2,328 research outputs found

    Hybrid monolithic integration of high-power DC-DC converters in a high-voltage technology

    Get PDF
    The supply of electrical energy to home, commercial, and industrial users has become ubiquitous, and it is hard to imagine a world without the facilities provided by electrical energy. Despite the ever increasing efficiency of nearly every electrical application, the worldwide demand for electrical power continues to increase, since the number of users and applications more than compensates for these technological improvements. In order to maintain the affordability and feasibility of the total production, it is essential for the distribution of the produced electrical energy to be as efficient as possible. In other words the loss in the power distribution is to be minimized. By transporting electrical energy at the maximum safe voltage, the current in the conductors, and the associated conduction loss can remain as low as possible. In order to optimize the total efficiency, the high transportation voltage needs to be converted to the appropriate lower voltage as close as possible to the end user. Obviously, this conversion also needs to be as efficient, affordable, and compact as possible. Because of the ever increasing integration of electronic systems, where more and more functionality is combined in monolithically integrated circuits, the cost, the power consumption, and the size of these electronic systems can be greatly reduced. This thorough integration is not limited to the electronic systems that are the end users of the electrical energy, but can also be applied to the power conversion itself. In most modern applications, the voltage conversion is implemented as a switching DC-DC converter, in which electrical energy is temporarily stored in reactive elements, i.e. inductors or capacitors. High switching speeds are used to allow for a compact and efficient implementation. For low power levels, typically below 1 Watt, it is possible to monolithically implement the voltage conversion on an integrated circuit. In some cases, this is even done on the same integrated circuit that is the end user of the electrical energy to minimize the system dimensions. For higher power levels, it is no longer feasible to achieve the desired efficiency with monolithically integrated components, and some external components prove indispensable. Usually, the reactive components are the main limiting factor, and are the first components to be moved away from the integrated circuit for increasing power levels. The semiconductor components, including the power transistors, remain part of the integrated circuit. Using this hybrid approach, it is possible in modern converterapplications to process around 60 Watt, albeit limited to voltages of a few Volt. For hybrid integrated converters with an output voltage of tens of Volt, the power is limited to approximately 10 Watt. For even higher power levels, the integrated power transistors also become a limiting factor, and are replaced with discrete power devices. In these discrete converters, greatly increased power levels become possible, although the system size rapidly increases. In this work, the limits of the hybrid approach are explored when using so-called smart-power technologies. Smart-power technologies are standard lowcost submicron CMOS technologies that are complemented with a number of integrated high-voltage devices. By using an appropriate combination of smart-power technologies and circuit topologies, it is possible to improve on the current state-of-the-art converters, by optimizing the size, the cost, and the efficiency. To determine the limits of smart-power DC-DC converters, we first discuss the major contributing factors for an efficient energy distribution, and take a look at the role of voltage conversion in the energy distribution. Considering the limitations of the technologies and the potential application areas, we define two test-cases in the telecommunications sector for which we want to optimize the hybrid monolithic integration in a smart-power technology. Subsequently, we explore the specifications of an ideal converter, and the relevant properties of the affordable smart-power technologies for the implementation of DC-DC converters. Taking into account the limitations of these technologies, we define a cost function that allows to systematically evaluate the different potential converter topologies, without having to perform a full design cycle for each topology. From this cost function, we notice that the de facto default topology selection in discrete converters, which is typically based on output power, is not optimal for converters with integrated power transistors. Based on the cost function and the boundary conditions of our test-cases, we determine the optimal topology for a smart-power implementation of these applications. Then, we take another step towards the real world and evaluate the influence of parasitic elements in a smart-power implementation of switching converters. It is noticed that the voltage overshoot caused by the transformer secondary side leakage inductance is a major roadblock for an efficient implementation. Since the usual approach to this voltage overshoot in discrete converters is not applicable in smart-power converters due to technological limitations, an alternative approach is shown and implemented. The energy from the voltage overshoot is absorbed and transferred to the output of the converter. This allows for a significant reduction in the voltage overshoot, while maintaining a high efficiency, leading to an efficient, compact, and low-cost implementation. The effectiveness of this approach was tested and demonstrated in both a version using a commercially available integrated circuit, and our own implementation in a smart-power integrated circuit. Finally, we also take a look at the optimization of switching converters over the load range by exploiting the capabilities of highly integrated converters. Although the maximum output power remains one of the defining characteristics of converters, it has been shown that most converters spend a majority of their lifetime delivering significantly lower output power. Therefore, it is also desirable to optimize the efficiency of the converter at reduced output current and output power. By splitting the power transistors in multiple independent segments, which are turned on or off in function of the current, the efficiency at low currents can be significantly improved, without introducing undesirable frequency components in the output voltage, and without harming the efficiency at higher currents. These properties allow a near universal application of the optimization technique in hybrid monolithic DC-DC converter applications, without significant impact on the complexity and the cost of the system. This approach for the optimization of switching converters over the load range was demonstrated using a boost converter with discrete power transistors. The demonstration of our smart-power implementation was limited to simulations due to an issue with a digital control block. On a finishing note, we formulate the general conclusions and provide an outlook on potential future work based on this research

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    An Overview of Fully Integrated Switching Power Converters Based on Switched-Capacitor versus Inductive Approach and Their Advanced Control Aspects

    Get PDF
    This paper reviews and discusses the state of the art of integrated switched-capacitor and integrated inductive power converters and provides a perspective on progress towards the realization of efficient and fully integrated DC–DC power conversion. A comparative assessment has been presented to review the salient features in the utilization of transistor technology between the switched-capacitor and switched inductor converter-based approaches. First, applications that drive the need for integrated switching power converters are introduced, and further implementation issues to be addressed also are discussed. Second, different control and modulation strategies applied to integrated switched-capacitor (voltage conversion ratio control, duty cycle control, switching frequency modulation, Ron modulation, and series low drop out) and inductive converters (pulse width modulation and pulse frequency modulation) are then discussed. Finally, a complete set of integrated power converters are related in terms of their conditions and operation metrics, thereby allowing a categorization to provide the suitability of converter technologies

    The solid state remote power controller: Its status, use and perspective

    Get PDF
    Solid state remote power controllers (RPC's) are now available to control and protect all types of loads in both ac and dc power distribution systems. RPC's possess many outstanding qualities that make them attractive for most system applications. A review is given of the present state-of-the-art and applications for solid state RPC's for both aerospace and terrestrial systems

    Multilevel multistate hybrid voltage regulator

    Get PDF
    In this work, a new set of voltage regulators as well as some controlling methods and schemes are proposed. While normal switched capacitor voltage regulators are easy integrable, they are suffering from charge sharing losses as well as fast degradation of efficiency when deviating from target operation point. On the other hand, conventional buck converters use bulky magnetic components that introduce challenges to integrate them on chip. The new set of voltage regulators covers the gap between inductor-based and capacitor-based voltage regulators by taking the advantages of both of them while avoiding or minimizing their disadvantages. The voltage regulator device consists of a switched capacitor circuit that is periodically switching its output between different voltage levels followed by a low pass filter to give a regulated output voltage. The voltage regulator is capable of converting an input voltage to a wide range of output voltage with a high efficiency that is roughly constant over the whole operation range. By switching between adjacent voltage levels, the voltage drop on the inductor is limited allowing for the use of smaller inductor sizes while maintaining the same performance. The general concept of the proposed voltage regulator as well as some operating conditions and techniques are explained. A phase interleaving technique to operate the multilevel multistate voltage regulator has been proposed. In this technique, the phases of two or more voltage levels are interleaved which enhances the effective switching frequency of the charge transferring components. This results in a further boost in the proposed regulator\u27s performance. A 4-level 4-state hybrid voltage regulator has been introduced as an application on the proposed concepts and techniques. It shows better performance compared to both integrated inductor-based and capacitor-based voltage regulators. The results prove that the proposed set of voltage regulators offers a potential move towards easing the integration of voltage regulators on chip with a performance that approaches that of off-chip voltage regulators

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    High-current integrated battery chargers for mobile applications

    Get PDF
    Battery charging circuits for mobile applications, such as smart phones and tablets, require both small area and low losses. In addition, to reduce the charging time, high current is needed through the converter. In this work, exploration of the Buck, the 3-Level Buck and the Hybrid Buck converter is performed over the input voltage, the total FET area and the load current. An analytical loss model for each topology is constructed and constrated by experimental results. In addition, packaging and bond wire impact on on-chip losses is analyzed by 3D modeling. Finally, a comparison between the topologies is presented determining potential candidates for a maximum on-chip loss of 2 W at output voltage of 4 V and 10 A of output current

    Effect of CMOS Technology Scaling on Fully-Integrated Power Supply Efficiency

    Get PDF
    International audienceIntegrating a power supply in the same die as the powered circuits is an appropriate solution for granular, fine and fast power management. To allow same-die co-integration, fully integrated DC-DC converters designed in the latest CMOS technologies have been greatly studied by academics and industrialists in the last decade. However, there is little study concerning the effects of the CMOS scaling on these particular circuits. To show the trends, this paper compares the achievable efficiencies of the 2:1 switched capacitor DC-DC converter topology under the same constraints in 65, 130 and 350nm bulk CMOS nodes and 28nm in bulk and FDSOI technologies with various capacitor options

    Integrated design of high performance pulsed power converters : application to klystron modulators for the compact linear colider (CLIC)

    Get PDF
    Ce travail de recherche présente l’étude, conception et validation d’une topologie de convertisseur de puissance pulsé qui compense la chute de tension pour des modulateurs de type klystron de haute performance. Cette topologie est capable de compenser la chute de tension du banc de condensateur principal et, en même temps, de faire fonctionner le modulateur avec une consommation de puissance constante par rapport au réseau électrique. Ces spécifications sont requises par le projet Compact Linear Collider (CLIC) pour les modulateurs klystron de son Drive Beam. Le dimensionnement du système est effectué à partir d’un outil d’optimisation globale développé à partir des modèles analytiques qui décrivent les performances de chaque composant du système. Tous les modèles sont intégrés dans un processus optimal intermédiaire de conception qui utilise des techniques d’optimisation afin de réaliser un dimensionnement optimal du système. Les performances de cette solution optimale intermédiaire sont alors évaluées à l’aide d’un modèle plus fin basé sur des simulations numériques. Une technique d’optimisation utilisant l’approche «space mapping» est alors mise en oeuvre. Si l’écart entre les performances prédites et les performances simulées est important, des facteurs de correction sont appliqués aux modèles analytiques et le processus d’optimisation est relancé. Cette méthode permet d’obtenir une solution optimale validée par le modèle fin en réduisant le nombre de simulations. La topologie finale sélectionnée pour le cahier des charges du modulateur CLIC est validée expérimentalement sur des prototypes à échelle réduite. Les résultats valident la méthodologie de dimensionnement et respectent les spécifications.This research work presents the study, design and validation of a pulsed power converter topology that performs accurate voltage droop compensation for high performance klystron modulators. This topology is capable of compensating the voltage droop of the intermediate capacitor bank and, at the same time, it makes possible a constant power consumption operation of the modulator from the utility grid. These two main specifications are required for the Compact Linear Collider (CLIC) Drive Beam klystron modulators. The dimensioning of the system is performed by developing a global optimization design tool. This tool is first based on developed analytical models describing the performances of each system subcomponent. All these models are integrated into an intermediate design environment that uses nonlinear optimization techniques to calculate an optimal dimensioning of the system. The intermediate optimal solution performances are then evaluated using a more accurate model based on numerical simulation. Therefore, an optimization technique using «space mapping» is implemented. If differences between predicted performances and simulated results are non-negligible, correction factors are applied to the analytical models and the optimization process is launched again. This method makes possible to achieve an optimal solution validated by numerical simulation while reducing the number of numerical simulation steps. The selected final topology for the CLIC klystron modulator is experimentally validated using reduced scale prototypes. Results validate the selected methodology and fulfill the specifications
    • …
    corecore