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Abstract 

 

The big data paradigm has posed new challenges for the Machine Learning 

algorithms, such as analysing continuous flows of data, in the form of data streams, 

and dealing with the evolving nature of the data, which cause a phenomenon often 

referred to in the literature as concept drift. Concept drift is caused by inconsistencies 

between the optimal hypotheses in two subsequent chunks of data, whereby the 

concept underlying a given process evolves over time, which can happen due to 

several factors including change in consumer preference, economic dynamics, or 

environmental conditions. This thesis explores the problem of data stream regression 

with the presence of concept drift. This problem requires computationally efficient 

algorithms that are able to adapt to the various types of drift that may affect the data. 

The development of effective algorithms for data streams with concept drift requires 

several steps that are discussed in this research. The first one is related to the 

datasets required to assess the algorithms. In general, it is not possible to determine 

the occurrence of concept drift on real-world datasets; therefore, synthetic datasets 

where the various types of concept drift can be simulated are required. The second 

issue is related to the choice of the algorithm. The ensemble algorithms show many 

advantages to deal with concept drifting data streams, which include flexibility, 

computational efficiency and high accuracy. For the design of an effective ensemble, 

this research analyses the use of randomised Neural Networks as base models, 

along with their optimisation. The optimisation of the randomised Neural Networks 

involves design and tuning hyperparameters which may substantially affect its 

performance. The optimisation of the base models is an important aspect to build 

highly accurate and computationally efficient ensembles. To cope with the concept 

drift, the existing methods either require setting fixed updating points, which may 

result in unnecessary computations or slow reaction to concept drift, or rely on 

drifting detection mechanism, which may be ineffective due to the difficulty to detect 

drift in real applications. Therefore, the research contributions of this thesis include 

the development of a new approach for synthetic dataset generation, development of 

a new hyperparameter optimisation algorithm that reduces the search effort and the 

need of prior assumptions compared to existing methods, the analysis of the effects 

of randomised Neural Networks hyperparameters, and the development of a new 

ensemble algorithm based on bagging meta-model that reduces the computational 

effort over existing methods and uses an innovative updating mechanism to cope 

with concept drift. The algorithms have been tested on synthetic datasets and 

validated on four real-world datasets from various application domains. 

 

Keywords: Machine Learning, Ensemble Learning, Data Streams, Regression 

Problems, Concept Drift, Hyperparameter Optimisation. 
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1. INTRODUCTION 

 

The field of machine learning (ML) has been developing rapidly and proved 

useful in modelling complex real-life applications. The capacity of ML models to 

extract knowledge from massive amounts of data has increased the ML popularity 

and supported innovation and business growth in various industries. The 

development of information technologies has allowed that massive amounts of data 

are produced at a rapid rate, which imposes new challenges for data analysis 

techniques (Yaqoob et al., 2016). In many application domains, such as social 

networks, financial industries, and engineering systems, data are generated in 

continuous flows in the form of data streams. Such data format requires the ML 

algorithms to work in an online mode, i.e. analysing the data in real-time and evolving 

accordingly. Examples of data streams include network event logs, telephone call 

records, credit card transactional flows, sensing and surveillance video streams, 

financial applications, monitoring patient health, and many others (Wang et al., 2003; 

Fan, 2004; Zhang et al., 2012; Krawczyk et al., 2017).  

The ML algorithms are mainly divided into 3 types: supervised learning, 

unsupervised learning and reinforcement learning. In the supervised learning, the 

training data include the input vectors and their corresponding target vector. 

Supervised learning tasks include classification, where the aim is to assign a class for 

each input vector, and regression, where the target for each input vector is a 

continuous variable. In the unsupervised learning, the target vector is not present and 

the aim is to determine similar groups within the data. In the reinforcement learning, 

the algorithm interacts with the environment in order to find appropriate actions that 

maximise the reward (Bishop, 2006).  

Traditionally, the supervised learning approaches work on an offline mode 

where a fixed amount of data is collected and used to train and validate the predictive 

models. This leads to the assumption that the data probability distribution does not 

change between training data and the application data (González-Castro et al., 

2013). This typically means that data used to train the predictive models can reflect 

the probability distribution of the problem, however, this assumption is often violated 

in real-world applications (Gállego et al., 2017; Ren et al., 2018).  
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For many reasons, the data distribution in real-world applications is often not 

stable and tends to change with time (Tsymbal, 2004; Zliobaite et al., 2016). This is 

due to the evolving nature of the processes, which causes a phenomenon frequently 

referred to in the literature as concept drift. The presence of concept drift is likely to 

cause a decrease in the accuracy of the models as time passes, since the training 

data used to build the models may be carrying out-of-date concepts. This has led to 

increasing research on data stream mining applications. Besides the evolving nature 

of data, other properties that make the prediction task in data streams challenging 

include infinite length, high dimensionality, orderliness, non-repetitiveness, high-

speed, and time-varying (Masud et al., 2008; Farid et al., 2013).  

A promising research direction in modelling data streams is the ensemble 

learning methods (Krawczyk et al., 2017). Ensemble approaches, also known as 

committees or multiple classifiers, can be characterised as a set of classification or 

regression models, whose outputs are combined to predict the output of a new 

instance. Single models usually require complex operations to modify the internal 

structure of the model and may perform poorly in the presence of concept drift 

(Masud et al., 2008). Ensemble approaches are proven to be effective to overcome 

common limitations of single models, such as accuracy and stability (Yin et al., 2015). 

Additionally, they are able to maintain information of different concepts, and new 

models can be easily trained to cope with new concepts that may appear; hence, 

they can effectively deal with evolving data streams and achieve superior accuracy 

compared to single models. 

The diagram shown in Figure 1.1 contextualises this research within the field 

of ML, highlighting the scope in terms of the type of learning, task and environment 

this research aims to address, as well as ML technique applied.  

 

 

 

 

 



3 
 

 

Figure 1.1: Research scope. 

 

1.1. RESEARCH PROBLEM 

 

Nowadays, large amounts of data at very high rates are generated by 

organizations. In this context, new ML techniques are required to address the new 

challenges imposed by the big data paradigm (Yaqoob et al., 2016). One such 

challenge is how to build predictive models that can work on an online mode and 

adapt to possible changes in the underlying process generating the data.  

An increasing research effort has been made in the recent years towards the 

data stream mining, however, mainly focused on supervised classification problems 

(Ikonomovska et al., 2015; Krawczyk et al., 2017). Regression is an important field of 

study with many practical applications, which include quality control, process 
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monitoring, financial forecasting, weather prediction, among others. For instance, in 

regression tasks, the aim is to model the relationship between the input vector and 

the output variables, given a data sample composed of a feature vector xi and a 

scalar output variable yi. Therefore, ML approaches approximate a function f that 

transforms an input vector xi into an output yi, given by yi = f(xi) + ei, where ei is an 

approximately normally distributed noise with zero mean. The development of data 

stream regression algorithms has the potential to benefit many industries by solving 

practical problems in a continuous manner with high accuracy and adapting to cope 

with constantly changing environments.  

Ensemble learning algorithms appear as a promising technique to deal with 

data streams with concept drift, mainly due to the high level of accuracy and 

computational efficiency that is possible to achieve using ensemble learning 

techniques. The concept drift may occur in several ways and is difficult to detect 

(Farid et al., 2013). The main approaches to deal with concept drift include active and 

passive approaches. The former updates the model without assuming the presence 

of drift, which may lead to unnecessary computation when no changes in data 

properties are observed. On the other hand, passive approaches wait until the drift is 

detected to update the model and some drawbacks include false alarms, inability to 

detect some types of drift and poor performance in case of data insufficiency.  

An important decision in ensemble design is the choice of base models. 

Effective data stream ensembles require computationally efficient base models with a 

good level of accuracy. An algorithm that met those requirements is randomised 

Neural Networks (NN), also known as Neural Networks with Random Weights 

(NNRW) (Cao et al., 2018). NNRW was introduced in (Pao and Takefuji, 1992), 

which proposed the Random Vector Functional Link (RVFL). Later, Huang (2004) 

introduced a similar algorithm, the Extreme Learning Machine (ELM) that boosted the 

NNRW popularity in various applications. The main idea of such models is to 

randomly initialise the weights between input and hidden layers, which are kept fixed 

during the optimization process and optimize the weights between the hidden and 

output layers. This process not only reduces the number of parameters but also 

converts the non-convex optimisation into a convex optimisation, reducing the 

training complexity compared to the traditional backpropagation algorithms and 

therefore resulting in higher computational efficiency.  
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In general, the ensemble algorithms ignore the base model optimisation 

through the hyperparameter adjustment. Despite the popularity of ML algorithms it is 

common to find applications where the hyperparameters are simply set to default 

values or adjusted by trial and error approach. There is limited research exploring the 

hyperparameter optimisation; however, relying on a systematic way to optimise the 

hyperparameters could not only improve the algorithm accuracy and computational 

performance but also help understand how the hyperparameter setting affects the 

model. 

In order to effectively assess data stream algorithms, data generators that can 

effectively simulate the various types of drift are required. The existing methods for 

data generation are not only limited in terms of dimensions, i.e. only a few predictive 

attributes can be simulated, but also does not allow checking the effect of simulated 

drift on the data. 

Following a comprehensive review of the current literature and methods, a 

number of research areas within the current approaches that require improvements 

are identified. These include:  

• Need for the development of fast algorithms for data stream regression 

problems.  

• Need for updating mechanisms that avoid the drawbacks of active and 

passive approaches to deal with concept drift.  

• Advance the research on hyperparameter optimisation and therefore 

improve the effectiveness of ML algorithms. 

• Need for effective ways to simulate regression problems and the various 

types of concept drift. 
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1.2. RESEARCH AIM AND OBJECTIVES 

 

The main aim of this research is to develop an ensemble learning method 

based on NNRW algorithms for data stream regression problems. The algorithm 

must be capable of effectively predicting continuous variables and adapt continuously 

to possible changes in the underlying process that generates the data in order to 

keep the model updated and avoid loss of accuracy.  

Several key points were identified as the research objectives for the 

achievement of the aim of this research, these include:  

• Develop a robust methodology for generating synthetic data streams and 

simulating concept drift. 

• Analysis of the NNRW approaches and their main differences. 

• Development of a new hyperparameter optimisation algorithm. 

• Development of effective updating mechanisms to cope with concept drift. 

• Test and validate the proposed approaches using synthetic and 

benchmark datasets and comparing them with existing methods from the 

literature. 

 

1.3. THESIS OUTLINE 

 

The remainder of this thesis is organized as follows. Besides the introduction 

chapter, where the research problem and research objectives are presented, a 

literature review is covered in Chapter 2. The literature review outlines the main 

challenges involving data streams and concept drift and also presents the main 

aspects involving ensemble design. The state-of-the-art approaches for concept-

drifting data streams are also shown in the literature review. The structure of this 

research is presented in Chapter 3 and shows how the research was organised to 

achieve the established goals. The datasets used to assess and validate the 

proposed algorithms are detailed in Chapter 4. An analysis of the base models 
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(NNRW) is carried out in Chapter 5 and its optimisation is tackled in Chapter 6. 

Chapter 7 details the development of the new ensemble algorithm for data stream 

regression and Chapter 8 closes this thesis, outlining the main conclusions and 

opportunities for future research. 
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2. LITERATURE REVIEW 

 

In this chapter, the existing ensemble approaches for concept drifting data 

stream regression and classification are discussed. Before that, an overview of the 

main challenges involving data streams and concept drift is presented. This is 

followed by a brief review of ensemble methods, the effect of diversity and pruning on 

the ensemble’s performance and how the base models can be effectively combined. 

Bullet point remarks on the literature review close this chapter. 

 

2.1. DATA STREAMS AND CONCEPT DRIFT 

 

In many applications data are generated in continuous flows. Examples of 

data streams include network event logs, telephone call records, credit card 

transactional flows (Wang et al., 2003; Fan, 2004), sensing and surveillance video 

streams, financial applications, monitoring patient health, and many others. Several 

challenges are imposed on ML algorithms due to the characteristics of data streams, 

which include infinite length, the evolving nature of data, high dimensionality, 

orderliness, non-repetitiveness, high-speed, and time-varying properties (Masud et 

al., 2008; Farid et al., 2013, Krawczyk et al., 2017). 

It is usually impractical to store all data generated by data streams and mine 

them to discover patterns or hypothesis. Different from traditional knowledge 

discovery tools that assume a volume of data that can be stored in memory and non-

strict limitation of processing time, data stream models have space and time 

restrictions (Bifet et al., 2009). A common practice is to mine a subset of data, 

however, as mentioned by Fan (2004), this approach could be ineffective due to 

oversimplified models as a result of sub-sampling or to the dynamically and 

unpredictable evolving nature of the data. Bifet et al. (2009) highlight some properties 

desired for an ML algorithm for data streams: high accuracy and fast adaptation to 

change; low computational cost in both space and time; theoretical performance 

guarantees; and a minimal number of parameters. 
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It is expected in many practical applications that the concept underlying a 

given process evolves over time, which can happen due to several factors including 

change in consumer preference, economic dynamics, or environmental conditions. 

The evolving nature of data has presented an important challenge for data stream 

learning algorithms. This phenomenon is commonly referred to as concept drift, in the 

context of machine learning, data mining and predictive analytics; covariate shift or 

dataset shift, in the context of pattern recognition; and non-stationarity in the context 

of signal processing (Zliobaite et al., 2016). Fan (2004) describes concept drift as 

inconsistencies between the optimal hypotheses in two subsequent chunks of data. 

Yin et al. (2015) define concept drift as a change in data distribution that occurred in 

dynamic environments, where non-stationary data are observed, that results in a 

change of the concept of class definitions. 

Some authors worked on formally defining the concept drift. Given posterior 

distribution P(x,y) = P(y|x)*P(x), where x is the input vector and y is the target value, 

Gao et al. (2008) defined three possible sources of concept drift:  

• Features change: P(x) changes but P(y|x) does not.  

• Conditional change: P(x) remains unchanged but P(y|x) changes. 

• Dual change: Both P(x) and P(y|x) change. 

This typology corresponds to the sources of concept drift reported by (Masud 

et al., 2008), which states that the data may evolve through a change in prior 

distribution, change in posterior distribution or both (feature change, conditional 

change and dual change, respectively). 

Zhu et al. (2010) also defined concept drift in classification problems as a 

change in the posterior probability of a given class due to possible changes in 

conditional probability and/or priori probability. They further decomposed drifting 

concepts as:  

• Priori probability drifting: drifting is triggered by class priori probability. 

• Conditional probability drifting: drifting is triggered by class conditional 

probability. 
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• Conjunct probability drifting: both conditional and priori probability 

constantly changes across the data stream.  

More recently, Gállego et al. (2017) have characterized the evolving nature of 

data as dataset shift. Considering an instance x, a class value y and a joint 

probability P(x|y), they identified three types of dataset shift: 

• Covariate shift: where P(x) changes but P(y|x) does not. 

• Prior probability shift: where P(y) changes but P(x|y) remains constant. 

• Concept drift: where either P(y|x) changes and P(x) does not or P(x|y) 

changes but P(y) remains constant.  

Krawczyk et al. (2017) point out a distinction between real drift and virtual drift. 

They define the real drift as a change in P(y|x), which may happen without changes 

in P(x) and therefore may not be detected by drift detection mechanism based on 

input attributes. The virtual drift is related to changes in P(x) and P(y).  

Further concept drift categorisation is related to how it occurs. Mainly, they can 

be distinguished between sudden and gradual drifts (Tsymbal, 2004). Krawczyk et al. 

(2017) extend the categorization, including incremental drift and recurrent drift, as 

shown in Figure 2.1. 

 

 

Figure 2.1: Types of drift (Krawczyk et al. 2017). 

 

When any type of concept drift occurs, it is likely that the accuracy of the 

model decreases since that training data used to build the model may be carrying 
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out-of-date concepts. One challenge in learning concepts from data streams in 

presence of concept drift is how to identify the data in the training set that are no 

longer consistent with the current concept (Wang et al., 2003).  

Tsai et al. (2009) defined three main categories of algorithms for concept drift: 

window-based approaches, weight-based approaches, and ensemble classifiers. 

Elwell and Polikar (2011) further classified algorithms for concept drift as:  

• Online versus batch algorithms: Online algorithms learn one instance at a 

time while batch algorithms learn chunks of instances. 

• Single model versus ensemble-based approach: The former refers to a 

single learning algorithm used for prediction while the latter refers to 

multiple learning algorithms (not necessarily of the same type) that are 

combined to increase the prediction performance. 

• Active versus passive approaches: Active approaches rely on drift detector 

mechanism while passive approaches assume constant drift and update 

the model continuously. 

Although online algorithms may be better to learn new concepts, they suffer 

from poor stability and are sensitive to noise. On the other hand, batch algorithms 

may be ineffective if the data chunk size is not properly adjusted and/or the chunk 

contains multiple concepts (Elwell and Polikar, 2011). 

Single models can be based on window-based approaches, where models are 

built selecting instances within a fixed or dynamic sliding window, and weight-based 

approaches, where weights are attributed to instances and outdated instances are 

conveniently discarded (Farid et al., 2013). Usually, single models require complex 

operations to modify the internal structure of the model and may perform poorly in the 

presence of concept drift (Masud et al., 2008). 

Although the main types of concept drift can be classified, drift detection 

mechanisms may be inaccurate and yield false reports, particularly in noisy datasets 

(Fan, 2004; Elwell and Polikar, 2011). In general, drift detection mechanisms are 

based on monitoring some indicators over time, such as performance measures or 

data properties (Gama et al., 2004). Additionally, Farid et al. (2013) point out that the 
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statistical properties of the target class, in case of classification problems, change 

over time in unforeseen ways. Another risk for active approaches, especially for 

detection mechanism based on error, is data insufficiency (Fan, 2004), where the 

data used for training the models do not represent the learning hypothesis 

adequately. Gao et al. (2008) state that it is optimal to always update the model 

according to the most recent data, regardless of how concepts evolve. Elwell and 

Polikar (2011) argue that the knowledge present in the models should be categorized 

based on its relevance to the current environment, represented by the most recent 

data, and should be dynamically updated as new data are generated. 

 

2.2. ENSEMBLES 

 

Ensemble approaches have been successfully applied in both classification 

and regression problems. They are inspired by the decision process based on 

different opinions from experts (Rokach, 2010; Mousavi and Eftekhari, 2015), and are 

proved both theoretically and empirically to outperform single classifiers in various 

tasks (Wang et al., 2003; Brown et al., 2005). Opinions from different sources reduce 

the risk of low performance of a single agent; furthermore, the ensemble tends to 

reduce the variance of its base classifiers. In the human decision-making process, a 

set of opinions, notably when a high degree of diversity is presented, is richer than an 

isolated opinion. 

The classical ensemble approaches include Boosting (Schapire, 1990), 

Staking (Wolpert, 1992), Bagging (Breiman, 1996), and Random Forests (Breiman, 

2001), and many variants that can be found in the literature for solving a wide variety 

of tasks. The ensemble learning represents an important research direction in solving 

concept-drifting data streams (Yin et al., 2015) and has been successfully applied in 

classification and regression problems. Some advantages of ensemble approaches, 

compared to single models, include the suitability for dynamic updates and 

integration with drift detection mechanisms (Gomes et al., 2017). Moreover, they are 

easy to scale and parallelise, the under-performing parts can be pruned to adapt to 

changes, and usually generate more accurate concept description, compared to 

single models (Bifet et al., 2009).  
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Wozniak et al. (2014) highlighted three main issues with ensemble learning 

methods:  

• System topology: how to interconnect individual classifiers. 

• Ensemble design: how to drive the generation and selection of a pool of 

valuable classifiers. 

• Fuser design: how to build a decision combination function (fuser) which 

can exploit the strengths of selected classifiers and combine them 

optimally. 

The ensembles can be divided into two categories: fixed ensemble, where 

base predictors are trained in advance and are updated online; and growing 

ensembles, where component learners are added and/or removed, and voting 

weights are updated according to the incoming data. 

 

2.2.1. The importance of ensemble diversity 

 

Breiman (1996) argues that an effective ensemble requires that the singular 

predictors must be unstable. Instability means that changes in training data or 

initialization produce diversity among the learners, i.e. differences in their output in 

response to a given input. The use of stable models could potentially produce biased 

ensembles and their use requires a mechanism to cause instability. One example is 

presented by López et al. (2015), which introduced diversity in a Support Vector 

Machine (SVM) ensemble by weakening the base models through a data sampling 

mechanism based on boosting. The models that compose the ensemble are built 

sequentially and for each new model, a combination of high emphasised data points 

(Data points difficult to classify by previous models) and data points that can be 

easily classified are sampled to train new models. The proposed procedure aims at 

building a diversified and compact ensemble. 

In terms of diversity, ensemble approaches can be categorised as explicit 

diversity methods, when the information about diversity may be taken into account. 

An example is the Boosting algorithm, where the data distribution is manipulated to 
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ensure diversity. In contrast, implicit diversity methods do not take diversity measure 

into account. An example of this category is the Bagging algorithm, where the dataset 

is randomly sampled to create different training sets for each classifier (Brown et al., 

2005). Similarly, Rokach (2010) distinguish ensembles as dependent frameworks, 

where the output of a classifier is used in the construction of next classifiers, and 

independent frameworks, where each classifier is built independently. Tumer and 

Ghosh (1996) showed that combining procedures are more effective when the base 

models are negatively correlated, moderately effective when the experts are 

uncorrelated and slightly effective when they are positively correlated. 

The diversity among members of the ensemble is a widely discussed issue 

and the meaning of diversity may still be a controversial concept. Brown et al. (2005) 

reviewed attempts to provide a formal definition of error diversity. The concept of 

diversity can be well explained in the case of regression problems by ambiguity 

decomposition, which shows that the error of the convex-combined ensemble is 

lower than or equal to the average error of the individuals; and Bias-variance-

covariance decomposition, which takes into account the possible distribution over 

different training sets (Brown et al., 2005). This also can be extended to classification 

problems by converting the class outputs to ordinal values, i.e. probability estimates. 

The diversity measure for non-ordinal values is a more complex issue and could be 

approximated using methods such as a heuristic approach proposed by Sharkey and 

Sharkey (1997). 

One approach to measuring diversity is kappa-statistic (Margineantu and 

Dietterich, 1997; Bifet et al., 2009). Additionally, some diversity measures have been 

developed to capture the degree of disagreement among base classifiers; Kuncheva 

and Whitaker (2003) studied four pairwise methods (Q-statistic, Correlation 

coefficient, Disagreement measure and Double-fault measure); and six non-pairwise 

ones (Kohavi-Wolpert variance, Interrater agreement, Entropy measure, Measure of 

difficulty, Generalized diversity and Coincident failure diversity). They showed that 

there exists a strong correlation between each other. Besides the fact that there is no 

consensus on what a good diversity measure should be, Bhardwaj et al. (2016) found 

evidence that diversity measures may not be effective when considered for ensemble 

pruning methods. 
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Brown et al. (2005) categorised some techniques for ensemble diversity 

induction as follows: 

• Starting point in hypothesis space: A common example is random initial 

weights of NNs, which increases the probability of convergence in different 

trajectories. Besides it is widely used, it is also accepted as the least 

effective method. 

• Set of accessible hypotheses: There are two ways to manipulate the 

accessible hypothesis: Manipulation of training data, also referred to as 

resampling methods, where each learner can be trained using different 

training patterns or different feature subsets; and changing the 

architecture of the learner. 

• Traversal of hypothesis space: Rely on the path the algorithm uses to 

traverse the hypothesis space in search of the best hypothesis, to 

generate diversity. 

The ensemble diversity helps to avoid the issue of overfitting (López et al., 

2015) since the disagreement between ensemble members cancel out the effect of 

overfitted models. Overfitted models reduce the bias component of error while the 

ensemble is responsible for reducing the variance (Brown et al., 2005). According to 

the Ambiguity decomposition (Brown et al., 2005), the increased individual variability, 

as a consequence of higher diversity, has an effect on the individual’s accuracy and 

the right balance between individual error and diversity must be taken into 

consideration to achieve the lowest overall ensemble error. Some research has been 

done to address the trade-off between diversity and accuracy using multi-objective 

optimisation approaches, such as Mousavi and Eftekhari (2015), which proposed a 

combination of Static and Dynamic Ensemble Selection based on the Non-dominated 

Sorting Genetic Algorithm II (NSGA-II). 
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2.2.2. Combination rules and pruning approaches 

 

The combination of outputs from different classifiers is an issue that can highly 

influence the ensemble results. The simplest procedures are averaging, in case of 

regression problems, and majority vote, in case of classification problems. Omari and 

Vidal (2015) highlighted two main approaches for output aggregation: training of the 

learner first and then aggregating their outputs; and training different learners and 

training an aggregation unit using all examples, in which case the ensemble should 

be of moderate size. Kittler et al. (1998) proposed five ensemble rules for combining 

multiple classification results, which include Max Rule, Min Rule, Product Rule, 

Majority Vote Rule and Sum Rule; and are based on the probabilities with each 

classifier predicts an instance. Sun et al. (2015) enhanced those rules by considering 

the relationship between new data and training data through a measure of similarity 

based on a distance weighting mechanism. 

Omari and Vidal (2015), refer to a concept of post-aggregation to improve the 

performance of massive ensembles, i.e., ensembles with a high number of learners. 

They proposed a fusion procedure that includes two steps: first, a traditional non-

trainable aggregation unit for classifiers’ output is used; then, a soft version of 

previous aggregation (average or voting, for example) is introduced as input for a 

complementary learning machine that also reads the observations. Omari and Vidal 

(2015) found out that their post-aggregation method can improve the ensemble’s 

accuracy, except for very high-quality ensembles, however at an additional 

computational cost.   

Basic linear combination strategies include simple average, trimmed mean, 

Winsorized mean and median (Jose and Winkler, 2008). An error-based approach is 

presented by Armstrong (2001) where the model’s weights are inversely proportional 

to their error. Elwell and Polikar (2011) applied dynamically weight updating based on 

time-adjusted errors. Additionally, their approach temporarily disables classifiers that 

do not match the current environment. Ordinary Least Square is another popular 

method (Granger and Ramanathan, 1984; Aksu and Gunter, 1992; Lemke and 

Gabrys, 2010). An outperformance approach that applies a Bayesian framework and 

assigns weights based on past forecasting trials is proposed by Bunn (1975). A 



17 
 

variance-based pooling that relies on k-Means to form clusters of constituent 

forecasts was developed by Aiolfi and Timmermann (2006).    

Pruning approaches intend to selectively choose the members of the 

ensemble in order to eliminate inaccurate and redundant learners, which may reduce 

both diversity and accuracy of the ensemble. Selective ensembles are believed to be 

more effective than single learners and traditional ensembles, as a result of smaller 

ensembles with potentially better generalization ability (Guo et al., 2015; Yin et al., 

2015). Ensemble pruning has been an active area of research and numerous pruning 

algorithms have been proposed (Bhardwaj et al., 2016). They can be categorized as 

Search-based, Ranking-based, Optimization-based, and Statistics based 

approaches.  

Wang et al. (2003) apply a pruning mechanism that excludes base models 

when their accuracy becomes worse than a random classifier. Bhardwaj et al. (2016) 

highlighted the importance of the size of ensembles, due to computational speed and 

storage issues, and proposed a metric that considers not only the accuracy but also 

the size of the ensemble. They argue that in some applications, the size is important 

and shorter models may be desirable at the expense of accuracy. The developed 

metric evaluates the cost-effectiveness of an ensemble biased to accuracy and also 

allows that more importance is given for the size of the ensemble when required.  

 

2.3. ENSEMBLE APPROACHES FOR CONCEPT-DRIFTING DATA 

STREAMS 

 

Wang et al. (2003) introduced a weighted ensemble classifier to address data 

stream mining and concept drift. They emphasise the advantage of their approach 

compared to single classifiers in terms of accuracy, efficiency and ease of use. The 

classifiers are trained sequentially from chunks of data. The criterion to discard data 

is not based on time of arrival, i.e. old models are replaced, but base on the class 

distributions that better represent the current concept. In the approach developed by 

Fan (2004), the new models are built based on the last chunk of data and a 

combination of new data and old data. The old data are composed of a selection of 

examples from past chunks. Fan (2004) also highlighted the problem of data 
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insufficiency, where the use of additional data from previous chunks improves the 

model accuracy when concept drift is not present. 

An approach developed by Gao et al. (2008) trains a new classifier at each 

new chunk of data. Besides keeping the model up to date with the latest concept, a 

sampling mechanism allows the model to deal with unbalanced datasets, where the 

number of data points that belongs to one class is much larger than the number of 

data points in other classes. Another method that trains a new model for every new 

chunk of data to cope with data evolution is presented by Masud et al. (2008). The 

classification is performed using k-NN (k-Nearest Neighbours) as base models and is 

designed to be effective in problems with a limited amount of labelled data. 

Furthermore, this approach also incorporates a novel class detection mechanism 

based on clustering. In both algorithms, the new model is incorporated into the 

ensemble based on its accuracy in modelling the current concept. 

Two variants of Bagging were introduced by Bifet et al. (2009), ADWIN 

Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. While both algorithms 

deal with classification tasks, the first one adapts the concept drift using a drift 

detector, and the latter takes advantage of the incremental property of Hoeffding 

Trees to restart the trees according to its size and keep the ensemble updated. Elwell 

and Polikar (2011) developed an incremental learning algorithm to solve classification 

problems in nonstationary environments. The algorithm trains a new classifier for 

each new chunk of data and uses a dynamically weighted majority voting scheme in 

order to cope with concept drift. An adaptive ensemble that is not only able to deal 

with concept drift but also is capable of detect new classes is presented by Farid et 

al. (2013). The authors trained three Decision Trees (DT) in a boosting manner, i.e. 

creating subsets of the training data based on instance weighting. A new DT is 

trained for each new data chunk, and this new tree can replace one of the existing 

trees based on accuracy criterion. The novel class detection is performed by a 

clustering mechanism in the tree leaves.   

An ensemble of ensembles is proposed by Yin et al. (2015). They argue that 

while in the traditional batch growing ensemble methods all the previous ensembles 

are discarded, their approach takes advantage of them for the final decision. Since 

the previous ensembles are composed of the same classifiers minus the last trained 
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classifiers, the combination of ensembles is performed through the weights of 

previous ensembles. Ren et al. (2018) aggregated the operators of online ensembles 

and chunk-based ensembles to develop an ensemble classifier that is able to 

manage different types of drift and a limited number of labelled data. Iwashita et al. 

(2019) tackled classification in drifting data streams using ensembles of Optimum-

Path Forest (OPF) with different approaches for training and updating the OPFs, i.e. 

full-memory, no-memory and window-of-fixed-size. The base models are combined 

using three voting mechanisms: Combined, Weighted and Major.      

In the context of data stream regression learning, only a few research papers 

have been published in the literature (Ding et al., 2017). Despite the success of batch 

growing ensembles achieved in data stream classification, in general, regression 

ensemble algorithms use iterative strategies. The Additive Expert Ensemble 

(AddExp) was developed to deal with online classification tasks with concept drift 

(Kolter and Maloof, 2005). However, the authors argue that this approach can be 

further extended to also deal with regression problems. AddExp relies on incremental 

algorithms, i.e. algorithms that adapt to every new instance. In the case of regression 

tasks, an online version of least squares regression is adopted as base learner. In 

order to control the size of the ensemble, two pruning strategies were evaluated, i.e., 

oldest first (the oldest model is excluded) and weakest first (the weakest model is 

excluded). The latter proves a better pruning choice. This approach works under the 

assumption that there is no change in the output distribution, since it is designed to 

make predictions in the interval [0, 1], and this assumption would be easily violated in 

practical applications. The AddExp also relies on a threshold parameter that 

determines when new experts should be added to the ensemble, which may be 

especially difficult to adjust in noisy datasets.  

Kadlec and Gabrys (2011) developed an algorithmic soft sensor, i.e. 

simulating the sensor’s output, based on iterative Recursive Partial Least Squares 

(RPLS) model, called ILLSA (Incremental Local Learning Soft Sensing Algorithm). 

The ensemble is built using partitions of historical data. In order to cope with concept 

drift, the ensemble is updated in two levels. At the local level, the RPLSs are updated 

using the new data, and at the global level, the model’s weights are updated 

according to its performance. Another incremental online ensemble algorithm for 

regression based on Partial Least Squares, the OWE (Online Weighted Ensemble) 
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algorithm, was proposed by Soares and Araújo (2015a). It updates the ensemble 

weights at the arrival of each new data sample based on the error on a sliding 

window of data. The training of new models considers the error of the ensemble in 

each sample of the current data window using a boosting strategy. It also retains 

information about old data windows in the hope that this information could be useful 

in case of recurrent concept drift.  

Soares and Araújo (2015b) also developed another sliding window-based 

ensemble, the Dynamic and Online Ensemble Regression (DOER). DOER uses OS-

ELM (Liang et al., 2006), which is a type of NNRW, as base models. The updating 

approach is based on an overlapping sliding window, and at each new data sample, 

all the base models are re-trained and the weights of each model are updated. The 

approach also considers a mechanism that replaces under-performing models when 

the accuracy of the ensemble decreases.  

Two algorithms based on online Hoeffding-based regression trees 

(Ikonomovska et al., 2011b), namely OBag (Online Bagging) of Hoeffding-based 

trees for regression and ORF (Online Random Forest) for any-time regression are 

presented by Ikonomovska et al. (2015). The models are constructed using online 

bagging meta-algorithm and learn in an incremental fashion. The adaptation to 

concept drift is performed by replacing the less accurate models when a significant 

increase in error is detected.  

The main problem with iterative approaches is the fact that, in general, all new 

samples are presented to the base models, which could result in a higher correlation 

between the base models and consequently lower diversity of the ensemble. The 

diversity among the models is responsible for uncorrelated predictions that lead to 

improved accuracy. Several authors have highlighted the importance of ensemble 

diversity (Tumer and Ghosh, 1996; Liu and Yao, 1999; Brown et al., 2005; Rokach, 

2010; Alhamdoosh and Wang, 2014; Ding et al., 2017).  

More recently, regression of sequential data stream is addressed by Ding et 

al. (2017), who proposed the O-DNNE (Online Decorrelated Neural Network 

Ensemble). Their algorithm is an online version of the DNNE (Decorrelated Neural 

Network Ensemble) (Alhamdoosh and Wang, 2014), which is based on a 

decorrelation strategy (Bruce, 1996) and the negative correlation learning (Liu and 
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Yao, 1999). DNNE is an ensemble of NNRWs that trains all base models 

simultaneously and considers the correlation among them in the optimisation 

process. This method allows that fewer models are required to build the ensemble 

since redundant models are avoided; however, the training and updating process 

may become computationally cumbersome, especially when a large number of 

models and/or a large number of hidden nodes are required, as shown in section 3.3. 

Additionally, base models with convergence problems due to the choice of the 

random weights are kept in the ensemble since no pruning mechanism is provided. 

A summary of the ensembles approaches for data stream classification and 

regression in the presence of concept drift is presented in Table 1, in chronological 

order. 
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Table 2.1: Ensemble approaches developed to deal with data streams in the presence of concept drift. 

Authors 
(year) 

Task Strategy 

Wang et al. 
(2003) 

Classification 
Batch growing ensemble using each chunk of data to build a new 

model 

Fan (2004) Classification 
Batch growing ensemble using selected past data to build new 

models 

Kolter and 
Maloof (2005) 

Classification 
Ensemble-based on incremental algorithms to adapt to every 

new instance. New models are added according to a threshold 
parameter and excluded based on age or accuracy. 

Gao et al. 
(2008) 

Classification 
Batch growing ensemble and sampling mechanism to deal with 

unbalanced datasets 

Masud et al. 
(2008) 

Classification 
Batch growing ensemble designed to deal with limited labelled 

data and novel class detection 

Bifet et al. 
(2009) 

Classification 
Fixed ensemble that uses drift detector and restarting Trees to 

update the model. 

Elwell and 
Polikar (2011) 

Classification 
Batch growing ensemble that updates using a dynamically 

weighted majority voting scheme 

Kadlec and 
Gabrys (2011) 

Regression Fixed ensemble based on PLS with local and global updating. 

Farid et al. 
(2013) 

Classification 
Fixed ensemble that trains new models based on optimised data 

selection and detects new classes based on clustering. 

Ikonomovska 
et al. (2015) 

Regression 
Incremental Hoeffding-based regression trees built based on 

bagging and low performing models are excluded. 

Soares and 
Araújo 
(2015a) 

Regression 
PLS models are updated at every new instance. Each model is 

weighted according to its accuracy on a sliding window 

Soares and 
Araújo 
(2015b) 

Regression 
The models (ELM variant) are updated at every instance, and the 

weights are updated based on accuracy on a sliding window 

Yin et al. 
(2015) 

Classification 
Combination of ensembles that builds a new ensemble at each 

new chunk of data 

Ding et al. 
(2017) 

Regression 
NNRW models trained using decorrelation learning that can be 

updated at each instance or by chunk 

Ren et al. 
(2018) 

Classification 
Bach growing ensemble that incorporates drift detection 

mechanisms and applies online and chunk based updating 
mechanisms to cope with various types of drift 

Iwashita et al. 
(2019) 

Classification 
Bach growing ensemble using OPF base classifiers that consider 
approaches to training the new models (full-memory, no-memory 

and window-of-fixed-size) 

 

2.4. REMARKS 

 

• Data streams impose several challenges for ML algorithms, such as time 

and memory restrictions, which requires computationally effective 

algorithms; and the evolving nature of data, which requires algorithms that 

can be effectively updated.  



23 
 

• The ensemble approaches have been successfully applied in solving data 

stream regression and classification problems. They offer a number of 

possibilities that allow them to effectively adapt to the evolving nature of 

the data. 

• Passive updating approaches generally rely on drift detection mechanism 

that may generate false reports and prevent the model to improve its 

accuracy due to data insufficiency. 

• Active updating approaches tend to be more effective; however, the 

updating frequency may have an important impact on the algorithm’s 

accuracy. 

• There is a lack of research toward stream regression problems. 

• Effective ensembles require computationally effective base models that 

offer some degree of instability to produce diversity. An algorithm for 

regression that meets these requirements is the NNRW, which will be 

covered more deeply in Chapter 5. 

• The base model optimisation is not discussed in the existing literature on 

ensembles. The model optimisation could not only enhance the 

ensemble’s accuracy but also reduce its size and therefore improve its 

computational efficiency. This issue is discussed in chapter 6. 

In the next Chapter (3), the methodology describing how the research gaps 

are going to be addressed are presented. 
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3. THESIS DEVELOPMENT METHODOLOGY 

 

The literature review showed that there is a gap in the development of 

algorithms for regression data streams that can be computationally efficient to deal 

with high dimensional datasets, achieve state-of-the-art accuracy, and effectively 

deal with the various types of concept drift. To this end, this research aims at 

developing an ensemble of NNRWs to cope with this task. Before the development of 

the ensemble approach, some issues need to be addressed.  

First, it is required sets of data where the approach can be effectively 

evaluated and the assumptions about the capabilities of the algorithm can be 

assessed. Many authors had discussed the assumption that real-world data are in 

general not stable and evolve over time (Hofer and Krempl, 2013; Yaqoob et al., 

2016, Gomes et al., 2017). However, it is not possible to assure in real-world 

datasets when concept drift is happening and which type(s) of concept drift is(are) 

taking place. This requires synthetic datasets where the various types of concept drift 

can be simulated to allow the evaluation of the algorithm’s responsiveness to concept 

drift. Additionally, there is a need for synthetic data generated on high dimensional 

spaces to assess the computational efficiency of the proposed methods. 

To cope with this, in Chapter 4, a study on synthetic datasets is carried out. 

The existing methods for synthetic data generation are discussed. A novel data 

generation approach is proposed based on existing functions for evaluation of 

optimisation algorithms. This approach allows not only generating data on potentially 

unbounded dimension spaces but also simulating the various types of drifts reported 

in the literature. The proposed algorithms are also assessed on real datasets, which 

are also outlined in Chapter 4.  

Second, an accurate and fast learning base model is needed to cope with the 

proposed task. It is also required that the base model falls into the class of weak 

models in order to achieve good ensemble diversity. The use of NNRW’s meets 

these requirements; however, a fundamental question arises: How to build an 

effective NNRW? The answer to this question is elaborated in chapters 5 and 6. In 

Chapter 5, the structure of the main representatives of NNRW is discussed and the 

design and tuning questions are pointed out. In chapter 6, the NNRW optimisation is 
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carried out, not only in terms of structural decisions but also in terms of tuning 

hyperparameters. For NNRW optimisation, after a review of the existing 

hyperparameter tuning approaches, a new hyperparameter tuning algorithm based 

on sums of squares is proposed. The effectiveness of the proposed algorithm is 

compared to a metaheuristic algorithm, the Genetic Algorithm (GA).  

The core of this research, the development of the ensemble for data stream 

regression in the presence of concept drift, is developed in Chapter 7. It uses as base 

models the NNRWs studied in Chapter 5, which were optimised using the 

hyperparameter tuning algorithm developed in Chapter 6. The resulting algorithm is 

validated using the data sets and data generation approach discussed in Chapter 4. 

Figure 3.1 summarises the main steps for the development of this research. 

 

 
Figure 3.1: Research steps representing the methodology adopted in this research. 
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4. DATASETS 

 

In this chapter, the datasets used for validating the algorithms developed in 

this thesis are detailed. The datasets used in this research are mainly divided into 

two categories: benchmark datasets and synthetic datasets. The benchmark datasets 

refer to real-world datasets from practical applications in various domains, found in 

public data repositories. Given the nature of this research and the fact that it is not 

possible to make assumptions about the data from practical applications, the use of 

synthetic data is necessary. It allows for the simulation of the various types of drifts 

reported in the literature.  

After a review of the main approaches for synthetic data generation, a need for 

an approach to generate high dimensional regression data that can effectively 

simulate various types of drifts was identified. In the remainder of this chapter, a 

literature review with the work developed for synthetic datasets is presented, followed 

by a new methodology for regression problems data generation. A description of the 

benchmark datasets used in this research and the data preprocessing applied for all 

datasets close the chapter.   

 

4.1. A REVIEW ON SYNTHETIC DATASETS         

 

The use of benchmark datasets is widely regarded as a way to evaluate and 

compare ML algorithms. Several data repositories are available on the Internet, and 

one of the most widely used is the UCI Machine Learning Repository (Dua and Graff, 

2019). The use of benchmark datasets allows researchers to evaluate different 

versions of their algorithms and compare the results against previous research. 

However, it is not possible to make any assumptions about the properties of the real 

data, such as trends, noise or stationarity, since they are generally unknown. 

The use of synthetic datasets enables controlled experiments (Shaker and 

Hullermeier, 2015). It is possible to build bench test data that perform specific 

behaviours, such as controlled levels of noise, the inclusion of irrelevant features, 

changes in the distribution of variables, and types of dependence among targets 
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(Read et al., 2012). These allow researchers to assess model assumptions and 

mechanisms developed for specific tasks, such as feature selection or concept drift 

detection. Some advantages of the use of synthetic datasets include: easy to 

reproduce, low cost of storage and transmission, as well as knowledge of the ground 

truth about the data (Bifet et al., 2009; Sun et al., 2016). 

In the context of concept drift, the use of synthetic datasets is particularly 

convenient, since it is not possible to assure the presence and/or type of concept drift 

in real datasets. When evaluating drift detection mechanisms, relevant change 

detection measurements such as the probability of true change detection, probability 

of false alarms and delay of detection (Gama et al., 2014), can only be assessed on 

synthetic datasets where the points of change are known. Many researchers rely on 

synthetic datasets and several strategies have been developed for regression and 

classification problems. 

One of the first synthetic datasets reported in the literature are LED and 

Waveform (Breiman et al., 1984), developed to evaluate classification algorithms. 

LED consists of a 7-dimensional binary vector, where “1” means that the light in 

respective position is on and “0” means that the light off. The combination of a given 

vector represents a number on a digital clock. The task is to classify the true number 

based on the vector, considering a faulty device that inverts the value of each vector 

position with a 10% chance. The authors also suggest a variation of the problem 

adding noise variables. It has been popular within ML community to evaluate 

classification algorithms (Bifet et al., 2009; Brzezinski and Stefanowski, 2014; 

Brzezinski and Stefanowski, 2014b; Jiang et al., 2015; Pietruczuk et al., 2017). 

Furthermore, Sun et al. (2016) simulate concept drift by interchanging the relevant 

variables. 

The Waveform dataset is a more complex example and consists of a 

classification problem with three classes, where each class is based a convex 

combination of two out of three different waveforms, resulting in a 21-d vector. A 

version with a 40-d vector is also studied, where 19 irrelevant attributes are added. 

Some research that relies on this strategy to generate data include Breiman, 1996; 

Bifet et al., 2009; Brzezinski and Stefanowski, 2014; Sun et al., 2016; and Pietruczuk 

et al., 2017.  
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Schlimmer and Granger Jr. (1986) suggested the use of a dataset based on 

three features (size, colour and shape), with three levels each. Three different 

definitions of the concept were defined: (1) size = small and colour = red, (2) colour = 

green or shape = circular, and (3) size = (medium or large). They used the dataset to 

evaluate how their algorithm reacts when a change in the definition happens, e.g. 

definition (1) is switched to (2). Some researches that make use of this dataset are 

Bifet et al. (2009) and Ghazikhani et al. (2013). Sun et al. (2018) applied a slightly 

different concept drift, where the rules are modified instead of replaced.  

In the field of regression, Friedman (1991) used nonlinear functions (Eqs. 4.1 

and 4.2) to generate a synthetic dataset to evaluate a method for regression 

modelling of high dimensional data. 

𝑦 = 0.1𝑒4𝑥1 +
4

1 + 𝑒−20(𝑥2−
1
2

)
+ 3𝑥3 + 2𝑥4 + 𝑥5 + 0 ∗ ∑ 𝑥𝑖

10

𝑖=6

+ 𝜀 

            (4.1)  

𝑦 = 10 sin(𝜋𝑥1𝑥2) + 20 (𝑥3 −
1

2
)

2

+ 10𝑥4 + 5𝑥5 + 0 ∗ ∑ 𝑥𝑖

10

𝑖=6

+ 𝜀 

        (4.2) 

Each variable of the feature vector is independently generated in the unit 

hypercube, i.e. in the interval [0, 1], following a uniform distribution. As can be 

observed, the last 5 attributes are irrelevant for the output. The noise 𝜀 follows a 

Gaussian distribution with 0 mean and variance equal to 1. Some researches rely on 

the function described in Eq. 4.2 and its variations for data stream regression, such 

as Breiman (1996), Ikonomovska et al. (2011a) and Ikonomovska et al. (2011b). The 

latter simulates drift by changing the domain of input variables, changing function 

parameters, and misplacing variables. Nadungodage and Xia (2014) applied several 

variations of a function similar to Eq. 4.2 to simulate abrupt and gradual drift by 

replacement of the concepts (functions). Furthermore, ensemble learning using 

Friedman functions were studied in Hansen (2000) and Chen and Yao (2009). 

Karalic (1992) suggested three functions to generate data for regression 

problems that accommodate the use of categorical variables. The categorical 
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variable conditions the function that generates the target variable, changing the 

function coefficients and therefore creating different hyperplanes according to the 

value of the categorical attribute. The datasets, LINE, LEXP and LOSC, eq. 4.3, 4.4 

and 4.5, respectively were used to evaluate regression trees and were also used by 

Ikonomovska et al. (2011b).  

𝑓(𝑥) = {
1 + 2𝑥2 + 𝑥3,     𝑖𝑓 𝑥1 =  𝑣1

−4 − 2𝑥2 − 𝑥3,       𝑖𝑓 𝑥1 = 𝑣2 
 

                             (4.3) 

𝑓(𝑥) = {
1 + 2𝑥2 + 3𝑥3 − 𝑒−2(𝑥4+𝑥5),             𝑖𝑓 𝑥1 =  𝑣1

1 − 1. 2𝑥2 − 3.1𝑥3 + 𝑒−3(𝑥4+𝑥5),       𝑖𝑓 𝑥1 = 𝑣2 
 

                (4.4) 

𝑓(𝑥) = {
1 + 1.5𝑥2 + 𝑥3 + sin (2(𝑥4 + 𝑥5))𝑒−2(𝑥2+𝑥4),     𝑖𝑓 𝑥1 =  𝑣1

−1 − 2𝑥2 − 𝑥3 + sin (3(𝑥4 + 𝑥5))𝑒−3(𝑥3−𝑥4),       𝑖𝑓 𝑥1 = 𝑣2 
 

      (4.5) 

Agrawal et al. (1992) proposed a classification dataset that consists of 9 

attributes, from which 3 are categorical and 1 is derived from 2 other attributes. The 

training instances are randomly created and the class label of each instance is given 

by 5 different functions of increasing complexity (Bifet et al., 2009; Pietruczuk et al., 

2017).  

Synthetic data for classification problems, built based on DTs, are proposed by 

Domingos and Hulten (2000). The instance space is composed of 100 binary 

attributes. For each tree level, a number of nodes are replaced by leaves and the rest 

are split using an attribute chosen randomly. At a given depth, the splitting process 

stops and all the remaining growing nodes become leaves. To each leave, it is 

assigned a class in a random manner. A similar idea is applied by Ikonomovska et al. 

(2011a), using 10 attributes to build synthetic datasets for regression problems. 

Classification algorithms that used this technique as bench test include Read et al. 

(2012), Jiang et al. (2015), Shaker and Hullermeier (2015), and Pietruczuk et al. 

(2017). Brzezinski and Stefanowski (2014a) and Brzezinski and Stefanowski (2014b) 

simulate concept drift by alternating different trees.  

Besides Friedman functions, Hansen (2000) also used the functions SinC (eq. 

4.6), Gabor (eq. 4.7) and Multi (eq. 4.8) to evaluate ensembles: 
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𝑦 =
sin (𝑥)

𝑥
 

                                               (4.6) 

𝑦 =
2

𝜋
exp[−2(𝑥2 + 𝑦2)] cos [2𝜋(𝑥 + 𝑦)] 

                          (4.7) 

𝑦 = 0.79 + 1.27𝑥1𝑥2 + 1.56𝑥1𝑥4 + 3.42𝑥2𝑥5 + 2.06𝑥3𝑥4𝑥5 

           (4.8) 

These functions were also applied by Chen and Yao (2009) to evaluate 

negative correlation learning for NN ensembles. 

A synthetic dataset based on d-dimensional hyperplane is suggested by 

Hulten et al. (2001), following the form showed in eq. 4.9.  

∑ 𝑤𝑖𝑥𝑖 = 𝑤0

𝑑

𝑖=1

 

                                            (4.9) 

where the vector 𝑤 represents the hyperplane coefficients and the vector 𝑥 

represents the variables, uniformly distributed in the interval [0, 1]. The instances are 

labelled positive when ∑ 𝑤𝑖𝑥𝑖 ≥ 𝑤0
𝑑
𝑖=1  and negative otherwise. This setting not only 

allows the control of the importance of each variable (e.g. a weight = 0 means the 

corresponding variable does not contribute to the output) but also allows simulating 

concept drift by rotating the hyperplane through its weights, which results in 

conditional change (Wang et al., 2003; Fan, 2004; Gao et al., 2008; Bifet et al., 2009; 

Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014a; Brzezinski and 

Stefanowski, 2014b; Jiang et al., 2015; Sun et al., 2016).  

Another approach to simulate the conditional change is applied by Shaker and 

Hullermeier (2015). Instead of rotating the hyperplane, two datasets are created, 

each based on a different set of weights. The drift occurs by replacing the stream of 

instances from the first dataset by the instances of the second, with a probability 

given by a sigmoidal function. A similar approach is applied by other authors to apply 

gradual drift in other types of datasets, such as Read et al. (2012), Nadungodage 
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and Xia (2014), Shaker and Hullermeier (2015) and Ikonomovska et al. (2011b). 

Nadungodage and Xia (2014) use a linear function to increase the occurrence 

probability of instances of the replacing concept and also simulate abrupt drift by 

suddenly replacing the current concept by a new one. 

The hyperplanes allow the simulation of feature change by changing the 

distribution of the instances in the attribute space. Furthermore, by controlling the 

value of 𝑤0 it is possible to adjust the balance between classes (Gao et al., 2008) 

and evaluate algorithms designed to deal with imbalanced datasets. Shaker and 

Hullermeier (2015) used the hyperplane approach not only to generate classification 

datasets but also to simulate regression problems. Instead of defining in which side 

of the hyperplane an instance x lies on to assign a class, the target is given by 

absolute distance (d1 = |wt.x| and d2 = |wt.x|³ - w is the normal vector of the 

hyperplane) from the point x, which represents the instance, to the hyperplane.     

A simple dataset, (SEA – Streaming Ensemble Algorithm) was proposed by 

Street and Kim (2001) to evaluate concept drift. Instances with three attributes, from 

which only 2 are relevant, are randomly generated in the interval [0, 10] and classes 

are assigned according to the sum of the first two attributes (𝑎1 and 𝑎2), i.e. class 1 if 

𝑎1 + 𝑎2 ≤ 𝜃 and class 2 otherwise. They simulate concept drift by changing the 

threshold 𝜃 (Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014b; Sun et al., 

2016; Sun et al., 2018). Noise is introduced by swapping the class of 10% of the 

instances. Despite its simplicity, many research relies on this dataset to evaluate ML 

algorithms (Bifet et al., 2009; Brzezinski and Stefanowski, 2014a; Jiang et al., 2015; 

Pietruczuk et al., 2017). 

Polikar et al. (2001) suggested an artificial dataset based on concentrical 

circles, where each formed ring is assigned a class. The aim is to assess incremental 

learning, where new rings (classes) are presented to the classification algorithm as 

time evolves. Oza and Russel (2001) develop a model for classification dataset 

generation based on binary attributes. The attributes are set based not only on the 

probabilities of an attribute given a class but also in the probabilities of the next 

attribute. This way, it is possible to evaluate the effectiveness of the boosting 

algorithm compared to bagging. 
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Liu and Zio (2016) generated synthetic datasets for analysis of regression data 

streams. Concepts are created by summing up different variables and the drift is 

applied by suddenly swapping the stream of instances from one concept by another. 

Besides SEA and STAGGER, Sun et al. (2018) also used classification datasets 

based on rotating, circle and sine concepts, as shown in Eqs. 4.10, 4.11 and 4.12, 

respectively. The drift is applied by changing the value of 𝜃. 

{
𝑥1 ← (𝑥1 − 𝑎) ∗ 𝑐𝑜𝑠𝜃 − (𝑥2 − 𝑏)𝑠𝑖𝑛𝜃 + 𝑎
𝑥2 ← (𝑥1 − 𝑎) ∗ 𝑐𝑜𝑠𝜃 + (𝑥2 − 𝑏)𝑠𝑖𝑛𝜃 + 𝑏

 

                             (4.10) 

(𝑥1 − 𝑎)2 + (𝑥2 − 𝑏)2 ≤/ > 𝜃 

                                 (4.11) 

asin(𝑏𝑥1 + 𝜃) + 𝑐 ≤/> 𝑥2 

                                   (4.12) 

Table 4.1 summarizes the main works, organized chronologically, that rely on 

synthetic datasets to evaluate classification and regression algorithms, along with the 

strategy applied for data generation and the type of drift when applicable. 
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Table 4.1: Summary of related works using synthetic datasets (C: Classification, R: Regression). 

Authors Year Approach Task Drift Types of drift 

Domingos and Hulten 2000 Random trees. C No - 

Hulten et al. 2001 Hyperplane C No Gradual. 

Polikar et al. 2001 Concentric circles. C No - 

Oza and Russell 2001 
Binary attributes conditionally 
dependent upon the class label and 
next attribute value. 

C No - 

Wang et al. 2003 Hyperplane C Yes Gradual. 

Fan 2004 Hyperplane C Yes Gradual. 

Gao et al. 2008 Hyperplane C Yes Sudden. 

Chen and Yao 2009 

Mexican Hat, Friedman, Gabor, 
Multi, Plane, Polynomial, Sinc, 
Synth, Overlap, Bumpy and 
Relevance. 

C, R No - 

Bifet et al. 2009 
SEA, STAGGER, Hyperplane, RBF, 
LED, Waveform and Agrawal 
Generator. 

C Yes Gradual and Sudden. 

Ikonomovska et al. 2011a 
Random trees and modified 
Friedman. 

R No - 

Ikonomovska et al. 2011b Friedman, Losc and Lexp. R Yes 
Gradual, Sudden and 
Recurrent. 

Read et al. 2012 Random trees and RBF C Yes Gradual. 

Ghazikhani et al. 2013 SEA, STAGGER and Hyperplane. C Yes Gradual and Sudden. 

Nadungodage et al. 2014 Friedman based functions. R Yes Gradual and Sudden. 

Brzezinski and 
Stefanowski 

2014a 
Hyperplane, SEA, Random trees, 
RBF, LED and Waveform. 

C Yes 
Gradual, Sudden, 
Recurrent, Incremental 
and Mixed. 

Brzezinski and 
Stefanowski 

2014b 
Hyperplane, RBF, SEA, Radom trees 
and LED. 

C Yes 
Gradual, Sudden, 
Recurrent and Mixed. 

Shaker and Hullermeier 2015 Random trees and Hyperplane. C, R Yes Gradual. 

Jiang et al. 2015 
SEA, Random trees, Hyperplane, 
RBF and LED. 

C Yes 
Gradual, Sudden and 
Recurrent. 

Sun et al. 2016 
Hyperplane, SEA, LED and 
Waveform. 

C Yes Gradual and Sudden. 

Liu and Zio 2016 Nonlinear functions. R Yes 
Sudden and 
Recurrent. 

Pietruczuk et al. 2017 
Agrawal Generator, Hyperplane, 
LED, Random trees, RBF, SEA and 
Waveform. 

C No - 

Sun et al. 2018 
Hyperplane, Rotating, Circle, Sine 
and Boolean Concepts. 

C Yes Sudden. 

 

Based on the available techniques for data generation, a need for a regression 

data generator that is readable at low dimensions and can be easily expanded to an 

arbitrary number of dimensions was identified. It also needs to accommodate 

different types of data drift simulations and allow for the use of categorical attributes. 
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4.2. AN ALTERNATIVE APPROACH FOR DATA GENERATION 

 

The main approaches for regression data generation rely on nonlinear 

functions. In general, these functions are limited in terms of dimensionality, i.e. 

number of relevant features, and difficult to simulate the various types of drift. To 

overcome these issues, in this research it is proposed the use of the functions 

presented on the CEC (Congress on Evolutionary Computation) 2005 Special 

Session on Real-Parameter Optimisation functions (Suganthan et al., 2005). The set 

of functions used in CEC consists of continuous nonlinear hyperplanes with various 

shapes and the optimisation algorithms are challenged to find the global minimum, 

i.e. the minimum f(x). These functions offer a range of features that make them 

suitable to simulate regression problems, where the task is to predict the value of f(x). 

They allow visual inspection for problems with one or two attributes, are easily 

scalable to any number of attributes and also offer several possibilities to simulate 

various types of concept drift. Additionally, it is possible to create theoretically infinite 

length data streams.   

From the 25 functions presented in CEC, five were selected, based on 

empirical analysis, to generate streams of data and assess the algorithms discussed 

in this thesis: 1) Shifted Sphere (𝑓1); 2) Shifted Schwefel (𝑓2); 3) Shifted Rotated High 

Conditioned Elliptic (𝑓3); 4) Shifted Rotated Griewank (𝑓7); 5) Shifted Rotated 

Weierstrass (𝑓11). Each function is computed according to Eqs. 4.13 – 4.17, 

respectively.  

𝑓1(𝑥) = ∑(𝑥𝑖 − 𝑜𝑖)2

𝐷

𝑖=1

+ 𝑓_𝑏𝑖𝑎𝑠 

(4.13) 

𝑓2(𝑥) = ∑ (∑ 𝑥𝑗 − 𝑜𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

+ 𝑓_𝑏𝑖𝑎𝑠 

(4.14) 
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𝑓3(𝑥) = ∑(106)
𝑖−1
𝐷−1

𝐷

𝑖=1

𝑧𝑖
2 + 𝑓_𝑏𝑖𝑎𝑠 

(4.15) 

𝑓7(𝑥) = ∑
𝑧𝑖

2

4000

𝐷

𝑖=1

− ∏ cos (
𝑧𝑖

√𝑖
) + 1 +

𝐷

𝑖=1

𝑓_𝑏𝑖𝑎𝑠 

(4.16) 

𝑓11(𝑥) = ∑( ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]) − 𝐷 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘. 0.5)] +

𝑘 𝑚𝑎𝑥

𝑘=0

𝑘 𝑚𝑎𝑥 

𝑘=0

𝐷

𝑖=1

𝑓_𝑏𝑖𝑎𝑠 

(4.17) 

where 𝑜 is the coordinate of the global minimum, 𝑧 = (𝑥 − 𝑜)𝑀, 𝑀 is an orthogonal 

matrix in case of F3 and a linear transformation matrix in case of F7 and F11, 𝑎=0.5, 

𝑏=3 and 𝑘=20. The shapes of each function for two attributes are shown in Figure. 

4.1.  

 
Figure 4.1: 3-Dimensional plots of 𝑓1, 𝑓2, 𝑓3, 𝑓7 and 𝑓11 CEC functions. 
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In this thesis, three main types of drift are simulated: gradual drift, abrupt drift 

(Tsymbal, 2004; Krawczyk et al., 2017) and data expansion (Ikonomovska et al., 

2011b), as detailed in Section 2.1. Another common type of drift is the recurrent drift 

(Krawczyk et al., 2017), i.e. a concept is replaced and after a certain period time, it 

appears back, such as seasons in weather prediction. This type of drift is simulated in 

the same manner as the abrupt drift and its explicit evaluation is important when the 

algorithm possesses long term memory mechanisms. Therefore, in this thesis, 

recurrent drift is not explicitly evaluated.        

Gradual drift: Two strategies are used for gradual drift, hyperplane rotation and 

function replacement. The former represents a change in the concept itself, 

analogous to the effect of wear tool in the prediction equipment’s performance or the 

effect of global warming on weather prediction. Gradual drift based on hyperplane 

rotation is applied by many authors (Wang et al., 2003; Fan, 2004; Gao et al., 2008; 

Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014b; Sun et al., 2016). For 

the selected functions, this can be easily achieved by changing the position of 

function’s global minimum, which causes a rotation in the hyperplane. An illustrative 

example is shown in Figure. 4.2, where the global minima (𝑜) of function 𝑓1 is moved 

2 times, by 50% in each axis in each iteration.  

 
Figure 4.2: Rotation of 𝑓1 function. 
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The function replacement is another common way to simulate gradual drift 

(Read et al., 2012; Nadungodage et al., 2014; Shaker and Hullermeier, 2015). Given 

a stream of data generated according to function A, instances generated by function 

B start to appear with a small probability. This probability is gradually increased, up to 

a point where all the new instances are generated by function B. This process is 

analogous to the market of a given company when the interest of a group of 

consumers is gradually replaced by the demand from another group. 

Abrupt drift: The abrupt drift works based on the same principle of gradual function 

replacement; however, after the drifting point, all the new instances are generated by 

a new function (Ghazikhani et al., 2013; Nadungodage et al., 2014; Liu and Zio, 

2016), instead of gradually replaced. A practical example of abrupt drift is the 

imposition of trading tariffs that can suddenly affect companies and/or economies.  

Data expansion: data expansion is simulated by changing the bounds of the input 

space. A related approach is studied in (Ikonomovska et al., 2011b). At some extent, 

the data expansion can be used to simulate cases where the training data does not 

represent the process generating data as a whole. For instance, an attribute can be 

defined in the range [0 7] in the training process, and then expanded to the range [0 

10] during the test, in order to evaluate how the algorithm adapts. As an example, 

data expansion can happen when a system designed to predict houses prices, 

trained with houses of a given size range, are exposed to houses with sizes beyond 

the previous range. In this case, several features can be affected (number of rooms, 

number of bathrooms, neighbourhood average income, etc).  

 

4.3. BENCHMARK DATASETS  

 

In this section, the real-world datasets chosen to evaluate the algorithms 

presented in this research are introduced. The datasets were chosen not only based 

on the number of samples, which should be big enough to simulate a stream of data, 

but also considering the number of features and diversity of application domains. 

Four benchmark datasets were used in this thesis to evaluate the models, three from 

a well-known public domain source (UCI data repository - 
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https://archive.ics.uci.edu/ml/datasets.php): appliances energy prediction, condition-

based maintenance and wine quality. The fourth dataset (California housing) is from 

StatLib repository (lib.stat.cmu.edu). A summary of the main features of each 

dataset, i.e. the number and type of predictive attributes (A) and the number of data 

samples (N), is presented in Table 4.2:  

 

Table 4.2: Benchmark dataset features (N - # data samples, A - # features). 

Name N A 

California Housing (Housing) 20640 8 

Wine quality (Quality) 4898 11 

Condition based maintenance (Maintenance) 11934 14 

Appliances energy prediction (Energy) 20640 26 

 

In this chapter, besides the benchmark datasets and data preprocessing, an 

alternative approach for generating regression datasets is presented. This approach 

offers a range of possibilities that include: an arbitrary number of predictive attributes, 

the capability to intuitively simulate various types of drift, and create theoretically 

infinite data streams. The aforementioned features are important to validate the 

algorithms presented in this research and the data assumptions they are designed to 

address. 
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5. NEURAL NETWORKS WITH RANDOM WEIGHTS 

 

The amount of research on randomised networks has grown immensely in 

recent years and numerous publications can be found in the literature, especially 

under the Huang’s (2004) terminology, the Extreme Learning Machine (ELM). 

NNRWs are able to tackle not only classification and regression problems but also 

feature learning and clustering problems (Huang, 2014; Alaba et al., 2019) in a wide 

range of applications. Deep Learning techniques, such as auto-encoders and 

convolutional neural networks, based on NNRWs have also been investigated 

recently (Cao et al., 2018). 

The main appeal of the NNRWs is their simplicity of implementation and high 

learning speed compared to the traditional NNs. Huang et al. (2004) reported 

learning speed thousands of times faster than SVMs and NNs trained with Back-

Propagation (BP) algorithms; moreover, the good generalisation capability makes the 

NNRWs a promising technique for many applications. In the remainder of this 

chapter, an overview of the development of NNRW is presented, followed by an in-

depth analysis of its structure. The focus of this analysis is on the randomised version 

of the Single-hidden Layer Feedforward Neural Network (SLFNN) for regression 

problems. 

This chapter discusses the key elements of the NNRW model from a 

theoretical perspective, and justify its selection for the ensemble learning approach. 

Hyperparameter optimisation will be presented in Chapter 6 and the ensemble 

learning strategies will be developed in Chapter 7.  

 

5.1. DEVELOPMENT OF NEURAL NETWORKS WITH RANDOM WEIGHTS 

       

One of the main representatives of the NNRWs, the RVFL, was proposed by 

Pao et al. (1992). The main idea was to transform the architecture of an SLFNN into 

a flat net, where the weights between the input layer and the hidden layer (𝑊𝐻), as 

well as the thresholds (𝐵), are generated randomly. Given an input 𝑋 and a 

continuous function 𝑔(∙), the transformation 𝑔(𝑋 ∙ 𝑊𝐻 + 𝐵), along with the original 
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input 𝑋 (the so-called direct-link) become the inputs of the flat net and only the 

weights between the new inputs and the output layer are optimised.  

In the same year, Schmidt et al. (1992) studied the effects of the hidden layer 

random parameters in an SLFNN. They found out that output layer weights are 

significantly more important than the hidden layer weights; however, the experiments 

were carried out on small datasets. Similar to Schmidt’s idea, the ELM algorithm was 

proposed by Huang et al. (2004), where the main difference was in the optimisation 

procedure to find the output weights. Whilst ELM applied a Moore-Penrose 

generalised inverse, Schmidt et al. (1992) used a numerical method.  

The theoretical learning capability of NNRW has been demonstrated in several 

studies. Igelnik and Pao (1995) presented theoretical justification for RVFL and 

showed that RVFL is a universal approximator of continuous functions. Huang et al. 

(2006) showed through an incremental constructive method that the ELMs are 

universal approximators for any continuous target function, given a constant 

piecewise activation function is provided.  

The randomness of the NNRWs is responsible for creating learning instability 

i.e. two NNRWs with equal structures have different generalisation performances. 

This was investigated by Fu et al. (2015) through a series of experiments with ELMs. 

They experimentally confirmed the instability caused by the random initialisation and 

also found out that instability decreases when the ELMs are combined in an 

ensemble.  

Ding et al. (2014) explored the main ELM variants, which include incremental 

ELM, pruning ELM, error-minimised ELM, two-stage ELM, online sequential ELM, 

evolutionary ELM, voting-based ELM, ordinal ELM, fully complex ELM and symmetric 

ELM. Deng et al. (2015) further explore semi-supervised and unsupervised ELM 

variants, as well as ELM autoencoders and multilayer ELMs. The use of NNRWs 

spans over a wide range of practical problems, such as classification, regression, 

pattern recognition, forecasting and diagnosis, and image processing (Ding et al., 

2014). Some interesting applications where NNRWs have been applied successfully 

include ship detection, image quality assessment and online visual tracking (Deng et 

al., 2015). NNRW popularity also motivated research investigating efficient 

implementations methods, such as the one carried out by Martínez-Villena et al. 
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(2014), who studied the hardware implementation of RVFLs and proposed three 

computation architectures. This allows the use of RVFLs in embedded real-time 

systems where the use of personal computers is not possible.  

An extensive evaluation of the RVFL hyperparameters is performed by Zhang 

and Suganthan (2016) for classification problems. Some of their findings are 

discussed in section 5.3. However, as pointed out by Alaba et al. (2019), finding an 

effective hidden layer structure still an open problem in the literature. In the next 

section, the structural elements of the NNRWs are presented, highlighting the 

fundamental difference between the main representatives, i.e. the RVFL and ELM. 

 

5.2. NNRW ARCHITECTURE 

 

In this section, the main structure of NNRWs is analysed, along with their 

tuning hyperparameters, aiming at the comprehension of the differences between the 

main NNRW representatives, i.e. RVFL and ELM, and the effects of the 

hyperparameters. This analysis is important to create the building blocks for 

constructing an effective and optimised NNRW. Finding a good NNRW structure is of 

fundamental importance for an effective NNRW implementation (Scardapane and 

Wang, 2017). The standard SLFNN structure for regression and its elements are 

illustrated in Figure 5.1. The fundamental difference to an SLFNN for classification 

lies in the output layer, where an additional activation function is applied and more 

than one node can be present. 
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Figure 5.1: Single-hidden-layer feedforward neural network architecture. 

 

In the SLFNN, a prediction y is obtained by feeding forward a given pattern 𝑥 

through the network and computing the corresponding operations. Each node 𝑖 in the 

hidden layer receives the dot product of the input pattern 𝑥 and the weights 𝑤𝐻𝑖, 

connecting the inputs to the respective node. A threshold value 𝑏𝐻𝑖 is added to the 

resulting value and then, an activation function 𝑔(∗) is applied. The described 

computation is illustrated in Eq. 5.1: 

ℎ𝑖 = 𝑔(𝒙 ∙ 𝒘𝐻𝑖 + 𝑏𝐻𝑖) 

                                        (5.1)  

The output 𝑦̂ is obtained by computing the sum of the products of the 𝑁 hidden 

layer outputs ℎ𝑖 and the weights connecting the hidden nodes to the output node 

(𝑤𝑂). The threshold value 𝑏𝑂 is then added to the resulting value, as shown in Eq. 

5.2. 
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𝑦̂ = ∑ ℎ𝑖 ∙ 𝑤𝑂𝑖

𝑁

𝑖=1

+ 𝑏𝑂 

                                        (5.2)  

The complete feedforward process can be described according to the Eq. 5.3. 

𝑦̂(𝒙) = ∑ 𝑔(𝒙 ∙ 𝒘𝐻𝑖 + 𝑏𝐻𝑖) ∙ 𝑤𝑂𝑖

𝑁

𝑖=1

+ 𝑏𝑂 = 𝑔(𝒙 ∙ 𝑾𝐻 + 𝒃𝐻) ∙ 𝒘𝑂 + 𝑏𝑂 

                                        (5.3)  

The SLFNN training process consists of adjusting the free parameters 𝑾𝐻, 𝒃𝐻, 

𝒘𝑂 and 𝑏𝑂 according to an optimisation objective. In general, the objective function 

is, given a training set (𝑿, 𝒚), to minimise the error between the predicted vector 𝒚̂(𝑿)  

and the true vector 𝒚. The adjustment of the free parameters is characterised by non-

convex optimisation, usually performed by BP algorithms, which are iterative and 

recursive methods based on the chain rule for computing the derivatives. Although 

many successful applications of SLFNNs with BP algorithm are reported in the 

literature, some drawbacks may include, slow convergence and local minima. 

Additionally, adjustment of the learning parameters (learning rate, number of epochs, 

etc) is not a trivial task and could lead to poor generalisation or overfitting. 

Schmidt’s work (Schmidt et al., 1992) explored the idea of fixing randomly the 

weights from the input layer to the hidden layer (𝑾𝐻) and the biases (𝒃𝐻), arguing 

that these elements are of less importance for the overall performance and optimising 

only 𝒘𝑂 and 𝑏𝑂 is sufficient for good generalisation performance. The RVFL (Pao et 

al., 1992) shares a similar idea; however, in this case, the authors include a direct 

link connecting the inputs to the output node. The resulting architecture of RVFL is 

shown in Figure 5.2. 
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Figure 5.2: RVFL architecture. 

 

The ELM follows the same structure of Schmidt et al. (1992), except for the 

output bias, which is not present, as in RVFL. The main advantage of the 

randomisation lies in the learning process, which becomes of convex nature and can 

be solved by analytical methods. Additionally, since the learning process does not 

rely on derivatives, as is the case of BP learning algorithms, almost any nonzero 

activation functions can be successfully applied (Huang et al., 2004). 

Given a training set (𝑿, 𝒚), the output from the hidden layer can be described 

as Eq. 5.4. 

𝑯 = 𝑔(𝑿 ∙ 𝑾𝐻 + 𝒃𝐻) 

                                                     (5.4) 

where 𝑾𝐻 and 𝒃𝐻 are randomly chosen and kept fixed. The function that describes 

the predicted vector 𝒚̂ is written as a linear system, according to Eq. 5.5. 
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𝒚̂ = 𝑯 ∙ 𝒘𝑂 

                                                              (5.5) 

The optimised set of weights 𝒘𝑂 is the one minimises the difference that 𝒚 −

𝒚̂, and the optimisation function can be described as 5.6.  

𝑚𝑖𝑛 ‖𝒚 − 𝒚̂‖ = 𝑚𝑖𝑛 ‖𝒚 − 𝑯 ∙ 𝒘𝑂‖ 

                                                            (5.6) 

The optimisation algorithm applied by Schmidt et al. (1992), referred to as 

Fisher solution, can be written as Equation 5.7: 

𝒘𝑂
∗ = (𝑯𝑇 ∙ 𝑯)−1 ∙ 𝑯𝑇 ∙ 𝒚 

                                               (5.7) 

which is equivalent to the Least Squares (LS) estimator. The computation of (𝑯𝑇 ∙

𝑯)−1 may lead to instability if 𝑯𝑇 ∙ 𝑯  is singular or nearly singular. This issue can be 

addressed using the ridge regression, introduced by Hoerl and Kennard (1970), 

which consists of small positive quantities added to the diagonal of  𝑯𝑇 ∙ 𝑯 (Equation 

5.8). 

𝒘𝑂
∗ = (𝑯𝑇 ∙ 𝑯 + 𝜆 ∙ 𝑰)−1 ∙ 𝑯𝑇 ∙ 𝒚 

                                                  (5.8) 

where 𝜆 is a small constant value and 𝑰 is the identity matrix. The 𝜆 is also known as 

a regularisation factor since it penalises large weights in the optimisation process. 

Alternatively, one can rely on the Moore-Penrose pseudo-inverse (Huang et al., 

2004), as used in ELM, as described in 5.9. 

𝒘𝑂
∗ = 𝑯† ∙ 𝒚 

                                        (5.9) 

where 𝑯† refers to the Moore-Penrose pseudo inverse (Huang et al., 2004). In this 

research, the ridge regression method is applied since preliminary results, not 

reported in this thesis, showed a better generalisation capability compared to the 

Moore-Penrose approach. The advantage of ridge regression was also observed by 

Zhang and Suganthan (2016). 

In the next section, the design and tuning decisions involved in the 

construction of the NNRWs are detailed. 
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5.3. NNRW HYPERPARAMETERS 

 

The hyperparameters that affect the NNRWs can be mainly divided into two 

categories: the design hyperparameters and the tuning hyperparameters. In this 

research, the NNRW design hyperparameters are described as the ones that affect 

the architecture of the NNRW, which include the number of nodes, use of the output 

bias and use of the direct link. The tuning hyperparameters include the random 

weights and bias scaling factor, the regularisation factor and the activation function.    

Number of nodes (N): Number of hidden nodes in the hidden layer. Zhang and 

Suganthan (2016) evaluated values from 3 to 203 nodes, with a step size of 20, 

however, the number of nodes were optimised separately from the remaining 

hyperparameters. Two variants of ELM try to automatically establish the number of 

nodes: the pruning ELM (Rong et al., 2008, Miche et al., 2010) and the incremental 

ELM (Huang et al., 2006), however, these methods require additional steps to 

determine the most adequate number of hidden nodes, which are dependent on the 

random weights initialisation. 

Regularisation factor (R): The regularisation factor is responsible for penalizing 

large weights in the ridge regression optimisation process. The set of values 

analysed by Zhang and Suganthan (2016) ranged from 6E-5 to 32. 

Scaling factor (S): This hyperparameter determines the interval in which the weights 

between the input layer and hidden layer are initialized. The weights are randomly 

generated from a uniform distribution and kept fixed afterwards. A commonly used 

approach is to generate W from a uniform distribution within the interval [-1 1] 

(Schmidt et al., 1992; Pao et al., 1992; Huang et al., 2004; Ding et al., 2017). The 

scaling factor is multiplied by the random weights set and changes its distribution 

interval. The effect of initial weights in RVFL was investigated by Zhang and 

Suganthan (2016), where the authors showed that the adjustment of the scaling 

factor produces statistically differences in the algorithms’ performance. 

Activation function (A): A nonlinear function applied to the hidden nodes. A very 

popular activation function is the sigmoid function (Schmidt et al., 1992; Pao et al., 

1992; Huang et al., 2004; Ding et al., 2017). Huang (2014) also mention other 

nonlinear piecewise continuous functions, such as Fourier (sine), Hardlimit and 
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Gaussian. Zhang and Suganthan (2016) evaluated the effects of the Sigmoid (Eq. 

5.10), Sine (Eq. 5.11), Hardlimit (Eq. 5.12), Tribas (Eq. 5.13), Radbas (Eq. 5.14) and 

Sign (Eq. 5.15) functions and found out that the Radbas function achieved better 

performance. In this research, besides the functions evaluated in Zhang and 

Suganthan (2016), two other functions are assessed: the hyperbolic tangent sigmoid 

(tansig - Eq. 5.16) and the rectifier linear unit (relu - Eq. 5.17). The former is a 

popular activation function used in NNs while the latter has become one of the most 

used activation functions in deep learning applications. 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
 

   (5.10) 

𝑔(𝑥) = sin(𝑥) 

   (5.11) 

𝑔(𝑥) = {
1, 𝑥 ≥ 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  (5.12) 

𝑔(𝑥) = max (1 − |𝑥|, 0) 

   (5.13) 

𝑔(𝑥) = exp (−𝑥2) 

   (5.14) 

𝑔(𝑥) = {
1, 𝑥 > 0      
0, 𝑥 = 0      

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  (5.15) 

𝑔(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

   (5.16) 

𝑔(𝑥) = {
𝑥, 𝑥 > 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  (5.17) 
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Direct link (D): It refers to the links connecting the input nodes to the output node 

and is applied in RVLF applications. It is not considered in the popular ELM 

algorithm, however, the study of Zhang and Suganthan (2016) suggests that the use 

of direct link enhances the accuracy of randomized SLFNs. 

Output bias (Ob): It is a threshold value applied to the output node. One of the 

learning principles of ELM, elaborated by Huang (2014), states that the output nodes 

should have no bias, while Zhang and Suganthan (2016) did not find significant 

differences in accuracy when the output bias is used. Preliminary experiments 

performed in this research showed that the output bias is an important factor in 

NNRW performance for some datasets.     

In this chapter, after a brief review of randomised NN algorithms, the structure 

of SLFNN with random weights was demonstrated and the design decisions involved 

in building an effective NNRW were discussed. The main representatives of NNRWs 

are the RVFL and the ELM and the fundamental difference between them is in the 

use of the direct link in RVFL. The main advantage of NNRWs is their lower training 

complexity compared to BP algorithms, which allows finding the optimal set of 

parameters in a fraction of the time and avoids getting stuck in local minima. 

Additionally, NNRWs show good accuracy and are easy to implement for both 

regression and classification problems. The tuning of NNRW’s hyperparameters is an 

important factor in its performance. A previous study carried out by Zhang and 

Suganthan (2016) gave an overview of the hyperparameter’s effect on NNRW’s 

performance. In their study, they found that the RVFL’s direct link, not present in 

ELMs, is responsible for enhancing the NNRW accuracy. 

In the next chapter, the hyperparameter tuning of the NNRW is performed on 

the datasets used in this research. To this end, a new hyperparameter optimisation 

algorithm is presented and benchmarked against a popular optimisation algorithm, 

the GA. The optimised NNRW will be used as based models for building the 

ensembles demonstrated in Chapter 7.  
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6. HYPERPARAMETER OPTIMISATION 

 

This chapter aims at finding optimised NNRW settings for the use in the 

ensemble, in Chapter 7. As any other ML algorithm, the NNRW rely on the 

adjustment of several hyperparameters, which must be set by the user and plays an 

important role in the algorithm’s performance. Although some default settings for ML 

algorithms can be found in literature or implementation packages, the diversity of 

problems and applications make it difficult to think of a one fits all solution. Finding a 

good set of hyperparameters is not a trivial task and may require not only expert’s 

experience but also an extensive process of trial and error, or, as some authors refer 

to, a black art (Snoek et al., 2012; Smith, 2018). 

Before moving to the NNRW ensemble analysis in the data stream 

environment, it is important to analyse the NNRW’s hyperparameters and find good 

settings that help improve the overall performance of the ensemble. To this end, a 

new hyperparameter optimisation algorithm is proposed in this research. The new 

algorithm is based on the analysis of properties of Design of Experiments (DOE), a 

widely used tool for process optimisation, which allows a systematic evaluation of not 

only the effect and importance of each hyperparameter but also the effect and 

importance of the interactions among them.  

In the remainder of this chapter, a literature review explores the developments 

in the field of hyperparameter optimisation in section 6.1, followed by the description 

of the methodology in section 6.2. The experimental protocol is presented in section 

6.3 and the results and discussion, in section 6.4 close this chapter.  

 

6.1. A BRIEF REVIEW ON HYPERPARAMETER OPTIMISATION 

 

Usually, ML algorithms have several hyperparameters and their adjustment 

are an important aspect to be taken into consideration. A proper adjustment of 

hyperparameters is key to achieve superior performance of ML algorithms and is 

related to the characteristics of the dataset (Di Martino et al., 2011). A popular 

approach for hyperparameter tuning is Grid-search, where sets of values for each 
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hyperparameter are defined by the user and all the combinations are evaluated. This 

approach can be time-consuming and leads to searching over not promising regions 

of the search space. Additionally, in case of continuous variables, the search is 

limited to the pre-defined values, which may be time-consuming for high granularity 

or ineffective for low granularity of the variable’s values. Some reasons for the 

popularity of Grid-search are highlighted by Bergstra and Bengio (2012), which 

include simplicity to implement, trivial parallelisation, and usually better results than 

purely manual optimisation. 

A more effective technique, the Random Search (RS), was presented in 

Bergstra and Bengio (2012). Different from Grid-search, instead of evaluating all 

hyperparameter combinations, in RS the combinations are selected randomly and the 

values of continuous variables are defined based on user-defined distributions, 

avoiding granularity issues. The authors demonstrated that the RS avoids exploring 

non-promising search space and achieve competitive results compared to Grid-

search. 

Some approaches apply sequential model-based optimisation (SMBO) 

techniques. Bergstra et al. (2011) proposed two greedy SMBO methods for tuning 

NNs and Deep Belief Networks (DBNs). The proposed method outperformed RS in 

tuning DBNs but showed similar results for NNs. Thornton et al. (2013) apply SMBO 

for hyperparameter tuning as part of a broader system that aims not only 

hyperparameter tuning but also model selection. The approach simultaneously 

evaluates different classification models and hyperparameter settings along with 

feature selection methods. 

SMBO methods require the setting of a surrogate function. This function will 

indicate the regions to be explored by the algorithm, as well as the optimisation 

criterion. These choices may highly influence not only the number of iterations for 

convergence but also the quality of the results. Another drawback of SMBO methods, 

highlighted by Maclaurin et al. (2015) is the inability to deal with problems with many 

hyperparameters. They develop a gradient-based approach to overcome this issue; 

however, it works with the assumption of a continuous search space. It relies on 

gradient descend algorithms that may need hundreds of iterations in the search 

process and may not work well in the presence of non-smooth functions. 
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Alternative approaches for hyperparameter tuning are the evolutionary 

algorithms (EA), more specifically the GA. GA has been successfully applied for 

hyperparameter optimisation. It does not require assumptions about the function that 

describes the hyperparameter space and is able to perform a directed search from an 

initial population of random samples. Lessmann et al. (2005) proposed a combination 

of GA and SVM, where the GA is used to find the best SVM structure by changing 

the kernel type, the kernel parameters and the regularisation parameter. SVM tuning 

is also addressed by Chatelain et al. (2007) and Guo et al. (2008). The former 

applies a multi-objective approach using the NSGA-II algorithm for hyperparameter 

tuning, which considers the trade-off between false rejection and false acceptance 

rates. The latter relied on Particle Swarm Optimisation (PSO) to analyse the effects 

of different kernel functions for LS-SVM. 

Di Martino et al. (2011) successfully applied GA to optimise the two 

hyperparameters of a classification SVM with Radial Basis Function (RBF) kernel. 

They not only evaluated the effects of different fitness functions but also 

benchmarked the proposed technique with Grid-search and other ML techniques. 

Barros et al. (2014) use GA to optimise the design components and the respective 

hyperparameters of DTs, achieving superior results compared to traditional DT 

algorithms, i.e. CART (Classification and Regression Trees), C4.5 and REP. Young 

et al. (2015) applied GA to optimise a Convolutional Neural Network (CNN) algorithm 

for an image classification benchmark dataset.  

Despite the advantage of EA algorithms for hyperparameter tuning compared 

to SMBO based algorithms, these methods may suffer from slow convergence, 

especially when a high number of hyperparameters are involved. Furthermore, these 

approaches do not make sense of the underlying function that describes the effect of 

each hyperparameter in the optimisation process or the importance of each 

hyperparameter. Bergstra and Bengio (2012) showed through a Gaussian process 

analysis that, for the same algorithms, in most datasets, a few sets of 

hyperparameters are more important for algorithm’s performance and they differ 

according to the dataset. Additionally, they mentioned the fact that hyperparameter 

search space is more sensitive in some dimensions than others.  
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Based on the drawbacks of the existing approaches and taking advantage of 

the observations pointed out by Bergstra and Bengio (2012), a new approach is 

proposed in this research. The approach uses the features of the ANOVA (Analysis 

of Variance) to determine the hyperparameter with the more sensitive search space 

at each step, i.e. the hyperparameter with higher effect on the algorithm’s variability. 

Once identified, this hyperparameter is adjusted, reducing the overall search space 

for the next iteration. Additionally, the proposed method takes into consideration, in 

the optimisation process, the interaction among hyperparameters, which may 

improve the effectiveness of the hyperparameter tuning. 

 

6.2. METHODOLOGY 

 

The general factorial experiment (Montgomery, 2012) has been widely used in 

process and product optimisation. Previous experiments (Almeida and Steiner, 2013; 

Almeida et al., 2019) showed that the use of full factorial DOE is useful to identify the 

hyperparameters that have the highest effect on algorithm’s performance in both 

optimisation problems and supervised learning tasks. The proposed approach takes 

advantage of the ANOVA to explicitly determine the most sensitive hyperparameter 

and its statistical significance at each iteration. It relies on the use of the factorial 

experiment to analyse the effects and tune the hyperparameters.  

Considering a two-factor experiment, where each factor represents an 

algorithm hyperparameter, the response, i.e. the algorithm’s measure of 

performance, when the hyperparameter H1 is set at the ith level (i = 1, 2, …, a) and 

the hyperparameter H2 is set at the jth level (j = 1, 2, …, b) for the kth replicate (k = 

1, 2, …, n), is denoted as 𝑦𝑖𝑗𝑘. Each observation can then be represented by the 

effects model (Montgomery, 2012), as shown in Equation (6.1). 

𝑦𝑖𝑗𝑘 = 𝜇 +  𝜏𝑖 +  𝛽𝑗 +  (𝜏𝛽)𝑖𝑗 +  𝜖𝑖𝑗𝑘 

  (6.1) 

where 𝜇 is the overall mean, 𝜏𝑖 is the effect of hyperparameter H1 at level i, 𝛽𝑗 is the 

effect of the hyperparameter H2 at level j, (𝜏𝛽)𝑖𝑗 is the effect of the interaction 
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between the hyperparameters, and 𝜖𝑖𝑗𝑘 is a random error. The treatment and 

interaction effects are defined as deviations from the overall mean, consequently, 

∑ 𝜏𝑖 = 0𝑎
𝑖=1 , ∑ 𝛽𝑗 = 0𝑏

𝑗=1 , and ∑ (𝜏𝛽)𝑖𝑗 = 𝑎
𝑖=1 ∑ (𝜏𝛽)𝑖𝑗

𝑏
𝑗=1 = 0. Through the analysis of 

variance, the hypothesis of equality of different levels of each hyperparameter 

(Equations 6.2 and 6.3), as well as the interaction (Equation 6.4) between them, are 

evaluated. 

𝐻0: 𝜏1 =  𝜏2 =  … =  𝜏𝑎 = 0 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑖 ≠ 0 

            (6.2) 

𝐻0: 𝛽1 =  𝛽2 =  … =  𝛽𝑎 = 0 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑖 ≠ 0 

(6.3) 

𝐻0: (𝜏𝛽)𝑖𝑗 =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 (𝜏𝛽)𝑖𝑗 ≠ 0 

(6.4) 

In order for the null hypothesis to be true, the mean squares must estimate the 

variance (𝜎2). The expected mean squares, for the hyperparameter H1 and H2, the 

interaction between them and the mean squared error are given by the Equations 

6.5, 6.6, 6.7 and 6.8, respectively. 

𝐸(𝑀𝑆𝐻1) = 𝐸 (
𝑆𝑆𝐻1

𝑎 − 1
) =  𝜎2 +

𝑏𝑛 ∑ 𝜏𝑖
2𝑎

𝑖=1

𝑎 − 1
 

                               (6.5) 

𝐸(𝑀𝑆𝐻2) = 𝐸 (
𝑆𝑆𝐻2

𝑏 − 1
) =  𝜎2 + 

𝑎𝑛 ∑ 𝛽𝑗
2𝑏

𝑗=1

𝑏 − 1
 

                             (6.6) 

𝐸(𝑀𝑆𝐻1𝐻2) = 𝐸 (
𝑆𝑆𝐻1𝐻2

(𝑎 − 1)(𝑏 − 1)
) =  𝜎2 +  

𝑛 ∑ ∑ (𝜏𝛽)𝑖𝑗
2𝑏

𝑗=1
𝑎
𝑖=1

(𝑎 − 1)(𝑏 − 1)
 

                  (6.7) 
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𝐸(𝑀𝑆𝐸) = 𝐸 (
𝑆𝑆𝐸

𝑎𝑏(𝑛 − 1)
) =  𝜎2 

                                   (6.8) 

If there are differences between different levels of each hyperparameter or in 

the interaction, the corresponding mean square will be larger than MSE. The error 

term 𝜖𝑖𝑗𝑘 is assumed to be normally and independently distributed with constant 

variance 𝜎2, the mean square ratios, in this example MSH1/MSE, MSH2/MSE, and 

MSH1H2/MSE, follows the F distribution with a - 1, b - 1 and (a - 1)(b - 1) degrees of 

freedom in the numerator, respectively, and ab(n – 1) degrees of freedom in the 

denominator. Larger mean squares ratios suggest that the null hypothesis does not 

hold, which can be confirmed by the analysis of the critical region of the F 

distribution. The ANOVA table summarises the results in terms of mean squares and 

statistical significance. 

Based on the capabilities of the full factorial experiment, an automatic 

hyperparameter optimisation algorithm was developed in this research. The approach 

takes advantage of the information from the SS computation to prioritise the 

adjustment of each hyperparameter according to its importance. In this research, the 

importance of a hyperparameter is related to its effect on the algorithm’s accuracy 

due to its adjustment, i.e., the variability of the algorithm’s accuracy when the 

hyperparameter is adjusted, which can be captured by computing the SS of the error. 

Therefore, the new algorithm is referred to as SSHT (Sum of Squares 

Hyperparameter Tuning). To deal with continuous hyperparameters, such as the 

number of nodes or regularisation factor, SSHT not only accepts predefined values 

(in case they are treated as categorical) but is also able to perform interpolation 

based on lower and upper limits defined by the user. One limitation of the current 

approach is tackling dependent hyperparameters, that becomes inactive according to 

a certain set of another hyperparameter, e.g. the number of nodes in the second 

hidden layer of a NN when a single hidden layer is evaluated (Bergstra et al., 2011; 

Thornton et al., 2013).  

The algorithm starts computing the full factorial experiment, i.e. evaluating all 

hyperparameter combinations. For each combination, at least two evaluations, i.e. 

two runs of the algorithm using the same levels for each hyperparameter, are 
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required in order to compute the error SS of each treatment, the higher the number of 

evaluations, more robust results are achieved. This is especially useful for weak 

algorithms, such as NNRW, where variations in the initial random weights and 

training data produce a high variability in the output.  

The results of factorial experiments are used to compute the SS for both main 

effects and two-factor effects, with their respective F-value and significance level. 

The hyperparameter with higher effect on the algorithm’s variability is selected to be 

adjusted. Before computing the averages of each hyperparameter level to define the 

best one, a filter is applied to consider the interaction of the chosen hyperparameter 

with the others. The interactions are analysed and, for each statistically significant 

interaction, the worst level of the hyperparameters with significant interaction with the 

chosen one is temporarily disabled. This aims to avoid the effect of interactions when 

defining the level of the chosen hyperparameter where the higher accuracy was 

achieved. 

As an example, considering a ML algorithm with hyperparameters A, B and C, 

with two levels (Low and High) each, all possible combinations are computed, i.e. [AL, 

BL, CL], [AL, BL, CH], [AL, BH, CL], [AL, BH, CH], [AH, BL, CL], [AH, BL, CH], [AH, BH, CL], 

[AH, BH, CH]. Each combination must be computed at least two times and the results 

are used to compute the ANOVA table, which shows the F-score and significance of 

the main effects (A, B and C) and the interactions (AxB, AxC and BxC). The 

algorithm chooses the main effect with higher F-score and, before computing the 

average of low and high levels, checks for significant interactions, e.g. if A is the main 

effect with higher F-score, the interactions AxB and AxC are analysed. In the case of 

the interaction AxB, for example, being statistically significant, the average error of BL 

and BH are computed and the experiments with the worst level of B are temporarily 

disabled. This process is repeated for all A interactions and then the average error of 

A levels are computed, using the remaining experiments.  

Once the averages of A levels are computed, the setting of A has two 

possibilities, according to the type of hyperparameter, i.e. continuous and categorical. 

The latter case is the simpler one, the best level of A is set, the experiments with the 

worst level are excluded, and a new ANOVA is computed for the analysis of the next 

hyperparameter. In case of a continuous hyperparameter, an intermediate level is 
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defined and new experiments with the new level, combined with all levels of the 

remaining hyperparameter are performed. The new experiments are combined with 

the existing ones, i.e. the combination of all hyperparameters with the best level of A 

and a new ANOVA is computed for the use in the next iteration. The process is 

illustrated in Figure 6.1. 

 

 

Figure 6.1: SSHT procedure. 
 

In order to evaluate the effectiveness of the proposed hyperparameter tuning 

approach, it is compared to a metaheuristic approach, as described in the next 

section.  
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6.3. EXPERIMENTAL PROTOCOL 

 

In this section, the evaluation protocol used to assess the proposed approach 

is described. The experiments are carried out using the four benchmark datasets 

considered in this research (House, Maintenance, Energy and Quality). Additionally, 

five synthetic datasets are generated using the functions described in Chapter 4 (F1, 

F2, F3, F7 and F11). The synthetic datasets are created with 15 predictive variables, 

randomly generated within the interval [0, 10] and containing 10,000 observations. 

Both benchmark and synthetic datasets attributes are standardised (mean 0 and 

variance 1).  

The experiments aim to understand how each hyperparameter affects the 

accuracy of the NNRW and all adjustable factors of NNRW, as described in Chapter 

5, are analysed. The hyperparameters are divided into two main types, continuous 

and categorical/binary hyperparameters. The continuous ones are the number of 

nodes (N), regularisation factor (R) and initial random weights (W) and the 

categorial/binary hyperparameters are the activation function (A), use of direct link 

(D) and use of output bias (Ob). Table 5.1 shows the range of values to be searched 

for NNRW hyperparameter optimisation. It is important to note that the continuous 

hyperparameters are described in terms of limits, within which the search will be 

performed, and that the number of nodes lies in the integer domain.    

 

Table 6.1: Hyperparameters levels for the first set of experiments. 

Hyperparameter Range of values Type 

N [20, 150] Integer (step = 1) 

R [0.01, 1.50] Continuous 

W [0.1, 1.5] Continuous 

A [relu, logsig, tansig, sin, hardlim, tribas, radbas, sign] Categorical/Binary 

D [False, True] Categorical/Binary 

Ob [False, True] Categorical/Binary 

 

For the means of comparison, a widely used technique, the GA (Pinto et al., 

2013), is considered. The GA has been successfully applied for many optimisation 
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problems. It is relatively easy to implement and avoids the drawbacks of SMBO 

based approaches. In this thesis, a combined strategy is applied to encode the GA 

chromosomes, where one cluster deals with continuous variables and the other deals 

with categorical and binary ones. This requires special attention to the crossover 

procedure, which relies on two different strategies applied according to the cluster. 

For the continuous cluster, a convex combination of the selected parents is 

computed, according to Eq. 6.9.  

𝑝𝑛𝑒𝑤 = 𝛼𝑝1 + (1 − 𝛼)𝑝2 

(6.9) 

where 𝑝1 and 𝑝1 are the selected parents and 𝛼 is a random value uniformly 

distributed within the interval [−𝛾, 1 + 𝛾]. 

For the categorical cluster, the popular uniform crossover (Pinto et al., 2013) is 

applied. The crossover strategy is illustrated in Figure. 6.2. 

 

Figure 6.2: Crossover strategy for hyperparameter optimisation using GA. 
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When a pair of individuals are selected for the crossover, both clusters are 

subjected, at the same time, to their respective crossover strategies. The remaining 

GA parameters were adjusted manually, based on preliminary experiments, and are 

defined as follows: 

• Number of iterations: 30; 

• Population size: 200; 

• Crossover percentage: 60%; 

• Mutation percentage: 10%; 

• Mutation rate: 2%; 

• 𝛾 = 0.2; 

• Stopping criteria: 5 iterations. 

 

For each experiment, a sample of 4,000 observations is selected from the 

dataset, from which 2,000 are used for hyperparameter optimisation and 2,000 are 

used for evaluation. The data for hyperparameter optimisation is fed to the 

algorithms, which use 70% for training and 30% for validation, i.e. 1,400 observations 

are used to train the NNRW with a given set of hyperparameters and 600 are used to 

compute the MSE for validation. Once the hyperparameters are optimised, 70% of 

the evaluation data is used to train a model and the remaining 30% is used to test the 

accuracy of the optimised model. This process is repeated 10 times and each 

experiment is repeated 30 times for each dataset.  

The results are discussed in the next section. 

 

6.4. RESULTS AND DISCUSSION 

 

The proposed hyperparameter tuning algorithm proved an effective method to 

optimise the NNRW and a promising tool to advance the field of hyperparameter 
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tuning. Compared to the GA algorithm the main achievements are: very competitive 

accuracy and fewer number of evaluations required. The results are summarised in 

Table 6.2, which presents the average MSE for each hyperparameter set found by 

SSHT and GA, and Table 6.3, which brings the number of evaluations required by 

each algorithm. 

 

Table 6.2: Average and standard deviation MSE resulted from NNRW optimised by SSHT and GA. 

  F1 F2 F3 F7 F11 Energy House Quality Maint. 

S
S

H
T

 

Avg 211.8 37981.1 2542.4 82.1 47.2 9472.9 4.12E+9 0.556 1.74E-7 

Std 31.1 19202.2 1024.6 3.4 1.3 887.3 2.63E+8 0.029 3.02E-8 

G
A

 Avg 237.1 116317.8 6178.6 83.2 47.4 9696.3 4.20E+9 0.538 1.77E-7 

Std 18.7 104891.8 1047.7 3.4 1.7 1000.7 2.78E+8 0.030 3.90E-8 

 Diff -10.7% -67.3% -58.9% -1.4% -0.4% -2.3% -2.0% 3.4% -2.0% 

 p-value << 0.01 << 0.01 << 0.01 0.188 0.630 0.372 0.253 0.023 0.707 

 

The results of Table 6.2 show that the hyperparameter sets found by SSHT 

achieved similar average MSE compared to GA. Considering a significance level of 

5%, the p-value of the t-test indicates that the average MSE for F7, F11, Energy, 

House and Maintenance are statistically equal. GA resulted in slightly better accuracy 

in the Quality dataset, while SSHT performed better in F1, F2 and F3.  

 

Table 6.3: Descriptive statistics of the number of evaluations needed for SSHT and GA to NNRW 
optimisation. 

  F1 F2 F3 F7 F11 Energy House Quality Maint. 

S
S

H
T

 

Avg 700.1 1469.6 756.8 1091.1 1090.9 636.0 585.9 663.7 1314.7 

Std 58.3 69.3 38.2 193.2 229.7 130.1 69.6 111.1 79.1 

Min 632 1232 656 832 768 512 512 512 1056 

Max 816 1584 840 1600 2048 1024 768 992 1456 

G
A

 

Avg 2416.7 2888.0 2211.3 1684.0 1828.7 1436.7 1660.7 1712.0 3168.0 

Std 827.5 1162.6 973.0 687.4 777.4 460.2 553.8 485.5 951.2 

Min 1040 1320 1040 1040 1040 1040 1040 1040 1180 

Max 3840 4400 4400 4400 4400 2580 3000 2720 4400 
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In terms of the number of evaluations (Table 6.3), SSHT not only needed 

fewer evaluations compared to GA (up to 1/3 of the evaluations needed by GA) but 

also better consistency. The much lower standard deviation and amplitude (the 

difference between the minimum and the maximum number of evaluations) indicate 

that SSHT achieves similar results in every run. This fact summed to the equal or 

better accuracy (The accuracy on Quality dataset could be considered statistically 

equal if 1% significance is required) puts SSHT as a very competitive strategy for 

hyperparameter tuning.  

It is important to investigate the values of the hyperparameters returned by the 

tuning algorithms and analyse their effects on the set up of NNRW. Firstly, the 

activation function recommended by each algorithm for each problem is summarised 

in Table 6.4. 

   

Table 6.4: Number of times each activation function was recommended by the optimisation algorithms. 

  hardlim logsig radbas relu sign sin tansig tribas 

F1 
SSHT 0 0 13 16 0 0 0 1 

GA 0 0 3 27 0 0 0 0 

F2 
SSHT 0 0 30 0 0 0 0 0 

GA 0 0 25 5 0 0 0 0 

F3 
SSHT 0 0 28 2 0 0 0 0 

GA 0 0 5 25 0 0 0 0 

F7 
SSHT 5 3 2 6 4 3 5 2 

GA 2 11 3 1 3 1 7 2 

F11 
SSHT 5 7 2 3 2 6 2 3 

GA 1 13 1 1 6 1 3 4 

Energy 
SSHT 3 8 5 3 1 2 3 5 

GA 3 17 0 5 0 1 3 1 

House 
SSHT 0 1 2 20 0 0 2 5 

GA 0 1 9 18 0 0 1 1 

Quality 
SSHT 2 1 6 15 1 2 0 3 

GA 0 3 3 22 0 1 1 0 

Maint. 
SSHT 0 0 0 0 0 29 1 0 

GA 0 0 2 0 0 28 0 0 

Total 21 65 139 169 17 74 28 27 
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The first result to be highlighted is that the relu was the most recommended 

activation function, followed by radbas and sin (which was responsible for the better 

accuracy in Maintenance dataset). In general, both algorithms agreed on the 

activation function recommendations, with the main exceptions observed in the F1 

and F3 datasets. In F1, while GA concentrated its recommendations in relu function, 

SSHT divided its recommendations mainly between relu and radbas.  

The fact that SSHT hyperparameter sets showed better accuracy compared to 

GA in F1 dataset (Table 6.1) raised the question if the use of radbas was responsible 

for that difference. The average MSE of the 13 radbas the 16 relu recommendations 

resulted in 180.6 and 234.9, respectively, a relatively large difference that confirms 

the advantage of radbas for this dataset. In the case of F3, where SSHT showed an 

advantage of 58.9% in terms of accuracy, SSHT recommendations concentrated on 

radbas, while GA focused on relu. For F2 (where SSHT showed bigger advantage 

compared to GA), House and Maintenance datasets, both algorithms behaved the 

same in terms of the activation function. For F7, F11 and Energy datasets, there was 

no clear advantaged of one activation function over another. 

Table 6.5 shows the results related to the use of direct link and output bias, i.e. 

the number of times they were set as true or false.  

 

 

 

 

 

 

 

 

 



63 
 

Table 6.5: Number of times SSHT and GA recommend the activation of direct link and output bias. 

  Direct link Output bias 

  True False True False 

F1 
SSHT 30 0 30 0 

GA 30 0 30 0 

F2 
SSHT 30 0 25 5 

GA 30 0 25 5 

F3 
SSHT 30 0 30 0 

GA 30 0 30 0 

F7 
SSHT 8 22 30 0 

GA 8 22 27 3 

F11 
SSHT 8 22 30 0 

GA 10 20 26 4 

Energy 
SSHT 30 0 30 0 

GA 17 13 18 12 

House 
SSHT 30 0 30 0 

GA 23 7 26 4 

Quality 
SSHT 29 1 30 0 

GA 26 4 28 2 

Maint. 
SSHT 30 0 30 0 

GA 23 7 30 0 

 

Both algorithms showed similar results, except on Energy dataset, where GA 

divided its recommendations between true and false for both direct link and output 

bias, while SSHT recommended true for both hyperparameters in all runs. The use of 

output bias is an important feature to increase the accuracy of the NNRW. Both 

algorithms recommended the use of output bias most of the time (98.1% in case of 

SSHT and 88.9% in case of GA) for all datasets, this hyperparameter was also the 

main source of NNRW variance. The direct link was also recommended most of the 

time; however, in this case, for two datasets (F7 and F11) the use of direct link was 

avoided by the algorithms. An in-depth look at the averages of the two direct link 

settings showed no important difference between the treatments. In order to check if 

there is a statistical difference between NNRW with or without the direct link in F7 

and F77 datasets, additional experiments were performed. By using an arbitrary set 

of hyperparameters, 100 runs were executed and the average MSE were computed. 

The results are shown in Table 6.6. 
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Table 6.6: Average and standard deviation MSE resulted by NNRW with and without the direct link in 
datasets F7 and F11. 

  Direct link  

  True False p-value 

F7 
MSE 82.6 81.6 0.015 

std 2.7 2.6   

F11 
MSE 47.0 46.3 << 0.010 

std 1.2 1.3   

 

In fact, considering a confidence level of 5% for the paired t-test, an advantage 

is observed when the direct link is deactivated in F7 and F11 datasets. 

In Table 6.7, the mean and standard deviation of the number of nodes, 

weights and regularisation factor recommendations are presented.   

 

Table 6.7: Average optimised N, W and R hyperparameters. 

  N W R 

  Avg Std Avg Std Avg Std 

F1 
SSHT 148.3 4.7 0.2 0.1 0.15 0.26 

GA 141.9 6.8 0.8 0.4 0.48 0.25 

F2 
SSHT 148.3 3.0 0.1 0.0 0.04 0.13 

GA 139.7 10.2 0.2 0.3 0.31 0.38 

F3 
SSHT 147.2 4.4 0.1 0.1 0.06 0.19 

GA 145.1 6.3 0.6 0.3 0.63 0.34 

F7 
SSHT 24.5 7.1 0.8 0.7 0.51 0.61 

GA 59.8 29.8 0.5 0.4 0.68 0.34 

F11 
SSHT 24.9 8.2 0.6 0.6 0.41 0.60 

GA 53.3 31.9 0.7 0.4 0.78 0.34 

Energy 
SSHT 44.4 45.7 0.6 0.6 0.99 0.70 

GA 73.2 30.1 0.6 0.4 0.74 0.44 

House 
SSHT 122.9 42.9 0.8 0.6 0.94 0.67 

GA 95.2 27.4 0.6 0.3 0.87 0.30 

Quality 
SSHT 82.3 54.4 0.4 0.4 1.10 0.57 

GA 87.0 25.5 0.6 0.3 0.73 0.33 

Maint 
SSHT 132.0 26.0 0.9 0.2 0.01 0.00 

GA 116.5 17.4 0.8 0.1 0.01 0.00 
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In general, both algorithms showed similar values for N, W and R. The base 

number of nodes varies according to the problems, although it is generally accepted 

that higher accuracy is obtained by increasing the number of nodes. In all cases, the 

initial weights range lies in the interval [-0.9 0.9]. In the case of F1, F3 and F11, 

where the more important differences in accuracy were observed, additional 

experiments showed that the different W recommendations from SSHT and GA 

algorithms resulted in significant differences in terms of accuracy. Similar behaviour 

was observed in the analysis of R. 

The proposed SSHT algorithm for hyperparameter tuning proved a competitive 

approach for NNRW optimisation. The accuracies of the hyperparameter settings 

found by SSHT were equal to or better than the accuracies of GA settings, in most of 

the datasets. Furthermore, while GA required an average of 2111.8 evaluations to 

find the optimised hyperparameter settings for all problems, SSHT needed on 

average 923.2 evaluations to converge, a reduction of 56.3%. This is an important 

advantage, especially when tuning computationally expensive algorithms such as 

DNNs or high dimensional SVMs. 

The proposed approach uses a simple interpolation technique to achieve 

convergence for continuous hyperparameters. More advanced and effective 

searching techniques, such as Bayesian optimisation or gradient-based techniques, 

could potentially improve the search process and reduce the required number of 

evaluations. During the optimisation process, when SSHT finds two levels that are 

statistically equal, it arbitrarily chooses the one that resulted in better accuracy. It is 

possible to easily take advantage of this mechanism by including a criterion that 

considers other optimisation measures, such as computing time, for example.  

In Table 6.8 the optimised set of hyperparameters for each problem is 

summarised. The average values of SSHT were selected for F1, F2 and F3 datasets 

and the values found by GA were selected for the Quality dataset. For the remaining 

datasets, where the results were statistically equal, an average of both techniques is 

used.  
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Table 6.8: Final optimised NNRW hyperparameters for each dataset. 

 A D O N W R 

F1 radbas True True 148 0.2 0.15 

F2 radbas True True 148 0.1 0.04 

F3 radbas True True 147 0.1 0.06 

F7 relu False True 42 0.7 0.60 

F11 relu False True 39 0.6 0.59 

Energy logsig True True 59 0.6 0.87 

House relu True True 109 0.7 0.91 

Quality relu True True 87 0.6 0.73 

Maint. sin True True 124 0.9 0.01 

 

In this chapter, the SSHT, a new technique for hyperparameter optimisation, 

has been presented. The results demonstrated that SSHT is an effective tool for 

hyperparameter optimisation. SSHT showed similar convergence compared to the 

GA, however, the SSHT showed better consistency, i.e. achieved similar results in 

every run, and also required a fewer number of evaluations to find the optimised 

hyperparameter set, which results in an important computational advantage 

compared to the GA. Despite the popularity of the ELM, the results indicate an 

advantage of RVLF in terms of accuracy. In most of the cases, the best accuracy was 

achieved using the direct link, a mechanism that is present only in the RVFL 

architecture. Additionally, the results showed significant improvement in accuracy 

when the output bias is present, while Huang (2014) argues that the output bias 

should not be active and Zhang and Suganthan (2016) did not find a statistical 

difference when it is not activated. The optimised NNRW hyperparameter setting 

found in this chapter will support the development of the ensemble, in the next 

chapter. For each dataset, the ensemble will be built using the respective optimised 

NNRW as base models for the evaluation on the simulated data streams.  
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7. A NEW ENSEMBLE APPROACH FOR DATA STREAM 
REGRESSION 

 

In this chapter, a new bagging ensemble method based on NNRW is 

developed. The proposed approach, bagging NNRW (B-NNRW) aims to deal with the 

online regression problems in the presence of concept drift with competitive accuracy 

and better computational efficiency compared to the existing methods. The proposed 

algorithm takes advantage of the efficiency of NNRWs to build a homogeneous 

ensemble and enables effective updating of the model to accommodate possible 

concept drifts.  

The proposed approach relies on an initial buffer of training data to build the 

initial ensemble. The ensemble is built using the bagging meta-algorithm, which 

creates bootstrap samples of data that are used to train the base models and helps 

to increase the ensemble’s diversity. Although some of the online ensemble 

approaches do not rely on data buffering, these methods require that a considerable 

amount of training samples are presented to the model before it reaches an 

acceptable level of accuracy (Oza and Russell, 2001; Ikonomovska et al., 2015). The 

update of the developed ensemble is executed by tracking the base model’s 

performance and scoring them accordingly. When a model achieves a pre-

determined level of the negative score, it is replaced by a new model. To evaluate the 

proposed algorithm, synthetic datasets simulating various types of drift are used, 

along with benchmark datasets from public data repositories.  

In the next section, the B-NNRW methodology is presented. Before evaluating 

the proposed approach, more details on data generation are outlined in Section 7.2, 

followed by the approach for data scaling applied in this research, on Section 7.3 and 

a brief discussion on the ensemble size, carried out in Section 7.4.    

 

7.1. METHODOLOGY 

 

In this section, the proposed ensemble algorithm for data stream regression is 

demonstrated. The algorithm applies the bagging meta-algorithm to create a 
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diversified ensemble of NNRWs. To cope with concept drift, the weight of each model 

is dynamically updated (i.e. at every new instance), based on the exponentially 

smoothed error. Additionally, a replacement mechanism base on individual’s 

performance helps to improve the ensemble accuracy and also keeps the accuracy 

under control on the occurrence of various types of concept drift.  

The algorithm starts by buffering the first samples of the data stream to form 

the training set and then the bagging meta-learning is applied. The bagging meta-

learning consists of creating M bootstrapped samples from the training data, where 

each sample has the same number of instances of the training data and is used to 

build a model. From each sample, 70% of the data are used for training and the 

remaining 30% are used for validation. The validation set is used to compute the 

MSE for each model m. The MSE is then used to compute the weight of each 

ensemble member, using Eq. 7.1. 

𝑤𝑚 =
1

𝑀𝑆𝐸𝑚
 

                                                            (7.1) 

 The process is illustrated in Figure 7.1. 

  

Figure 7.1: Initial B-NNRW ensemble. The different W sizes represent the weights attributed to each 
model according to their accuracy. 
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Once the ensemble is built, the output of a new instance 𝑥 is predicted 

according to Eq. 7.2. 

𝑦𝐸(𝑥) =  
∑ 𝑤𝑚 ∗ 𝑦̂𝑚(𝑥)𝑀

𝑚=1

∑ 𝑤𝑚
𝑀
𝑚=1

 

                                                    (7.2) 

where 𝑦̂𝑚 is the output of model m and 𝑤𝑚 is the model’s weight. As the ensemble 

performs the predictions on the data stream, two updating mechanisms become 

active, the weight updating and the model contribution. 

The weight updating aims at dimming the importance of the less accurate 

models in the final decision. Relying on the last squared error may be ineffective 

since the model’s accuracy for a single observation may be far from its overall 

accuracy. On the other hand, global MSE may not represent the current accuracy of 

the model. In the case of concept drift, the lower accuracy on new instances may not 

be immediately reflected on the global MSE, therefore, it may be slow to identify 

when the model’s accuracy is decreasing. To overcome this, the MSE is updated 

using an exponential moving average filter, henceforth referred to as Exponentially 

Smoothed MSE (ESMSE), computed as Eq. 7.3. 

𝐸𝑆𝑀𝑆𝐸𝑛 = {
𝛼. 𝑆𝐸𝑛 + (1 − 𝛼). 𝑀𝑆𝐸,                    𝑖𝑓 𝑛 = 1

𝛼. 𝑆𝐸𝑛 + (1 − 𝛼). 𝐸𝑆𝑀𝑆𝐸𝑛−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

                                          (7.3) 

where 𝛼 is a tuning parameter where the user can regulate the sensitivity of the 

model to current error. A large 𝛼 will give more importance to the last error and the 

algorithm will respond faster to a decrease in the model accuracy, reducing its 

importance when computing the model’s weight. On the other hand, a small 𝛼 will 

make the MSE less sensitive to short term errors. 

The replacement mechanism works by evaluating the models’ performance 

and eventually replacing the low performing members. The evaluation can be carried 

out using any ML performance metric, such as MSE, MAPE, accuracy, precision or 

F1 score. The replacement mechanism proposed in this research is easy to 

implement and, different from traditional concept drift detection mechanisms, 

activates the update of the ensemble regardless of the occurrence of concept drift. 

This helps to improve the accuracy of the ensemble while no concept drift is 
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detected. The replacement of low performing members for more accurate ones 

increases the overall accuracy and also encourages the continuous improvement of 

the ensemble accuracy. There will be always comparatively low performing members 

subject to be replaced. Additionally, there is no need to tune the drift detection 

mechanism or tune the number of models to be replaced. 

The replacement is activated when the model’s score decreases relative to the 

model’s lifetime for a given period of time. A model receives a score when it meets its 

performance targets. In this research, the target was established in terms of accuracy 

related to the accuracy of the ensemble. More specifically, when the model’s error is 

lower than the average of all ensemble members, 1 point is added to its score (Sm), 

as shown in Eq. 7.4. 

𝑆𝑚 = {
𝑆𝑚 + 1,       𝑖𝑓 𝑒𝑚 <

1

𝑀
∑ 𝑒𝑚

𝑀

𝑚=1

𝑆𝑚,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                          (7.4) 

The lifetime of a model (Lm) is computed as the number of instances that have 

been presented to the model for prediction. Using the model’s lifetime it is possible to 

compute the relative score (RS), as shown in Eq. 7.5. 

𝑅𝑆𝑚 =
𝑆𝑚

𝐿𝑚 + 1
 

                                          (7.5) 

When a model loses its accuracy its score will remain constant and therefore, 

its relative score will decrease. Preliminary experiments using fixed replacement 

intervals showed that, in most of the cases, the replaced models had shown low 

performance for long periods before the updating point. This would result in a 

constant decrease of RS and therefore could be used to trigger the replacement of 

the model. The trigger T is computed according to Eq. 7.6, as follows: 

  

𝑇𝑚 = {
𝑇𝑚 + 1,       𝑖𝑓 𝑅𝑆𝑛

𝑚 < 𝑅𝑆𝑛−1
𝑚

𝑇𝑚 − 1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

                                          (7.6) 
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The model is replaced when T reaches a user-defined threshold. A lower 

threshold will result in higher sensitivity to concept drift and therefore a higher 

number of replacements. The opposite behaviour is expected when the threshold 

value is increased. This approach allows any kind of performance metric to be used 

to evaluate the model’s performance. It also allows that a model recovers its 

accuracy if it performs poorly for a short period, avoiding unnecessary computations. 

The replacement strategy for an ensemble with 6 base models is illustrated in Figure 

7.2 and the B-NNRW procedure is summarised in the diagram shown in Figure 7.3. 

 

 

 Figure 7.2: B-NNRW replacement strategy. 
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Figure 7.3: B-NNRW procedure. 

 

In the next section, the details regarding the synthetic data generation are 

presented. 

 

7.2. DATA STREAM GENERATION 

 

For the assessment of the effectiveness of the strategies proposed in this 

research, different synthetic datasets were generated. For each function described in 

Section 4.2, five scenarios were simulated which include no drift, two types of gradual 
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drift (gradual rotation and gradual replacement), abrupt drift and data expansion. The 

five scenarios are created as follows:  

No drift: The data were generated without drift according to Eqs. 4.13 - 4.16; 

Gradual rotation: The gradual rotation applies function rotation by changing the 

position of the function global minimum, as described in section 4.2. For each new 

instance, the position of the global minimum is moved by a percentage of the input 

range. The directions for each dimension were randomly selected and approximately 

half of the dimensions moves in the positive direction while the remaining move in the 

negative direction. The dimensions in which the global minimum is moved were 

randomly chosen at each new instance. The settings for the gradual rotation are 

summarised in Table 7.1. 

 

Table 7.1: Gradual rotation settings. 

 F1 F2 F3 F7 F11 

Lower bound 6.0 5.0 5.0 0.0 0.0 

Upper bound 10.0 6.0 7.5 100.0 40.0 

Range 4.0 1.0 2.5 100 40 

Percentage change 0.010% 0.015% 0.010% 0.015% N.A 

Absolute change 0.00040 0.00015 0.00025 0.01500 N.A 

 

An exception is the function F11. For this function, changing the global 

minimum does not rotate the hyperplane; therefore it has a limited effect on drift 

simulation. To effectively simulate gradual drift for function F11, a change in the 

function bias value is applied. The initial F11 bias, described in section 4.2, is 

incremented by 0.005 at each new instance (25/number of instances). 

Gradual replacement: This drift was simulated by generating different hyperplanes 

and gradually replacing one by another. In this research, a linear replacement was 

applied where the replacement of the hyperplane H1 by hyperplane H2 starts with 

zero probability before the drifting point, reaches 50% probability in the drift point and 

ends with 100% probability, where H1 is completely replaced. This process is carried 

out during 50% of the distance between the drift points. Considering a distance 
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between drift points of 1,000 instances the replacement starts 250 instances before 

the drifting point and ends 250 instances after the drifting point. The process is 

illustrated in Figure. 7.4. 

 

 

Figure 7.4: Probabilities of data being generated according to the hyperplanes H1 and H2 related to 
the drift points. 

 

The hyperplanes are distinguished by a shift in the value of function bias. For 

all functions, given a hyperplane Hn, the hyperplane Hn+1 obtained by incrementing 

the bias of function that generated Hn by 5. 

Abrupt drift: The abrupt drift is similar to the gradual replacement; however, instead 

of generating instances according to a transition probability, all the instances were 

generated from the new hyperplane after the point of drift. The process is illustrated 

in Figure. 7.5.  

 

 

Figure 7.5: Probabilities of data being generated according to the hyperplanes H1 and H2 related to 
the drift points. 
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Data expansion: The data expansion simulates a change in the distribution of inputs. 

The initial domain represents half of the final range, centred at the middle of the final 

domain (Section 4.2). The input domain is expanded at each drift point and both 

dimension and direction are chosen randomly. The expansion step is equal to half 

the original range divided by the number of drift points and split in both directions. An 

illustrative example of the expansion on a 2-dimensional domain is shown in Figure. 

7.6.  

 

 
Figure 7.6: Arbitrary data expansion example for a 2-D domain. 

 

7.3. DATA SCALING 

 

The feature scaling techniques are widely used as a preprocessing step in ML 

applications. These techniques aim at normalising the range of variables to help to 

improve the accuracy of ML algorithms, especially those based on Euclidean 

distance avoiding that the variables with wide ranges or big values have a 

disproportional contribution to the learning process.  

A common scaling approach is the min-max normalisation, where the values 

of the independent variables are scaled, in general within the interval [0, 1] and [-1, 

1]. In the case of data streams, the use of normalisation can generate inadequate 

scaling when a change in the attribute distribution is observed. This requires that the 

minimum and maximum values are properly adjusted, which is not a trivial task. 

Additionally, the normalisation is more sensitive to outliers and may require some 

form of previous data cleaning. 
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A more adequate approach for data streams is the standardisation, where 

each feature adjusted to have zero-mean and unit variance. The standardisation is 

computed as shown in Eq. 7.7, where 𝜇 and 𝜎 are the mean and the standard 

deviation of the sample 𝑥, respectively. 

𝑥′ =
𝑥 + 𝜇

𝜎
 

                                       (7.7) 

The standardisation is less sensitive to outliers. Furthermore, the mean and 

standard deviation can be computed incrementally, which makes it suitable for 

dealing with changes in data distribution without making assumptions about the 

adequate minimum and maximum attribute values. The incremental average is 

computed as Eq. 7.8. 

𝜇𝑛 = 𝜇𝑛−1 +
𝑥𝑛 − 𝜇𝑛−1

𝑛
 

                                   (7.8) 

The incremental standard deviation can be computed according to Eq. (7.9). It 

requires actual incremental average (𝜇𝑛), computed in Eq. (7.8), and the previous 

incremental average (𝜇𝑛−1). 

𝜎𝑛 = √
(𝑛 − 2)𝜎𝑛−1

2 + (𝑛 − 1)(𝜇𝑛−1 − 𝜇𝑛)2 + (𝑥𝑛 − 𝜇𝑛)2

𝑛 − 1
 

(7.9) 

Using the incremental average and standard deviation allows an effective 

scaling without storing past data (only the previous standard deviation and average 

need to be stored). 

 

7.4. ENSEMBLE SIZE 

 

One important decision in the design of an ensemble is its size. The most 

adequate ensemble size may be influenced by a number of factors, which include 

base learner algorithm, training data and computational constraints. As the ensemble 
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size grows, a computational burden is added not only in terms of memory but also in 

terms of processing time. Additionally, adding a new model only improves the 

ensemble accuracy if the new model produces different predictions from the other 

members, which can be achieved by manipulating the training data used to induce 

the new model. For a limited training dataset, it is expected that, as the number of 

base models grows, the ensemble accuracy gain decreases as the probability of 

having similar models increases. 

The accuracy of different ensemble sizes was analysed for both synthetic and 

benchmark datasets. In the case of synthetic datasets, 10,000 observations with 15 

attributes are generated for each function (F1, F2, F3, F7 and F11) with no drift. Each 

evaluation consists of randomly selecting training and testing sets, training the 

ensemble using the respective optimised set of hyperparameters for each dataset 

(obtained in Chapter 6), and computing the MSE on the testing data. A similar 

approach is applied to the benchmark data, using all the observations available 

(description on Section 4.3). In both synthetic and benchmark datasets, the training 

and testing sets are composed of 1,000 and 500 observations, respectively. 

Ensemble sizes ranging from 5 to 100, with increments of 5, were evaluated. Each 

evaluation (ensemble size/dataset) was run 30 times, and the average test MSE was 

computed. The results are illustrated in Figure 7.7, where the y-axis shows the 

average MSE and the x-axis shows the number of base models. 
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Figure 7.7: Average MSE according to the ensemble size for each dataset. 

 

The results show the effect of ensemble size on MSE. It is possible to observe 

that the accuracy converges for ensembles with approximately 30 models, except for 

F11 and Energy datasets, where the accuracies do not seem to improve as the 

ensemble size grows. Since adding new models to the ensemble only improves the 

accuracy if they are different from the existing ones, the linear correlations among the 

members of the ensemble were computed. The average correlations of the 30 runs of 

each ensemble size for each dataset are shown in Figure 7.8. 
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Figure 7.8: Average correlation according to the ensemble size for each dataset.  

 

From Figure 7.8 it is possible to highlight that the average correlations keep 

constant as the ensemble grows. Additionally, since the same approach was applied 

for all datasets, the results suggest that the characteristic of the learning problem 

plays an important role in the ensemble diversity. The average correlation of each 

dataset is summarised in Table 7.2.  

 

Table 7.2: Average pairwise linear correlation among the ensemble members. 

 F1 F2 F3 F7 F11 Energy House Quality Maintenance 

Corr 0.624 0.674 0.667 0.557 0.962 0.936 0.835 0.848 0.704 

  

The F11 and Energy datasets showed the highest levels of correlation, which 

explains why adding new models seems not to improve the ensemble’s accuracy 

(Figure 7.7). 

In the next section, the effects of the ensemble's hyperparameters, the 

smoothing factor (𝛼) and the replacement threshold (𝑟) are analysed. 
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7.5. B-NNRW ADJUSTING 

 

The adjustment of the error smoothing factor (𝛼) and the replacement 

threshold (𝑟) is an important factor for the effectiveness of the proposed ensemble. In 

this section, an analysis of the effects of different 𝛼 and 𝑟 values is carried out not 

only assess how they affect the ensemble’s accuracy but also the ensemble’s 

computational efficiency.  

For this purpose, synthetic data streams using the functions described in 

Section 4.2 were generated simulating the various types of drift, as described in 

Section 7.2. Each data stream has 5,000 observations and 15 features. The first 

1,000 observations were used for training and the remaining 4,000 observations 

were used for testing in a prequential mode (Bifet et al., 2010), i.e. each observation 

was used for test and then train the model. Additionally, the benchmark datasets 

were also used for assessing the 𝛼 and 𝑟. In this case, the first 1,000 data points 

were used for training and the remaining data points for testing in a prequential 

mode. 

The 𝛼 affects the sensitivity of each model to changes in the environment that 

may cause a loss of accuracy. In Tables 7.3 and 7.4, the effects of 𝛼 on the accuracy 

and number of replacements 𝑟, respectively, are presented. The accuracy was 

measured by prequential MSE and the number of replacements refers to how many 

models were replaced through the stream. 
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Table 7.3: Average and standard deviation MSE according to the value of 𝛼. 

𝛼 0.005 0.010 0.050 0.100 0.200 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

 No drift 

F1 6.51 0.52 6.55 0.53 6.86 0.60 7.13 0.63 7.46 0.57 

F2 11.07 1.93 10.92 1.57 11.53 2.26 11.65 1.85 12.08 1.92 

F3 16.57 1.77 16.24 1.63 17.35 1.82 17.69 1.97 18.48 1.96 

F7 15.34 2.99 14.91 2.95 15.86 2.86 16.43 3.22 17.21 3.56 

F11 23.75 0.54 23.76 0.53 23.89 0.52 23.94 0.58 24.06 0.53 

 Gradual rotation 

F1 21.49 11.00 21.85 10.94 24.14 10.44 29.80 13.34 46.26 32.95 

F2 23.59 19.18 19.88 19.67 25.08 20.26 25.71 28.45 31.99 25.74 

F3 59.42 35.86 50.80 25.50 63.73 30.48 71.55 38.97 90.00 66.96 

F7 52.60 30.55 48.08 24.80 57.58 30.96 58.12 31.74 83.69 61.94 

F11 42.68 3.82 42.02 4.22 44.58 4.13 47.84 5.14 54.77 7.59 

 Gradual replacement 

F1 21.56 2.82 20.68 2.43 23.68 2.59 28.14 6.44 47.39 21.22 

F2 28.64 3.98 26.85 3.63 30.10 3.44 32.44 3.48 39.75 8.23 

F3 35.31 3.76 33.87 3.74 37.44 3.02 40.58 3.52 51.74 12.78 

F7 34.40 5.50 33.99 5.10 37.12 5.05 39.56 6.06 53.47 14.06 

F11 40.41 2.79 39.00 2.42 40.23 2.25 42.30 2.64 47.41 5.82 

 Abrupt 

F1 21.88 3.27 20.74 2.44 23.70 2.76 28.07 6.52 44.24 18.61 

F2 28.93 3.67 27.03 3.43 29.86 3.08 32.13 3.77 40.59 12.24 

F3 35.82 4.00 33.59 3.49 37.63 2.78 40.88 3.27 50.91 12.18 

F7 34.87 4.96 33.14 4.58 36.36 4.50 40.26 6.20 52.87 16.85 

F11 40.73 3.12 39.15 2.49 40.78 2.32 42.67 2.82 47.21 5.47 

 Data expansion 

F1 6.22 1.27 5.96 0.96 6.76 1.03 7.47 1.50 9.96 2.86 

F2 11.26 2.53 11.14 2.24 12.22 2.89 13.07 3.11 14.90 4.50 

F3 14.62 3.41 13.66 2.88 15.40 3.15 16.74 3.53 18.11 4.01 

F7 9.15 1.87 9.04 1.73 9.92 2.14 10.09 2.25 10.55 2.14 

F11 24.04 0.51 24.01 0.62 24.35 0.62 24.53 0.61 25.00 0.65 
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In general, the lower values of 𝛼 resulted in better ensemble accuracy. The 

bold shaded values in Table 7.3 indicate the lower MSE for each dataset and more 

than one value highlighted in the same line means that the values are statistically 

similar, according to the paired t-test with a significance level of 95%. The results 

indicate the best ensemble accuracies were achieved when setting 𝛼 at 0.010 and it 

also contributes to more stable ensembles since at this setting lower standard 

deviations were also achieved. The adjustment of 𝛼 also showed a different impact 

on accuracy, according to the type of drift. The ensemble accuracy on datasets with 

no drift and simulating data expansion are less affected by different values of 𝛼, while 

in datasets simulating gradual and abrupt drift, the ensemble is highly affected by the 

increase of 𝛼. The different effects of the smoothing factor according to the type of 

drift is illustrated in Figure 7.9.  
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Figure 7.9: Effect of 𝛼 on MSE for different types of drift. 
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The smoothing factor has an important impact on the number of replacements. 

The replacement is not only related to the accuracy of the ensemble but also affects 

the ensemble’s computational performance. The higher the number of replacements, 

the higher is the computational cost due to the training of new models. The average 

number of replacements for each value of 𝑟 is presented in Table 7.4. 

 

Table 7.4: Average and standard deviation of the number of replacements according to the 𝛼 value. 

𝛼 0.005 0.010 0.050 0.100 0.200 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

 No drift 

F1 73.1 30.3 57.1 25.0 23.7 8.5 12.4 7.1 3.2 2.7 

F2 58.8 19.8 55.8 20.3 29.9 10.8 19.6 7.4 10.3 3.9 

F3 64.4 22.8 60.9 24.1 30.7 11.0 18.9 7.1 10.2 5.0 

F7 52.5 19.9 53.3 19.3 29.7 12.8 17.1 7.4 7.7 4.1 

F11 56.8 20.8 46.0 20.4 19.0 8.9 11.1 5.8 4.8 3.3 

 Gradual rotation 

F1 125.8 60.7 127.0 63.5 70.9 29.7 52.6 22.2 31.2 18.1 

F2 99.2 51.6 91.7 49.9 54.9 31.4 38.0 18.3 27.0 16.6 

F3 125.6 57.3 127.8 63.8 81.1 35.7 59.7 29.0 39.3 17.3 

F7 101.9 38.8 107.2 51.4 61.1 27.0 43.6 18.3 30.9 14.2 

F11 127.8 55.4 135.2 68.5 95.3 36.9 74.0 23.9 53.0 14.8 

 Gradual replacement 

F1 114.6 47.0 118.3 58.8 62.6 23.3 44.7 16.2 23.8 14.4 

F2 95.4 35.7 104.9 49.2 57.2 18.9 42.9 12.6 29.8 8.6 

F3 94.4 28.1 100.0 46.9 53.2 16.3 39.2 9.8 26.5 9.7 

F7 81.1 30.1 80.0 29.1 48.8 14.3 37.1 10.0 23.0 11.0 

F11 93.7 29.0 101.1 44.6 68.7 25.2 52.6 16.3 37.9 10.4 

 Abrupt 

F1 111.3 47.3 109.3 53.8 60.0 21.8 43.1 14.5 25.0 13.8 

F2 91.2 32.0 96.1 44.1 55.5 17.4 42.4 11.5 29.8 10.2 

F3 90.5 28.7 95.5 41.7 51.7 15.4 38.9 9.7 26.7 9.6 

F7 76.3 25.3 80.0 30.1 48.3 14.2 36.9 10.1 23.1 11.4 

F11 91.5 29.9 94.7 41.8 63.1 22.5 49.2 14.5 37.6 10.1 

 Data expansion 

F1 103.2 44.4 100.4 51.2 50.9 18.9 36.0 10.0 21.7 10.4 

F2 90.6 37.6 77.0 39.0 36.4 10.3 27.5 8.3 14.2 9.1 

F3 98.9 37.8 100.0 48.3 52.5 18.6 38.9 10.9 27.9 8.1 

F7 50.1 30.0 36.6 21.4 29.9 17.7 24.9 14.6 21.1 13.4 

F11 59.4 19.8 48.8 17.8 25.9 7.6 18.4 6.5 10.0 5.2 
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From Table 7.4 it is possible to observe that lower values of 𝛼 are not only 

responsible for higher accuracy but also for a higher number of replacements. This 

trade-off must be taken into consideration when adjusting the smoothing factor. An 

important advantaged of the proposed approach is that the number of replacements 

adjusts to the type of drift. The algorithm replaced fewer models when there is no drift 

and, on the other hand, more models were replaced in gradual rotation drift, where 

the drift is constant through the data stream. The average number of replacements 

for all datasets, according to the different types of drift, are shown in Table 7.5.  

 

Table 7.5: Average number of replacements for each type of data drift. 

𝛼 0.005 0.010 0.050 0.100 0.200 Avg 

No drift 61.1 54.6 26.6 15.8 7.2 33.1 

Gradual rotation 116.1 117.8 72.6 53.6 36.3 79.3 

Gradual replacement 95.8 100.8 58.1 43.3 28.2 65.3 

Abrupt 92.1 95.1 55.7 42.1 28.4 62.7 

Data expansion 80.4 72.6 39.1 29.1 19.0 48.1 

 

The replacement threshold 𝑟 also influences the algorithm’s rate of 

replacement. Table 7.6 shows the average MSE according to the 𝑟 value.  
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Table 7.6: Average and standard deviation MSE according to threshold value 𝑟. 

𝑟 200 300 400 500 600 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

 No drift 

F1 6.68 0.63 6.86 0.65 6.89 0.70 7.02 0.66 7.07 0.68 

F2 11.27 1.90 11.26 1.61 11.49 1.80 11.63 2.30 11.58 2.10 

F3 16.80 1.97 17.07 1.85 17.30 1.98 17.53 1.90 17.65 2.19 

F7 15.67 3.31 16.14 3.01 15.95 3.31 16.19 3.48 15.79 2.98 

F11 23.80 0.57 23.90 0.55 23.89 0.53 23.87 0.61 23.95 0.50 

 Gradual rotation 

F1 20.73 8.24 25.01 11.64 26.44 12.98 33.21 19.18 38.16 33.35 

F2 21.75 15.53 22.29 14.16 27.19 31.86 23.90 18.69 31.12 29.11 

F3 55.32 24.76 58.47 28.55 67.45 36.88 74.03 56.00 80.24 58.24 

F7 54.85 31.94 56.28 36.63 57.21 31.24 58.40 35.46 73.34 57.43 

F11 40.66 3.51 42.83 3.99 45.77 4.80 49.35 5.97 53.28 7.27 

 Gradual replacement 

F1 22.22 4.44 24.09 6.55 27.12 11.16 32.63 18.08 35.38 19.10 

F2 28.71 4.74 29.77 5.29 31.03 5.15 32.98 6.58 35.28 8.61 

F3 36.40 5.04 36.91 5.06 39.52 7.64 42.00 10.70 44.13 12.28 

F7 35.99 5.94 36.72 7.07 39.01 9.03 41.26 10.82 45.54 15.20 

F11 39.35 3.17 39.91 2.90 41.50 3.05 43.10 3.64 45.48 6.15 

 Abrupt 

F1 22.32 4.62 23.64 5.94 26.83 8.95 30.79 14.25 35.06 18.36 

F2 28.53 4.52 30.08 4.51 31.13 6.05 33.16 8.90 35.63 11.16 

F3 36.42 5.03 37.47 5.67 39.73 7.33 41.30 8.76 43.92 12.47 

F7 35.25 5.98 36.56 7.95 39.48 7.90 41.09 12.88 45.11 15.89 

F11 38.94 2.76 40.37 2.95 42.04 3.10 43.70 4.06 45.50 5.34 

 Data expansion 

F1 6.47 1.41 6.62 1.46 7.08 1.64 7.67 2.35 8.53 3.04 

F2 11.98 2.86 12.03 2.98 12.57 3.59 12.90 4.12 13.11 3.38 

F3 14.56 3.46 14.97 3.39 15.95 3.94 16.42 4.07 16.63 3.46 

F7 9.65 2.13 9.79 2.03 9.87 2.04 9.66 2.30 9.78 2.06 

F11 24.25 0.65 24.24 0.68 24.42 0.65 24.51 0.73 24.51 0.76 

 

In general, lower threshold values resulted in better ensemble accuracy. The 

best MSE values are highlighted (bold), and when more than one value is 

highlighted, it means that the values are statistically similar, according to a paired t-

test with 95% confidence. The adjustment of 𝑟 has a lower impact on the ensemble's 

accuracy compared to 𝛼, especially when there is no drift and for gradual rotation 

and data expansion. The effects of 𝑟 on MSE are illustrated in Figure 7.10.  
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Figure 7.10: Effect of 𝑟 on MSE for different types of drift. 
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The effect of 𝑟 on the number of replacements is shown in Table 7.7.  

 

Table 7.7: Average and standard deviation of the number of replacements according to the 𝑟 value. 

𝑟 200 300 400 500 600 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

 No drift 

F1 56.8 45.8 40.6 32.6 29.1 23.8 23.7 19.3 19.2 16.3 

F2 51.9 30.6 40.2 23.5 32.3 19.6 26.8 16.5 23.3 14.1 

F3 57.7 35.7 43.0 27.4 32.6 20.0 27.7 17.5 24.2 15.8 

F7 48.1 30.0 36.8 22.7 28.7 18.5 25.5 16.9 21.1 14.4 

F11 45.9 32.6 32.7 24.9 24.0 18.9 19.4 15.4 15.6 13.1 

 Gradual rotation 

F1 136.1 82.3 99.5 49.6 72.2 32.9 55.9 26.5 43.8 21.2 

F2 96.3 69.0 71.9 44.2 59.8 34.3 44.2 22.7 38.6 18.2 

F3 145.2 76.3 102.1 48.2 77.5 32.3 60.0 23.4 48.7 19.1 

F7 106.2 61.7 80.6 41.5 63.5 32.5 51.9 24.2 42.5 20.4 

F11 162.2 67.9 115.7 39.6 86.7 25.3 66.9 17.4 53.8 13.6 

 Gradual replacement 

F1 122.3 71.4 87.2 45.9 64.7 32.5 49.6 26.8 40.2 22.5 

F2 102.4 58.2 76.1 37.3 60.3 27.4 49.4 20.9 42.0 17.8 

F3 93.4 53.7 73.9 38.5 57.8 27.8 47.7 22.5 40.5 19.3 

F7 77.6 39.3 63.7 30.6 49.9 22.1 43.6 21.0 35.2 18.4 

F11 107.3 44.9 84.3 33.4 64.6 22.8 53.0 16.9 44.7 15.0 

 Abrupt 

F1 115.2 66.9 83.7 43.9 63.3 30.7 48.3 24.1 38.2 21.0 

F2 96.4 51.5 70.9 33.2 58.4 25.0 48.8 20.2 40.6 17.5 

F3 89.1 49.2 71.7 35.7 56.6 27.4 46.6 20.7 39.2 17.9 

F7 77.1 37.7 60.4 27.5 49.9 22.0 42.1 19.3 35.1 18.1 

F11 103.0 43.1 79.0 30.3 61.1 21.2 50.5 16.5 42.6 13.8 

 Data expansion 

F1 102.8 66.7 73.7 41.1 55.5 29.4 44.1 23.6 36.1 19.4 

F2 79.1 54.7 58.3 38.3 44.0 27.7 35.0 20.4 29.3 17.6 

F3 98.8 59.8 74.5 39.3 58.5 27.9 47.3 20.6 39.1 17.5 

F7 51.2 30.4 39.7 24.4 31.3 20.2 26.6 17.3 22.5 14.9 

F11 60.8 18.9 54.4 19.8 28.7 9.7 18.6 8.4 8.9 4.7 
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Based on the effects of 𝑟 on the MSE and on the number of replacements, a 

good commitment between accuracy and computational efficiency was achieved 

when setting the threshold at 300. At this level, statistically similar accuracy is 

achieved in most of the cases, compared to setting the threshold at 200. The 

average increase in MSE at this level is of 3.6%, while the number of replacements is 

reduced, on average, by 32.6%. 

In the case of benchmark datasets, the smoothing factor affects the accuracy 

in different ways. While in Quality and Maintenance datasets the best accuracy is 

achieved setting 𝛼 0.010, as in the synthetic datasets, in Energy and House datasets 

the best accuracy is achieved with higher 𝛼 values. The results are summarised in 

Table 7.8 and the best results are highlighted (bold shaded values). The results were 

subjected to paired t-test with 95% of confidence and more than one value is 

highlighted for the same dataset indicate that the results are statistically equal.    

 

Table 7.8: Average and standard deviation of MSE according to the 𝛼 value. 

𝛼 0.005 0.010 0.050 0.100 0.200 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

Energy 1.02E+4 5.53E+2 9.90E+3 4.51E+2 9.62E+3 4.87E+2 9.38E+3 5.86E+2 9.06E+3 6.24E+2 

House 4.65E+9 2.74E+8 4.36E+9 2.52E+8 3.90E+9 3.00E+8 3.78E+9 3.76E+8 3.79E+9 4.07E+8 

Quality 0.504 0.004 0.501 0.005 0.508 0.011 0.516 0.012 0.526 0.009 

Maint. 4.96E-7 2.69E-7 3.76E-7 1.10E-7 4.23E-7 6.88E-8 4.76E-7 7.09E-8 5.80E-7 9.46E-8 

 

Similarly to synthetic datasets, lower values of 𝛼 are related to a higher 

number of replacements; however, a higher number of replacements is not 

necessarily related to better accuracy, as can be observed by the results in Energy 

and House datasets, where the better accuracy was achieved with a lower number of 

replacements. The average number of replacements for the benchmark datasets is 

presented in Table 7.9.   
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Table 7.9: Average and standard deviation of the number of replacements according to the 𝛼 value. 

𝛼 0.005 0.010 0.050 0.100 0.200 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

Energy 88.8 47.7 58.6 20.8 24.0 6.2 17.8 4.8 14.0 3.6 

House 158.8 91.9 135.7 71.9 87.7 34.0 76.4 29.0 64.4 26.2 

Quality 73.6 38.5 49.4 24.6 19.0 8.0 10.0 6.2 3.4 3.0 

Maint. 152.1 67.5 182.7 91.6 88.9 29.3 66.3 17.3 50.8 10.6 

 

The threshold values had a similar effect on benchmark datasets, compared to 

the effect on synthetic datasets. Lower 𝑟 value resulted in better accuracy and also is 

responsible for a higher number of replacements. The effects of 𝑟 on MSE and on the 

number of replacements are shown in Tables 7.10 and 7.11, respectively. 

 

Table 7.10: Average and standard deviation of MSE according to the 𝑟 value. 

𝑟 200 300 400 500 600 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

Energy 9.16E+3 5.15E+2 9.40E+3 6.12E+2 9.71E+3 5.99E+2 9.84E+3 5.73E+2 1.00E+4 6.45E+2 

House 3.83E+9 5.18E+8 3.92E+9 4.00E+8 4.07E+9 3.67E+8 4.25E+9 4.26E+8 4.41E+9 4.11E+8 

Quality 0.502 0.008 0.507 0.012 0.511 0.011 0.515 0.012 0.518 0.013 

Maint. 4.60E-7 2.29E-7 4.30E-7 1.36E-7 4.53E-7 1.16E-7 4.88E-7 1.10E-7 5.20E-7 1.61E-7 

 

Table 7.11: Average and standard deviation of the number of replacements according to the 𝑟 value. 

𝑟 200 300 400 500 600 

 Avg Std Avg Std Avg Std Avg Std Avg Std 

Energy 66.2 60.5 44.0 32.3 34.6 24.0 31.2 20.7 27.3 16.4 

House 187.2 90.2 119.4 45.6 88.0 31.9 70.8 22.1 57.5 21.3 

Quality 56.7 49.9 37.7 33.7 25.7 22.1 19.8 17.3 15.5 14.0 

Maint. 153.4 105.6 131.7 79.4 101.0 51.4 83.9 39.5 70.9 30.0 

 

Using the threshold 𝑟 set at 300 results in an average reduction of 43.5% on 

the number of replacements, compared to 𝑟 set at 200. This has a limited effect on 

accuracy, in case of House and Maintenance datasets, the average accuracies are 

statistically similar and in case of Energy and Maintenance, the increase on average 

MSE is of 2.6% and 1.1%, respectively. 



91 
 

Base on the analysis of the different settings of 𝛼 and 𝑟, it was possible to 

establish their values for the next set of experiments, where the proposed ensemble 

is compared to an existing approach for data stream regression from literature. For all 

datasets, 𝑟 is set at 300, where good commitment between accuracy and the number 

of replacements is achieved. The 𝛼 is set at 0.01 for all datasets except the Energy 

and House, which showed better accuracy when 𝛼 is set at higher values, for these 

datasets 𝛼 is set at 0.2. 

 

7.6. B-NNRW VALIDATION 

 

In this section, the proposed algorithm, using the 𝛼 and 𝑟 defined in the 

previous section, is compared to two approaches, the O-DNNE (Ding et al., 2017) 

and a single SLFNN. The SLFNN used in this research is trained using the 

Levenberg-Marquardt backpropagation algorithm. The network is built using the built-

in Matlab® implementation with its default hyperparameters, except the number of 

neurons, which is optimised using the SSHT algorithm. The initial range for the 

number of nodes is [20, 250] and the optimised values found by SSHT are 

summarised in Table 7.12. 

 

Table 7.12: Number of SLFNN hidden nodes for each dataset. 

 F1 F2 F3 F7 F11 Energy House Quality Maint. 

Number of nodes 20 20 20 20 20 20 20 20 250 

 

In this research, an online approach for the SLFNN is applied. For each new 

instance, after the prediction is performed, the network error on that instance is 

backpropagated through the network and its weights are updated. The approach is 

therefore called O-SLFNN.  

The second algorithm, the O-DNNE, is a recent ensemble algorithm from 

literature proposed to deal with regression data streams. This approach achieved 

good results compared to benchmark algorithms; however, since all the base models 

must be optimised at the same time, the training and updating process becomes 



92 
 

computationally expensive, especially when the number of nodes or the number of 

base models is increased. A brief description of O-DNNE and how its optimisation is 

affected by an increase in the number of base models and/or hidden nodes is 

presented in the next section. 

 

7.6.1. The online DNNE 

 

The Online DNNE (Ding et al., 2017) is an approach derived from the 

decorrelated neural network ensemble (DNNE) to deal with online regression 

problems. The DNNE algorithm builds an ensemble of single-hidden layer NNRWs 

and incorporates the concept of negative correlation learning (NCL) in the training 

process to create a well-diversified set of models. The main idea behind NCL is to 

train the models simultaneously in a way that their individual errors are decorrelated 

since no major gains can be obtained from a combination of outputs if they are 

positively correlated (Rosen, 1996). Given a data set of size N consisting of pairs (xn, 

yn) and fi(xn) the output of sample xn of the ith model in the ensemble of size (M), the 

error function for the ith model can be written as Equation 7.10.  

𝐸𝑖 = ∑
1

2
(𝑓𝑖(𝑥𝑛) − 𝑦𝑛)2

𝑁

𝑛=1

 

                                                (7.10) 

Rosen (1996) propose a modification in the error function (Equation 7.10) to 

include a decorrelation penalty term pi, resulting in the following learning error 

(Equation 7.11): 

𝑒𝑖 = ∑ [
1

2
(𝑓𝑖(𝑥𝑛) − 𝑦𝑛)2 − 𝜆𝑝𝑖(𝑥𝑛)]

𝑁

𝑛=1

 

                                                (7.11) 

where 𝜆 ∈  [0, 1] is a regularization factor. Alhamdoosh and Wang (2014) adopted 

the penalty term formulated in Equation 7.12:                                    

𝑝𝑖(𝑥𝑛) = (𝑓𝑖(𝑥𝑛) − 𝑓(̅𝑥𝑛)) ∑(𝑓𝑗(𝑥𝑛) − 𝑓(̅𝑥𝑛))

𝑗≠𝑖

 

                                  (7.12) 
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where 𝑓(̅𝑥𝑛), which is used instead of the target value yn to reduce the correlation 

among ensemble individuals mutually. The final DNNE consists of a set of weights 

𝐵𝑒𝑛𝑠 =  [𝛽11, … , 𝛽1𝐿, … , 𝛽𝑀1, … , 𝛽𝑀𝐿]𝑀𝐿×1
𝑇 , where 𝛽𝑖𝑗 is the output weight of the jth 

hidden node of the ith model, and can be obtained by solving the following linear 

system (Equation 7.13):  

𝐵̂𝑒𝑛𝑠 =  𝐻𝑐𝑜𝑟𝑟
+ 𝑇ℎ 

                                                             (7.13) 

The 𝐻𝑐𝑜𝑟𝑟
+  is generalized pseudo-inverse (Rao and Mitra, 1971) of matrix 𝐻𝑐𝑜𝑟𝑟. 

The hidden-target matrix 𝑇ℎ =  [𝜑(1,1), … , 𝜑(1, 𝐿), … , 𝜑(𝑀, 1), … , 𝜑(𝑀, 𝐿)]𝑀𝐿×1
𝑇 , where 

𝜑(𝑖, 𝑗) models the correlation between the jth hidden neuron of the ith base model 

and is computed as Equation 7.14: 

𝜑(𝑖, 𝑗) = ∑ 𝑔𝑖𝑗(𝑥𝑛)𝑦𝑛

𝑁

𝑛=1

 

                                                    (7.14) 

where gij is the output of jth hidden neuron from the ith model given a data sample xn.    

Finally, Hcorr is an MLxML, where each element is given the following 

condition: 

𝐻𝑐𝑜𝑟𝑟(𝑝, 𝑞) = {
𝐶1𝜑(𝑚, 𝑛, 𝑘, 𝑙)          𝑖𝑓 𝑚 = 𝑘;

𝐶2𝜑(𝑚, 𝑛, 𝑘, 𝑙)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

where p, q = 1,…, MxL; 𝑚 = ⌈
𝑝

𝐿
⌉; 𝑛 = ((𝑝 − 1)𝑚𝑜𝑑 𝐿) + 1; 𝑘 = ⌈

𝑞

𝐿
⌉; 𝑙 = ((𝑞 −

1)𝑚𝑜𝑑 𝐿) + 1. The constants 𝐶1 and 𝐶2, and the correlation between the jth hidden 

neuron of the ith base model and lth hidden neuron of the kth base model 

𝜑(𝑚, 𝑛, 𝑘, 𝑙), are formulated as shown in Equations 7.15, 7.16 and 7.17, respectively. 

𝜑(𝑖, 𝑗, 𝑘, 𝑙) = ∑ 𝑔𝑖𝑗(𝑥𝑛)𝑔𝑘𝑙(𝑥𝑛)

𝑁

𝑛=1

 

                                                    (7.15) 

𝐶1 = 1 − 2𝜆
(𝑀 − 1)2

𝑀2
 

                                                    (7.16) 
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𝐶2 = 2𝜆
𝑀 − 1

𝑀2
 

                                                    (7.17) 

The online version of DNNE (Ding et al., 2017), both Hcorr and Th are updated 

according to new data simply by adding the Hcorr and Th computed using the new 

data and then adding up to the existing Hcorr and Th, as shown in Equations 7.18 and 

7.19, respectively: 

𝐻𝑐𝑜𝑟𝑟 = 𝐻𝑐𝑜𝑟𝑟
𝑜𝑙𝑑 + 𝐻𝑐𝑜𝑟𝑟

𝑜𝑙𝑑  

                                                       (7.18) 

𝑇ℎ = 𝑇ℎ
𝑜𝑙𝑑 + 𝑇ℎ

𝑛𝑒𝑤 

                                                           (7.19) 

For further details, the reader can refer to Ding et al. (2017). Once Hcorr and Th 

are updated, the 𝐵̂𝑒𝑛𝑠 is recomputed according to Equation 7.13. 

The online-DNNE can process effectively a single new data sample due to the 

fact that the processing cost of computing Equation 7.13 is not affected by the 

number of samples to be evaluated. However, the computation of 𝐻𝑐𝑜𝑟𝑟
+  is very 

sensitive to the number of NNRW hidden nodes as well as the number of models. 

Considering an ensemble with n nodes and m models, an increment of one node 

results in an increment in the size of Hcorr matrix in the order of 𝑚2(𝑛2 + 2𝑛 + 1); 

likewise, an increment of one model in the ensemble increases the size of Hcorr in the 

order of  𝑛2(𝑚2 + 2𝑚 + 1). Attempts to overcome the issue of computational 

constraints due to Moore-Penrose computation have been carried out (Cao et al., 

2016), but the authors found that the results do not apply to regression problems 

since they do not satisfy stability conditions.  

The O-DNNE hyperparameters were optimised using the SSHT algorithm and 

the best hyperparameter setting for each dataset is shown in Table 7.13. 
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Table 7.13: Optimised O-DNNE hyperparameters for each dataset. 

 
F1 F2 F3 F7 F11 Energy House Quality Maint. 

Number of Models 15 15 15 5 5 15 5 15 10 

Number of Nodes 150 150 150 150 20 150 150 20 150 

Initial weights range 0.1 0.11 0.1 0.1 0.1 0.1 0.8 0.1 0.8 

Regularisation factor 0.01 0.01 0.38 0.01 0.01 0.01 0.01 0.01 0.38 

 

The update of the O-DNNE is executed at pre-defined intervals, i.e. the new 

instances are buffered and when it reaches 500 instances, the O-DNNE is updated. 

 

7.6.2. B-NNRW performance on synthetic datasets 

 

In this section, the performance of B-NNRW is compared to O-SLFNN and O-

DNNE on synthetic data streams in the presence of concept drift. The algorithms are 

compared in terms of accuracy and computational time. Each algorithm runs 10 times 

on each dataset and the following metrics are computed, the prequential MSE for 

each run, the training time and the testing time, i.e. the time the algorithm takes to 

process the entire stream, including the prediction and updating time. The results are 

organized by accuracy and computational time for each time of drift and are 

submitted to a paired t-test with 95% confidence to check for statistically equal 

means. The accuracy of each algorithm, measure in MSE, are presented in Tables 

7.14 - 7.18 for datasets with no drift, gradual rotation, gradual replacement, abrupt 

drift and data expansion, respectively.     

 

Table 7.14: Average MSE and standard deviation for each algorithm on datasets with NO DRIFT. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

F1 6.33 0.43 4.72 0.40 11.68 1.50 

F2 10.60 1.00 14.68 1.53 19.65 1.85 

F3 16.29 1.70 10.16 1.07 34.18 8.32 

F7 14.40 3.24 8.71 0.97 20.98 3.07 

F11 23.60 0.58 22.89 0.58 47.05 1.69 

 



96 
 

The results in Table 7.14 show how the algorithms performed on synthetic 

datasets without the presence of concept drift. The average and standard deviation 

of MSE of each algorithm are presented and the best results are highlighted. The O-

DNNE showed better accuracy in all datasets except F2, where the B-NNRW 

performed better. The results also showed the advantage of ensemble approaches 

compared to single models, the B-NNRW and O-DNNE reduced the error, on 

average by 45.1% and 53.0%, respectively.  

The results are also illustrated in Figure 7.11, where a 30-period SE moving 

average is shown for dataset F1.  

 

 

Figure 7.11: Moving average SE for each algorithm on F1 dataset with no drift. 

 

The updating mechanisms have a limited effect on the accuracy through data 

stream and do not improve the accuracy significantly. This behaviour is also 

observed in the remaining synthetic datasets with no drift. 

The accuracy of the algorithms on datasets with drift simulated by hyperplane 

gradual rotation is shown in Table 7.15.  
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Table 7.15: Average MSE and standard deviation for each algorithm on datasets with GRADUAL 
ROTATION. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

F1 22.10 6.96 69.93 46.34 17.89 3.61 

F2 16.54 7.51 71.60 82.39 24.59 7.43 

F3 51.94 28.85 310.95 163.14 44.46 12.16 

F7 31.46 18.82 189.66 126.18 28.57 6.29 

F11 39.01 0.55 100.30 1.79 51.90 1.53 

 

The results for gradual rotation showed that the B-NNRW resulted in better 

accuracy in two datasets (F2 and F11). Moreover, statistically similar accuracy, 

compared to the O-SLFNN, was observed in F3 and F7, while the O-SLFNN 

performed better in dataset F1. The O-DNNE performed poorly in this type of drift; 

however, its accuracy could be improved by increasing the updating frequency at the 

expense of an increase in computational time. Figure 7.12 shows the 30-period 

moving average SE for each algorithm through the F2 simulated data stream with 

gradual rotation. 

 

 

Figure 7.12: Moving average SE for each algorithm on F2 dataset with gradual rotation. 
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Table 7.16 shows the results of each algorithm on datasets with gradual 

replacement.  

 

Table 7.16: Average MSE and standard deviation for each algorithm on datasets with GRADUAL 
REPLACEMENT. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

F1 19.12 0.57 52.68 2.29 18.49 3.81 

F2 26.40 3.83 65.46 2.81 26.28 5.31 

F3 31.13 1.25 58.59 4.24 40.25 9.18 

F7 32.67 4.58 58.62 2.67 25.73 3.76 

F11 37.99 1.65 72.12 1.46 52.62 1.56 

 

The B-NNRW produced a lower error in F3 and F11 datasets when the 

gradual replacement is present. In datasets F1 and F2, it showed statistically similar 

results compared to O-SLFNN and O-SLFNN performed better on F7. Similarly to the 

gradual rotation, the O-DNNE was not effective to tackle gradual replacement, which 

could be solved by improving the updating frequency. The moving average SE for F7 

dataset is illustrated in Figure 7.13. 

 

 

Figure 7.13: Moving average SE for each algorithm on F7 dataset with gradual replacement. 
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It is possible to observe the accuracy of O-DNNE increases when it updates 

between the drift points (500, 1500, 2500 and 3500), while the updating at the drifting 

points decrease the accuracy since the algorithm updates with old concepts. In 

general, the O-SLFNN adapts to drift much faster compared to the ensemble 

algorithms, this is mainly due to two factors: there is only one model to update and it 

the model is updated at every new instance. The latter implies unnecessary 

computation in the absence of drift, as observed in Figure 7.10. 

The accuracy in datasets with abrupt drift is shown in Table 7.17. For the 

same reasons observed on datasets simulating gradual replacement, the O-DNNE as 

not able to deal with the abrupt drift adequately. The B-NNRW showed better 

accuracy in datasets F2, F3 and F11, while O-SLFNN performed better in F7. In 

dataset F1, both B-NNRW and O-SLFNN showed statistically similar results. 

 

Table 7.17: Average MSE and standard deviation for each algorithm on datasets with ABRUPT drift. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

F1 19.13 0.62 54.09 1.57 18.12 3.49 

F2 25.15 2.31 63.74 2.03 30.34 5.17 

F3 31.91 1.40 60.13 3.94 39.47 7.62 

F7 31.77 4.01 58.37 1.47 25.62 2.05 

F11 37.34 1.18 73.06 1.57 55.97 1.42 

 

The behaviour of the algorithms through the simulated F1 data stream with 

abrupt drift is illustrated in Figure 7.14. 
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Figure 7.14: Moving average SE for each algorithm on F1 dataset with abrupt drift. 

 

Similarly to the gradual replacement, the O-SLFNN adapts fast to drift, while 

B-NNRW needs to replace all the models with old accuracy before the levels of 

accuracy are re-established. 

The last type of drift analysed in this research is data expansion, which results 

are shown in Table 7.18. For this type of drift, B-NNRW and O-DNNE showed 

statistically equal results in all datasets. This type of drift results in more complex 

changes in the relationship between input and output, compared to the previously 

simulated drifts. In this case, the O-SLFNN did not update effectively and performed 

poorly compared to B-NNRW and O-DNNE.  

 

Table 7.18: Average MSE and standard deviation for each algorithm on datasets with DATA 
EXPANSION. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

F1 5.71 0.64 6.18 1.21 11.73 1.83 

F2 11.17 1.78 13.80 3.74 26.21 7.71 

F3 12.23 1.97 14.65 3.89 26.91 5.20 

F7 8.75 1.41 8.24 1.06 18.44 3.43 

F11 23.59 0.35 23.40 0.51 46.17 1.09 
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The effect of data expansion on the accuracy of the algorithms is illustrated in 

Figure 7.15, for the F3 data stream.  

 

 

Figure 7.15: Moving average SE for each algorithm on F3 dataset with data expansion. 

 

The O-DNNE showed a good learning capability for datasets with data 

expansion. It is possible to observe that the average accuracy does not change 

abruptly in the drift points, as it happens to B-NNRW and O-SLFNN.  The B-NNRW 

recover its accuracy level as the low performing members are replaced, but slowly 

compared to other types of drift. This is explained by the fact that the input 

distribution before the drift is contained within the new distribution, i.e. instances of 

the new distribution were already learnt by the models and may slow the replacing 

process.  

Another important aspect of algorithms for data stream is the computational 

time. The training and testing time that each algorithm took to process the entire data 

stream were collected. The training time refers to the time spent to train the models 

using the initial data, while the testing time includes the predictions and updating of 

the models. The average training and testing time of each dataset for all types of drift 

were averaged and the results are shown in Table 7.19.  
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Table 7.19: Average computational time and standard deviation for each algorithm and dataset. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

Training time (seconds) 

F1 0.236 0.071 37.053 0.877 0.638 0.231 

F2 0.221 0.007 37.054 0.803 0.541 0.152 

F3 0.223 0.010 37.066 0.740 0.627 0.177 

F7 0.048 0.004 3.183 0.069 0.487 0.078 

F11 0.044 0.002 0.054 0.001 0.693 0.512 

Testing time (seconds) 

F1 5.231 0.262 314.788 6.053 108.368 0.856 

F2 4.916 0.218 315.073 6.027 107.797 2.255 

F3 5.088 0.243 314.989 6.089 108.135 0.591 

F7 3.878 0.043 44.829 0.849 107.733 0.521 

F11 3.910 0.118 3.514 0.063 115.745 13.635 

 

In terms of computational time, the proposed algorithm showed a significant 

advantage compared to O-DNNE and O-SLFNN. The only exception was in dataset 

F11, in this case, the best accuracy of O-DNNE were achieved with a reduced 

number of base models (5) and nodes (20), while in datasets F1, F2 and F3, the 

number of base models and nodes for the best accuracy were 15 and 150, 

respectively. In dataset F7, where O-DNNE showed moderate computational time, 

the optimised number of base models and nodes were 5 and 150, respectively. 

These results demonstrate the drawbacks of O-DNNE when the number of models 

and/or nodes need to be increased for better accuracy. The O-SLFNN showed good 

training times and lower testing times compared to O-DNNE, however, the testing 

time is approximately 20 times higher compared to B-NNRW. 

 

7.6.3. B-NNRW performance on benchmark datasets 

 

In this section, the proposed algorithm is further validated by evaluating its 

performance on benchmark datasets from public data repositories, described in 

Section 4.3. For each dataset, the first 1.000 data points were used for test and the 

remaining data points were used to simulate the data streams. Each experiment was 
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run 10 times and the average and standard deviation of MSE were computed. The 

results are shown in Table 7.20 and the lower MSE for each problem is highlighted. 

 

Table 7.20: Average MSE and standard deviation for each algorithm on benchmark datasets. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

Energy 8.76E+03 0.34E+03 13.67E+03 0.65E+03 6.43E+03 1.30E+03 

House 3.57E+09 0.32E+09 13.87E+09 3.20E+09 3.42E+09 0.16E+09 

Quality 0.500 0.002 0.532 0.003 0.909 0.045 

Maintenance 5.31E-07 3.74E-07 1.90E-07 0.91E-07 27.10E-07 8.86E-07 

 

The algorithms showed different performances according to the dataset. The 

B-NNRW achieved the best accuracy in Quality, where the MSE was 6.0% and 

45.0% lower compared to O-DNNE and O-SLFNN, respectively. In House dataset, B-

NNRW and O-DNNE achieved statistically equal results while O-DNNE error was 

approximately 4 times higher. The O-SLFNN resulted in lower MSE in Energy dataset 

and the best algorithm in Maintenance was the O-DNNE. The smoothed MSE for 

through the stream is illustrated in Figures 7.16, 7.17, 7.18 and 7.19 for Energy, 

House, Quality and Maintenance problems, respectively.   

 

 

Figure 7.16: Smoothed MSE for each algorithm on Energy dataset. 
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Figure 7.17: Smoothed MSE sample for each algorithm on House dataset. 

 

Figure 7.18: Smoothed MSE sample for each algorithm on House dataset. 

 

Figure 7.19: Smoothed MSE sample for each algorithm on House dataset. 
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Besides the MSE, the Mean Absolute Percentage Error (MAPE) was also 

computed. The MAPE is computed according to the Eq. 7.20 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖
∗ 100%

𝑁

𝑖=1

 

Eq. 7.20 

where 𝑦𝑖 and 𝑦𝑖̂ are the true values and the predicted value, respectively. The results 

are summarised in Table 7.21 

 

Table 7.21: Average MAPE and standard deviation for each algorithm on benchmark datasets. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

Energy 52.23% 2.82% 92.71% 2.23% 49.04% 11.52% 

House 24.34% 2.16% 39.09% 1.54% 21.61% 1.04% 

Quality 9.74% 0.05% 10.00% 0.02% 12.41% 0.34% 

Maintenance 0.05% 0.02% 0.01% 0.00% 0.10% 0.01% 

 

By the MAPE values, it is possible to analyse how much each algorithm 

deviates from the true value on average and its impact on the final results. For 

example, choosing the wrong algorithm for Maintenance problem would have a lower 

impact on the results compared to the impact of the wrong choice on House dataset. 

It is important to note that the datasets are used for simulating data streams and for 

practical applications, a more in-depth analysis of the data would be required. 

The results in terms of computational time (elapsed time) for the benchmark 

datasets are shown in Table 7.22. 
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Table 7.22: Average computational time and standard deviation for each algorithm and dataset. 

 B-NNRW O-DNNE O-SLFNN 

 Avg Std Avg Std Avg Std 

Training time (seconds) 

Energy 0.15 0.11 37.42 0.18 1.45 0.44 

House 0.16 0.01 3.20 0.05 0.38 0.07 

Quality 0.13 0.00 0.50 0.00 0.35 0.04 

Maintenance 0.20 0.01 14.96 0.14 94.22 15.46 

Testing time (seconds) 

Energy 19.90 0.05 1477.71 2.46 776.85 189.83 

House 18.76 0.06 220.34 0.64 447.16 1.04 

Quality 3.98 0.03 12.02 0.20 92.86 0.26 

Maintenance 12.16 0.63 374.17 0.70 4741.52 16.37 

      

Although the B-NNRW did not achieve the best accuracy on all datasets, it 

was able to process the entire data streams much faster compared to O-DNNE and 

O-SLFNN, reaching up to 390 times faster compared to O-SLFNN and 74 times 

faster compared to O-DNNE.   

In this chapter, a new ensemble for data stream regression with concept drift 

was developed. The results showed that the proposed algorithm, the B-NNRW, is a 

competitive alternative for solving data stream regression problems, especially when 

time constraints are involved. It was demonstrated the trade-off between accuracy 

and the number of base models and, for simplicity, the evaluation of the ensemble on 

the data streams was carried out using 30 base models for all datasets. From the 

results showed in Section 7.4, it is possible to observe that the accuracy of B-NNRW 

could be improved by increasing the ensemble size in most of the datasets (F1, F2, 

F3, F7, House and Maintenance).  

The algorithm updates constantly without the need to determine the updating 

frequency, adapting to all types of drift without the need of any assumption about the 

type of concept drift. The updating mechanism increases or decreases the number of 

replacements according to characteristics of the dataset to adapt to the various types 

of drift. The main drawback identified during the experiment is the slow recovery of 

accuracy levels when an abrupt drift occurs. This is due to the fact that, when an 

abrupt data drift occurs, all the models are affected and the replacement tends to be 
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constant until new models, trained on the new concept, force the old models to be 

replaced. Effective mechanisms to deal with abrupt drift could significantly increase 

the algorithm’s performance in terms of accuracy.  
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8. CONCLUSIONS 

 

This research has explored the data stream regression problem in the 

presence of concept drift. The big data paradigm has assigned new challenges for 

the ML algorithms that include processing data on high speed in a continuous 

manner and adapting to changes in the environment. Despite the increasing amount 

of research regarding data streams and concept drift, only a few published methods 

for data stream regression can be found in the literature. The new approaches 

presented in this thesis are proven to have considerably enhanced the state-of-the-

art in the area of data stream regression and hyperparameter optimisation. 

This chapter is structured in four sections. Firstly, the main findings and 

conclusions are presented. Then, it is shown to what level research objectives 

established at the beginning of this study are fulfilled. The research contributions are 

outlined in Section 8.3, and Section 8.4 closes this study by outlining some limitations 

and suggestions for future work. 

 

8.1. RESEARCH FINDINGS AND CONCLUSIONS 

 

Several characteristics of data streams must be observed when developing 

ML models. The nature of data streams requires computationally efficient algorithms, 

both in terms of memory use and processing time. For this reason, non-iterative 

algorithms are preferred for this type of problem.  

The issue of concept drift, where the underlying concept that represents the 

process being modelled changes over time, has been addressed in this thesis. Some 

authors have worked on identifying the main types of drift; however, it is still not 

possible to precisely determine when it happens or which type of drift taking place in 

real-world applications. The existing approaches for concept drift either rely on drift 

detector mechanisms or update the model at a fixed rate. In the former case, the 

model can generate false alarms and be ineffective when more than one type of drift 
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is present in data. In the latter case, an inadequate adjustment of the updating rate 

can lead to unnecessary computations or slow reaction to concept drift. 

The ensembles have been successfully applied to solve data stream 

regression and classification problems. For this type of task, some advantages of 

ensembles compared to single models can be highlighted: flexibility, high accuracy 

and computational efficiency. The flexibility allows the ensemble to incorporate 

various mechanisms to adapt to concept drift. The ensembles are easier to 

parallelise, and it is computationally more efficient to train several small models than 

a single model, especially when the computational complexity of the model increases 

exponentially according to the model’s size. 

The assessment of data stream regression algorithms requires synthetic 

datasets where various types of concept drift can be simulated. In this research, a 

need for data generation approaches where the algorithms can be effectively 

evaluated was identified. The existing approaches for regression data generation are 

limited in terms of dimensions, which make it difficult to access the performance of 

the algorithm on high dimensional datasets. It is also difficult to check the function 

shape and therefore difficult to simulate the various types of concept drift.  

In general, the ensemble approaches from the literature do not address base 

model optimisation. The optimisation of base models can increase the overall 

accuracy of the ensemble and also allows the use of fewer base models, improving 

the ensemble’s computational efficiency. Different variations of NNRWs can be found 

in literature, the main representatives are the RVFL and the ELM. Their optimisation 

involves not only tuning hyperparameters but also design hyperparameters; 

additionally, only a few research has studied the main difference between them.  

 

8.2. RESEARCH ACHIEVEMENTS 

 

This research was aimed at developing an ensemble algorithm to solve data 

stream regression problems with concept drift. To accomplish the research aim, 
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several research objectives were set out at the beginning of this study. These 

objectives have been achieved as explained below: 

Objective 1: Develop a robust methodology for generating synthetic data 

streams and simulating concept drift. 

This objective was fulfilled in Chapter 4, where functions designed 

originally for evaluating optimisation algorithms were adapted to simulate 

regression data streams. The approach allows simulation of various 

types of concept drift and can generate datasets with any number of 

predictive variables. Moreover, it is possible to visualise the shape of the 

functions at low dimensions (1 or 2 attributes), which allows assessing 

the effect of the simulated drift on the data. 

Objective 2: Analysis of the randomised NN approaches and their main 

differences. 

This objective was addressed in Chapter 5, where the main differences 

between the existing NNRWs approaches were identified and analysed, 

and the design decisions involving the construction of an effective NNRW 

were discussed. It was found that, despite the ELM popularity, design 

elements of RVFL increase the accuracy of randomised NNs. 

Objective 3: Development of new hyperparameter tuning algorithms. 

This objective was fulfilled in Chapter 6, where a new algorithm for 

hyperparameter optimisation, the SSHT was proposed. The algorithm 

works by analysing the effect of each hyperparameter on the model’s 

variability and therefore prioritising the search for the optimal value. 

Objective 4: Development of effective updating mechanisms to cope with 

concept drift. 

This objective was achieved in Chapter 7, where a new ensemble 

algorithm based on NNRWs was developed. The new algorithm 

incorporates an updating mechanism that replaces base models based 

on their contribution to the ensemble. The updating mechanism 
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constantly evaluates each model’s performance and does not need any 

previous assumption about the type of drift or when the drift is expected 

to occur.  

Objective 5: Test and validate the proposed approaches using synthetic and 

benchmark datasets and comparing with existing methods from the literature. 

This objective was achieved in Chapters 6 and 7. In Chapter 6, the new 

hyperparameter optimisation algorithm was validated on the optimisation 

of NNRWs and the results were compared to the GA algorithm. The 

SSHT was able to achieve better convergence to optimised 

hyperparameter sets with fewer evaluations compared to GA. In Chapter 

7, the new ensemble algorithm for data stream regression was compared 

to the existing approaches from the literature. The algorithm was able to 

adapt to all types of drift and showed competitive accuracy with much 

less computational effort. 

 

8.3. RESEARCH CONTRIBUTIONS 

 

The main contribution of this research is the development of a new ensemble 

algorithm, the B-NNRW, that has improved the state-of-the-art in the data stream 

regression with concept drift problems. The experiments demonstrated that the 

proposed approach can achieve competitive results compared to existing approaches 

in all datasets and can adapt to all types of concept drift.  

The assessment on synthetic datasets with concept drift showed that B-

NNRW achieved better accuracy on 7 problems, statistically similar accuracy on 10 

problems and worse accuracy on 3 problems, compared to the best technique on 

each problem. In the cases where B-NNRW showed better accuracy, it reduced the 

error by 25.7%, on average, while in the 3 cases where other techniques showed 

better accuracy, the error was reduced 19.9% on average. The proposed algorithm 

also reduced significantly the computational time by 75.1% and 95.8%, on average, 

compared to O-DNNE and O-SLFNN, respectively. 
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This research study has also contributed to the knowledge by: 

• Proposing a new approach for simulating data streams for regression 

problems with various types of concept drift and with any number of 

predictive variables. 

• Advancing the understanding of the NNRWs from an optimisation 

perspective and incorporating it into a bagging ensemble updating 

algorithm. 

• Proposing a promising hyperparameter optimisation algorithm that is able 

to find optimised hyperparameter sets with less computational effort. The 

SSTH showed better convergence with 55.7% fewer evaluations, on 

average, compared to GA. 

• Disseminating an article on data stream regression accepted to be 

published by the Soft Computing journal, 2019. 

        

8.4. LIMITATIONS AND FUTURE RESEARCH OPPORTUNITIES 

 

The proposed data generation approach is able to successfully simulate 

regression data streams and various types of drift and allows simulation of datasets 

with a high number of features. Following the common practice in concept drift 

studies, the proposed approach for data generation simulates only one type of 

concept drift at a time. This might not be realistic in practical applications and 

combining more than one drift could potentially enhance the assessment of the data 

stream algorithms. Moreover, the effectiveness of the proposed approach to simulate 

classification problems could be investigated. 

The novel hyperparameter optimisation algorithm was effective in optimising 

the NNRW hyperparameters. The SSHT algorithm uses a simple interpolation 

method for searching the optimised values of continuous hyperparameters. The 

SSHT can be substantially improved by replacing the interpolation method for more 

advanced techniques, such as gradient-based models. A more effective search 
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mechanism could reduce even further the number of evaluations. Additionally, 

comparing the SSHT to other techniques, such as Random Search or SMO based 

techniques could improve the validation of the algorithm and establish its advantages 

and disadvantages compared to the existing methods. 

The main strength of the proposed ensemble for regression problems was its 

computational efficiency. The algorithm achieved competitive accuracy, however, 

investigating the causes of lower accuracy in some datasets could improve the 

overall effectiveness of B-NNRW. It is important to note that the ensemble size was 

fixed at 30 base models. Further research and in-depth analysis of the effects of 

ensemble size on the accuracy is required to achieve better performance. 

One drawback of the B-NNRW identified in this research is the slow reaction to 

sudden drift compared to an online approach. This is due to the fact that, when a 

sudden data drift happens, all the existing base models are affected. It is necessary 

that models trained on the new concept are included in the ensemble in order to 

force the replacement of models trained in old concepts. Some potential solutions to 

this issue include:  

• Using a few base models that are kept on the ensemble and are updated 

on an online basis. These models would adapt faster to the new concept 

and force the replacement of models trained with data from old concepts. 

• Including an abrupt drift detection mechanism in order to trigger additional 

model replacement. 
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