128 research outputs found

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    Performance comparison of machine learning techniques in sleep scoring based on wavelet features and neighboring component analysis

    Get PDF
    Introduction: Sleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques. Methods: Sleep-EDF polysomnography was used in this study as a dataset. Support vector machines and artificial neural network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis. Results: Neighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30 and 89.93 accuracy, respectively. Discussion and Conclusion: Similar to the state of the art performance, the introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders. © 2018 Alizadeh Savareh et al

    Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal

    Get PDF
    Abstract Sleep staging is an important part of diagnosing the different types of sleep-related disorders because any discrepancies in the sleep scoring process may cause serious health problems such as misinterpretations of sleep patterns, medication errors, and improper diagnosis. The best way of analyzing sleep staging is visual interpretations of the polysomnography (PSG) signals recordings from the patients, which is a quite tedious task, requires more domain experts, and time-consuming process. This proposed study aims to develop a new automated sleep staging system using the brain EEG signals. Based on a new automated sleep staging system based on an ensemble learning stacking model that integrates Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting). Additionally, this proposed methodology considers the subjects' age, which helps analyze the S1 sleep stage properly. In this study, both linear (time and frequency) and non-linear features are extracted from the pre-processed signals. The most relevant features are selected using the ReliefF weight algorithm. Finally, the selected features are classified through the proposed two-layer stacking model. The proposed methodology performance is evaluated using the two most popular datasets, such as the Sleep-EDF dataset (S-EDF) and Sleep Expanded-EDF database (SE-EDF) under the Rechtschaffen & Kales (R&K) sleep scoring rules. The performance of the proposed method is also compared with the existing published sleep staging methods. The comparison results signify that the proposed sleep staging system has an excellent improvement in classification accuracy for the six-two sleep states classification. In the S-EDF dataset, the overall accuracy and Cohen's kappa coefficient score obtained by the proposed model is (91.10%, 0.87) and (90.68%, 0.86) with inclusion and exclusion of age feature using the Fpz-Cz channel, respectively. Similarly, the Pz-Oz channel's performance is (90.56%, 0.86) with age feature and (90.11%, 0.86) without age feature. The performed results with the SE-EDF dataset using Fpz-Cz channel is (81.32%, 0.77) and (81.06%, 0.76), using Pz-Oz channel with the inclusion and exclusion of the age feature, respectively. Similarly the model achieved an overall accuracy of 96.67% (CT-6), 96.60% (CT-5), 96.28% (CT-4),96.30% (CT-3) and 97.30% (CT-2) for with 16 selected features using S-EDF database. Similarly the model reported an overall accuracy of 85.85%, 84.98%, 85.51%, 85.37% and 87.40% for CT-6 to CT-2 with 18 selected features using SE-EDF database

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    A convolutional neural network-based decision support system for neonatal quiet sleep detection

    Get PDF
    Sleep plays an important role in neonatal brain and physical development, making its detection and characterization important for assessing early-stage development. In this study, we propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) recordings, collected from 19 neonates at Fudan Children's Hospital in Shanghai, China (Approval No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 kappa coefficient when compared to human expert annotations. A notable advantage of our approach is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. The proposed algorithm has been validated using leave one subject out (LOSO) validation, which demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-effective solution. This research opens avenues for further investigations in early-stage development monitoring and the assessment of neonatal health

    EEG-Based Neonatal Sleep-Wake Classification Using Multilayer Perceptron Neural Network

    Get PDF
    Objective: Classification of sleep-wake states using multichannel electroencephalography (EEG) data that reliably work for neonates. Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings of 3525 30-second segments from 19 neonates (postmenstrual age of 37 ± 05 weeks) are used. Results: For sleep-wake classification, mean Cohen’s kappa between the network estimate and the ground truth annotation by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest accuracy for sleep-wake classification

    Feature Extraction of EEG Signal by Power Spectral Density for Motor Imagery Based BCI

    Get PDF
    Signals produced from the brain are widely known as Electroencephalogram (EEG) signal interfacing with any communication device creates a unidirectional communicating channel in the absence of neuro-muscular pathways. An effective Brain-Computer Interface (BCI) system basically consists of three operations which are signal recording, feature extraction and classification. Efficient and reliable classification of EEG signal for motor imagery (MI) based BCI system depends on the accuracy of denoising and extracted features of the signal. Extracted features are intended to be lossless key information obtained from a signal that describes a dataset accurately. It is important to minimize the classification complexity and maximize the accuracy. Traditional strategies can be used to process the signal, but the diverseness of the EEG signal conceivably could not be depicted utilizing a linear analytical approach. Hence, this paper adopted the power spectral density (PSD) feature extraction technique to extract the features based on various frequency transformations that enhance the classification performance. Graz BCI competition IV, dataset 2b has been utilized in this paper that consisting of two different classes of motor imagery left-hand and right-hand movement. Overall, 0.61 of Cohen’s Kappa accuracy obtained using the LDA classifier

    A real-time Brain-Computer Interface (BCI) framework for sleep state stimulation using a deep-learning technique: proposal

    Get PDF
    Sleep disturbance can cause mental illnesses such as depression, hypertension, metabolic syndrome, and cognitive impairment. To date, various methods have been proposed as intervention measures for sleep disturbance, including taking a short mid-day nap. Falling asleep depends on several external factors, such as the ambience, temperature, sound, and lighting. On top of that, the factors that affect the quality and period of falling asleep can be subjective. The attempt to provide feedback based on the configuration of those external factors is time-consuming. Additionally, if those external factors are incorrectly configured, the intended short nap as a solution may have the opposite effects. As such, research on real-time sleep analysis plays an important role. However, the current study on deep-learning techniques regarding the sleep analysis that can give real-time results is still scarce compared to the offline sleep analysis. Therefore, this study aims to design and develop a real-time BCI framework for sleep state stimulation

    A Real-Time Brain-Computer Interface (BCI) framework for sleep state stimulation using a deep-learning technique: proposal

    Get PDF
    Abstract— Sleep disturbance can cause mental illnesses such as depression, hypertension, metabolic syndrome, and cognitive impairment. To date, various methods have been proposed as intervention measures for sleep disturbance, including taking a short mid-day nap. Falling asleep depends on several external factors, such as the ambience, temperature, sound, and lighting. On top of that, the factors that affect the quality and period of falling asleep can be subjective. The attempt to provide feedback based on the configuration of those external factors is time-consuming. Additionally, if those external factors are incorrectly configured, the intended short nap as a solution may have the opposite effects. As such, research on real-time sleep analysis plays an important role. However, the current study on deep-learning techniques regarding the sleep analysis that can give real-time results is still scarce compared to the offline sleep analysis. Therefore, this study aims to design and develop a real-time BCI framework for sleep state stimulation
    corecore