5,144 research outputs found

    Adaptive Algorithms For Classification On High-Frequency Data Streams: Application To Finance

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the problem of concept drift has gained importance in the financial domain. The succession of manias, panics and crashes have stressed the nonstationary nature and the likelihood of drastic structural changes in financial markets. The most recent literature suggests the use of conventional machine learning and statistical approaches for this. However, these techniques are unable or slow to adapt to non-stationarities and may require re-training over time, which is computationally expensive and brings financial risks. This thesis proposes a set of adaptive algorithms to deal with high-frequency data streams and applies these to the financial domain. We present approaches to handle different types of concept drifts and perform predictions using up-to-date models. These mechanisms are designed to provide fast reaction times and are thus applicable to high-frequency data. The core experiments of this thesis are based on the prediction of the price movement direction at different intraday resolutions in the SPDR S&P 500 exchange-traded fund. The proposed algorithms are benchmarked against other popular methods from the data stream mining literature and achieve competitive results. We believe that this thesis opens good research prospects for financial forecasting during market instability and structural breaks. Results have shown that our proposed methods can improve prediction accuracy in many of these scenarios. Indeed, the results obtained are compatible with ideas against the efficient market hypothesis. However, we cannot claim that we can beat consistently buy and hold; therefore, we cannot reject it.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Gustavo Recio Isasi.- Secretario: Pedro Isasi Viñuela.- Vocal: Sandra García Rodrígue

    Learning from Data Streams with Randomized Forests

    Get PDF
    Non-stationary streaming data poses a familiar challenge in machine learning: the need to obtain fast and accurate predictions. A data stream is a continuously generated sequence of data, with data typically arriving rapidly. They are often characterised by a non-stationary generative process, with concept drift occurring as the process changes. Such processes are commonly seen in the real world, such as in advertising, shopping trends, environmental conditions, electricity monitoring and traffic monitoring. Typical stationary algorithms are ill-suited for use with concept drifting data, thus necessitating more targeted methods. Tree-based methods are a popular approach to this problem, traditionally focussing on the use of the Hoeffding bound in order to guarantee performance relative to a stationary scenario. However, there are limited single learners available for regression scenarios, and those that do exist often struggle to choose between similarly discriminative splits, leading to longer training times and worse performance. This limited pool of single learners in turn hampers the performance of ensemble approaches in which they act as base learners. In this thesis we seek to remedy this gap in the literature, developing methods which focus on increasing randomization to both improve predictive performance and reduce the training times of tree-based ensemble methods. In particular, we have chosen to investigate the use of randomization as it is known to be able to improve generalization error in ensembles, and is also expected to lead to fast training times, thus being a natural method of handling the problems typically experienced by single learners. We begin in a regression scenario, introducing the Adaptive Trees for Streaming with Extreme Randomization (ATSER) algorithm; a partially randomized approach based on the concept of Extremely Randomized (extra) trees. The ATSER algorithm incrementally trains trees, using the Hoeffding bound to select the best of a random selection of splits. Simultaneously, the trees also detect and adapt to changes in the data stream. Unlike many traditional streaming algorithms ATSER trees can easily be extended to include nominal features. We find that compared to other contemporary methods ensembles of ATSER trees lead to improved predictive performance whilst also reducing run times. We then demonstrate the Adaptive Categorisation Trees for Streaming with Extreme Randomization (ACTSER) algorithm, an adaption of the ATSER algorithm to the more traditional categorization scenario, again showing improved predictive performance and reduced runtimes. The inclusion of nominal features is particularly novel in this setting since typical categorization approaches struggle to handle them. Finally we examine a completely randomized scenario, where an ensemble of trees is generated prior to having access to the data stream, while also considering multivariate splits in addition to the traditional axis-aligned approach. We find that through the combination of a forgetting mechanism in linear models and dynamic weighting for ensemble members, we are able to avoid explicitly testing for concept drift. This leads to fast ensembles with strong predictive performance, whilst also requiring fewer parameters than other contemporary methods. For each of the proposed methods in this thesis, we demonstrate empirically that they are effective over a variety of different non-stationary data streams, including on multiple types of concept drift. Furthermore, in comparison to other contemporary data streaming algorithms, we find the biggest improvements in performance are on noisy data streams.Engineers Gat

    Process-Oriented Stream Classification Pipeline:A Literature Review

    Get PDF
    Featured Application: Nowadays, many applications and disciplines work on the basis of stream data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text analysis applications (e.g., in social media analytics or astronomy). With our work, we gather different approaches and terminology, and give a broad overview over the topic. Our main target groups are practitioners and newcomers to the field of data stream classification. Due to the rise of continuous data-generating applications, analyzing data streams has gained increasing attention over the past decades. A core research area in stream data is stream classification, which categorizes or detects data points within an evolving stream of observations. Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a wide range of (social) media applications. Research in stream classification is related to developing methods that adapt to the changing and potentially volatile data stream. It focuses on individual aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different research questions and strands, the field is challenging to grasp, especially for beginners. This survey explores, summarizes, and categorizes work within the domain of stream classification and identifies core research threads over the past few years. It is structured based on the stream classification process to facilitate coordination within this complex topic, including common application scenarios and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their scope can gain (additional) insight into this research area and find starting points and pointers to more in-depth literature on specific issues and research directions in the field.</p

    Financial portfolio optimization with online deep reinforcement learning and restricted stacked autoencoder—DeepBreath

    Get PDF
    Abstract The process of continuously reallocating funds into financial assets, aiming to increase the expected return of investment and minimizing the risk, is known as portfolio management. In this paper, a portfolio management framework is developed based on a deep reinforcement learning framework called DeepBreath. The DeepBreath methodology combines a restricted stacked autoencoder and a convolutional neural network (CNN) into an integrated framework. The restricted stacked autoencoder is employed in order to conduct dimensionality reduction and features selection, thus ensuring that only the most informative abstract features are retained. The CNN is used to learn and enforce the investment policy which consists of reallocating the various assets in order to increase the expected return on investment. The framework consists of both offline and online learning strategies: the former is required to train the CNN while the latter handles concept drifts i.e. a change in the data distribution resulting from unforeseen circumstances. These are based on passive concept drift detection and online stochastic batching. Settlement risk may occur as a result of a delay in between the acquisition of an asset and its payment failing to deliver the terms of a contract. In order to tackle this challenging issue, a blockchain is employed. Finally, the performance of the DeepBreath framework is tested with four test sets over three distinct investment periods. The results show that the return of investment achieved by our approach outperforms current expert investment strategies while minimizing the market risk

    How to Cope with Change? - Preserving Validity of Predictive Services over Time

    Get PDF
    Companies more and more rely on predictive services which are constantly monitoring and analyzing the available data streams for better service offerings. However, sudden or incremental changes in those streams are a challenge for the validity and proper functionality of the predictive service over time. We develop a framework which allows to characterize and differentiate predictive services with regard to their ongoing validity. Furthermore, this work proposes a research agenda of worthwhile research topics to improve the long-term validity of predictive services. In our work, we especially focus on different scenarios of true label availability for predictive services as well as the integration of expert knowledge. With these insights at hand, we lay an important foundation for future research in the field of valid predictive services

    IoT Data Analytics in Dynamic Environments: From An Automated Machine Learning Perspective

    Full text link
    With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dramatically. In IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges, specifically, effective model selection, design/tuning, and updating, which have brought massive demand for experienced data scientists. Additionally, the dynamic nature of IoT data may introduce concept drift issues, causing model performance degradation. To reduce human efforts, Automated Machine Learning (AutoML) has become a popular field that aims to automatically select, construct, tune, and update machine learning models to achieve the best performance on specified tasks. In this paper, we conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML in order to identify and summarize the optimal solutions for every step of applying ML algorithms to IoT data analytics. To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted in this work. Lastly, we discuss and classify the challenges and research directions for this domain.Comment: Published in Engineering Applications of Artificial Intelligence (Elsevier, IF:7.8); Code/An AutoML tutorial is available at Github link: https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytic

    Ensemble based on randomised neural networks for online data stream regression in presence of concept drift

    Get PDF
    The big data paradigm has posed new challenges for the Machine Learning algorithms, such as analysing continuous flows of data, in the form of data streams, and dealing with the evolving nature of the data, which cause a phenomenon often referred to in the literature as concept drift. Concept drift is caused by inconsistencies between the optimal hypotheses in two subsequent chunks of data, whereby the concept underlying a given process evolves over time, which can happen due to several factors including change in consumer preference, economic dynamics, or environmental conditions. This thesis explores the problem of data stream regression with the presence of concept drift. This problem requires computationally efficient algorithms that are able to adapt to the various types of drift that may affect the data. The development of effective algorithms for data streams with concept drift requires several steps that are discussed in this research. The first one is related to the datasets required to assess the algorithms. In general, it is not possible to determine the occurrence of concept drift on real-world datasets; therefore, synthetic datasets where the various types of concept drift can be simulated are required. The second issue is related to the choice of the algorithm. The ensemble algorithms show many advantages to deal with concept drifting data streams, which include flexibility, computational efficiency and high accuracy. For the design of an effective ensemble, this research analyses the use of randomised Neural Networks as base models, along with their optimisation. The optimisation of the randomised Neural Networks involves design and tuning hyperparameters which may substantially affect its performance. The optimisation of the base models is an important aspect to build highly accurate and computationally efficient ensembles. To cope with the concept drift, the existing methods either require setting fixed updating points, which may result in unnecessary computations or slow reaction to concept drift, or rely on drifting detection mechanism, which may be ineffective due to the difficulty to detect drift in real applications. Therefore, the research contributions of this thesis include the development of a new approach for synthetic dataset generation, development of a new hyperparameter optimisation algorithm that reduces the search effort and the need of prior assumptions compared to existing methods, the analysis of the effects of randomised Neural Networks hyperparameters, and the development of a new ensemble algorithm based on bagging meta-model that reduces the computational effort over existing methods and uses an innovative updating mechanism to cope with concept drift. The algorithms have been tested on synthetic datasets and validated on four real-world datasets from various application domains
    corecore