model to monitor 

symptoms of PD. This model provides both objective information on PD symptoms and an engaging 

environment for the patients. The model is elaborated, prototypically implemented and validated in 

the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand 

tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk 

of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and 

Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. 

In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and 

PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the 

risk of falling and the severity of tremor in comparison with clinical standards. We also explore the 

statistical significance and effect size of the data we collect from PD patients and healthy controls. We 

demonstrate that the presented approach can predict an increased risk of falling and estimate tremor 

severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In 

summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-

term randomized clinical trials are required to evaluate the potential of PDDanceCity and 

PDPuzzleTable for physical and cognitive rehabilitation effects.  
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Kurzfassung 

 

Parkinson’s Disease (PD) ist eine Krankheit, die durch neuronale Degeneration verursacht wird und 

auf verschiedene physische und kognitive Symptome zurückzuführen sind, die sich mit der Zeit 

verschlimmern. Wie auch bei anderen chronischen Krankheiten, ist aufgrund der signifikanten 

Variabilität der Symptomatik und des Krankheitsfortschritts zwischen Patienten eine ständige 

Überwachung notwendig. Dies geht einher mit einem hohen Betreuungsbedarf durch Pflegekräfte und 

zahlreiche Klinikbesuche der Patienten. Zur Erfassung der Daten für das Monitoring werden von 

Patienten geführte Tagebücher und Fragebögen eingesetzt. Jedoch sind diese Methoden subjektiv und 

es bedarf anderer Datenquellen, die ein objektives Monitoring der PD-Symptome und des 

Krankheitsverlaufs von PD-Patienten erlauben. Ein möglicher Beitrag zu einer objektiveren 

Überwachung von PD ist die Verwendung klinischer Entscheidungsunterstützungssysteme. Diese 

Systeme verwenden Sensoren und Klassifizierungstechniken, um Ärzt*innen und Therapiekräften mit 

objektiven Informationen bei notwendigen Entscheidungen zur Therapie zu unterstützen. Diese 

Systeme führen zu besser angepassten Therapieplänen und zu einer objektiveren Bewertung des 

Krankheitsverlaufs der Patienten. Die Notwendigkeit, Patienten zu ermutigen, für das Monitoring 

regelmäßig Daten bereitzustellen, bleibt jedoch eine bedeutende Herausforderung. Hierfür werden in 

der vorliegenden Arbeit Methoden und Konzepte erarbeitet, die klinische Entscheidungssysteme mit 

spielerischen Ansätzen verbinden: Serious Games in der Form von Exergames, d.h. Videospiele mit 

körperlicher Bewegung, sollen genutzt werden, um objektive Daten für das PD-Monitoring und 

entsprechende Therapiemaßnahmen zu liefern. Exergames erhöhen das Engagement der Patienten und 

kombinieren physische und kognitive Aufgaben. Diese Kombination, bekannt als Dual-Tasking, 

verbessert nachweislich die Rehabilitationsergebnisse bei PD. Darüber hinaus zeigen randomisierte 

klinische Studien für die Rehabilitation von PD mit Exergames Verbesserungen gegenüber üblichen 

traditionellen Therapie- und Rehabilitationsmaßnahmen.  

 

In dieser Arbeit stellen wir Methoden für ein Exergame-gesteuertes Modell eines klinischen 

Entscheidungsunterstützungssystems zur Überwachung der PD-Symptome vor. Dieses Modell liefert 

objektive Daten zu PD-Symptomen und bietet eine ansprechende Umgebung für die Patienten. Das 

konzipierte Modell wird prototypisch realisiert und anhand von zwei der wichtigsten PD-Symptome 

validiert: (1) Gang- und Gleichgewichtsstörungen (Gait), und (2) Handtremor und Verlangsamung der 

Willkürmotorik (Bradykinesie). Zur Erfassung von Daten für das Monitoring von PD-Symptomen 

nutzen wir Konzepte gegenwärtiger klinischer Standards (Unified Parkinson’s Disease Rating Scale) 

und verwenden zusätzlich Wii-Balance-Boards und Leap-Motion-Sensoren. Darüber hinaus 

präsentieren wir zwei Dual-Tasking-Exergames: PDDanceCity für Gait und PDPuzzleTable für 

Tremor. Wir validieren unser System hinsichtlich seiner Fähigkeit, das Sturzrisiko und die Schwere des 

Tremors im Vergleich zu klinischen Standards zu bewerten. Wir analysieren auch die statistische 

Signifikanz und Effektstärke der Daten von PD-Patienten im Vergleich zu gesunden Personen als 

Kontrollgruppe. Wir zeigen, dass der vorgestellte Ansatz ein erhöhtes Sturzrisiko erkennen und den 

Schweregrad des Tremors abschätzen kann. Zusätzlich zeigen Studien mit der Zielgruppe eine gute 

Akzeptanz von PDDanceCity und PDPuzzleTable. Insgesamt zeigen unsere Ergebnisse die technische 

Umsetzbarkeit des erarbeiteten Systems für PD. Zur abschließenden Bewertung des Potenzials von 

PDDanceCity und PDPuzzleTable für körperliche und kognitive Rehabilitationseffekte sind 

randomisierte Langzeitstudien erforderlich.  
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Previously Published Material 

This thesis contains material that has been previously published in scientific journals and conferences. 

Table 1 summarizes the relationship between these publications and the content of this thesis. No text 

in this document is directly copied out of the publications. However, figures and tables, particularly 

those that contain almost exclusively numeric data, have been replicated in this thesis. This is done in 

order to make correct use of the gathered data and previous results. A comprehensive list of all scientific 

publications of the author of this thesis is available in the section Publications at the end of the thesis. 

 

Scientific work usually is the result of a joint effort in a team. In particular in the context of this thesis, 

addressing an interdisciplinary research area tackling computer science and information technology in 

a medical context, the importance of interdisciplinary collaboration becomes obvious. Hence, all 

publications described below are the result of the collaborative work of electrical engineers, computer 

scientists, clinical psychologists, sports scientists, physiotherapists, and medical doctors. For this 

reason, the pronoun “I” will be used exclusively in this chapter, to describe the specific contributions 

of the author of this thesis to each publication. The contributions of co-authors, and their affiliations, 

are also described. Co-authors with no dedicated institution provided are (or were) colleagues at the 

Multimedia Communications Lab of the Technical University of Darmstadt. In the rest of this thesis, 

the pronoun “we” is used instead, referring to all co-authors of the respective publications. 

 

Chapter Publications 

Chapter 3, Related Work Garcia-Agundez et al. [92] 

Chapter 5, Design of an Exergame-based Clinical Decision 

Support System to Assess Balance 

Garcia-Agundez et al. [88, 91],  

Koch et al. [168],  

Becker et al. [20] 

Chapter 6, Design of an Exergame-based Clinical Decision 

Support System to Assess Tremor 

Garcia-Agundez et al. [93, 99] 

Chapter 7, Section Heart-rate Estimation Algorithm Garcia-Agundez et al. [90] 

Chapter 7, Section Blink-rate Estimation Algorithm Garcia-Agundez et al. [94] 

Chapter 8, Section Brain-Computer Interfaces Garcia-Agundez et al. [89] 

Chapter 8, Section Virtual Reality Garcia-Agundez et al. [95, 96, 98],  

Caserman et al. [34] 

 

Chapter 3, Related Work presents the results of our exploratory research into sensor-based approaches to 

monitor PD symptoms and exergame-based interventions in PD. This research was conducted to 

provide the requirement analysis for this thesis and was performed in the form of systematic reviews. 

In the case of sensor-based approaches to monitor PD symptoms, the results of our review have not 

been published separately to this thesis. I conducted this review with assistance from the theses of 

Gopal [114] and Srestha [291]. Concerning exergame-based interventions in PD, I identified numerous 

randomized clinical trials including control and intervention groups. This elicited a study of clinical 

outcomes and effect sizes in the form of a meta-analysis (i.e. a statistical analysis that combines and 

Table 1: List of publications in peer-reviewed journals and conferences related to this thesis 



4 

 

compares the result of multiple scientific studies [187]). This systematic review and meta-analysis was 

published in [92], in collaboration with clinical psychologists Dr. Ann-Kristin Folkerts and Prof. Dr. rer. 

nat. Elke Kalbe (University Hospital Cologne), and physiotherapist Mareike Goosses (University 

Hospital Cologne). I conducted this systematic review, receiving assistance from Elke Kalbe and PD 

Dr.-Ing. Stefan Göbel regarding methodology and choice of inclusion and exclusion criteria. Polona 

Caserman, Thomas Tregel, and Robert Konrad helped me verify that the technical details and my 

overall analysis were factually correct. Ann-Kristin Folkerts, Mareike Goosses and Elke Kalbe identified 

the most relevant clinical outcomes, and how to analyze their statistical significance. All co-authors 

contributed to writing the manuscript. Detailed results of these systematic reviews are available in 

Appendix B and Appendix C. 

 

Chapter 5, Design of an Exergame-based Clinical Decision Support System to Assess Balance, discusses the 

implementation of Chapter 4, Model for an Exergame-based Clinical Decision Support System, to design a 

system capable of assessing the risk of falling. The resulting system is a combination of a novel sensor 

based on Wii Balance Boards, called Extended Balance Board, and the exergame PDDanceCity. The 

original idea for the Extended Balance Board emerged from a discussion with Robert Konrad. It was 

designed in collaboration with engineers Florian Baumgartl, Fritz Kendeffy-Hermann and Hendrik 

Wunsch (m2m Germany GmbH) and published in [88]. The co-authors from m2m designed the board 

frame and the Acquisition Serializer Board, which receives the data from the Wii Balance Boards and 

sends them to a computer. With help from Robert Konrad, I designed the software that collects and 

processes data from the serializer board as a controller and input device. Stefan Göbel supervised the 

work and helped with the design, as well as with risk management and ethical considerations. 

PDDanceCity, a dual-tasking exergame designed to train balance and cognition, was developed from 

an original idea conceived by clinical psychologists Ann-Kristin Folkerts and Elke Kalbe, together with 

Robert Konrad. I improved PDDanceCity with support from Ann-Kristin Folkerts, Elke Kalbe, Robert 

Konrad, and Polona Caserman. Its gameplay was enhanced, adding numerous features, and I 

integrated difficulty adjustment and the Extended Balance Board control. This improved version of 

PDDanceCity was published in [91]. Stefan Göbel, as the main researcher and initiator of the 

PDExergames project [319], supervised the overall approach and contributed to the game design and 

the manuscript. PDDanceCity also received contributions from the B.S. theses of Rohlfing [272], who 

implemented a real-time data visualization tool, and Kanzler [149], who further improved gameplay. 

The evaluation of this system was presented in Becker et al. [20]. I designed the study protocol, and 

Hagen Becker conducted it in a nursing home in Darmstadt with my help. I then performed the data 

analysis with input from Philipp Niklas Müller and Thomas Tregel. Prof. Dr.-Ing. André Miede 

(University of Applied Sciences in Saarbrücken) and Stefan Göbel supervised the study design and 

conduction. The section Alternative Balance Assessment System of this chapter presents a data acquisition 

system alternative to the Extended Balance Board. This system was developed in a collaborative project 

together with sport scientists Dr. Cathrin Koch and Prof. Dr. Frank Hänsel (Sports Science Institute, 

Technical University of Darmstadt). The goal of this project was to develop a sensor-based back training 

rehabilitation system. Published and evaluated in [168], this system uses a combination of 

electromyography, smartphones, and a pressure plate to detect potential biomarkers in patients with 

affected gait and balance. I designed the technical aspects of this system with input and domain-specific 

support from Cathrin Koch, who performed the requirement analysis previously. Frank Hänsel and 

Stefan Göbel contributed with valuable ideas and suggestions for improvement. The evaluation of this 

Alternative Balance Assessment System did not reach statistically significant conclusions on the 
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validity of this approach. Hence, I decided to use the Extended Balance Board instead for the research 

presented in this thesis. 

 

Chapter 6, Design of an Exergame-based Clinical Decision Support System to Assess Tremor, introduces an 

implementation of Chapter 4, Model for an Exergame-based Clinical Decision Support System, to design a 

system capable of assessing hand tremor and dexterity. This system includes two components. The first 

component is an approach to digitalize the Unified Parkinson’s Disease Rating Scale (UPDRS) using 

the Leap Motion sensor, named Parkinson Assessment with Leap Motion (PALM) [99]. PALM was 

conceived and developed by me, with substantial interdisciplinary support. Physiotherapists Jens 

Westrich (Westrich Ergotherapeutic practice) and Mareike Goosses, clinical psychologists Elke Kalbe 

and Anne Drengner (SRH Klinik Heidelberg), neurologist MD Ph.D. Felix Javier Jiménez-Jiménez 

(Hospital Universitario del Sureste, Madrid), medical doctor and expert on clinical trials Dr. med. 

Jerome Servais (University Medical Centre Mannheim) and computer scientist Prof. Dr. Antonio 

Fernández Anta (IMDEA Networks Institute, Madrid) contributed to the overall design of PALM. 

Philipp Achenbach, Philipp Niklas Müller, and Hagen Becker helped me to design the data 

classification components of PALM. Stefan Göbel, as the main researcher of the PDExergames project 

[319], contributed to both the conception of PALM and ethical considerations. The second component 

is the dual-tasking exergame PDPuzzleTable, published in [93]. The game was conceived by me, in 

collaboration with Mareike Goosses and Elke Kalbe. I received technical support from Robert Konrad 

and Hagen Becker to implement PDPuzzleTable, which was also partially done as the B.S. thesis of 

Stork [302] and the Serious Games Lab Course of Ece et al. [65]. Stefan Göbel supervised this work. The 

evaluation of this system, to be published in [99] was planned to commence in March 2019. It was firstly 

delayed due to modifications required by the ethics committee prior to approval. After we finally 

obtained approval in March 2020, it was again delayed due to the COVID-19 pandemic. Nevertheless, 

this thesis includes an analysis of preliminary results. Jens Westrich supported me with patient 

recruitment and data acquisition and is an equally contributing co-author of this publication. Anne 

Drengner and Jerome Servais supported me with patient recruitment, and Stefan Göbel helped with 

ethical considerations. 

 

In Chapter 7, Additional Biosignal Modules, we present two biosignal acquisition algorithms that can be 

used in combination with the presented implementations to monitor further PD symptoms. The section 

Heart-rate Estimation Algorithm discusses a second biosignal monitoring algorithm, a smartphone-based 

photoplethysmographic (PPG) system capable of measuring heart-rate and heart-rate variability. 

Initially conceived by Dr.-Ing. Tim Dutz as part of his Ph.D. thesis [63], this algorithm was implemented 

by me with his help and supervision. Afterwards, with assistance from Stefan Göbel, I conducted an 

extensive evaluation and published our results in [90]. The section Blink-rate Estimation Algorithm 

explores possible biosignal monitoring systems to be included in the developed clinical decision 

support systems. After performing the requirement analysis of Chapter 3, it occurred to me that long-

term blink-rate monitoring may potentially contribute to better monitor PD patients in a non-invasive 

manner. For this purpose, I conceived a camera-based, non-invasive blink-rate detection system, 

published in [94]. This concept was implemented in the B.S. thesis of Ochs [234]. I supervised his work 

and implemented the signal processing components. Robert Konrad and Polona Caserman contributed 

to the application and helped us solve the technical challenges we faced during development. Stefan 

Göbel supervised the work and helped prepare the manuscript. 
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Chapter 8, section Brain-Computer Interfaces, describes one of the two game-based approaches as an 

alternative to exergames, which I explored in this thesis. Together with Eduard Dobermann, I designed 

a serious game controlled with a brain-computer interface (BCI), published in [89]. This publication is 

based on the M.S. thesis of Dobermann [60]. Eduard Dobermann implemented the system and 

performed a preliminary evaluation. I assisted and supervised his work and implemented signal 

filtering techniques. Stefan Göbel supervised this work and assisted in writing the manuscript. Our 

preliminary results, however, did not allow us to reach significant conclusions on the feasibility of the 

proposed approach.  

 

Chapter 8, section Virtual Reality, presents our findings in Virtual Reality (VR)-based approaches to 

game-based interventions for PD. We found significant potential in VR-augmented exergames to 

further increase user immersion and engagement. This would, in principle, provide a better choice than 

exergames for this thesis. However, we identified VR sickness, also known as cybersickness, as a 

significant challenge to implement this approach. Stefan Göbel and Sandro Hardy had the initial idea 

of implementing a sensor-based system to detect and monitor cybersickness. We conducted extended 

research on the nature of cybersickness and its potential solutions. This research included a systematic 

review and meta-analysis [34], which I conducted and published with Polona Caserman as an equally 

collaborating co-author. Alvar Gamez Zerban supported us in the choice of inclusion and exclusion 

criteria and the filtering of the initial results. Stefan Göbel contributed to the study design and 

manuscript. In [98], we explored the possibility of using polynomial extrapolation to reduce 

cybersickness. The idea for this solution came from a blog article by Steve Lavalle at the Oculus 

Developer Blog [180]. The implementation was performed in the B.S. thesis of Westmeier [337]. Polona 

Caserman, Robert Konrad, and Stefan Göbel assisted with the design and implementation. In [96], we 

discuss the possibility of using heart-rate variability to perform an initial discrimination of possible 

cases of cybersickness. This study was conducted by me, with technical advice from Dr.-Ing. Christian 

Reuter, Polona Caserman, Robert Konrad, and Stefan Göbel. Finally, this work culminated in the 

development of the cybersickness detection system presented in [95]. From an initial implementation 

published in the B.S. thesis of Boehning [24], we designed a system that implements the concept 

presented in Chapter 4 to detect possible cases of cybersickness. I designed and conducted the study 

with help from Hagen Becker, who developed the game with assistance from Robert Konrad and 

Polona Caserman. Christian Reuter assisted me with data classification, and André Miede and Stefan 

Göbel acted as advisors, providing input on the study protocol and design. 



7 

 

1. Introduction 

The prospects of an increasing proportion of the elderly population result in increased healthcare 

budgets. Eurostat expects the median age of European citizens to increase by 3.8 years by 2050, and the 

number of centenarians to raise to half a million by that date [69]. Inevitably, this aging will increase 

the prevalence of age-related disorders, such as neurodegenerative diseases [79, 126]. This is expected 

to raise costs for healthcare accordingly [68]. The problem of monitoring an increasing number of 

patients with age-related neurodegenerative disorders is aggravated by the fact that the amount of 

neurologists in Europe is far too low [56]. Hence, it is imperative to develop automated procedures that 

help diminishing costs while maintaining high-quality healthcare for elderly people. Cost containment 

can benefit from remote monitoring procedures using simple and inexpensive tests, both reducing the 

need of having patients to visit their neurologists in person, and enabling automated monitoring 

procedures.  

 

An additional problem with neurodegenerative diseases is the nature of the current methods used to 

monitor their progress. For example, in the case of Parkinson’s Disease (PD). PD is a common 

neurodegenerative disease, requiring constant monitoring to perform adjustments of pharmacological 

interventions, to assess risks, and to monitor its progress [200]. The clinical standard used till date to 

monitor its progress is the Unified Parkinson’s Disease Rating Scale (UPDRS) [108]. When a neurologist 

evaluates the severity of, for example, the hand tremor of a PD patient using UPDRS, they are requested 

to observe the patients while they perform a series of manual tasks (e.g., opening and closing their fist). 

The neurologist is then tasked with evaluating tremor severity, on a zero (no problems) to four (unable 

to complete the task) scale, through visual observation. However, the criteria to grade a tremor as a 

one, two, or three is considerably ambiguous. Regular UPDRS assessment is usually accompanied by a 

home diary [121], which inevitably includes the subjective view of the patient. It is a well-documented 

fact that this subjectivity and ambiguity introduces sensitivity and reliability problems [243]. The risk 

of misdiagnosis and late diagnosis in PD is also commonly mentioned [212]. Furthermore, the 

relationship between PD and coexisting neurodegenerative diseases that present very similar 

symptoms, and how to effectively distinguish them, is not yet really understood [137]. 

 

A potential solution to this problem is to use health information technologies, in the form of sensors 

and classification techniques, which provide more objective assessment methods. These technologies 

are proven to increase the quality and cost-efficiency of medical care [41]. Sensors, unlike traditional 

assessment methods, can continuously collect rich, objective physiological data from users. The 

scientific community has already been aware of the potential role of these sensors for monitoring and 

diagnosis [192].  

 

The use of sensors and classification techniques in health information technologies has led to the 

conception of clinical decision support systems. These systems are technological creations designed to 

support clinicians in decision-making tasks, by providing them with richer data as a basis for 

therapeutic options and decisions [225] (Figure 1). For example, these systems have been successfully 

implemented in early cancer detection [175] and post-operatory complication prediction [217]. 
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The success of clinical decision support systems depends on a number of factors other than predictive 

accuracy, such as minimizing user-provided data or involving caregivers in the development process 

[38]. This presents a twofold problem. On the one hand, it is important to collect as much relevant data 

as possible to maximize prediction accuracy. On the other hand, this should be done without being 

unnecessarily intrusive to the patient, particularly if the system is intended to be used by outpatients 

at home regularly. This means that data collection should occur in the background whenever feasible, 

and active participation, if needed, should be as engaging as possible. 

1.1. Motivation for Exergame-based Clinical Decision Support Systems 

To address the current limitations of clinical decision support systems, a reasonable possibility is to 

incorporate serious games into the formula [287]. Serious games are videogames with an additional 

goal beyond entertainment. For example, serious games that require and encourage users to perform 

physical exercise are called exergames. The use of exergame-based interventions in PD has already been 

successfully explored [92]. Recent randomized clinical trials have compared the outcome of using 

exergame-based rehabilitation with traditional rehabilitation, which is usually traditional physical 

exercise. Preliminary results indicate that when the exergames are specifically developed to address 

the physical needs of PD patients, results are at least as positive as with traditional rehabilitation. An 

additional advantage has also been observed: exergames also improve the patient’s cognitive skills to 

an extent [235]. This is also reflected in previous research: physical rehabilitation has been observed to 

improve cognition in PD patients [127], and cognitive training has been observed to improve physical 

symptoms [333]. As such, exergames seem to be an ideal method to implement this combination of 

cognitive and physical rehabilitation, also known as dual-tasking [261]. 

 

Although exergame-based interventions seem to be ideal for PD patients, the potential for a clinical 

decision support system to gather data from these exergames to monitor the progress of PD is yet 

to be explored. Usually, the effectiveness of exergame-based interventions is measured by 

traditional and potentially subjective PD assessment methods. However, the potential for clinical 

decision support systems to monitor PD symptoms has been analyzed by different researchers [50, 

211, 318, 334]. For this reason, designing clinical decision support systems that collect data from 

these exergame-based interventions, and using them to monitor the patients, is a very promising 

approach. By using an exergame-based clinical decision support system, data could be collected in the 

Figure 1: Role of a clinical decision support system 
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background while the user is playing, providing the caregiver with meaningful clinical information. 

The exergame could add the necessary attractiveness to trigger and motivate the user into using the 

system as often as the data collection procedure requires, without the need for cueing users to do so. 

Similar approaches have been suggested in the past, but have not yet been explored in detail [171, 292]. 

Based on this situation, we have defined the following research gap that this thesis aims to cover: 

 

Research gap. The feasibility of developing exergame-based clinical decision support systems that can objectively 

monitor the symptoms of chronic diseases, as well as the potential benefit of these systems for the patients, is yet 

to be explored. To address this gap, this thesis proposes an abstract approach for a clinical decision 

support system used to monitor a chronic disease that uses exergames for data acquisition. The goal of 

this thesis is also to implement this model with the example of PD and validate the outcomes of this 

implementation in comparison with standard PD clinical outcomes. 

1.2. Research Challenges 

To explore this research gap, we aim at developing a model for an exergame-based clinical decision 

support system. We identify the following challenges that influence the design and potential success of 

this system. 

 

Challenge: Identifying, conceiving, and implementing viable sensors that can be used both as control devices for 

exergames and to provide clinically meaningful data. Designing a sensor-based environment that can be 

used to monitor a certain symptom of a chronic disease is a task that must be performed on a case-by-

case basis. First, it is necessary to understand the nature of the symptom, how it physically manifests, 

and whether this manifestation can be objectively measured with a sensor. If this is possible, the sensor 

chosen (or designed) to monitor this symptom must also function as a control device to operate an 

exergame. We chose to focus this thesis on PD because it is the second most common neurodegenerative 

disease after Alzheimer’s disease [183], and presents well-known and well-identified physical 

symptoms. In addition, as discussed, its current assessment standards show subjectivity and reliability 

problems [243]. The most important physical symptoms caused by PD are also known as “cardinal 

signs.” These cardinal signs are resting tremor, rigidity, bradykinesia (slowness of movement), and 

postural instability (balance affection, leading to falls) [200]. In parallel to physical symptoms, PD also 

presents a progressive cognitive degeneration [226]. In both cases, these symptoms present significant 

interindividual variability [200]. For this thesis, we chose to focus on two of these cardinal signs: balance 

and hand tremor. We chose these two symptoms in agreement with medical partners because they can 

be measured with sensors, they have no correlation among themselves (other than being symptoms of 

PD) and are measurable with the minimal personal information possible. 

 

Challenge: Designing dual-tasking exergames that permit the acquisition of clinically meaningful data while 

being attractive to the target population. Once a viable symptom-sensor combination has been identified, 

an exergame must be designed around the data acquisition process. If this data acquisition requires 

active participation (e.g., performing a certain movement in a certain way), the exergame must 

incorporate this participation as part of its control pattern. In addition, the exergame must offer 

attractiveness and engagement, using the data to adapt the difficulty and ensuring that patients are 

willing to use the system over a long period and thus clinically meaningful data can be collected in this 

manner. 
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1.3. Research Goals 

The main objective of this thesis is to conceive, design and implement an exergame-based clinical 

decision support system capable of assessing the risk of falling and the severity of hand tremors of PD 

patients. We divide this objective into two main research goals, and two secondary research goals:  

 

Research Goal 1. Design an exergame-based clinical decision support system capable of assessing the risk of 

falling. To achieve this goal, we employ an array of synchronized Wii Balance Boards. This system, 

called Extended Balance Board, allows us to evaluate balance while standing and walking [88]. We 

implement classification features used to determine potential instability, based on information about 

the player’s center of mass. We also present PDDanceCity [91], a dual-tasking exergame designed to 

train balance and cognition, that drives this system. Finally, we evaluate the capability of this system 

to predict if a player has an increased risk of falling based on the result of the so-called 30-Second Sit to 

Stand Test [20]. The materials and methods developed to achieve this goal are described in Chapter 5. 

We also implemented an approach alternative to the Extended Balance Board in the section Alternative 

Balance Assessment System [168] for comparison. The implementation of this system represents the proof 

of concept of the model presented in this thesis to monitor the risk of falling. 

 

Research Goal 2. Design an exergame-based clinical decision support system capable of assessing hand tremors. 

We achieve this goal by using Leap Motion sensors. First, we develop a data acquisition and signal 

processing framework capable of extracting clinically meaningful data from a series of hand 

movements similar to the ones performed in the UPDRS test. We call this framework Parkinson 

Assessment with Leap Motion (PALM) [99]. We also design a dual-tasking exergame based on hand 

movements similar to those of the UPDRS test, entitled PDPuzzleTable, which also includes cognitive 

exercises and thus dual-tasking [93]. Finally, we evaluate the system in its capability to correctly 

discriminate PD patients from healthy controls. We chose the Leap Motion sensor because of its non-

invasive nature since users do not have to wear any device on themselves. However, there are 

numerous other potential approaches to objectively assess hand tremors. These approaches are 

described in the section Assessing Resting Tremor and Appendix B. The implementation of this system 

represents the proof of concept of the model presented in this thesis to monitor hand tremors. 

 

Secondary Goal 1. Explore the possibility of monitoring additional relevant PD symptoms continuously as part 

of the developed systems. We consider the possibility of implementing the monitoring of two additional 

relevant PD symptoms into the developed systems: (1) heart-rate changes and (2) blink-rate alterations. 

We chose these two symptoms because they can be monitored non-invasively and as part of the concept 

presented in Chapter 4, and are also relevant to PD as described in Chapter 3. For this purpose, data 

acquisition should occur in the background without active participation from the patient whenever 

possible. We present two novel non-invasive biosignal acquisition algorithms in Chapter 7. The accuracy 

of these algorithms has also been evaluated. However, their potential use in PD would require 

acquiring data from the users on a long-term basis (years), and as such, they are not presented as one 

of the main components of this thesis. 

 

Secondary Goal 2. Explore alternative game-based interventions in PD other than exergames. We also study 

the possibility of using two alternative game-based interventions in PD other than exergames: Virtual 
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Reality (VR), and Brain-Computer Interfaces (BCI). Our initial research and preliminary results did not 

elicit designing exergames with these approaches. The results of our analysis are included in Chapter 8. 

1.4. Structure of the Thesis 

This thesis is structured in nine chapters. All chapters include a brief summary of the content at the 

beginning. The section Previously Published Material describes the scientific publications that comprise 

the content of this thesis, and the contributions of the author to these publications. Chapter 1, 

Introduction, describes the motivation behind this thesis and its research challenges and goals. Chapter 

2, Foundations, provides a description of the background for this research: serious games, telemedicine, 

and clinical decision support systems. A description of PD and UPDRS is included in Appendix A. 

Chapter 3, Related Work, describes the summarized results of two systematic reviews on related work 

that comprise our requirement analysis, while further details of these reviews are provided in Appendix 

B and Appendix C. Chapter 4, Model for an Exergame-based Clinical Decision Support System, presents our 

formalized model to achieve the goals of this thesis, with additional design details included in Appendix 

D. This model is then implemented for two different scenarios in Chapter 5, Design of an Exergame-based 

Clinical Decision Support System to Assess Balance and Chapter 6, Design of an Exergame-based Clinical 

Decision Support System to Assess Tremor. Additional experimental details for these two implementations 

are provided in Appendix E and Appendix F. This implementation is complemented by two biosignal 

acquisition algorithms presented in Chapter 7, Heart-rate Estimation Algorithm and Blink-rate Estimation 

Algorithm. We discuss two alternative game-based approaches to exergames in Chapter 8, Brain-

Computer Interfaces and Virtual Reality. Further experimental details for these two chapters are included 

in Appendix G and Appendix H. A summary, including an outlook and potential future work, is 

presented in Chapter 9, Summary, Conclusions and Future Work. The two final appendices are Appendix I, 

List of Acronyms, and Appendix J, Supervised Student Theses. This thesis also includes a list of Publications 

of the author and his Curriculum Vitae.
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2. Foundations 

In this chapter, we present a brief background to the topics that comprise the design of exergame-based 

clinical decision support systems as motivated in Chapter 1. We start with an introduction into serious 

games and exergames, their current challenges, and fields of research. This is followed by a definition 

of the concept of remote patient monitoring. A general description of clinical decision support systems 

follows. A medical description of PD, its symptoms, and its assessment methods can be consulted in 

Appendix A. 

2.1. Serious Games and Exergames 

Serious games are digital interactive applications created with a main purpose beyond entertainment, 

called its “characterizing goal.” This implies that serious games are intended both to be entertaining 

and to fulfil another goal, such as a learning effect or a behavioral change in nutritional habits [61]. In 

particular, serious games with the characterizing goal of improving physical health are called exertion 

games or, for short, exergames [61] (Figure 2). 

 

Exergames

Gaming 
Fun

Sensors 
Mechanics

Sport 
Health

 

 

Serious games provide an approach that is of interest in a broad spectrum of application sectors, 

ranging from education [213], game-based learning [336], and particularly its collaborative aspects 

[267], to social awareness (energy, climate, security, etc.) or health. The healthcare arena is a main 

application domain of serious games [61]. For example, Göbel et al. [106] explored the role serious 

games play in interaction techniques, sensor-based monitoring systems, and the acquisition of 

biosignals. In their opinion, these vital signs and sensor data can be directly employed in personalized 

exergames, following the Monitoring, Analysis, Planning and Execution Loop [10]. Gameplay and the 

vital status of users are recorded, analyzed and interpreted, and the game is adapted accordingly. This 

becomes particularly useful when the skills and characteristics of users are expected to have significant 

interindividual variability, as is the case with PD. Here, adaptive exergames allow dynamic difficulty 

adaptation both for cognitive and physical exercises in PD rehabilitation programs.  

 

In recent years, a number of challenges have been identified and addressed in the field of serious games 

in general and adaptive exergaming in particular [105]. Researchers focus on the importance of 

adaptation, particularly if the target population has disabilities [339]. The importance of creating 

pervasive interventions [64], particularly how to improve adherence with data-based approaches to 

trigger users at the right moment, is explored in the Ph.D. thesis of Dutz [63], following the basic 

Figure 2: Contributing elements in the field of exergames, derived from [120] 
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principles of Fogg [81]. The importance of the impact of exergame-based interventions, as well as the 

perceptions users have of this impact, has also been identified as a relevant factor [70]. Concerning data 

analysis, multimodal analytics methods should be applied to adaptive exergames, since different 

streams of data of a very diverse nature (i.e. video, audio, sensor data and biosignals) are to be expected, 

as discussed in Shoukry et al. [284]. 

 

In the present thesis, we incorporate these recent advances by ensuring that our exergames are adapted 

to the individual characteristics of our users. We also ensure that our exergames offer varying degrees 

of physical and cognitive difficulty, which can be adjusted based on game performance as measured 

by data extracted from the game itself. 

2.2. Remote Patient Monitoring and Telemedicine 

Broadly, telemedicine is defined as the use of communication technology to provide healthcare 

remotely [128]. This may refer to the use of remote audio or video communications, or other 

technological means, to perform physician consultations, diagnose potential diseases (screening), or 

monitor existing ones (patient monitoring). A simple sensor-based telemedicine system can consist, for 

example, of a device that measures heart-rate, blood pressure or blood glucose levels, and sends these 

to a physician or caregiver continuously. The main advantage of these systems is that they provide 

clinically meaningful information with a frequency that is unachievable with a traditional approach 

(i.e. weekly clinician visits). A subset of particular interest in remote patient monitoring is the use of 

mobile technologies, such as smartphones. This is commonly defined as mobile health or mHealth [97, 

208]. mHealth presents the additional advantage of combining the sensors and communication device 

in a single, ubiquitous system. Almost half of the worldwide population owns a smartphone [233, 249], 

which means there are 3.5 billion potential remote patient monitoring devices at this moment. The 

interest of patients in using telemedicine is also growing. For example, Teladoc, an industry leader in 

telemedicine, regularly reports a yearly increase in patient visits above 70 percent [310], which further 

increased to 90 percent in the midst of the COVID-19 pandemic [311]. 

 

The main research areas in telemedicine, other than practical implementations, are reliability and 

privacy. The introduction of blockchain [344], and of 5G and edge computing [134], are potential 

solutions to these problems. Sensor fusion and data quality assessment techniques [216] are also 

relevant. The onset of COVID-19 and stay-at-home orders have accentuated the need for implementing 

functional telemedicine strategies [17, 128, 236, 344].  

 

In the specific example of PD, many assessment tests can be administered remotely, and could be 

significantly improved by technical means. In fact, studies exploring the feasibility of including 

telemedicine as part of PD monitoring indicate substantial interest, particularly for early PD and 

patients with long commutes [259]. The PDExergames project [319], in the framework of which many 

of the methods of this thesis have been elaborated, considers PD as a potential application scenario for 

exergame-based remote patient monitoring.  

2.3. Clinical Decision Support Systems 

A clinical decision support system is a technical tool that provides medical practitioners with an 

additional stream of information on which to base clinical decisions [28]. Clinical decision support 

systems provide numerous advantages: they can increase the quality and efficiency of health care and 
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reduce the occurrence of errors [28]. Broadly, a clinical decision support system usually consists of two 

elements. The first element is a medical data source, for example a patient who has recently received 

major surgery. From this medical data source, technical data are derived. Following this example, vital 

signs such as heart-rate, heart-rate variability, blood pressure, and blood oxygen saturation, may be 

collected. These technical data are then processed into features, that is, curated data that contain 

information pertinent to the classification problem. The features are then employed by the second 

element: a classifier algorithm (e.g., a neural network). The output of this classifier, whose accuracy 

depends on the technical data, is then translated into clinically relevant information. Continuing this 

example, this information could provide valuable knowledge about the potential risk the patient has of 

developing post operatory complications [217] (Figure 3). 
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From a medical perspective, the taxonomy of clinical decision support systems can be determined by 

their setting. Different systems are used for screening, diagnosis, treatment, drug dosing, test ordering, 

chronic disease management and health related behaviors. According to this taxonomy, most clinical 

decision support systems are used for either screening, drug dosing, or chronic disease management, 

the latter of which is the case in this thesis [225].  

 

From a technical perspective, clinical decision support systems represent the use of novel computer 

science and electrical engineering methods in health information technology. These methods include 

natural language processing, outlier detection, other classification algorithms, sensor technologies, and 

novel signal processing techniques. Clinical decision support systems contribute to diminish paper 

medical records, speed up diagnostic procedures, and help sift vast amounts of information that would 

otherwise be incomprehensible [225]. This provides new medical technology methods which improve, 

refine or outperform the previous ones. In this sense, clinical decision support systems are, as described 

in [225], at the heart of a “learning healthcare system.” Novel clinical decision support systems improve 

how professionals care for patients, these improvements are recorded, and new treatment and 

diagnosis standards are established. Based on these results, improved medical outcomes set a new 

scenario in which to implement novel clinical decision support systems, thus continuing the cycle.  

 

The main challenge clinical decision support systems face is their slow implementation. In [38], Castillo 

et al. discuss numerous factors that may be taken into consideration when addressing this challenge. 

In this thesis, we involve caregivers in the design process and aim to reduce user-entered data to a 

minimum. In addition, we aim to provide further evidence that clinical decision support systems are 

effective in providing objective conclusions that highly correlate with traditional assessment scales and 

clinical standards.  

Figure 3: Model of a clinical decision support system, presented in [217] 
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3. Related Work 

Having presented an overview of the foundations for this thesis in Chapter 2, in this chapter we study 

recent publications related to this thesis. Related work primarily concerns two domains: sensor-based 

monitoring of PD symptoms, and exergame-based PD interventions. We conducted systematic reviews 

in both areas. In the first section, we focus on the symptoms related to the goals of this thesis: balance 

and gait, hand tremors, and the effect of bradykinesia in hand dexterity. We also discuss other 

symptoms such as blink-rate and heart-rate affections, which could potentially be monitored with the 

system presented in this thesis. This work was performed partly as student theses [114, 291]. Numerous 

studies indicate the possibility of monitoring many symptoms of PD with technical, objective means. 

This is particularly the case with balance and resting hand tremor. The Leap Motion sensor has great 

potential for this specific purpose. Appendix B includes further details of this review. In the second 

section, we analyze recent studies on exergame-based interventions in PD with the goal of 

rehabilitation. We identified several clinical trials, which elicited a meta-analysis [187] of their results. 

This work was published as an article in the Journal of Neuroengineering and Rehabilitation [92]. These 

clinical trials have proven the feasibility of exergame-based PD rehabilitation. Preliminary results show 

this rehabilitation to be as effective as traditional rehabilitation. However, limited sample sizes suggest 

that further, more comprehensive trials are required. Studies indicate the importance of task specificity 

(developing exergames targeted towards the cognitive and physical domains of PD) and using 

standard outcomes, such as the UPDRS. Details of this meta-analysis are provided in Appendix C. This 

section also discusses alternative approaches to exergames that we explored. We developed two 

systems using these alternatives, described in Appendix H. 

3.1. Sensor-based Approaches to Monitor Symptoms of Parkinson’s Disease 

PD patients monitor the evolution of their symptoms with the help of a diary of motor symptoms 

[258]. Though helpful, this diary may lack sensitivity and objectivity. In recent years, numerous 

studies aiming towards objective, sensor-based alternatives have been produced. To analyze related 

work in this area, we performed a systematic review search for studies published in the PubMed 

database, from January 1, 2010 to June 29, 2017 (the date of the last search). We conducted our analysis 

using the final search string: “Sensor* OR Wearable* AND Parkinson*.” An asterisk represents all words 

that contain the character, regardless of termination. 

 

This search yielded 3062 results at the last query. Inclusion criteria were articles concerning a sensor-

based approach to monitor a motor PD symptom. The exclusion criterion was articles not including 

an evaluation on PD patients attempting to predict a clinical outcome (2886 exclusions). This review 

was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines [221]. These criteria yielded 156 articles. We selected the articles in 

regard to their measurement approach and performance. The survey was completed by analyzing 

publications referenced by those articles. After conducting this review and while implementing our 

approach, we identified and included 20 additional publications. We found a number of studies 

discussing the use of the Leap Motion sensor to monitor tremors and bradykinesia, especially from 

2018 onwards. The complete results of this systematic review are provided in Appendix B. We 

summarize the main outcomes of this review for each symptom as follows. 
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Assessing Balance and Gait 

PD affects both balance and gait in different ways. The main risk postural imbalance poses for PD 

patients is an increased risk of falling. Recent studies suggest that more than half of PD patients 

experience falls, and one fourth will fracture their hip due to falling. Higher UPDRS scores are main 

predictors for this risk. A decay in the effectiveness of levodopa, a dopamine replacement drug for 

PD treatment [86], also plays a role. Patients with mostly nondopaminergic symptoms do not seem 

to experience this risk [12]. This means that PD patients on levodopa are at increased risk of falling, 

and this risk increases as the disease advances. Thus, falls are relevant to monitor the state of PD 

patients, especially those with advanced PD in nursing homes. Both wearables and smartphone 

applications capable of detecting falls are currently available, non-invasively detecting falls with high 

accuracy [334]. The Microsoft Kinect sensor has also been identified as a potential monitoring solution 

[248, 297, 298, 307] as well as a fall detection system [301]. 

 

The possibility of using pressure plates, such as the Wii Balance Board, to estimate fall risk has also 

been identified [305]. Since these plates can be used to control exergames, these studies are closely 

related to this thesis. The Wii Balance Board has been shown to accurately distinguish between elderly 

people who fell in the past and others who did not based on center of pressure data [215]. Researchers 

also report that there are differences in the way users with increased risk of falling interact with the Wii 

Balance Board [342]. These studies are summarized in Table 2. 

 

Reference N Cohort Features Goal Results 

Mertes et 

al. [215] 

12 Healthy 

elderly 

Center of 

pressure data 

Classify between fallers 

and non-fallers 

76.6% Classification 

accuracy using Support 

Vector Machines 

Yamada et 

al. [342]  

45 Healthy 

elderly 

Wii Fit Game 

scores (Basic 

Step and Ski 

Slalom) 

Correlate game 

performance with fall 

history and find 

differences in fallers 

Significant differences 

(p<.001) and moderate 

correlations (r=0.69) 

 

Another gait affection in PD is freeze of gait. It is a sudden but temporary halt of the patient’s gait 

despite an intention to walk that affects approximately 50% of PD patients, especially men and those 

with advanced PD. It depends on the environment, and is thus difficult to reproduce in laboratory 

conditions. Freeze of gait severely impairs quality of life and also causes falls. These gait alterations 

seem to be related to cognitive deterioration [103], but are dopaminergic in nature and therefore 

normally, but not exclusively, appear during OFF periods (periods where levodopa is not working). 

Freeze of gait episodes can be detected by measuring foot ground reaction or ankle acceleration. In 

this second case, an episode can be detected if the spectral density in the 3-8 Hz band outranges a 

certain threshold. This is of particular interest, since it is the same frequency band that PD tremor is 

present at, as described in the section Assessing Resting Tremor. Recent studies predict episodes of 

freezing of gait using this method [16, 211]. However, they mention that this symptom shows 

significant interindividual differences. The possibility of using commercial gait sensors, such as gait 

analysis running wearables, is as yet unexplored. In Chapter 5, we study the possibility of using an 

array of Wii Balance Boards to this end.  

Table 2: Recent studies predicting balance skills with Wii Balance Board data 
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Once detected, possible solutions to reduce the impact of freeze of gait have been studied, including 

rhythmic or musical cues. Visual or somatosensory cues do not seem to produce any improvement 

[16]. The best cue seems to be a rhythmical metronome ticking sound with a rate slightly higher than 

the patient’s usual pace. In a limited study with 10 PD patients, users of such a system subjectively 

reported less and shorter episodes, and indicated that such a device would improve their quality of 

life. The users were annoyed when the cueing system activated itself too frequently, while users with 

low sensitivity requested more frequent activations. However, no field study has been performed so 

far confirming the effectiveness of such a system in reducing symptoms [16]. In fact, no studies have 

shown that such a system reduces the frequency or duration of freezing of gait episodes. Nevertheless, 

such a system could potentially be implemented in an exergame-based scenario. 

Assessing Resting Tremor 

Parkinsonian tremor is a resting, pill-rolling movement. It is typically present in the 3-7 Hz frequency 

range, has an amplitude higher than 0.1 mV, and a burst duration of 50 to 150 ms [219]. This tremor 

can be measured by placing a smartphone in the dorsum of the hand or using an armband. A detailed 

list of recent approaches towards accurately measuring tremors using smartphones and wearables is 

provided in Appendix B. 

 

Diseases different than PD also cause hand tremors. Differences in the nature of parkinsonian and, 

for example, essential tremor, would benefit from technology-based differentiation to reduce the 

misdiagnosis ratio. This can be done by evaluating data extracted from physical exercises or with 

electromyography [254]. Recent studies show that measuring tremor using an accelerometer for 60 

seconds can be used to distinguish essential from parkinsonian tremor with an accuracy of over 90% 

[341]. This accuracy can be increased by recording tasks such as arm and hand movements [312]. 

 

Some technical designs also suggest the possibility of analyzing tremor non-invasively by using a 

hand control computer input device [117]. This would not require the user to wear the device. There 

are several options, such as glove-based solutions or infrared cameras. Although glove-based 

optoelectronic systems are believed to be more accurate [75], there are commercial off-the-shelf infrared 

cameras such as the Leap Motion sensor, which are more cost-effective [182, 245]. Using the Leap 

Motion sensor to monitor tremors and control exergames has shown promising results. The sensor is 

capable of detecting hand tremors [14, 42] and gestures [102]. Authors report increases in compliance 

and immersion when using the Leap Motion sensor in comparison to other therapies [9, 102]. Other 

studies indicate the potential of using the Leap Motion sensor to digitalize standard hand dexterity 

assessment tests [227]. However, the authors also indicate the importance of keeping the recording 

periods short [238]. 

 

The Leap Motion sensor can accurately measure low-frequency, high-amplitude tremors [164]. 

Concerning feature extraction, detecting halts and alterations in speed and acceleration are important 

factors [144, 277]. This is possible by using standard analysis features such as peak detection, analysis 

of averages, standard deviations, and amplitudes [42]. We identified a number of recent studies using 

the Leap Motion sensor to classify PD patients and controls and to estimate the severity of tremors, 

which is closely related to the goal of this thesis. A summary of these studies is presented in Table 3. 
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Preliminary results show high accuracy when using the Leap Motion sensor to classify PD patients 

and controls. 

 

Reference Device N Features Goal Classifier Results 

(accuracy, 

sensitivity, 

specificity) 

Johnson [139] Leap Motion 30 Time- and 

frequency-

domain 

features 

Classify 

PD/Controls 

Support 

Vector 

Machine 

0.85,0.75,0.95 

Butt et al. [30] 

(results are not 

separated between 

tremor and 

bradykinesia) 

Leap Motion 28 Time- and 

frequency-

domain 

features 

Classify 

PD/Controls 

Support 

Vector 

Machine 

0.82,0.76,0.87 

Vivar-Estudillo et 

al. [330] 

Leap Motion 40 Statistical 

features 

Classify 

PD/Controls 

Bagged 

Tree 

0.99,0.98,0.99 

Lugo et al. [202] Leap Motion 33 Time-

domain, 

statistical and 

entropy 

features 

Predict 

UPDRS III 

scores 

Not 

specified 

0.76,1.00,0.57 

Kostikis [173] Smartphone 25 Time-domain 

features 

Predict 

UPDRS-III 

scores 

Random 

Forest 

0.90,0.82,0.90 

Manzanera [209] Accelerometer 14 Frequency-

domain 

features 

Detect 

tremor 

episodes 

Welch 0.98,0.69,0.98 

 

Bradykinesia and dyskinesia 

Bradykinesia (slowness of movement) and dyskinesias (uncontrolled movements) are very 

characteristic symptoms of PD. Shorter steps, feet dragging and slower movements when performing 

daily living activities are all part of bradykinesia. In [258], the authors used wrist and ankle motion 

sensors to monitor bradykinesia and dyskinesia to identify ON and OFF periods. The collected 

metrics agreed with blind clinician ratings, and their estimations correlated well with UPDRS scores 

(r=0.81). This approach was further improved in [130]. 

 

Bradykinesia also affects hand dexterity. The UPDRS test includes three tasks designed for evaluating 

this effect (see Universal Parkinson’s Disease Rating Scale). We identified four studies that study the 

possibility of using the Leap Motion sensor to assess hand-dexterity, presented in Table 4. Based on 

these findings, we conclude that combining tremor and bradykinesia assessment should provide very 

accurate results when attempting to classify PD patients and controls. Recent studies indicate that 

speed-related features provide the most relevant information. However, attempting to predict task-

specific UPDRS scores remains a challenging issue. 

Table 3: Recent studies on Leap Motion sensor-based tremor assessment. A smartphone and 

conventional accelerometer approach are provided for comparison 
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Reference N UPDRS 

Task 

Leap Motion 

features 

Goal Result 

Çakmak et al. [31] 24 Finger 

tapping 

Local minima and 

maxima of the 

distances between 

thumb and index 

finger 

Correlate 

features and 

UPDRS 

scores 

Speed features provide 

best predictions, 

moderately accurate 

results (r=0.56) 

Lee et al. [185] 8 Finger 

tapping, 

fist closing, 

pronation-

supination 

Angular 

displacement of the 

palm, 

median cosine angle 

between palm and 

intermediate 

phalanges, 

Euclidean distance 

between thumb and 

index finger 

Correlate 

features and 

UPDRS 

scores 

Speed features provide 

best predictions,  

strong correlations 

(r=0.86) between chosen 

features and neurologist 

assessment 

Butt et al. [30] 

(results are not 

separated between 

tremor and 

bradykinesia) 

28 Finger 

tapping, 

fist closing, 

pronation-

supination 

Palm angle, 

fingertip distance, 

fingertip velocity, 

frequency-domain 

features 

Correlate 

features and 

UPDRS 

scores 

Low correlations, but 

large effect sizes 

between healthy and 

controls for pronation-

supination task (cohen’s 

d=1.3) 

Ferraris et al. [74] 57 Finger 

tapping, 

fist closing, 

pronation-

supination 

Time and 

frequency-domain 

features  

Classify PD 

and controls 

Predict 

UPDRS 

scores 

PD/control classification 

accuracy 98.97%, 

prediction of task-

specific score accuracy 

of 76.71% for tapping, 

66.21% for opening, 

58.87% for pronation-

supination 

Depressed Sympathetic and Parasympathetic Cardiac Activity 

Many PD patients present cardiac sympathetic denervation, particularly those with muscular rigidity 

and bradykinesia [109]. 20% of PD patients also suffer parasympathetic dysfunction that evolves into 

orthostatic hypotension [282, 325]. These dysfunctions are separate consequences of PD [119]. In 

theory, both could be monitored with heart-rate variability parameters such as the standard deviation 

of N-N intervals [57, 118, 147, 322]. Heart-rate variability alterations are a known risk factor for 

cardiovascular mortality [327]. These data could be acquired with photoplethysmography (PPG) 

[281].  

 

PPG can detect heartbeats by analyzing changes in skin color. A smartphone can capture PPG signals 

by using the LED flash as a source of light and the camera as photoreceptor, when the user places their 

finger over the camera lens. The possibility of using smartphones for PPG has been previously 

discussed [87, 115, 116, 140]. This procedure can also be used to monitor blood pressure [39] and oxygen 

saturation [33]. If one were to extract frames from videos captured with the smartphone camera, for a 

given resolution, three values per pixel are captured (red, green and blue). Typically, PPG uses the 

green channel [198] since hemoglobin reflects most light in this wavelength. However, other  channels 

should also be considered [326], since the green channel becomes useless if ambient light is low [176]. 

Table 4: Recent studies on Leap Motion sensor-based PD bradykinesia assessment 
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Smartphone cameras have been proven to accurately measure heart-rate at 30 Hz [250]. However, 

theoretically, a sampling rate of 200 Hz is required for heart-rate variability [331]. The possibility of 

using cubic spline interpolation, bandpass filtering [6] and signal derivatives has been discussed [66]. 

In this context, we found a limited number of studies comparing smartphone-based PPG with the gold 

standard, electrocardiography (ECG). 

 

Blokhovsky et al. [25] conducted a comparison between ECG and PPG in 22 participants, using both 20 

and 30 Hz smartphone cameras. They found correlations between 0.72 and 1, citing low framerates as 

the main issue. Peng et al. [244] compared sixteen heart-rate variability features between ECG and PPG 

in 30 users, obtaining correlations between 0.7 and 1, stating motion artifacts as the main confounder. 

Both authors mentioned manually editing signals in case heartbeats were skipped. In this thesis, we 

present a novel PPG algorithm that can accurately detect heartbeats and thus measure heart-rate and 

heart-rate variability. We also compare the accuracy of our algorithm with ECG. This algorithm is 

presented in Chapter 7, Section Heart-rate Estimation Algorithm. 

Blink-rate 

An additional dyskinesia factor in PD is its effect on eye blink-rate. This symptom has great 

interindividual variability and its mechanism is currently unknown. Several studies have reported 

lower blink-rates when comparing PD patients with healthy controls [22, 150, 309]. In addition, ON 

phases temporarily double the blink-rate in PD patients [163, 309]. This would suggest that it is possible 

to distinguish PD patients and healthy controls as well as ON and OFF periods of a PD patient based 

on the blink-rate. In [80], authors suggest a value of 20 blinks per minute or lower as a possible 

indicator of PD. Algorithms for blink detection to detect eye fatigue [58], or driver drowsiness [52] may 

also be used to monitor PD patients. To date, the best approach to detect eye blinks is to use the eye 

aspect ratio algorithm [290], combined with a support vector machine [186, 290]. In Chapter 7, Section 

Blink-rate Estimation Algorithm, we present a blink-rate detection algorithm based on the eye aspect 

ratio. 

3.2. Exergame-based Interventions in Parkinson’s Disease 

In their 2014 systematic review, Barry et al. [18] analyzed the state of the art of exergame-based 

interventions in PD. They found a total of seven studies, one of which fulfilled the criteria for definition 

as a clinical trial. Authors mostly criticized methodological designs, and found that most studies were 

limited to analyzing feasibility and safety, and not potential therapeutic effects. However, they noted 

that, in the single clinical study identified, the exergame performed as well as traditional rehabilitation. 

We conducted a systematic review to expand on these findings. We searched for clinical and pilot trials 

published from 2014 onwards, with criteria based on Barry et al. [92]. This review was conducted in 

accordance with the PRISMA guidelines [221]. We qualified a study as a clinical trial if it fulfilled the 

CONSORT guidelines [280]. The databases of Pubmed, Scopus, Science Direct, IEEE and Cochrane were 

consulted by searching for studies published from January 1, 2014 to November 17, 2018 (the date of 

the last search). We used the final search string: “Exergam* OR active video gaming OR Microsoft Kinect 

OR Kinect OR Nintendo Wii OR Wii OR Sony EyeToy OR IREX OR Dance Dance Revolution AND 

Parkinson*.” An asterisk represents all words that contain the character, regardless of termination.  

 

This search yielded 526 matches at the last query, of which 353 were duplicates. We also excluded 

articles if (1) the target group was not exclusively PD (77 exclusions) or (2) the therapy employed was 
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not exergame-based (32 exclusions). This resulted in 65 articles which were then classified into 

randomized clinical trials (9), pilot studies (11), non-evaluated concepts (30), and metastudies (15). We 

focused our study on clinical trials and pilot trials. After conducting this review and while 

implementing our approach, we included five additional publications concerning our topic. The 

complete results of this review are provided in Appendix C. We summarize these results as follows. 

 

Researchers prefer the Microsoft Kinect to the Wii Balance Board, and we believe this is due to the 

versatility of the Kinect sensor. However, the Wii Balance Board presents positive results more 

consistently. Home-scenario implementations have been discussed [5, 289]. No studies showed worse 

outcomes in the exergaming group compared to the control group. We observed positive cognitive 

outcomes in some cases. Authors state that for cognitive training to be effective, it has to be a series of 

carefully planned tasks [247]. A summary of the results of our meta-analysis on clinical trials is 

provided in Table 5. From this meta-analysis, and based on standard statistical criteria (p<0.05 for 

statistical significance and g>0.8 for a large effect size) we draw the following conclusions. The 

following studies show measurable improvements in the intervention group: Liao et al. [194], Ribas 

et al. [268], Ferraz et al. [76], and Tollar et al. [316]. Unfortunately, the clinical outcomes of Ferraz et al. 

did not allow us to compare them in Table 5. The following studies show an improvement in the 

intervention group that is significantly higher than the control group: Liao et al. [194], Ribas et al. [268], 

and Tollar et al. [316]. In Appendix C, a complete table of studies is provided in Table 43 and Table 44, 

and their effect sizes and statistical significance is presented in Table 45 and Table 46. 

 

Outcome: Timed 

Up-and-go Test (s)  

(lower is better) 

N per group Control 

method 

Intervention 

method 

Control 

Hedges’s g 

(p), 

after-before 

Intervention  

Hedges’s g 

(p), 

after-before 

Liao et al. [194] 12 Regular 

exercise 

Wii Balance Board, 

commercial game 

0.2034 

(0.5954) 

-0.8230 

(0.0402) 

Shih et al. [283] 11 Balance 

training 

Kinect, custom 

game 

-0.3371 

(0.3990) 

-0.1952 

(0.6231) 

Song et al. [289] 30 Usual 

healthcare 

Dance mat, 

commercial game 

-0.2443 

(0.3479) 

0.0663 

(0.7983) 

Outcome: Berg 

Balance Scale  

(adimensional) 

(higher is better) 

 

Pompeu et al. [252] 16 Balance 

training 

Wii Balance Board, 

commercial game 

0.2800 

(0.4080) 

0.4303 

(0.2071) 

Shih et al. [283] 11 Balance 

training 

Kinect, custom 

game 

0.4940 

(0.2211) 

0.6550 

(0.1096) 

Ribas et al. [268] 10 Regular 

exercise 

Wii Balance Board, 

custom game 

-0.0658 

(0.8732) 

0.6800 

(0.1115) 

Tollar et al. [316] 24/25 

(control/intervention) 

Usual 

healthcare 

Kinect, commercial 

game 

-0.2420 

(0.3885) 

2.1277 

(<0.0001) 

 

Table 5: Summarized meta-analysis of clinical trials concerning exergame-based PD interventions 
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Pilot trials also provided interesting results. All studies reported improvements in clinical outcomes. 

The possibility of remote monitoring has also been discussed [7]. This study also provides a direct 

comparison between the Wii Balance Board and Kinect sensors. However, results of this study do not 

allow us to draw definite conclusions, since effect sizes are similar. A summary of the most relevant 

results of our meta-analysis on pilot trials is provided in Table 6. Although they do not allow for a direct 

comparison of results, both Goncalves et al. [110] and Negrini et al. [231] show statistically significant 

improvements. In Appendix C, a complete set of studies is provided in Table 47 and Table 48,and their 

effect sizes and statistical significance is available in Table 49. 

 

We found a number of limitations in the methodologies of these articles. First, many studies did not 

use standard clinical outcomes, which meant we could not include them in our meta-analysis. Second, 

mild cognitive impairment was mentioned as an exclusion criterion in all studies. Thus, the feasibility 

of this approach in this cohort is unknown. The importance of adapting the games to the user’s skills 

was also frequently mentioned, but not always implemented. In summary, out of 19 studies including 

an evaluation, 17 indicate improvements in PD patients when playing exergames. In the case of clinical 

trials, seven out of nine report better results in the exergaming group compared to the control group. 

In the remaining two studies, both groups had equal results. Exergames also seem to have a positive 

impact on cognition. The safety and feasibility of game-based PD rehabilitation were confirmed, and 

the first insight into its superiority to traditional rehabilitation was provided. However, these results 

are mostly statistically non-significant, due to low sample sizes. Effect sizes do suggest that larger 

studies would provide more substantial evidence. 

 

Outcome: Timed Up-and-go Test (s) (lower is better) N Intervention method Hedges’s g (p), 

after-before 

Summa et al. [303] 7 Kinect, 

custom game 

0.0638 (0.8927) 

Alves et al. [7] 9 Wii Balance Board, 

commercial game 

-0.3235 (0.4558) 

Alves et al. [7] 9 Kinect, 

commercial game 

-0.3788 (0.3841) 

Outcome: 10-Meter Walk Test (s) (lower is better)  

Palacios et al. [240] 7 Kinect, custom game -0.3139 (0.5109) 

Summa et al. [303] 7 Kinect, custom game 0 (1) 

Alves et al. [7] 9 Wii Balance Board, 

commercial game 

-0.0962 (0.8230) 

Alves et al. [7] 9 Kinect, 

commercial game 

-0.0691 (0.8724) 

 

We complemented this systematic review with studies using the Leap Motion sensor [72, 237, 238, 276]. 

In [238], a battery of Leap-Motion based exergames for PD rehabilitation was designed, where patients 

perform hand movements such as grabbing or pinching. Authors state the importance of scenario 

adaptability, for example, the number of repetitions, or thresholds to determine when a pinching or 

Table 6: Summarized meta-analysis of pilot trials concerning exergame-based PD interventions 
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grabbing movement is performed. A pilot trial with five PD patients showed improvements in game 

performance: patients took less time to complete the same exercise after a few sessions. This 

improvement translated into hand grip strength, hand dexterity and eye-hand coordination. A second, 

trial with 23 participants produced similar results [72]. Authors are exploring the possibility of 

including VR, also with promising results [237, 276].  

 

We identified a number of limitations in this study. First, it is necessary to extend exergame-based 

interventions to other PD areas, such as hand dexterity. Other authors discuss this as well [82]. Second, 

the potential role of exergames as a monitoring system should be explored. Our work in this regard 

further underlines the importance of task specificity and scenario adaptability. 

3.3. Other Game-based Interventions 

Brain-Computer Interfaces 

The use of BCIs in PD has been discussed as a potential method to monitor the effectivity of deep brain 

stimulation [196]. It could also be potentially employed for cognitive training [184], cognitive 

assessment [32], as well as general rehabilitation procedures [46]. The possibility of implementing a 

serious game controlled by a brain computer interface has also been explored [193]. Unfortunately, 

classification accuracy when estimating, for example, directional intention, is quite low [78] except 

when aiming to classify binary choices [178]. In this thesis, we explore the possibility of using an 

electroencephalographic device to control a serious game to train concentration. This is discussed in 

Chapter 8, section Brain-Computer Interfaces. 

Virtual Reality 

Recent studies have explored the possibility of extending exergame-based interventions in PD to VR 

[317]. This has the same positive effects as traditional exergames [43, 205]. However, VR significantly 

increases player immersion [35, 36]. Hereby, motion sickness in VR, also known as cybersickness, is a 

very significant problem. Most VR users experience cybersickness [47, 162, 265, 266, 271, 294] after 10 

minutes [179]. Its cause is still disputed. Literature defines it as a sensory conflict between vision and 

proprioception, mediated by the perception of self-motion, also known as vection [125, 181, 286]. 

However, the exact relation between cybersickness and vection is not known [153, 157, 264]. A number 

of secondary factors are also discussed in the literature. Adaptability [222, 223, 293], the nature of VR 

movements [199, 214, 224, 288, 300], controllability [156, 273, 295], technical factors such as latency, 

jitter, and field of view [37, 67, 129, 155, 181, 299] contribute to cybersickness. User adaptation seems to 

be the best strategy at the moment [138].  

 

A possibility to detect cybersickness is to study its physiological effects. Cybersickness has been 

reported to increases cortisol levels [152], cause tachycardia [131, 133], increase sweating [138], and 

change heart-rate variability [269]. However, individual responses in autonomic regulation make it 

difficult to predict cybersickness based exclusively on said physical responses [165]. Based on these 

data, the literature suggests that galvanic skin response (sweating) may be the best approach [55, 95, 

100, 101, 229]. However, a potential increase in accuracy when considering additional data sources 

(such as head movements) remains to be performed. This situation sets a scenario similar to the one 

discussed in this thesis. It could be possible to use game data, data from the VR device and physiological 

data to detect cybersickness as a symptom. We discuss this possibility in Chapter 8, section Virtual 

Reality. 
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4. Model for an Exergame-based Clinical Decision Support System 

To address the research gap presented in Chapter 1, and based on our findings in Chapter 3, we now 

describe the components of an exergame-based clinical decision support system model designed to 

monitor a symptom of a chronic disease. In this chapter, we also describe the materials and methods 

required to realize it. This model uses standard clinical assessments as ground truth to validate the 

accuracy of its predictions, and should extract clinically meaningful data from the players using sensors 

and game data. To the player, this model is presented as an exergame, where data acquisition occurs 

in the background of the game. We conceive such a model as a technical data acquisition module that 

extracts data from the exergame, the sensors used to operate it, and the players themselves. This 

produces three data streams: game data, interaction data, and biosignals. These data streams are 

processed in different manners into feature vectors. These feature vectors, combined with standard 

clinical assessments extracted from health records (or measured during the evaluation), produce a 

single feature vector per patient. A clinical decision support system, trained on the standard clinical 

assessment, then produces clinically meaningful data. Specific implementations, as proofs of concept 

of the model, for the scenarios of balance and tremor are described in Chapter 5 and Chapter 6, and 

potential biosignal acquisition systems are described in Chapter 7. We also discuss the materials and 

methods we used in these implementations. Finally, we describe the ethical risks and considerations 

we identified and addressed when conducting our research. 

4.1. Model Design 

The design of our model can be summarized as follows. A patient plays an exergame using a sensor (or 

sensors) that is also used to monitor a target symptom (or symptoms) of PD: in the specific cases of this 

thesis, hand tremors and balance. The exergame contains a certain physical and cognitive challenge. 

The model collects data from three separate sources: the exergame, the sensors used to control the game, 

and facultatively, the players themselves. We define these data sources as game data, interaction data, 

and biosignals. From these data, a series of features are extracted. The combination of these features 

produces a feature vector per patient as a result. 

 

This feature vector is processed by a series of classifiers into estimations that can be used to assess the 

severity of the symptom in question. In this thesis, we refer to such estimations as clinically meaningful 

data. These data provide relevant, objective clinical information in absolute terms (e.g., is the patient at 

an increased risk of falling?) or in relative terms (e.g., is the current physical rehabilitation improving 

balance?). A caregiver can use these data as a source of information in addition to their clinical 

standards, for example UPDRS. This provides them with more objective data when making clinical 

decisions, such as adapting the current medication or rehabilitation plan. 

 

To evaluate and train our clinical decision support system, we take the clinical standards employed in 

medical practice into account. We use the 30 Second Sit-To-Stand test [270] to assess balance and the 

risk of falling, and UPDRS to assess hand tremor and bradykinesia. The goal of the methods presented 

in this thesis is not to replace these standards, but to complement them by providing an additional 

objective data source that could be provided remotely. The evaluations included in this thesis use these 

standards as ground truth to justify the validity of the presented systems. 
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As presented in Figure 4, the model consists of a data acquisition module, comprised of the game, 

interaction device, and the players themselves. This module produces the three data streams. These 

streams are processed separately into features using different techniques. These features are then 

combined, together with the standard clinical assessment, into the feature vector. This feature vector is 

processed in a clinical decision support system, producing a certain classification result, producing the 

clinically meaningful data. The following sections describe data processing, classification, and the 

specific materials and methods we employed in this thesis. Implementations of this concept are 

presented in Chapter 5 and Chapter 6. 

4.2. Data Processing and Classification 

Data processing refers to all procedures employed towards converting a data source, for example raw 

data from an accelerometer, into a feature vector. There is a number of differences in the processing of 

different data sources. Game data requires no filtering and can generally be used directly as features. 

Both interaction data and biosignals usually require filtering and processing, which is defined on a 

case-by-case basis. Biosignals are facultative to the application scenario. 

Game Data 

Game Data refers to all data collected directly from the exergame. These consist of a series of variables 

that refer to the player’s performance. Examples of game data are the time needed to finish a level or 

the maximum difficulty level achieved. These data are simple to extract and rarely require filtering or 

processing. Thus, they are usually included in the feature vector as-is.  

 

Game features refer to how the players have performed in the game. This includes information on how 

much time they required to solve each level, how many actions they performed, and the nature of these 

actions. For example, when solving a puzzle, a comparison between the number of movements a player 

did and the minimum number of necessary movements provides relevant cognitive information. 

Features related to difficulty also contain information on the physical and cognitive skills of the player. 

For that purpose, data, such as the maximum level of difficulty achieved, or how performance changes 

with increasing difficulty, are relevant.  

Figure 4: Model diagram of an exergame-based clinical decision support system 
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Interaction Data 

Interaction data refers to features extracted from raw sensor data measuring the interactions of the 

player with the exergame in the form of physical movements. These physical movements operate the 

exergame. Examples of interaction data are hand movements or physical steps used to navigate a map 

or solve a puzzle.  

 

These type of data require different forms of processing prior to feature extraction, such as filtering or 

frequency domain analysis, which are established on a case-by-case basis. In this thesis, we use finite 

impulse response bandpass filters. For example, when analyzing hand movements, the 3-15 Hz 

frequency range contains relevant information on hand tremors [219]. This can be combined with other 

techniques, such as moving average filters, or peak detection algorithms. Once filtered, both time- and 

frequency-domain analysis is performed. Time-domain analysis produces features, such as means, 

standard deviations, amplitudes, speeds, and accelerations. Conversely, frequency-domain analysis 

provides information on the spectral components of the signal in different frequency ranges. 

Biosignals 

Biosignals refer to any electrical (e.g., ECG) or non-electrical (e.g., PPG) signal measured from the 

player’s body. These signals can be acquired with or without physical contact [228]. Their processing, 

and the features to be extracted from them, are established on a case-by-case basis. For example, in 

ECG, one may use a peak detection algorithm to time heartbeats, and calculate the heart-rate. This 

heart-rate can then be used to estimate exertion [201]. Alternatively, more sophisticated features, such 

as negative T-wave [200] detection, can be used to diagnose cardiopathies [332]. The devices employed 

to collect biosignals also vary greatly. For example, it is possible to use a relatively cheap smartphone 

or an expensive biosignal amplifier to measure PPG signals [90]. The development of more cost-efficient 

methods to acquire biosignals and clinically meaningful data represents a research field in itself [15].  

 

Within our concept, it is possible to include additional biosignals that could be collected while 

exergaming to monitor additional PD symptoms. In Chapter 7, Heart-rate Estimation Algorithm and Blink-

rate Estimation Algorithm, we present two novel biosignal acquisition methods that are of clinical 

relevance in PD. In both cases, we employ peak- and zero-crossing detection algorithms, and produce 

both time- and frequency-domain features, such as heart-rate variability features.  

Classification 

The feature vectors produced by the data processing methods can then be classified to estimate a clinical 

outcome. For example, the goal of the system presented in Chapter 5 is to predict whether the player is 

at an increased risk of falling. A clinical standard to assess this possibility is the 30-Second-Sit-to-Stand 

Test. Thus, the goal when evaluating this system is to predict the outcome of said test based on game 

data, interaction data, and biosignals. For this purpose, numerous classification techniques and 

classifier algorithms can be employed. In most cases, once a classification problem is defined (e.g., 

detect outliers, linear regression, logistic regression) several algorithms are tested (e.g., Naïve Bayes, 

J48, Neural Networks [204]). We complete this analysis with an evaluation of statistical significance and 

effect sizes.  
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4.3. Implementation Materials and Methods 

In this section, we describe the nonspecific materials and methods used in this thesis. Specific hardware 

devices are described in Chapter 5, Chapter 6, and Chapter 7. Most of the hardware used in this thesis is 

based on commercial off-the-shelf devices. We intended for our implemented systems to be cost-

effective. We also decided to design systems in which the patient does not have to wear any equipment 

on themselves, thus avoiding wearables, whenever possible. The exception to this rule was biosignal 

acquisition. We acquired biosignals using smartphones and the g.USBAmp biosignal amplifier 

developed by g.Tec [85]. This particular device was chosen due to its accuracy and array of available 

measurement devices, including active electrodes. Active electrodes were important to deliver signals 

free of movement artifacts and other noise sources such as sweating. 

 

All prototypically implemented exergames were initially developed using Kha [170], a Haxe-based 

open source multimedia framework created by Robert Konrad. The main advantage of Kha over other 

development tools is its cross-platform capability. This allowed us to rapidly publish the games in 

several platforms, such as web browsers, Windows and Unity [321]. 

 

All data processing, filtering, and feature extraction procedures were performed in Matlab [210]. We 

chose Matlab because of our previous experience with it and its toolbox support, particularly the 

graphical programming environment Simulink. It also offers toolboxes to address most of the technical 

tasks in this thesis, such as finite impulse response filters and frequency domain analysis. We imported 

our data sources into Matlab using different methods. If data were not received in real-time, we stored 

it in a format that is readable in Matlab, for example XML, CSV or JSON.  

 

Classification tasks were performed in Weka [204]. Although Matlab includes a machine learning 

toolbox, we preferred Weka because it provides a wider array of options. For each classification 

problem, we use all of the algorithms provided by Weka that are suitable for the problem in question. 

We provide summarized versions of these results concerning the best performing algorithms. In 

general, our classification problems refer to binary supervised learning problems. In binary 

classification situations, we always define the intervention group (e.g., PD patients) as the positive 

group. In this circumstance, considering we are implementing a medical system, our priority is to 

ensure that no members of the intervention group are misclassified as healthy. Thus, our criterion to 

define the “best” algorithms is to prioritize a minimization of False Negatives (FN), while also 

considering the remaining factors. For each classifier, we present the following characteristics of the 

two best performing algorithms: Accuracy (% of correct classifications), confusion matrix including 

True Positives (TP), FN, True Negatives (TN) and False Positives (FP), TP rate (recall), FP rate, precision, 

F-measure, Matthews Correlation Coefficient (MCC), area under the Receiver Operating Characteristic 

curve (ROC area), and Precision/Recall (PRC) area. We also include the accuracy (% of correct 

classifications) results of all the employed algorithms. Unless otherwise specified, we use 10-fold cross 

validation. A complete list of algorithm hyperparameters is provided in Appendix D, Table 50, and a 

description of the classifier characteristics is included in Table 51.  

 

In addition to classification results, we provide data on statistical significance and effect sizes. We use 

Shapiro-Wilk to test for normality [263]. If the sample in question follows a normal distribution, we use 

a Welch t-test to evaluate statistical significance. If not, we use Kolmogorov-Smirnov [27]. The effect 
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size is a measure of the magnitude of the presented results. We chose Hedges’s g [123] using low sample 

size bias correction as a measure of effect size. This parameter is very frequently used in literature and 

is specifically designed for varying sample sizes and groups with different standard deviations, in 

comparison to other measures such as Cohen’s d [48] or Glass’s delta [122]. These effect sizes are 

generally interpreted using Cohen’s rule of thumb [48] as “small” (0.2), “medium” (0.5) and “large” 

(0.8), although the terms depend on the circumstances of the study. In this thesis, effect sizes are always 

calculated as 𝑎𝑓𝑡𝑒𝑟 − 𝑏𝑒𝑓𝑜𝑟𝑒 and 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙. This means a positive effect size reveals an 

increase in the measured factor after the procedure or in the intervention group in comparison with the 

control group. In order to calculate the number of participants required for studies with two groups, 

we used the sample size calculation formula presented in [143]. We employ the median standard 

deviation and consider 80% power and an effect size of 0.65 with a significance level of 0.05. A complete 

list of these calculations is provided in Table 52. 

4.4. Ethical Considerations 

The evaluation of this thesis includes methods that required the collection of personal and physiological 

data. Specifically, we identified the following potential ethical issues in this thesis: 

 

• Ethical issues related to the acquisition of biometric data from PD patients and healthy controls 

regarding their physiological status: hand tremors, gait, and biosignals. 

 

• Ethical issues related to the acquisition of personal information via questionnaires and medical 

reports: age, sex, details of neurodegenerative or otherwise chronic diseases, medication plans. 

 

• Ethical issues related to ensuring the privacy and anonymity of the aforementioned data 

 

We carefully considered these ethical issues, and before commencing evaluation procedures we 

obtained approval of the ethics committee of the Technical University of Darmstadt. In addition, since 

part of the evaluation took place in the State of Baden-Wüttemberg, we also sought approval of the 

ethics committee of the University Medical Centre Mannheim. The complete list of votes of ethical 

committees for evaluations in this thesis is included in Appendix D, Table 53. 

 

In pursuance of the declaration of Helsinki addressing ethical principles for medical research involving 

human subjects [13], the studies presented in this thesis are limited to voluntary participants. Prior to 

participation, users were asked to read and sign an informed consent. This document described the 

procedure, data collected, how these data would be used, and our research goal in understandable 

language. All data collected in this thesis is pseudonymized through randomized user numbers 

assigned to non-identifiable data and cannot be backtracked to the participants. The informed consents 

for both evaluation scenarios are provided in Appendix E and Appendix F in German language. For each 

evaluation scenario, the cohort is adjusted to the study parameters, and the size of the cohort is based 

on candidates that fulfilled the specified inclusion and exclusion criteria. Due to the COVID-19 

pandemic and stay-at-home regulations, visits to PD patients in clinics were strictly forbidden. This 

meant we had to adjust or delay many evaluation plans. For this reason, the cohort of Chapter 5 was 

changed to nursing home residents. In Chapter 6, it was essential to perform the evaluation with PD 

patients. We present the results of a preliminary study for this scenario.
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5. Design of an Exergame-based Clinical Decision Support System to 

Assess Balance 

Based on our model for an exergame-based clinical decision support system described in Chapter 4, in 

this chapter we present and evaluate a proof of concept of this model to assess balance. First, two 

different hardware approaches to acquire data are presented. The first approach consists of an array of 

six Wii Balance Boards, called Extended Balance Board. Compared to the Wii Balance Board, this array 

allowed us to create a larger surface with which to evaluate balance both while standing and walking, 

and was published in [88]. The second approach includes two further biosignals: back muscle activity 

and upper trunk rotation while walking. We designed this more complex system to evaluate the 

possibility of using additional data sources. This system was published in [168]. We tested this system 

with a cohort of 40 participants with gait and balance affections, with the goal of identifying 

characteristic differences in muscular activity and upper trunk rotation. Since our preliminary results 

in this cohort did not indicate that we would obtain better results than using the center of mass only, 

we implemented our final design using the Extended Balance Board. After concluding our data 

acquisition design, we created a novel dual-tasking exergame entitled PDDanceCity. This exergame 

uses the Extended Balance Board as a control device to navigate a labyrinth and presents a motor and 

cognitive task to the player. PDDanceCity was published in [91]. We concluded our system design with 

an evaluation. This evaluation took place with 16 participants from an elderly nursing home in 

Darmstadt. The goal of this evaluation was to perform a binary prediction of the risk of falling, using 

the clinical outcome of the 30-Second-Sit-To-Stand Test [270] as ground truth. This test establishes 

whether the subject is likely to have an age-average fall risk (fit, over the threshold) or an increased risk 

(not fit, under the threshold). We use game data (data from PDDanceCity) and interaction data (data 

from the Extended Balance Board) to predict if the player is under or over this threshold. Our 

classification results indicate that the system can accurately indicate if a player is at an age- and sex-

adjusted increased risk of falling. This evaluation is published in [20]. Further experimental details are 

available in Appendix E. We conclude this chapter with an acceptance test of PDDanceCity. Potential 

users found the game to be user-friendly and fun. They also found the difficulty levels to be well-

adjusted to their skills. 

5.1. Data Acquisition 

In the section Assessing Balance and Gait of Chapter 3, we present two studies [215, 342] that indicate the 

Wii Balance Board could be used to discriminate patients with an increased risk of falling. In the section 

Exergame-based Interventions in Parkinson’s Disease, we identified two clinical trials [194, 268] and two 

pilot trials [110, 231] showing a positive effect when using the Wii Balance Board in PD patients. We 

also identified two clinical trials [76, 316] and one pilot trial [253] using the Kinect sensor with a similar 

result. This may suggest that both are viable approaches for our design. However, the number of 

studies using the Kinect sensor were significantly higher (12 studies used the Kinect, and 5 used the 

Wii Balance Board, see Table 42). This meant that more studies using the Kinect sensor had resulted in 

non-significant results compared to the Wii Balance Board, indicating the Wii Balance Board may be a 

slightly better approach. For this reason, we decided to use the Wii Balance Board for our design. 

 

As also discussed in the section Assessing Balance and Gait, PD affects balance both while standing and 

walking. The surface of the Wii Balance Board, which we measured to be 25.5-by-44 cm, does not 
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provide a large enough surface to analyze several steps. For this reason, we decided to use an array of 

six Wii Balance Boards. We called this system Extended Balance Board.  

 

In order to design the Extended Balance Board, we had to access the data of each Wii Balance Board. 

The Wii Balance Board consists of the following components: An electronic control unit, battery 

housing, power button, and four sensors, one in each corner (Figure 5). With the data from these four 

sensors, it is possible to determine the weight on the board and its distribution [314]. Thus, the Extended 

Balance Board would provide us with a surface of 76.5 by 88 cm, and 24 piezoelectric sensors distributed 

across this surface. We needed to acquire the data from all six Wii Balance Boards simultaneously and 

send them to a computer. For this purpose, we designed a controller board, called Acquisition Serializer 

Board. This board collects the data from each Wii Balance Board via Bluetooth and sends it, combined 

with information about which board the sensor belongs to, to a computer via serial port. This system 

was presented in [88].  

 

 

 

Each Wii Balance Board communicates through a duplex Bluetooth channel. The first channel transmits 

control commands (input) and the second channel provides sensor information (output). This means 

the Acquisition Serializer Board must simultaneously establish twelve Bluetooth communication 

channels: six boards, with two channels each. To make this possible, the board uses two Blue-1000 

Bluetooth sticks [203] that permit a maximum of eight connections each. The controller board ensures 

continuous communication despite the inherent stability and latency issues, mainly by circumventing 

the radio channels using the Universal Asynchronous Receiver/Transmitter interfaces. The Wii Balance 

Board data are decoded using the WiiUse Library [177] according to the instructions provided in [340] 

by the Acquisition Serializer Board, with a frequency of approximately 20 Hz per board. These data 

include both sensor values (11 bytes) and calibration values (32 bytes). A description of the data format 

of the Wii Balance Board is provided in Table 7. 

 

The exact weight detected by each sensor, in kg, is calculated by the Acquisition Serializer Board, based 

on the sensor and calibration values (Table 7) provided by the Wii Balance Board. The Wii Balance Board 

provides the values for three reference measured weights: 0 kg, 17 kg and 34 kg (the latter being the 

maximum weight the sensor can measure). The weight calculation works by interpolating the sensor 

data and the calibration values. For example, if the actual sensor value is 4800 and the calibration values 

are [2000,5000,8000], representing [0𝑘𝑔, 17𝑘𝑔, 34𝑘𝑔], then the actual measured sensor weight would 

be: 

 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔) =  17 ∙  
4800 − 2000

5000 − 2000
= 15.87 𝑘𝑔 

 

Figure 5: Wii Balance Board sensors 
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Sensor data - Byte Content  Calibration data – Byte Content 

0 Top right <15:8> 0x20 Unknown, always 0x01 

1 Top right <7:0> 0x21 Reference battery level (always 0x69) 

2 Bottom right <15:8> 0x22, 0x23 0 

3 Bottom right <7:0> 0x24 Top right 0kg value <15:8> 

4 Top left <15:8> 0x25 Top right 0 kg value <7:0> 

5 Top left <7:0> 0x26, 0x27 Bottom right 0kg value 

6 Bottom left <15:8> 0x28, 0x29 Top left 0kg value 

7 Bottom left <7:0> 0x2A, 0x2B Bottom left 0kg value 

8 Temperature 0x2C-0x33 17 kg values 

9 0 0x34-0x3B 34 kg values 

10 Battery level 0x3C-0x3F CRC32 checksum 

 

The PC then receives the processed data. These data include the sensor values and a unique board 

identifier, linked to the MAC Address of each Wii Balance Board. This is done to identify the board 

sending data, since each one has a specific position in the Extended Balance Board (Table 8). The total 

weight is calculated as the sum of the sensor weights. 

 

Data type Description Example 

Int MAC  58bda3a9cd6f 

Int Board ID 3 

Float (4) Sensor weights (top left, top right, bottom left, bottom right) 30.022, 26.871, 16.940, 16.052 

Int (4) Sensor values (top left, top right, bottom left, bottom right) 10265, 5522, 4800, 9157 

Float Total weight (kg) 89.887 

 

This procedure allowed us to receive real-time data on how a player is standing on the board, and how 

they shift their weight when standing and when taking a step. We still needed to transform these data 

into parameters that allowed us to control an exergame. We decided to do this by calculating a 

bidimensional projection (𝑥, 𝑦) of the Center of Mass (𝒄𝒐𝒎) based on sensor positions and values. This 

is done by multiplying the sensor values by its bidimensional coordinates, as follows: 

 

Let 𝐒 ∈ ℝ6×4 be the matrix of sensor values (3 × 2 Wii Balance Boards, with four sensors each). Let 𝐒(𝑡) 

be the matrix of sensor values at the discrete sampling time 𝑡, and thus 𝑠i,j(𝑡) the value of sensor 𝑠i,j at 

this discrete sampling time 𝑡. Let 𝐂 ∈ ℝ6×4×2 be the coordinate matrix, containing two-dimensional 

(𝑥, 𝑦) vectors assigning a coordinate value to each sensor position. This position is based on its 

placement on the board, measured in relative terms to the actual frame dimensions (i.e. 𝒄1,1 = (−1,1) 

Table 7: Wii Balance Board sensor and calibration data composition [340] 

Table 8: Sample of a data packet received from the Acquisition Serializer Board [88] 
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as described in Figure 6). Finally, let 𝑤(𝑡) be the latest weight value, calculated by the Acquisition 

Serializer Board as the sum of all board weights as described in Table 8. The instantaneous center of 

mass vector at the discrete sampling time 𝑡, 𝒄𝒐𝒎(𝑡) can be calculated as: 

 

𝒄𝒐𝒎(𝑡) = (𝑐𝑜𝑚𝑥(𝑡), 𝑐𝑜𝑚𝑦(𝑡)) =
1

𝑤(𝑡)
 ∑ ∑ (𝑠i,j(𝑡)𝒄i,j)

4

𝑗=1

6

𝑖=1
 

102 cm

110 cm

𝒄1,1 = (−1,1)

𝒄2,1 = (−1,0.4)

Board 1

Board 2

Board 3

Board 4

Board 5

Board 6

𝒄 ,1 = (−1,0.25)

𝒄4,1 = (−1,−0.25)

𝒄 ,1 = (−1,−0.4)

𝒄6,1 = (−1,−1)

𝒄1,2 = (−0.1,1)

𝒄2,2 = (−0.1,0.4)

𝒄 ,2 = (−0.1, 0.25)

𝒄4,2 = (−0.1,−0.25)

𝒄 ,2 = (−0.1,−0.4)

𝒄6,2 = (−0.1,−1)

𝒄1, = (0.1,1)

𝒄2, = (0.1,0.4)

𝒄 , = (0.1, 0.25)

𝒄4, = (0.1,−0.25)

𝒄 , = (0.1,−0.4)

𝒄6, = (0.1,−1)

𝒄1,4 = (1,1)

𝒄2,4 = (1,0.4)

𝒄 ,4 = (1, 0.25)

𝒄4,4 = (1,−0.25)

𝒄 ,4 = (1,−0.4)

𝒄6,4 = (1,−1)

 

 

A sample of the 𝒄𝒐𝒎 when taking a step is presented in Figure 7. The 𝒄𝒐𝒎 is normalized using the 

player’s weight, and can be used to estimate intention. Its values are in the range 𝑐𝑜𝑚𝑥, 𝑐𝑜𝑚𝑦 ∈ [−1,1]. 

In this range, we use the value 0.5 as a threshold for directional intention. Given the values of 𝐂, this 

limit worked well as a threshold for directional intention. More specifically, a value of 0.5 or greater in 

a direction, combined with a value of 0.1 or lower in the other coordinate indicates a directional 

intention. For instance, 𝒄𝒐𝒎(𝑡) = (0.1, 0.8) indicates an intention to move upwards, while 𝒄𝒐𝒎(𝑡) =

(0.5, 0.8) is ignored. This parameter can be also used as a measure of balance [275]. It can also be 

calibrated on an individual basis, depending on the user’s mobility. Every time that the Acquisition 

Serializer Board sends an update from a Wii Balance Board (that is, every instant 𝑡), the 𝒄𝒐𝒎 is 

calculated again, which means it has a refresh rate of approximately 120 Hz. 

 

Figure 6: Extended Balance Board distribution and coordinate matrix 𝐂, presented in [20, 88]. Each 

hole fits one of the feet of the respective Wii Balance Board 
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Besides the 𝒄𝒐𝒎, we extract a second parameter from the board data, as a measure of the balance and 

lower extremity fitness of the player. This parameter is defined as the Instability Factor 𝑖𝑓(𝑡), and 

calculated as the root mean square of the first order difference of 𝒄𝒐𝒎, as follows: let 𝒄𝒐𝒎(𝑡) be defined 

as above, and 𝒄𝒐𝒎(𝑡 − 1) be the value at the discrete sampling time 𝑡 − 1, so that 𝑡 > 𝑡 − 1 and there is 

no sampling point in between, ∄ 𝑡′: 𝑡 > 𝑡′ > 𝑡 − 1., then 𝑖𝑓(𝑡) at sampling point 𝑡 can be calculated as: 

 

𝑖𝑓(𝑡) =  √
1

2
(𝑐𝑜𝑚𝑥(𝑡) − 𝑐𝑜𝑚𝑥(𝑡 − 1))2 +

1

2
 (𝑐𝑜𝑚𝑦(𝑡) − 𝑐𝑜𝑚𝑦(𝑡 − 1))2 

 

The 𝑖𝑓 is in the range 𝑖𝑓(𝑡) ∈ [0,2]. If the player does not move, this means 𝑖𝑓(𝑡) = 0. If the player 

suddenly shifts their weight greatly, more so if they do so diagonally, the value of 𝑖𝑓(𝑡) increases up to 

a maximum of 2, which is only achievable if the player is at a corner and jumps to the opposite one. In 

reasonable terms, values of up to one can be expected for either a person with a great balance who takes 

very large steps, or a person that is losing balance. The 𝑖𝑓(𝑡) value can be compared with a threshold 

value (e.g., 0.5, or 1) and, if its value overcomes the said threshold, a possible loss of balance will be 

marked in the data. In general terms, slow and balanced movements would not trigger this threshold. 

Conversely, tripping will easily lead to exceeding this threshold for several frames in most cases. As is 

the case with intention estimation based on 𝒄𝒐𝒎 values, it is also possible to calibrate the threshold on 

an individual basis. The specific processing diagram, as a part of the approach described in Figure 4, is 

presented in Figure 8. The final version of the Extended Balance Board is depicted in Figure 9. 
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Interaction Data Processing (Extended Balance Board)

MATLAB

Extended Balance 
Board Raw Data

𝒄𝒐𝒎(𝑡) = (𝑐𝑜𝑚𝑥(𝑡), 𝑐𝑜𝑚𝑦(𝑡)) =
1

𝑤(𝑡)
 ∑ ∑ (𝑠 , 𝑡 𝒄 , )

4

 =1

 

𝑖=1

𝑖𝑓(𝑡) =  
1

2
(𝑐𝑜𝑚𝑥(𝑡) − 𝑐𝑜𝑚𝑥(𝑡 − 1))2+

1

2
 (𝑐𝑜𝑚𝑦(𝑡) − 𝑐𝑜𝑚𝑦(𝑡 − 1))2

Acquisition Serializer 
Board

MAC-Based Packet 
Classification

(𝑥, 𝑦)
Bidimensional 

Projection 
Calculation

Potential Interaction 
Features (Time Series)

 

 

 

 

Alternative Balance Assessment System 

We also developed a second approach of a clinical decision support system to assess balance based on 

a combination of a laboratory pressure plate, triaxial accelerometers and electromyography. The goal 

of this alternative system, as an alternative to the Extended Balance Board, was to test its feasibility to 

identify more sophisticated biomarkers related to gait and balance affections. In a similar fashion, the 

system was conceived to identify these differences in signals acquired while participants with affected 

balance and gait stood on the pressure plate and walked over it. 

 

This system comprises a Kistler 9287C8 force plate [166], two smartphones to measure relative rotation 

and forward acceleration, bipolar surface electromyography of the back muscles, and a piezoelectric 

step sensor. Both the electromyographic and the step signal were collected using the g.Tec USBAmp 

biosignal amplifier when standing, and its portable version, the Mobilab Bluetooth biosignal amplifier 

[85] when walking. 

 

Figure 8: Extended Balance Board interaction data processing diagram 

Figure 9: Extended Balance Board, presented in [20, 88] 
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The Kistler Force Plate was connected to its own biosignal amplifier, and data was sent to the computer 

separately. We developed an application in Microsoft Visual Studio [218], based on code provided by 

Kistler in their proprietary library BioWare Dataserver [167]. This application collects the data from the 

Kistler biosignal amplifier. Its raw data consists of the three-dimensional forces (𝐹𝑥(𝑡𝑓𝑝), 𝐹𝑦(𝑡𝑓𝑝), 𝐹𝑧(𝑡𝑓𝑝)) 

measured by the plate, for each discrete sampling time of the force plate 𝑡𝑓𝑝, sampled at 1024 Hz. These 

data were sent to Matlab. From these forces, and including the user’s weight 𝑤, we calculated the root 

mean square of the center of mass (𝑟𝑚𝑠𝐶𝑂𝑀). We also calculated the vertical forces at the point where 

the participant’s heel touched the floor (𝑡𝑓𝑝 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒) and was lifted from the floor (𝑡𝑓𝑝 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓). 

The identification of these points is performed with the piezoelectric sensor and described below. When 

analyzing the data in Matlab, we interpolated the sampling times of the force plate with those of the 

electromyographic data using cubic spline interpolation. A sample of this signal while walking is 

presented in Figure 10. The two peaks indicate 𝐻𝑆𝑀𝐴𝑋 and 𝐻𝑂𝑀𝐴𝑋. 

 

𝑟𝑚𝑠𝐶𝑂𝑀(𝑡𝑓𝑝) =
1

𝑤
√1

 
(𝐹𝑥(𝑡𝑓𝑝)

2
+ 𝐹𝑦(𝑡𝑓𝑝)

2
+𝐹𝑧(𝑡𝑓𝑝)

2
)  after cubic spline interpolation 𝑟𝑚𝑠𝐶𝑂𝑀(𝑡) 

  𝐻𝑆𝑀𝐴𝑋 =  
𝐹𝑧

𝑤
(𝑡𝑓𝑝 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒), 𝐻𝑂𝑀𝐴𝑋 =

𝐹𝑧

𝑤
(𝑡𝑓𝑝 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓), after cubic spline interpolation using 𝑡 

 

 

 

The smartphone data was acquired using an application developed by us in Android Studio [112]. The 

application gathers the orientation and accelerometer sensor data as described in [113] at a sampling 

frequency of 100 Hz. It then sends it to the computer. We only used this procedure to ensure the 

smartphone was gathering data correctly, as we saved the sensor data locally. For our analysis, we used 

these locally stored data. To measure rotation, we collected all values of the difference of the 

smartphone above the hip, sampled at the time points of the smartphone 𝑡𝑠, 𝜗1(𝑡𝑠) minus the one below 

𝜗2(𝑡𝑠). This is the angular position of the upper trunk relatively to the lower trunk. The position of the 

smartphones is depicted in Figure 11. To measure forward acceleration, we use the accelerometer z axis. 

When standing, only the rotation data are used, since no forward advance is expected. When walking, 

only the values between ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 and ℎ𝑒𝑒𝑙𝑜𝑓𝑓, from both rotation and forward acceleration, were 

considered. When analyzing the data in Matlab, we interpolated the sampling times of the smartphones 

with those of the electromyographic data using cubic spline interpolation. Samples for both signals are 

presented in Figure 12. 
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Figure 10: Sample of 𝑟𝑚𝑠𝐶𝑂𝑀 during a step 
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𝜗(𝑡𝑠) = |𝜗1(𝑡𝑠) − 𝜗2(𝑡𝑠)|, after cubic spline interpolation 𝜗(𝑡) 

𝑎(𝑡𝑠) =
1

2
|𝑎1(𝑡𝑠) + 𝑎2(𝑡𝑠)|, after cubic spline interpolation 𝑎(𝑡) 

 

 

 

The electromyographic signal was acquired using solid gel electrodes, placed bilaterally with an 

interelectrode distance of 23mm placed on the left and right side, lateral to the first lumbar processus 

spinosus. The placement of electrodes is depicted in Figure 13. Electromyographic data were acquired 

using the USBAmp biosignal amplifier, at a frequency of 1024 Hz, or the mobile version, the Mobilab 

Bluetooth biosignal amplifier, sampled at 256 Hz. A 50 Hz notch filter was employed, followed by a 17 

to 500 Hz bandpass filter (replaced by a 17 Hz highpass filter in case the Mobilab was used). We 

employed a Simulink module developed by g.Tec to collect data in Matlab directly. In the standing 

scenario, the whole sample was considered. When analyzing gait, we only considered the data between 

ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 and ℎ𝑒𝑒𝑙𝑜𝑓𝑓. Since both erector spinae muscles were measured, we referred to the right side 

as 𝑒𝑚𝑔𝑅(𝑡) and the left side as 𝑒𝑚𝑔𝐿(𝑡). In addition, a normalization procedure was included. Data was 

divided by the maximum value of erector spinae activity when lying in prone position, with the knees 

flexed backwards 90 degrees, and lifting the legs five cm over the surface, as described in [53, 159]. This 

value is defined as 𝐸𝑀𝐺𝑀𝑎𝑥 for each side. We used the sampling points of the electromyographic data 

as the basis for all data analysis. A sample of this signal is presented in Figure 14. 
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Figure 12: Rotation and acceleration sample during a step 
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𝒆𝒎𝒈(𝑡) = (
𝑒𝑚𝑔𝑅(𝑡)

𝐸𝑀𝐺𝑅𝑀𝑎𝑥

,
𝑒𝑚𝑔𝐿(𝑡)

𝐸𝑀𝐺𝐿𝑀𝑎𝑥

) 

 

 

 

 

 

The piezoelectric step sensor was placed directly under the heel of the dominant foot of the participant. 

It delivered a non-zero signal exclusively from the point the heel strikes on the floor (𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒) to 

the point where it is raised from the floor (𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓). This sensor was used exclusively in the gait 

scenario, to mark the phases of the gait cycle (Figure 15). If we define 𝑠𝑡𝑒𝑝(𝑡) as the sensor value, 

𝑠𝑡𝑒𝑝(𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒) can be defined as the first non-zero value preceded by a zero, and heel off 

𝑠𝑡𝑒𝑝(𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓) as the fist zero value preceded by a non-zero. We used this time values to calculate 

HSMAX, and HOMAX as described above. 

 

𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 ↔ 𝑠𝑡𝑒𝑝(𝑡) > 0, 𝑠𝑡𝑒𝑝(𝑡 − 1) = 0,   

𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓 ↔ 𝑠𝑡𝑒𝑝(𝑡) > 0, 𝑠𝑡𝑒𝑝(𝑡 + 1) = 0 
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Figure 13: Electrode placement to acquire data from the erector spinae. Courtesy of [195] 

Figure 14: Electromyography sample during a step 
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Once all five data streams were acquired, synchronization was performed using cubic spline 

interpolation, to the timestamps of the force plate data. Figure 16 describes the feature extraction process 

for both the standing and walking scenarios. 

 

Interaction Data Processing (Alternative Balance System)

Kistler Pressure Plate 

Center of Mass Data

Cubic Spline 
Interpolation

Cubic Spline 
Interpolation

Smartphone Data

USBAmp
Electromyography

Gait Detection 
(Facultative)

Normalization
(𝐸𝑀𝐺𝑀𝑎𝑥)

𝜗 𝑡 = 𝜗1 𝑡 − 𝜗2 𝑡

𝑎(𝑡) =
1

2
𝑎1 𝑡 + 𝑎2(𝑡)

𝒆𝒎𝒈 𝑡 = (
𝑒𝑚𝑔𝑅 𝑡

𝐸𝑀𝐺𝑅𝑀𝑎𝑥

,
𝑒𝑚𝑔𝐿 𝑡

𝐸𝑀𝐺𝐿𝑀𝑎𝑥

)

𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 ↔ step 𝑡 > 0, 𝑠𝑡𝑒𝑝 𝑡 − 1 = 0 

𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓 ↔ step 𝑡 > 0, 𝑠𝑡𝑒𝑝 𝑡 + 1 = 0

50 Hz Notch Filter,
17-500 Hz

Bandpass Filter
(17 Hz Highpass

for Mobilab)

Normalization
(Weight)

Heel-Strike and 
Heel-Off 
Cropping 

(Facultative)

𝑟𝑚𝑠𝐶𝑂𝑀 𝑡 =
1

𝑤

1

3
(𝐹𝑥 𝑡 2 + 𝐹𝑦 𝑡 2+𝐹𝑧 𝑡 2)

𝐻𝑆𝑀𝐴𝑋 = 
𝐹𝑧
𝑤

𝑡 = 𝐻𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 , 𝐻𝑂𝑀𝐴𝑋 =
𝐹𝑧
𝑤
(𝑡 = 𝐻𝑒𝑒𝑙𝑜𝑓𝑓)

Potential Interaction 
Features (Time Series)

MATLAB

Heel-Strike and 
Heel-Off 
Cropping 

(Facultative)

Heel-Strike and 
Heel-Off 
Cropping 

(Facultative)

 

 

This approach was tested with a cohort of 40 participants (Table 52, median age 27, 18 males) split in a 

gait- and balance- affected group and an age- and sex-matched control group. The study was divided 

into two sections: (1) standing and (2) walking. In the standing section, participants stood over the 

pressure plate three times under three different conditions: with eyes open, with eyes closed and with 

eyes open standing on a foam pad. This test was thus performed a total of nine times, for 60 seconds 

per attempt. In the gait section, participants were asked to walk across a room in a straight line, with 

the pressure plate being in the middle. They were asked to walk at their preferred pace, and we ensured 

that they performed a full step over the pressure plate, without informing them as to not affect their 

gait. Due to data failure, two gait samples (one in the control and one in the intervention group) had to 

be removed. The test was repeated until we had three valid samples. From the time series described in 

Figure 16, we extracted the specific features included in Table 9 for the standing scenario and Table 10 

for the walking scenario. We then attempted to train a classifier to discriminate if a participant belonged 

to the gait- and balance-affected group or was a healthy control, based on these features. 
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Figure 16: Alternative gait assessment system interaction data processing diagram 
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Features Description Calculation 

𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 

Average of the 𝑟𝑚𝑠𝐶𝑂𝑀 over the 60 second test, sampled at 1024 Hz, total sample 

number 𝑛𝑅𝑀𝑆𝐶𝑂𝑀. Cubical spline interpolation. One value for each of the three 

tests, in three conditions, for a total of nine features 

∑ 𝑟𝑚𝑠𝐶𝑂𝑀(𝑡)
𝑛𝑅𝑀𝑆𝐶𝑂𝑀
𝑡=1

𝑛𝑅𝑀𝑆𝐶𝑂𝑀

 

𝐸𝑚𝑔𝐴𝑣𝑔 

Average of the normalized muscular activity of the erector spinae over the 60 

second sample, sampled at 1024 Hz, total sample number 𝑛𝐸𝑀𝐺. Two values 

(right, left) for each of the three tests, in three conditions, for a total of 18 features 

∑ 𝒆𝒎𝒈(𝑡)
𝑛𝐸𝑀𝐺
𝑡=1

𝑛𝐸𝑀𝐺

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔 

Average of the smartphone rotation values over the 60 second sample, sampled 

at 100 Hz, total sample number 𝑛𝑅𝑂𝑇. Cubical spline interpolation. One value for 

each of the three tests, in three conditions, for a total of nine features 

∑ 𝜗(𝑡)
𝑡=𝑛𝑅𝑂𝑇
𝑡=1

𝑛𝑅𝑂𝑇
 

 

Features Description Calculation 

𝐻𝑆𝑀𝐴𝑋 

Vertical pressure plate force at ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒. One 

value for each of the three tests, for a total of three 

features 

𝐹𝑧

𝑤
(𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒), 

𝑡 = ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 ↔ 𝑠𝑡𝑒𝑝(𝑡) > 0, 𝑠𝑡𝑒𝑝(𝑡 − 1) = 0 

𝐻𝑂𝑀𝐴𝑋 

Vertical pressure plate force at ℎ𝑒𝑒𝑙𝑜𝑓𝑓. One value 

for each of the three tests, for a total of three 

features 

𝐹𝑧

𝑤
(𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓), 

𝑡 = ℎ𝑒𝑒𝑙𝑜𝑓𝑓 ↔ 𝑠𝑡𝑒𝑝(𝑡) = 0, 𝑠𝑡𝑒𝑝(𝑡 + 1) > 0 

𝐸𝑚𝑔𝐴𝑣𝑔 

Average of the normalized muscular activity of the 

erector spinae from heel-strike to heel-off, sampled 

at 256 Hz. Two values (right, left) for each of the 

three tests, for a total of six features 

∑ 𝒆𝒎𝒈(𝑡)
ℎ𝑒𝑒𝑙𝑜𝑓𝑓
𝑡=ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒

ℎ𝑒𝑒𝑙𝑜𝑓𝑓 − ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒
 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑚𝑝 

Maximum amplitude of the rotation between heel-

strike and heel-off. One value for each of the three 

tests, for a total of six features 

max𝜗(ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒, ℎ𝑒𝑒𝑙𝑜𝑓𝑓)
− 𝑚𝑖𝑛  𝜗(ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒, ℎ𝑒𝑒𝑙𝑜𝑓𝑓) 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑑 

Standard deviation of the forward acceleration 

between ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒 and ℎ𝑒𝑒𝑙𝑜𝑓𝑓. One value for 

each of the three tests, for a total of three features 

√
∑ (𝑎(𝑡) − 𝑎̅)2
ℎ𝑒𝑒𝑙𝑜𝑓𝑓
𝑡=ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒

(ℎ𝑒𝑒𝑙𝑜𝑓𝑓 − ℎ𝑒𝑒𝑙𝑠𝑡𝑟𝑖𝑘𝑒) − 1
 

𝑁𝑆𝑡𝑒𝑝𝑠 

Number of steps performed to cover the whole 

path. Counted as the number of non-zero regions 

in the step sensor data. One value for each of the 

three tests, for a total of three features 

𝑁 (𝑠𝑡𝑒𝑝(𝑡) > 0, 𝑡 ≠ ℎ𝑒𝑒𝑙𝑜𝑓𝑓) 

 

We found no statistically significant differences between groups, large effect sizes or successful 

classification methods in either scenario. For the standing scenario, classification results are included 

in Table 11 and Figure 17, and statistical data are included in Appendix E, Table 54. For the walking 

scenario, classification results are provided in Table 12 and Figure 18, and statistical data are provided 

in Appendix E, Table 55. Hyperparameters are described in Appendix D, Table 50. There are several 

possible reasons for these results. The complexity of bodily postural control may not be sufficiently 

described using only the employed data. Alternatively, it may be that the chosen tasks are not 

physically demanding enough to elicit differences in the features. Given these results, and considering 

that related studies with similar cohorts and goals did find significant differences when using the Wii 

Balance Board [70] we decided to use the Extended Balance Board for our implementation. 

Table 9: Alternative balance assessment system features for the standing scenario 

Table 10: Alternative balance assessment system features for the walking scenario 
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Algorithm: Multilayer Perceptron,  

accuracy 62.500% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

Affected 14 (TP) 6 (FN) 0.700 0.450 0.609 0.651 0.253 0.580 0.585 

Control 11 (TN) 9 (FP) 0.550 0.300 0.647 0.595 0.253 0.580 0.560 

Weighted average 25 15 0.625 0.375 0.628 0.623 0.253 0.580 0.573 

Algorithm: Decision Stump,  

accuracy 62.500% 

Affected 18 (TP) 2 (FN) 0.900 0.650 0.581 0.706 0.299 0.495 0.499 

Control 7 (TN) 13 (FP) 0.350 0.100 0.778 0.483 0.299 0.495 0.580 

Weighted average 25 15 0.625 0.375 0.679 0.594 0.299 0.495 0.540 
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Table 11: Alternative balance assessment system standing test classification results 

Figure 17: Alternative balance assessment system standing test classification accuracies 
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Algorithm: K-Nearest Neighbours,  

accuracy 52.632% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

Affected 8 (TP) 11 (FN) 0.421 0.368 0.533 0.471 0.054 0.496 0.497 

Control 12 (TN) 7 (FP) 0.632 0.579 0.522 0.571 0.054 0.496 0.500 

Weighted average 20 18 0.526 0.474 0.528 0.521 0.054 0.496 0.498 

Algorithm: J48 Decision Tree,  

accuracy 52.632% 

Affected 9 10 0.474 0.421 0.529 0.500 0.053 0.537 0.511 

Control 11 8 0.579 0.526 0.524 0.550 0.053 0.537 0.540 

Weighted average 20 18 0.526 0.474 0.527 0.525 0.053 0.537 0.526 
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Table 12: Alternative balance assessment system walking test classification results 

Figure 18: Alternative balance assessment system walking test classification accuracies 
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5.2. Exergame 

Once a data acquisition system has been designed, an exergame was necessary to provide an engaging 

environment for data acquisition. In this case, the requirement was to design an exergame that included 

a cognitive task and a motor task, controlled with the Extended Balance Board. To achieve this goal, we 

designed PDDanceCity [91, 149, 272], with a cognitive task developed based on the results of previous 

work by Kalbe et al. [145]. PDDanceCity is a labyrinth game that presents the player with a randomly 

generated city map. The goal of the game is to navigate this map from a given starting point to a given 

goal, marked with a racing flag, by walking on the Extended Balance Board. The map is navigated using 

two-dimensional horizontal and vertical movements. Across the map, several waypoints (e.g., 

monuments) can be found, which the player may be asked to visit in a certain order, depending on 

difficulty. In addition, some streets can only be navigated in one direction (indicated by a directional 

arrow).  

 

Based on factors relevant to cognitive tasks as described in [145], map generation is randomized from 

a series of variables (Figure 19a). The caregiver decides on a chart size (5x4, 6x5 or 7x6 elements), the 

presence of one-directional streets (none, few, several, many), the desired length of the optimal path 

(short, medium, long), and the number of waypoints (none, few, several, many). The caregiver can also 

decide whether certain elements will be only shown for a few seconds, and whether a step timer and/or 

metronome (to prevent freeze of gait) should be present. The step timer consists of auditory and visual 

cues in case a step is not taken after a number of seconds. The metronome is a ticking sound that can 

be adjusted in frequency. Once the map is created, a certain number of paths is removed, depending 

on map size and whether the edges can be navigated (Figure 19b). This removal is iterative. A path is 

selected randomly and, if there is another connection between the two edges, it is removed. The process 

is done this way to ensure all points can still be reached. If the removal would render a point 

inaccessible, another point is chosen instead. After element removal, one-way streets are added in the 

same process, again ensuring the complete map can be navigated (Figure 19c). The exact number of one-

way streets depends on supervisor choice and map size. 

 

Once the map is generated, the start and end points are placed (Figure 19d). This placement is based on 

the optimal path length choice, map size, and distribution, since the presence of many one-way streets 

may significantly lengthen the path. A minimum and maximum path length are calculated based on 

these parameters, and then a pair of points are chosen randomly. If the distance between these points 

falls within the minimum and maximum, they are set as start and end points. If not, two new points 

are chosen. If no points on the map fulfill these criteria, the map is discarded and the process begins 

again. In the final step, the waypoints are placed on the path (Figure 19e). The number of waypoints 

depends on map size. From the total number of waypoints to be placed, up to three are chosen and 

placed randomly within the optimal path. These are the waypoints to be visited. The rest are also placed 

randomly across the rest of the map.  

 

Once the session begins, the character is positioned at the starting point. If a time limit is specified, this 

is shown on the lower right side of the screen. If the player has to pass through waypoints, these are 

shown on the left side of the screen. When a player reaches a waypoint, it is grayed out to visually show 

that the player has already visited that waypoint.  
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                         (a)                                                     (b)                                                     (c) 

 
                                                           (d)                                                     (e) 

 

During the game, several hints are displayed to support the player depending on the difficulty level. If 

the player reaches the goal before passing through all required waypoints, this is indicated. If the step 

timer runs out, a warning is also displayed. Finally, if the player attempts to enter a one-way street in 

the wrong direction, this is also indicated. Users are always encouraged to take the optimal path to their 

targets (marked by a red line) and the path they actually took is presented at the conclusion (as a blue 

line). After the user has reached the goal, they are presented with a questionnaire, in which the visited 

waypoints must be indicated. This section of the game is called quiz (Figure 20).  

 

 

 

The game offers varying levels of cognitive and motor difficulty. A higher cognitive difficulty has more 

one-directional streets, hides the goal after showing it for only a few seconds, and requests the user to 

visit a greater number of waypoints. A higher motor difficulty will cue the users to move faster, or 

require them to perform wider steps on the Extended Balance Board. A summary on the levels of 

cognitive and motor difficulty is presented in Table 13. 

Figure 19: PDDanceCity map generation process (left to right, and top to bottom), presented in [20] 

Figure 20: PDDanceCity quiz 
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Cognitive difficulty levels C1 C2 C3 C4 C5 C6 

Start/End 

visible 

Visible Visible Hidden Visible Visible Hidden 

Optimal path visible Visible Hidden Hidden Visible Hidden Hidden 

Map size Small Medium Large Small Medium Large 

One-way streets None Few Many None Few Many 

Waypoints None None None Few Many All 

 

Motor difficulty levels M1 M2 M3 M1 M2 M3 

Length of optimal path Short Medium Long Short Medium Long 

Step timer None Long Short None Long Short 

 

The game combines cognitive and motor tasks. The cognitive task consists of mentally drawing a path 

in an urban environment, with disappearing goals, training both the visuospatial function and memory. 

The motor task consists of taking steps on a pressure plate. For each playthrough, the game data 

described in Table 14 is acquired. This information includes the difficulty level played, the nature and 

number of cognitive errors (e.g., the waypoints were not identified correctly, the goal was not found, 

or the shortest path was not taken). It also includes the elapsed time, the time between steps and the 

relation between the number of steps performed and the minimum steps required to reach the goal.  

 

Features Description  Features Description 

Cognitive 

difficulty 

Cognitive difficulty level of 

the session (Table 13) 

Path game tries Final goal not found or waypoint 

ignored 

Motor 

difficulty 

Motor difficulty level of the 

session (Table 13) 

Target game tries Number of times where a player 

states that a target was found, but the 

target has not been reached yet 

Quiz errors Number of errors in the quiz Number of steps and 

shortest path 

differential 

Total number of steps, difference in 

steps between path taken and 

optimal path 

One-way 

errors 

 

Number of attempts to walk 

in a one-directional street in 

the wrong direction 

Total time Total playthrough time 

Motivity 

errors 

Number of attempts to take 

steps in nonexisting directions 

(walls) 

Time per step Time elapsed between each step 

Motivity 

timer 

expired 

 

Number of times the step 

timer expired without input 

Map data Map size, number of one-way streets 

and waypoints 

Table 13: PDDanceCity difficulty levels 

Table 14: PDDanceCity game data features 
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5.3. Evaluation 

Cohort and Study Design 

The evaluation of this clinical decision support system should determine its accuracy in assessing the 

risk of falling. We decided to test the accuracy of the system in its capacity to perform a binary fall risk 

classification (average risk and increased risk) when compared to a clinical gold standard. 

 

For this evaluation, we use the 30-Second-Sit-To-Stand Test [270] as our clinical outcome. We chose this 

test for its excellent test-retest and interrater reliability [141]. It is a measure of lower extremity strength 

in older adults and is part of the Fullerton Fitness Test Battery. The test is performed as follows. The 

participant begins sitting on a chair without arms. The chair is fixed in place (i.e. set against a wall). 

Participants sit, with their back straight and their feet completely on the floor at approximately shoulder 

width. In order to improve balance, one leg may be slightly more extended than the other. The 

participant is then asked to stand up, and sit back down fully, without using their arms, as many times 

as possible for thirty seconds ensuring balance is not lost. Each correct repetition adds one point, but if 

the patient uses their arms at any moment, they are scored zero points. The evaluator may visually 

perform the task or ask the participant to try it once to clarify, prior to administering the test. The cutoff 

scores to indicate the capability of maintaining physical independence are age-dependent. For example, 

cutoff scores are 15 for females and 17 for males aged 60-64 and 9 for both males and females aged 90 

or older. The goal of our system is to perform a binary prediction of the result of this test by collecting 

data from the Extended Balance Board while playing PDDanceCity. The complete system diagram, as 

conceived in Chapter 4, is depicted in Figure 21. The list of employed features is included in Table 15. 

 

Exergame-Based Technical Data Acquisition

Feature Vector

Clinical Decision Support System

Player Falling 
Risk 

(Age-average, 
Increased)

Extended 
Balance Board 

Data

Game
Data

Naive Bayes

Decision 
Trees

Neural 
Networks

Other 
Algorithms

...

30-Second-Sit-
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Prediction
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Interaction Data Processing (Extended Balance Board)

Extended 
Balance Board 

Raw Data
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Packet 

Classification

(𝑥, 𝑦)
Bidimensional 

Projection 
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PDDanceCity PDDanceCity Features

Extended Balance 
Board Features

Acquisition 
Serializer 

Board

Health Data
(Clinic Visits)
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Test Score and Result
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Clinical Data Acquisition

Extended 
Balance Board

 

Figure 21: Exergame-based clinical decision support system to assess balance. System diagram 
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Features Description Calculation 

𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Average 𝒄𝒐𝒎 value for upwards, downwards, 

rightwards and leftwards movements, where 

𝑛𝐶𝑂𝑀,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is the number of steps in each 

direction. Four two-dimensional features (𝑥, 𝑦) 

per playthrough 

∑ 𝒄𝒐𝒎(𝑡)
𝑛𝐶𝑂𝑀,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑡=1

𝑛𝐶𝑂𝑀,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑈𝑝 ↔ 𝑐𝑜𝑚𝑦 > 0.5, |𝑐𝑜𝑚𝑥| < 0.1 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑜𝑤𝑛 ↔ 𝑐𝑜𝑚𝑦 < −0.5, |𝑐𝑜𝑚𝑥| < 0.1 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝑖𝑔ℎ𝑡 ↔ 𝑐𝑜𝑚𝑥 > 0.5, |𝑐𝑜𝑚𝑦| < 0.1 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑒𝑓𝑡 ↔ 𝑐𝑜𝑚𝑥 < −0.5, |𝑐𝑜𝑚𝑦| < 0.1 

𝐶𝑜𝑚𝑆𝑡𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Standard deviation of 𝒄𝒐𝒎, per direction, as 

above. Eight features per playthrough √
∑ (𝑐𝑜𝑚𝑖(𝑡) − 𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,𝑖

)
2𝑛𝐶𝑂𝑀,𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑡=1

𝑛𝐶𝑂𝑀,𝑗 − 1
,  

𝑖 = 𝑥, 𝑦, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑈𝑝,𝐷𝑜𝑤𝑛, 𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑈𝑝, 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐷𝑜𝑤𝑛 

Average value of 𝑐𝑜𝑚𝑦 for all values where 

𝑐𝑜𝑚𝑦 > 0 (up) or 𝑐𝑜𝑚𝑦 < 0 (down) and 𝑛𝐶𝑂𝑀 is 

the total number of 𝒄𝒐𝒎 samples. Two 

features per playthrough 

∑ 𝑐𝑜𝑚𝑦(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
: 𝑐𝑜𝑚𝑦 > 0, 

∑ 𝑐𝑜𝑚𝑦(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
: 𝑐𝑜𝑚𝑦 < 0 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑅𝑖𝑔ℎ𝑡 , 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐿𝑒𝑓𝑡 

Average value of 𝑐𝑜𝑚𝑥 for all values where 

𝑐𝑜𝑚𝑥 > 0 (right) or 𝑐𝑜𝑚𝑥 < 0 (left). Two 

features per playthrough 

∑ 𝑐𝑜𝑚𝑥(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
: 𝑐𝑜𝑚𝑥 > 0, 

∑ 𝑐𝑜𝑚𝑥(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
: 𝑐𝑜𝑚𝑥 < 0 

𝐴𝑣𝑔𝑥 , 𝐴𝑣𝑔𝑦 
Average value of 𝑐𝑜𝑚𝑥 and 𝑐𝑜𝑚𝑦. Two 

features (𝑥, 𝑦) per playthrough 

∑ 𝑐𝑜𝑚𝑥(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
, 
∑ 𝑐𝑜𝑚𝑦(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
 

𝑀𝑎𝑥𝑥 , 𝑀𝑎𝑥𝑦, 

𝑀𝑖𝑛𝑥 , 𝑀𝑖𝑛𝑦 

Maximum and minimum value of 𝑐𝑜𝑚𝑥 and 

𝑐𝑜𝑚𝑦. Four features per playthrough 

𝑀𝑎𝑥 (𝑐𝑜𝑚𝑥(𝑡), ∀𝑡), 𝑀𝑎𝑥 (𝑐𝑜𝑚𝑦(𝑡), ∀𝑡), 

𝑀𝑖𝑛 (𝑐𝑜𝑚𝑥(𝑡), ∀𝑡), 𝑀𝑎𝑥 (𝑐𝑜𝑚𝑦(𝑡), ∀𝑡) 

𝑆𝑡𝑑𝑥 , 𝑆𝑡𝑑𝑦 
Standard deviation of 𝑐𝑜𝑚𝑥 and 𝑐𝑜𝑚𝑦. Two 

features (𝑥, 𝑦) per playthrough √
∑ (𝑐𝑜𝑚𝑖(𝑡) − 𝐴𝑣𝑔𝑖)

2𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀 − 1
, 𝑖 = 𝑥, 𝑦 

𝐼𝑓𝐴𝑣𝑔, 𝐼𝑓𝑀𝑎𝑥 

Average  𝑓(𝑡) value and maximum for the 

whole playthrough. Two features per 

playthrough 

∑ 𝑖𝑓(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
, 𝑀𝑎𝑥 ( 𝑓(𝑡), ∀𝑡) 

𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑖 

Number of times  𝑓(𝑡) > 𝑖, 𝑖 = [0.5,1,1.5,2]. 

Normalized by total playthrough time. Four 

features per playthrough 

𝑁 (𝑖𝑓(t) > 𝑖)

𝑛𝐶𝑂𝑀
, 𝑖 = 0.5,1,1.5,2 

𝐼𝑓𝑆𝑢𝑚𝐴𝑣𝑔
, 

𝐼𝑓𝑆𝑢𝑚𝑀𝑎𝑥
 

Average value and maximum of the sum of 

the last 25 values of  𝑓(𝑡) for the whole 

playthrough. Two features per playthrough 

∑ 𝑖𝑓𝑆𝑢𝑚(𝑡)
𝑛𝐶𝑂𝑀
𝑡=1

𝑛𝐶𝑂𝑀
, 𝑖𝑓𝑆𝑢𝑚(𝑡) = ∑ 𝑖𝑓(t)𝑡

𝑖=𝑡−24 , 

𝑀𝑎𝑥 (𝑖𝑓𝑆𝑢𝑚(𝑡), ∀𝑡) 

𝐼𝑓𝑆𝑢𝑚𝑂𝑣𝑒𝑟𝑥
 

Number of times  𝐼𝑓𝑆𝑢𝑚(𝑡) > 𝑖, 𝑖 = [0.5,1,1.5,2]. 

Normalized by total playthrough time. Four 

features per playthrough 

𝑁 (𝑖𝑓𝑆𝑢𝑚(𝑡) > 𝑖)

𝑛𝐶𝑂𝑀
, 𝑖 = 0.5,1,1.5,2 

𝑆𝑡𝑒𝑝𝐴𝑣𝑔 

Average time between steps, excluding the 

first step, defining 𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒(𝑖) as the time in 

seconds in which step 𝑖 occurred, and 𝑛𝑆𝑡𝑒𝑝𝑠 as 

the total number of steps in the playthrough. 

One feature per playthrough 

∑ 𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒(𝑖) − 𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒(𝑖 − 1)
𝑛𝑆𝑡𝑒𝑝𝑠
𝑖=2

𝑛𝑆𝑡𝑒𝑝𝑠
 

𝑆𝑡𝑒𝑝𝑆𝑡𝑑 

Standard deviation of time between steps, 

excluding the first step. One feature per 

playthrough 

√
∑ (𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒(𝑖) − 𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒(𝑖 − 1) − 𝑆𝑡𝑒𝑝𝐴𝑣𝑔)

2𝑛𝑆𝑡𝑒𝑝𝑠
𝑖=2

𝑛𝑆𝑡𝑒𝑝𝑠 − 1
 

𝐴𝑔𝑒, 𝑆𝑒𝑥 
Player-related nominal data: age and sex. Two 

features per playthrough 
 

Table 15: Exergame-based clinical decision support system to assess balance. System features 
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For this test, a cohort of 16 participants (Table 52, median age 73, 6 males) were selected and recruited 

from a nursing home in Darmstadt. There were no specific inclusion criteria, considering the nursing 

home would provide participants adequate for the evaluation. The exclusion criterion was severe 

balance impairment that could implicate a serious risk of falling during the evaluation, judged by a 

physiotherapist. Two of the participants had dementia, and one had PD. 67% of participants declared 

little or no experience with computers. During the first session, participants were asked to perform the 

30-Second-Sit-to-Stand Test. Personal information (age, sex) was collected. Afterwards, they played a 

level of PDDanceCity with supervision. A user profile was created in the game. For further sessions, 

participants chose their profile, played as long as they wanted, and then left. An evaluator was present 

to ensure participants did not fall from the device, but otherwise the remaining playthroughs were 

unsupervised. A total of 87 levels of PDDanceCity were played, of which 6 were discarded due to data 

failure, leaving a dataset of 16 participants and 81 playthroughs. All participants started at the lowest 

difficulty level of PDDanceCity (C1,M1, see Table 13) and the difficulty was subsequently increased if 

performance was satisfactory and the player agreed. This increase occurred either at the suggestion of 

the player or the evaluator. Difficulty was always increased on a step-to-step basis. 

 

For the purpose of this evaluation we consider two evaluation scenarios, considering that the cutoff 

scores of the Sit-To-Stand test are age-dependent. First, we design a classification scenario without 

player-related nominal data. In this scenario, we consider players are fit if they score 12 points or higher 

in the Sit-To-Stand test. The results of this scenario are presented in Table 16 and Figure 22. For the 

second scenario, we include age and sex as classification features, and distribute participants as fit or 

not fit depending on the age- and sex-adjusted cutoff scores described in the Sit-To-Stand test 

instructions. This means that a participant may be classified as “fit” for the first scenario and “not fit” 

for the second, but this was only the case with three participants). The results of this scenario are 

included in Table 17 and Figure 23. The age- and sex-adjusted cutoff scores, as well as statistical details 

on both classification scenarios are provided in Appendix E, section Extended Balance Board Evaluation 

Classification Results.  

Results 

Classification results are good in both cases. In short, it is possible to predict whether the user will score 

below, or above, 12 points on the sit-to-stand test based on data collected by playing PDDanceCity. If 

the player is known, predicting the result of the test, with an age- and sex-adjusted cutoff score is also 

possible. Effect sizes of features, presented in Appendix E, Table 57 and Table 58, indicate the most 

relevant features are those related to the instability factor 𝑖𝑓(𝑡) and to the mean time and standard 

deviation of steps 𝑆𝑡𝑒𝑝𝐴𝑣𝑔, 𝑆𝑡𝑒𝑝𝑆𝑡𝑑. Effect sizes seem to be larger in the scenario with nominal data, but 

in both cases the largest effect sizes are achieved on 𝑖𝑓(𝑡) features. Classifier hyperparameters are 

provided in Appendix D, Table 50. The quality of these results is increased by the nature of the evaluation 

scenario. Since participants did not need supervision, a home-based scenario seems to be feasible as 

long as the Extended Balance Board can be placed in a position where the risk of falling backwards is 

completely eliminated (i.e. against a wall). The main limitation for this potential scenario is the board 

setup process. At the moment, at first setup, the Wii Balance Boards need to be synchronized via 

Bluetooth with the Acquisition Serializer Board. This connection then remains active until the device 

runs out of batteries, which usually takes approximately two days of continuous operation. A 

completely automatic setup process, combined with adapting the boards to operate with externally 

provided electrical power, would ensure the potential home-based scenario is indeed feasible.  
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Algorithm: Logistic Model Tree,  

accuracy 91.358% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

Not fit 29 (TP) 5 (FN) 0.853 0.043 0.935 0.892 0.823 0.940 0.946 

Fit 45 (TN) 2 (FP) 0.957 0.147 0.900 0.928 0.823 0.940 0.930 

Weighted average 74 7 0.914 0.103 0.915 0.913 0.823 0.940 0.936 

Algorithm: Fast Decision Tree,  

accuracy 87.654% 

Not fit 27 (TP) 7 (FN) 0.794 0.064 0.900 0.844 0.746 0.853 0.858 

Fit 44 (TN) 3 (FP) 0.936 0.206 0.863 0.898 0.746 0.853 0.844 

Weighted average 71 10 0.877 0.146 0.878 0.875 0.746 0.853 0.850 
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Table 16: Extended Balance Board classification results without player nominal data 

Figure 22: Extended Balance Board classification accuracies without player nominal data 
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Algorithm: C4.5, 

accuracy 98.765% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

Not fit 35 (TP) 0 (FN) 1 0.022 0.972 0.986 0.975 0.989 0.972 

Fit 45 (TN) 1 (FP) 0.978 0 1 0.989 0.975 0.989 0.991 

Weighted average 80 1 0.988 0.009 0.988 0.988 0.975 0.989 0.983 

Algorithm: Logistic Model Tree, 

accuracy 98.765% 

Not fit 34 (TP) 1 (FN) 0.971 0 1 0.986 0.975 1 1 

Fit 46 (TN) 0 (FP) 1 0.029 0.979 0.989 0.975 1 1 

Weighted average 80 1 0.988 0.016 0.988 0.988 0.975 1 1 
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Table 17: Extended Balance Board classification results with player nominal data 

Figure 23: Extended Balance Board classification accuracies with player nominal data
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Feature Effect Size (g) without nominal data Effect size (g) with nominal data 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐿𝑒𝑓𝑡 0.6306 0.8976 

𝑆𝑡𝑑𝑥 -0.6665 -1.2422 

𝐼𝑓𝐴𝑣𝑔 -0.7478 -2.0057 

𝐼𝑓𝑀𝑎𝑥 -0.6337 -1.2166 

𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,0.  -0.7452 -1.4445 

𝐼𝑓𝑆𝑢𝑚𝐴𝑣𝑔
 -0.7387 -1.9909 

𝐼𝑓𝑆𝑢𝑚𝑂𝑣𝑒𝑟 0.5
 -1.5261 -2.0229 

𝐼𝑓𝑆𝑢𝑚𝑂𝑣𝑒𝑟 1
 -0.9196 -1.8100 

𝑆𝑡𝑒𝑝𝐴𝑣𝑔 1.2260 1.0735 

𝑆𝑡𝑒𝑝𝑆𝑡𝑑 0.8446 0.8934 

 

PDDanceCity Acceptance 

The acceptance of PDDanceCity was tested twice: once with the 16 participants of the balance and gait 

evaluation, and once separately with 28 healthy individuals of any age, in a study organized by the 

University Hospital Cologne. These 44 participants were asked to give their opinion on the game with 

two questions that could be answered on a one (disagree) to four (agree) Likert scale, regarding fun 

and user-friendliness. The 16 participants of the balance and gait evaluation also replied to two 

additional questions regarding skill adjustment and a potential home scenario use, since they would 

be the target population of a home scenario implementation. 

 

In general terms, users found the game to be intuitive and user-friendly. Most users found the difficulty 

to be adequate to their skill. Participants with chronic diseases (PD and dementia) could still interact 

with the game properly. As displayed in Figure 24, user ratings were good for both fun and user-

friendliness. On the other hand, the prospect of playing the game at home by themselves was rated 

slightly worse, as shown in Figure 25. Although most players found the difficulty level to be well-

adjusted, only 66% of participants would play the game by themselves at home. Verbally, users 

reported that the latency between the Extended Balance Board and the game was too high, and that it 

did not always detect steps correctly. In summary, acceptance results are quite positive in all fields 

except the possibility of playing the game at home, which shows potential for improvement. A 

discussion on potential future work based on the results of the evaluation and user acceptance is 

presented in Chapter 9. 

 

Table 18: Extended balance board classification results. Effect sizes of statistically significant features 

in both scenarios 
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Figure 24: PDDanceCity acceptance test results for user-friendliness and fun 

Figure 25: PDDanceCity acceptance test results for home monitoring potential and skill adjustment 
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6. Design of an Exergame-based Clinical Decision Support System to 

Assess Tremor 

Based on our model for an exergame-based clinical decision support system to monitor a symptom of 

PD introduced in Chapter 4, in this chapter, we present a proof of concept of this model to assess hand 

tremor and hand dexterity. First, we describe the sensor that we used to control our system, the Leap 

Motion sensor. A number of alternatives were considered, as described in the section Assessing Resting 

Tremor of Chapter 3. However, the Leap Motion sensor presents an important advantage compared to 

these options, since it can be used to evaluate both hand tremor and bradykinesia, as discussed in 

Chapter 3. This is also possible with electromyography, but the Leap Motion sensor is non-invasive, 

which means that a potential home scenario is possible. We used the Leap Motion Sensor to implement 

a digitalized version of the current clinical standard to assess hand tremor and dexterity, Section III of 

the UPDRS test. We refer to this implementation as PALM (Parkinson Assessment with Leap Motion) 

[99]. The goal of PALM is to use the Leap Motion sensor to objectively determine parameters obtained 

from hand movements (e.g., speeds and amplitudes) which can be used as a basis to predict UPDRS 

scores. After concluding this design, we created a dual-tasking exergame controlled with the Leap 

Motion sensor, called PDPuzzleTable. This exergame, published in [93], is a series of digitalized puzzles 

that can provide data related to the player’s cognitive skills based on game data, and obtain the same 

hand movement information as collected in PALM. In a preliminary test, we evaluated the capacity of 

the Leap Motion sensor to accurately discriminate a group of five PD patients and five healthy controls 

based on PALM features that evaluate resting tremor and bradykinesia [99]. Our results indicate that 

the system can accurately classify PD patients and healthy controls. Experimental details of this 

evaluation are provided in Appendix F. We conclude this chapter with an acceptance test of 

PDPuzzleTable. In this test, we studied the opinion of users and measured their performance when 

interacting with the sensor. Potential users found the game to be user-friendly and fun. However, we 

observed a significant learning effect when using the Leap Motion sensor, which has to be taken into 

consideration. 

6.1. Data Acquisition 

The Leap Motion sensor is a device capable of identifying hands and tracking finger movements 

individually with two infrared cameras and three infrared LEDs. It has a surface of 3-by-8 cm, with a 

height of 1.25 cm. The LEDs generate infrared light and the cameras capture reflected data at a 

frequency of up to 200 Hz. Proprietary machine learning algorithms, running on the computer, then 

detect the position of different parts of the hand, with a positional error of approximately 0.7 mm (Figure 

26) [164]. It is possible to obtain the data produced by these proprietary algorithms by using the LeapC 

library [320]. We refer to these data as our raw data (Table 19). 
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Parameter Name Description 

Hand ID hand_id Hand unique identifier (several hands can be detected at the 

same time) 

Hand type type Hand type (left/right) 

Hand palm center palm_position Cartesian coordinates (𝑥, 𝑦, 𝑧) of the center of the palm in mm 

(see Figure 26) 

Hand palm rotation palm_normal Cartesian coordinates (𝑥, 𝑦, 𝑧) of a vector perpendicular to the 

palm, pointing downwards 

Wrist position wrist Cartesian coordinates (𝑥, 𝑦, 𝑧) of the wrist of the hand 

Finger type finger_id Finger type (0 to 4, 0 being the thumb and 4 the index finger) 

Finger metacarpophalangeal joint 

position 

mcp_position Cartesian coordinates (𝑥, 𝑦, 𝑧) of the metacarpophalangeal 

joint, per finger (see Figure 26) 

Finger proximal interphalangeal 

joint position 

pip_position Cartesian coordinates (𝑥, 𝑦, 𝑧) of the proximal interphalangeal 

joint, per finger (see Figure 26) 

Finger distal interphalangeal joint 

position 

dip_position Cartesian coordinates (𝑥, 𝑦, 𝑧) of the distal interphalangeal 

joint, per finger (see Figure 26) 

Fingertip position tip_position Cartesian coordinates (𝑥, 𝑦, 𝑧) of the fingertip, per finger (see 

Figure 26) 

Finger width width Estimated finger width in mm, per finger 

Finger length length Estimated finger length in mm, per finger 

Pinch strength pinch_strength Adimensional value 0-1 (0 for open hand, 1 for closed pinch) 

Grab strength grab_strength Adimensional value 0-1 (0 for open hand, 1 for closed fist) 

Grab angle grab_angle Angle between fingers and grabbing hand pose (0 for open 

hand, pi for closed fist) 

 

The Leap Motion sensor offers three different resolutions: high speed (low resolution), balanced, and 

high precision (high resolution). We used the balanced option as indicated by previous authors [42]. In 

order to improve the accuracy of the data acquisition process, an armature such as the one presented 

Figure 26: Leap Motion hand recognition (left), sensor and coordinate system (right). The four 

tracking points per finger, as described in Table 19, are indicated for the index finger 

Table 19: Leap Motion sensor raw data [320] 
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in [9] was designed and built. It is a wooden structure with a surface of 22-by-41 cm, and a height of 29 

cm. The arm rest is made of fabric to make it more comfortable. We included an improvement in our 

design: the sensor lays on a movable tray to ensure it is always placed under the hand (Figure 27). This 

has to be taken into consideration since PD patients have limited hand mobility. 

 

 

 

Once we could acquire raw hand movement data from the Leap Motion sensor, our next task was to 

implement a data acquisition procedure. The state of PD patients is regularly evaluated by their 

neurologists using the UPDRS test [108]. This test evaluates numerous aspects of the PD patient, one of 

which is their hand dexterity (UPDRS Tasks 3.4 to 3.6) and tremor (UPDRS Tasks 3.15 and 3.16). These 

tasks are described as follows: 

 

• UPDRS III Task 3.4: Finger Tapping. The patient should tap the index finger on the thumb 

ten times, as quickly and widely as possible. The task should be performed with both hands, 

which should be rated separately. 

• UPDRS III Task 3.5: Hand Movements. The patient should open and close their hand, forming 

a fist, ten times, as quickly and widely as possible. The tasked should be performed with both 

hands, which should be rated separately. In order to avoid confusion, in this document this 

task will be henceforth referred to as Fist Closing. 

• UPDRS III Task 3.6: Pronation-Supination of Hands. The patient should turn the palm up 

and down alternately, ten times, as quickly and widely as possible. The task should be 

performed with both hands, which should be rated separately. 

• UPDRS III Task 3.15: Postural Tremor. The patient should stretch their arms in front of the 

body with the palms down. The fingers should be comfortably separated. Observe the tremor 

amplitude in this posture for ten seconds. 

• UPDRS III Task 3.16: Kinetic Tremor. The patient should perform three finger-to-nose 

maneuvers with each hand reaching as far as possible to touch the examiner’s finger. Observe 

the highest tremor amplitude seen. 

 

Exercises are then rated on a scale of zero (no symptoms) to four (unable to perform the task). Although 

guidelines for scores are provided, these evaluations have a margin for subjectivity. The guidelines of 

Tasks 3.4 to 3.6 discuss speed, acceleration, interruptions, and amplitudes. The neurologist is required 

to evaluate all these factors visually and simultaneously. In Tasks 3.15 and 3.16, the neurologist is 

required to distinguish a tremor with an amplitude of two cm from another with an amplitude of four. 

Figure 27: Leap Motion armature 
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These factors may cause two neurologists to rate the same PD patient differently. Further details on 

these tasks is provided in Appendix A, Table 37 and Table 38. 

 

We decided to implement a digitalized version of the UPDRS test using the Leap Motion sensor. As 

described in Table 19, the sensor can provide information related to all of the aspects that have to be 

considered to rate the UPDRS tasks. For this purpose, we created PALM (Parkinson Assessment with 

Leap Motion). PALM is an application where the hand, as recognized by the sensor, is visually 

presented to ensure data are being acquired correctly. PALM collects the raw data described in Table 

19 in the background, and extracts relevant classification features using a series of Matlab algorithms. 

 

In collaboration with physiotherapists as well as doctors, a system was implemented in which a total 

of five tasks are performed, in extension of the UPDRS tasks (Table 20). 

 

PALM task Related 

UPDRS task 

Description 

1. Static hand 

test 

3.15 The patient should rest their hand on the armature, with extended, comfortably 

separated fingers, and hold still for 60 seconds. This task is performed once for each 

hand 

2. Finger 

tapping 

3.4, 3.16 The patient should rest their hand on the armature and tap the index finger on the 

thumb ten times, as quickly and widely as possible. The task is performed once for 

each hand 

3. First closing 3.5, 3.16 The patient should rest their hand on the armature and open and close their hand, 

forming a fist, ten times, as quickly and widely as possible. The task is performed 

once for each hand 

4. Pronation-

supination 

3.6, 3.16 The patient should rest their hand on the armature and turn the palm up and down 

alternately, ten times, as quickly and widely as possible. The task is performed once 

per hand 

5. Lateral 

movement 

3.16 The patient should rest their hand on the armature and position their hand as if they 

were holding a glass, laterally move their wrist left and right, ten times, as quickly 

and widely as possible. The task is performed once per hand 

 

Once the tasks are performed, data are then processed using a series of algorithms programmed in 

Matlab. Essentially, PALM extracts the relevant data from each sample depending on which task was 

performed, and obtains a series of features which set the base for an assessment score by a neurologist, 

or for machine learning-based UPDRS score prediction (Figure 28).  

 

For each task, PALM extracts features relevant to the related UPDRS task criteria from one or several 

of the signals described in Table 19. For example, for the static hand test (Task 1), we consider the 

maximum tremor amplitude of the palm center, as described in UPDRS Task 3.15. In general terms, we 

extract time-domain (amplitude, means, standard deviations) and frequency-domain features based on 

the Fast Fourier Transformation (FFT) in each task. In those that include a voluntary action (Tasks 2 to 

5), we also include features related to the speed and amplitude with which this action was performed. 

We refer to these as kinetic features. A diagram describing the system is presented in Figure 28. Kinetic 

feature extraction is described in the section Kinetic Signal Processing. A description of each task, and 

the specific features considered in each task follows in the section PALM Task Description. 

Table 20: Description of PALM Tasks 
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Interaction Data Processing (Leap Motion Sensor)

Interaction Features

MATLAB

Leap Motion 
Sensor Raw Data 

(LeapC)

Frequency 
Domain Feature 

Extraction

Time Domain 
Feature Extraction

Kinetic Feature 
Extraction 

(Facultative)

Cropping 
5th Order 20 Hz 
Lowpass Filter

Task-Specific 
Features

 

 

Kinetic Signal Processing 

In kinetic signals, the goal is to extract relevant features for amplitude and speed related to possible 

dexterity affections (e.g., interruptions, reductions in amplitude, or kinetic tremor). Signals recorded 

from an active task (PALM Tasks 2 to 5, Table 20) need to be cropped to the specific segment in which 

the task occurs. Afterwards, the points of interest have to be identified. This is done by using a 

combination of peak and zero-crossing detection algorithms in several iterations, and works as follows: 

let 𝑠(𝑡) be the position of the point of interest of the hand, as described in Table 19 using the coordinate 

system depicted in Figure 26. Let 𝑣(𝑡) be speed of the same point of interest, calculated as the first order 

differential of 𝑠(𝑡), that is: 

 

𝑣(𝑡) = 𝑠(𝑡) − 𝑠(𝑡 − 1), ∄ 𝑡′: 𝑡 > 𝑡′ > 𝑡 − 1 

 

Then the signal is cropped as follows: 

 

• Relative maxima of |𝑣(𝑡)| are identified with a range of ±0.25 seconds. This means that if the 

speed in this point is equal or greater than all values in this range, it is identified as a maximum. 

This range ensures that all relevant maxima are detected. 

 

• All maxima with a value lesser or equal than 2.5 mm/s are set to zero, since such low speeds 

are not indicative of a voluntary movement. 

 

• Each non-zero preceded by at least four zeros (that is, one second) is a potential start. If no 

potential start is found, the start of the signal is considered instead.  

 

• Each non-zero followed by at least four zeros (that is, one second) is a potential end. If no 

potential end is found, the end of the signal is considered. 

 

• The number of oscillations between each start and each end are calculated using zero-crossing 

detection. If a combination of a start and end contains ten oscillations, the signal is cropped to 

Figure 28: PALM interaction data processing diagram 
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this range. If only combinations with more than ten oscillations are found, we crop a segment 

of that range that contains ten oscillations by counting zero crossings. If only combinations 

with less than ten oscillations are found, the combination with the greatest number of 

oscillations is taken. Figure 29 depicts the cropping process. 

 

 

 

Once the signal has been cropped, the signal is processed. In the processing phase, we analyze the signal 

and detect the points of interest. This works as follows: 

 

• Relative maxima and minima are identified in 𝑠(𝑡) with a comparison range of ±0.25 seconds. 

This produces a vector of maxima (𝑥, 𝑦), namely max(𝑠(𝑡)) and a vector of minima (𝑥, 𝑦), 

namely m n(𝑠(𝑡)). 

 

• Tremor peaks (false peaks) are then removed: if a maximum has a value that is ±30% the 

average value of all minima, it is removed. The same procedure is then carried out with the 

minima. 

 

• Finally, a peak correction procedure is performed in case the previous step removed a real 

maximum or minimum. In case no maximum is found between two minima, or no minimum 

is found between two maxima, a new one is added by finding the absolute maximum (or 

minimum) in the region where there should be one. This is necessary for signals where the 

tremor is very significant. 

 

Once cropped and preprocessed, the following kinetic features are extracted: 

 

• Amplitude related features: amplitudes are measured as the difference between each 

maximum and its successive minimum. Since analysis takes place between the first and last 

maxima, if 𝑛 repetitions are performed, 𝑛 − 1 amplitudes are extracted. 

 

• Speed related features: hand speed has its maximum at the middle of the opening or closing 

movement. The points of interest are the maxima, as well as the first and last zero of the speed. 

For example, in an opening movement, the speed signal is a series of zeros (the hand is closed), 

followed by a number of non-zeros with a maximum (opening movement) followed by a series 
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of zeros again (the hand is open). This allows us to measure both the opening speed and time, 

as well as the amount of time that the hand was opened or closed. Since the analysis takes place 

between the first and last maxima, if 𝑛 repetitions are performed, 𝑛 − 2 speed-related features 

are extracted. This procedure is depicted in Figure 30. 

 

 

 

PALM Task Description and Features 

Task 1: Static Hand Test 

 

The goal of Task 1 (Figure 31) is to detect resting hand tremor. Given that the Leap Motion sensor refresh 

rate is variable (approximately 60 to 200 Hz, depending on ambient light and processing power), a 

sample length of 60 seconds was decided upon. The average framerate is calculated for each sample 

and taken into account when calculating time- and frequency-domain features. 

 

 

 

For this task, the signal of interest is the x cartesian coordinate of the palm center of the hand, that is: 

 

𝑠(𝑡) =  𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥
(𝑡) 

 

The coordinate is described in Table 19 and the resulting signal is depicted in Figure 32. This signal was 

chosen because, after sampling numerous PD patients, we noticed tremor is most visible in it. First, the 
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initial and final five seconds of the signal are cropped to remove sections in which voluntary hand 

movements are expected. After calculating the sample’s average framerate, the signal is passed through 

a 5th order lowpass filter with a cutoff frequency of 20 Hz. This cutoff frequency was chosen taking into 

consideration that the Parkinsonian tremor frequency range is 3 to 7 Hz, and the hand tremor range 

(including non-parkinsonian tremor) is 3 to 15 Hz. Once cropped and filtered, we proceeded with 

feature extraction. We selected features based on the ones described in related publications (Table 3), 

including some new ones, such as the energy in the parkinsonian and hand tremor range. 

 

Features Description Calculation 

𝐴𝑣𝑔𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

Difference between the mean value of the maxima 

and minima found in 𝑠(𝑡). Defining 𝑛𝑚𝑎𝑥, 𝑛𝑚𝑖𝑛 as 

the number of identified maxima and minima. One 

feature per sample 

∑ max (𝑠(𝑖))
𝑛𝑚𝑎𝑥
𝑖=1

𝑛𝑚𝑎𝑥

−
∑ m n (𝑠(𝑖))
𝑛𝑚𝑖𝑛
𝑖=1

𝑛𝑚𝑖𝑛

 

𝐴𝑣𝑔𝑆𝑖𝑔𝑛𝑎𝑙 
Mean value of 𝑠(𝑡), defining 𝑛 as the length of the 

sample. One feature per sample 

∑ 𝑠(𝑖)𝑛
𝑖=1

𝑛
 

𝑆𝑡𝑑𝑆𝑖𝑔𝑛𝑎𝑙 
Standard deviation of 𝑠(𝑡). One feature per sample 

√
∑ (𝑠(𝑖) − 𝐴𝑣𝑔𝑆𝑖𝑔𝑛𝑎𝑙)

2𝑛
𝑖=1

𝑛 − 1
 

𝑀𝑎𝑥𝑆𝑖𝑔𝑛𝑎𝑙, 

𝑀𝑖𝑛𝑆𝑖𝑔𝑛𝑎𝑙 

Maximum, minimum of 𝑠(𝑡). Two features per 

sample 
max(𝑠(𝑡)) ,m n(𝑠(𝑡)) 

𝐴𝑣𝑔𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 

Average value of the dispersion with a 0.5 second 

window frame or ±𝑛𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛, calculated every 0.05 

seconds, resulting in a vector with length 

𝑛𝐷𝑖𝑠𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠. One feature per sample 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑡) =
∑ |𝑠(𝑡)−𝑠(𝑖)|
𝑛𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
𝑖=−𝑛𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

2 𝑛𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
, 

𝐴𝑣𝑔𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =
∑ 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑡)
𝑛𝐷𝑖𝑠𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑖=1

𝑛𝐷𝑖𝑠𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑆𝑡𝑑𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 
Standard deviation of the dispersion. One feature 

per sample √
∑ (𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑡) − 𝐴𝑣𝑔𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛)

2𝑛
𝑖=1

𝑛𝐷𝑖𝑠𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 1
 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 

Sum of all power spectral densities of the n-point 

FFT of 𝑠(𝑡), defining 𝑃𝑆𝐷(𝑓(𝑖)) as the spectral 

energy of 𝐹𝐹𝑇(𝑠) at the frequency 𝑓(𝑖) =
𝑖(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑛⁄ ) 

∑ 𝑃𝑆𝐷(𝑓(𝑖))
𝑖=𝑛/2

𝑖=1
 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑒𝑚𝑜𝑟 
Sum of all power spectral densities of the FFT in 

the tremor range (3 to 15 Hz) 
∑ 𝑃𝑆𝐷(𝑓(𝑖))

1  𝐻𝑧

𝑓(𝑖)= 𝐻𝑧
 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐷 
Sum of all power spectral densities of the FFT in 

the PD range (3 to 7 Hz) 
∑ 𝑃𝑆𝐷(𝑓(𝑖))

7 𝐻𝑧

𝑓(𝑖)= 𝐻𝑧
 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 Power spectral density of the maximum of the FFT max(𝑃𝑆𝐷(𝑓(𝑖)) 

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
FFT frequency where 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 was found 

(usually close to 5 Hz in PD patients) 
𝑓(𝑖) ∶ 𝑃𝑆𝐷(𝑓(𝑖)) = 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 

 

Table 21: PALM Task 1 features 
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Task 2: Finger Tapping 

 

The goal of Task 2 (Figure 33) is to detect speed and amplitude alterations when performing up to ten 

index and thumb finger taps. In this case, the signal of interest is the difference in the x coordinates of 

the thumb and index fingers, which should tend to zero when a tap occurs. We chose this signal instead 

of the provided pinch strength because we found it to have a greater resolution. This signal is 

normalized by the length of the index finger measured by the Leap Motion sensor, that is:  

 

𝑠1(𝑡) =
𝑡𝑖𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2𝑥

(𝑡) − 𝑡𝑖𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1𝑥
(𝑡)

max (𝑙𝑒𝑛𝑔𝑡ℎ2)
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Figure 32: PALM Task 1 sample of a PD patient with severe tremor at OFF (left) and ON (right) 

Figure 33: PALM Task 2 
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The coordinates are described in Table 19 and the resulting signal (before and after normalization) is 

depicted in Figure 34. The different elements of the kinetic analysis are shown in Figure 35. After 

obtaining the signal, the framerate is calculated and the bandpass filter is applied. The signal is then 

processed following the steps described in the section Kinetic Signal Processing. Afterwards, the features 

described in Table 22 are extracted. We chose these features based on the ones described in the related 

work (Table 4), including some that have not yet been tested, such as the duration of open and closed 

hand periods and polynomial amplitude tendency. After collecting results from several PD patients, 

we noticed both resting and kinetic tremors are most visible in the palm of the hand. For this reason, 

all frequency domain features are still collected from the signal:  

 

𝑠2(𝑡) =  𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥
(𝑡) 
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Figure 34: PALM Task 2 sample before normalization (top left), closeup of a repetition with very 

visible kinetic tremor normalized by finger length (top right), and frequency-domain analysis 

(bottom) 
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Features Description Calculation 

𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

Total time divided by the number of 

detected repetitions, defined as 𝑛𝑅𝑒𝑝. One 

feature per task 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

𝑛𝑅𝑒𝑝
 

𝐴𝑚𝑝𝑀𝑒𝑎𝑛 
Mean repetition amplitude (see Kinetic 

Signal Processing). One feature per task 

∑ 𝐴𝑚𝑝(𝑖)
𝑛𝑅𝑒𝑝
𝑖=1

𝑛𝑅𝑒𝑝
 

𝐴𝑚𝑝𝑆𝑡𝑑 
Standard deviation of repetition amplitudes. 

One feature per task √
∑  (𝐴𝑚𝑝(𝑖) − 𝐴𝑚𝑝𝑀𝑒𝑎𝑛)

2𝑛𝑅𝑒𝑝
𝑖=1

𝑛𝑅𝑒𝑝 − 1
 

𝐴𝑚𝑝𝑀𝑎𝑥, 𝐴𝑚𝑝𝑀𝑖𝑛 
Maximum and minimum repetition 

amplitudes. Two features per task 
max(𝐴𝑚𝑝(𝑖)) ,m n(𝐴𝑚𝑝(𝑖)) 

𝐴𝑚𝑝𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦 

Polynomial coefficient of the least squares 

first degree polynomial approximation of 

the signal. One feature per task 

Matlab polynomial curve fitting (polyfit) 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 , 
𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 

Mean duration of open and closed hand 

periods (see Kinetic Signal Processing). Two 

features per task 

∑ 𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒(𝑖)
𝑛𝑅𝑒𝑝−1

𝑖=1

𝑛𝑅𝑒𝑝−1
, 
∑ 𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒(𝑖)
𝑛𝑅𝑒𝑝−1

𝑖=1

𝑛𝑅𝑒𝑝−1
 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑆𝑡𝑑 , 
𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑆𝑡𝑑 

Standard deviation of open and closed hand 

periods. Two features per task √
∑  (𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒(𝑖) − 𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛)

2𝑛𝑅𝑒𝑝−1

𝑖=1

𝑛𝑅𝑒𝑝 − 2
 

𝑆𝑝𝑒𝑒𝑑𝑀𝑒𝑎𝑛 

Average speed, including opening and 

closing speeds (see Kinetic Signal Processing). 

One feature per task 

∑ 𝑆𝑝𝑒𝑒𝑑(𝑖)
𝑛𝑅𝑒𝑝−1

𝑖=1

𝑛𝑅𝑒𝑝 − 1
 

𝑆𝑝𝑒𝑒𝑑𝑆𝑡𝑑 

Standard deviation of speeds, including 

opening and closing speeds. One feature per 

task 

√
∑  (𝑆𝑝𝑒𝑒𝑑(𝑖) − 𝑆𝑝𝑒𝑒𝑑𝑀𝑒𝑎𝑛)

2𝑛𝑅𝑒𝑝−1

𝑖=1

𝑛𝑅𝑒𝑝 − 2
 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑒𝑎𝑛 , 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑑 
𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑒𝑎𝑛 , 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑑 

Mean and standard deviation of opening 

and closing speeds. Four features per task 

As 𝑆𝑝𝑒𝑒𝑑𝑀𝑒𝑎𝑛, 𝑆𝑝𝑒𝑒𝑑𝑆𝑡𝑑  only for 𝑆𝑝𝑒𝑒𝑑(𝑖) <

0 (opening) 

and for 𝑆𝑝𝑒𝑒𝑑(𝑖) > 0 (closing) 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑎𝑥 , 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑖𝑛 
Maximum and minimum of opening speeds. 

Two features per task 

max(𝑆𝑝𝑒𝑒𝑑(𝑖)),m n(𝑆𝑝𝑒𝑒𝑑(𝑖)), 𝑆𝑝𝑒𝑒𝑑(𝑖)

< 0 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑎𝑥 , 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑖𝑛 
Maximum and minimum of closing speeds. 

Two features per task 

As 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑎𝑥 , 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑖𝑛, only 

for 𝑆𝑝𝑒𝑒𝑑(𝑖) > 0 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 

Sum of all power spectral densities of the n-

point FFT of 𝑠2(𝑡), defining 𝑃𝑆𝐷(𝑓(𝑖)) as the 

spectral energy of 𝐹𝐹𝑇(𝑠) at the frequency 
𝑓(𝑖) = 𝑖(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑛⁄ ) 

∑ 𝑃𝑆𝐷(𝑓(𝑖))
𝑖=𝑛/2

𝑖=1
 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑒𝑚𝑜𝑟 
Sum of all power spectral densities of the 

FFT in the tremor range (3 to 15 Hz). 
∑ 𝑃𝑆𝐷(𝑓(𝑖))

1  𝐻𝑧

𝑓(𝑖)= 𝐻𝑧
 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐷 
Sum of all power spectral densities of the 

FFT in the PD range (3 to 7 Hz) 
∑ 𝑃𝑆𝐷(𝑓(𝑖))

7 𝐻𝑧

𝑓(𝑖)= 𝐻𝑧
 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 
Power spectral density of the maximum of 

the FFT 
max(𝑃𝑆𝐷(𝑓(𝑖)) 

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
FFT frequency where 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 was 

found (usually close to 5 Hz in PD patients) 
𝑓(𝑖) ∶ 𝑃𝑆𝐷(𝑓(𝑖)) = 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 

Table 22: PALM Task 2 features 
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Task 3: Fist Closing 

 

In Task 3 (Figure 36), the goal is to detect alterations in a fist opening and closing movement. To study 

this movement, we calculate the z coordinate of the middle finger minus the z coordinate of the palm 

center, normalized by finger length. To detect kinetic tremor, we again consider the palm center of the 

hand, that is: 

 

𝑠1(𝑡) =
𝑡𝑖𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛3𝑧

(𝑡)−𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1𝑧
(𝑡)

max (𝑙𝑒𝑛𝑔𝑡ℎ3)
, 𝑠2(𝑡) =  𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥

(𝑡) 

 

We chose this signal instead of the provided grab strength because, as is the case of the previous task, 

it provided a higher resolution. Signal processing is performed in the same way as Task 2, and the same 

features, described in Table 22, are obtained. 
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Figure 35: PALM kinetic analysis of a signal from a PD patient 
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Task 4: Pronation-Supination 

 

In the fourth task (Figure 37) we analyze a pronation and supination of the hand. The signal to be 

analyzed is the x coordinate of the thumb, normalized by its length. We also consider kinetic tremor 

based on the palm of the hand. The extracted features are similar to Task 2 and are thus described in 

Table 22. 

 

𝑠1(𝑡) =
𝑡𝑖𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1𝑥

(𝑡)

max (𝑙𝑒𝑛𝑔𝑡ℎ1)
, 𝑠2(𝑡) =  𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥

(𝑡) 

 

 

 

 

Task 5: Lateral Movement 

 

The fifth and last task (Figure 38) is not present in the UPDRS test, but is nevertheless of interest to 

determine hand dexterity and tremors when performing arm movements. In this case, the x coordinate 

of the palm center is used for analysis. Kinetic tremor may also be present during this task. Signal 

processing is also similar to Task 2 and thus the features are described in Table 22.  

 

𝑠(𝑡) =  𝑝𝑎𝑙𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥
(𝑡) 

 

Figure 36: PALM Task 3 

Figure 37: PALM Task 4 
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6.2. Exergame 

Once a data acquisition system was conceived, the next step was to design an exergame to provide an 

engaging environment for data acquisition. In this case, the requirement was to design an exergame 

that included a cognitive task and a motor task, controlled with the Leap Motion Sensor. More 

particularly, the control pattern had to replicate the hand movements performed for the data 

acquisition of PALM. To achieve this goal, we designed the exergame PDPuzzleTable [93]. This is 

achieved by implementing a series of puzzles, chosen in collaboration with clinical psychologists for 

their suitability. The puzzles are controlled with the same hand movements as the ones performed in 

PALM, so that the same information can be gained. In this sense, the data extracted from 

PDPuzzleTable can be used to evaluate resting tremor, kinetic tremor, bradykinesia and ON/OFF 

periods. 

 

In PDPuzzleTable, we present two scenarios. The first scenario is a “Tower of Hanoi” (Figure 39). 

Initially implemented in [65], it is a puzzle consisting of three columns and a set of discs, which are 

initially in the leftmost column. The goal of the puzzle is to move the discs, one by one, to the rightmost 

column. It is only possible to place a disk on an empty column, or above a larger disc, limiting the 

number of possible movements. This task contains two cognitive areas: problem solving and 

sequencing. 

 

 

 

The second scenario, initially implemented in [302], is a combination of the Corsi block tapping task 

[158] and the Simon memory game [257]. In this scenario, the player has to observe visual and musical 

cues emitted by a set of blocks, and repeat the same sequence (Figure 40). For every successful cycle, the 

sequence is extended by one additional element. The game continues until a mistake in the sequence is 

Figure 38: PALM Task 5 

Figure 39: Physical Tower of Hanoi (left) and digital implementation (right) [93] 
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made. It is also possible to limit the sequence to visual or musical cues, or request the player to complete 

the sequence backwards. This game addresses the cognitive areas of working memory and sequencing. 

 

    

 

In order for the player to interact with the game, we use raw sensor data extracted from LeapC (Table 

19). In this case, we focus on the parameters 𝑔𝑟𝑎𝑏_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ and 𝑝𝑖𝑛𝑐ℎ_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ to program 

interactions, and thus implement two actions: Grabbing, implemented by closing the fist, and pinching, 

implemented by performing a tap with the index finger and thumb. Although the analysis of hand 

movements to detect tremor and bradykinesia requires more complex signal analysis, it is sufficient to 

use these two parameters to program interactions. However, we had to significantly adapt the 

playability for the limited hand dexterity of PD patients, who in numerous cases have difficulties even 

with the physical Tower of Hanoi and Simon game, both cognitively and physically.  

 

In order to overcome these difficulties, we introduced visual cues that indicate potential interactions. 

For example, when hovering the hand over a certain disk in the Tower of Hanoi or a block in the 

Corsi/Simon game, a blinking object indicates a potential interaction is possible. If the player then 

performs a pinch or a grab, the interaction occurs. 

 

The actual sensor value that triggers this interaction can be adjusted in both directions. For example, 

closing the hand to a certain threshold point (e.g., 𝑔𝑟𝑎𝑏_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ > 0.8) may count as a grabbing action, 

and opening the hand again (𝑔𝑟𝑎𝑏_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ < 0.8) drops the object. However, we noticed that tremors 

make this strategy unfeasible, since the actual value oscillates severely, triggering the threshold 

continuously. Hence, we decided to decouple the grabbing and dropping thresholds. For example, 

when the interaction threshold is reached (𝑔𝑟𝑎𝑏_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ > 0.8) an object is grabbed. Afterwards, it is 

not dropped until a new threshold is reached (𝑔𝑟𝑎𝑏_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ < 0. ). This decoupling greatly removed 

the problem of involuntary grabs and drops. To further improve this interaction, we included an 

interaction timer. When an object is dropped, it cannot be grabbed again for a number of seconds (action 

timer).  

 

Since the interaction in the Tower of Hanoi game is significantly more complex, further adaptations 

were necessary. First, a visual warning text is presented in case the intended movement is not possible. 

Second, in some cases, a disc may be dropped mid-air or left in an invalid position. In this case, after a 

few seconds (reset timer), it can be returned to its latest valid position. 

 

Figure 40: Simon/Corsi memory game digital implementation [302] 
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In order to simplify the difficulty adjustment procedure, we implemented preset difficulty levels, as 

described in Table 23. All these mechanics can be toned down or removed completely, which means 

players would require finer hand control and dexterity to solve the puzzle. In the cognitive domain, 

the number of elements can be altered (number of discs in the Tower of Hanoi, or number of blocks in 

the Simon/Corsi game), and the elements can be made to be similar to one another. For example, all 

blocks in the Simon/Corsi game may have the same texture, or the order can be presented only with 

visual or auditory cues. In the Tower of Hanoi, all discs can have the same size and only be 

differentiated by color. These options can be edited for each game session as presented below. In both 

scenarios, a simple tutorial with a video introduction was created to explain the interaction techniques. 

This consists of one disc with two towers for the Tower of Hanoi scenario, and two blocks with a two-

element sequence for the Simon/Corsi game.  

 

Cognitive difficulty 

levels 

C1 C2 C3 C4 C5 

Number of elements 3 4 4 5 5 

Element distinction Yes (visual and 

auditory cues) 

Yes Yes Yes No (auditory 

cues) 

Simon/Corsi order Forward Forward Backward Forward Backward 

Reset timer 2 s 1 s Disabled Disabled Disabled 

Action timer 1.5 s 1 s Disabled Disabled Disabled 

Warning texts Yes No No No No 

 

Motor difficulty 

levels 

M1 M2 M3 M4 M5 

Movement types 

allowed 

Only grabs Grabs and 

pinches 

Grabs and 

pinches 

Grabs and 

pinches 

Grabs and 

pinches 

Minimum grab/pinch 

strength 

0.8 0.8 0.9 1 1 

Drop offset 0.5 0.5 0.25 0.25 0 

 

The features obtained from sensor data are extracted as described in the section PALM Task Description 

and Features, for a window of one second before and after an interaction is recorded. Depending on the 

interaction options chosen, different signals are taken into consideration. In all cases, the signals are the 

same as in the respective PALM task. Pinches are processed as described in Task 2: Finger Tapping, while 

grabs are processed as described in Task 3: Fist Closing. Table 24 includes a description of the cognitive 

feature vector of PDPuzzleTable. 

 

 

 

 

 

Table 23: PDPuzzleTable difficulty levels 
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Features Description  Features Description 

Cognitive 

difficulty 

Cognitive difficulty level of 

the session (Table 23) 

Element 

distinction 

Use of same-sized discs (Hanoi) or 

auditory cues only (Simon) if disabled 

Motor difficulty Motor difficulty level of the 

session (Table 23) 

Number of 

errors 

Number of times a non-valid 

movement was attempted (Hanoi) 

Number of 

actions 

Total number of actions until 

puzzle completion (Hanoi) 

or failure (Simon) 

Movement type For each action, type of movement 

(pinch, or grab) 

Number of 

elements 

Number of discs (Hanoi) or 

blocks (Simon) present in 

game round 

Movement 

origin and 

destination 

For each action, tower of origin of the 

movement (Hanoi) and tower of 

destination (Hanoi) or block (Simon) 

Simon/Corsi 

order 

Sequency order (forwards or 

backwards) 

Reset timer Time limit to automatically place back 

a disc left in the air in its last valid 

position (Hanoi) 

Movement types 

allowed 

Allowed movement types 

(pinches, grabs, both) 

Action timer Minimum time before an action with 

an object recently interacted with is 

allowed again 

Minimum 

grab/pinch 

strength 

Interaction threshold values 

for grabbing (Hanoi and 

Simon) 

Total time Total game Time 

Drop offset Offset value for dropping 

threshold (Hanoi) 

Time per 

movement 

Time elapsed between each movement 

 

6.3. Evaluation 

Cohort and Study Design 

The evaluation of this clinical decision support system should determine its accuracy in assessing 

whether the player has parkinsonian tremor and bradykinesia. Initially, we had planned an evaluation, 

to commence in March 2019, using PDPuzzleTable to classify PD patients and healthy controls and 

predict the UPDRS scores of Tasks 3.4 to 3.6, 3.15, and 3.16. This evaluation was firstly delayed due to 

modifications required by the ethics committee prior to approval. After we finally obtained approval 

in March 2020, it was again delayed due to the COVID-19 pandemic. Instead, we present an evaluation 

based on the preliminary data we collected to design PALM, particularly its signal processing and 

choice of classification features. 

 

For this evaluation, we use a diagnosis of PD as our clinical outcome. Each participant performs all five 

tasks of PALM with both hands. This means that for each task, we obtain two samples per participant. 

The goal of our system is to classify whether the participant has PD or is a healthy control. The system 

diagram, as conceived in Chapter 4, is depicted in Figure 41. For this evaluation we use the features 

described in the section PALM Task Description and Features, Table 21 and Table 22. 

Table 24: PDPuzzleTable game data features 
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Exergame-Based Technical Data Acquisition

Feature Vector

Clinical Decision Support System

Presence of Rest 
Tremor

(PD, Healthy)

Presence of 
Bradykinesia 
and Kinetic 

Tremor
(PD, Healthy)

Leap Motion
Data

Naive Bayes

Decision 
Trees

Neural 
Networks

Other 
Algorithms

...

PALM Test

Prediction
(PD, Healthy)

Interaction Data Processing (Leap Motion Sensor)

Leap Motion 
Sensor Raw 

Data (LeapC)
Cropping

Features 
(Time, 

Frequency, 
Kinetic)

PALM

Leap Motion Features

20 Hz 
Lowpass Filter

Health Data
(Clinic Visits)

Neurologist 
Diagnosis

Diagnosis 
(PD / Healthy)

Clinical Data Acquisition

Leap Motion 
Sensor

 

 

For this evaluation, a cohort of 10 participants (Table 52, median age 59, three males) were selected and 

recruited at the Schmieder neurology clinics in Konstanz and Allensbach, as well as at the Westrich 

Ergotherapeutic practice in Mannheim. Information about PD participants is provided in Appendix F, 

Table 59. Control participants were recruited at the Multimedia Communications Lab of the Technical 

University of Darmstadt. For the PD group, the inclusion criterion was an age of 50 or older and the 

positive diagnosis of PD by a neurologist, and the exclusion criterion was the presence of coexisting 

neurological or otherwise chronic diseases affecting hand dexterity. For the control group, the inclusion 

criterion was an age of 50 or older, and the exclusion criteria were the presence of any neurological 

disease or diseases causing hand tremors. Each participant performed all PALM tasks with the right 

and left hands. In order to increase the sample size, each hand was considered as a separate sample. 

This means we had a total of 20 samples per task for classification. All participants signed an informed 

consent prior to participation, presented in Appendix F. 

 

We consider two separate evaluation scenarios. In the first scenario, we attempt to discriminate PD 

patients and controls based on PALM Task 1. This task is designed to detect PD resting tremor. In the 

second scenario, we attempt to discriminate PD patients and controls based on PALM Tasks 2 to 5. 

These tasks discriminate based on bradykinesia and kinetic tremor. The tasks use the same features, 

collected for different exercises. One PD patient had a very significant hand tremor and was unable to 

perform these tasks. We present the classification results for a combination of all tasks. Effect sizes for 

the first scenario are described in Appendix F, Table 60, while the effect sizes for the second scenario are 

included in Table 65 and Table 66. 

Results for Resting Tremor 

As shown in Table 26 and Figure 42, PALM can accurately discriminate PD patients from healthy 

controls in our cohort. Both algorithms misclassified the same sample, belonging to PD patient P02. As 

described in Appendix F, Table 59, P02 is a patient with a very recent diagnosis of PD, who was under 

the effect of medication when the sample was taken. When analyzing all samples of P02 visually, we 

unfortunately did not identify any possible features or other differences that may be used for 

Figure 41: Exergame-based clinical decision support system to assess hand tremor and bradykinesia. 

System diagram 
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classification. Concerning effect sizes, as presented in Table 60, no features showed statistical 

significance. However, we believe this is due to the small sample size. Algorithm hyperparameters are 

described in Appendix D, Table 50. In order to make sure that data leakage did not influence our results 

(training the algorithm with the left hand of a PD patient and testing on the right), we tested the 

algorithms using only one sample per patient. Classification results were similar considering the 

sample size was halved to 10 vectors (90% accuracy).  

Results for Kinetic Tremor and Bradykinesia 

In Table 27 and Figure 43, we provide the classification results using the features of all tasks combined. 

Task-specific classification results are provided in Appendix F, Table 61 to Table 64 and Figure 64 to Figure 

67. All samples except one from P02 were again correctly classified. When considering the tasks 

separately, we achieved 100% accuracy in Task 2 (Table 61) and Task 5 (Table 64), although this was not 

unlikely given the sample size. Algorithm accuracy varied greatly between tasks. For example, we 

achieved this accuracy in Task 5 using a neural network, but this same algorithm resulted in a 

performance of 72% in Task 3. As was the case in the previous scenario, we could not visually or 

analytically see differences between P02 and the control group. Concerning effect sizes, we identified 

statistically significant features with large effect sizes in all the tasks (Table 65, Table 66). The features 

that were consistently identified as statistically significant are described in Table 25. Again, data leakage 

does not seem to have an impact in our cohort. 

 

Feature Significant (p<0.05) in PALM tasks Effect Size (g) 

𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 5 1.6248 

𝐴𝑚𝑝𝑀𝑒𝑎𝑛 2 -1.6706 

𝐴𝑚𝑝𝑆𝑡𝑑 2 -1.6621 

𝐴𝑚𝑝𝑀𝑎𝑥 2,5 -1.4477, -1.5759 

𝑆𝑝𝑒𝑒𝑑𝑀𝑒𝑎𝑛 2,4,5 -2.0639, -1.4749, -2.2489 

𝑆𝑝𝑒𝑒𝑑𝑆𝑡𝑑 2,4 -2.2738, -1.5617 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑒𝑎𝑛 All 1.6005, 1.5845, 1.5627, 2.4206 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑑 4,5 -1.2481, -1.4205 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑎𝑥 5 2.1207 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑖𝑛 All 1.8057, 1.64, 1.6754, 2.5346 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑒𝑎𝑛 2,4 -2.1894, -1.3671 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑑 5 -1.622 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑎𝑥 2,4 -1.7979, -1.5815 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑖𝑛 2,5 -1.8707, -2.0636 

 

Table 25: PALM Tasks 2 to 5 classification results. Effect sizes of statistically significant features in 

different tasks 



71 

 

 

Algorithm: Naïve Bayes,  

accuracy 95.000% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 9 (TP) 1 (FN) 0.900 0 1 0.947 0.905 0.900 0.950 

Control 10 (TN) 0 (FP) 1 0.100 0.909 0.952 0.905 0.900 0.798 

Weighted average 19 1 0.950 0.050 0.955 0.950 0.905 0.900 0.874 

Algorithm: Hoeffding Tree,  

accuracy 95.000% 

PD 9 (TP) 1 (FN) 0.900 0 1 0.947 0.905 0.900 0.950 

Control 10 (TN) 0 (FP) 1 0.100 0.909 0.952 0.905 0.900 0.798 

Weighted average 19 1 0.950 0.050 0.955 0.950 0.905 0.900 0.874 
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Table 26: PALM Task 1 classification results 

Figure 42: PALM Task 1 classification accuracies 



72 

 

 

Algorithm: Naïve Bayes,  

accuracy 94.44% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 7 (TP) 1 (FN) 0.875 0 1 0.933 0.892 0.988 0.986 

Control 10 (TN) 0 (FP) 1 0.125 0.909 0.952 0.892 0.938 0.909 

Weighted average 17 1 0.944 0.069 0.949 0.944 0.892 0.960 0.943 

Algorithm: Hoeffding Tree,  

accuracy 94.44% 

PD 7 1 0.875 0 1 0.933 0.892 0.975 0.975 

Control 10 0 1 0.125 0.909 0.952 0.892 0.938 0.909 

Weighted average 17 1 0.944 0.069 0.949 0.944 0.892 0.954 0.938 
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Table 27: PALM Tasks 2 to 5 combined classification results 

Figure 43: PALM Tasks 2 to 5 combined classification accuracies 
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PDPuzzleTable Acceptance 

The acceptance of PDPuzzleTable was tested with healthy participants. For this acceptance test, 40 

participants were invited to play PDPuzzleTable and give their opinion on the game. Before playing, 

the different input methods and the game concept were presented. Each player played a total of six 

sessions. In two of these sessions, players used a mouse to play the games, in the remaining four they 

used the Leap Motion sensor. From these four sessions, two were played by using the lowest difficulty 

level (C1 and M1, see Table 23), and two playing at medium difficulty (C3 and M3). After playing the 

game, participants were presented with a questionnaire, similar to the one presented in Appendix E, 

section Extended Balance Board Evaluation. Questionnaires. Results of this questionnaire are presented in 

Figure 44 and Figure 45. 

 

 

 

 

 

Regarding usability and control, almost all users found the game to be user-friendly. Most users 

preferred the Leap Motion sensor over the mouse. After increasing difficulty, we noticed almost all 

users had at least one involuntary object interaction. In regards to the settings (adjusting the grabbing 

and pinching threshold to adapt to the player’s hand dexterity), all users indicated that the settings did 

adjust the game to their dexterity. 

 

In addition to this questionnaire, considering that the interaction with the Leap Motion sensor is not as 

intuitive as the Extended Balance Board, a performance test was made. In this test, we compared the 

2

4

17 17

Disagree Rather Disagree Rather Agree Agree

N
u

m
b

er
 o

f 
R

ep
li

es

Do you find the game to be user-friendly?

0 0

5

35

Disagree Rather Disagree Rather Agree Agree

N
u

m
b

er
 o

f 
R

ep
li

es

Did you have fun playing the game?

0

3

7

30

Disagree Rather Disagree Rather Agree Agree

N
u

m
b

er
 o

f 
R

ep
li

es

Would you play this game at home by yourself?

0 0

17

23

Disagree Rather Disagree Rather Agree Agree

N
u

m
b

er
 o

f 
R

ep
li

es

Was the difficulty adjusted to your skill?
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number of movements performed when interacting with the Leap Motion sensor and two traditional 

methods: mouse interaction for the Simon/Corsi game, and a physical Tower of Hanoi. 

 

As we expected, performance was slightly affected when using the sensor (Figure 46). In the case of the 

Simon/Corsi game, the effect of the sensor in determining cognitive performance is relatively 

unaffected by difficulty, since the sequence length remained largely unaltered. This was also the case 

for the Tower of Hanoi game, as long as the difficulty was low. Removing the mechanisms that 

simplified interaction with the Leap Motion sensor (action and reset timers, minimum grab strength 

and drop offset) introduced a great number of involuntary interactions, resulting in a significantly 

higher number of total movements. For this reason, when using PDPuzzleTable to assess cognition, at 

least with the Tower of Hanoi, it is important to consider that a learning effect can be expected with 

each difficulty increase, particularly in the difficulty levels when these ease of use mechanisms are 

disabled (C2 to C3 and M4 to M5). 

 

 

 

In summary, the acceptance results of PDPuzzleTable are quite positive in all fields. However, it is 

important to take the learning effect into consideration: interacting with the Leap Motion sensor is less 

intuitive than we initially expected. The lower difficulty settings of PDPuzzleTable help to mitigate this 

effect. A discussion on potential future work based on the results of the evaluation and user acceptance 

is presented in Chapter 9. 
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7. Additional Biosignal Modules 

Chapter 5 and Chapter 6 present two proofs of concept of exergame-based clinical decision support 

systems designed to monitor symptoms of PD presented in Chapter 4. As described in the system 

diagram in Figure 4, the system uses three data sources: data extracted from the game (game data), from 

the sensor used to operate the exergame (interaction data) and from the players themselves (biosignals). 

In this sense, game data can be used to estimate both cognitive and physical symptoms, while 

interaction data are mostly used to monitor a physical symptom affecting the way the exergame 

interaction occurs. As a secondary goal of this thesis, we explored how biosignals may be collected, 

ideally in the background, to either monitor further symptoms of PD or to provide additional data on 

an already monitored symptom, thus aiming to increase system accuracy. In Chapter 3, section Sensor-

based Approaches to Monitor Symptoms of Parkinson’s Disease, we discussed two such symptoms. These 

are (1) depressed sympathetic and parasympathetic activity, which can be detected via PPG, and (2) 

the effect dyskinesia and ON-OFF periods have on the blink-rate. In this chapter, we present algorithms 

to monitor these two symptoms. First, we present a smartphone-based PPG algorithm that can 

accurately time heartbeats. We compared our system with the golden clinical standard, ECG. We 

published this algorithm in [90]. Second, we designed a blink-rate detection algorithm based on a time 

series that estimates the dimensions of the open eye. We published this algorithm in [94]. This algorithm 

was tested with two publicly available datasets as well as our own evaluation dataset. Further details 

are provided in Appendix G. 

7.1. Heart-rate Estimation Algorithm 

As discussed in the section Depressed Sympathetic and Parasympathetic Cardiac Activity of Chapter 3, 

sympathetic and parasympathetic dysfunctions are common symptoms of PD. These symptoms can be 

monitored measuring heart-rate variability, which can be done with PPG [281]. For this purpose, 

smartphones offer a viable [87, 115, 116, 140] and ubiquitous [233, 249] option. When the user places 

their finger over the camera lens, a PPG algorithm can detect the exact time when a heartbeat occurs, 

and then measure the time interval between these heartbeats. In ECG, this interval is called R-R, since 

it is measured as the amount of time between the two R points of the so-called QRS complex. The PPG 

signal calculates an approximation of this interval. R-R intervals from healthy heartbeats are commonly 

referred to as N-N intervals, thus also measuring the amount of time between the two R peaks. Since a 

PPG algorithm cannot detect these abnormal heartbeats, we also refer to  N-N intervals in PPG (Figure 

47) [332]. 
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Figure 47: Sketch of a R-R interval measured in the shape of an ECG wave (left) and its 

approximation in PPG waves (right) 
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In this thesis, as part of our secondary goals, we developed a novel PPG algorithm. We included the 

processing techniques that had provided the best results so far: using the second order difference of the 

PPG signal [66], bandpass filtering, considering all red, green and blue (RGB) channels [326], and using 

cubic spline interpolation [6]. We designed a PPG heartbeat detection algorithm that does not require 

manually editing the signal, and we evaluated its capability to time heartbeats against the gold 

standard: two-lead ECG. 

 

We produced our PPG signal using a Google LG Nexus 5 capturing videos at a resolution of 1280x960 

pixels and a frequency of 30 Hz. This was the highest resolution where real-time signal processing, as 

described below, was still possible for this smartphone. Using Android Studio [112], we developed an 

application that captures the video, extracts the frames, and calculates the PPG signal, sending this 

signal to a computer running Matlab via a wireless ad-hoc network. In practice, we found the actual 

framerate of the camera to oscillate between 28 and 29 Hz, and the network latency to be 2.76 ms on 

average. We calculate our photoplethysmographic signal, 𝑝𝑝𝑔(𝑡), as follows: for each sampling time 𝑡, 

we have a 1280x960 array of three-pixel values: red, green, and blue. If we define 𝐑, 𝐆, 𝐁 ∈ ℝ1280×960 as 

the three matrices representing these RGB values, where 𝑟𝑖,𝑗 , 𝑔𝑖,𝑗 , 𝑏𝑖,𝑗 ∈ [0,255] represent the RGB values 

of pixel (𝑖,  ), we calculate our PPG signal as: 

 

𝑝𝑝𝑔(𝑡) =
∑ ∑ (𝑟𝑖,𝑗 + 𝑔𝑖,𝑗

960
𝑗=1 + 𝑏𝑖,𝑗)

1280
𝑖=1

1280 ∙ 9 0
 

 

As a blood pulse circulates through the finger, an oscillatory signal in the three RGB channels is 

observed. Figure 48 presents three grayscale frames, as captured directly by the smartphone camera, 

and a sample of the generated wave 𝑝𝑝𝑔(𝑡). We present these frames in grayscale, since it is visually 

challenging to appreciate this difference in the original frames, which are red in color. 
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In this PPG signal, it is possible to detect heartbeats using peak detection. We noticed that minima 

(points a and c in Figure 48) were slightly more reliable than maxima (point b in Figure 48) due to the 

shape of the signal. This is because several local maxima in the PPG wave might be falsely identified as 

heartbeats. However, since the goal is to time heartbeats, both options are possible as long as only one 

peak is found per oscillation (that is, per heartbeat). We found that a minimum can be determined to 

be a heartbeat if it is lower than or equal to the surrounding eight frames to the left and right (referring 

to a 30 Hz signal). This means points a and c in Figure 48 would be classified as heartbeats, and the time 

between points a and c would be the 𝑖 − 𝑡ℎ N-N interval of a series, or mathematically:  

 

𝑛𝑛𝑃𝑃𝐺𝑖 = (𝑐 − 𝑎) ↔ ∀𝑥 ∈ [𝑎 − 8, 𝑎 + 8], 𝑝𝑝𝑔(𝑎) ≤ 𝑝𝑝𝑔(𝑥), ∀𝑥 ∈ [𝑐 − 8, 𝑐 + 8], 𝑝𝑝𝑔(𝑐) ≤ 𝑝𝑝𝑔(𝑥) 

 

We thus define 𝒏𝒏𝑃𝑃𝐺 as a vector of N-N intervals in a sample. For a PPG signal to produce a peak in 

less than 8 frames, the user’s heart-rate would have to be over 230 beats per minute, which we do not 

expect to happen [124]. Also, one could widen this comparison range to reduce the number of potential 

errors, but that would imply that high heart-rates may not be correctly detected. Although this works 

well in ideal conditions, even a small body movement or change in ambient light conditions introduces 

errors in the signal. Under these circumstances, it is necessary to filter the signal. A sample of a signal 

with artifacts is presented in Figure 49.  
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Figure 49: Sample PPG signals without and with movement artifacts. Detected minima are marked 

as dots, the black dots represent actual heartbeats detected by the algorithm, and the gray dots 

represent falsely detected heartbeats [90] 
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After evaluating several filters, we found that employing a 5th order 0.075–2 Hz bandpass filter removed 

most movement artifacts from the resting users’ PPG signals. After filtering, we calculated the second 

order difference, as suggested in [66]. In the resulting sine wave, heartbeats can be detected by studying 

complete oscillations based on zero crossings: an increasing zero-crossing, followed by a decreasing 

zero-crossing counts as a heartbeat. Finally, we noticed two artifacts remained: venous pulsations 

detected as heartbeats (a local maximum directly before the peak of the PPG wave) and heartbeat 

skipping (two heartbeats considered to be one). Although these could not be filtered, they can be 

eliminated. These errors mean a certain heartbeat interval suddenly shows roughly half or double the 

value of the surrounding heartbeats, which is very unlikely from a physiological perspective. A direct 

correction method was employed for this problem: heartbeat intervals longer than 1.7 times the 

surrounding values are halved, and two subsequent intervals, each 0.6 times or less the surrounding 

values, are merged. We found these two values removed most of these errors without introducing any 

additional alteration to the signal. 

 

In order to provide our standard comparison, we captured ECG signals in parallel using the g.Tec 

USBAmp biosignal amplifier, employing active electrodes and a 50 Hz notch filter, with a frequency of 

200 Hz. The position of the electrodes is depicted in Figure 50. The electrocardiographic signal showed 

no artifacts, and did not require any further filtering. A simple peak detection algorithm was used to 

detect the R points as depicted in Figure 47 and measure the R-R intervals. We visually verified that all 

R-R intervals were detected correctly. We refer to these intervals as 𝒓𝒓𝐸𝐶𝐺, a vector of R-R intervals in a 

given sample. 

 

 

 

Considering that the PPG signal was captured at approximately 30 Hz and the ECG signal at 200 Hz, 

the PPG signal was interpolated to the sampling points of the ECG signal using cubic spline 

interpolation. In addition to network latency, it is important to consider that PPG and ECG heartbeats 

do not occur physically at the same time. The time required for the blood pulse wave to move from the 

heart (ECG R point) to the fingertip (PPG N point) has to be considered [148]. In order to solve this, the 

Pearson correlation was calculated between the ECG and PPG signals while displacing the PPG signal 

backwards, until maximum correlation was achieved (that is, where R and N points concur the most, 

final correlation values are provided in Table 67 and Table 68). A diagram of the system is presented in 

Figure 51. In order to compare between ECG R-R and PPG N-N intervals, we used several statistical 

criteria, as described in Table 28. 

Figure 50: Electrode placement to acquire the ECG signal. Courtesy of [195] 
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Feature Description Calculation 

𝐸𝑟𝑟𝐴𝑣𝑔 

Average absolute error between PPG and ECG, for a 

sample with 𝑚 intervals. Ideally this value would be 

zero 

∑ |𝑛𝑛𝑃𝑃𝐺𝑖 − 𝑟𝑟𝐸𝐶𝐺𝑖|
𝑚
𝑖=1

𝑚
 

𝐸𝑟𝑟𝑆𝑡𝑑 

Average absolute error of the standard deviation 

between PPG and ECG, for a sample with n intervals, if 

we define 𝒏𝒏̅̅ ̅̅ 𝑃𝑃𝐺  and 𝒓𝒓̅̅ ̅𝐸𝐶𝐺 as the average of PPG and 

ECG intervals. Ideally this value would be zero 

√
∑ (𝑛𝑛𝑃𝑃𝐺𝑖 − 𝑛𝑛̅̅̅̅ 𝑃𝑃𝐺)

2𝑚
𝑖=1

𝑚 − 1
− √

∑ (𝑟𝑟𝐸𝐶𝐺𝑖 − 𝑟𝑟̅̅ 𝐸̅𝐶𝐺)
2𝑚

𝑖=1

𝑚 − 1
 

𝐶𝑜𝑟𝑟 

Pearson correlation coefficient between PPG and ECG. 

Ideally one 

∑ (𝑛𝑛𝑃𝑃𝐺𝑖 − 𝑛𝑛̅̅̅̅ 𝑃𝑃𝐺) ∙ (𝑟𝑟𝐸𝐶𝐺𝑖 − 𝑟𝑟̅̅ 𝐸̅𝐶𝐺)
𝑚
𝑖=1

√∑ (𝑛𝑛𝑃𝑃𝐺𝑖 − 𝑛𝑛̅̅̅̅ 𝑃𝑃𝐺)
2𝑚

𝑖=1 ∙ √∑ (𝑟𝑟𝐸𝐶𝐺𝑖 − 𝑟𝑟̅̅ 𝐸̅𝐶𝐺)
2𝑚

𝑖=1

 

 

 

Biosignal Data Validation (PPG and ECG)

Biosignal
Smartphone Camera 
RGB Values, 30 Hz
Average per frame

Biosignal
2-Lead ECG (200 Hz)

200 Hz 
Interpolation

MATLAB

5th Order 
0.075 – 5 Hz 

Bandpass 
Filter

Second Order 
Difference

Zero 
Crossing 
Detection

Direct 
Correction / 

Synchronization

Peak 
Detection

PPG
N-N Intervals

𝒏𝒏𝑃𝑃𝐺

ECG
R-R Intervals

𝒓𝒓𝐸𝐶𝐺

Biosignal Features
(Series)

50 Hz Notch 
Filter

 

 

Evaluation 

As the first part of our evaluation, we explored how different resolutions affect the performance and 

accuracy of the PPG algorithm. For this purpose, we captured 5-minute ECG and PPG signals in parallel 

using different framerates and resolutions in one user and measured the 𝐸𝑟𝑟𝐴𝑣𝑔. The results of this 

analysis are presented in Figure 52. We found that increasing resolution does not necessarily improve 

accuracy, but increasing framerate does, since the performance at 30 Hz is consistently better than at 15 

Hz for all resolutions. For the final implementation of our algorithm, we reduced the resolution to 

800x600 at 30 Hz to reduce the risk of CPU thermal throttling. 

 

Once we had implemented a final version of our algorithm, we tested it with a cohort of 31 participants. 

We recruited our participants through university classes. Inclusion criteria were willingness to perform 

ECG electrode acquisition, while exclusion criteria were the presence of cardiopathies. We recorded 

ECG and PPG signals in parallel for five minutes while sitting. Sample length was chosen in accordance 

with the heart-rate variability assessment standards [308]. Users were instructed to hold the 

Table 28: Heart-rate estimation algorithm features 

Figure 51: Photoplethysmographic biosignal processing diagram 
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smartphone in their hand and gently press the index finger against the camera lens. They were 

encouraged to change their sitting position to introduce movement artifacts.  

 

 

 

We evaluated three different PPG algorithms: an unfiltered minima detection algorithm (Figure 49), a 

filtered minima detection algorithm, and the complete algorithm including second degree 

differentiation, zero-crossing detection and direct correction. In all cases, the correlation-based 

synchronization procedure was performed. The average results are presented in Table 29, and complete 

per-user results are available in Appendix G, Table 67 and Table 68. In addition, we present graphical 

examples of four characteristic users: 2 for its low 𝐸𝑟𝑟𝐴𝑣𝑔, 5 for its low 𝐶𝑜𝑟𝑟, 18 for its high 𝐶𝑜𝑟𝑟 and 25 

for its high 𝐸𝑟𝑟𝐴𝑣𝑔, in Figure 53. The Bland-Altman plots of these same users, depicting the error in each 

interval, are presented in Figure 54.  

 

Algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 (ms) 𝐸𝑟𝑟𝑆𝑡𝑑 (ms) 𝐶𝑜𝑟𝑟 (adimensional) 

Unfiltered algorithm  28.58 58.75 0.29 

Filtered algorithm  11.12 84.49 0.68 

Novel algorithm 9.23 85.32 0.65 

 

These results display the excellent performance of the developed algorithm, which shows an average 

absolute error of 9.23 ms, much lower than the other approaches. However, performance shows 

significant interindividual differences: the system performed quite poorly in some users, for example 

user 25 (see Figure 53). Given that the unfiltered approach does not show this error, further optimizing 

the filter parameters may solve this issue. However, the raw data do not show any significant 

differences in comparison with other users that would elicit this decrease in performance. Correlation 

(𝐶𝑜𝑟𝑟 = 0. 5) and standard deviation (𝐸𝑟𝑟𝑆𝑡𝑑 = 85.32) results are less ideal. However, this does not 

seem to impact the main results: despite of the disparity of 𝐶𝑜𝑟𝑟 values in users 5 and 18, the algorithm 

seems to accurately track heartbeats in both users. Perhaps a more sophisticated filtering method would 

improve these results. Another potential improvement point is the artifact removal procedure. On the 

example of user 2, the algorithm still miscalculates some intervals due to these artifacts, even in the 

users where it provided the best performance.  
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Figure 52: Absolute error of the PPG algorithm when using different resolutions and framerates [90] 

Table 29: PPG algorithm average results for all users 
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Figure 54: PPG evaluation, Bland-Altman graphical results. User number indicated below the image 
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Figure 53: PPG evaluation, absolute error graphical results. User number indicated below the image 
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7.2. Blink-rate Estimation Algorithm 

As discussed in the section Blink-rate of Chapter 3, one of the multiple ways bradykinesia manifests itself 

in PD is with a reduction of the eye blink-rate [22, 150, 309]. This reduction seems to disappear during 

ON periods [163, 309]. This suggests that blink-rate monitoring could be potentially used to track ON-

OFF periods non-invasively and determine the severity of bradykinesia. As an alternative to detecting 

eye blinks measuring facial muscular activity, which would require electrodes, we implemented a 

method based on images captured by a webcam [234]. Instead of implementing a classifier to detect 

blinks directly, we wanted to provide a time series that would be representative of eye activity. Once 

validated, this time series could be used to provide additional information on blinks, such as opening 

and closing speeds. In this sense, we developed an algorithm that extends the work of Soukupová et 

al. [290] and is based on the Eye Aspect Ratio (EAR). 𝐸𝐴𝑅(𝑡) is calculated based on the distances 

between six key points of the eye (Figure 55). According to [290], 𝐸𝐴𝑅(𝑡) is around 0.25 when the eye is 

open, and rapidly tends to zero during a blink. When the EAR is below 0.2, a blink is considered to 

have occurred. Mathematically, 𝐸𝐴𝑅(𝑡) is calculated as follows: let 𝒑𝟏(𝑡) to 𝒑𝟔(𝑡) be coordinate vectors 

of the points indicated in Figure 55 in the frame of sampling point 𝑡, then 𝐸𝐴𝑅(𝑡) is calculated as [290]: 

 

𝐸𝐴𝑅(𝑡) =
‖𝒑𝟐(𝑡) − 𝒑𝟔(𝑡)‖ + ‖𝒑𝟑(𝑡) − 𝒑𝟓(𝑡)‖

2‖𝒑𝟏(𝑡) − 𝒑𝟒(𝑡)‖
 

 

 

 

The algorithm consists of five steps: (1) frame acquisition and preprocessing, (2) face detection, (3) facial 

features detection, (4) pupil positioning and (5) 𝐸𝐴𝑅(𝑡) calculation. Frames are first converted to 

grayscale and preprocessed. Then, we ensure the frame contains a face, and facial features. Finally, 

𝐸𝐴𝑅(𝑡) is calculated. Frames are then classified as containing a blink or not, depending on the value of 

𝐸𝐴𝑅(𝑡) at that frame and previous values. The algorithm depends on a number of external functions 

and libraries from OpenCV [239] and Dlib [59]. The five components of the algorithm function as 

follows: 

 

For each captured frame, the frame acquisition module (1) retrieves a 𝑖 ×  × 3 matrix, in our case 

 40 × 480 × 3, where  40 × 480 is the camera resolution, and 3 represents the three RGB channels. The 

image is converted to grayscale and reduced in size by a factor of four to speed up the process. This is 

done as follows: let 𝐑,𝐆, 𝐁 ∈ ℝ640×480 be the gamma-normalized matrix of RGB values for a given 

image, then we define a new matrix, intensity 𝐈𝑙 as:  
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𝐈𝑙 =
1

 
(𝐑 + 𝐆 + 𝐁) 

 

We then reduce the size of 𝐈𝑙 to 𝐈 ∈ ℝ 20×240 by calculating the average of each four-element block. 

Using this matrix 𝐈, we perform facial detection (2) as implemented by Dalal and Triggs [51]. First, we 

calculate the gradient differential matrix 𝐃 ∈ ℝ 20×240×2, a matrix of two-dimensional vectors 𝒅𝑖,𝑗 . We 

also calculate its Euclidean norm and tangent matrices, 𝐃𝑚𝑜𝑑 , 𝐃𝛼 ∈ ℝ 20×240, as follows [51]: 

 

𝒅𝑖,𝑗 = (𝑑𝑥𝑖,𝑗 , 𝑑𝑦𝑖,𝑗) = ( 𝑖𝑖+1,𝑗 − 𝑖𝑖−1,𝑗, 𝑖𝑖,𝑗+1 − 𝑖𝑖,𝑗−1) 

d𝑚𝑜𝑑𝑖,𝑗
= ‖𝒅𝑖,𝑗‖ =  √𝑑𝑥𝑖,𝑗

2 + 𝑑𝑦𝑖,𝑗
2, d𝛼𝑖,𝑗 = tan−1(

𝑑𝑦𝑖,𝑗
𝑑𝑥𝑖,𝑗

) 

 

A histogram of the values of 𝐃𝑚𝑜𝑑 and 𝐃α is then calculated in 16x16 pixel blocks. Based on this 

histogram, a Support Vector Machine determines if the frame contains a face, as described in [51, 71]. 

We use this implementation because it shows more robustness than other options, such as the Viola 

and Jones algorithm [328, 329]. 

 

If the frame is determined to contain a face, facial features are detected (3). This process consists of 

determining the most likely position of 68 facial features (points of the eyes, nose and mouth), including 

those necessary for EAR calculation. For this purpose, we used a Dlib implementation of the algorithm 

presented in Kazemi et al. [151]. This method is based on a gradient tree regression cascade that 

iteratively estimates the position of each feature. The procedure works as follows: let 𝒙 be the (𝑖,  ) pixel 

estimated position of a facial feature in the image, and 𝐒 ∈ ℝ2×𝑛 = (𝒙1
𝑇 , 𝒙2

𝑇 , … , 𝒙𝑛
𝑇) be the matrix 

defining the coordinates of all 𝑛 facial features, with 𝐒̂(k) being the k-th iteration of the estimation of 𝐒 

(𝐒̂(0)  is the average of the training data applied over the image), and 𝑟𝑒𝑔𝑘 the regression operator, then 

[151]: 

 

𝐒̂(k+1) = 𝐒̂(k) + 𝑟𝑒𝑔𝑘(𝐈, 𝐒̂
(k)), 𝑘 = 0,1, … , 𝐾 

 

This consists on K iterations, one per regressor, where regressors are trained on a given dataset. 

Regressors take both the latest estimation 𝐒̂(k) as well as the intensity matrix 𝐈, as calculated above, into 

consideration. The last iteration results in the best approximation of the position of all facial features 𝐒. 

 

The position of the eye pupil is then determined (4). This process is performed using gradient vector 

angles as described in Timm and Barth [315]. This method takes a 50 pixel region around the geometric 

center of the EAR points estimated in 𝐒, and calculates the point near the center of the image where 

most gradient vectors intersect and pixel intensity is at its highest 𝒄, as the pupil is the darkest region 

of the eye. More specifically, it performs the following calculation. Let 𝒄̂ be the (𝑖,  ) coordinates of an 

eye center candidate, and 𝒙𝑛 be the (𝑖,  ) coordinates of pixel 𝑛 of the 50 pixel selection, then: 

 

𝒄 = argmax {
1

50
∑ 𝑤𝑛(𝒍𝑛

𝑇𝒅𝑖,𝑗)
2

 0

𝑛=1
} , 𝒍𝑛 =

𝒙𝑛 − 𝒄̂

‖𝒙𝑛 − 𝒄̂‖
 

 

Where 𝒅𝒊,𝒋 is the gradient vector of pixel 𝑛, as calculated above, and 𝑤𝑛 ∈ [0,1] is a normalized weight 

based on pixel intensity 𝑖𝑖,𝑗. 𝒄̂ candidates are all points where 𝑤𝑛 > 0.9, which means that they are 
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particularly dark in comparison with the rest of the image. From all these candidates, the point where 

the gradients are at its maximum corresponds to the location where most gradients intersect, which is 

then defined as the eye center. 

 

Finally, if the eye features and a pupil are found, the frame is considered valid and the EAR is calculated 

(5). Once a continuous EAR time series is produced, blinks can be detected when the EAR is lower than 

the threshold value of 0.2 [290]. However, the average blinking speed and framerate have to be taken 

into consideration. A blink takes 290 to 750 ms on average, or 1.33 to 3.45 Hz, and mean blink-rates 

range from 2 to 50 blinks per minute. The closing time is on average longer than the opening time [279]. 

Given that our camera framerate is 20 Hz, we found that a frame can be classified as a blink if it is the 

third of a series of frames with 𝐸𝐴𝑅 < 0.20. Figure 56 presents a summary of this algorithm. 
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Evaluation 

To evaluate the accuracy of our algorithm, we compare its results with a manual blink count on a series 

of samples. In this sense, a TP implies a blink that occurred and was detected, a FP is a falsely detected 

blink, a FN is a non-detected blink, and a TN is a frame in which no blink occurred nor was detected. 

Most samples are thus TN, which means the specificity is not representative of performance. Thus, for 

this scenario, we present the results for precision and TP rate (Table 51), which is what other authors 

also present. 

 

A cohort of ten participants watched a five-minute video, sitting at a distance of 50 cm from a computer 

screen with a maximum angle between the face and screen of 35 degrees. There were no inclusion or 

exclusion criteria. Users were not aware that the blink-rate was being calculated. In addition to this 

database, we tested our algorithm in two publicly available databases: TALK [306] and Eyeblink8 [62]. 

In Table 30, we present the results of our algorithm and other available options in these databases. We 

include results for participant-weighted averages, in which the results are normalized by the number 

of participants in each database. The complete results are provided in Appendix G, Table 67 and Table 

68. Information about these databases, such as framerate and resolutions, is also provided in Appendix 

G, Table 70. 

Figure 56: Eye aspect ratio biosignal processing diagram 
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As detailed in Table 30, results indicate that our algorithm has better precision results (participant-

weighted average of 0.84) than TP rate results (participant-weighted average of 0.73). This implies that 

our algorithm rarely detects false blinks, but misses a number of actual blinks. More specifically, on 

average, one in every four blinks was not detected. Interestingly, our algorithm performed worse than 

Soukupová et al. [290] in the database Eyeblink8. We suspect this is highly dependent on how well-

adjusted the EAR threshold is to the specific database in which the evaluation is performed. For 

example, our algorithm performed very well in the TALK database and our own database, which is the 

one with the largest cohort. Based on these results, we conclude that although the EAR is a good 

parameter to detect blinks, EAR-based blink detection requires a more sophisticated detection method 

than a threshold. Nevertheless, the first step to improve these results would be to collect a larger 

database of users and blinks with which to base any assumptions on potential improvements over 

threshold-based calculations. In any case, our results support the idea of using a web camera and a 

simple blink-rate detection algorithm to monitor the blink-rate of PD patients in the background while 

they are interacting with an exergame. In addition, an increased framerate would allow us not only to 

detect blinks, but also to calculate parameters related to eye opening and closing speed during blinking, 

based on EAR differentials. These could potentially discriminate severity of bradykinesia and ON-OFF 

periods in PD, in a similar fashion to the parameters with extracts from the Leap Motion sensor in 

Chapter 6. 

 

Reference Drutarovsky et al. 

[62] 

Lee et al. 

[186] 

Divjak et al. 

[58] 

Soukupová et al. 

[290] 

Our 

algorithm 

TALK [306], precision 0.92 0.83 0.83  0.93 

TALK [306], TP rate 0.97 0.91   0.8 

Eyeblink8 [62], precision 0.79   0.94 0.62 

Eyeblink8 [62], TP rate 0.85   0.96 0.68 

Our Database, precision     0.93 

Our database, TP rate     0.75 

Participant-weighted 

average, precision 

0.82 0.83 0.83 0.94 0.84 

Participant-weighted 

average, TP rate 

0.87 0.91  0.96 0.73 

 

Table 30: Blink-rate algorithm results when using other author's databases 
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8. Alternative Game-based Interventions 

In Chapter 5 and Chapter 6, two proofs of concept of exergame-based clinical decision support systems 

are presented. As a secondary goal in this thesis, we explored alternative game-based approaches other 

than exergames to design clinical decision support systems to monitor PD symptoms. We identified 

two possible alternatives, which we described in the section Other Game-based Interventions of Chapter 3. 

As part of this thesis, we explored the possibility of using BCIs as well as VR-based games. We designed 

a BCI system to control a game with a different number of possible commands, and tested the system 

exploring how classification accuracy decreases as the number of possible commands increases. This 

study was published in [89]. Our preliminary results suggest that the features we used, captured with 

surface electroencephalography, did not allow us to control a serious game with more than two 

commands with sufficient accuracy. Concerning VR, we developed a dual-tasking block-breaking VR 

game, controlled with the Leap Motion sensor, entitled Brix [19]. Unfortunately, early in our design, 

we noticed many users experienced motion sickness in VR, commonly known as cybersickness. For this 

reason, we discarded the use of VR as a main component of this thesis. However, we conducted a 

number of studies into cybersickness, its causes and potential solutions for future work. First, we 

performed a systematic review and meta-analysis of the possible causes of cybersickness, and how 

different devices and locomotion techniques affect it [34]. We found that heart-rate variability is a 

potential indicator of cybersickness [96], and developed a clinical decision support system to detect it 

[95]. As a possible solution, we considered polynomial extrapolation to more accurately predict head 

movements and positions [98]. Experimental details of these studies are also provided in Appendix H. 

8.1. Brain-Computer Interfaces 

A BCI is a system capable of interpreting brain activity directly to control a computer application. 

Usually, this is achieved with surface electroencephalography. There are several BCI-controlled serious 

games available, for example the football game "Brain Arena" [26], or the one presented in [49], in which 

the player controls a spaceship and dodges asteroids. Classification accuracies vary greatly, depending 

among others on the number of possible commands. For example, using two commands usually shows 

accuracies of 80% or more, while [49] reports an accuracy of approximately 60% when four possible 

commands are used. In our opinion, playing a game in which commands are only correctly registered 

60% of the time is not feasible. In general, BCIs show great promise, not only for PD but in many other 

domains [220]. This inspired us to analyze how accuracy decreases in a BCI controlled game as the 

number of commands increases using recent advances in BCI classification [191]. A summary of 

accuracies depending on the number of commands for different available BCI-controlled games from 

the literature is presented in Table 31.  

 

When using surface electroencephalography to control an application, the goal is to detect changes in 

the signals caused by an external stimulus, for example an image. These alterations are called event-

related potentials. A very typical event-related potential is a peak detected 250 to 500 ms after the 

stimulus, known as P300 [323]. A simple binary classification could thus be performed based on the 

presence, or absence, of a P300. When attempting to classify more than two possibilities, we 

hypothesized there would be differences in the event-related potentials of different electrodes, 

particularly on the motor cortex (Figure 57, nodes C5 to C6). In a preliminary analysis, we did observe 

that when the participant thinks of different limbs, the amplitudes of these potentials change slightly. 
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For example, when thinking about moving the left arm, the amplitude of P300 in sensor C2 was higher. 

These differences suggest that a limb-based classification could be feasible. We decided to evaluate this 

hypothesis. 

 

Number of commands Accuracy (maximum, %) Accuracy (average, %) Reference 

Two (increase, decrease in focus) 65 69 [193] 

Two (yes, no) 85 79 [78] 

Two (left, right) 89 81 [178] 

Two (left, right) 76 74 [26] 

Two (left, right)/four (foot, tongue) 85/69 80/60 [49] 

 

 

 

In order to acquire the electroencephalographic signal, we used the USBAmp biosignal amplifier with 

a 32 unipolar electrode cap and the 10-20 electrode placement system [262] and a sampling frequency 

of 200 Hz. The data was filtered with a 50 Hz notch filter and a 0.5-60 Hz 5th order bandpass filter. To 

remove outliers, we considered two options: the standard deviation method described in [190] and a 

moving average filter with a window of 0.25 seconds [77].  

 

To test the system, we conceived a game that aimed at classifying eight different commands, that is, 

seven commands and a neutral state. We created a climbing game in which the player may command 

movements in each of their limbs (left arm, right arm, left leg, right leg), a combination of two of them 

(both arms, both legs) and an extra action (eating a fly when it’s visible in screen). For each step, the 

direction required to progress is visually depicted. The game is programmed so that in order to 

progress, all actions have to be used. This means that, for example, at a certain point during the climb, 

it is only possible to proceed by moving the left arm, or the right leg. We did this to ensure that all 

possible commands had to be used in each scenario. A system diagram is presented in Figure 58. 

Table 31: Effect of the number of possible commands on classification accuracy in BCIs 

Figure 57: 10-20 electrode placement to acquire the electroencephalographic signal [60] 
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To evaluate the accuracy of our system, we compared the visually depicted actions with BCI 

predictions. We collected data from five users. five-fold cross validation was used to classify the data. 

The recording was performed using a two-second relaxation phase and a five-second recording section. 

During the recording section, an image was visually presented on the screen that suggested the user 

which action to think about (which limb to move). Each class was presented five times, following a 

random pattern. For feature extraction, we used the wavelet transform method [8] as well as FFT-based 

frequency domain analysis. A list of the features employed is presented in Table 32.  

 

After acquiring our data, and based on classification accuracy, we performed changes in data 

processing. We found that an outlier detection system based on standard deviation delivered slightly 

better performance than a moving average filter. With this system, sensor values are removed if their 

value exceeds 2.8 times the standard deviation of the surrounding five frames. We found that 

dimension reduction using t-distributed stochastic neighbor embedding, as suggested in [191], did not 

increase accuracy. We also studied how analyzing different sample lengths after presenting the 

stimulus affects the accuracy. We considered possible lengths of 0.5, 1, 2 and 4 seconds. We found there 

is little difference between employing 2 and 4 seconds, but using shorter lengths significantly decreased 

accuracy. Focusing classification to a subset of electrodes, for example the motor cortex, did not increase 

accuracy. 

 

The outcomes of the analysis suggest that static energy features performed best on average. A support 

vector machine using a poly-kernel was the best classification method, achieving a maximum accuracy 

of 80% with two possible commands (both hands and both legs, plus the neutral state). However, 

average accuracy was not sufficiently high to elicit claims of validity. In general, we found large 

interindividual differences in accuracy. A summary of our classification results is presented in Table 33. 

 

 

 

 

Figure 58: Electroencephalographic biosignal processing diagram 



89 

 

Feature  Description Reference 

𝐸𝑅𝑖 

Daubechies 4 wavelet transformation, 

relative energy of each of the 5 time series 

(𝑑1 to 𝑑4 and 𝑎 ) with a sample length of 

𝑛 frames, divided by total energy. Five 

features per electrode. Based on [8] 

𝐸𝐷𝑖 =∑ 𝑑𝑖,𝑗
2, 𝑖 = 1,2,3,4

𝑛

𝑗=1
, 𝐸𝐴 =∑ 𝑎 ,𝑗

2,
𝑛

𝑗=1
 

𝐸𝑅𝑖 =
𝐸𝐷𝑖

∑ 𝐸𝐷𝑗 + 𝐸𝐴
4
𝑗=1

, 𝑖 = 1,2,3,4 

𝐸𝑅5 =
𝐸𝐴

∑ 𝐸𝐷𝑗 + 𝐸𝐴
4
𝑗=1

 

𝐷𝑖𝑓𝑓𝐴𝑣𝑔𝑖,𝑘 

Daubechies 4 mean value of wavelets 2 

and 3, difference between electrode 𝑘 and 

average value across all 𝑚 electrodes. 

Two features per electrode. Based on 

[191] 

𝑑̅𝑖,𝑘 =
∑ 𝑑𝑖,𝑗
𝑛
𝑗=1

𝑛
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐷𝑖𝑓𝑓𝐴𝑣𝑔𝑖,𝑘 = 𝑑̅𝑖,𝑘 −
∑ 𝑑̅𝑖,𝑙
𝑚
𝑙=1,𝑙≠𝑘

𝑚 − 1
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐷𝑖𝑓𝑓𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑘 

Daubechies 4 mean energy of wavelets 2 

and 3, difference between electrode 𝑘 and 

average value across all 𝑚 electrodes. 

Two features per electrode. Based on 

[191] 

𝐸̅𝑖,𝑘 =
∑ 𝑑𝑖,𝑗

2𝑛
𝑗=1

𝑛
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐷𝑖𝑓𝑓𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑘 = 𝐸̅𝑖,𝑘 −
∑ 𝐸̅𝑖,𝑙
𝑚
𝑙=1,𝑙≠𝑘

𝑚 − 1
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐷𝑖𝑓𝑓𝑆𝑡𝑑𝑖,𝑘 

Daubechies 4 standard deviation of 

wavelets 2 and 3, difference between 

electrode 𝑘 and average value across all 

𝑚 electrodes. Two features per electrode. 

Based on [191] 

𝑆𝑖̅,𝑘 = √
∑ (𝑑𝑖,𝑗 − 𝑑̅𝑖,𝑘)

2𝑛
𝑗=1

𝑛 − 1
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐷𝑖𝑓𝑓𝑆𝑡𝑑𝑖,𝑘 = 𝑆𝑖̅,𝑘 −
∑ 𝑆𝑖̅,𝑙
𝑚
𝑙=1,𝑙≠𝑘

𝑚 − 1
, 𝑖 = 2,3, 𝑘 = 1,… ,𝑚 

𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑙𝑝ℎ𝑎, 

𝐸𝑛𝑒𝑟𝑔𝑦𝐵𝑒𝑡𝑎, 
𝐸𝑛𝑒𝑟𝑔𝑦𝐺𝑎𝑚𝑚𝑎 

Total energy of the alpha (7-13 Hz), beta 

(13-39 Hz), gamma waves (>40 Hz) and 

residual energy 

See Table 21, 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 

 

Number of commands (plus neutral state) Accuracy (maximum, %) Accuracy (average, %) 

Two 80% 56% 

Three 74% 44% 

Four 50% 31% 

Five 45% 29% 

 

Although a BCI seemed a viable approach to assess cognitive skills in principle, particularly in PD 

patients with severe motor symptoms, due to these accuracy results, we decided not to consider BCI 

games as a potential scenario for our system.  

8.2. Virtual Reality 

As we discussed in the section Other Game-based Interventions of Chapter 3, VR has shown great potential 

in rehabilitation scenarios. It seems to have as positive an impact as traditional exergames [43, 205], 

while increasing immersion and fun [35, 36]. In the initial steps of this thesis, we designed a dual-

tasking VR game prototype entitled Brix [19] (Figure 59), as a block-breaking VR game that is controlled 

with physical hand movements with the Leap Motion sensor. 

 

Table 32: BCI system preliminary features 

Table 33: BCI system classification preliminary results 
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While designing Brix, we noticed most participants experienced motion sickness a few minutes after 

starting to play. This phenomenon, also known as cybersickness, is widely reported in VR [47, 162, 265, 

266, 271, 294]. Even if our scenario did barely include physical movements, cybersickness was still 

present. For this reason, we discarded the use of VR as one of the main application scenarios in this 

thesis. However, this provided us with an additional research field: although cybersickness is not a 

disease, it does cause a physiological response [96]. In addition, cybersickness is currently evaluated by 

a questionnaire, named Simulator Sickness Questionnaire (SSQ) [154]. As is the case with the UPDRS 

test, its potential subjectivity has been discussed [343]. In theory, an implementation of the concept 

described in Chapter 4 to detect cybersickness could be feasible, and provide objective criteria to 

determine the presence of cybersickness . If feasible, it could be used to determine the eligibility of a 

patient for VR-based rehabilitation, if their cybersickness susceptibility is sufficiently low. In this 

section, we present our research towards a clinical decision support system designed to detect 

cybersickness. 

 

In order to study how cybersickness affects players in modern VR devices, we conducted a systematic 

review, published in [34]. We identified numerous potential factors that influence cybersickness, which 

we summarize in Appendix H, Table 71. We observed that modern VR systems, such as the HTC Vive, 

use teleportation-based locomotion, where the user points at a visible position and they are teleported 

there without a virtual movement taking place. This locomotion method causes significantly less 

cybersickness than virtual translational movements. Recent literature suggests that possible solutions 

to cybersickness are adding a virtual nose [338] or restricting VR locomotion to teleportation [44]. In 

[98, 337], we explored the possibility of reducing the discrepancy between virtual and physical 

movements by interpolating head angular positions by using linear extrapolation combined with a 

Savitzky-Golay filter. We found that low prediction errors (e.g., 0.04 arc degrees for typical VR 

gameplay) can be achieved when extrapolating up to 13 ms. This, however, would only partially 

remove one of the many causes of cybersickness. User adaptation seems to be the best strategy at the 

moment [138]. Thus, we considered the possibility of designing a system that can detect cybersickness 

instead.  

 

The gold standard to evaluate the presence of cybersickness is the SSQ [154]. It presents questions on a 

series of symptoms commonly associated with cybersickness, administered before and after the VR 

experience. In the questionnaire, users are asked about the severity of these symptoms giving each of 

Figure 59: Block-breaking VR game Brix. The disks follow the hand position and their diameter is 

controlled by opening and closing the fist 
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them a score ranging from zero (no symptoms) to three (severe symptoms). The questionnaire then 

provides four scores as a result, one for each domain of cybersickness (nausea, oculomotor, 

disorientation) and a global score. The VR experience can then be categorized based on the scores of 

several users into negligible cybersickness (total score lower than 5), minimal (5 to 10), significant (10 

to 15), concerning (15 to 20) and bad (greater than 20). When comparing modern VR to the traditional 

flight simulators the SSQ was designed for, it is typical for cybersickness to present higher scores in 

disorientation [162, 179, 199, 294, 296] and lower scores in oculomotor symptoms and nausea [274, 296]. 

Thus, the symptomatologic profile of cybersickness significantly differs from other VR options, such as 

immersive flight simulators [271, 296]. 

 

An alternative to using the SSQ is to explore the physiological response to cybersickness. In [96], we 

conducted a preliminary study exploring how cybersickness affects the heart-rate variability. In this 

study, we measured the 2-lead ECG of 13 users (median age 22, two females) while they played the 

game QuakeVR [260] using an Oculus Rift Developer Kit 2 for 15 minutes. We calculated the SSQ scores, 

the mean values of N-N intervals, and the standard deviation of N-N intervals. We observed 

statistically significant differences (p=0.02) between the participants that did and did not suffer 

cybersickness, as measured by the SSQ scores. We also calculated the Pearson correlation between these 

two N-N interval features and the SSQ scores, but did not find particularly high correlations. The results 

of this study are provided in Appendix H, Table 73 and Table 74.  

 

In our systematic review, we also studied other recent publications exploring the physiological 

response to cybersickness. A summary of these studies is presented in Appendix H, Table 72. More recent 

studies suggest that the reaction most correlated with cybersickness is an increase in galvanic skin 

response, which refers to changes in sweat gland activity. Six studies report statistical significance [55, 

95, 100, 101, 160, 162]. On the contrary, although VR does impact heart-rate and heart-rate variability, 

the direction in which this variation is experienced (tachycardia or bradycardia) is largely an 

interindividual difference, and thus it does not seem to be a good criterion to predict cybersickness by 

itself. However, it may be used in combination with other data sources. After conducting this research, 

we believed it was feasible to design a clinical decision support system to diagnose cybersickness, 

because in our preliminary study [96] and our systematic review [34], there was significant evidence of 

a physiological, measurable response to cybersickness.  

 

To achieve this goal, we developed a virtual reality game called VRFlight (Figure 60), that submits the 

player to lateral movements and rotations. In it, the player controls a plane with a traditional console 

controller, while experiencing the environment in VR. The player is encouraged to move the plane to 

collect coins on their path. As the player’s perspective is fixed to the plane, any movement performed 

by it is also experienced by the player, but it is not correlated to a real physical movement. However, a 

player can orient their head freely. This scenario is known to cause significant cybersickness. The game 

was developed in Unity3D [321] using iTween [21]. 

 

The game is composed of four levels, and divided into two similar scenarios. In one scenario, the plane 

moves only laterally, and in the other scenario the plane only performs barrel rolls. This was done to 

ensure a more diverse profile of cybersickness was created. First, a 3.5-minute tutorial is used as an 

introduction to the VR experience, and to provide a baseline with which to compare scenarios with 

more movement. During this tutorial, the plane moves in a straight line and the player does not perform 
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any movement at the beginning. After three minutes, the player is asked to perform a single movement, 

either a lateral movement or a rotation. Afterwards, the game contains three more levels: 

 

• Level 1 (3 minutes), in which the plane follows a straight line. 

 

• Level 2 (3.5 minutes) in which the plain moves upwards and downwards, then left and right. 

 

• Level 3 (3 minutes) in which the planes moves in all directions and environmental elements 

(tunnels, trees) are present. 

 

    

 

We evaluate the accuracy of this clinical decision support system by comparing it with the results of 

the SSQ, collected directly before and directly after the VR experience. In this evaluation, we collect 

data from VRFlight (game data), from the VR device (interaction data), as well as biosignals. A cohort 

of 66 participants were randomly assigned to the rotation or the lateral movement group. While the 

game was running, the following biosignals were captured: two-lead ECG (Figure 50), respiratory effort, 

electrooculography, and galvanic skin response. The respiratory effort was measured with a chest 

expansion strap to derive the respiratory rate. Electrooculography was captured using gel electrodes, 

as depicted in Figure 61. Finally, galvanic skin response was measured using two finger electrodes, as 

a measure of sweat gland activity. All signals were captured using a USBAmp biosignal amplifier, with 

a sampling rate of 200 Hz and a 50 Hz notch filter. We used cubic spline interpolation to synchronize 

data sources. A diagram summarizing processing is presented in Figure 63. 

 

 

Figure 60: VRFlight game [95] 

Figure 61: Electrode placement to acquire the electrooculographic signal. Courtesy of [195] 
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We obtained the best results using a K-Nearest Neighbours algorithm, with preliminary results 

presented in Table 35. The maximum achieved accuracy of 58% does not elicit the claim that the 

proposed method is capable of accurately estimating the severity of the experienced VR sickness. 

Increasing epoch length to 60 seconds did not increase accuracy. In general, the system tends to predict 

worse cybersickness scores than the ones measured by the SSQ. We observed that game data, and 

sensor data (particularly head movements) performed better than biosignals. When considering 

features individually, the accuracies of most features is similar and around 45%. Head acceleration 

provided the best individual results (49%) followed by plane speed (47%), position (46%) and angular 

acceleration (40%). This supports the hypothesis that at least certain biosignals do not relate to the 

physiological response to cybersickness.  

Figure 62: VR-based clinical decision support system to assess cybersickness. System diagram 

Figure 63: VR system biosignal and interaction data processing diagram 
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Feature  Description Reference 

𝐻𝑅𝐴𝑣𝑔 

Heart-rate per 30-second epoch, using a heartbeat detection algorithm as 

described in Chapter 7 to calculate the number of heartbeats nHeartbeats. One 

feature per epoch. 

2 nHeartbeats 

𝑅𝑅𝐴𝑣𝑔 

Average respiratory rate per 30-second epoch, using the same peak 

detection algorithm as above to obtain the number of breaths nBreaths. One 

feature per epoch 

2 nBreaths 

𝐸𝑂𝐺𝑉𝑒𝑟𝑡𝐴𝑣𝑔 
Average vertical electrooculography value per 30-second epoch, where 

𝐸𝑂𝐺𝑉𝑒𝑟𝑡(𝑡) is the time series, with 𝑛 frames per epoch. One feature per 

epoch 

∑ 𝐸𝑂𝐺𝑉𝑒𝑟𝑡(𝑡)
𝑛
𝑡=1

𝑛
 

𝐸𝑂𝐺𝐻𝑜𝑟𝑧𝐴𝑣𝑔 
Average horizontal electrooculography value per 30-second epoch, where 

𝐸𝑂𝐺𝐻𝑜𝑟𝑧(𝑡) is the time series, with 𝑛 frames per epoch. One feature per 

epoch 

∑ 𝐸𝑂𝐺𝐻𝑜𝑟𝑧(𝑡)
𝑛
𝑡=1

𝑛
 

𝐺𝑆𝑅𝐴𝑣𝑔 
Average galvanic skin response value per 30-second epoch, where 𝐺𝑆𝑅(𝑡) 

is the time series, with 𝑛 frames per epoch. One feature per epoch 

∑ 𝐺𝑆𝑅(𝑡)𝑛
𝑡=1

𝑛
 

𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐿𝑖𝑛𝑒𝑎𝑟 , 

𝐻𝑒𝑎𝑑𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑛𝑒𝑎𝑟 , 

𝐻𝑒𝑎𝑑𝐴𝑐𝑐𝐿𝑖𝑛𝑒𝑎𝑟 

Linear position, speed and acceleration of the head obtained from the 

head-mounted display. Average value per 30-second epoch, three-

dimensional (𝑥, 𝑦, 𝑧). Calculation provided as example for 𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐿𝑖𝑛𝑒𝑎𝑟, 

with 𝑛 frames per epoch. Nine features per epoch.  

∑ 𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐿𝑖𝑛𝑒𝑎𝑟(𝑡)
𝑛
𝑡=1

𝑛
 

𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐴𝑛𝑔𝑢𝑙𝑎𝑟 , 

𝐻𝑒𝑎𝑑𝑆𝑝𝑒𝑒𝑑𝐴𝑛𝑔𝑢𝑙𝑎𝑟 , 

𝐻𝑒𝑎𝑑𝐴𝑐𝑐𝐴𝑛𝑔𝑢𝑙𝑎𝑟 

Angular position, speed and acceleration of the head obtained from the 

head-mounted display. Average value per 30-second epoch, three-

dimensional (𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤, 𝑟𝑜𝑙𝑙). Calculation provided as example for 

𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐴𝑛𝑔𝑢𝑙𝑎𝑟, with 𝑛 frames per epoch. Nine features per epoch 

∑ 𝐻𝑒𝑎𝑑𝑃𝑜𝑠𝐴𝑛𝑔𝑢𝑙𝑎𝑟(𝑡)
𝑛
𝑡=1

𝑛
 

𝑃𝑙𝑎𝑛𝑒𝑃𝑜𝑠, 
𝑃𝑙𝑎𝑛𝑒𝑆𝑝𝑒𝑒𝑑 , 

𝑃𝑙𝑎𝑛𝑒𝐴𝑐𝑐 

Position, speed and acceleration of the plane (in respect to the central 

position). Average value per 30-second epoch. Linear (𝑥, 𝑦, 𝑧) values in the 

lateral movement version, angular (𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤, 𝑟𝑜𝑙𝑙) values in the rotation 

version. Calculation provided as example for 𝑃𝑙𝑎𝑛𝑒𝑃𝑜𝑠, with 𝑛 frames per 

epoch. Nine features per epoch 

∑ 𝑃𝑙𝑎𝑛𝑒𝑃𝑜𝑠(𝑡)
𝑛
𝑡=1

𝑛
 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝐼𝑛𝑝𝑢𝑡𝑠 Number of controller inputs per 30-second epoch. One feature per epoch  

𝑁𝑂𝑏𝑗𝑒𝑐𝑡𝑠 Total number of visible objects per 30-second epoch. One feature per epoch  

𝑁𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 
Total number of collisions (including coins) per 30-second epoch. One 

feature per epoch 
 

 

Classification Accuracy Total Nausea Oculomotor Disorientation 

Per Playthrough 58% 42% 50% 44% 

Per Level  41% 35% 45% 39% 

Table 34: Cybersickness system preliminary features 

Table 35: Cybersickness susceptibility system classification preliminary results 
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9. Summary, Conclusions and Future Work 

PD is a neurodegenerative disease that requires constant monitoring to adjust medication, assess risks 

and monitor its progress. It also presents large interindividual differences. Combined with the 

subjectivity of current PD monitoring methods, such as the UPDRS scale, this implies the need for more 

objective symptom assessment methods. In this thesis, we propose the use of exergame-based clinical 

decision support systems to monitor symptoms of PD. This approach presents several advantages. 

First, it provides neurologists with more objective information with which to perform medical 

decisions. Second, it provides an engaging environment for patients to provide clinically meaningful 

data. In this chapter, we summarize our work, highlight our main contributions, discuss our 

conclusions, and provide guidelines for potential future research. 

9.1. Summary of the Thesis 

In Chapter 1, we identify two main challenges when implementing exergame-based clinical decision 

support systems for PD. The first challenge is to design sensor-based environments that can be used to 

monitor a certain symptom. This environment has to be designed on a case-by-case basis. The chosen 

sensor, or combination of sensors, must simultaneously provide clinically meaningful data on the 

symptom in question and be usable as a control device for an exergame. The second challenge is to 

design an exergame, controlled by this sensor, that is attractive and engaging for the target population. 

If the data acquisition requires the participants to perform certain movements, such as those performed 

in the UPDRS test, the exergame must incorporate these movements as well. In this thesis, we address 

these challenges by designing two exergame-based clinical decision support systems. The first system 

assesses balance and the risk of falling, and the second system assesses hand tremor and bradykinesia 

(slow movements). 

 

In Chapter 2, we briefly present the foundations for our model design: exergames, patient monitoring, 

and clinical decision support systems. Furthermore, in Chapter 3, we present two systematic reviews on 

possible sensors to implement our model, and the state of the art of exergame-based rehabilitation 

interventions in PD. Based on these results, we decided to use the Wii Balance Board to assess balance 

and the risk of falling, and the Leap Motion sensor to assess hand tremor and bradykinesia. In both 

cases, there are alternative sensors that could have been employed instead. For example, the Microsoft 

Kinect can be used to assess balance, but we found that when implementing exergames for 

rehabilitation the Wii Balance Board shows better results in clinical trials. Conversely, it is also possible 

to assess tremor using smartwatches. However, we intended to design systems in which patients do 

not have to wear any device themselves, and thus avoided wearables. Our reviews also indicate that 

exergame-based interventions in PD can be as effective as traditional rehabilitation, in some cases even 

providing better results. An additional advantage of this approach is that combining cognitive and 

motor tasks, known as dual-tasking, further improves rehabilitation results. However, statistically 

significant results are still scarce. 

Contributions 

In this thesis, we define and address two main goals and two secondary goals. Our two main goals are 

to design, implement, and validate a clinical decision support system to assess balance and a clinical 

decision support system to assess hand tremor and bradykinesia. These goals are defined as two proofs 

of concept of the model presented in Chapter 4. Our two secondary goals are to explore additional 
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biosignals that could be acquired while the PD patient plays the exergame, and to study alternative 

game-based approaches other than exergames to access further valuable data. 

 

In Chapter 4, we present our model for an exergame-based clinical decision support system designed to 

assess a symptom of PD. This model collects data from the exergame, from the sensor implemented to 

interact with the game, and from additional biosignal modules. These data are converted into a series 

of features employed by a clinical decision support system trained with medical information from the 

patient to provide clinically meaningful data. The medical partners can use these data as an additional 

source of information to perform medical decisions. 

 

In Chapter 5, we design, implement, and validate the model presented in Chapter 4 to design a clinical 

decision support system to assess balance. In this chapter, we present a novel interaction sensor, the 

Extended Balance Board, designed as an array of Wii Balance Boards. This sensor has the advantage of 

providing a larger surface of sensors, thus being capable of assessing the balance while standing and 

walking. We also tested an alternative system that collected data from additional sources, namely 

electromyography and sensor accelerometers. However, a preliminary study did not suggest that this 

system had an advantage over the Extended Balance Board. We also present PDDanceCity, an 

exergame that combines a cognitive and motor task, and that can provide data related to balance and 

cognition. We evaluate this system’s capability to detect players with an age- and sex-adjusted 

increased risk of falling, and to perform a general prediction without player-specific information. For 

this purpose, we design a clinical decision support system that attempts to predict the result of the 30-

Second-Sit-To-Stand Test, based on data obtained from PDDanceCity and the Extended Balance Board. 

We tested this system with a cohort of 16 participants (7 with balance affections), and considered two 

potential scenarios: predicting the result without and with player-specific information (age and sex). In 

both cases, we achieved prediction accuracies of over 90%, highlighting how this system can accurately 

detect players that show balance problems while standing and walking. Including age and sex as 

classification features, in this case predicting an age- and sex-adjusted risk of falling, provided slightly 

better results (95%). We also performed an acceptance test of PDDanceCity with the target population, 

with positive results. 80% of participants found the game to be user-friendly and fun, while only 66% 

would play it from home if it were available. We believe this is due to the interaction between the 

Extended Balance Board and PDDanceCity, which shows some potential for improvement. We also 

believe that PDDanceCity would see benefit in a more immersive environment. 

 

In Chapter 6, we design, implement, and validate the model presented in Chapter 4 to design a clinical 

decision support system to assess hand tremor and bradykinesia. For this purpose, we conceived a 

digitalized version of the UPDRS tasks designed to monitor these symptoms (UPDRS tasks 3.4 to 3.6, 

3.15 and 3.16). We call this software Parkinson Assessment with Leap Motion (PALM). In PALM, we 

extract features related to tremor amplitude and frequency, as well as features related to how the 

patient performs the UPDRS tasks. These features are based on the evaluation criteria described in the 

UPDRS guidelines. We also design a kinetic signal processing system that filters and crops the data 

obtained from the Leap Motion sensor. We then present PDPuzzleTable, an exergame that combines a 

cognitive and motor task, and can provide data related to cognition, as well as the data we obtain with 

PALM. In this chapter, we employ data from five PD patients and five healthy controls to evaluate the 

capability of a clinical decision support system to discriminate the data from the PD patients and the 

controls. We consider two separate evaluation scenarios: classification based on resting tremor features, 
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and based on kinetic tasks. Classification results are in both cases excellent, with accuracies at or close 

to 95%. All misclassified samples belonged to a PD patient who had a very recent diagnosis and was 

under medication at the time of data acquisition. Unfortunately, we did not see any characteristics in 

this patient’s data that helped us further improve the classification. Although the small sample size did 

not allow us to achieve statistical significance in all scenarios, effect sizes in most cases indicate the 

described features could also be able to predict UPDRS scores in the future. This sample size does not 

allow us to estimate if our approach is better than the best performing methods in the related work 

([330] for resting tremor, see Table 3 and [74] for bradykinesia, see Table 4), but our results are 

comparable in accuracy and our new features, described in Table 21 and Table 22 do show statistical 

significance and large effect sizes. We conclude this chapter with an acceptance test of PDPuzzleTable. 

92% of participants found the game to be fun, and its difficulty adjustment settings to be adequate. 

However, as the difficulty increases and we remove the mechanisms we implemented to ease sensor 

interaction, player performance drops significantly. This suggests that the learning effect of the 

interaction with a Leap Motion sensor has to be taken into consideration when using PDPuzzleTable 

to assess cognition, particularly at higher difficulty levels. Nevertheless, this learning effect is also a 

potential measure of cognition.  

 

In Chapter 7, we discuss potential biosignal modules that can be employed as part of any exergame-

based clinical decision support system. These modules can be used to monitor additional symptoms of 

PD, or to improve system accuracy with sensor fusion. We provide one example of each of these 

modules, a heart-rate variability acquisition system based on PPG, and a blink-rate measurement 

system on the example of a webcam. PD has been shown to affect heart-rate variability, and dyskinesia 

affects the blink-rate as well as hand dexterity. The heart-rate variability system extracts frames from a 

smartphone camera, and then uses a novel processing method to calculate the time interval between 

heartbeats. The blink-rate estimation algorithm is based on assessing dimensional changes of different 

points of interest of the eye to detect blinks. We test both systems with a gold standard: ECG for our 

PPG algorithm, and blink count for the blink-rate measurement system. Results suggest our heart-rate 

variability measurement system has excellent accuracy when timing heartbeats in comparison with 

electrocardiography. Our PPG signal processing method lowers the absolute error to a third of an 

unfiltered approach, down to an average absolute error of 9.23 ms. In addition to smartphones, this 

algorithm could also potentially be used using other cameras, such as webcams [241], while the users 

play PDDanceCity or PDPuzzleTable. Our blink-rate detection algorithm shows positive preliminary 

results, but fails to detect one in every four blinks. In the future, a larger sample should be acquired to 

determine potential changes to signal processing that could improve these results. 

 

Finally, in Chapter 8, we discuss two potential game-based approaches alternative to exergames that we 

explored but discarded. BCIs seem to have potential to help PD patients who are receiving deep brain 

stimulation or to assess cognition. However, in a preliminary analysis, we were unable to design a game 

that is controlled with a BCI and permits more control than binary choices with sufficient accuracy. We 

also explored the possibility of implementing VR exergames, since this would increase immersion and 

engagement. We found that motion sickness in VR, also called cybersickness, is a significant issue that 

impedes a more pervasive implementation of VR. We conducted a systematic review on cybersickness, 

and discussed possible ways of detecting it based on its physiological response. This led us to design a 

clinical decision support system that could potentially detect cybersickness. Our preliminary results 

indicate this approach is feasible, but our analysis shows potential for improvement. 
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9.2. Conclusions and Limitations 

In this thesis, we provide a model for an exergame-based clinical decision support system. We 

implement this model in two scenarios that monitor PD symptoms: one to monitor balance and the risk 

of falling it implies, and one to monitor hand tremors and dyskinesias. In both cases, our classification 

results show the ability of our model to monitor PD symptoms and provide caregivers with clinically 

meaningful data. Moreover, this system could be implemented in a home scenario, providing 

caregivers with a continuous stream of information and reducing the need for frequent clinic visits. We 

also provide examples on additional systems that could run in the background and acquire more 

information from PD patients, either improving prediction accuracy using sensor fusion, or providing 

information on additional symptoms. We also explore the possibility of using alternative game-based 

interventions with BCIs and VR. 

 

Although preliminary classification results are positive, our work presents some limitations. First and 

foremost, adjustments requested by the ethics committee and the outbreak of the COVID-19 pandemic 

meant we had to adjust most of our evaluation plans. Thus, our evaluations are done with healthy 

elderly patients in Chapter 5, and with a cohort of five PD participants and five healthy controls in 

Chapter 6. Despite the good results, this implied that statistical power was, in some scenarios, lower 

than expected. The low sample size of Chapter 6 meant we could not perform an evaluation on whether 

the features extracted in PALM can form a basis to predict UPDRS scores. In the case of PALM, our 

system shows difficulties to detect PD patients that have been diagnosed recently. Future studies 

attempting to objectively determine hand tremors in PD should consider ensuring a number of PD 

patients with a recent diagnosis are included. The potential of PALM to discriminate PD from other 

hand tremor sources, such as essential tremor, could also be explored. 

 

The main goal of our clinical decision support systems is to predict a certain clinical outcome, or clinical 

evaluation system, based on data extracted from the game, from the interactions, and from other 

sources. However, there is no single clinical test that is used exclusively in any domain of PD, and a 

patient can provide different results with different clinical assessment methods. For example, balance 

can also be evaluated with the Berg Balance Scale, the 10-Meter-Walk Test, or the Tinetti Balance Scale. 

PD symptoms are also commonly evaluated with the Hoehn and Yahr Scale. In order to predict all these 

outcomes, it is necessary to provide as much clinical data from the patient as possible, which is not 

always available. Also, the feasibility of the clinical decision support system to accurately predict this 

outcome directly depends on the choice of sensor and game. The sensor must acquire data that is related 

to the symptom, and the game must ensure that the patient performs the same task as in the clinical 

assessment in question. This means that sensor- and game combinations must be specifically designed 

for each symptom or disease, and any claims of validity can only be performed on a case-by-case basis. 

 

Finally, although the results of the presented systems are positive, as discussed in Appendix A, PD is 

polysymptomatic, and many PD symptoms can still not be remotely monitored. Nevertheless, these 

positive results should encourage researchers to expand the presented concept into other scenarios. 

 

In conclusion, we believe the objective, quantifiable results presented in this thesis indicate that the 

model discussed in Chapter 4 is feasible and that the implementations described in Chapter 5 and Chapter 

6 are functional. With these systems, it is possible to accurately determine if a person is at an increased 
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risk of falling, has an underlying hand tremor that is not clearly visible, or has a hand dexterity 

affection. It is also possible to determine these factors while the participant is simply playing a game at 

home. However, our results elicit a number of future studies, that we describe below. 

Acknowledgements 

The work in this thesis has been co-funded by the German Ministry of Education and Research (BMBF) 

within the “PDExergames” project, Hessian LOEWE research funds within the “VR-Diagnosesystem” 

project, and the Klaus-Tschira foundation within the “Augmented Back Trainer” project. 

9.3. Future Work 

In the future, once the COVID-19 restrictions are lifted, we plan to conduct two additional studies that 

were initially conceived as part of this thesis. The first study is designed to assess the feasibility of our 

clinical decision support systems to assess cognition based on game data extracted from PDDanceCity 

and PDPuzzleTable. The goal of the second study is to evaluate the potential of our games to provide 

game-based rehabilitation for PD patients. In addition, we also plan to explore developing additional 

exergame-sensor combinations, for example for cardio training with ergometers [169]. 

Assessing the Capability of Clinical Decision Support Systems to Evaluate Cognition 

To evaluate the feasibility of assessing cognitive skills with PDDanceCity and PDPuzzleTable, we had 

planned an evaluation similar to the ones presented in Chapter 5 and Chapter 6. The concept of this 

evaluation was to train a classifier to predict the score of the Mini Mental Scale Examination test based 

on the feature vectors of PDDanceCity and PDPuzzleTable, described in Table 14 and Table 24. The Mini 

Mental State Examination [83] is a test widely used to assess cognitive impairment. It poses a series of 

general questions concerning orientation, attention, calculation, language, repetition, and complex 

commands. It also includes a drawing of interlocking pentagons, derived from the Bender-Gestalt test 

to assess visual-motor skill. These questions are scored individually, for a total maximum sum of 30 

points. A score of 24 or more indicates normal cognition, while scores lower than 24 indicate different 

degrees of cognitive impairment. These degrees are defined as severe (<9 points), moderate (10-18 

points) and mild (19-23 points). Scoring can be adjusted to account for illiteracy. The Mini Mental State 

Examination is commonly used to screen for dementia and mild cognitive impairment, also in PD [29]. 

The goal of this evaluation is to train a neural network that would establish a binary classification of 

PD patients in cognitively impaired (total score 23 or lower) and cognitively healthy (total score higher 

than 23) based on game data extracted from PDDanceCity and PDPuzzleTable. 

Assessing the Capability of Clinical Decision Support Systems to Monitor Rehabilitation 

As discussed in the section Exergame-based Interventions in Parkinson’s Disease of Chapter 3, an additional 

advantage of game-based interactions in PD is that they show great rehabilitation potential. In some 

cases, rehabilitation results with game-based interventions are even superior to traditional 

rehabilitation. Given that PDDanceCity and PDPuzzleTable were also designed to provide 

rehabilitation, we will explore the feasibility of using our systems in long-term interventions. This study 

should explore potential improvements in physical symptoms while playing the exergames regularly. 

A change in the classification of a patient would be an indicator of a tangible improvement (e.g., a 

reduced risk of falling). For this purpose, PDDanceCity and PDPuzzleTable are currently being 

submitted as candidates for medical certification, the first step for a randomized, clinical trial to explore 

their potential of these exergames as cognitive and physical rehabilitation tools.  
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Appendix 

A. Parkinson’s Disease  

Parkinson’s Disease (PD), is caused by the progressive degeneration of dopaminergic neurons in the 

substantia nigra pars compacta, reduced striatal dopamine, and the presence of Lewy Bodies. Parallel 

to this deterioration, a nondopaminergic degeneration can be expected. This degeneration is present in 

the cholinergic, norepinephrine, serotonin neurons, olfactory system, spinal cord, peripheral autonomic 

system and cerebral hemispheres. The prevalence of PD increases with age, with a mean onset of 60 

years. However, cases in patients as young as 20 have also been reported [200].  

 

The positive diagnosis of Idiopathic PD, which is the most common form of parkinsonism (75 percent 

of cases) commonly follows the standard of the UK Parkinson’s disease society brain bank [132]. This 

diagnosis is currently determined by the presence of rest tremor, asymmetry and a good response to 

dopaminergic replacement therapy (i.e. levodopa [86]). These criteria allow for a confirmed pathology 

in 99 percent of cases. However, other causes such as toxins, metabolic diseases or treatment with 

particular medications may also cause parkinsonism. These other forms of parkinsonism tend not to 

progress with time in contrast with classic PD [200].  

 

PD causes very characteristic motor symptoms: rest tremor, bradykinesia (slower movements), rigidity, 

and postural instability among others. These can, at least in the early years, be treated with 

dopaminergic replacement therapy [132] through the dopaminergic precursor L-Dopa (levodopa). This 

therapy does mitigate motor, dopaminergic symptoms temporarily, but causes acute and chronic 

secondary effects. Acute secondary effects are, for example, dyskinesias (involuntary movements), 

nausea, and orthostatic hypertension. Chronic secondary effects are an increased risk of falling, freezing 

of gait (paralysis when an intention to walk is present), autonomic dysfunction, and sleep disorders, 

among others. 

  

With dopaminergic replacement therapy, as time passes, patients build up a tolerance to levodopa and 

therapy loses its effect. Periods in which therapy is effective, also called “ON” periods, become shorter, 

and those in which it is no longer effective, or “OFF” periods, become longer. As the disease advances, 

the decrease in duration of ON periods instigate increases in the daily dosage of levodopa. This further 

worsens the side effects with time [200]. 

 

In parallel to motor symptoms, PD also causes cognitive dysfunctions [1, 226]. Once objectifiable, these 

are defined as Mild Cognitive Impairment in PD, quantifiable as a cognitive deficit in typical 

neuropsychological tests. This impairment translates into subtle difficulties when performing common 

cognitive tasks, for example in executive functions such as memory, planning, or inhibition [197]. 

Approximately 25 percent of PD patients will develop some form of cognitive impairment, which may 

progress into dementia [2]. Occasionally, dementia develops very early and almost in parallel to 

dopaminergic symptoms. In this case it is defined as Dementia with Lewy Bodies. This type of 

dementia often causes hallucinations [200].  

 

At the present time, there is no approved pharmacological approach to prevent cognitive decline 

or treat cognitive impairment [335]. However, recent research suggests that cognitive function can 
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be improved through cognitive training in patients with PD [189, 247]. Recent studies also suggest 

that a combined treatment of cognitive and physical training, also called dual-tasking, seems to be 

an excellent option [261]. Exergames, in this case, seem adequate to produce such rehabilitation 

scenarios [18]. A particular benefit of a combined therapy is that transfer effects can be expected. 

This means both a cognitive improvement from physical exercise [127] as well as positive effects 

of cognitive training in physical symptoms, for example, freezing of gait [333], have been observed.  

 

The challenges of managing PD are manifold. First, pharmacologic treatment of PD is extremely 

complex and highly dependent on the state of the patient. In addition, PD presents substantial 

interindividual variability, to the point where it is believed to be a heterogeneous array of 

neurodegenerative disorders and not a single disease [313]. This commonly leads to dividing PD 

patients into at least four groups: mildly affected, motor-dominant, nondopaminergic-dominant and 

severely affected [324].  

 

Once the diagnosis has been confirmed, the usual treatment is levodopa combined with carbidopa. 

Carbidopa increases the effectiveness and reduces some minor side effects such as nausea and 

vomiting. As the disease progresses, the dosage needs to be adjusted to maintain long “ON” periods 

to conserve the patient’s functionality. With time, however, dopaminergic replacement therapy 

provokes severe side effects in almost all cases. As an alternative to levodopa, anticholinergic drugs 

can be given, but as in the previous case, around 70 percent of patients can be expected to develop 

severe side effects such as hallucinations and dyskinesias. An additional problem is that dopamine 

antagonists (antipsychotics) cannot be used to treat hallucinations, since they aggravates the side 

effects of levodopa and greatly increases the risk of stroke [4]. 

 

Other PD symptoms require further medication to be treated. For example, dopamine metabolic 

inhibitors are used to treat orthostatic hypotension, anticholinergic agents can be used to treat urinary 

problems, and laxatives are used to treat constipation. Sleep disturbances, such as restless legs 

syndrome, sleep apnea, or sleep behavior disorders should also be treated, for example with 

clonazepam [200]. Other side effects of PD, such as depression and anxiety, are treated with 

antidepressants and benzodiazepines [4].  

 

An additional therapy option to pharmacological interventions in PD is deep brain stimulation 

targeted on the subthalamic nucleus or globus pallidus internus to reduce the length of the OFF 

periods. This can cause ocular and speech abnormalities, muscle twitches, paresthesia, depression 

and on occasion lead to suicide, aside from the inherent risks of deep brain stimulation and brain 

surgery. In addition, dementia is defined as an exclusion criterion for deep brain stimulation [200]. 

 

As discussed, the main objective in PD treatment is to mitigate dopaminergic symptoms. However, it 

is the nondopaminergic symptoms, as well as the side effects of levodopa, which are responsible for 

the quality of life degradation, and ultimately nursing home placement. A study on 143 PD patients 

showed that nocturnal akinesia and biphasic dyskinesia most affect the quality of life of PD patients 

[40]. In [3], a study performed on 178 subjects with PD, of which 47 were placed in a nursing home 

during the four years of the study, explored which factors can predict nursing home placement. They 

concluded that an age greater than or equal to 72, living alone, difficulties in activities of daily living, 

and cognitive impairment, are all potential indicators, with thought disorder being the strongest 
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predictor. Once placed in a nursing home, a three-year mortality rate of 50 percent can be expected. 

Aside from age, the diagnosis of pneumonia, congestive heart failure, ulcers, diabetes mellitus, and 

severe functional or cognitive impairment are the strongest predictors of death [73]. 

 

In addition to pharmacological interventions, it is common to monitor the state and progress of PD 

by using one of many available questionnaires. For example, the Hoehn and Yahr scale classifies 

patients on a one (minimal disability) to five (bedridden) scale [107]. The 39-item Parkinson’s Disease 

Questionnaire evaluates different aspects of PD, such as mobility, activities of daily living, emotional 

well-being, cognition, and communication [246]. The current gold standard is the UPDRS and its 

movement disorders society updated version (MDS-UPDRS, commonly also called UPDRS) [108]. 

The MDS-UPDRS explores each of the different domains of PD in great detail, and has separate 

sections for non-motor activities of daily life, motor activities of daily life, motor examination, and 

motor complications. In most instances of this work, MDS-UPDRS aspects will refer to the motor 

section, also commonly known as UPDRS-III or UPDRS-Motor.  

 

Concerning cognition, there are also several available options to evaluate a possible cognitive 

impairment or dementia. Examples are the Mini Mental State Examination [83], Mini Mental 

Parkinson [206], Montreal Cognitive Assessment [230], or the Parkinson Neuropsychometric 

Dementia Assesment test [146]. As is the case with general PD assessment scales, these different 

screening options coexist in current medical practice, but transformation tools to translate scores are 

available [278]. In this thesis, we chose to use the Mini Mental State Examination by recommendation 

of our clinical partners. In any case, all the presented examples are used in clinical practice. 

 

Finally, in addition to novel methods to treat and monitor PD, one of the most important fields of 

research is early diagnosis. At the moment, it is believed that the onset of PD precedes diagnosis by 

as much as ten years, a period defined as prodromal PD [207]. This phase is believed to begin with 

nondopaminergic degeneration, prior to dopaminergic degeneration, and manifests itself as cardiac 

denervation, anosmia, depression, constipation or REM sleep disorders [255]. This opens the 

possibility to predict when patients may be at risk of developing PD in the near future. More precisely, 

to predict which patients will start showing the dopaminergic symptoms of PD within the span of a 

few years [200]. 

 

In conclusion, clinical visits and rating scales provide a general idea of the state of the patient, which is 

used to adjust medication and rehabilitation. However, objectively quantifying the state of these 

patients by using sensors would significantly improve the amount of information neurologists have on 

which to base said adjustments. This improvement would translate into a finer, more objective control 

over the state of the patient and the optimal choice for treatment, thus increasing the quality of life of 

patients. In addition, further advantages, such as the potential for remote monitoring, and dual-tasking 

rehabilitation via exergames, would be possible. This applies especially to PD because of its non-linear 

progression and fluctuating nature, but also to other neurodegenerative or chronic diseases, which 

would see significant benefits in implementing methods similar to the ones presented in this thesis. 

Universal Parkinson’s Disease Rating Scale 

The UPDRS, more precisely the 2008 Movement Disorder Society revision, is the current clinical gold 

standard for PD patient assessment. The UPDRS is administered as a series of 65 questions and tasks, 
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each addressing a certain symptom or function, rated as described in Table 36. Some questions are 

administered and rated by the neurologist, while others are self-administered. On average, it takes 30 

minutes to fully perform the UPDRS. It is divided into four subsections. The first subsection, “non-

motor experiences of daily living,” addresses symptoms such as hallucinations or depression. The 

second subsection, “motor experiences of daily living,” includes questions on activities such as eating 

or handwriting. The third subsection, “motor,” addresses tremor, balance, and gait. The fourth 

subsection, “motor complications,” focuses on dyskinesias and ON/OFF periods. 

 

Numeric Rating Clinical term Description 

0 Normal No symptoms 

1 Slight No impact on function 

2 Mild Modest impact on function 

3 Moderate Considerable impact on function 

4 Severe No function 

 

In Chapter 6, we link data collected by the Leap Motion sensor with the results of parts of the motor 

section of the UPDRS (commonly referred to in literature as UPDRS-III, or UPDRS-Motor). The 

elements of this section are referred to as tasks. This section is administered and rated by the 

neurologist, who in the section directives is instructed to “rate what they see.” First, the dopaminergic 

state of the patient (ON or OFF), and the time since the last dose of levodopa is recorded. We noticed 

patients usually have difficulties remembering the exact time when they took the last dose. In this 

thesis, we use the hand dexterity and resting hand tremor sections of the UPDRS. Hand dexterity is 

rated in tasks 3.4 (finger tapping), 3.5 (hand movements) and 3.6 (pronation-supination of hands). Hand 

tremor is rated in tasks 3.15 (postural tremor of the hands) and 3.16 (kinetic tremor of the hands). The 

UPDRS-Motor contains further tremor-related tasks, but these address tremor in other bodily parts and 

tremor consistency. Table 37 and Table 38 include a summary of the UPDRS tasks employed in this 

thesis, and their rating criteria.

Table 36: UPDRS rating schema. Directly extracted from [135] 
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Task Description Normal Slight Mild Moderate Severe 

3.4  

Finger 

tapping 

Each hand is tested separately. Demonstrate 

the task, but do not continue to perform the 

task while the patient is being tested. Instruct 

the patient to tap the index finger on the 

thumb 10 times as quickly and as big as 

possible. Rate each side separately, evaluating 

speed, amplitude, hesitations, halts, and 

decrementing amplitude. 

No 

problems 

a) the regular rhythm is 

broken with one or two 

interruptions or 

hesitations of the tapping 

movement; b) slight 

slowing; c) the amplitude 

decrements near the end 

of the 10 taps 

a) 3 to 5 

interruptions during 

tapping; b) mild 

slowing; c) the 

amplitude 

decrements midway 

in the 10-tap 

sequence 

a) more than 5 interruptions 

during tapping or at least 

one longer arrest (freeze) in 

ongoing movement; b) 

moderate slowing; c) the 

amplitude decrements 

starting after the 1st tap 

Cannot or can only 

barely perform the 

task because of 

slowing, 

interruptions, or 

decrements 

3.5  

Hand 

movements 

Test each hand separately. Demonstrate the 

task, but do not continue to perform the task 

while the patient is being tested. Instruct the 

patient to make a tight fist with the arm bent 

at the elbow so that the palm faces the 

examiner. Have the patient open the hand 10 

times as fully and as quickly as possible. If the 

patient fails to make a tight fist or to open the 

hand fully, remind him/ her to do so. Rate 

each side separately, evaluating speed, 

amplitude, hesitations, halts, and 

decrementing amplitude. 

No 

problems 

a) the regular rhythm is 

broken with one or two 

interruptions or 

hesitations of the 

movement; b) slight 

slowing; c) the amplitude 

decrements near the end 

of the task 

a) 3 to 5 

interruptions during 

the movements; b) 

mild slowing; c) the 

amplitude 

decrements midway 

in the task 

a) more than 5 interruptions 

during the movement or at 

least one longer arrest 

(freeze) in ongoing 

movement; b) moderate 

slowing; c) the amplitude 

decrements starting after 

the 1st open-and-close 

sequence 

Cannot or can only 

barely perform the 

task because of 

slowing, 

interruptions, or 

decrements 

3.6 

Pronation-

supination 

Test each hand separately. Demonstrate the 

task, but do not continue to perform the task 

while the patient is being tested. Instruct the 

patient to extend the arm out in front of 

his/her body with the palms down, and then 

to turn the palm up and down alternately 10 

times as fast and as fully as possible. Rate 

each side separately, evaluating speed, 

amplitude, hesitations, halts, and 

decrementing amplitude. 

No 

problems 

a) the regular rhythm is 

broken with one or two 

interruptions or 

hesitations of the 

movement; b) slight 

slowing; c) the amplitude 

decrements near the end 

of the sequence 

a) 3 to 5 

interruptions during 

the movements; b) 

mild slowing; c) the 

amplitude 

decrements midway 

in the sequence 

a) more than 5 interruptions 

during the movement or at 

least one longer arrest 

(freeze) in ongoing 

movement; b) moderate 

slowing; c) the amplitude 

decrements starting after 

the 1st supination-

pronation sequence 

Cannot or can only 

barely perform the 

task because of 

slowing, 

interruptions, or 

decrements 

Table 37: UPDRS bradykinesia tasks related to this thesis. Directly extracted from [135] 



125 

 

 

Task Description Normal Slight Mild Moderate Severe 

3.15  

Postural 

tremor 

of the 

hands 

All tremor, including re-emergent rest tremor, 

that is present in this posture is to be included in 

this rating. Rate each hand separately. Rate the 

highest amplitude seen. Instruct the patient to 

stretch the arms out in front of the body with 

palms down. The wrist should be straight and 

the fingers comfortably separated so that they do 

not touch each other. Observe this posture for 10 

seconds. 

No tremor Tremor is present 

but less than 1 cm in 

amplitude 

Tremor is at 

least 1 but less 

than 3 cm in 

amplitude 

Tremor is at least 3 but 

less than 10 cm in 

amplitude 

Tremor is at least 10 

cm in amplitude 

3.16  

Kinetic 

tremor 

of the 

hands 

This is tested by the finger-to-nose maneuver. 

With the arm starting from the outstretched 

position, have the patient perform at least three 

finger-to-nose maneuvers with each hand 

reaching as far as possible to touch the 

examiner’s finger. The finger-to-nose maneuver 

should be performed slowly enough not to hide 

any tremor that could occur with very fast arm 

movements. Repeat with the other hand, rating 

each hand separately. The tremor can be present 

throughout the movement or as the tremor 

reaches either target (nose or finger). Rate the 

highest amplitude seen.  

 

No tremor Tremor is present 

but less than 1 cm in 

amplitude 

 

Tremor is at 

least 1 but less 

than 3 cm in 

amplitude 

Tremor is at least 3 but 

less than 10 cm in 

amplitude 

Tremor is at least 10 

cm in amplitude 

Table 38: UPDRS resting tremor tasks related to this thesis. Directly extracted from [135] 
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B. Results of the Review on Approaches to Monitor Symptoms of Parkinson’s Disease 

The results of this systematic review yielded 156 clinical trials. We analyzed these articles for the best 

performing methods to assess different symptoms of PD. These results are summarized in Table 39. In 

general terms, we conclude there are currently available, accurate methods to measure resting tremors 

[50], bradykinesia [50], speech alterations [318], detect falls [334], and freeze of gait [211]. In the section 

Assessing Resting Tremor, we discuss recent approaches on sensor-based methods to monitor resting 

hand tremor in PD. To this date, the most common approach for this purpose is to use smartphones or 

accelerometers. Table 40 and Table 41 include a summary of these approaches and their resulting 

accuracies. Recent publications indicate that the Leap Motion sensor can potentially reach this level of 

accuracy while offering a non-invasive alternative in which patients do not have to wear a sensor. It 

was a goal of this thesis to evaluate the feasibility of classifying PD patients and controls, and assess 

the severity of hand tremors as established in UPDRS scores using the Leap Motion sensor. We present 

our results in the sections Results for Resting Tremor and Results for Kinetic Tremor and Bradykinesia in 

Chapter 6. Further details of these experiments are available in Appendix F. 

 

Symptom Definition and main 

characteristics 

Prevalence  Monitoring 

available? 

Maximum achieved 

prediction accuracy 

Rest tremor Pill-rolling tremor present 

in one or both extremities 

75%, 100% on other 

sources [136] 

Yes Correlation of 0.98 with 

UPDRS Scores [50] 

Bradykinesia Reduced movement 

speed 

100% (Condition to 

diagnose PD) 

Yes Correlation of 0.98 with 

UPDRS Scores [50] 

Muscular 

rigidity 

Reduced flexibility 100% (Condition to 

diagnose PD) 

Yes Not studied 

Postural 

instability 

Difficulty standing 

upright 

100% (Condition to 

diagnose PD) 

Yes Not studied 

Speech 

alterations 

Ssoft speech, hoarseness 

and muscular weakness 

70 to 90% [318] Yes 98.6%, UPDRS estimation 

[318] 

Falling Increased risk of falling 

during daily living 

70% fall risk [23] Yes 94% [334] 

Visual 

perturbances 

Blink-rate reduction of 

more than 50% [150], 

reduced visual acuity [11] 

Up to 75% [11] Yes Not studied 

Dysphagia Difficulty swallowing 60% [84] No Not studied 

Sleep 

disturbances 

Primary / Secondary 

insomnia, Sleep Apnea 

Greater than 50% 

[136] 

Yes Not studied 

Micrographia Small, cramped 

handwriting 

50% [285] No Not studied 

Autonomic 

disfunction 

Reduced heart-rate 

variability, Orthostatic 

hypotension 

47% [136] Yes Not studied 

Freezing of gait Lack of forward progress 

despite an intention to 

walk 

47% [136] Yes 94%, combination with 

auditory cues to reduce 

impact [211] 

Table 39: Summary of prediction accuracies in sensor-based PD symptom monitoring 
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Cohort and task Sensor Parameters and filtering Objective Methods Results Ref. 

25 PD patients, all right-handed, at ON. Postural 

and resting tasks on both hands for 30 seconds 

iPhone 4S worn 

on glove, 20 Hz 

Squared magnitudes of 

acceleration and rotation 

vector, sum of absolute 

differences in the acceleration 

vector, amplitude of the 

dominant frequency 

Classify healthy 

controls and PD 

patients, correlate 

parameters with 

UPDRS score 

Among others: Naive 

bayes, logistic regression, 

support vector machines, 

10-fold cross validation 

Random forest: 82% 

sensitivity 90% specificity 

with dominant frequency 

and gyroscope amplitude in 

rest as parameters 

[173] 

60 PD patients, split into ON and OFF. Rest, 

postural, and kinetic tasks, total of 87 trials (nose 

15, extended 20, laps 30). Captured in video for 

later UPDRS score estimation by two neurologists 

Accelerometer 

and gyroscope 

worn on most 

affected limb, 128 

Hz  

2nd order Butterworth filter 3-10 

Hz. Time and frequency-based 

parameters: peak power 

(magnitude, frequency), root 

mean square 

Establish linear 

regression with 

UPDRS motor 

scores 

Multiple linear regression very high correlation when 

using logarithm of peaks in 

the power spectra in both the 

rest and postural tasks 

(r>0.94). Kinetic task shows 

comparatively low 

correlation (r=0.69) 

[104] 

6 PD patients, 3 with essential tremor, 1 with both, 

split into ON and OFF. 20 Datasets collected. 

Kinetic, Postural, resting tasks and spiral trace 

task with standard pen. 

Shimmer triaxial 

gyroscope and 

digital pen 

system, 10 Hz. 

Root mean square and power, 

spectral density parameters. 

Predict severity of 

tremors 

Random forests, decision 

trees, nearest neighbors, 

multilayer perceptron and 

support vector machines. 

10-fold cross-validation 

82% accuracy using decision 

trees with the gyroscope, 

74% accuracy on digital pen 

task 

[54] 

12 PD patients with Hoehn & Yahr score 2-3. Both 

at ON and OFF. Motor UPDRS tasks including 

finger to nose, finger tapping, opening and closing 

hands, heel tapping, quiet sitting, alternating hand 

movements. Seven trials in total.  

Uniaxial 

accelerometers on 

the upper and 

lower limbs 

(anteposterior for 

arms, distal for 

legs), 100 Hz. 

1 Hz highpass filter, 3-8 Hz 

bandpass filter for tremor 

analysis and 3 Hz lowpass filter 

for bradykinesia and 

dyskinesia.  

Amplitude, root mean square, 

cross-correlation and 

frequency-based features, 

signal entropy 

Predict motor 

UPDRS score 

changes 

throughout an 

OFF-ON period 

Support vector machines, 

10-fold cross validation 

5 seconds seems to be the 

optimum window length at 

100 Hz. Estimation errors of 

2.8% for tremor, 1.7% for 

bradykinesia and 1.2% for 

dyskinesia 

[242] 

120 PD patients, 34 with essential tremor, 210 

controls, medication status not specified. Series of 

triaxial tests based on different parameters 

(postural, intentional tremor in simple/complex 

movements with/without external disturbances) 

DIMETER haptic 

system using a 

PHANToM 3D 

force sensor 

device as capture 

method, 100 Hz 

26 power spectral density 

parameters: maxima, 

frequency, moments, 

bispectrum diagonal values, 

trispectrum diagonal values 

Classify essential 

tremor, PD and 

controls 

Multilayer perceptron, 364 

training and 156 evaluation 

samples 

Classification error of 24%, 

19,4% if only spectral 

parameters are considered. 

[111] 

Table 40: Summary of sensor-based approaches to monitor PD tremor using smartphones and accelerometers 
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Cohort and task Sensor Parameters and filtering Objective Methods Results Ref. 

7 PD patients with UPDRS Scores 1 to 3, at OFF. 

Rest, postural and kinetic tasks on the most 

tremor affected limb for 10 seconds. 

Glove with six-axis 

accelerometer on 

index finger, 100 

Hz. 

Amplitude and dominant 

frequency. Power spectral 

density on 3-10 second 

windows. Signal was filtered to 

remove gravity and noise. Root 

mean square and power 

spectral density parameters as 

well as threshold criteria. 

Correlate UPDRS 

scores and 

quantifiable 

tremor parameters 

based on a linear 

regression model 

Direct analysis of 

frequency domain 

features 

r=0.98 with different 

parameters. Device compared 

to laboratory motion tracking 

system accelerometer shows 

excellent correlations (>0.95) 

[50] 

23 PD Patients, at ON. Data taken while sitting, 

resting hands, for 30 seconds, for both hands. 

UPDRS Scores collected by a neurologist. 

iPhone 4S worn on 

glove, 20 Hz 

Angular acceleration and 

angular velocity vectors  

Correlate 

accelerometer 

parameters with 

UPDRS scores 

Direct analysis of 

magnitude of angular 

acceleration and 

velocity, standard 

deviation, and peak 

amplitude 

r=0.87 when correlating left 

hand standard deviation, r=0.77 

when correlating right hand 

standard deviation (all patients 

were right-handed) 

[172] 

1 PD patient and 1 healthy control, medication 

status not specified. Smartphone worn on the 

dorsum of the hand, resting, for 10 seconds 

iPhone 4 worn 

perpendicularly to 

the hand with a 

glove, 20 Hz 

Time averaged acceleration, 

removing gravity 

Evaluate 

differences 

between PD and 

controls 

Direct analysis of time 

averaged acceleration 

Significant differences between 

control and PD (mean 0.8 

standard deviation 0.6 for 

controls, 19.1 and 5.8 for PD) 

[188] 

8 PD patients, 1 with cerebellar and 1 

psychogenic tremor, all at ON. 10 healthy 

controls. Arm extended horizontally for 12 

seconds on both hands 

iPhone 4 worn 

perpendicularly to 

the hand with a 

glove, 20 Hz 

Acceleration, angular velocity Evaluate the 

smartphone as a 

tool to detect 

tremors 

Direct analysis of 

average squared angular 

acceleration and angular 

velocities 

Statistically significant 

differences between 

populations. Threshold-based 

discrimination criteria possible. 

[174] 

7 Patients with different tremor types: 1 PD, 2 

essential tremor, 1 Multiple Sclerosis, 1 post-

stroke, 1 dystonic, 1 orthostatic, medication status 

not specified. 30 second recordings at rest, with 

different positions for each tremor type. 

iPhone strapped to 

limb (arm or leg), 

in parallel with 

electromyography, 

20 Hz 

2-300 Hz Bandpass filter and 2 

seconds Hamming. Peak 

amplitude frequency on a 

single axis 

Compare 

electromyography 

with smartphone 

accelerometer 

Direct analysis of power 

spectral density values 

Electromyographic and 

smartphone peak frequencies 

show a maximum absolute 

error of 0-0.2 Hz except for 

orthostatic tremor (0.5 Hz) 

[142] 

14 patients with different tremor types: 5 PD, 4 

essential tremor, 2 functional tremor, 2 

physiological tremor, 1 ataxia. Patients perform 

tremor-evoking tasks 

Uniaxial 

accelerometer 

placed on the 

dorsal side of the 

hand, 1 kHz 

4th order 0.25 Hz highpass and 

2nd order 45 Hz lowpass filter, 

four second windows 

Detect tremor 

automatically for 

long-term 

monitoring 

Direct analysis of power 

spectral density values 

Sensitivity/specificity of 

0.69/0.98 and accuracy of 0.98 

using Welch periodogram. 

[209] 

Table 41: Summary of sensor-based approaches to monitor PD tremor using smartphones and accelerometers (continued) 
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C. Results of the Review on Exergame-based Interventions in Parkinson’s Disease 

The results of the systematic review on exergame-based interventions in PD, as discussed in Section 3.2, 

yielded nine randomized, clinical trials and eleven pilot studies. We also identified thirty technical 

articles, which lacked an evaluation, and fifteen metastudies. All clinical trials showed either positive 

(clinical outcome of the intervention group superior to that of the control group) or neutral (clinical 

outcome of the intervention group equal to that of the control group) results. Nevertheless, these 

studies varied greatly in their intervention methodology and choice of clinical outcome. For example, 

Table 42 displays a classification of the identified articles based on the sensor they employed. We 

observed a significant shift, particularly in more recent publications, from the Wii platform towards the 

Microsoft Kinect: thirty-six out of forty-nine publications used the Kinect device. We hypothesize the 

increased non-invasiveness of the Kinect sensor plays a role in this shift. 

 

Device Kinect Wii Balance Board Wiimote Custom Device Total 

Randomized Clinical Trials 3 3 1 2 9 

Pilot Studies 9 2 0 0 11 

Technical Articles 24 3 1 2 30 

Total 36 8 2 4 50 

 

We found a drastic improvement in both the quality and quantity of available randomized clinical 

trials. For comparison, Barry et al.’s [18] systematic review found a single randomized, clinical trial 

[252]. We found nine, including the one previously identified [5, 76, 194, 252, 268, 283, 289, 316, 345]. 

Given the ample variety of clinical outcomes provided in these articles, we limited our analysis to the 

main three outcomes, choosing those that were more common where available, for example, UPDRS 

scores. In spite of these advancements, we still identified several deficiencies in recent randomized 

clinical trials. The lack of both standardized outcomes as well as follow-up protocols is still present. 

Seven studies are at risk of selection bias due to a single-blind design [76, 194, 252, 283, 289, 316, 345], 

but only three mention this risk [194, 316, 345]. Only one study [316] mentioned the outcome effect size. 

A list of these clinical trials is presented in Table 43 and Table 44, and we present the effect sizes and 

statistical significances in Table 45 and Table 46. Our systematic survey also identified eleven pilot trials 

[7, 45, 110, 231, 232, 240, 251, 253, 256, 303, 304]. These studies do not qualify as randomized clinical 

trials because they lack a control group, randomization procedure, or sufficient details on the employed 

methods or collected data. Table 47 and Table 48 summarize these pilot trials, and Table 49 presents data 

on statistical significance.  

 

We used the two-tailed t-test and Hedges’s g to evaluate effect size and statistical significance. In 

general, results are not statistically significant and effect sizes are relatively small. However, 

interventions show slightly better outcomes than control groups, and in pilot trials some results are 

also statistically significant. In this case, results in Table 45 and Table 49 are highlighted. 

Table 42: Input devices employed in publications analyzed in the systematic review of exergame-

based interventions in PD [92] 
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Reference N Aim Platform Custom 

Game? 

Outcome type Control 

group 

baseline 

mean (sd) 

Intervention 

group 

baseline mean 

(sd) 

Control 

group post 

intervention 

mean (sd) 

Intervention 

group post 

intervention 

mean (sd) 

Main conclusion 

Pompeu 

et al. [252] 

32 Compare Wii-

based exergame 

with normal 

balance exercises 

Wii No  • UPDRS-II 

• Berg balance 

scale 

• Montreal 

cognitive 

• 8.9 

(2.9) 

• 51.9 

(4.6) 

• 21.7 

(4.6) 

• 10.1 (3.8) 

• 52.9 (4.1) 

• 20.6 (4.5) 

• 7.6 (2.9) 

• 53.1 (3.4) 

• 23.1 (4.6) 

• 8.1 (3.5) 

• 54.4 (2.2) 

• 22.2 (4.5) 

Exergames as 

effective as 

traditional 

balance therapy 

Allen et 

al. [5] 

38 Evaluate upper 

extremity 

exergames to 

improve arm and 

hand activity 

Custom Yes • Nine-hole peg 

test (s) 

• Horizontal 

tapping test 

(taps/60s) 

• Horizontal 

tapping test 

(error score) 

• 28.8 

(5.7) 

• 124.1 

(34.9) 

• 0.047 

(0.064) 

• 29.9 (7.3) 

• 119 (29.4) 

• 0.048 

(0.042) 

• 29 (7.8) 

• 130.1 

(30.4) 

• 0.07 

(0.059) 

• 30.4 (7.5) 

• 114.6 

(26.3) 

• 0.041 

(0.037) 

Exergames 

should consider 

task specificity 

Liao et al. 

[194] 

36 Evaluate 

exergames on 

obstacle crossing 

performance and 

dynamic balance 

Wii No • Obstacle 

crossing 

performance 

speed (cm/s) 

• Timed up-and-

go (s) 

• PD 

questionnaire 

• 80.4 

(16.1) 

• 11.9 

(2.7) 

• 78.2 

(23.3) 

• 75.2 

(11.4) 

• 12.6 (4.1) 

• 84.5 (26) 

• 78.5 (17) 

• 12.6 (3.6) 

• 79 (24.3) 

• 87.0 (16.5) 

• 9.7 (2.1) 

• 68.2 (20.0) 

Significant 

improvement of 

control group 

Shih et al. 

[283] 

22 Compare Kinect 

exergames with 

traditional 

balance training 

Kinect Yes • Berg balance 

scale 

• Timed up-and-

go (s) 

• Reaction time 

(s) 

• 50.9 

(5.32) 

• 9.5 

(2.45) 

• 0.96 

(0.33) 

• 50.4 

(4.79) 

• 10.05 

(4.66) 

• 0.88 

(0.24) 

• 53.2 

(2.86) 

• 8.71 (1.8) 

• 0.74 

(0.24) 

• 53 (1.89) 

• 9.18 (3.42) 

• 0.79 (0.18) 

Exergaming at 

least as effective 

as traditional 

therapy 

Table 43: Summary of randomized controlled trials on interventive exergames for PD identified in the systematic review [92] 
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Reference N Aim Platform Custom 

Game? 

Outcome type Control 

group 

baseline 

mean (sd) 

Intervention 

group 

baseline 

mean (sd) 

Control 

group post 

intervention 

mean (sd) 

Intervention 

group post 

intervention 

mean (sd) 

Main 

conclusion 

Ribas et al. 

[268] 

20 Determine 

effectiveness of 

Wii exergame in 

balance, fatigue, 

quality of life 

Wii Yes • Berg balance scale 

• Fatigue severity scale 

• 6-meter walk test(m) 

• 48.4 

(2.63) 

• 3.55 

(1.68) 

• 384 

(86.43) 

• 50.4 

(2.79) 

• 3.8 

(1.66) 

• 352 

(91.99) 

• 48.2 

(2.89) 

• 3.02 

(1.22) 

• 437 

(89.69) 

• 52.3 

(2.26) 

• 1.83 

(0.57) 

• 408 

(97.27) 

Exergames 

improve 

balance. Fall 

risk should 

be explored. 

Zimmermann 

et al. [345] 

39 

 

Compare 

custom and 

commercial 

exergame effect 

in cognition. 

Wii No • Neurophysiological 

tests for alertness, 

working memory, 

executive function 

• 272 

• -0.16 

• 2.3 

• 291 

• -0.05 

• 2.17 

• 266 

• -0.14 

• 2.44 

• 275 

• -0.16 

• 2.37 

Non-custom 

games as 

effective as 

custom 

games for 

cognition. 

Song et al. 

[289] 

60 

 

Determine 

efficacy of 

home-based 

rehabilitation 

Custom Yes • Stepping performance 

• Timed up-and-go (s) 

• Montreal cognitive 

• 847 

(221) 

• 9.51 

(2.27) 

• 26.5 

(2.7) 

• 824 

(176) 

• 9.57 

(2.38) 

• 26.4 

(2.77) 

• 794 (88) 

• 9.02 

(1.7) 

• 26.7 

(2.3) 

• 798 (169) 

• 9.72 

(2.14) 

• 27.3 (2.8) 

Task-

specifity is 

important. 

Ferraz et al. 

[76] 

62 

 

Compare 

bicycle exercise 

and Kinect 

exergaming 

Kinect No • 6-meter walk test (m) 

• 10-meter walk test (s) 

• PD questionnaire 

• 354.9 

(98.9) 

• 1.3 

(0.3) 

• 47 

(25.1) 

• 365.4 

(81.1) 

• 1.2 (0.3) 

• 44.7 

(26.7) 

• 391.7 

(107.5) 

• 1.4 (0.4) 

• 41.7 

(21.7) 

• 401.2 

(77.9) 

• 1.4 (0.3) 

• 33.9 

(25.2) 

Exergames 

as effective 

as traditional 

therapy. 

Tollar et al. 

[316] 

74 

 

Compare 

bicycle exercise 

and Kinect 

exergaming 

Kinect No • UPDRS-II 

• Berg balance scale 

• 6-meter walk test (m) 

• 19 

(4.67) 

• 26.3 

(5.21) 

• 270.2 

(90.66) 

• 18.2 

(3.85) 

• 23.6 

(3.6) 

• 204.6 

(34.94) 

• 18.9 

(2.19) 

• 24.9 

(5.21) 

• 253.9 

(81.61) 

• 13.7 

(2.45) 

• 32.4 

(4.61) 

• 334.2 

(68.9) 

Exergames 

as effective 

as traditional 

therapy. 

Table 44: Summary of randomized controlled trials on interventive exergames for PD identified in the systematic review (continued) [92] 
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Reference Outcome Control 

post-

baseline 

(g) 

Control 

post-

baseline 

(p) 

Intervention 

post-

baseline 

(g) 

Intervention 

post-

baseline 

(g) 

Intervention

-control 

baseline 

(g) 

Intervention

-control 

baseline 

(p) 

Intervention

-control 

post 

(g) 

Intervention

-control 

post 

(p) 

Pompeu et al. [252] UPDRS -0.4231 0.2146 -0.5167 0.1320 0.3351 0.3233 0.1468 0.6631 

Pompeu et al. [252] Berg Balance Scale 0.2800 0.4080 0.4303 0.2071 0.2166 0.5212 0.4285 0.2090 

Pompeu et al. [252] Montreal Cognitive 0.2873 0.3962 0.3356 0.3226 -0.2282 0.4994 -0.1867 0.5800 

Allen et al. [5] Nine-Hole Peg Test 

(s) 

0.0279 0.9286 0.0644 0.8362 0.1601 0.6078 0.1744 0.5763 

Allen et al. [5] Horizontal Tapping 

Test (taps/60s) 

0.1747 0.5755 -0.1503 0.6298 -0.1506 0.6291 -0.5196 0.1015 

Allen et al. [5] Horizontal Tapping 

Test (error) 

0.3561 0.2570 -0.1685 0.5890 0.0176 0.9549 -0.5612 0.0778 

Liao et al. [194] Obstacle Crossing 

(cm/s) 

-0.1061 0.7813 0.7692 0.0537 -0.3446 0.3711 0.4691 0.2270 

Liao et al. [194] Timed up-and-go 

(s) 

0.2034 0.5954 -0.8230 0.0402 0.1864 0.6262 -0.9097 0.0247 

Liao et al. [194] Parkinson’s Disease 

Questionnaire 

0.0311 0.9351 -0.6496 0.0992 0.2359 0.5383 -0.4486 0.2472 

Shih et al. [283] Berg Balance Scale 0.4940 0.2211 0.6550 0.1096 -0.0906 0.8192 -0.0757 0.8485 

Shih et al. [283] Timed up-and-go 

(s) 

-0.3371 0.3990 -0.1952 0.6231 0.1355 0.7326 0.1578 0.6910 

Shih et al. [283] Reaction Time (s) -0.6994 0.0889 -0.3892 0.3316 -0.2543 0.5229 0.2162 0.5865 

 

 

Table 45: Effect sizes and statistical significance of clinical trials on PD exergame-based interventions [92] 
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Reference Outcome Control post-

baseline 

(g) 

Control post-

baseline 

(p) 

Intervention 

post-baseline 

(g) 

Intervention 

post-baseline 

(g) 

Intervention-

control 

baseline 

(g) 

Intervention-

control 

baseline 

(p) 

Intervention-

control 

post 

(g) 

Intervention-

control 

post 

(p) 

Ribas et al. [268] Berg Balance Scale -0.0658 0.8732 0.6800 0.1115 0.6703 0.1164 1.4360 0.0024 

Ribas et al. [268] Fatigue Severity 

Scale 

-0.3280 0.4301 -1.4423 0.0023 0.1360 0.7417 -1.1355 0.0120 

Ribas et al. [268] 6-Meter Walking 

(m) 

0.5468 0.1951 0.5375 0.2025 -0.3258 0.4332 -0.2816 0.4971 

Song et al. [289] Stepping 

Performance 

-0.3151 0.2273 -0.1507 0.5617 -0.1151 0.6573 0.0297 0.9089 

Song et al. [289] Timed up-and-go 

(s) 

-0.2443 0.3479 0.0663 0.7983 0.0258 0.9208 0.3622 0.1660 

Song et al. [289] Montreal Cognitive 0.0797 0.7585 0.3232 0.2157 -0.0366 0.8879 0.2342 0.3682 

Ferraz et al. [76] 6-Meter Walking 

(m) 

0.3418 0.2440 0.4301 0.1627 0.1106 0.7104 0.0962 0.7469 

Ferraz et al. [76] 10-Meter Walking 

Test (s) 

0.2714 0.3536 0.6369 0.0417 -0.3192 0.2871 0.0000 1.0000 

Ferraz et al. [76] Parkinson’s Disease 

Questionnaire 

-0.2167 0.4579 -0.3974 0.1962 -0.0851 0.7750 -0.3188 0.2877 

Tollar et al. [316] UPDRS -0.0264 0.9247 -1.3946 <0.0001 -0.1805 0.5154 -2.1540 < 0.0001 

Tollar et al. [316] Berg Balance Scale -0.2420 0.3885 2.1277 <0.0001 -0.5832 0.0395 1.3672 < 0.0001 

Tollar et al. [316] 6-Meter Walking 

(m) 

-0.1820 0.5160 2.3725 <0.0001 -0.9275 0.0015 1.0265 0.0005 

Table 46: Effect sizes and statistical significance of clinical trials on PD exergame-based interventions (continued) [92]
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Reference N Aim Platform Custom 

Game? 

Outcome type Outcome value, baseline /post-

intervention mean(sd) 

Main conclusion 

Summa et 

al. [304] 

5 Evaluate the feasibility of 

Kinect-based rehabilitation 

exercises 

Kinect Yes Not described Not described Statistically significant improvement 

of patients. 

Palacios et 

al. [240] 

7 Evaluate the feasibility of 

the proposed scenario 

Kinect Yes • 10-meter walk test 

(s) 

• 12(6)/10(5) Scenario is feasible, but long-term 

impact unknown. Adaption to home 

scenario proposed. 

Summa et 

al. [303] 

7 Evaluate the improvement 

in movement speed 

Kinect Yes • Timed up-and-go 

(s) 

• 10-meter walk test 

(s) 

• 15(12)/16(15) 

• 12(12)/12(13) 

Scenario appears safe to use, possible 

training-induced reduction of 

bradykinesia. 

Goncalves 

et al. [110] 

15 Analyze the effect of virtual 

sensorimotor activity on gait 

disorders of PD patients 

Wii No • UPDRS-III 

• Schwab & England 

scale 

• Functional 

indepencence 

measure scale 

• 28.5(9.91)/15.8(7.49) 

• 79.3(9.61)/90(6.54) 

• 114.3(6.07)/121.3(2.65) 

WBB gait motor training is effective, 

even in a short time period. 

Pompeu et 

al. [253] 

6 Evaluate the use of Kinect 

Adventures Games on PD 

Rehabilitation 

Kinect No • Limit of stability • 118.5(28)/163.7(38.3) Kinect training is safe and promotes 

improvement in postural control. 

Pompeu et 

al. [251] 

7 Assess the feasibility, safety 

and outcomes of Kinect PD 

rehabilitation 

Kinect No • 6-meter walk test 

(m) 

• PD questionnaire 

• Berg balance scale 

• 399.3(72.4)/429.5(90.6) 

• 27.8(8.3)/22.34(1.9) 

• 74.1(12.7)/88.9(14.8) 

Training with Kinect is safe and 

feasible. Cardiopulmonary endurance, 

balance, gait and quality of life 

improves 

Table 47: Summary of pilot trials on interventive exergames for PD identified in the systematic review [92] 
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Reference N Aim Platform Custom 

Game? 

Outcome type Outcome value, baseline /post-

intervention mean(sd) 

Main conclusion 

Negrini et 

al. [231] 

27 Evaluate the impact of 10 vs 15 

sessions of Wii Fit 

Wii No • Berg balance 

scale 

• Tinetti balance 

scale 

• Tinetti gait scale 

• 40.1(7.6)/46.3(7.1) 

• 12.2(3)/13.6(3.1) 

• 9.0(1.8)/10.1(2.2) 

Wii Fit is cost-efficient and 

provides result, home scenario 

may be viable.  

Nuic et al. 

[232]   

10 Determine the feasibility of a 

custom videogame to treat gait 

and balance disorders 

Kinect Yes • UPDRS (Motor) 

• Clinical gait and 

balance scale 

• Freezing of gait 

questionnaire 

• Not Reported 

• -38 points across all users 

• -39 points across all users 

Game is feasible, well accepted 

and shows potential for PD 

rehabilitation. 

 

Cikajlo et 

al. [45] 

28 Evaluate a Kinect-based 

telerehabilitation system 

Kinect Yes • UPDRS (motor) 

• Nine-hole test 

• Box and blocks 

test 

• 29.54(10.33)/27.29(10.38) 

• 28.01(6.59)/26.48(7.3) 

• 47.27(10.68)/51.65(11.26) 

Telerehabilitation possible and 

effective. 

Pradhan 

[256] 

3 Evaluate the use of Kinect for PD 

Rehabilitation 

Kinect No • Functional reach 

test (cm) 

• 6-meter walk test 

(m) 

• Gait speed (m/s) 

• 25.65(5.92)/33.71(2.84) 

• 502.11(36.54)/560.53(23.83) 

• 7.1(0.6)/6.97(0.9) 

Improvements observed 

Alves et al. 

[7] 

27 Compare the effect of Wii and 

Kinect in PD rehabilitation 

Wii  No • Timed up-and-go 

(s) 

• 10-meter walk 

test (s) 

• 10-meter walk 

test (m) 

• 10.44(2.16)/9.77(1.5) 

• 7.03(1.52)/6.89(1.05) 

• 1.47(0.31)/1.47(0.23) 

Wii shows more improvement.  

Alves et al. 

[7] 

27 Compare the effect of Wii and 

Kinect in PD rehabilitation 

Kinect No • Timed up-and-go 

(s) 

• 10-meter walk 

test (s) 

• 10-meter walk 

test (m) 

• 11.68(5.22)/9.82(3.41) 

• 7.07(1.4)/6.96(1.46) 

• 1.44(0.21)/1.48(0.27) 

Wii shows more improvement. 

Table 48: Summary of pilot trials on interventive exergames for PD identified in the systematic review (continued) [92] 
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Reference Outcome Post-baseline (g) Post-baseline (p) 

Palacios et al. [240] 10 Meter Walk Test (s) -0.3139 0.5109 

Summa et al. [303] Timed-Up-And-Go (s) 0.0638 0.8927 

Summa et al. [303] 10 Meter Walk Test (s) 0.0000 1.0000 

Goncalves et al. [110] UPDRS Score -1.3591 0.0005 

Goncalves et al. [110] Schwab & England 1.2236 0.0013 

Goncalves et al. [110] Functional indepencence measure 1.4050 0.0003 

Pompeu et al. [253] Limit of stability 1.1353 0.0418 

Pompeu et al. [251] 6 Meter Walk Test (m) 0.3192 0.5040 

Pompeu et al. [251] Parkinson’s Disease Questionnaire -0.7860 0.1155 

Pompeu et al. [251] Berg Balance Scale 0.9302 0.0677 

Negrini et al. [231] Berg Balance Scale 0.8430 0.0031 

Negrini et al. [231] Tinetti Balance Scale 0.4590 0.0977 

Negrini et al. [231] Tinetti Gait Scale 0.5473 0.0495 

Cikajlo et al. [45] UPDRS -0.2173 0.4198 

Cikajlo et al. [45] Nine-Hole Test -0.2200 0.4140 

Cikajlo et al. [45] Box and Blocks Test 0.3991 0.1411 

Pradhan [256] Functional Reach Test (cm) 1.1340 0.1006 

Pradhan [256] 6 Meter Walk Test (m) 1.2371 0.0812 

Pradhan [256] Gait speed (m/s) -0.1110 0.8453 

Alves et al. [7] Timed-Up-And-Go (s) Wii -0.3235 0.4558 

Alves et al. [7] Timed-Up-And-Go (s) Kinect -0.3788 0.3841 

Alves et al. [7] 10 Meter Walk Test (s) Wii -0.0962 0.8230 

Alves et al. [7] 10 Meter Walk Test (s) Kinect -0.0691 0.8724 

Table 49: Effect sizes and statistical significance of pilot trials on PD exergame-based interventions 
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D. Additional Details on System Design and Ethical Considerations 

 

Algorithm Default Weka hyperparameters (10-fold cross validation and batch size 100 in all cases) 

Bayes Network Simple estimator, K-2 search algorithm, no AD Tree 

Naïve Bayes Normal distribution estimator 

Logistic Regression No maximum iterations, ridge 1E-8, BFGS updates 

Multilayer 

Perceptron 

1 hidden layer (attributes + classes)/2, learning rate 0.3, momentum 0.2, attribute normalization, 

class normalization, nominal to binary filter, random number seed 0, 500 epochs, no validation 

set 

Stochastic Gradient 

Descent 

Normalization, 500 epochs, epsilon 0.001, lambda 1E-4, learning rate 0.01, Hinge loss function, 

random number seed 1 

Sequential Minimal 

Optimization 

No calibration models, c 1, logistic calibrator, epsilon 1E-12, training data normalization, poly 

kernel, no maximum folds, random number seed 1, tolerance parameter 0.001 

K-Nearest 

Neighbours 

1 neighbor, no cross-validation, no distance weighting, mean absolute error, linear search, no 

maximum instances in training pool 

K-Star No entropy-based blending, global blending parameter 20, missing mode average column 

entropy curves 

Locally Weighted 

Learning 

All neighbors, decision stump classification, linear search, weighting function 0 

Decision Table Leave-one-out cross-validation, RMSE evaluation measure, majority class, best first attribute 

selection 

Propositional Rule 

Learner 

Error rate stopping criterion, 3 folds, minimum instance weight 2, 2 optimization runs, random 

number seed 1, pruning 

C4.5 No binary splits, confidence factor 0.25, split point relocation, 2 minimum instances per rule, 3 

folds, C pruning, random number seed 1, pruning, MDL Correction 

Decision Stump No additional hyperparameters 

Hoeffding Tree Grace period 200, tie threshold 0.05, adaptive leap prediction strategy, minimum fraction of 

weight 0.01, split confidence 1E-7, info gain split criterion 

J48 Decision Tree No binary splits, collapse tree, confidence factor 0.25, minimum 2 instances per leaf, no reduced 

error pruning, randomization seed 1, subtree raising, no pruning, no Laplace smoothing, MDL 

correction 

Logistic Model Tree Do not convert nominal attributes, splint point relocation, do not minimize error on probability, 

fast regression, 15 minimum instances, residual splitting false, no AIC, weight trimming 0 

Random Forest Bag size 100%, no random tie breaking, no out-of-bag error, no attribute importance, no max 

depth, 1 execution slot, no randomly chosen attributes, 100 iterations, random number seed 1 

Random Tree K-value 0, no unclassified instances, no random tie breaking, no max depth, minimum weight of 

instances in leaf 1, minimum variance proportion for splitting 0.001, no backfitting data, random 

number seed 1 

Fast Decision Tree Initial class value count 0, no max depth, minimum weight of instances in leaf 2, minimum 

variance proportion for splitting 0.001, pruning, 3 folds, random number seed 1, no initial count 

spread 

Table 50: Weka hyperparameters for the employed algorithms 
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Parameter Description/other names Calculation Ideal Value 

Accuracy % of correct classifications 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

100% 

True Positives (TP) Number of correctly 

classified positive samples 

 Number of 

positive 

samples 

False Negatives (FN) Number of positives 

incorrectly classified as 

negatives 

 0 

True Negatives (TN) Number of correctly 

classified negative samples 

 Number of 

negative 

samples 

False Positives (FP) Number of negatives 

incorrectly classified as 

positives 

 0 

TP Rate Sensitivity, recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

1 

FP Rate Fall-out 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

0 

Precision Positive Predictive Value 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

1 

Specificity TN rate 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

1 

F-measure Measure of test accuracy, 

based on precision and 

recall 

𝑇𝑃

𝑇𝑃 +
1
2
(𝐹𝑃 + 𝐹𝑁)

 
1 

Matthews Correlation 

Coefficient (MCC) 

Measure of the quality of 

binary classifications 

𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

1 

Area under the Receiver 

Operating Characteristic 

(ROC) curve 

Plot of the TP rate against 

the FP rate at various 

threshold settings 

Calculated area under the curve 1 

Precision/Recall (PRC) 

area 

Plot of the TP rate against 

the precision at various 

threshold settings 

Calculated area under the curve 1 

Table 51: Description of the characteristics presented as results of classification tasks 
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Evaluation Measured Standard Deviation Minimum n per arm Actual n per arm 

Chapter 5, 

Alternative Balance Assessment System 

0.65 16 20 

Chapter 5, Evaluation 0.26 3 7 (asymmetric) 

Chapter 6, Evaluation 0.37 5 5 

 

Evaluation Ethics Committee Case Number Date of Approval 

Chapter 5 Technical University of 

Darmstadt 

EK09/20 17.03.2020 

Chapter 6 Technical University of 

Darmstadt 

EK38/19 19.09.2019 

Chapter 6 University Medical Centre 

Mannheim 

2020-524N 24.02.2020 

Chapter 7, Heart-rate 

Estimation Algorithm 

Technical University of 

Darmstadt 

EK09/16 13.07.2016 

Chapter 7, Blink-rate 

Estimation Algorithm 

Technical University of 

Darmstadt 

EK13/17 (submitted 

conjointly with the 

next evaluation) 

09.05.2017 

Chapter 8, Brain-Computer 

Interfaces 

Technical University of 

Darmstadt 

EK13/17 (submitted 

conjointly with the 

previous evaluation) 

09.05.2017 

Chapter 8, Virtual Reality Technical University of 

Darmstadt 

EK10/16 13.07.2016 

 

Table 52: Minimum and actual number of participants in evaluations with two groups presented on 

this thesis, calculated as described in [143] 

Table 53: List of evaluations presented in this thesis submitted to ethical committees 
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E. Experimental Details of Balance Classification 

Alternative Balance Assessment System Classification Results 

Feature Intervention

-control (g) 

Intervention

-control (p) 

Feature Intervention

-control (g) 

Intervention-

control (p) 

Open eyes 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 

1 

0.3472 0.3152 Closed eyes left 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 1 

-0.2447 0.3900 

Open eyes 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 

2 

0.3651 0.2893 Closed eyes left 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 2 

-0.2389 0.4031 

Open eyes 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 

3 

0.3662 0.2848 Closed eyes left 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 3 

-0.2557 0.3736 

Closed eyes 

𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 1 

0.3736 0.2710 
Pillow right 𝐸𝑚𝑔𝑅𝐴𝑣𝑔 1 

0.2977 0.3234 

Closed eyes 

𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 2 

0.3676 0.2764 
Pillow right 𝐸𝑚𝑔𝑅𝐴𝑣𝑔 2 

-0.0330 0.8195 

Closed eyes 

𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 3 

0.3669 0.2757 
Pillow right 𝐸𝑚𝑔𝑅𝐴𝑣𝑔 3 

0.0481 0.6654 

Pillow 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 1 0.3475 0.3042 Pillow left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 1 -0.0731 0.7710 

Pillow 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 2 0.3405 0.3132 Pillow left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 2 -0.2419 0.3933 

Pillow 𝑅𝑚𝑠𝐶𝑂𝑀𝐴𝑣𝑔
 3 0.3371 0.3189 Pillow left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 3 -0.2362 0.4042 

Open eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 1 

-0.0021 0.7930 Open eyes 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔1 

0.4120 0.3907 

Open eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 2 

0.0627 0.6181 Open eyes 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔2 

0.4353 0.3592 

Open eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 3 

-0.1327 0.8946 Open eyes 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔3 

0.4040 0.3992 

Open eyes left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 

1 

0.2256 0.4292 Closed eyes 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔1 

0.0521 0.9785 

Open eyes left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 

2 

0.3454 0.3118 Closed eyes 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔2 

0.0452 0.9558 

Open eyes left 𝐸𝑚𝑔𝐿𝐴𝑣𝑔 

3 

0.4699 0.1417 Closed eyes 
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔3 

-0.1419 0.4639 

Closed eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 1 

0.1556 0.5222 
Pillow 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔1 

-0.1629 0.4538 

Closed eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 2 

0.2577 0.3368 
Pillow 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔2 

-0.1751 0.5846 

Closed eyes right 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 3 

0.1625 0.4305 
Pillow 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔3 

0.1759 0.5966 

Table 54: Alternative balance assessment system standing classification results. Statistical 

significance and effect sizes 



141 

 

 

Feature Intervention-control (g) Intervention-control (p) 

𝐻𝑆𝑀𝐴𝑋 1 -0.3678 0.3005 

𝐻𝑆𝑀𝐴𝑋 2 -0.1557 0.6265 

𝐻𝑆𝑀𝐴𝑋 3 0.0414 0.9008 

𝐻𝑂𝑀𝐴𝑋 1 -0.3041 0.3636 

𝐻𝑂𝑀𝐴𝑋 2 -0.2740 0.4069 

𝐻𝑂𝑀𝐴𝑋 3 -0.2828 0.4121 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔1 0.3473 0.2497 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔 2 0.1443 0.6104 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑣𝑔 3 -0.2875 0.3719 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑑 1 0.1772 0.6162 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑑 2 0.2215 0.5226 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑑 3 0.3202 0.3442 

𝑁𝑆𝑡𝑒𝑝𝑠 1 0.2239 0.4607 

𝑁𝑆𝑡𝑒𝑝𝑠 2 0.5566 0.1103 

𝑁𝑆𝑡𝑒𝑝𝑠 3 0.5355 0.1347 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 1 0.4013 0.2015 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 2 0.3024 0.4424 

𝐸𝑚𝑔𝑅𝐴𝑣𝑔 3 0.1915 0.5550 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 1 0.3436 0.3600 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 2 0.0941 0.7854 

𝐸𝑚𝑔𝐿𝐴𝑣𝑔 3 0.0868 0.7747 

 

Table 55: Alternative balance assessment system walking classification results. Statistical 

significance and effect sizes 
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Extended Balance Board Evaluation. Informed Consent 

 

  
A Akzeptanztest Balance-Spiel 

Aufklärungsbogen & Erklärung zum Datenschutz 

  
 

Aufklärungsbogen 

Die Richtlinien der Deutschen Forschungsgemeinschaft (DFG) sehen vor, dass sich die 

Teilnehmer_innen an empirischen Studien mit ihrer Unterschrift explizit und nachvollziehbar 

einverstanden erklären, dass sie freiwillig an unserer Forschung teilnehmen. 

Aus diesem Grund möchten wir Sie bitten, die nachfolgenden Erläuterungen zum Inhalt der Studie zu 

lesen und untenstehende Einverständniserklärung zu unterzeichnen, sofern Sie damit einverstanden 

sind. 

 

Gegenstand der Studie/des Experiments 

Testen eines Exergames, das durch das Treten auf eine Druckmessplatte gesteuert wird.  

 

Ein- und Auschlusskriterien 

An der Studie dürfen alle Personen mit einen guten gesundheitlichen Zustand teilnehmen. Wenn Sie 

an einer Krankheit leiden, die Ihr Gleichgewicht oder Ihren Gang beeinträchtigt, können Sie leider nicht 

an dieser Studie teilnehmen. Falls Sie an psychischen Erkrankung leiden können Sie auch leider nicht 

teilnehmen. 

 

Ablauf der Studie/des Experiments 

Bei jeder Testung wird das Exergame gespielt. Anschließend wird die Meinung zum Spiel erfragt 

(Akzeptanz). 

 

Dauer und Aufwandsentschädigung 

Das Experiment dauert bis zu zwei Wochen, wobei das Spiel beliebig oft gespielt/getestet werden kann. 

Jede Testung/Spielsitzung dauert ca. 10 bis 20 Minuten. 

 

Möglicher Nutzen der Studie/des Experiments 

Wir sind daran interessiert herauszufinden, ob die Probanden das Spiel spielbar und interessant finden. 

Dabei sammeln wir auch Informationen zur Spielleistung. Wir werden diese Daten analysieren, um 

festzustellen, ob sie relevante Informationen bzgl. des Gleichgewichts der Probanden enthalten. 

 

Mit der Teilnahme verbundene Erfahrungen/Risiken 

Die Teilnehmer_innen an dieser Studie werden keinem Risiko ausgesetzt, das über die Risiken des 

alltäglichen Lebens hinausgeht. 
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Erklärung zum Datenschutz 

Die Datenverarbeitung dieser Studie geschieht nach datenschutzrechtlichen Bestimmungen der 

Datenschutzgrundverordnung (DSGVO) sowie des Hessischen Datenschutz- und 

Informationsfreiheitsgesetzes (HDSIG). Die Daten werden ausschließlich für die im Aufklärungsbogen 

beschriebenen Zwecke verwendet. 

 

Im Rahmen dieser Studie werden folgende Daten erhoben: 

• Fragebogen zu persönlichen, pseudonymisierten Daten und die Meinung (Akzeptanz) für das 

Spiel 

• Spiel-Performanzdaten 

• Physiologische Daten (Balance) 

 

Als personenbezogene Daten werden erhoben: 

• Alter, Geschlecht 

 

Vertraulichkeit 

Alle im Rahmen dieser Studie erhobenen Daten sind selbstverständlich vertraulich und werden nur in 

pseudonymisierter Form genutzt. Demographische Angaben wie Alter oder Geschlecht lassen keinen 

eindeutigen Schluss auf Ihre Person zu. Zu keinem Zeitpunkt im Rahmen der jeweiligen Untersuchung 

werden wir Sie bitten, Ihren Namen oder andere eindeutige Informationen zu nennen. 

 

Aufbewahrung 

Die mit dieser Studie erhobenen Daten werden in Darmstadt, Deutschland gespeichert und nach der 

Testung spätestens Juni 2020 gelöscht. Die Speicherung erfolgt in einer Form, die keinen Rückschluss 

auf Ihre Person zulässt, das heißt die Daten werden pseudonymisiert (bspw. „Nutzer_495834“). Diese 

Einverständniserklärung wird getrennt von den anderen Versuchsmaterialien und Unterlagen 

aufbewahrt und nach Ablauf dieser Frist vernichtet. 

 

Freiwilligkeit & Rechte der Versuchspersonen 

Die Teilnahme an dieser Testung ist freiwillig. Es steht den Probanden zu jedem Zeitpunkt dieser 

Studie frei, ihre Teilnahme abzubrechen und damit diese Einwilligung zurückziehen (Widerruf), ohne 

dass Ihnen daraus Nachteile entstehen. Wenn sie die Teilnahme abbrechen, werden keine Daten von 

Ihnen gespeichert und alle bisher vorliegenden Daten zu Ihrer Person vernichtet. Sie haben das Recht, 

Auskunft über die Sie betreffenden personenbezogenen Daten zu erhalten sowie ggf. deren 

Berichtigung oder Löschung zu verlangen. In Streiffällen haben Sie das Recht, sich beim Hessischen 

Datenschutzbeauftragten zu beschweren (Adresse s.u.).
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Einverständnis 

Ich habe die Erläuterungen zur Studie gelesen und bin damit einverstanden am Akzeptanztest 

Balance-Spiel teilzunehmen. 

 

Ich erkläre mich einverstanden, dass die im Rahmen der Studie erhobenen Daten zu wissenschaftlichen 

Zwecken ausgewertet und in pseudonymisierter Form gespeichert werden. Ich bin mir darüber 

bewusst, dass meine Teilnahme freiwillig erfolgt und ich den Versuch jederzeit und ohne die Angabe 

von Gründen abbrechen kann. 

 

 

 

 

__________________________________________________________________________________________ 

Datum   Name  (in Druckschrift)   Unterschrift 

 

 

 

 

__________________________________________________________________________________________  

Erklärende Person 

 

 

Bei Fragen, Anregungen oder Beschwerden können Sie sich gerne an den  Versuchsleiter wenden: 

 

 

Versuchsleiter / Verantwortliche Person für die Datenverarbeitung dieser Studie:  

Dr. Stefan Göbel 

Email: Stefan.goebel@kom.tu-darmstadt.de 

 

Bei Fragen zum Datenschutz kann auch kontaktiert werden: 

Kontaktadresse des Hessischen Datenschutzbeauftragten: 

Email: poststelle@datenschutz.hessen.de 

 

 

 

 

Den Versuchsteilnehmerinnen und -teilnehmern muss eine Kopie dieses Dokuments zum persönlichen 

Verbleib ausgehändigt werden. 
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Extended Balance Board Evaluation Classification Results 

 

Age group 60-64 65-69 70-74 75-79 80-84 85-89 90-94 

Female 15 15 14 13 12 11 9 

Male 17 16 15 14 13 11 9 

 

Feature Intervention-

control (g) 

Intervention-

control (p) 

Feature Intervention-

control (g) 

Intervention-

control (p) 

𝐶𝑜𝑚𝐴𝑣𝑔𝑈𝑝,𝑥 0.3168 0.1998 𝐴𝑣𝑔𝑦 -0.0056 0.9817 

𝐶𝑜𝑚𝐴𝑣𝑔𝑈𝑝,𝑦 -0.4678 0.0595 𝑀𝑎𝑥𝑥 -0.3507 0.1528 

𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑜𝑤𝑛,𝑥
 0.2790 0.2692 𝑴𝒂𝒙𝒚 -0.5279 0.0310 

𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑜𝑤𝑛,𝑦
 -0.1171 0.6238 𝑀𝑖𝑛𝑥 0.3565 0.1472 

𝐶𝑜𝑚𝐴𝑣𝑔𝑅𝑖𝑔ℎ𝑡,𝑥 -0.2328 0.3404 𝑀𝑖𝑛𝑦 -0.1036 0.6630 

𝐶𝑜𝑚𝐴𝑣𝑔𝑅𝑖𝑔ℎ𝑡,𝑦 -0.4073 0.1028 𝑺𝒕𝒅𝒙  -0.6665 0.0068 

𝐶𝑜𝑚𝐴𝑣𝑔𝐿𝑒𝑓𝑡,𝑥 0.2661 0.2756 𝑆𝑡𝑑𝑦 -0.3789 0.1247 

𝐶𝑜𝑚𝐴𝑣𝑔𝐿𝑒𝑓𝑡,𝑦 -0.3234 0.1863 𝑰𝒇𝑨𝒗𝒈 -0.7478 0.0035 

𝐶𝑜𝑚𝑆𝑡𝑑𝑈𝑝,𝑥 -0.0323 0.8966 𝑰𝒇𝑴𝒂𝒙 -0.6337 0.0119 

𝑪𝒐𝒎𝑺𝒕𝒅𝑼𝒑,𝒚 -0.4913 0.0461 𝑰𝒇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅,𝟎.𝟓 -0.7452 0.0024 

𝐶𝑜𝑚𝑆𝑡𝑑𝐷𝑜𝑤𝑛,𝑥
 0.2234 0.3490 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1 -0.2411 0.2873 

𝐶𝑜𝑚𝑆𝑡𝑑𝐷𝑜𝑤𝑛,𝑦
 0.4173 0.0860 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1.  0 0 

𝐶𝑜𝑚𝑆𝑡𝑑𝑅𝑖𝑔ℎ𝑡,𝑥 0.0318 0.8977 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,2 0 0 

𝐶𝑜𝑚𝑆𝑡𝑑𝑅𝑖𝑔ℎ𝑡,𝑦 0.0753 0.7621 𝑰𝒇𝑺𝒖𝒎𝑨𝒗𝒈
 -0.7387 0.0038 

𝐶𝑜𝑚𝑆𝑡𝑑𝐿𝑒𝑓𝑡,𝑥 -0.3164 0.1959 𝐼𝑓𝑆𝑢𝑚𝑀𝑎𝑥
 -0.2107 0.3938 

𝐶𝑜𝑚𝑆𝑡𝑑𝐿𝑒𝑓𝑡,𝑦 -0.0237 0.9217 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟎.𝟓
 -1.5261 <0.0001 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑈𝑝 0.1598 0.5215 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟏
 -0.9196 0.0003 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐷𝑜𝑤𝑛 0.1623 0.4988 𝐼𝑓𝑆𝑢𝑚𝑂𝑣𝑒𝑟1.5
 -0.2206 0.3477 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑅𝑖𝑔ℎ𝑡 -0.3628 0.1429 𝐼𝑓𝑆𝑢𝑚𝑂𝑣𝑒𝑟2
 -0.2062 0.3762 

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝑳𝒆𝒇𝒕 0.6306 0.0091 𝑺𝒕𝒆𝒑𝑨𝒗𝒈 1.2260 <0.0001 

𝐴𝑣𝑔𝑥 0.1925 0.4267 𝑺𝒕𝒆𝒑𝑺𝒕𝒅 0.8446 0.0020 

Table 56: 30-Second-Sit-To-Stand Test cutoff scores [270] 

Table 57: Extended Balance Board classification results without player nominal data. Statistical 

significance and effect sizes 
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Feature Intervention-

control (g) 

Intervention-

control (p) 

Feature Intervention-

control (g) 

Intervention-

control (p) 

𝐶𝑜𝑚𝐴𝑣𝑔𝑈𝑝,𝑥
 0.3197 0.1868 𝐴𝑣𝑔𝑦 0.1729 0.4675 

𝐶𝑜𝑚𝐴𝑣𝑔𝑈𝑝,𝑦
 -0.4015 0.0973 𝑀𝑎𝑥𝑥 -0.4604 0.0557 

𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑜𝑤𝑛,𝑥
 0.0419 0.8613 𝑀𝑎𝑥𝑦 -0.2489 0.2982 

𝐶𝑜𝑚𝐴𝑣𝑔𝐷𝑜𝑤𝑛,𝑦
 0.2334 0.3256 𝑴𝒊𝒏𝒙 0.6210 0.0113 

𝐶𝑜𝑚𝐴𝑣𝑔𝑅𝑖𝑔ℎ𝑡,𝑥
 -0.2824 0.2363 𝑀𝑖𝑛𝑦 0.2893 0.2223 

𝐶𝑜𝑚𝐴𝑣𝑔𝑅𝑖𝑔ℎ𝑡,𝑦 -0.1466 0.5461 𝑺𝒕𝒅𝒙  -1.2422 <0.0001 

𝐶𝑜𝑚𝐴𝑣𝑔𝐿𝑒𝑓𝑡,𝑥 0.4778 0.0504 𝑆𝑡𝑑𝑦 -0.6733 0.0062 

𝐶𝑜𝑚𝐴𝑣𝑔𝐿𝑒𝑓𝑡,𝑦 -0.2892 0.2288 𝑰𝒇𝑨𝒗𝒈 -2.0057 <0.0001 

𝐶𝑜𝑚𝑆𝑡𝑑𝑈𝑝,𝑥 -0.0444 0.8543 𝑰𝒇𝑴𝒂𝒙 -1.2166 <0.0001 

𝐶𝑜𝑚𝑆𝑡𝑑𝑈𝑝,𝑦 -0.4141 0.0858 𝑰𝒇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅,𝟎.𝟓 -1.4445 <0.0001 

𝐶𝑜𝑚𝑆𝑡𝑑𝐷𝑜𝑤𝑛,𝑥
 -0.0124 0.9585 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1 -0.2464 0.2750 

𝐶𝑜𝑚𝑆𝑡𝑑𝐷𝑜𝑤𝑛,𝑦
 0.0277 0.9075 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1.  0 0 

𝐶𝑜𝑚𝑆𝑡𝑑𝑅𝑖𝑔ℎ𝑡,𝑥 -0.0151 0.9496 𝐼𝑓𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,2 0 0 

𝐶𝑜𝑚𝑆𝑡𝑑𝑅𝑖𝑔ℎ𝑡,𝑦 0.0691 0.7764 𝑰𝒇𝑺𝒖𝒎𝑨𝒗𝒈
 -1.9909 <0.0001 

𝑪𝒐𝒎𝑺𝒕𝒅𝑳𝒆𝒇𝒕,𝒙 -0.6215 0.0114 𝑰𝒇𝑺𝒖𝒎𝑴𝒂𝒙
 -0.9016 <0.0001 

𝐶𝑜𝑚𝑆𝑡𝑑𝐿𝑒𝑓𝑡,𝑦 -0.0947 0.6922 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟎.𝟓
 -2.0229 <0.0001 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑈𝑝 0.1446 0.5540 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟏
 -1.8100 <0.0001 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝐷𝑜𝑤𝑛 0.3848 0.1063 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟏.𝟓
 -0.6813 0.0009 

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝑹𝒊𝒈𝒉𝒕 -0.7248 0.0029 𝑰𝒇𝑺𝒖𝒎𝑶𝒗𝒆𝒓𝟐
 -0.5243 0.0087 

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝑳𝒆𝒇𝒕 0.8976 0.0003 𝑺𝒕𝒆𝒑𝑨𝒗𝒈 1.0735 <0.0001 

𝐴𝑣𝑔𝑥 0.0300 0.8975 𝑺𝒕𝒆𝒑𝑺𝒕𝒅 0.8934 0.0001 

 

Table 58: Extended Balance Board classification results with player nominal data. Statistical 

significance and effect sizes 
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Extended Balance Board Evaluation. Questionnaires 

 

  
A Fragebogen Pre-Test 

  
 

Alter: 

 

Geschlecht: 

 

(  ) Männlich  (  ) Weiblich  (  ) Keine Angabe 

 

Wie oft spielen Sie Computerspiele? 

 

(  ) Täglich (  ) Wochentlich  (  ) 1-2 Monatlich (  ) Selten (  ) Nie 

 

 

Sit-To-Stand, Punkte: 
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A Fragebogen Post-Test 

  
 

Bitte beantworten Sie die folgenden Fragen, indem Sie die am meisten zutreffende 

Antwort ankreuzen. 

 

1. Ich fand das Spiel benutzerfreundlich: 

 

                      
 

2. Das Spiel hat Spaß gemacht: 

 

                      
 

3. Wenn das Spiel verfügbar wäre, würde ich es alleine von zu Hause aus spielen: 

 

                      
 

4. Ich fand die Schwierigkeit herausfordernd, aber nicht zu schwierig: 

 

                      
 

Stimme voll zu Stimme eher zu Stimme eher nicht zu Stimme gar nicht zu 

Stimme voll zu Stimme eher zu Stimme eher nicht zu Stimme gar nicht zu 

Stimme voll zu Stimme eher zu Stimme eher nicht zu Stimme gar nicht zu 

Stimme voll zu Stimme eher zu Stimme eher nicht zu Stimme gar nicht zu 
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F. Experimental Details of Tremor Classification 

Informed Consent 

 

  
A Akzeptanztest Leap Motion 

Aufklärungsbogen & Erklärung zum Datenschutz 

  
 

Aufklärungsbogen 

Die Richtlinien der Deutschen Forschungsgemeinschaft (DFG) sehen vor, dass sich die 

Teilnehmer_innen an empirischen Studien mit ihrer Unterschrift explizit und nachvollziehbar 

einverstanden erklären, dass sie freiwillig an unserer Forschung teilnehmen. 

Aus diesem Grund möchten wir Sie bitten, die nachfolgenden Erläuterungen zum Inhalt der Studie zu 

lesen und untenstehende Einverständniserklärung zu unterzeichnen, sofern Sie damit einverstanden 

sind. 

 

Ein- und Auschlusskriterien 

An der Studie dürfen alle Personen über 50 Jahre alt mit einen guten gesundheitlichen Zustand 

teilnehmen. Morbus Parkinson-Patienten können auch teilnehmen. Falls Sie an anderen 

neurodegenerativen Erkrankungen leiden können Sie leider nicht teilnehmen. 

 

Gegenstand der Studie/des Experiments 

Sie sind eingeladen, ein Digital Tremor Test durchzuführen, das durch Handbewegungen in der Luft 

vor einem Computerbildschirm gesteuert wird, sowie ein Reflextest. 

 

Ablauf der Studie/des Experiments 

Sie werden gebeten, einige Handübungen über einen Sensor durchzuführen, der die Handbewegung 

erkennt. Die Übungen ähneln dem UPDRS-Test. 

 

Dauer und Aufwandsentschädigung 

Das Experiment dauert bis 30 Minuten, und wird ein- oder zweimal durchgeführt 

 

Möglicher Nutzen der Studie/des Experiments 

Wir sammeln Informationen zu Ihren Handbewegungen. In der Zukunft können die 

Handbewegungsdaten als Analysedaten zur Tremoranalyse verwendet werden. Alle Daten, die wir in 

diesem Experiment sammeln, sind pseudonymisiert und können nicht auf Sie zurückgeführt werden. 

 

Mit der Teilnahme verbundene Erfahrungen/Risiken 

Die Teilnehmer_innen an dieser Studie werden keinem Risiko ausgesetzt, das über die Risiken des 

alltäglichen Lebens hinausgeht.
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Erklärung zum Datenschutz 

Die Datenverarbeitung dieser Studie geschieht nach datenschutzrechtlichen Bestimmungen der 

Datenschutzgrundverordnung (DSGVO) sowie des Hessischen Datenschutz- und 

Informationsfreiheitsgesetzes (HDSIG). Die Daten werden ausschließlich für die im Aufklärungsbogen 

beschriebenen Zwecke verwendet. 

 

Im Rahmen dieser Studie werden folgende Daten erhoben: 

• Fragebogen zu persönlichen, pseudonymisierten Daten 

• Physiologische Daten 

 

Als personenbezogene Daten werden erhoben: 

• Alter, Geschlecht, mögliche motorische Erkrankungen 

 

Vertraulichkeit 

Alle im Rahmen dieser Studie erhobenen Daten sind selbstverständlich vertraulich und werden nur in 

pseudonymisierter Form genutzt. Demographische Angaben wie Alter oder Geschlecht lassen keinen 

eindeutigen Schluss auf Ihre Person zu. Zu keinem Zeitpunkt im Rahmen der jeweiligen Untersuchung 

werden wir Sie bitten, Ihren Namen oder andere eindeutige Informationen zu nennen. 

 

Aufbewahrung 

Die mit dieser Studie erhobenen Daten werden in Darmstadt, Deutschland gespeichert und nach der 

Testung spätestens Juni 2020 gelöscht. Die Speicherung erfolgt in einer Form, die keinen Rückschluss 

auf Ihre Person zulässt, das heißt die Daten werden pseudonymisiert (bspw. „Nutzer_495834“). Diese 

Einverständniserklärung wird getrennt von den anderen Versuchsmaterialien und Unterlagen 

aufbewahrt und nach Ablauf dieser Frist vernichtet. 

 

Freiwilligkeit & Rechte der Versuchspersonen 

Die Teilnahme an dieser Testung ist freiwillig. Es steht den Probanden zu jedem Zeitpunkt dieser 

Studie frei, ihre Teilnahme abzubrechen und damit diese Einwilligung zurückziehen (Widerruf), ohne 

dass Ihnen daraus Nachteile entstehen. Wenn sie die Teilnahme abbrechen, werden keine Daten von 

Ihnen gespeichert und alle bisher vorliegenden Daten zu Ihrer Person vernichtet. Sie haben das Recht, 

Auskunft über die Sie betreffenden personenbezogenen Daten zu erhalten sowie ggf. deren 

Berichtigung oder Löschung zu verlangen. In Streiffällen haben Sie das Recht, sich beim Hessischen 

Datenschutzbeauftragten zu beschweren (Adresse s.u.).
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Einverständnis 

Ich habe die Erläuterungen zur Studie gelesen und bin damit einverstanden am Akzeptanztest Leap 

Motion teilzunehmen. 

 

Ich erkläre mich einverstanden, dass die im Rahmen der Studie erhobenen Daten zu wissenschaftlichen 

Zwecken ausgewertet und in pseudonymisierter Form gespeichert werden. Ich bin mir darüber 

bewusst, dass meine Teilnahme freiwillig erfolgt und ich den Versuch jederzeit und ohne die Angabe 

von Gründen abbrechen kann. 

 

 

 

 

__________________________________________________________________________________________ 

Datum   Name  (in Druckschrift)   Unterschrift 

 

 

 

 

__________________________________________________________________________________________  

Erklärende Person 

 

 

Bei Fragen, Anregungen oder Beschwerden können Sie sich gerne an den  Versuchsleiter wenden: 

 

 

Versuchsleiter / Verantwortliche Person für die Datenverarbeitung dieser Studie:  

Dr. Stefan Göbel 

Email: Stefan.goebel@kom.tu-darmstadt.de 

 

Bei Fragen zum Datenschutz kann auch kontaktiert werden: 

Kontaktadresse des Hessischen Datenschutzbeauftragten: 

Email: poststelle@datenschutz.hessen.de 

 

 

 

 

Den Versuchsteilnehmerinnen und -teilnehmern muss eine Kopie dieses Dokuments zum persönlichen 

Verbleib ausgehändigt werden.
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PD Participant Information 

 

Intervention 

group 

participant ID 

Age Sex Year of first PD 

diagnosis 

Visible hand 

tremor 

Medication status at time of data 

acquisition 

P01 68 F 2012 Yes Off 

P02 41 F 2019 No On 

P03 52 M 2008 Yes Off 

P04 59 F 2016 No Off 

P05 88 F 2000 No On 

 

PALM Evaluation. Classification Results for Task 1 

 

Feature Intervention-control (g) Intervention-control (p) 

𝐴𝑣𝑔𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 0.6822 0.2186 

𝐴𝑣𝑔𝑆𝑖𝑔𝑛𝑎𝑙 -0.9035 0.1150 

𝑆𝑡𝑑𝑆𝑖𝑔𝑛𝑎𝑙 0.6922 0.2125 

𝑀𝑎𝑥𝑆𝑖𝑔𝑛𝑎𝑙 0.1721 0.7449 

𝑀𝑖𝑛𝑆𝑖𝑔𝑛𝑎𝑙 -0.2252 0.6711 

𝐴𝑣𝑔𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 0.6928 0.2122 

𝑆𝑡𝑑𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 0.7436 0.1837 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 -0.0478 0.9278 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑒𝑚𝑜𝑟 0.4367 0.4176 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐷 0.5535 0.3103 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 0.7112 0.2014 

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 1.0768 0.0681 

Table 59: PALM PD participant details 

Table 60: PALM resting tremor classification results. Statistical significance and effect sizes 
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PALM Evaluation. Classification Results for Tasks 2-5 

Algorithm: Stochastic Gradient 

Descent, accuracy 100.000% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 8 (TP) 0 (FN) 1 0 1 1 1 1 1 

Control 10 (TN) 0 (FP) 1 0 1 1 1 1 1 

Weighted average 18 0 1 0 1 1 1 1 1 

Algorithm: K-Nearest Neighbours, 

accuracy 100.000% 

PD 8 (TP) 0 (FN) 1 0 1 1 1 1 1 

Control 10 (TN) 0 (FP) 1 0 1 1 1 1 1 

Weighted average 18 0 1 0 1 1 1 1 1 
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Table 61: PALM Task 2 classification results 

Figure 64: PALM Task 2 classification accuracies 
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Algorithm: Hoeffding Tree, 

accuracy 88.889% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 7 (TP) 1 (FN) 0.875 0.100 0.875 0.875 0.775 0.863 0.900 

Control 9 (TN) 1 (FP) 0.900 0.125 0.900 0.900 0.775 0.875 0.832 

Weighted average 16 2 0.889 0.114 0.889 0.889 0.775 0.869 0.863 

Algorithm: Random Tree, 

accuracy 88.889% 

PD 7 (TP) 1 (FN) 0.875 0.100 0.875 0.875 0.775 0.888 0.821 

Control 9 (TN) 1 (FP) 0.900 0.125 0.900 0.900 0.775 0.888 0.866 

Weighted average 16 2 0.889 0.114 0.889 0.889 0.775 0.888 0.846 
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Table 62: PALM Task 3 classification results 

Figure 65: PALM Task 3 classification accuracies 
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Algorithm: Naïve Bayes, 

accuracy 94.44% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 7 (TP) 1 (FN) 0.875 0 1 0.933 0.892 0.900 0.938 

Control 10 (TN) 0 (FP) 1 0.125 0.909 0.952 0.892 0.913 0.872 

Weighted average 17 1 0.944 0.069 0.949 0.944 0.892 0.907 0.901 

Algorithm: Hoeffding Tree, 

accuracy 94.44% 

PD 7 (TP) 1 (FN) 0.875 0 1 0.933 0.892 0.900 0.938 

Control 10 (TN) 0 (FP) 1 0.125 0.909 0.952 0.892 0.913 0.872 

Weighted average 17 1 0.944 0.069 0.949 0.944 0.892 0.907 0.901 
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Table 63: PALM Task 4 classification results 

Figure 66: PALM Task 4 classification accuracies 
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Algorithm: Bayes Network, 

accuracy 100.000% 

Correctly classified Incorrectly classified TP rate FP rate Precision F MCC ROC area PRC area 

PD 8 (TP) 0 (FN) 1 0 1 1 1 1 1 

Control 10 (TN) 0 (FP) 1 0 1 1 1 1 1 

Weighted average 18 0 1 0 1 1 1 1 1 

Algorithm: Multilayer Perceptron, 

accuracy 100.000% 

PD 8 (TP) 0 (FN) 1 0 1 1 1 1 1 

Control 10 (TN) 0 (FP) 1 0 1 1 1 1 1 

Weighted average 18 0 1 0 1 1 1 1 1 
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Table 64: PALM Task 5 classification results 

Figure 67: PALM Task 5 classification accuracies 
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Feature Task 2 intervention-

control (g) 

Task 2 intervention-

control (p) 

Task 3 intervention-

control (g) 

Task 3 intervention-

control (p) 

𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 0.9866 0.1448 0.9613 0.1560 

𝐴𝑚𝑝𝑀𝑒𝑎𝑛 -1.6706 0.0214 -0.8980 0.1526 

𝐴𝑚𝑝𝑆𝑡𝑑 -1.6621 0.0216 -0.6926 0.2497 

𝐴𝑚𝑝𝑀𝑎𝑥 -1.4477 0.0365 -0.8529 0.1850 

𝐴𝑚𝑝𝑀𝑖𝑛 -0.2306 0.6929 0.4853 0.4463 

𝐴𝑚𝑝𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦 -0.3302 0.5689 0.1962 0.7490 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 , 1.0314 0.1346 0.9510 0.1621 

𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 1.0174 0.1399 0.8458 0.2052 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑆𝑡𝑑 1.1648 0.0866 0.6270 0.3264 

𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑆𝑡𝑑 1.2904 0.0698 0.4405 0.4856 

𝑆𝑝𝑒𝑒𝑑𝑀𝑒𝑎𝑛 -2.0639 0.0091 -1.3609 0.0530 

𝑆𝑝𝑒𝑒𝑑𝑆𝑡𝑑 -2.2738 0.0053 -1.1017 0.1065 

𝑶𝒑𝒆𝒏𝒊𝒏𝒈𝑴𝒆𝒂𝒏 1.6005 0.0245 1.5845 0.0300 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑑 -0.9061 0.1472 -1.0756 0.1031 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑎𝑥 0.7663 0.1987 1.2641 0.0680 

𝑶𝒑𝒆𝒏𝒊𝒏𝒈𝑴𝒊𝒏 1.8057 0.0149 1.6400 0.0258 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑒𝑎𝑛 -2.1894 0.0071 -1.1059 0.0983 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑑 -1.2378 0.0573 -0.8599 0.1724 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑎𝑥 -1.7979 0.0153 -1.2644 0.0650 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑖𝑛 -1.8707 0.0145 -0.8712 0.1818 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 0.9780 0.1449 0.6252 0.3365 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑒𝑚𝑜𝑟 0.7165 0.2619 0.6008 0.3543 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐷 0.7617 0.2356 0.6664 0.3082 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 0.0740 0.8983 0.8546 0.2016 

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 0.8704 0.1883 -0.2947 0.6236 

Table 65: PALM kinetic tremor and bradykinesia classification results. Statistical significance and 

effect sizes for Tasks 2 and 3 
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Feature Task 4 intervention-

control (g) 

Task 4 intervention-

control (p) 

Task 5 intervention-

control (g) 

Task 5 intervention-

control (p) 

𝑇𝑖𝑚𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 1.0897 0.1174 1.6248 0.0342 

𝐴𝑚𝑝𝑀𝑒𝑎𝑛 -0.9638 0.1207 -1.1972 0.0796 

𝐴𝑚𝑝𝑆𝑡𝑑 -1.2463 0.0599 -1.1458 0.0937 

𝐴𝑚𝑝𝑀𝑎𝑥 -0.4127 0.4703 -1.5759 0.0260 

𝐴𝑚𝑝𝑀𝑖𝑛 -0.4540 0.4454 0.2483 0.6841 

𝐴𝑚𝑝𝑇𝑒𝑛𝑑𝑒𝑛𝑐𝑦 -0.7270 0.2380 0.0617 0.9168 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 , 0.9480 0.1634 0.9350 0.1689 

𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑀𝑒𝑎𝑛 0.6433 0.3236 0.8083 0.2245 

𝑂𝑝𝑒𝑛𝑡𝑖𝑚𝑒𝑆𝑡𝑑 0.7122 0.2721 0.8004 0.2296 

𝐶𝑙𝑜𝑠𝑒𝑑𝑡𝑖𝑚𝑒𝑆𝑡𝑑 0.7876 0.2323 0.7350 0.2650 

𝑺𝒑𝒆𝒆𝒅𝑴𝒆𝒂𝒏 -1.4749 0.0377 -2.2489 0.0057 

𝑆𝑝𝑒𝑒𝑑𝑆𝑡𝑑 -1.5617 0.0251 -0.3792 0.5392 

𝑶𝒑𝒆𝒏𝒊𝒏𝒈𝑴𝒆𝒂𝒏 1.5627 0.0318 2.4206 0.0038 

𝑶𝒑𝒆𝒏𝒊𝒏𝒈𝑺𝒕𝒅 -1.2481 0.0533 -1.4205 0.0407 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑀𝑎𝑥 0.7767 0.2111 2.1207 0.0067 

𝑶𝒑𝒆𝒏𝒊𝒏𝒈𝑴𝒊𝒏 1.6754 0.0203 2.5346 0.0032 

𝑪𝒍𝒐𝒔𝒊𝒏𝒈𝑴𝒆𝒂𝒏 -1.3671 0.0472 -1.9088 0.0123 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑑 -1.6220 0.0250 -0.1422 0.8163 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑎𝑥 -1.5815 0.0285 -0.7836 0.2248 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑀𝑖𝑛 -0.8698 0.1604 -2.0636 0.0080 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 0.6586 0.3131 0.7862 0.2343 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑟𝑒𝑚𝑜𝑟 0.5320 0.4083 0.7730 0.2435 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐷 0.5091 0.4277 0.7662 0.2472 

𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 0.0952 0.8771 -0.3343 0.5777 

𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 -0.0127 0.9828 0.2905 0.6412 

 

Table 66: PALM kinetic tremor and bradykinesia classification results. Statistical significance and 

effect sizes for Tasks 4 and 5 
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G. Experimental Details of Biosignal Modules 

 

User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Unfiltered algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 

(ms) 

3.69 3.37 116.71 11.43 2.47 6.3 4.65 0.35 6.06 91.4 3.72 48.35 22.97 26.52 24.14 58.07 

Unfiltered algorithm 𝐸𝑟𝑟𝑆𝑡𝑑 

(ms) 

44.46 43.25 58.8 40.54 58.55 40.69 49.8 90.42 75.15 54.35 61.87 32.84 49.64 60.91 74.73 81.22 

Unfiltered algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.3 0.35 0.09 0.04 0.33 0.41 0.22 0.47 0.35 0.28 0.59 0.51 0.33 0.16 0.14 0.19 

Filtered algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 

(ms) 

2.9 2.24 22.47 5.86 0.44 0.1 0.18 3.92 1.48 4.3 0.37 0.61 47.84 0.36 3.37 1.14 

Filtered algorithm 𝐸𝑟𝑟𝑆𝑡𝑑 

(ms) 

71.57 80.52 91.5 54.45 88.67 76.44 85.66 99.72 91.95 95.2 94.51 82.85 62.87 86.45 86.37 97.4 

Filtered algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.57 0.69 0.64 0.46 0.73 0.72 0.79 0.81 0.86 0.77 0.89 0.62 0.29 0.8 0.72 0.72 

Novel algorithm 𝐸𝑟𝑟𝐴𝑣𝑔  

(ms) 

6.7 0.72 1.18 9.97 3.77 3.73 0.09 3.39 0.27 2.27 0.34 5.04 86.65 2.55 0.67 1.59 

Novel algorithm 𝐸𝑟𝑟𝑆𝑡𝑑  

(ms) 

68.21 84.95 92.07 49.68 91.27 84.3 71.82 98.71 95.6 95.62 96.76 83.73 49.66 85.73 92.37 99.29 

Novel algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.51 0.6 0.77 0.34 0.5 0.65 0.5 0.8 0.82 0.81 0.85 0.64 0.18 0.74 0.79 0.8 

Table 67: PPG algorithm results, users 1 to 16 [90]
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User 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Mean 

Unfiltered algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 

(ms) 

49.15 21.25 35.08 16.95 74.44 17.08 116.97 2.81 32.14 22.8 16.02 26.33 5.62 15.03 4.1 28.58 

Unfiltered algorithm 𝐸𝑟𝑟𝑆𝑡𝑑 

(ms) 

89.41 102.35 79.65 79.07 57.01 68.63 73.81 44.89 61.83 51.35 33.14 54.64 36.43 44.04 27.71 58.75 

Unfiltered algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.22 0.42 0.22 0.32 0.06 0.41 0.18 0.48 0.55 0.46 0.32 0.1 0.29 0.25 0.13 0.29 

Filtered algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 

(ms) 

5.36 64.86 7.51 1.73 8.81 1.33 2.76 2.92 130.66 4.48 3.89 3.06 0.05 1.82 8.02 11.12 

Filtered algorithm 𝐸𝑟𝑟𝑆𝑡𝑑 

(ms) 

96.48 74.62 89.98 101.69 89.86 98.18 97.69 88.99 43.66 94.62 76.8 95.12 72.11 79.42 73.94 84.49 

Filtered algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.82 0.7 0.78 0.63 0.44 0.85 0.72 0.81 0.32 0.88 0.6 0.87 0.49 0.62 0.57 0.68 

Novel algorithm 𝐸𝑟𝑟𝐴𝑣𝑔 

(ms) 

2.2 1.67 0.4 0.64 6.74 3.5 0.15 1.26 109.28 5.76 11.26 0.4 0.09 4.18 9.62 9.23 

Novel algorithm 𝐸𝑟𝑟𝑆𝑡𝑑 

(ms) 

99.23 101.05 97.58 101.69 82.98 97.88 96.96 89.57 46.64 94.55 71.67 96.33 71.31 81.78 76.07 85.32 

Novel algorithm 𝐶𝑜𝑟𝑟 

(adimensional) 

0.81 0.88 0.87 0.61 0.49 0.91 0.84 0.57 0.39 0.81 0.57 0.75 0.31 0.54 0.46 0.65 

 

Table 68: PPG algorithm results, users 17 to 31 and average for all users [90] 
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User Sex Confounders Precision TP rate Accuracy Specificity 

1 M Beard, glasses 0.978 0.750 0.996 1 

2 M Beard 0.967 0.841 0.997 1 

3 F None 0.930 0.741 0.996 0.999 

4 F None 0.935 0.729 0.996 0.999 

5 M Beard 1.000 0.692 0.998 1 

6 M Glasses 0.931 0.844 0.998 1 

7 F None 0.893 0.926 0.999 0.999 

8 F Glasses 0.885 0.535 0.995 0.999 

9 M None 0.875 0.673 0.995 0.999 

10 F Glasses 0.870 0.783 0.996 0.998 

Mean  None 0.926 0.749 0.997 0.999 

 

Database Participants Blinks Frames Resolution Framerate 

TALK [306] 1 61 5000 720x576 20 

Eyeblink8 [62] 4 200 32000 640x480 23 

Own database 10 482 46840 640x480 20 

 

Table 69: Blink-rate algorithm classification results in our database [94] 

Table 70: Blink-rate information on publicly available databases [94] 
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H. Experimental Details of Alternative Game-based Interventions 

Personal Factors Effect on cybersickness (CS) 

Personal adaptability and experience Longer exposures increase CS, subsequent exposures reduce it. 

Postural stability Postural instability increases CS 

Illnesses Illnesses generally increase CS 

Age CS increases with age 

Sex Non-significant role 

Weight Non-significant role 

Ethnicity Non-significant role 

Environmental Factors  

Linear head movements Vertical head movements increase CS 

Angular head movements Rapid head rotations increase CS 

VR movement speed Role unclear 

Controllability Lower controllability increases CS 

Cinematics Cinematics cause less CS 

Sound Non-significant role 

Scene complexity Richer scenarios increase CS 

Hardware Factors  

Latency Latencies over 40 ms or even 58 ms significantly increase CS 

Refresh eate Low refresh rates increase CS 

Jitter Increases CS 

Positional tracking error Increases CS 

HMD weight Non-significant role 

Flicker Increases CS 

Field of view size Wider fields of view increase CS 

Individual calibration (pupil and lens distance) Reduces CS 

Resolution Higher resolutions may reduce CS, role unclear 

Smearing, strobing and judder Increases CS. Much higher refresh rates and low persistence may 

solve it. 

Table 71: Factors of cybersickness [34] 
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Reference Dennison 

et al. [55] 

Nalivaiko 

et al. [229] 

Gavgani 

et al. 

[101] 

Garcia-Agundez 

et al. [96] 

Garcia-Agundez 

et. [95] 

Garde 

[100] 

Roberts et 

al. [271] 

Kim et al. 

[160] 

Kim et al. [162] Kim et 

al. [161] 

N 20 26 14 13 66 45 10 45 61 47 

VR time (Min) 10  14  15  15 9,5 10 480 5 9.5 9.5 

Device Oculus 

Rift DK2 

Oculus 

Rift DK1 

Oculus 

Rift DK1 

Oculus Rift DK2 Oculus Rift DK2 Oculus 

Rift CV1 

Custom 

device 

Custom 

device 

Custom device Custom 

device 

Epochs (s) 120 Not 

specified 

60 Whole dataset 30 Whole 

dataset 

30 60 60 60 

Heart-rate Increase  Increase* Decrease* Decrease Increase*  Increase* Decrease**  

Gastric rhythm Increase *    Increase  Increase*  Increase* Increase* 

Blink-rate Increase *    Decrease   Decrease** Decrease*  

PPG wave No 

changes 

Changes**      Decrease* Decrease**  

Respiratory-rate Increase**  Increase*  Decrease    Arrhythmia**, 

decrease* 

 

Galvanic skin 

response 

Increase**  Increase*  Changes* Increase**  Decrease* Increase**  

Basal finger 

temperature 

 Increase**      Decrease* Decrease**  

Electroencephal

ography 

       Increase in 

gamma, alpha 

power** 

Increase in delta, 

decrease in beta 

power** 

 

Table 72: Recent approaches to detect cybersickness with biosignals. An asterisk (*) denotes statistical significance (p<0.05) while two denote great statistical 

significance (p<0.005) [95] 
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Linear Regression 

Coefficients (r) 

Average of N-N 

intervals 

Standard deviation 

of N-N intervals 

Average of N-N 

intervals 

(normalized) 

Standard deviation 

of N-N intervals 

(normalized) 

Nausea SSQ 0.29 0.18 -0.09 -0.01 

Oculomotor SSQ 0.27 0.46 0.24 0.47 

Disorientation SSQ 0.15 0.31 0.27 0.38 

Total SSQ 0.27 0.33 0.12 0.26 

 

Values compared Cybersickness vs. no cybersickness 

(g) 

Cybersickness vs. no cybersickness 

(p) 

Total SSQ score, stops prematurely vs 

doesn’t 

-1.2125 <0.0001 

Average of N-N intervals, stops 

prematurely vs doesn’t 

-0.1294 0.0400 

Standard deviation of N-N intervals, 

stops prematurely vs doesn’t 

-0.1528 0.0500 

Normalized average of N-N intervals, 

same data, normalized 

-0.8844 0.0700 

Normalized standard deviation of N-

N intervals, same data, normalized 

-0.4149 0.0200 

 

Table 73: Linear regression coefficients between SSQ scores and heart-rate features in VR [96] 

Table 74: Statistical significance and effect sizes between SSQ scores and heart-rate features in VR 

[96] 
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I. List of Acronyms 

 

Acronym Description 

BCI Brain-Computer Interface 

EAR Eye Aspect Ratio 

ECG Electrocardiography 

FFT Fast Fourier Transformation 

FN False Negative 

FP False Positive 

IF Instability Factor 

MCC Matthews Correlation Coefficient 

MMSE Mini Mental State Examination 

PALM Parkinson Assessment with Leap Motion 

PD Parkinson’s Disease 

PPG Photoplethysmography 

PRC Precision/Recall 

PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses 

RGB Red, Green and Blue color channels 

ROC Receiver Operating Characteristics 

SSQ Simulator Sickness Questionnaire 

TN True Negative 

TP True Positive 

UPDRS Unified Parkinson’s Disease Rating Scale 

VR Virtual Reality 
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M. Stork, "Design of a Rehabilitation Scenario for Fine Motorics with the Leap Motion sensor," B.S. 
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Inf. Technol., TU Darmstadt, Darmstadt, 2017. In bibliography: [234]. 
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Master Theses 
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