
i

ENSEMBLE BASED ON RANDOMISED NEURAL NETWORKS FOR ONLINE DATA

STREAM REGRESSION IN PRESENCE OF CONCEPT DRIFT

by

Ricardo de Almeida

Doctoral thesis submitted in partial fulfilment

of the requirements for the award of Doctor

of Philosophy of Loughborough University.

Loughborough University

2019

i

Abstract

The big data paradigm has posed new challenges for the Machine Learning

algorithms, such as analysing continuous flows of data, in the form of data streams,

and dealing with the evolving nature of the data, which cause a phenomenon often

referred to in the literature as concept drift. Concept drift is caused by inconsistencies

between the optimal hypotheses in two subsequent chunks of data, whereby the

concept underlying a given process evolves over time, which can happen due to

several factors including change in consumer preference, economic dynamics, or

environmental conditions. This thesis explores the problem of data stream regression

with the presence of concept drift. This problem requires computationally efficient

algorithms that are able to adapt to the various types of drift that may affect the data.

The development of effective algorithms for data streams with concept drift requires

several steps that are discussed in this research. The first one is related to the

datasets required to assess the algorithms. In general, it is not possible to determine

the occurrence of concept drift on real-world datasets; therefore, synthetic datasets

where the various types of concept drift can be simulated are required. The second

issue is related to the choice of the algorithm. The ensemble algorithms show many

advantages to deal with concept drifting data streams, which include flexibility,

computational efficiency and high accuracy. For the design of an effective ensemble,

this research analyses the use of randomised Neural Networks as base models,

along with their optimisation. The optimisation of the randomised Neural Networks

involves design and tuning hyperparameters which may substantially affect its

performance. The optimisation of the base models is an important aspect to build

highly accurate and computationally efficient ensembles. To cope with the concept

drift, the existing methods either require setting fixed updating points, which may

result in unnecessary computations or slow reaction to concept drift, or rely on

drifting detection mechanism, which may be ineffective due to the difficulty to detect

drift in real applications. Therefore, the research contributions of this thesis include

the development of a new approach for synthetic dataset generation, development of

a new hyperparameter optimisation algorithm that reduces the search effort and the

need of prior assumptions compared to existing methods, the analysis of the effects

of randomised Neural Networks hyperparameters, and the development of a new

ensemble algorithm based on bagging meta-model that reduces the computational

effort over existing methods and uses an innovative updating mechanism to cope

with concept drift. The algorithms have been tested on synthetic datasets and

validated on four real-world datasets from various application domains.

Keywords: Machine Learning, Ensemble Learning, Data Streams, Regression

Problems, Concept Drift, Hyperparameter Optimisation.

ii

Acknowledgements

I’m sincerely thankful to my supervisors, prof. Maria Teresinha Arns Steiner, prof.

Mey Y. Goh and prof. Radmehr P. Monfared for the achievements of this research

project. Teresinha has been a key person not only in my professional development

but also in shaping my character. She has been restlessly supporting, guiding and

helping me since I was an undergraduate. Besides sharing all her expertise,

Teresinha has also being a friend and a role model. Mey’s sharp mind, energy and

professionalism inspired me to seek constant improvement of my research and to

develop as a professional. Radmehr’s wisdom also played an important part in my

development, he always inspired me to question and therefore improve my research

and ideas.

I thank the Industrial and Systems Engineering Post-Graduate Program of Pontifícia

Universidade Católica do Paraná and all its staff for offering the infrastructure that

allowed me to build my background. Among the staff, I’m especially grateful to

Denise and prof. Osiris. Denise was always available to help with all the bureaucracy

and documentation. Osiris, along with Teresinha, was responsible for making the

double degree possible, which allowed me to work with two amazing people, prof.

Mey and prof. Radmehr. I also would like to express my gratitude to all the

professors of PPGEPS for sharing their expertise.

I’m thankful for all the financial support provided by the Brazilian government through

the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and

also the scholarship provided by Loughborough University and intermediated by prof.

Mey.

To all my friends and colleagues that contributed to making this challenging journey

even more enjoyable.

I’m also deeply thankful to my parents, João e Sueli, that always helped and

supported my decisions and regardless of our limited resources, made everything

possible to give me a good education and a good character. I can’t forget to mention

my brother, Fabiano, who was always there when an emergency appeared.

i

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. RESEARCH PROBLEM ... 3

1.2. RESEARCH AIM AND OBJECTIVES ... 6

1.3. THESIS OUTLINE .. 6

2. LITERATURE REVIEW .. 8

2.1. DATA STREAMS AND CONCEPT DRIFT ... 8

2.2. ENSEMBLES .. 12

2.2.1. The importance of ensemble diversity .. 13

2.2.2. Combination rules and pruning approaches ... 16

2.3. ENSEMBLE APPROACHES FOR CONCEPT-DRIFTING DATA

STREAMS ... 17

2.4. REMARKS .. 22

3. THESIS DEVELOPMENT METHODOLOGY.. 24

4. DATASETS ... 26

4.1. A REVIEW ON SYNTHETIC DATASETS ... 26

4.2. AN ALTERNATIVE APPROACH FOR DATA GENERATION 34

4.3. BENCHMARK DATASETS ... 37

5. NEURAL NETWORKS WITH RANDOM WEIGHTS .. 39

5.1. DEVELOPMENT OF NEURAL NETWORKS WITH RANDOM

WEIGHTS .. 39

5.2. NNRW ARCHITECTURE .. 41

5.3. NNRW HYPERPARAMETERS ... 46

6. HYPERPARAMETER OPTIMISATION .. 49

6.1. A BRIEF REVIEW ON HYPERPARAMETER OPTIMISATION 49

6.2. METHODOLOGY ... 52

6.3. EXPERIMENTAL PROTOCOL ... 57

ii

6.4. RESULTS AND DISCUSSION ... 59

7. A NEW ENSEMBLE APPROACH FOR DATA STREAM REGRESSION 67

7.1. METHODOLOGY ... 67

7.2. DATA STREAM GENERATION .. 72

7.3. DATA SCALING ... 75

7.4. ENSEMBLE SIZE ... 76

7.5. B-NNRW ADJUSTING .. 80

7.6. B-NNRW VALIDATION ... 91

7.6.1. The online DNNE.. 92

7.6.2. B-NNRW performance on synthetic datasets 95

7.6.3. B-NNRW performance on benchmark datasets 102

8. CONCLUSIONS .. 108

8.1. RESEARCH FINDINGS AND CONCLUSIONS .. 108

8.2. RESEARCH ACHIEVEMENTS ... 109

8.3. RESEARCH CONTRIBUTIONS ... 111

8.4. LIMITATIONS AND FUTURE RESEARCH OPPORTUNITIES 112

REFERENCES .. 114

iii

LIST OF FIGURES

Figure 1.1: Research scope.. 3

Figure 2.1: Types of drift (Krawczyk et al. 2017). ... 10

Figure 3.1: Research steps representing the methodology adopted in this research.

 ... 25

Figure 4.1: 3-Dimensional plots of 𝑓1, 𝑓2, 𝑓3, 𝑓7 and 𝑓11 CEC functions. 35

Figure 4.2: Rotation of 𝑓1 function. ... 36

Figure 5.1: Single-hidden-layer feedforward neural network architecture. 42

Figure 5.2: RVFL architecture. .. 44

Figure 6.1: SSHT procedure. .. 56

Figure 6.2: Crossover strategy for hyperparameter optimisation using GA. 58

Figure 7.1: Initial B-NNRW ensemble ... 68

Figure 7.2: B-NNRW replacement strategy .. 71

Figure 7.3: B-NNRW procedure .. 72

Figure 7.4: Probabilities of data being generated according to the hyperplanes H1

and H2 related to the drift points. .. 74

Figure 7.5: Probabilities of data being generated according to the hyperplanes H1

and H2 related to the drift points. .. 74

Figure 7.6: Arbitrary data expansion example for a 2-D domain............................... 75

Figure 7.7: Average MSE according to the ensemble size for each dataset. 78

Figure 7.8: Average correlation according to the ensemble size for each dataset. ... 79

Figure 7.9: Effect of 𝛼 on MSE for different types of drift. ... 83

Figure 7.10: Effect of 𝑟 on MSE for different types of drift. 87

Figure 7.11: Moving average SE for each algorithm on F1 dataset with no drift....... 96

Figure 7.12: Moving average SE for each algorithm on F2 dataset with gradual

rotation.. 97

Figure 7.13: Moving average SE for each algorithm on F7 dataset with gradual

replacement. ... 98

Figure 7.14: Moving average SE for each algorithm on F1 dataset with abrupt drift.

 ... 100

iv

Figure 7.15: Moving average SE for each algorithm on F3 dataset with data

expansion. .. 101

Figure 7.16: Smoothed MSE for each algorithm on Energy dataset. 103

Figure 7.17: Smoothed MSE sample for each algorithm on House dataset. 104

Figure 7.18: Smoothed MSE sample for each algorithm on House dataset. 104

Figure 7.19: Smoothed MSE sample for each algorithm on House dataset. 104

v

LIST OF TABLES

Table 2.1: Ensemble approaches developed to deal with data streams in the

presence of concept drift. ... 22

Table 4.1: Summary of related works using synthetic datasets (C: Classification, R:

Regression). ... 33

Table 4.2: Benchmark dataset features (N - # data samples, A - # features). 38

Table 6.1: Hyperparameters levels for the first set of experiments. 57

Table 6.2: Average and standard deviation MSE resulted from NNRW optimised by

SSHT and GA. .. 60

Table 6.3: Descriptive statistics of the number of evaluations needed for SSHT and

GA to NNRW optimisation. ... 60

Table 6.4: Number of times each activation function was recommended by the

optimisation algorithms. .. 61

Table 6.5: Number of times SSHT and GA recommend the activation of direct link

and output bias. .. 63

Table 6.6: Average and standard deviation MSE resulted by NNRW with and without

the direct link in datasets F7 and F11. .. 64

Table 6.7: Average optimised N, W and R hyperparameters. 64

Table 6.8: Final optimised NNRW hyperparameters for each dataset. 66

Table 7.1: Gradual rotation settings. ... 73

Table 7.2: Average pairwise linear correlation among the ensemble members........ 79

Table 7.3: Average and standard deviation MSE according to the value of 𝛼. 81

Table 7.4: Average and standard deviation of the number of replacements according

to the 𝛼 value. ... 84

Table 7.5: Average number of replacements for each type of data drift. 85

Table 7.6: Average and standard deviation MSE according to threshold value 𝑟. 86

Table 7.7: Average and standard deviation of the number of replacements according

to the 𝑟 value. ... 88

vi

Table 7.8: Average and standard deviation of MSE according to the 𝛼 value. 89

Table 7.9: Average and standard deviation of the number of replacements according

to the 𝛼 value. ... 90

Table 7.10: Average and standard deviation of MSE according to the 𝑟 value. 90

Table 7.11: Average and standard deviation of the number of replacements

according to the 𝑟 value. ... 90

Table 7.12: Number of SLFNN hidden nodes for each dataset. 91

Table 7.13: Optimised O-DNNE hyperparameters for each dataset. 95

Table 7.14: Average MSE and standard deviation for each algorithm on datasets with

NO DRIFT. .. 95

Table 7.15: Average MSE and standard deviation for each algorithm on datasets with

GRADUAL ROTATION. .. 97

Table 7.16: Average MSE and standard deviation for each algorithm on datasets with

GRADUAL REPLACEMENT. ... 98

Table 7.17: Average MSE and standard deviation for each algorithm on datasets with

ABRUPT drift. ... 99

Table 7.18: Average MSE and standard deviation for each algorithm on datasets with

DATA EXPANSION. ... 100

Table 7.19: Average computational time and standard deviation for each algorithm

and dataset. .. 102

Table 7.20: Average MSE and standard deviation for each algorithm on benchmark

datasets. ... 103

Table 7.21: Average MAPE and standard deviation for each algorithm on benchmark

datasets. ... 105

Table 7.22: Average computational time and standard deviation for each algorithm

and dataset. .. 106

vii

LIST OF ABBREVIATIONS

AddExp………………………………………………………….. Additive Expert Ensemble

ANOVA………………………………………...………………..…….. Analysis of Variance

ASHT………………………………………………..……….Adaptive-Size Hoeffding Tree

BP……………………..…………………………………………………...Back-propagation

B-NNRW…………………..….……….Bagging Neural Networks with Random Weights

CART…………………………………………………..Classification and Regression Tree

CEC………………………………...……...……. Congress on Evolutionary Computation

CNN……………………………………..……………...….Convolutional Neural Networks

DBN…………………………………………..……………………… Deep Belief Networks

DNN……………………………………………………….………….Deep Neural Networks

DNNE……………………..……………….…….Decorrelated Neural Network Ensemble

DOE…………………………………………………………………..Design of Experiments

DOER……………………………….………..Dynamic and Online Ensemble Regression

DT……………………………………...…………………………………….....Decision Tree

EA…………………………………………...……………….…….. Evolutionary Algorithms

ESMSE………………………...………….Exponentially Smoothed Mean Squared Error

ELM………………………………...…….……………………..Extreme Learning Machine

GA……………………………………...…………………………..………Genetic Algorithm

ILLSA…………………………….….Incremental Local Learning Soft Sensing

Algorithm

k-NN……………………………..……………………………………..k-Nearest Neighbors

LS…………………………………...……………………………………….…Least Squares

MAPE…….…………………………...………………….Mean Absolute Percentage Error

ML…………………………………………...……………………………..Machine Learning

MSE…………………………………………………………………..…Mean Squared Error

viii

NCL…………………………………………...………..……Negative Correlation Learning

NN………………………………………………...…………………………Neural Networks

NNRW……………………………………….……Neural Networks with Random Weights

NSGA-II………………...………………...…Non-dominated Sorting Genetic Algorithm II

Obag………………………..………………………………………………...Online bagging

O-DNNE……………………..…….……Online Decorrelated Neural Network Ensemble

OPF……………………………...…………………………………….Optimum-Path Forest

ORF…………………………………….……………….…………...Online Random Forest

O-SLFNN…………..………Online Single-hidden Layer Feedforward Neural Networks

OWE…………………………………………………………….Online Weighted Ensemble

PSO…………………………………………………..………..Particle Swarm Optimisation

RBF…………………………………………………………..………..Radial Basis Function

RPLS………………………………..……..……………..Recursive Partial Least Squares

RS………………………………………...………………………………….Random Search

RVFL……………………………………………….………Random Vector Functional Link

SEA…………………………………...……………...…….Streaming Ensemble Algorithm

SLFNN………………..……….……Single-hidden Layer Feedforward Neural Networks

SMBO……………………..………………...……..Sequential Model-Based Optimisation

SSHT……………………………………………Sum of Squares Hyperparameter Tuning

SVM………………………………...………………………………Support Vector Machine

1

1. INTRODUCTION

The field of machine learning (ML) has been developing rapidly and proved

useful in modelling complex real-life applications. The capacity of ML models to

extract knowledge from massive amounts of data has increased the ML popularity

and supported innovation and business growth in various industries. The

development of information technologies has allowed that massive amounts of data

are produced at a rapid rate, which imposes new challenges for data analysis

techniques (Yaqoob et al., 2016). In many application domains, such as social

networks, financial industries, and engineering systems, data are generated in

continuous flows in the form of data streams. Such data format requires the ML

algorithms to work in an online mode, i.e. analysing the data in real-time and evolving

accordingly. Examples of data streams include network event logs, telephone call

records, credit card transactional flows, sensing and surveillance video streams,

financial applications, monitoring patient health, and many others (Wang et al., 2003;

Fan, 2004; Zhang et al., 2012; Krawczyk et al., 2017).

The ML algorithms are mainly divided into 3 types: supervised learning,

unsupervised learning and reinforcement learning. In the supervised learning, the

training data include the input vectors and their corresponding target vector.

Supervised learning tasks include classification, where the aim is to assign a class for

each input vector, and regression, where the target for each input vector is a

continuous variable. In the unsupervised learning, the target vector is not present and

the aim is to determine similar groups within the data. In the reinforcement learning,

the algorithm interacts with the environment in order to find appropriate actions that

maximise the reward (Bishop, 2006).

Traditionally, the supervised learning approaches work on an offline mode

where a fixed amount of data is collected and used to train and validate the predictive

models. This leads to the assumption that the data probability distribution does not

change between training data and the application data (González-Castro et al.,

2013). This typically means that data used to train the predictive models can reflect

the probability distribution of the problem, however, this assumption is often violated

in real-world applications (Gállego et al., 2017; Ren et al., 2018).

2

For many reasons, the data distribution in real-world applications is often not

stable and tends to change with time (Tsymbal, 2004; Zliobaite et al., 2016). This is

due to the evolving nature of the processes, which causes a phenomenon frequently

referred to in the literature as concept drift. The presence of concept drift is likely to

cause a decrease in the accuracy of the models as time passes, since the training

data used to build the models may be carrying out-of-date concepts. This has led to

increasing research on data stream mining applications. Besides the evolving nature

of data, other properties that make the prediction task in data streams challenging

include infinite length, high dimensionality, orderliness, non-repetitiveness, high-

speed, and time-varying (Masud et al., 2008; Farid et al., 2013).

A promising research direction in modelling data streams is the ensemble

learning methods (Krawczyk et al., 2017). Ensemble approaches, also known as

committees or multiple classifiers, can be characterised as a set of classification or

regression models, whose outputs are combined to predict the output of a new

instance. Single models usually require complex operations to modify the internal

structure of the model and may perform poorly in the presence of concept drift

(Masud et al., 2008). Ensemble approaches are proven to be effective to overcome

common limitations of single models, such as accuracy and stability (Yin et al., 2015).

Additionally, they are able to maintain information of different concepts, and new

models can be easily trained to cope with new concepts that may appear; hence,

they can effectively deal with evolving data streams and achieve superior accuracy

compared to single models.

The diagram shown in Figure 1.1 contextualises this research within the field

of ML, highlighting the scope in terms of the type of learning, task and environment

this research aims to address, as well as ML technique applied.

3

Figure 1.1: Research scope.

1.1. RESEARCH PROBLEM

Nowadays, large amounts of data at very high rates are generated by

organizations. In this context, new ML techniques are required to address the new

challenges imposed by the big data paradigm (Yaqoob et al., 2016). One such

challenge is how to build predictive models that can work on an online mode and

adapt to possible changes in the underlying process generating the data.

An increasing research effort has been made in the recent years towards the

data stream mining, however, mainly focused on supervised classification problems

(Ikonomovska et al., 2015; Krawczyk et al., 2017). Regression is an important field of

study with many practical applications, which include quality control, process

4

monitoring, financial forecasting, weather prediction, among others. For instance, in

regression tasks, the aim is to model the relationship between the input vector and

the output variables, given a data sample composed of a feature vector xi and a

scalar output variable yi. Therefore, ML approaches approximate a function f that

transforms an input vector xi into an output yi, given by yi = f(xi) + ei, where ei is an

approximately normally distributed noise with zero mean. The development of data

stream regression algorithms has the potential to benefit many industries by solving

practical problems in a continuous manner with high accuracy and adapting to cope

with constantly changing environments.

Ensemble learning algorithms appear as a promising technique to deal with

data streams with concept drift, mainly due to the high level of accuracy and

computational efficiency that is possible to achieve using ensemble learning

techniques. The concept drift may occur in several ways and is difficult to detect

(Farid et al., 2013). The main approaches to deal with concept drift include active and

passive approaches. The former updates the model without assuming the presence

of drift, which may lead to unnecessary computation when no changes in data

properties are observed. On the other hand, passive approaches wait until the drift is

detected to update the model and some drawbacks include false alarms, inability to

detect some types of drift and poor performance in case of data insufficiency.

An important decision in ensemble design is the choice of base models.

Effective data stream ensembles require computationally efficient base models with a

good level of accuracy. An algorithm that met those requirements is randomised

Neural Networks (NN), also known as Neural Networks with Random Weights

(NNRW) (Cao et al., 2018). NNRW was introduced in (Pao and Takefuji, 1992),

which proposed the Random Vector Functional Link (RVFL). Later, Huang (2004)

introduced a similar algorithm, the Extreme Learning Machine (ELM) that boosted the

NNRW popularity in various applications. The main idea of such models is to

randomly initialise the weights between input and hidden layers, which are kept fixed

during the optimization process and optimize the weights between the hidden and

output layers. This process not only reduces the number of parameters but also

converts the non-convex optimisation into a convex optimisation, reducing the

training complexity compared to the traditional backpropagation algorithms and

therefore resulting in higher computational efficiency.

5

In general, the ensemble algorithms ignore the base model optimisation

through the hyperparameter adjustment. Despite the popularity of ML algorithms it is

common to find applications where the hyperparameters are simply set to default

values or adjusted by trial and error approach. There is limited research exploring the

hyperparameter optimisation; however, relying on a systematic way to optimise the

hyperparameters could not only improve the algorithm accuracy and computational

performance but also help understand how the hyperparameter setting affects the

model.

In order to effectively assess data stream algorithms, data generators that can

effectively simulate the various types of drift are required. The existing methods for

data generation are not only limited in terms of dimensions, i.e. only a few predictive

attributes can be simulated, but also does not allow checking the effect of simulated

drift on the data.

Following a comprehensive review of the current literature and methods, a

number of research areas within the current approaches that require improvements

are identified. These include:

• Need for the development of fast algorithms for data stream regression

problems.

• Need for updating mechanisms that avoid the drawbacks of active and

passive approaches to deal with concept drift.

• Advance the research on hyperparameter optimisation and therefore

improve the effectiveness of ML algorithms.

• Need for effective ways to simulate regression problems and the various

types of concept drift.

6

1.2. RESEARCH AIM AND OBJECTIVES

The main aim of this research is to develop an ensemble learning method

based on NNRW algorithms for data stream regression problems. The algorithm

must be capable of effectively predicting continuous variables and adapt continuously

to possible changes in the underlying process that generates the data in order to

keep the model updated and avoid loss of accuracy.

Several key points were identified as the research objectives for the

achievement of the aim of this research, these include:

• Develop a robust methodology for generating synthetic data streams and

simulating concept drift.

• Analysis of the NNRW approaches and their main differences.

• Development of a new hyperparameter optimisation algorithm.

• Development of effective updating mechanisms to cope with concept drift.

• Test and validate the proposed approaches using synthetic and

benchmark datasets and comparing them with existing methods from the

literature.

1.3. THESIS OUTLINE

The remainder of this thesis is organized as follows. Besides the introduction

chapter, where the research problem and research objectives are presented, a

literature review is covered in Chapter 2. The literature review outlines the main

challenges involving data streams and concept drift and also presents the main

aspects involving ensemble design. The state-of-the-art approaches for concept-

drifting data streams are also shown in the literature review. The structure of this

research is presented in Chapter 3 and shows how the research was organised to

achieve the established goals. The datasets used to assess and validate the

proposed algorithms are detailed in Chapter 4. An analysis of the base models

7

(NNRW) is carried out in Chapter 5 and its optimisation is tackled in Chapter 6.

Chapter 7 details the development of the new ensemble algorithm for data stream

regression and Chapter 8 closes this thesis, outlining the main conclusions and

opportunities for future research.

8

2. LITERATURE REVIEW

In this chapter, the existing ensemble approaches for concept drifting data

stream regression and classification are discussed. Before that, an overview of the

main challenges involving data streams and concept drift is presented. This is

followed by a brief review of ensemble methods, the effect of diversity and pruning on

the ensemble’s performance and how the base models can be effectively combined.

Bullet point remarks on the literature review close this chapter.

2.1. DATA STREAMS AND CONCEPT DRIFT

In many applications data are generated in continuous flows. Examples of

data streams include network event logs, telephone call records, credit card

transactional flows (Wang et al., 2003; Fan, 2004), sensing and surveillance video

streams, financial applications, monitoring patient health, and many others. Several

challenges are imposed on ML algorithms due to the characteristics of data streams,

which include infinite length, the evolving nature of data, high dimensionality,

orderliness, non-repetitiveness, high-speed, and time-varying properties (Masud et

al., 2008; Farid et al., 2013, Krawczyk et al., 2017).

It is usually impractical to store all data generated by data streams and mine

them to discover patterns or hypothesis. Different from traditional knowledge

discovery tools that assume a volume of data that can be stored in memory and non-

strict limitation of processing time, data stream models have space and time

restrictions (Bifet et al., 2009). A common practice is to mine a subset of data,

however, as mentioned by Fan (2004), this approach could be ineffective due to

oversimplified models as a result of sub-sampling or to the dynamically and

unpredictable evolving nature of the data. Bifet et al. (2009) highlight some properties

desired for an ML algorithm for data streams: high accuracy and fast adaptation to

change; low computational cost in both space and time; theoretical performance

guarantees; and a minimal number of parameters.

9

It is expected in many practical applications that the concept underlying a

given process evolves over time, which can happen due to several factors including

change in consumer preference, economic dynamics, or environmental conditions.

The evolving nature of data has presented an important challenge for data stream

learning algorithms. This phenomenon is commonly referred to as concept drift, in the

context of machine learning, data mining and predictive analytics; covariate shift or

dataset shift, in the context of pattern recognition; and non-stationarity in the context

of signal processing (Zliobaite et al., 2016). Fan (2004) describes concept drift as

inconsistencies between the optimal hypotheses in two subsequent chunks of data.

Yin et al. (2015) define concept drift as a change in data distribution that occurred in

dynamic environments, where non-stationary data are observed, that results in a

change of the concept of class definitions.

Some authors worked on formally defining the concept drift. Given posterior

distribution P(x,y) = P(y|x)*P(x), where x is the input vector and y is the target value,

Gao et al. (2008) defined three possible sources of concept drift:

• Features change: P(x) changes but P(y|x) does not.

• Conditional change: P(x) remains unchanged but P(y|x) changes.

• Dual change: Both P(x) and P(y|x) change.

This typology corresponds to the sources of concept drift reported by (Masud

et al., 2008), which states that the data may evolve through a change in prior

distribution, change in posterior distribution or both (feature change, conditional

change and dual change, respectively).

Zhu et al. (2010) also defined concept drift in classification problems as a

change in the posterior probability of a given class due to possible changes in

conditional probability and/or priori probability. They further decomposed drifting

concepts as:

• Priori probability drifting: drifting is triggered by class priori probability.

• Conditional probability drifting: drifting is triggered by class conditional

probability.

10

• Conjunct probability drifting: both conditional and priori probability

constantly changes across the data stream.

More recently, Gállego et al. (2017) have characterized the evolving nature of

data as dataset shift. Considering an instance x, a class value y and a joint

probability P(x|y), they identified three types of dataset shift:

• Covariate shift: where P(x) changes but P(y|x) does not.

• Prior probability shift: where P(y) changes but P(x|y) remains constant.

• Concept drift: where either P(y|x) changes and P(x) does not or P(x|y)

changes but P(y) remains constant.

Krawczyk et al. (2017) point out a distinction between real drift and virtual drift.

They define the real drift as a change in P(y|x), which may happen without changes

in P(x) and therefore may not be detected by drift detection mechanism based on

input attributes. The virtual drift is related to changes in P(x) and P(y).

Further concept drift categorisation is related to how it occurs. Mainly, they can

be distinguished between sudden and gradual drifts (Tsymbal, 2004). Krawczyk et al.

(2017) extend the categorization, including incremental drift and recurrent drift, as

shown in Figure 2.1.

Figure 2.1: Types of drift (Krawczyk et al. 2017).

When any type of concept drift occurs, it is likely that the accuracy of the

model decreases since that training data used to build the model may be carrying

11

out-of-date concepts. One challenge in learning concepts from data streams in

presence of concept drift is how to identify the data in the training set that are no

longer consistent with the current concept (Wang et al., 2003).

Tsai et al. (2009) defined three main categories of algorithms for concept drift:

window-based approaches, weight-based approaches, and ensemble classifiers.

Elwell and Polikar (2011) further classified algorithms for concept drift as:

• Online versus batch algorithms: Online algorithms learn one instance at a

time while batch algorithms learn chunks of instances.

• Single model versus ensemble-based approach: The former refers to a

single learning algorithm used for prediction while the latter refers to

multiple learning algorithms (not necessarily of the same type) that are

combined to increase the prediction performance.

• Active versus passive approaches: Active approaches rely on drift detector

mechanism while passive approaches assume constant drift and update

the model continuously.

Although online algorithms may be better to learn new concepts, they suffer

from poor stability and are sensitive to noise. On the other hand, batch algorithms

may be ineffective if the data chunk size is not properly adjusted and/or the chunk

contains multiple concepts (Elwell and Polikar, 2011).

Single models can be based on window-based approaches, where models are

built selecting instances within a fixed or dynamic sliding window, and weight-based

approaches, where weights are attributed to instances and outdated instances are

conveniently discarded (Farid et al., 2013). Usually, single models require complex

operations to modify the internal structure of the model and may perform poorly in the

presence of concept drift (Masud et al., 2008).

Although the main types of concept drift can be classified, drift detection

mechanisms may be inaccurate and yield false reports, particularly in noisy datasets

(Fan, 2004; Elwell and Polikar, 2011). In general, drift detection mechanisms are

based on monitoring some indicators over time, such as performance measures or

data properties (Gama et al., 2004). Additionally, Farid et al. (2013) point out that the

12

statistical properties of the target class, in case of classification problems, change

over time in unforeseen ways. Another risk for active approaches, especially for

detection mechanism based on error, is data insufficiency (Fan, 2004), where the

data used for training the models do not represent the learning hypothesis

adequately. Gao et al. (2008) state that it is optimal to always update the model

according to the most recent data, regardless of how concepts evolve. Elwell and

Polikar (2011) argue that the knowledge present in the models should be categorized

based on its relevance to the current environment, represented by the most recent

data, and should be dynamically updated as new data are generated.

2.2. ENSEMBLES

Ensemble approaches have been successfully applied in both classification

and regression problems. They are inspired by the decision process based on

different opinions from experts (Rokach, 2010; Mousavi and Eftekhari, 2015), and are

proved both theoretically and empirically to outperform single classifiers in various

tasks (Wang et al., 2003; Brown et al., 2005). Opinions from different sources reduce

the risk of low performance of a single agent; furthermore, the ensemble tends to

reduce the variance of its base classifiers. In the human decision-making process, a

set of opinions, notably when a high degree of diversity is presented, is richer than an

isolated opinion.

The classical ensemble approaches include Boosting (Schapire, 1990),

Staking (Wolpert, 1992), Bagging (Breiman, 1996), and Random Forests (Breiman,

2001), and many variants that can be found in the literature for solving a wide variety

of tasks. The ensemble learning represents an important research direction in solving

concept-drifting data streams (Yin et al., 2015) and has been successfully applied in

classification and regression problems. Some advantages of ensemble approaches,

compared to single models, include the suitability for dynamic updates and

integration with drift detection mechanisms (Gomes et al., 2017). Moreover, they are

easy to scale and parallelise, the under-performing parts can be pruned to adapt to

changes, and usually generate more accurate concept description, compared to

single models (Bifet et al., 2009).

13

Wozniak et al. (2014) highlighted three main issues with ensemble learning

methods:

• System topology: how to interconnect individual classifiers.

• Ensemble design: how to drive the generation and selection of a pool of

valuable classifiers.

• Fuser design: how to build a decision combination function (fuser) which

can exploit the strengths of selected classifiers and combine them

optimally.

The ensembles can be divided into two categories: fixed ensemble, where

base predictors are trained in advance and are updated online; and growing

ensembles, where component learners are added and/or removed, and voting

weights are updated according to the incoming data.

2.2.1. The importance of ensemble diversity

Breiman (1996) argues that an effective ensemble requires that the singular

predictors must be unstable. Instability means that changes in training data or

initialization produce diversity among the learners, i.e. differences in their output in

response to a given input. The use of stable models could potentially produce biased

ensembles and their use requires a mechanism to cause instability. One example is

presented by López et al. (2015), which introduced diversity in a Support Vector

Machine (SVM) ensemble by weakening the base models through a data sampling

mechanism based on boosting. The models that compose the ensemble are built

sequentially and for each new model, a combination of high emphasised data points

(Data points difficult to classify by previous models) and data points that can be

easily classified are sampled to train new models. The proposed procedure aims at

building a diversified and compact ensemble.

In terms of diversity, ensemble approaches can be categorised as explicit

diversity methods, when the information about diversity may be taken into account.

An example is the Boosting algorithm, where the data distribution is manipulated to

14

ensure diversity. In contrast, implicit diversity methods do not take diversity measure

into account. An example of this category is the Bagging algorithm, where the dataset

is randomly sampled to create different training sets for each classifier (Brown et al.,

2005). Similarly, Rokach (2010) distinguish ensembles as dependent frameworks,

where the output of a classifier is used in the construction of next classifiers, and

independent frameworks, where each classifier is built independently. Tumer and

Ghosh (1996) showed that combining procedures are more effective when the base

models are negatively correlated, moderately effective when the experts are

uncorrelated and slightly effective when they are positively correlated.

The diversity among members of the ensemble is a widely discussed issue

and the meaning of diversity may still be a controversial concept. Brown et al. (2005)

reviewed attempts to provide a formal definition of error diversity. The concept of

diversity can be well explained in the case of regression problems by ambiguity

decomposition, which shows that the error of the convex-combined ensemble is

lower than or equal to the average error of the individuals; and Bias-variance-

covariance decomposition, which takes into account the possible distribution over

different training sets (Brown et al., 2005). This also can be extended to classification

problems by converting the class outputs to ordinal values, i.e. probability estimates.

The diversity measure for non-ordinal values is a more complex issue and could be

approximated using methods such as a heuristic approach proposed by Sharkey and

Sharkey (1997).

One approach to measuring diversity is kappa-statistic (Margineantu and

Dietterich, 1997; Bifet et al., 2009). Additionally, some diversity measures have been

developed to capture the degree of disagreement among base classifiers; Kuncheva

and Whitaker (2003) studied four pairwise methods (Q-statistic, Correlation

coefficient, Disagreement measure and Double-fault measure); and six non-pairwise

ones (Kohavi-Wolpert variance, Interrater agreement, Entropy measure, Measure of

difficulty, Generalized diversity and Coincident failure diversity). They showed that

there exists a strong correlation between each other. Besides the fact that there is no

consensus on what a good diversity measure should be, Bhardwaj et al. (2016) found

evidence that diversity measures may not be effective when considered for ensemble

pruning methods.

15

Brown et al. (2005) categorised some techniques for ensemble diversity

induction as follows:

• Starting point in hypothesis space: A common example is random initial

weights of NNs, which increases the probability of convergence in different

trajectories. Besides it is widely used, it is also accepted as the least

effective method.

• Set of accessible hypotheses: There are two ways to manipulate the

accessible hypothesis: Manipulation of training data, also referred to as

resampling methods, where each learner can be trained using different

training patterns or different feature subsets; and changing the

architecture of the learner.

• Traversal of hypothesis space: Rely on the path the algorithm uses to

traverse the hypothesis space in search of the best hypothesis, to

generate diversity.

The ensemble diversity helps to avoid the issue of overfitting (López et al.,

2015) since the disagreement between ensemble members cancel out the effect of

overfitted models. Overfitted models reduce the bias component of error while the

ensemble is responsible for reducing the variance (Brown et al., 2005). According to

the Ambiguity decomposition (Brown et al., 2005), the increased individual variability,

as a consequence of higher diversity, has an effect on the individual’s accuracy and

the right balance between individual error and diversity must be taken into

consideration to achieve the lowest overall ensemble error. Some research has been

done to address the trade-off between diversity and accuracy using multi-objective

optimisation approaches, such as Mousavi and Eftekhari (2015), which proposed a

combination of Static and Dynamic Ensemble Selection based on the Non-dominated

Sorting Genetic Algorithm II (NSGA-II).

16

2.2.2. Combination rules and pruning approaches

The combination of outputs from different classifiers is an issue that can highly

influence the ensemble results. The simplest procedures are averaging, in case of

regression problems, and majority vote, in case of classification problems. Omari and

Vidal (2015) highlighted two main approaches for output aggregation: training of the

learner first and then aggregating their outputs; and training different learners and

training an aggregation unit using all examples, in which case the ensemble should

be of moderate size. Kittler et al. (1998) proposed five ensemble rules for combining

multiple classification results, which include Max Rule, Min Rule, Product Rule,

Majority Vote Rule and Sum Rule; and are based on the probabilities with each

classifier predicts an instance. Sun et al. (2015) enhanced those rules by considering

the relationship between new data and training data through a measure of similarity

based on a distance weighting mechanism.

Omari and Vidal (2015), refer to a concept of post-aggregation to improve the

performance of massive ensembles, i.e., ensembles with a high number of learners.

They proposed a fusion procedure that includes two steps: first, a traditional non-

trainable aggregation unit for classifiers’ output is used; then, a soft version of

previous aggregation (average or voting, for example) is introduced as input for a

complementary learning machine that also reads the observations. Omari and Vidal

(2015) found out that their post-aggregation method can improve the ensemble’s

accuracy, except for very high-quality ensembles, however at an additional

computational cost.

Basic linear combination strategies include simple average, trimmed mean,

Winsorized mean and median (Jose and Winkler, 2008). An error-based approach is

presented by Armstrong (2001) where the model’s weights are inversely proportional

to their error. Elwell and Polikar (2011) applied dynamically weight updating based on

time-adjusted errors. Additionally, their approach temporarily disables classifiers that

do not match the current environment. Ordinary Least Square is another popular

method (Granger and Ramanathan, 1984; Aksu and Gunter, 1992; Lemke and

Gabrys, 2010). An outperformance approach that applies a Bayesian framework and

assigns weights based on past forecasting trials is proposed by Bunn (1975). A

17

variance-based pooling that relies on k-Means to form clusters of constituent

forecasts was developed by Aiolfi and Timmermann (2006).

Pruning approaches intend to selectively choose the members of the

ensemble in order to eliminate inaccurate and redundant learners, which may reduce

both diversity and accuracy of the ensemble. Selective ensembles are believed to be

more effective than single learners and traditional ensembles, as a result of smaller

ensembles with potentially better generalization ability (Guo et al., 2015; Yin et al.,

2015). Ensemble pruning has been an active area of research and numerous pruning

algorithms have been proposed (Bhardwaj et al., 2016). They can be categorized as

Search-based, Ranking-based, Optimization-based, and Statistics based

approaches.

Wang et al. (2003) apply a pruning mechanism that excludes base models

when their accuracy becomes worse than a random classifier. Bhardwaj et al. (2016)

highlighted the importance of the size of ensembles, due to computational speed and

storage issues, and proposed a metric that considers not only the accuracy but also

the size of the ensemble. They argue that in some applications, the size is important

and shorter models may be desirable at the expense of accuracy. The developed

metric evaluates the cost-effectiveness of an ensemble biased to accuracy and also

allows that more importance is given for the size of the ensemble when required.

2.3. ENSEMBLE APPROACHES FOR CONCEPT-DRIFTING DATA

STREAMS

Wang et al. (2003) introduced a weighted ensemble classifier to address data

stream mining and concept drift. They emphasise the advantage of their approach

compared to single classifiers in terms of accuracy, efficiency and ease of use. The

classifiers are trained sequentially from chunks of data. The criterion to discard data

is not based on time of arrival, i.e. old models are replaced, but base on the class

distributions that better represent the current concept. In the approach developed by

Fan (2004), the new models are built based on the last chunk of data and a

combination of new data and old data. The old data are composed of a selection of

examples from past chunks. Fan (2004) also highlighted the problem of data

18

insufficiency, where the use of additional data from previous chunks improves the

model accuracy when concept drift is not present.

An approach developed by Gao et al. (2008) trains a new classifier at each

new chunk of data. Besides keeping the model up to date with the latest concept, a

sampling mechanism allows the model to deal with unbalanced datasets, where the

number of data points that belongs to one class is much larger than the number of

data points in other classes. Another method that trains a new model for every new

chunk of data to cope with data evolution is presented by Masud et al. (2008). The

classification is performed using k-NN (k-Nearest Neighbours) as base models and is

designed to be effective in problems with a limited amount of labelled data.

Furthermore, this approach also incorporates a novel class detection mechanism

based on clustering. In both algorithms, the new model is incorporated into the

ensemble based on its accuracy in modelling the current concept.

Two variants of Bagging were introduced by Bifet et al. (2009), ADWIN

Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. While both algorithms

deal with classification tasks, the first one adapts the concept drift using a drift

detector, and the latter takes advantage of the incremental property of Hoeffding

Trees to restart the trees according to its size and keep the ensemble updated. Elwell

and Polikar (2011) developed an incremental learning algorithm to solve classification

problems in nonstationary environments. The algorithm trains a new classifier for

each new chunk of data and uses a dynamically weighted majority voting scheme in

order to cope with concept drift. An adaptive ensemble that is not only able to deal

with concept drift but also is capable of detect new classes is presented by Farid et

al. (2013). The authors trained three Decision Trees (DT) in a boosting manner, i.e.

creating subsets of the training data based on instance weighting. A new DT is

trained for each new data chunk, and this new tree can replace one of the existing

trees based on accuracy criterion. The novel class detection is performed by a

clustering mechanism in the tree leaves.

An ensemble of ensembles is proposed by Yin et al. (2015). They argue that

while in the traditional batch growing ensemble methods all the previous ensembles

are discarded, their approach takes advantage of them for the final decision. Since

the previous ensembles are composed of the same classifiers minus the last trained

19

classifiers, the combination of ensembles is performed through the weights of

previous ensembles. Ren et al. (2018) aggregated the operators of online ensembles

and chunk-based ensembles to develop an ensemble classifier that is able to

manage different types of drift and a limited number of labelled data. Iwashita et al.

(2019) tackled classification in drifting data streams using ensembles of Optimum-

Path Forest (OPF) with different approaches for training and updating the OPFs, i.e.

full-memory, no-memory and window-of-fixed-size. The base models are combined

using three voting mechanisms: Combined, Weighted and Major.

In the context of data stream regression learning, only a few research papers

have been published in the literature (Ding et al., 2017). Despite the success of batch

growing ensembles achieved in data stream classification, in general, regression

ensemble algorithms use iterative strategies. The Additive Expert Ensemble

(AddExp) was developed to deal with online classification tasks with concept drift

(Kolter and Maloof, 2005). However, the authors argue that this approach can be

further extended to also deal with regression problems. AddExp relies on incremental

algorithms, i.e. algorithms that adapt to every new instance. In the case of regression

tasks, an online version of least squares regression is adopted as base learner. In

order to control the size of the ensemble, two pruning strategies were evaluated, i.e.,

oldest first (the oldest model is excluded) and weakest first (the weakest model is

excluded). The latter proves a better pruning choice. This approach works under the

assumption that there is no change in the output distribution, since it is designed to

make predictions in the interval [0, 1], and this assumption would be easily violated in

practical applications. The AddExp also relies on a threshold parameter that

determines when new experts should be added to the ensemble, which may be

especially difficult to adjust in noisy datasets.

Kadlec and Gabrys (2011) developed an algorithmic soft sensor, i.e.

simulating the sensor’s output, based on iterative Recursive Partial Least Squares

(RPLS) model, called ILLSA (Incremental Local Learning Soft Sensing Algorithm).

The ensemble is built using partitions of historical data. In order to cope with concept

drift, the ensemble is updated in two levels. At the local level, the RPLSs are updated

using the new data, and at the global level, the model’s weights are updated

according to its performance. Another incremental online ensemble algorithm for

regression based on Partial Least Squares, the OWE (Online Weighted Ensemble)

20

algorithm, was proposed by Soares and Araújo (2015a). It updates the ensemble

weights at the arrival of each new data sample based on the error on a sliding

window of data. The training of new models considers the error of the ensemble in

each sample of the current data window using a boosting strategy. It also retains

information about old data windows in the hope that this information could be useful

in case of recurrent concept drift.

Soares and Araújo (2015b) also developed another sliding window-based

ensemble, the Dynamic and Online Ensemble Regression (DOER). DOER uses OS-

ELM (Liang et al., 2006), which is a type of NNRW, as base models. The updating

approach is based on an overlapping sliding window, and at each new data sample,

all the base models are re-trained and the weights of each model are updated. The

approach also considers a mechanism that replaces under-performing models when

the accuracy of the ensemble decreases.

Two algorithms based on online Hoeffding-based regression trees

(Ikonomovska et al., 2011b), namely OBag (Online Bagging) of Hoeffding-based

trees for regression and ORF (Online Random Forest) for any-time regression are

presented by Ikonomovska et al. (2015). The models are constructed using online

bagging meta-algorithm and learn in an incremental fashion. The adaptation to

concept drift is performed by replacing the less accurate models when a significant

increase in error is detected.

The main problem with iterative approaches is the fact that, in general, all new

samples are presented to the base models, which could result in a higher correlation

between the base models and consequently lower diversity of the ensemble. The

diversity among the models is responsible for uncorrelated predictions that lead to

improved accuracy. Several authors have highlighted the importance of ensemble

diversity (Tumer and Ghosh, 1996; Liu and Yao, 1999; Brown et al., 2005; Rokach,

2010; Alhamdoosh and Wang, 2014; Ding et al., 2017).

More recently, regression of sequential data stream is addressed by Ding et

al. (2017), who proposed the O-DNNE (Online Decorrelated Neural Network

Ensemble). Their algorithm is an online version of the DNNE (Decorrelated Neural

Network Ensemble) (Alhamdoosh and Wang, 2014), which is based on a

decorrelation strategy (Bruce, 1996) and the negative correlation learning (Liu and

21

Yao, 1999). DNNE is an ensemble of NNRWs that trains all base models

simultaneously and considers the correlation among them in the optimisation

process. This method allows that fewer models are required to build the ensemble

since redundant models are avoided; however, the training and updating process

may become computationally cumbersome, especially when a large number of

models and/or a large number of hidden nodes are required, as shown in section 3.3.

Additionally, base models with convergence problems due to the choice of the

random weights are kept in the ensemble since no pruning mechanism is provided.

A summary of the ensembles approaches for data stream classification and

regression in the presence of concept drift is presented in Table 1, in chronological

order.

22

Table 2.1: Ensemble approaches developed to deal with data streams in the presence of concept drift.

Authors
(year)

Task Strategy

Wang et al.
(2003)

Classification
Batch growing ensemble using each chunk of data to build a new

model

Fan (2004) Classification
Batch growing ensemble using selected past data to build new

models

Kolter and
Maloof (2005)

Classification
Ensemble-based on incremental algorithms to adapt to every

new instance. New models are added according to a threshold
parameter and excluded based on age or accuracy.

Gao et al.
(2008)

Classification
Batch growing ensemble and sampling mechanism to deal with

unbalanced datasets

Masud et al.
(2008)

Classification
Batch growing ensemble designed to deal with limited labelled

data and novel class detection

Bifet et al.
(2009)

Classification
Fixed ensemble that uses drift detector and restarting Trees to

update the model.

Elwell and
Polikar (2011)

Classification
Batch growing ensemble that updates using a dynamically

weighted majority voting scheme

Kadlec and
Gabrys (2011)

Regression Fixed ensemble based on PLS with local and global updating.

Farid et al.
(2013)

Classification
Fixed ensemble that trains new models based on optimised data

selection and detects new classes based on clustering.

Ikonomovska
et al. (2015)

Regression
Incremental Hoeffding-based regression trees built based on

bagging and low performing models are excluded.

Soares and
Araújo
(2015a)

Regression
PLS models are updated at every new instance. Each model is

weighted according to its accuracy on a sliding window

Soares and
Araújo
(2015b)

Regression
The models (ELM variant) are updated at every instance, and the

weights are updated based on accuracy on a sliding window

Yin et al.
(2015)

Classification
Combination of ensembles that builds a new ensemble at each

new chunk of data

Ding et al.
(2017)

Regression
NNRW models trained using decorrelation learning that can be

updated at each instance or by chunk

Ren et al.
(2018)

Classification
Bach growing ensemble that incorporates drift detection

mechanisms and applies online and chunk based updating
mechanisms to cope with various types of drift

Iwashita et al.
(2019)

Classification
Bach growing ensemble using OPF base classifiers that consider
approaches to training the new models (full-memory, no-memory

and window-of-fixed-size)

2.4. REMARKS

• Data streams impose several challenges for ML algorithms, such as time

and memory restrictions, which requires computationally effective

algorithms; and the evolving nature of data, which requires algorithms that

can be effectively updated.

23

• The ensemble approaches have been successfully applied in solving data

stream regression and classification problems. They offer a number of

possibilities that allow them to effectively adapt to the evolving nature of

the data.

• Passive updating approaches generally rely on drift detection mechanism

that may generate false reports and prevent the model to improve its

accuracy due to data insufficiency.

• Active updating approaches tend to be more effective; however, the

updating frequency may have an important impact on the algorithm’s

accuracy.

• There is a lack of research toward stream regression problems.

• Effective ensembles require computationally effective base models that

offer some degree of instability to produce diversity. An algorithm for

regression that meets these requirements is the NNRW, which will be

covered more deeply in Chapter 5.

• The base model optimisation is not discussed in the existing literature on

ensembles. The model optimisation could not only enhance the

ensemble’s accuracy but also reduce its size and therefore improve its

computational efficiency. This issue is discussed in chapter 6.

In the next Chapter (3), the methodology describing how the research gaps

are going to be addressed are presented.

24

3. THESIS DEVELOPMENT METHODOLOGY

The literature review showed that there is a gap in the development of

algorithms for regression data streams that can be computationally efficient to deal

with high dimensional datasets, achieve state-of-the-art accuracy, and effectively

deal with the various types of concept drift. To this end, this research aims at

developing an ensemble of NNRWs to cope with this task. Before the development of

the ensemble approach, some issues need to be addressed.

First, it is required sets of data where the approach can be effectively

evaluated and the assumptions about the capabilities of the algorithm can be

assessed. Many authors had discussed the assumption that real-world data are in

general not stable and evolve over time (Hofer and Krempl, 2013; Yaqoob et al.,

2016, Gomes et al., 2017). However, it is not possible to assure in real-world

datasets when concept drift is happening and which type(s) of concept drift is(are)

taking place. This requires synthetic datasets where the various types of concept drift

can be simulated to allow the evaluation of the algorithm’s responsiveness to concept

drift. Additionally, there is a need for synthetic data generated on high dimensional

spaces to assess the computational efficiency of the proposed methods.

To cope with this, in Chapter 4, a study on synthetic datasets is carried out.

The existing methods for synthetic data generation are discussed. A novel data

generation approach is proposed based on existing functions for evaluation of

optimisation algorithms. This approach allows not only generating data on potentially

unbounded dimension spaces but also simulating the various types of drifts reported

in the literature. The proposed algorithms are also assessed on real datasets, which

are also outlined in Chapter 4.

Second, an accurate and fast learning base model is needed to cope with the

proposed task. It is also required that the base model falls into the class of weak

models in order to achieve good ensemble diversity. The use of NNRW’s meets

these requirements; however, a fundamental question arises: How to build an

effective NNRW? The answer to this question is elaborated in chapters 5 and 6. In

Chapter 5, the structure of the main representatives of NNRW is discussed and the

design and tuning questions are pointed out. In chapter 6, the NNRW optimisation is

25

carried out, not only in terms of structural decisions but also in terms of tuning

hyperparameters. For NNRW optimisation, after a review of the existing

hyperparameter tuning approaches, a new hyperparameter tuning algorithm based

on sums of squares is proposed. The effectiveness of the proposed algorithm is

compared to a metaheuristic algorithm, the Genetic Algorithm (GA).

The core of this research, the development of the ensemble for data stream

regression in the presence of concept drift, is developed in Chapter 7. It uses as base

models the NNRWs studied in Chapter 5, which were optimised using the

hyperparameter tuning algorithm developed in Chapter 6. The resulting algorithm is

validated using the data sets and data generation approach discussed in Chapter 4.

Figure 3.1 summarises the main steps for the development of this research.

Figure 3.1: Research steps representing the methodology adopted in this research.

26

4. DATASETS

In this chapter, the datasets used for validating the algorithms developed in

this thesis are detailed. The datasets used in this research are mainly divided into

two categories: benchmark datasets and synthetic datasets. The benchmark datasets

refer to real-world datasets from practical applications in various domains, found in

public data repositories. Given the nature of this research and the fact that it is not

possible to make assumptions about the data from practical applications, the use of

synthetic data is necessary. It allows for the simulation of the various types of drifts

reported in the literature.

After a review of the main approaches for synthetic data generation, a need for

an approach to generate high dimensional regression data that can effectively

simulate various types of drifts was identified. In the remainder of this chapter, a

literature review with the work developed for synthetic datasets is presented, followed

by a new methodology for regression problems data generation. A description of the

benchmark datasets used in this research and the data preprocessing applied for all

datasets close the chapter.

4.1. A REVIEW ON SYNTHETIC DATASETS

The use of benchmark datasets is widely regarded as a way to evaluate and

compare ML algorithms. Several data repositories are available on the Internet, and

one of the most widely used is the UCI Machine Learning Repository (Dua and Graff,

2019). The use of benchmark datasets allows researchers to evaluate different

versions of their algorithms and compare the results against previous research.

However, it is not possible to make any assumptions about the properties of the real

data, such as trends, noise or stationarity, since they are generally unknown.

The use of synthetic datasets enables controlled experiments (Shaker and

Hullermeier, 2015). It is possible to build bench test data that perform specific

behaviours, such as controlled levels of noise, the inclusion of irrelevant features,

changes in the distribution of variables, and types of dependence among targets

27

(Read et al., 2012). These allow researchers to assess model assumptions and

mechanisms developed for specific tasks, such as feature selection or concept drift

detection. Some advantages of the use of synthetic datasets include: easy to

reproduce, low cost of storage and transmission, as well as knowledge of the ground

truth about the data (Bifet et al., 2009; Sun et al., 2016).

In the context of concept drift, the use of synthetic datasets is particularly

convenient, since it is not possible to assure the presence and/or type of concept drift

in real datasets. When evaluating drift detection mechanisms, relevant change

detection measurements such as the probability of true change detection, probability

of false alarms and delay of detection (Gama et al., 2014), can only be assessed on

synthetic datasets where the points of change are known. Many researchers rely on

synthetic datasets and several strategies have been developed for regression and

classification problems.

One of the first synthetic datasets reported in the literature are LED and

Waveform (Breiman et al., 1984), developed to evaluate classification algorithms.

LED consists of a 7-dimensional binary vector, where “1” means that the light in

respective position is on and “0” means that the light off. The combination of a given

vector represents a number on a digital clock. The task is to classify the true number

based on the vector, considering a faulty device that inverts the value of each vector

position with a 10% chance. The authors also suggest a variation of the problem

adding noise variables. It has been popular within ML community to evaluate

classification algorithms (Bifet et al., 2009; Brzezinski and Stefanowski, 2014;

Brzezinski and Stefanowski, 2014b; Jiang et al., 2015; Pietruczuk et al., 2017).

Furthermore, Sun et al. (2016) simulate concept drift by interchanging the relevant

variables.

The Waveform dataset is a more complex example and consists of a

classification problem with three classes, where each class is based a convex

combination of two out of three different waveforms, resulting in a 21-d vector. A

version with a 40-d vector is also studied, where 19 irrelevant attributes are added.

Some research that relies on this strategy to generate data include Breiman, 1996;

Bifet et al., 2009; Brzezinski and Stefanowski, 2014; Sun et al., 2016; and Pietruczuk

et al., 2017.

28

Schlimmer and Granger Jr. (1986) suggested the use of a dataset based on

three features (size, colour and shape), with three levels each. Three different

definitions of the concept were defined: (1) size = small and colour = red, (2) colour =

green or shape = circular, and (3) size = (medium or large). They used the dataset to

evaluate how their algorithm reacts when a change in the definition happens, e.g.

definition (1) is switched to (2). Some researches that make use of this dataset are

Bifet et al. (2009) and Ghazikhani et al. (2013). Sun et al. (2018) applied a slightly

different concept drift, where the rules are modified instead of replaced.

In the field of regression, Friedman (1991) used nonlinear functions (Eqs. 4.1

and 4.2) to generate a synthetic dataset to evaluate a method for regression

modelling of high dimensional data.

𝑦 = 0.1𝑒4𝑥1 +
4

1 + 𝑒−20(𝑥2−
1
2

)
+ 3𝑥3 + 2𝑥4 + 𝑥5 + 0 ∗ ∑ 𝑥𝑖

10

𝑖=6

+ 𝜀

 (4.1)

𝑦 = 10 sin(𝜋𝑥1𝑥2) + 20 (𝑥3 −
1

2
)

2

+ 10𝑥4 + 5𝑥5 + 0 ∗ ∑ 𝑥𝑖

10

𝑖=6

+ 𝜀

 (4.2)

Each variable of the feature vector is independently generated in the unit

hypercube, i.e. in the interval [0, 1], following a uniform distribution. As can be

observed, the last 5 attributes are irrelevant for the output. The noise 𝜀 follows a

Gaussian distribution with 0 mean and variance equal to 1. Some researches rely on

the function described in Eq. 4.2 and its variations for data stream regression, such

as Breiman (1996), Ikonomovska et al. (2011a) and Ikonomovska et al. (2011b). The

latter simulates drift by changing the domain of input variables, changing function

parameters, and misplacing variables. Nadungodage and Xia (2014) applied several

variations of a function similar to Eq. 4.2 to simulate abrupt and gradual drift by

replacement of the concepts (functions). Furthermore, ensemble learning using

Friedman functions were studied in Hansen (2000) and Chen and Yao (2009).

Karalic (1992) suggested three functions to generate data for regression

problems that accommodate the use of categorical variables. The categorical

29

variable conditions the function that generates the target variable, changing the

function coefficients and therefore creating different hyperplanes according to the

value of the categorical attribute. The datasets, LINE, LEXP and LOSC, eq. 4.3, 4.4

and 4.5, respectively were used to evaluate regression trees and were also used by

Ikonomovska et al. (2011b).

𝑓(𝑥) = {
1 + 2𝑥2 + 𝑥3, 𝑖𝑓 𝑥1 = 𝑣1

−4 − 2𝑥2 − 𝑥3, 𝑖𝑓 𝑥1 = 𝑣2

 (4.3)

𝑓(𝑥) = {
1 + 2𝑥2 + 3𝑥3 − 𝑒−2(𝑥4+𝑥5), 𝑖𝑓 𝑥1 = 𝑣1

1 − 1. 2𝑥2 − 3.1𝑥3 + 𝑒−3(𝑥4+𝑥5), 𝑖𝑓 𝑥1 = 𝑣2

 (4.4)

𝑓(𝑥) = {
1 + 1.5𝑥2 + 𝑥3 + sin (2(𝑥4 + 𝑥5))𝑒−2(𝑥2+𝑥4), 𝑖𝑓 𝑥1 = 𝑣1

−1 − 2𝑥2 − 𝑥3 + sin (3(𝑥4 + 𝑥5))𝑒−3(𝑥3−𝑥4), 𝑖𝑓 𝑥1 = 𝑣2

 (4.5)

Agrawal et al. (1992) proposed a classification dataset that consists of 9

attributes, from which 3 are categorical and 1 is derived from 2 other attributes. The

training instances are randomly created and the class label of each instance is given

by 5 different functions of increasing complexity (Bifet et al., 2009; Pietruczuk et al.,

2017).

Synthetic data for classification problems, built based on DTs, are proposed by

Domingos and Hulten (2000). The instance space is composed of 100 binary

attributes. For each tree level, a number of nodes are replaced by leaves and the rest

are split using an attribute chosen randomly. At a given depth, the splitting process

stops and all the remaining growing nodes become leaves. To each leave, it is

assigned a class in a random manner. A similar idea is applied by Ikonomovska et al.

(2011a), using 10 attributes to build synthetic datasets for regression problems.

Classification algorithms that used this technique as bench test include Read et al.

(2012), Jiang et al. (2015), Shaker and Hullermeier (2015), and Pietruczuk et al.

(2017). Brzezinski and Stefanowski (2014a) and Brzezinski and Stefanowski (2014b)

simulate concept drift by alternating different trees.

Besides Friedman functions, Hansen (2000) also used the functions SinC (eq.

4.6), Gabor (eq. 4.7) and Multi (eq. 4.8) to evaluate ensembles:

30

𝑦 =
sin (𝑥)

𝑥

 (4.6)

𝑦 =
2

𝜋
exp[−2(𝑥2 + 𝑦2)] cos [2𝜋(𝑥 + 𝑦)]

 (4.7)

𝑦 = 0.79 + 1.27𝑥1𝑥2 + 1.56𝑥1𝑥4 + 3.42𝑥2𝑥5 + 2.06𝑥3𝑥4𝑥5

 (4.8)

These functions were also applied by Chen and Yao (2009) to evaluate

negative correlation learning for NN ensembles.

A synthetic dataset based on d-dimensional hyperplane is suggested by

Hulten et al. (2001), following the form showed in eq. 4.9.

∑ 𝑤𝑖𝑥𝑖 = 𝑤0

𝑑

𝑖=1

 (4.9)

where the vector 𝑤 represents the hyperplane coefficients and the vector 𝑥

represents the variables, uniformly distributed in the interval [0, 1]. The instances are

labelled positive when ∑ 𝑤𝑖𝑥𝑖 ≥ 𝑤0
𝑑
𝑖=1 and negative otherwise. This setting not only

allows the control of the importance of each variable (e.g. a weight = 0 means the

corresponding variable does not contribute to the output) but also allows simulating

concept drift by rotating the hyperplane through its weights, which results in

conditional change (Wang et al., 2003; Fan, 2004; Gao et al., 2008; Bifet et al., 2009;

Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014a; Brzezinski and

Stefanowski, 2014b; Jiang et al., 2015; Sun et al., 2016).

Another approach to simulate the conditional change is applied by Shaker and

Hullermeier (2015). Instead of rotating the hyperplane, two datasets are created,

each based on a different set of weights. The drift occurs by replacing the stream of

instances from the first dataset by the instances of the second, with a probability

given by a sigmoidal function. A similar approach is applied by other authors to apply

gradual drift in other types of datasets, such as Read et al. (2012), Nadungodage

31

and Xia (2014), Shaker and Hullermeier (2015) and Ikonomovska et al. (2011b).

Nadungodage and Xia (2014) use a linear function to increase the occurrence

probability of instances of the replacing concept and also simulate abrupt drift by

suddenly replacing the current concept by a new one.

The hyperplanes allow the simulation of feature change by changing the

distribution of the instances in the attribute space. Furthermore, by controlling the

value of 𝑤0 it is possible to adjust the balance between classes (Gao et al., 2008)

and evaluate algorithms designed to deal with imbalanced datasets. Shaker and

Hullermeier (2015) used the hyperplane approach not only to generate classification

datasets but also to simulate regression problems. Instead of defining in which side

of the hyperplane an instance x lies on to assign a class, the target is given by

absolute distance (d1 = |wt.x| and d2 = |wt.x|³ - w is the normal vector of the

hyperplane) from the point x, which represents the instance, to the hyperplane.

A simple dataset, (SEA – Streaming Ensemble Algorithm) was proposed by

Street and Kim (2001) to evaluate concept drift. Instances with three attributes, from

which only 2 are relevant, are randomly generated in the interval [0, 10] and classes

are assigned according to the sum of the first two attributes (𝑎1 and 𝑎2), i.e. class 1 if

𝑎1 + 𝑎2 ≤ 𝜃 and class 2 otherwise. They simulate concept drift by changing the

threshold 𝜃 (Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014b; Sun et al.,

2016; Sun et al., 2018). Noise is introduced by swapping the class of 10% of the

instances. Despite its simplicity, many research relies on this dataset to evaluate ML

algorithms (Bifet et al., 2009; Brzezinski and Stefanowski, 2014a; Jiang et al., 2015;

Pietruczuk et al., 2017).

Polikar et al. (2001) suggested an artificial dataset based on concentrical

circles, where each formed ring is assigned a class. The aim is to assess incremental

learning, where new rings (classes) are presented to the classification algorithm as

time evolves. Oza and Russel (2001) develop a model for classification dataset

generation based on binary attributes. The attributes are set based not only on the

probabilities of an attribute given a class but also in the probabilities of the next

attribute. This way, it is possible to evaluate the effectiveness of the boosting

algorithm compared to bagging.

32

Liu and Zio (2016) generated synthetic datasets for analysis of regression data

streams. Concepts are created by summing up different variables and the drift is

applied by suddenly swapping the stream of instances from one concept by another.

Besides SEA and STAGGER, Sun et al. (2018) also used classification datasets

based on rotating, circle and sine concepts, as shown in Eqs. 4.10, 4.11 and 4.12,

respectively. The drift is applied by changing the value of 𝜃.

{
𝑥1 ← (𝑥1 − 𝑎) ∗ 𝑐𝑜𝑠𝜃 − (𝑥2 − 𝑏)𝑠𝑖𝑛𝜃 + 𝑎
𝑥2 ← (𝑥1 − 𝑎) ∗ 𝑐𝑜𝑠𝜃 + (𝑥2 − 𝑏)𝑠𝑖𝑛𝜃 + 𝑏

 (4.10)

(𝑥1 − 𝑎)2 + (𝑥2 − 𝑏)2 ≤/ > 𝜃

 (4.11)

asin(𝑏𝑥1 + 𝜃) + 𝑐 ≤/> 𝑥2

 (4.12)

Table 4.1 summarizes the main works, organized chronologically, that rely on

synthetic datasets to evaluate classification and regression algorithms, along with the

strategy applied for data generation and the type of drift when applicable.

33

Table 4.1: Summary of related works using synthetic datasets (C: Classification, R: Regression).

Authors Year Approach Task Drift Types of drift

Domingos and Hulten 2000 Random trees. C No -

Hulten et al. 2001 Hyperplane C No Gradual.

Polikar et al. 2001 Concentric circles. C No -

Oza and Russell 2001
Binary attributes conditionally
dependent upon the class label and
next attribute value.

C No -

Wang et al. 2003 Hyperplane C Yes Gradual.

Fan 2004 Hyperplane C Yes Gradual.

Gao et al. 2008 Hyperplane C Yes Sudden.

Chen and Yao 2009

Mexican Hat, Friedman, Gabor,
Multi, Plane, Polynomial, Sinc,
Synth, Overlap, Bumpy and
Relevance.

C, R No -

Bifet et al. 2009
SEA, STAGGER, Hyperplane, RBF,
LED, Waveform and Agrawal
Generator.

C Yes Gradual and Sudden.

Ikonomovska et al. 2011a
Random trees and modified
Friedman.

R No -

Ikonomovska et al. 2011b Friedman, Losc and Lexp. R Yes
Gradual, Sudden and
Recurrent.

Read et al. 2012 Random trees and RBF C Yes Gradual.

Ghazikhani et al. 2013 SEA, STAGGER and Hyperplane. C Yes Gradual and Sudden.

Nadungodage et al. 2014 Friedman based functions. R Yes Gradual and Sudden.

Brzezinski and
Stefanowski

2014a
Hyperplane, SEA, Random trees,
RBF, LED and Waveform.

C Yes
Gradual, Sudden,
Recurrent, Incremental
and Mixed.

Brzezinski and
Stefanowski

2014b
Hyperplane, RBF, SEA, Radom trees
and LED.

C Yes
Gradual, Sudden,
Recurrent and Mixed.

Shaker and Hullermeier 2015 Random trees and Hyperplane. C, R Yes Gradual.

Jiang et al. 2015
SEA, Random trees, Hyperplane,
RBF and LED.

C Yes
Gradual, Sudden and
Recurrent.

Sun et al. 2016
Hyperplane, SEA, LED and
Waveform.

C Yes Gradual and Sudden.

Liu and Zio 2016 Nonlinear functions. R Yes
Sudden and
Recurrent.

Pietruczuk et al. 2017
Agrawal Generator, Hyperplane,
LED, Random trees, RBF, SEA and
Waveform.

C No -

Sun et al. 2018
Hyperplane, Rotating, Circle, Sine
and Boolean Concepts.

C Yes Sudden.

Based on the available techniques for data generation, a need for a regression

data generator that is readable at low dimensions and can be easily expanded to an

arbitrary number of dimensions was identified. It also needs to accommodate

different types of data drift simulations and allow for the use of categorical attributes.

34

4.2. AN ALTERNATIVE APPROACH FOR DATA GENERATION

The main approaches for regression data generation rely on nonlinear

functions. In general, these functions are limited in terms of dimensionality, i.e.

number of relevant features, and difficult to simulate the various types of drift. To

overcome these issues, in this research it is proposed the use of the functions

presented on the CEC (Congress on Evolutionary Computation) 2005 Special

Session on Real-Parameter Optimisation functions (Suganthan et al., 2005). The set

of functions used in CEC consists of continuous nonlinear hyperplanes with various

shapes and the optimisation algorithms are challenged to find the global minimum,

i.e. the minimum f(x). These functions offer a range of features that make them

suitable to simulate regression problems, where the task is to predict the value of f(x).

They allow visual inspection for problems with one or two attributes, are easily

scalable to any number of attributes and also offer several possibilities to simulate

various types of concept drift. Additionally, it is possible to create theoretically infinite

length data streams.

From the 25 functions presented in CEC, five were selected, based on

empirical analysis, to generate streams of data and assess the algorithms discussed

in this thesis: 1) Shifted Sphere (𝑓1); 2) Shifted Schwefel (𝑓2); 3) Shifted Rotated High

Conditioned Elliptic (𝑓3); 4) Shifted Rotated Griewank (𝑓7); 5) Shifted Rotated

Weierstrass (𝑓11). Each function is computed according to Eqs. 4.13 – 4.17,

respectively.

𝑓1(𝑥) = ∑(𝑥𝑖 − 𝑜𝑖)2

𝐷

𝑖=1

+ 𝑓_𝑏𝑖𝑎𝑠

(4.13)

𝑓2(𝑥) = ∑ (∑ 𝑥𝑗 − 𝑜𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

+ 𝑓_𝑏𝑖𝑎𝑠

(4.14)

35

𝑓3(𝑥) = ∑(106)
𝑖−1
𝐷−1

𝐷

𝑖=1

𝑧𝑖
2 + 𝑓_𝑏𝑖𝑎𝑠

(4.15)

𝑓7(𝑥) = ∑
𝑧𝑖

2

4000

𝐷

𝑖=1

− ∏ cos (
𝑧𝑖

√𝑖
) + 1 +

𝐷

𝑖=1

𝑓_𝑏𝑖𝑎𝑠

(4.16)

𝑓11(𝑥) = ∑(∑ [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]) − 𝐷 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘. 0.5)] +

𝑘 𝑚𝑎𝑥

𝑘=0

𝑘 𝑚𝑎𝑥

𝑘=0

𝐷

𝑖=1

𝑓_𝑏𝑖𝑎𝑠

(4.17)

where 𝑜 is the coordinate of the global minimum, 𝑧 = (𝑥 − 𝑜)𝑀, 𝑀 is an orthogonal

matrix in case of F3 and a linear transformation matrix in case of F7 and F11, 𝑎=0.5,

𝑏=3 and 𝑘=20. The shapes of each function for two attributes are shown in Figure.

4.1.

Figure 4.1: 3-Dimensional plots of 𝑓1, 𝑓2, 𝑓3, 𝑓7 and 𝑓11 CEC functions.

36

In this thesis, three main types of drift are simulated: gradual drift, abrupt drift

(Tsymbal, 2004; Krawczyk et al., 2017) and data expansion (Ikonomovska et al.,

2011b), as detailed in Section 2.1. Another common type of drift is the recurrent drift

(Krawczyk et al., 2017), i.e. a concept is replaced and after a certain period time, it

appears back, such as seasons in weather prediction. This type of drift is simulated in

the same manner as the abrupt drift and its explicit evaluation is important when the

algorithm possesses long term memory mechanisms. Therefore, in this thesis,

recurrent drift is not explicitly evaluated.

Gradual drift: Two strategies are used for gradual drift, hyperplane rotation and

function replacement. The former represents a change in the concept itself,

analogous to the effect of wear tool in the prediction equipment’s performance or the

effect of global warming on weather prediction. Gradual drift based on hyperplane

rotation is applied by many authors (Wang et al., 2003; Fan, 2004; Gao et al., 2008;

Ghazikhani et al., 2013; Brzezinski and Stefanowski, 2014b; Sun et al., 2016). For

the selected functions, this can be easily achieved by changing the position of

function’s global minimum, which causes a rotation in the hyperplane. An illustrative

example is shown in Figure. 4.2, where the global minima (𝑜) of function 𝑓1 is moved

2 times, by 50% in each axis in each iteration.

Figure 4.2: Rotation of 𝑓1 function.

37

The function replacement is another common way to simulate gradual drift

(Read et al., 2012; Nadungodage et al., 2014; Shaker and Hullermeier, 2015). Given

a stream of data generated according to function A, instances generated by function

B start to appear with a small probability. This probability is gradually increased, up to

a point where all the new instances are generated by function B. This process is

analogous to the market of a given company when the interest of a group of

consumers is gradually replaced by the demand from another group.

Abrupt drift: The abrupt drift works based on the same principle of gradual function

replacement; however, after the drifting point, all the new instances are generated by

a new function (Ghazikhani et al., 2013; Nadungodage et al., 2014; Liu and Zio,

2016), instead of gradually replaced. A practical example of abrupt drift is the

imposition of trading tariffs that can suddenly affect companies and/or economies.

Data expansion: data expansion is simulated by changing the bounds of the input

space. A related approach is studied in (Ikonomovska et al., 2011b). At some extent,

the data expansion can be used to simulate cases where the training data does not

represent the process generating data as a whole. For instance, an attribute can be

defined in the range [0 7] in the training process, and then expanded to the range [0

10] during the test, in order to evaluate how the algorithm adapts. As an example,

data expansion can happen when a system designed to predict houses prices,

trained with houses of a given size range, are exposed to houses with sizes beyond

the previous range. In this case, several features can be affected (number of rooms,

number of bathrooms, neighbourhood average income, etc).

4.3. BENCHMARK DATASETS

In this section, the real-world datasets chosen to evaluate the algorithms

presented in this research are introduced. The datasets were chosen not only based

on the number of samples, which should be big enough to simulate a stream of data,

but also considering the number of features and diversity of application domains.

Four benchmark datasets were used in this thesis to evaluate the models, three from

a well-known public domain source (UCI data repository -

38

https://archive.ics.uci.edu/ml/datasets.php): appliances energy prediction, condition-

based maintenance and wine quality. The fourth dataset (California housing) is from

StatLib repository (lib.stat.cmu.edu). A summary of the main features of each

dataset, i.e. the number and type of predictive attributes (A) and the number of data

samples (N), is presented in Table 4.2:

Table 4.2: Benchmark dataset features (N - # data samples, A - # features).

Name N A

California Housing (Housing) 20640 8

Wine quality (Quality) 4898 11

Condition based maintenance (Maintenance) 11934 14

Appliances energy prediction (Energy) 20640 26

In this chapter, besides the benchmark datasets and data preprocessing, an

alternative approach for generating regression datasets is presented. This approach

offers a range of possibilities that include: an arbitrary number of predictive attributes,

the capability to intuitively simulate various types of drift, and create theoretically

infinite data streams. The aforementioned features are important to validate the

algorithms presented in this research and the data assumptions they are designed to

address.

39

5. NEURAL NETWORKS WITH RANDOM WEIGHTS

The amount of research on randomised networks has grown immensely in

recent years and numerous publications can be found in the literature, especially

under the Huang’s (2004) terminology, the Extreme Learning Machine (ELM).

NNRWs are able to tackle not only classification and regression problems but also

feature learning and clustering problems (Huang, 2014; Alaba et al., 2019) in a wide

range of applications. Deep Learning techniques, such as auto-encoders and

convolutional neural networks, based on NNRWs have also been investigated

recently (Cao et al., 2018).

The main appeal of the NNRWs is their simplicity of implementation and high

learning speed compared to the traditional NNs. Huang et al. (2004) reported

learning speed thousands of times faster than SVMs and NNs trained with Back-

Propagation (BP) algorithms; moreover, the good generalisation capability makes the

NNRWs a promising technique for many applications. In the remainder of this

chapter, an overview of the development of NNRW is presented, followed by an in-

depth analysis of its structure. The focus of this analysis is on the randomised version

of the Single-hidden Layer Feedforward Neural Network (SLFNN) for regression

problems.

This chapter discusses the key elements of the NNRW model from a

theoretical perspective, and justify its selection for the ensemble learning approach.

Hyperparameter optimisation will be presented in Chapter 6 and the ensemble

learning strategies will be developed in Chapter 7.

5.1. DEVELOPMENT OF NEURAL NETWORKS WITH RANDOM WEIGHTS

One of the main representatives of the NNRWs, the RVFL, was proposed by

Pao et al. (1992). The main idea was to transform the architecture of an SLFNN into

a flat net, where the weights between the input layer and the hidden layer (𝑊𝐻), as

well as the thresholds (𝐵), are generated randomly. Given an input 𝑋 and a

continuous function 𝑔(∙), the transformation 𝑔(𝑋 ∙ 𝑊𝐻 + 𝐵), along with the original

40

input 𝑋 (the so-called direct-link) become the inputs of the flat net and only the

weights between the new inputs and the output layer are optimised.

In the same year, Schmidt et al. (1992) studied the effects of the hidden layer

random parameters in an SLFNN. They found out that output layer weights are

significantly more important than the hidden layer weights; however, the experiments

were carried out on small datasets. Similar to Schmidt’s idea, the ELM algorithm was

proposed by Huang et al. (2004), where the main difference was in the optimisation

procedure to find the output weights. Whilst ELM applied a Moore-Penrose

generalised inverse, Schmidt et al. (1992) used a numerical method.

The theoretical learning capability of NNRW has been demonstrated in several

studies. Igelnik and Pao (1995) presented theoretical justification for RVFL and

showed that RVFL is a universal approximator of continuous functions. Huang et al.

(2006) showed through an incremental constructive method that the ELMs are

universal approximators for any continuous target function, given a constant

piecewise activation function is provided.

The randomness of the NNRWs is responsible for creating learning instability

i.e. two NNRWs with equal structures have different generalisation performances.

This was investigated by Fu et al. (2015) through a series of experiments with ELMs.

They experimentally confirmed the instability caused by the random initialisation and

also found out that instability decreases when the ELMs are combined in an

ensemble.

Ding et al. (2014) explored the main ELM variants, which include incremental

ELM, pruning ELM, error-minimised ELM, two-stage ELM, online sequential ELM,

evolutionary ELM, voting-based ELM, ordinal ELM, fully complex ELM and symmetric

ELM. Deng et al. (2015) further explore semi-supervised and unsupervised ELM

variants, as well as ELM autoencoders and multilayer ELMs. The use of NNRWs

spans over a wide range of practical problems, such as classification, regression,

pattern recognition, forecasting and diagnosis, and image processing (Ding et al.,

2014). Some interesting applications where NNRWs have been applied successfully

include ship detection, image quality assessment and online visual tracking (Deng et

al., 2015). NNRW popularity also motivated research investigating efficient

implementations methods, such as the one carried out by Martínez-Villena et al.

41

(2014), who studied the hardware implementation of RVFLs and proposed three

computation architectures. This allows the use of RVFLs in embedded real-time

systems where the use of personal computers is not possible.

An extensive evaluation of the RVFL hyperparameters is performed by Zhang

and Suganthan (2016) for classification problems. Some of their findings are

discussed in section 5.3. However, as pointed out by Alaba et al. (2019), finding an

effective hidden layer structure still an open problem in the literature. In the next

section, the structural elements of the NNRWs are presented, highlighting the

fundamental difference between the main representatives, i.e. the RVFL and ELM.

5.2. NNRW ARCHITECTURE

In this section, the main structure of NNRWs is analysed, along with their

tuning hyperparameters, aiming at the comprehension of the differences between the

main NNRW representatives, i.e. RVFL and ELM, and the effects of the

hyperparameters. This analysis is important to create the building blocks for

constructing an effective and optimised NNRW. Finding a good NNRW structure is of

fundamental importance for an effective NNRW implementation (Scardapane and

Wang, 2017). The standard SLFNN structure for regression and its elements are

illustrated in Figure 5.1. The fundamental difference to an SLFNN for classification

lies in the output layer, where an additional activation function is applied and more

than one node can be present.

42

Figure 5.1: Single-hidden-layer feedforward neural network architecture.

In the SLFNN, a prediction y is obtained by feeding forward a given pattern 𝑥

through the network and computing the corresponding operations. Each node 𝑖 in the

hidden layer receives the dot product of the input pattern 𝑥 and the weights 𝑤𝐻𝑖,

connecting the inputs to the respective node. A threshold value 𝑏𝐻𝑖 is added to the

resulting value and then, an activation function 𝑔(∗) is applied. The described

computation is illustrated in Eq. 5.1:

ℎ𝑖 = 𝑔(𝒙 ∙ 𝒘𝐻𝑖 + 𝑏𝐻𝑖)

 (5.1)

The output 𝑦̂ is obtained by computing the sum of the products of the 𝑁 hidden

layer outputs ℎ𝑖 and the weights connecting the hidden nodes to the output node

(𝑤𝑂). The threshold value 𝑏𝑂 is then added to the resulting value, as shown in Eq.

5.2.

43

𝑦̂ = ∑ ℎ𝑖 ∙ 𝑤𝑂𝑖

𝑁

𝑖=1

+ 𝑏𝑂

 (5.2)

The complete feedforward process can be described according to the Eq. 5.3.

𝑦̂(𝒙) = ∑ 𝑔(𝒙 ∙ 𝒘𝐻𝑖 + 𝑏𝐻𝑖) ∙ 𝑤𝑂𝑖

𝑁

𝑖=1

+ 𝑏𝑂 = 𝑔(𝒙 ∙ 𝑾𝐻 + 𝒃𝐻) ∙ 𝒘𝑂 + 𝑏𝑂

 (5.3)

The SLFNN training process consists of adjusting the free parameters 𝑾𝐻, 𝒃𝐻,

𝒘𝑂 and 𝑏𝑂 according to an optimisation objective. In general, the objective function

is, given a training set (𝑿, 𝒚), to minimise the error between the predicted vector 𝒚̂(𝑿)

and the true vector 𝒚. The adjustment of the free parameters is characterised by non-

convex optimisation, usually performed by BP algorithms, which are iterative and

recursive methods based on the chain rule for computing the derivatives. Although

many successful applications of SLFNNs with BP algorithm are reported in the

literature, some drawbacks may include, slow convergence and local minima.

Additionally, adjustment of the learning parameters (learning rate, number of epochs,

etc) is not a trivial task and could lead to poor generalisation or overfitting.

Schmidt’s work (Schmidt et al., 1992) explored the idea of fixing randomly the

weights from the input layer to the hidden layer (𝑾𝐻) and the biases (𝒃𝐻), arguing

that these elements are of less importance for the overall performance and optimising

only 𝒘𝑂 and 𝑏𝑂 is sufficient for good generalisation performance. The RVFL (Pao et

al., 1992) shares a similar idea; however, in this case, the authors include a direct

link connecting the inputs to the output node. The resulting architecture of RVFL is

shown in Figure 5.2.

44

Figure 5.2: RVFL architecture.

The ELM follows the same structure of Schmidt et al. (1992), except for the

output bias, which is not present, as in RVFL. The main advantage of the

randomisation lies in the learning process, which becomes of convex nature and can

be solved by analytical methods. Additionally, since the learning process does not

rely on derivatives, as is the case of BP learning algorithms, almost any nonzero

activation functions can be successfully applied (Huang et al., 2004).

Given a training set (𝑿, 𝒚), the output from the hidden layer can be described

as Eq. 5.4.

𝑯 = 𝑔(𝑿 ∙ 𝑾𝐻 + 𝒃𝐻)

 (5.4)

where 𝑾𝐻 and 𝒃𝐻 are randomly chosen and kept fixed. The function that describes

the predicted vector 𝒚̂ is written as a linear system, according to Eq. 5.5.

45

𝒚̂ = 𝑯 ∙ 𝒘𝑂

 (5.5)

The optimised set of weights 𝒘𝑂 is the one minimises the difference that 𝒚 −

𝒚̂, and the optimisation function can be described as 5.6.

𝑚𝑖𝑛 ‖𝒚 − 𝒚̂‖ = 𝑚𝑖𝑛 ‖𝒚 − 𝑯 ∙ 𝒘𝑂‖

 (5.6)

The optimisation algorithm applied by Schmidt et al. (1992), referred to as

Fisher solution, can be written as Equation 5.7:

𝒘𝑂
∗ = (𝑯𝑇 ∙ 𝑯)−1 ∙ 𝑯𝑇 ∙ 𝒚

 (5.7)

which is equivalent to the Least Squares (LS) estimator. The computation of (𝑯𝑇 ∙

𝑯)−1 may lead to instability if 𝑯𝑇 ∙ 𝑯 is singular or nearly singular. This issue can be

addressed using the ridge regression, introduced by Hoerl and Kennard (1970),

which consists of small positive quantities added to the diagonal of 𝑯𝑇 ∙ 𝑯 (Equation

5.8).

𝒘𝑂
∗ = (𝑯𝑇 ∙ 𝑯 + 𝜆 ∙ 𝑰)−1 ∙ 𝑯𝑇 ∙ 𝒚

 (5.8)

where 𝜆 is a small constant value and 𝑰 is the identity matrix. The 𝜆 is also known as

a regularisation factor since it penalises large weights in the optimisation process.

Alternatively, one can rely on the Moore-Penrose pseudo-inverse (Huang et al.,

2004), as used in ELM, as described in 5.9.

𝒘𝑂
∗ = 𝑯† ∙ 𝒚

 (5.9)

where 𝑯† refers to the Moore-Penrose pseudo inverse (Huang et al., 2004). In this

research, the ridge regression method is applied since preliminary results, not

reported in this thesis, showed a better generalisation capability compared to the

Moore-Penrose approach. The advantage of ridge regression was also observed by

Zhang and Suganthan (2016).

In the next section, the design and tuning decisions involved in the

construction of the NNRWs are detailed.

46

5.3. NNRW HYPERPARAMETERS

The hyperparameters that affect the NNRWs can be mainly divided into two

categories: the design hyperparameters and the tuning hyperparameters. In this

research, the NNRW design hyperparameters are described as the ones that affect

the architecture of the NNRW, which include the number of nodes, use of the output

bias and use of the direct link. The tuning hyperparameters include the random

weights and bias scaling factor, the regularisation factor and the activation function.

Number of nodes (N): Number of hidden nodes in the hidden layer. Zhang and

Suganthan (2016) evaluated values from 3 to 203 nodes, with a step size of 20,

however, the number of nodes were optimised separately from the remaining

hyperparameters. Two variants of ELM try to automatically establish the number of

nodes: the pruning ELM (Rong et al., 2008, Miche et al., 2010) and the incremental

ELM (Huang et al., 2006), however, these methods require additional steps to

determine the most adequate number of hidden nodes, which are dependent on the

random weights initialisation.

Regularisation factor (R): The regularisation factor is responsible for penalizing

large weights in the ridge regression optimisation process. The set of values

analysed by Zhang and Suganthan (2016) ranged from 6E-5 to 32.

Scaling factor (S): This hyperparameter determines the interval in which the weights

between the input layer and hidden layer are initialized. The weights are randomly

generated from a uniform distribution and kept fixed afterwards. A commonly used

approach is to generate W from a uniform distribution within the interval [-1 1]

(Schmidt et al., 1992; Pao et al., 1992; Huang et al., 2004; Ding et al., 2017). The

scaling factor is multiplied by the random weights set and changes its distribution

interval. The effect of initial weights in RVFL was investigated by Zhang and

Suganthan (2016), where the authors showed that the adjustment of the scaling

factor produces statistically differences in the algorithms’ performance.

Activation function (A): A nonlinear function applied to the hidden nodes. A very

popular activation function is the sigmoid function (Schmidt et al., 1992; Pao et al.,

1992; Huang et al., 2004; Ding et al., 2017). Huang (2014) also mention other

nonlinear piecewise continuous functions, such as Fourier (sine), Hardlimit and

47

Gaussian. Zhang and Suganthan (2016) evaluated the effects of the Sigmoid (Eq.

5.10), Sine (Eq. 5.11), Hardlimit (Eq. 5.12), Tribas (Eq. 5.13), Radbas (Eq. 5.14) and

Sign (Eq. 5.15) functions and found out that the Radbas function achieved better

performance. In this research, besides the functions evaluated in Zhang and

Suganthan (2016), two other functions are assessed: the hyperbolic tangent sigmoid

(tansig - Eq. 5.16) and the rectifier linear unit (relu - Eq. 5.17). The former is a

popular activation function used in NNs while the latter has become one of the most

used activation functions in deep learning applications.

𝑔(𝑥) =
1

1 + 𝑒−𝑥

 (5.10)

𝑔(𝑥) = sin(𝑥)

 (5.11)

𝑔(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.12)

𝑔(𝑥) = max (1 − |𝑥|, 0)

 (5.13)

𝑔(𝑥) = exp (−𝑥2)

 (5.14)

𝑔(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.15)

𝑔(𝑥) =
2

1 + 𝑒−2𝑥
− 1

 (5.16)

𝑔(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.17)

48

Direct link (D): It refers to the links connecting the input nodes to the output node

and is applied in RVLF applications. It is not considered in the popular ELM

algorithm, however, the study of Zhang and Suganthan (2016) suggests that the use

of direct link enhances the accuracy of randomized SLFNs.

Output bias (Ob): It is a threshold value applied to the output node. One of the

learning principles of ELM, elaborated by Huang (2014), states that the output nodes

should have no bias, while Zhang and Suganthan (2016) did not find significant

differences in accuracy when the output bias is used. Preliminary experiments

performed in this research showed that the output bias is an important factor in

NNRW performance for some datasets.

In this chapter, after a brief review of randomised NN algorithms, the structure

of SLFNN with random weights was demonstrated and the design decisions involved

in building an effective NNRW were discussed. The main representatives of NNRWs

are the RVFL and the ELM and the fundamental difference between them is in the

use of the direct link in RVFL. The main advantage of NNRWs is their lower training

complexity compared to BP algorithms, which allows finding the optimal set of

parameters in a fraction of the time and avoids getting stuck in local minima.

Additionally, NNRWs show good accuracy and are easy to implement for both

regression and classification problems. The tuning of NNRW’s hyperparameters is an

important factor in its performance. A previous study carried out by Zhang and

Suganthan (2016) gave an overview of the hyperparameter’s effect on NNRW’s

performance. In their study, they found that the RVFL’s direct link, not present in

ELMs, is responsible for enhancing the NNRW accuracy.

In the next chapter, the hyperparameter tuning of the NNRW is performed on

the datasets used in this research. To this end, a new hyperparameter optimisation

algorithm is presented and benchmarked against a popular optimisation algorithm,

the GA. The optimised NNRW will be used as based models for building the

ensembles demonstrated in Chapter 7.

49

6. HYPERPARAMETER OPTIMISATION

This chapter aims at finding optimised NNRW settings for the use in the

ensemble, in Chapter 7. As any other ML algorithm, the NNRW rely on the

adjustment of several hyperparameters, which must be set by the user and plays an

important role in the algorithm’s performance. Although some default settings for ML

algorithms can be found in literature or implementation packages, the diversity of

problems and applications make it difficult to think of a one fits all solution. Finding a

good set of hyperparameters is not a trivial task and may require not only expert’s

experience but also an extensive process of trial and error, or, as some authors refer

to, a black art (Snoek et al., 2012; Smith, 2018).

Before moving to the NNRW ensemble analysis in the data stream

environment, it is important to analyse the NNRW’s hyperparameters and find good

settings that help improve the overall performance of the ensemble. To this end, a

new hyperparameter optimisation algorithm is proposed in this research. The new

algorithm is based on the analysis of properties of Design of Experiments (DOE), a

widely used tool for process optimisation, which allows a systematic evaluation of not

only the effect and importance of each hyperparameter but also the effect and

importance of the interactions among them.

In the remainder of this chapter, a literature review explores the developments

in the field of hyperparameter optimisation in section 6.1, followed by the description

of the methodology in section 6.2. The experimental protocol is presented in section

6.3 and the results and discussion, in section 6.4 close this chapter.

6.1. A BRIEF REVIEW ON HYPERPARAMETER OPTIMISATION

Usually, ML algorithms have several hyperparameters and their adjustment

are an important aspect to be taken into consideration. A proper adjustment of

hyperparameters is key to achieve superior performance of ML algorithms and is

related to the characteristics of the dataset (Di Martino et al., 2011). A popular

approach for hyperparameter tuning is Grid-search, where sets of values for each

50

hyperparameter are defined by the user and all the combinations are evaluated. This

approach can be time-consuming and leads to searching over not promising regions

of the search space. Additionally, in case of continuous variables, the search is

limited to the pre-defined values, which may be time-consuming for high granularity

or ineffective for low granularity of the variable’s values. Some reasons for the

popularity of Grid-search are highlighted by Bergstra and Bengio (2012), which

include simplicity to implement, trivial parallelisation, and usually better results than

purely manual optimisation.

A more effective technique, the Random Search (RS), was presented in

Bergstra and Bengio (2012). Different from Grid-search, instead of evaluating all

hyperparameter combinations, in RS the combinations are selected randomly and the

values of continuous variables are defined based on user-defined distributions,

avoiding granularity issues. The authors demonstrated that the RS avoids exploring

non-promising search space and achieve competitive results compared to Grid-

search.

Some approaches apply sequential model-based optimisation (SMBO)

techniques. Bergstra et al. (2011) proposed two greedy SMBO methods for tuning

NNs and Deep Belief Networks (DBNs). The proposed method outperformed RS in

tuning DBNs but showed similar results for NNs. Thornton et al. (2013) apply SMBO

for hyperparameter tuning as part of a broader system that aims not only

hyperparameter tuning but also model selection. The approach simultaneously

evaluates different classification models and hyperparameter settings along with

feature selection methods.

SMBO methods require the setting of a surrogate function. This function will

indicate the regions to be explored by the algorithm, as well as the optimisation

criterion. These choices may highly influence not only the number of iterations for

convergence but also the quality of the results. Another drawback of SMBO methods,

highlighted by Maclaurin et al. (2015) is the inability to deal with problems with many

hyperparameters. They develop a gradient-based approach to overcome this issue;

however, it works with the assumption of a continuous search space. It relies on

gradient descend algorithms that may need hundreds of iterations in the search

process and may not work well in the presence of non-smooth functions.

51

Alternative approaches for hyperparameter tuning are the evolutionary

algorithms (EA), more specifically the GA. GA has been successfully applied for

hyperparameter optimisation. It does not require assumptions about the function that

describes the hyperparameter space and is able to perform a directed search from an

initial population of random samples. Lessmann et al. (2005) proposed a combination

of GA and SVM, where the GA is used to find the best SVM structure by changing

the kernel type, the kernel parameters and the regularisation parameter. SVM tuning

is also addressed by Chatelain et al. (2007) and Guo et al. (2008). The former

applies a multi-objective approach using the NSGA-II algorithm for hyperparameter

tuning, which considers the trade-off between false rejection and false acceptance

rates. The latter relied on Particle Swarm Optimisation (PSO) to analyse the effects

of different kernel functions for LS-SVM.

Di Martino et al. (2011) successfully applied GA to optimise the two

hyperparameters of a classification SVM with Radial Basis Function (RBF) kernel.

They not only evaluated the effects of different fitness functions but also

benchmarked the proposed technique with Grid-search and other ML techniques.

Barros et al. (2014) use GA to optimise the design components and the respective

hyperparameters of DTs, achieving superior results compared to traditional DT

algorithms, i.e. CART (Classification and Regression Trees), C4.5 and REP. Young

et al. (2015) applied GA to optimise a Convolutional Neural Network (CNN) algorithm

for an image classification benchmark dataset.

Despite the advantage of EA algorithms for hyperparameter tuning compared

to SMBO based algorithms, these methods may suffer from slow convergence,

especially when a high number of hyperparameters are involved. Furthermore, these

approaches do not make sense of the underlying function that describes the effect of

each hyperparameter in the optimisation process or the importance of each

hyperparameter. Bergstra and Bengio (2012) showed through a Gaussian process

analysis that, for the same algorithms, in most datasets, a few sets of

hyperparameters are more important for algorithm’s performance and they differ

according to the dataset. Additionally, they mentioned the fact that hyperparameter

search space is more sensitive in some dimensions than others.

52

Based on the drawbacks of the existing approaches and taking advantage of

the observations pointed out by Bergstra and Bengio (2012), a new approach is

proposed in this research. The approach uses the features of the ANOVA (Analysis

of Variance) to determine the hyperparameter with the more sensitive search space

at each step, i.e. the hyperparameter with higher effect on the algorithm’s variability.

Once identified, this hyperparameter is adjusted, reducing the overall search space

for the next iteration. Additionally, the proposed method takes into consideration, in

the optimisation process, the interaction among hyperparameters, which may

improve the effectiveness of the hyperparameter tuning.

6.2. METHODOLOGY

The general factorial experiment (Montgomery, 2012) has been widely used in

process and product optimisation. Previous experiments (Almeida and Steiner, 2013;

Almeida et al., 2019) showed that the use of full factorial DOE is useful to identify the

hyperparameters that have the highest effect on algorithm’s performance in both

optimisation problems and supervised learning tasks. The proposed approach takes

advantage of the ANOVA to explicitly determine the most sensitive hyperparameter

and its statistical significance at each iteration. It relies on the use of the factorial

experiment to analyse the effects and tune the hyperparameters.

Considering a two-factor experiment, where each factor represents an

algorithm hyperparameter, the response, i.e. the algorithm’s measure of

performance, when the hyperparameter H1 is set at the ith level (i = 1, 2, …, a) and

the hyperparameter H2 is set at the jth level (j = 1, 2, …, b) for the kth replicate (k =

1, 2, …, n), is denoted as 𝑦𝑖𝑗𝑘. Each observation can then be represented by the

effects model (Montgomery, 2012), as shown in Equation (6.1).

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘

 (6.1)

where 𝜇 is the overall mean, 𝜏𝑖 is the effect of hyperparameter H1 at level i, 𝛽𝑗 is the

effect of the hyperparameter H2 at level j, (𝜏𝛽)𝑖𝑗 is the effect of the interaction

53

between the hyperparameters, and 𝜖𝑖𝑗𝑘 is a random error. The treatment and

interaction effects are defined as deviations from the overall mean, consequently,

∑ 𝜏𝑖 = 0𝑎
𝑖=1 , ∑ 𝛽𝑗 = 0𝑏

𝑗=1 , and ∑ (𝜏𝛽)𝑖𝑗 = 𝑎
𝑖=1 ∑ (𝜏𝛽)𝑖𝑗

𝑏
𝑗=1 = 0. Through the analysis of

variance, the hypothesis of equality of different levels of each hyperparameter

(Equations 6.2 and 6.3), as well as the interaction (Equation 6.4) between them, are

evaluated.

𝐻0: 𝜏1 = 𝜏2 = … = 𝜏𝑎 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝜏𝑖 ≠ 0

 (6.2)

𝐻0: 𝛽1 = 𝛽2 = … = 𝛽𝑎 = 0

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑖 ≠ 0

(6.3)

𝐻0: (𝜏𝛽)𝑖𝑗 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 (𝜏𝛽)𝑖𝑗 ≠ 0

(6.4)

In order for the null hypothesis to be true, the mean squares must estimate the

variance (𝜎2). The expected mean squares, for the hyperparameter H1 and H2, the

interaction between them and the mean squared error are given by the Equations

6.5, 6.6, 6.7 and 6.8, respectively.

𝐸(𝑀𝑆𝐻1) = 𝐸 (
𝑆𝑆𝐻1

𝑎 − 1
) = 𝜎2 +

𝑏𝑛 ∑ 𝜏𝑖
2𝑎

𝑖=1

𝑎 − 1

 (6.5)

𝐸(𝑀𝑆𝐻2) = 𝐸 (
𝑆𝑆𝐻2

𝑏 − 1
) = 𝜎2 +

𝑎𝑛 ∑ 𝛽𝑗
2𝑏

𝑗=1

𝑏 − 1

 (6.6)

𝐸(𝑀𝑆𝐻1𝐻2) = 𝐸 (
𝑆𝑆𝐻1𝐻2

(𝑎 − 1)(𝑏 − 1)
) = 𝜎2 +

𝑛 ∑ ∑ (𝜏𝛽)𝑖𝑗
2𝑏

𝑗=1
𝑎
𝑖=1

(𝑎 − 1)(𝑏 − 1)

 (6.7)

54

𝐸(𝑀𝑆𝐸) = 𝐸 (
𝑆𝑆𝐸

𝑎𝑏(𝑛 − 1)
) = 𝜎2

 (6.8)

If there are differences between different levels of each hyperparameter or in

the interaction, the corresponding mean square will be larger than MSE. The error

term 𝜖𝑖𝑗𝑘 is assumed to be normally and independently distributed with constant

variance 𝜎2, the mean square ratios, in this example MSH1/MSE, MSH2/MSE, and

MSH1H2/MSE, follows the F distribution with a - 1, b - 1 and (a - 1)(b - 1) degrees of

freedom in the numerator, respectively, and ab(n – 1) degrees of freedom in the

denominator. Larger mean squares ratios suggest that the null hypothesis does not

hold, which can be confirmed by the analysis of the critical region of the F

distribution. The ANOVA table summarises the results in terms of mean squares and

statistical significance.

Based on the capabilities of the full factorial experiment, an automatic

hyperparameter optimisation algorithm was developed in this research. The approach

takes advantage of the information from the SS computation to prioritise the

adjustment of each hyperparameter according to its importance. In this research, the

importance of a hyperparameter is related to its effect on the algorithm’s accuracy

due to its adjustment, i.e., the variability of the algorithm’s accuracy when the

hyperparameter is adjusted, which can be captured by computing the SS of the error.

Therefore, the new algorithm is referred to as SSHT (Sum of Squares

Hyperparameter Tuning). To deal with continuous hyperparameters, such as the

number of nodes or regularisation factor, SSHT not only accepts predefined values

(in case they are treated as categorical) but is also able to perform interpolation

based on lower and upper limits defined by the user. One limitation of the current

approach is tackling dependent hyperparameters, that becomes inactive according to

a certain set of another hyperparameter, e.g. the number of nodes in the second

hidden layer of a NN when a single hidden layer is evaluated (Bergstra et al., 2011;

Thornton et al., 2013).

The algorithm starts computing the full factorial experiment, i.e. evaluating all

hyperparameter combinations. For each combination, at least two evaluations, i.e.

two runs of the algorithm using the same levels for each hyperparameter, are

55

required in order to compute the error SS of each treatment, the higher the number of

evaluations, more robust results are achieved. This is especially useful for weak

algorithms, such as NNRW, where variations in the initial random weights and

training data produce a high variability in the output.

The results of factorial experiments are used to compute the SS for both main

effects and two-factor effects, with their respective F-value and significance level.

The hyperparameter with higher effect on the algorithm’s variability is selected to be

adjusted. Before computing the averages of each hyperparameter level to define the

best one, a filter is applied to consider the interaction of the chosen hyperparameter

with the others. The interactions are analysed and, for each statistically significant

interaction, the worst level of the hyperparameters with significant interaction with the

chosen one is temporarily disabled. This aims to avoid the effect of interactions when

defining the level of the chosen hyperparameter where the higher accuracy was

achieved.

As an example, considering a ML algorithm with hyperparameters A, B and C,

with two levels (Low and High) each, all possible combinations are computed, i.e. [AL,

BL, CL], [AL, BL, CH], [AL, BH, CL], [AL, BH, CH], [AH, BL, CL], [AH, BL, CH], [AH, BH, CL],

[AH, BH, CH]. Each combination must be computed at least two times and the results

are used to compute the ANOVA table, which shows the F-score and significance of

the main effects (A, B and C) and the interactions (AxB, AxC and BxC). The

algorithm chooses the main effect with higher F-score and, before computing the

average of low and high levels, checks for significant interactions, e.g. if A is the main

effect with higher F-score, the interactions AxB and AxC are analysed. In the case of

the interaction AxB, for example, being statistically significant, the average error of BL

and BH are computed and the experiments with the worst level of B are temporarily

disabled. This process is repeated for all A interactions and then the average error of

A levels are computed, using the remaining experiments.

Once the averages of A levels are computed, the setting of A has two

possibilities, according to the type of hyperparameter, i.e. continuous and categorical.

The latter case is the simpler one, the best level of A is set, the experiments with the

worst level are excluded, and a new ANOVA is computed for the analysis of the next

hyperparameter. In case of a continuous hyperparameter, an intermediate level is

56

defined and new experiments with the new level, combined with all levels of the

remaining hyperparameter are performed. The new experiments are combined with

the existing ones, i.e. the combination of all hyperparameters with the best level of A

and a new ANOVA is computed for the use in the next iteration. The process is

illustrated in Figure 6.1.

Figure 6.1: SSHT procedure.

In order to evaluate the effectiveness of the proposed hyperparameter tuning

approach, it is compared to a metaheuristic approach, as described in the next

section.

57

6.3. EXPERIMENTAL PROTOCOL

In this section, the evaluation protocol used to assess the proposed approach

is described. The experiments are carried out using the four benchmark datasets

considered in this research (House, Maintenance, Energy and Quality). Additionally,

five synthetic datasets are generated using the functions described in Chapter 4 (F1,

F2, F3, F7 and F11). The synthetic datasets are created with 15 predictive variables,

randomly generated within the interval [0, 10] and containing 10,000 observations.

Both benchmark and synthetic datasets attributes are standardised (mean 0 and

variance 1).

The experiments aim to understand how each hyperparameter affects the

accuracy of the NNRW and all adjustable factors of NNRW, as described in Chapter

5, are analysed. The hyperparameters are divided into two main types, continuous

and categorical/binary hyperparameters. The continuous ones are the number of

nodes (N), regularisation factor (R) and initial random weights (W) and the

categorial/binary hyperparameters are the activation function (A), use of direct link

(D) and use of output bias (Ob). Table 5.1 shows the range of values to be searched

for NNRW hyperparameter optimisation. It is important to note that the continuous

hyperparameters are described in terms of limits, within which the search will be

performed, and that the number of nodes lies in the integer domain.

Table 6.1: Hyperparameters levels for the first set of experiments.

Hyperparameter Range of values Type

N [20, 150] Integer (step = 1)

R [0.01, 1.50] Continuous

W [0.1, 1.5] Continuous

A [relu, logsig, tansig, sin, hardlim, tribas, radbas, sign] Categorical/Binary

D [False, True] Categorical/Binary

Ob [False, True] Categorical/Binary

For the means of comparison, a widely used technique, the GA (Pinto et al.,

2013), is considered. The GA has been successfully applied for many optimisation

58

problems. It is relatively easy to implement and avoids the drawbacks of SMBO

based approaches. In this thesis, a combined strategy is applied to encode the GA

chromosomes, where one cluster deals with continuous variables and the other deals

with categorical and binary ones. This requires special attention to the crossover

procedure, which relies on two different strategies applied according to the cluster.

For the continuous cluster, a convex combination of the selected parents is

computed, according to Eq. 6.9.

𝑝𝑛𝑒𝑤 = 𝛼𝑝1 + (1 − 𝛼)𝑝2

(6.9)

where 𝑝1 and 𝑝1 are the selected parents and 𝛼 is a random value uniformly

distributed within the interval [−𝛾, 1 + 𝛾].

For the categorical cluster, the popular uniform crossover (Pinto et al., 2013) is

applied. The crossover strategy is illustrated in Figure. 6.2.

Figure 6.2: Crossover strategy for hyperparameter optimisation using GA.

59

When a pair of individuals are selected for the crossover, both clusters are

subjected, at the same time, to their respective crossover strategies. The remaining

GA parameters were adjusted manually, based on preliminary experiments, and are

defined as follows:

• Number of iterations: 30;

• Population size: 200;

• Crossover percentage: 60%;

• Mutation percentage: 10%;

• Mutation rate: 2%;

• 𝛾 = 0.2;

• Stopping criteria: 5 iterations.

For each experiment, a sample of 4,000 observations is selected from the

dataset, from which 2,000 are used for hyperparameter optimisation and 2,000 are

used for evaluation. The data for hyperparameter optimisation is fed to the

algorithms, which use 70% for training and 30% for validation, i.e. 1,400 observations

are used to train the NNRW with a given set of hyperparameters and 600 are used to

compute the MSE for validation. Once the hyperparameters are optimised, 70% of

the evaluation data is used to train a model and the remaining 30% is used to test the

accuracy of the optimised model. This process is repeated 10 times and each

experiment is repeated 30 times for each dataset.

The results are discussed in the next section.

6.4. RESULTS AND DISCUSSION

The proposed hyperparameter tuning algorithm proved an effective method to

optimise the NNRW and a promising tool to advance the field of hyperparameter

60

tuning. Compared to the GA algorithm the main achievements are: very competitive

accuracy and fewer number of evaluations required. The results are summarised in

Table 6.2, which presents the average MSE for each hyperparameter set found by

SSHT and GA, and Table 6.3, which brings the number of evaluations required by

each algorithm.

Table 6.2: Average and standard deviation MSE resulted from NNRW optimised by SSHT and GA.

 F1 F2 F3 F7 F11 Energy House Quality Maint.

S
S

H
T

Avg 211.8 37981.1 2542.4 82.1 47.2 9472.9 4.12E+9 0.556 1.74E-7

Std 31.1 19202.2 1024.6 3.4 1.3 887.3 2.63E+8 0.029 3.02E-8

G
A

 Avg 237.1 116317.8 6178.6 83.2 47.4 9696.3 4.20E+9 0.538 1.77E-7

Std 18.7 104891.8 1047.7 3.4 1.7 1000.7 2.78E+8 0.030 3.90E-8

 Diff -10.7% -67.3% -58.9% -1.4% -0.4% -2.3% -2.0% 3.4% -2.0%

 p-value << 0.01 << 0.01 << 0.01 0.188 0.630 0.372 0.253 0.023 0.707

The results of Table 6.2 show that the hyperparameter sets found by SSHT

achieved similar average MSE compared to GA. Considering a significance level of

5%, the p-value of the t-test indicates that the average MSE for F7, F11, Energy,

House and Maintenance are statistically equal. GA resulted in slightly better accuracy

in the Quality dataset, while SSHT performed better in F1, F2 and F3.

Table 6.3: Descriptive statistics of the number of evaluations needed for SSHT and GA to NNRW
optimisation.

 F1 F2 F3 F7 F11 Energy House Quality Maint.

S
S

H
T

Avg 700.1 1469.6 756.8 1091.1 1090.9 636.0 585.9 663.7 1314.7

Std 58.3 69.3 38.2 193.2 229.7 130.1 69.6 111.1 79.1

Min 632 1232 656 832 768 512 512 512 1056

Max 816 1584 840 1600 2048 1024 768 992 1456

G
A

Avg 2416.7 2888.0 2211.3 1684.0 1828.7 1436.7 1660.7 1712.0 3168.0

Std 827.5 1162.6 973.0 687.4 777.4 460.2 553.8 485.5 951.2

Min 1040 1320 1040 1040 1040 1040 1040 1040 1180

Max 3840 4400 4400 4400 4400 2580 3000 2720 4400

61

In terms of the number of evaluations (Table 6.3), SSHT not only needed

fewer evaluations compared to GA (up to 1/3 of the evaluations needed by GA) but

also better consistency. The much lower standard deviation and amplitude (the

difference between the minimum and the maximum number of evaluations) indicate

that SSHT achieves similar results in every run. This fact summed to the equal or

better accuracy (The accuracy on Quality dataset could be considered statistically

equal if 1% significance is required) puts SSHT as a very competitive strategy for

hyperparameter tuning.

It is important to investigate the values of the hyperparameters returned by the

tuning algorithms and analyse their effects on the set up of NNRW. Firstly, the

activation function recommended by each algorithm for each problem is summarised

in Table 6.4.

Table 6.4: Number of times each activation function was recommended by the optimisation algorithms.

 hardlim logsig radbas relu sign sin tansig tribas

F1
SSHT 0 0 13 16 0 0 0 1

GA 0 0 3 27 0 0 0 0

F2
SSHT 0 0 30 0 0 0 0 0

GA 0 0 25 5 0 0 0 0

F3
SSHT 0 0 28 2 0 0 0 0

GA 0 0 5 25 0 0 0 0

F7
SSHT 5 3 2 6 4 3 5 2

GA 2 11 3 1 3 1 7 2

F11
SSHT 5 7 2 3 2 6 2 3

GA 1 13 1 1 6 1 3 4

Energy
SSHT 3 8 5 3 1 2 3 5

GA 3 17 0 5 0 1 3 1

House
SSHT 0 1 2 20 0 0 2 5

GA 0 1 9 18 0 0 1 1

Quality
SSHT 2 1 6 15 1 2 0 3

GA 0 3 3 22 0 1 1 0

Maint.
SSHT 0 0 0 0 0 29 1 0

GA 0 0 2 0 0 28 0 0

Total 21 65 139 169 17 74 28 27

62

The first result to be highlighted is that the relu was the most recommended

activation function, followed by radbas and sin (which was responsible for the better

accuracy in Maintenance dataset). In general, both algorithms agreed on the

activation function recommendations, with the main exceptions observed in the F1

and F3 datasets. In F1, while GA concentrated its recommendations in relu function,

SSHT divided its recommendations mainly between relu and radbas.

The fact that SSHT hyperparameter sets showed better accuracy compared to

GA in F1 dataset (Table 6.1) raised the question if the use of radbas was responsible

for that difference. The average MSE of the 13 radbas the 16 relu recommendations

resulted in 180.6 and 234.9, respectively, a relatively large difference that confirms

the advantage of radbas for this dataset. In the case of F3, where SSHT showed an

advantage of 58.9% in terms of accuracy, SSHT recommendations concentrated on

radbas, while GA focused on relu. For F2 (where SSHT showed bigger advantage

compared to GA), House and Maintenance datasets, both algorithms behaved the

same in terms of the activation function. For F7, F11 and Energy datasets, there was

no clear advantaged of one activation function over another.

Table 6.5 shows the results related to the use of direct link and output bias, i.e.

the number of times they were set as true or false.

63

Table 6.5: Number of times SSHT and GA recommend the activation of direct link and output bias.

 Direct link Output bias

 True False True False

F1
SSHT 30 0 30 0

GA 30 0 30 0

F2
SSHT 30 0 25 5

GA 30 0 25 5

F3
SSHT 30 0 30 0

GA 30 0 30 0

F7
SSHT 8 22 30 0

GA 8 22 27 3

F11
SSHT 8 22 30 0

GA 10 20 26 4

Energy
SSHT 30 0 30 0

GA 17 13 18 12

House
SSHT 30 0 30 0

GA 23 7 26 4

Quality
SSHT 29 1 30 0

GA 26 4 28 2

Maint.
SSHT 30 0 30 0

GA 23 7 30 0

Both algorithms showed similar results, except on Energy dataset, where GA

divided its recommendations between true and false for both direct link and output

bias, while SSHT recommended true for both hyperparameters in all runs. The use of

output bias is an important feature to increase the accuracy of the NNRW. Both

algorithms recommended the use of output bias most of the time (98.1% in case of

SSHT and 88.9% in case of GA) for all datasets, this hyperparameter was also the

main source of NNRW variance. The direct link was also recommended most of the

time; however, in this case, for two datasets (F7 and F11) the use of direct link was

avoided by the algorithms. An in-depth look at the averages of the two direct link

settings showed no important difference between the treatments. In order to check if

there is a statistical difference between NNRW with or without the direct link in F7

and F77 datasets, additional experiments were performed. By using an arbitrary set

of hyperparameters, 100 runs were executed and the average MSE were computed.

The results are shown in Table 6.6.

64

Table 6.6: Average and standard deviation MSE resulted by NNRW with and without the direct link in
datasets F7 and F11.

 Direct link

 True False p-value

F7
MSE 82.6 81.6 0.015

std 2.7 2.6

F11
MSE 47.0 46.3 << 0.010

std 1.2 1.3

In fact, considering a confidence level of 5% for the paired t-test, an advantage

is observed when the direct link is deactivated in F7 and F11 datasets.

In Table 6.7, the mean and standard deviation of the number of nodes,

weights and regularisation factor recommendations are presented.

Table 6.7: Average optimised N, W and R hyperparameters.

 N W R

 Avg Std Avg Std Avg Std

F1
SSHT 148.3 4.7 0.2 0.1 0.15 0.26

GA 141.9 6.8 0.8 0.4 0.48 0.25

F2
SSHT 148.3 3.0 0.1 0.0 0.04 0.13

GA 139.7 10.2 0.2 0.3 0.31 0.38

F3
SSHT 147.2 4.4 0.1 0.1 0.06 0.19

GA 145.1 6.3 0.6 0.3 0.63 0.34

F7
SSHT 24.5 7.1 0.8 0.7 0.51 0.61

GA 59.8 29.8 0.5 0.4 0.68 0.34

F11
SSHT 24.9 8.2 0.6 0.6 0.41 0.60

GA 53.3 31.9 0.7 0.4 0.78 0.34

Energy
SSHT 44.4 45.7 0.6 0.6 0.99 0.70

GA 73.2 30.1 0.6 0.4 0.74 0.44

House
SSHT 122.9 42.9 0.8 0.6 0.94 0.67

GA 95.2 27.4 0.6 0.3 0.87 0.30

Quality
SSHT 82.3 54.4 0.4 0.4 1.10 0.57

GA 87.0 25.5 0.6 0.3 0.73 0.33

Maint
SSHT 132.0 26.0 0.9 0.2 0.01 0.00

GA 116.5 17.4 0.8 0.1 0.01 0.00

65

In general, both algorithms showed similar values for N, W and R. The base

number of nodes varies according to the problems, although it is generally accepted

that higher accuracy is obtained by increasing the number of nodes. In all cases, the

initial weights range lies in the interval [-0.9 0.9]. In the case of F1, F3 and F11,

where the more important differences in accuracy were observed, additional

experiments showed that the different W recommendations from SSHT and GA

algorithms resulted in significant differences in terms of accuracy. Similar behaviour

was observed in the analysis of R.

The proposed SSHT algorithm for hyperparameter tuning proved a competitive

approach for NNRW optimisation. The accuracies of the hyperparameter settings

found by SSHT were equal to or better than the accuracies of GA settings, in most of

the datasets. Furthermore, while GA required an average of 2111.8 evaluations to

find the optimised hyperparameter settings for all problems, SSHT needed on

average 923.2 evaluations to converge, a reduction of 56.3%. This is an important

advantage, especially when tuning computationally expensive algorithms such as

DNNs or high dimensional SVMs.

The proposed approach uses a simple interpolation technique to achieve

convergence for continuous hyperparameters. More advanced and effective

searching techniques, such as Bayesian optimisation or gradient-based techniques,

could potentially improve the search process and reduce the required number of

evaluations. During the optimisation process, when SSHT finds two levels that are

statistically equal, it arbitrarily chooses the one that resulted in better accuracy. It is

possible to easily take advantage of this mechanism by including a criterion that

considers other optimisation measures, such as computing time, for example.

In Table 6.8 the optimised set of hyperparameters for each problem is

summarised. The average values of SSHT were selected for F1, F2 and F3 datasets

and the values found by GA were selected for the Quality dataset. For the remaining

datasets, where the results were statistically equal, an average of both techniques is

used.

66

Table 6.8: Final optimised NNRW hyperparameters for each dataset.

 A D O N W R

F1 radbas True True 148 0.2 0.15

F2 radbas True True 148 0.1 0.04

F3 radbas True True 147 0.1 0.06

F7 relu False True 42 0.7 0.60

F11 relu False True 39 0.6 0.59

Energy logsig True True 59 0.6 0.87

House relu True True 109 0.7 0.91

Quality relu True True 87 0.6 0.73

Maint. sin True True 124 0.9 0.01

In this chapter, the SSHT, a new technique for hyperparameter optimisation,

has been presented. The results demonstrated that SSHT is an effective tool for

hyperparameter optimisation. SSHT showed similar convergence compared to the

GA, however, the SSHT showed better consistency, i.e. achieved similar results in

every run, and also required a fewer number of evaluations to find the optimised

hyperparameter set, which results in an important computational advantage

compared to the GA. Despite the popularity of the ELM, the results indicate an

advantage of RVLF in terms of accuracy. In most of the cases, the best accuracy was

achieved using the direct link, a mechanism that is present only in the RVFL

architecture. Additionally, the results showed significant improvement in accuracy

when the output bias is present, while Huang (2014) argues that the output bias

should not be active and Zhang and Suganthan (2016) did not find a statistical

difference when it is not activated. The optimised NNRW hyperparameter setting

found in this chapter will support the development of the ensemble, in the next

chapter. For each dataset, the ensemble will be built using the respective optimised

NNRW as base models for the evaluation on the simulated data streams.

67

7. A NEW ENSEMBLE APPROACH FOR DATA STREAM
REGRESSION

In this chapter, a new bagging ensemble method based on NNRW is

developed. The proposed approach, bagging NNRW (B-NNRW) aims to deal with the

online regression problems in the presence of concept drift with competitive accuracy

and better computational efficiency compared to the existing methods. The proposed

algorithm takes advantage of the efficiency of NNRWs to build a homogeneous

ensemble and enables effective updating of the model to accommodate possible

concept drifts.

The proposed approach relies on an initial buffer of training data to build the

initial ensemble. The ensemble is built using the bagging meta-algorithm, which

creates bootstrap samples of data that are used to train the base models and helps

to increase the ensemble’s diversity. Although some of the online ensemble

approaches do not rely on data buffering, these methods require that a considerable

amount of training samples are presented to the model before it reaches an

acceptable level of accuracy (Oza and Russell, 2001; Ikonomovska et al., 2015). The

update of the developed ensemble is executed by tracking the base model’s

performance and scoring them accordingly. When a model achieves a pre-

determined level of the negative score, it is replaced by a new model. To evaluate the

proposed algorithm, synthetic datasets simulating various types of drift are used,

along with benchmark datasets from public data repositories.

In the next section, the B-NNRW methodology is presented. Before evaluating

the proposed approach, more details on data generation are outlined in Section 7.2,

followed by the approach for data scaling applied in this research, on Section 7.3 and

a brief discussion on the ensemble size, carried out in Section 7.4.

7.1. METHODOLOGY

In this section, the proposed ensemble algorithm for data stream regression is

demonstrated. The algorithm applies the bagging meta-algorithm to create a

68

diversified ensemble of NNRWs. To cope with concept drift, the weight of each model

is dynamically updated (i.e. at every new instance), based on the exponentially

smoothed error. Additionally, a replacement mechanism base on individual’s

performance helps to improve the ensemble accuracy and also keeps the accuracy

under control on the occurrence of various types of concept drift.

The algorithm starts by buffering the first samples of the data stream to form

the training set and then the bagging meta-learning is applied. The bagging meta-

learning consists of creating M bootstrapped samples from the training data, where

each sample has the same number of instances of the training data and is used to

build a model. From each sample, 70% of the data are used for training and the

remaining 30% are used for validation. The validation set is used to compute the

MSE for each model m. The MSE is then used to compute the weight of each

ensemble member, using Eq. 7.1.

𝑤𝑚 =
1

𝑀𝑆𝐸𝑚

 (7.1)

 The process is illustrated in Figure 7.1.

Figure 7.1: Initial B-NNRW ensemble. The different W sizes represent the weights attributed to each
model according to their accuracy.

69

Once the ensemble is built, the output of a new instance 𝑥 is predicted

according to Eq. 7.2.

𝑦𝐸(𝑥) =
∑ 𝑤𝑚 ∗ 𝑦̂𝑚(𝑥)𝑀

𝑚=1

∑ 𝑤𝑚
𝑀
𝑚=1

 (7.2)

where 𝑦̂𝑚 is the output of model m and 𝑤𝑚 is the model’s weight. As the ensemble

performs the predictions on the data stream, two updating mechanisms become

active, the weight updating and the model contribution.

The weight updating aims at dimming the importance of the less accurate

models in the final decision. Relying on the last squared error may be ineffective

since the model’s accuracy for a single observation may be far from its overall

accuracy. On the other hand, global MSE may not represent the current accuracy of

the model. In the case of concept drift, the lower accuracy on new instances may not

be immediately reflected on the global MSE, therefore, it may be slow to identify

when the model’s accuracy is decreasing. To overcome this, the MSE is updated

using an exponential moving average filter, henceforth referred to as Exponentially

Smoothed MSE (ESMSE), computed as Eq. 7.3.

𝐸𝑆𝑀𝑆𝐸𝑛 = {
𝛼. 𝑆𝐸𝑛 + (1 − 𝛼). 𝑀𝑆𝐸, 𝑖𝑓 𝑛 = 1

𝛼. 𝑆𝐸𝑛 + (1 − 𝛼). 𝐸𝑆𝑀𝑆𝐸𝑛−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.3)

where 𝛼 is a tuning parameter where the user can regulate the sensitivity of the

model to current error. A large 𝛼 will give more importance to the last error and the

algorithm will respond faster to a decrease in the model accuracy, reducing its

importance when computing the model’s weight. On the other hand, a small 𝛼 will

make the MSE less sensitive to short term errors.

The replacement mechanism works by evaluating the models’ performance

and eventually replacing the low performing members. The evaluation can be carried

out using any ML performance metric, such as MSE, MAPE, accuracy, precision or

F1 score. The replacement mechanism proposed in this research is easy to

implement and, different from traditional concept drift detection mechanisms,

activates the update of the ensemble regardless of the occurrence of concept drift.

This helps to improve the accuracy of the ensemble while no concept drift is

70

detected. The replacement of low performing members for more accurate ones

increases the overall accuracy and also encourages the continuous improvement of

the ensemble accuracy. There will be always comparatively low performing members

subject to be replaced. Additionally, there is no need to tune the drift detection

mechanism or tune the number of models to be replaced.

The replacement is activated when the model’s score decreases relative to the

model’s lifetime for a given period of time. A model receives a score when it meets its

performance targets. In this research, the target was established in terms of accuracy

related to the accuracy of the ensemble. More specifically, when the model’s error is

lower than the average of all ensemble members, 1 point is added to its score (Sm),

as shown in Eq. 7.4.

𝑆𝑚 = {
𝑆𝑚 + 1, 𝑖𝑓 𝑒𝑚 <

1

𝑀
∑ 𝑒𝑚

𝑀

𝑚=1

𝑆𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.4)

The lifetime of a model (Lm) is computed as the number of instances that have

been presented to the model for prediction. Using the model’s lifetime it is possible to

compute the relative score (RS), as shown in Eq. 7.5.

𝑅𝑆𝑚 =
𝑆𝑚

𝐿𝑚 + 1

 (7.5)

When a model loses its accuracy its score will remain constant and therefore,

its relative score will decrease. Preliminary experiments using fixed replacement

intervals showed that, in most of the cases, the replaced models had shown low

performance for long periods before the updating point. This would result in a

constant decrease of RS and therefore could be used to trigger the replacement of

the model. The trigger T is computed according to Eq. 7.6, as follows:

𝑇𝑚 = {
𝑇𝑚 + 1, 𝑖𝑓 𝑅𝑆𝑛

𝑚 < 𝑅𝑆𝑛−1
𝑚

𝑇𝑚 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.6)

71

The model is replaced when T reaches a user-defined threshold. A lower

threshold will result in higher sensitivity to concept drift and therefore a higher

number of replacements. The opposite behaviour is expected when the threshold

value is increased. This approach allows any kind of performance metric to be used

to evaluate the model’s performance. It also allows that a model recovers its

accuracy if it performs poorly for a short period, avoiding unnecessary computations.

The replacement strategy for an ensemble with 6 base models is illustrated in Figure

7.2 and the B-NNRW procedure is summarised in the diagram shown in Figure 7.3.

 Figure 7.2: B-NNRW replacement strategy.

72

Figure 7.3: B-NNRW procedure.

In the next section, the details regarding the synthetic data generation are

presented.

7.2. DATA STREAM GENERATION

For the assessment of the effectiveness of the strategies proposed in this

research, different synthetic datasets were generated. For each function described in

Section 4.2, five scenarios were simulated which include no drift, two types of gradual

73

drift (gradual rotation and gradual replacement), abrupt drift and data expansion. The

five scenarios are created as follows:

No drift: The data were generated without drift according to Eqs. 4.13 - 4.16;

Gradual rotation: The gradual rotation applies function rotation by changing the

position of the function global minimum, as described in section 4.2. For each new

instance, the position of the global minimum is moved by a percentage of the input

range. The directions for each dimension were randomly selected and approximately

half of the dimensions moves in the positive direction while the remaining move in the

negative direction. The dimensions in which the global minimum is moved were

randomly chosen at each new instance. The settings for the gradual rotation are

summarised in Table 7.1.

Table 7.1: Gradual rotation settings.

 F1 F2 F3 F7 F11

Lower bound 6.0 5.0 5.0 0.0 0.0

Upper bound 10.0 6.0 7.5 100.0 40.0

Range 4.0 1.0 2.5 100 40

Percentage change 0.010% 0.015% 0.010% 0.015% N.A

Absolute change 0.00040 0.00015 0.00025 0.01500 N.A

An exception is the function F11. For this function, changing the global

minimum does not rotate the hyperplane; therefore it has a limited effect on drift

simulation. To effectively simulate gradual drift for function F11, a change in the

function bias value is applied. The initial F11 bias, described in section 4.2, is

incremented by 0.005 at each new instance (25/number of instances).

Gradual replacement: This drift was simulated by generating different hyperplanes

and gradually replacing one by another. In this research, a linear replacement was

applied where the replacement of the hyperplane H1 by hyperplane H2 starts with

zero probability before the drifting point, reaches 50% probability in the drift point and

ends with 100% probability, where H1 is completely replaced. This process is carried

out during 50% of the distance between the drift points. Considering a distance

74

between drift points of 1,000 instances the replacement starts 250 instances before

the drifting point and ends 250 instances after the drifting point. The process is

illustrated in Figure. 7.4.

Figure 7.4: Probabilities of data being generated according to the hyperplanes H1 and H2 related to
the drift points.

The hyperplanes are distinguished by a shift in the value of function bias. For

all functions, given a hyperplane Hn, the hyperplane Hn+1 obtained by incrementing

the bias of function that generated Hn by 5.

Abrupt drift: The abrupt drift is similar to the gradual replacement; however, instead

of generating instances according to a transition probability, all the instances were

generated from the new hyperplane after the point of drift. The process is illustrated

in Figure. 7.5.

Figure 7.5: Probabilities of data being generated according to the hyperplanes H1 and H2 related to
the drift points.

75

Data expansion: The data expansion simulates a change in the distribution of inputs.

The initial domain represents half of the final range, centred at the middle of the final

domain (Section 4.2). The input domain is expanded at each drift point and both

dimension and direction are chosen randomly. The expansion step is equal to half

the original range divided by the number of drift points and split in both directions. An

illustrative example of the expansion on a 2-dimensional domain is shown in Figure.

7.6.

Figure 7.6: Arbitrary data expansion example for a 2-D domain.

7.3. DATA SCALING

The feature scaling techniques are widely used as a preprocessing step in ML

applications. These techniques aim at normalising the range of variables to help to

improve the accuracy of ML algorithms, especially those based on Euclidean

distance avoiding that the variables with wide ranges or big values have a

disproportional contribution to the learning process.

A common scaling approach is the min-max normalisation, where the values

of the independent variables are scaled, in general within the interval [0, 1] and [-1,

1]. In the case of data streams, the use of normalisation can generate inadequate

scaling when a change in the attribute distribution is observed. This requires that the

minimum and maximum values are properly adjusted, which is not a trivial task.

Additionally, the normalisation is more sensitive to outliers and may require some

form of previous data cleaning.

76

A more adequate approach for data streams is the standardisation, where

each feature adjusted to have zero-mean and unit variance. The standardisation is

computed as shown in Eq. 7.7, where 𝜇 and 𝜎 are the mean and the standard

deviation of the sample 𝑥, respectively.

𝑥′ =
𝑥 + 𝜇

𝜎

 (7.7)

The standardisation is less sensitive to outliers. Furthermore, the mean and

standard deviation can be computed incrementally, which makes it suitable for

dealing with changes in data distribution without making assumptions about the

adequate minimum and maximum attribute values. The incremental average is

computed as Eq. 7.8.

𝜇𝑛 = 𝜇𝑛−1 +
𝑥𝑛 − 𝜇𝑛−1

𝑛

 (7.8)

The incremental standard deviation can be computed according to Eq. (7.9). It

requires actual incremental average (𝜇𝑛), computed in Eq. (7.8), and the previous

incremental average (𝜇𝑛−1).

𝜎𝑛 = √
(𝑛 − 2)𝜎𝑛−1

2 + (𝑛 − 1)(𝜇𝑛−1 − 𝜇𝑛)2 + (𝑥𝑛 − 𝜇𝑛)2

𝑛 − 1

(7.9)

Using the incremental average and standard deviation allows an effective

scaling without storing past data (only the previous standard deviation and average

need to be stored).

7.4. ENSEMBLE SIZE

One important decision in the design of an ensemble is its size. The most

adequate ensemble size may be influenced by a number of factors, which include

base learner algorithm, training data and computational constraints. As the ensemble

77

size grows, a computational burden is added not only in terms of memory but also in

terms of processing time. Additionally, adding a new model only improves the

ensemble accuracy if the new model produces different predictions from the other

members, which can be achieved by manipulating the training data used to induce

the new model. For a limited training dataset, it is expected that, as the number of

base models grows, the ensemble accuracy gain decreases as the probability of

having similar models increases.

The accuracy of different ensemble sizes was analysed for both synthetic and

benchmark datasets. In the case of synthetic datasets, 10,000 observations with 15

attributes are generated for each function (F1, F2, F3, F7 and F11) with no drift. Each

evaluation consists of randomly selecting training and testing sets, training the

ensemble using the respective optimised set of hyperparameters for each dataset

(obtained in Chapter 6), and computing the MSE on the testing data. A similar

approach is applied to the benchmark data, using all the observations available

(description on Section 4.3). In both synthetic and benchmark datasets, the training

and testing sets are composed of 1,000 and 500 observations, respectively.

Ensemble sizes ranging from 5 to 100, with increments of 5, were evaluated. Each

evaluation (ensemble size/dataset) was run 30 times, and the average test MSE was

computed. The results are illustrated in Figure 7.7, where the y-axis shows the

average MSE and the x-axis shows the number of base models.

78

Figure 7.7: Average MSE according to the ensemble size for each dataset.

The results show the effect of ensemble size on MSE. It is possible to observe

that the accuracy converges for ensembles with approximately 30 models, except for

F11 and Energy datasets, where the accuracies do not seem to improve as the

ensemble size grows. Since adding new models to the ensemble only improves the

accuracy if they are different from the existing ones, the linear correlations among the

members of the ensemble were computed. The average correlations of the 30 runs of

each ensemble size for each dataset are shown in Figure 7.8.

79

Figure 7.8: Average correlation according to the ensemble size for each dataset.

From Figure 7.8 it is possible to highlight that the average correlations keep

constant as the ensemble grows. Additionally, since the same approach was applied

for all datasets, the results suggest that the characteristic of the learning problem

plays an important role in the ensemble diversity. The average correlation of each

dataset is summarised in Table 7.2.

Table 7.2: Average pairwise linear correlation among the ensemble members.

 F1 F2 F3 F7 F11 Energy House Quality Maintenance

Corr 0.624 0.674 0.667 0.557 0.962 0.936 0.835 0.848 0.704

The F11 and Energy datasets showed the highest levels of correlation, which

explains why adding new models seems not to improve the ensemble’s accuracy

(Figure 7.7).

In the next section, the effects of the ensemble's hyperparameters, the

smoothing factor (𝛼) and the replacement threshold (𝑟) are analysed.

80

7.5. B-NNRW ADJUSTING

The adjustment of the error smoothing factor (𝛼) and the replacement

threshold (𝑟) is an important factor for the effectiveness of the proposed ensemble. In

this section, an analysis of the effects of different 𝛼 and 𝑟 values is carried out not

only assess how they affect the ensemble’s accuracy but also the ensemble’s

computational efficiency.

For this purpose, synthetic data streams using the functions described in

Section 4.2 were generated simulating the various types of drift, as described in

Section 7.2. Each data stream has 5,000 observations and 15 features. The first

1,000 observations were used for training and the remaining 4,000 observations

were used for testing in a prequential mode (Bifet et al., 2010), i.e. each observation

was used for test and then train the model. Additionally, the benchmark datasets

were also used for assessing the 𝛼 and 𝑟. In this case, the first 1,000 data points

were used for training and the remaining data points for testing in a prequential

mode.

The 𝛼 affects the sensitivity of each model to changes in the environment that

may cause a loss of accuracy. In Tables 7.3 and 7.4, the effects of 𝛼 on the accuracy

and number of replacements 𝑟, respectively, are presented. The accuracy was

measured by prequential MSE and the number of replacements refers to how many

models were replaced through the stream.

81

Table 7.3: Average and standard deviation MSE according to the value of 𝛼.

𝛼 0.005 0.010 0.050 0.100 0.200

 Avg Std Avg Std Avg Std Avg Std Avg Std

 No drift

F1 6.51 0.52 6.55 0.53 6.86 0.60 7.13 0.63 7.46 0.57

F2 11.07 1.93 10.92 1.57 11.53 2.26 11.65 1.85 12.08 1.92

F3 16.57 1.77 16.24 1.63 17.35 1.82 17.69 1.97 18.48 1.96

F7 15.34 2.99 14.91 2.95 15.86 2.86 16.43 3.22 17.21 3.56

F11 23.75 0.54 23.76 0.53 23.89 0.52 23.94 0.58 24.06 0.53

 Gradual rotation

F1 21.49 11.00 21.85 10.94 24.14 10.44 29.80 13.34 46.26 32.95

F2 23.59 19.18 19.88 19.67 25.08 20.26 25.71 28.45 31.99 25.74

F3 59.42 35.86 50.80 25.50 63.73 30.48 71.55 38.97 90.00 66.96

F7 52.60 30.55 48.08 24.80 57.58 30.96 58.12 31.74 83.69 61.94

F11 42.68 3.82 42.02 4.22 44.58 4.13 47.84 5.14 54.77 7.59

 Gradual replacement

F1 21.56 2.82 20.68 2.43 23.68 2.59 28.14 6.44 47.39 21.22

F2 28.64 3.98 26.85 3.63 30.10 3.44 32.44 3.48 39.75 8.23

F3 35.31 3.76 33.87 3.74 37.44 3.02 40.58 3.52 51.74 12.78

F7 34.40 5.50 33.99 5.10 37.12 5.05 39.56 6.06 53.47 14.06

F11 40.41 2.79 39.00 2.42 40.23 2.25 42.30 2.64 47.41 5.82

 Abrupt

F1 21.88 3.27 20.74 2.44 23.70 2.76 28.07 6.52 44.24 18.61

F2 28.93 3.67 27.03 3.43 29.86 3.08 32.13 3.77 40.59 12.24

F3 35.82 4.00 33.59 3.49 37.63 2.78 40.88 3.27 50.91 12.18

F7 34.87 4.96 33.14 4.58 36.36 4.50 40.26 6.20 52.87 16.85

F11 40.73 3.12 39.15 2.49 40.78 2.32 42.67 2.82 47.21 5.47

 Data expansion

F1 6.22 1.27 5.96 0.96 6.76 1.03 7.47 1.50 9.96 2.86

F2 11.26 2.53 11.14 2.24 12.22 2.89 13.07 3.11 14.90 4.50

F3 14.62 3.41 13.66 2.88 15.40 3.15 16.74 3.53 18.11 4.01

F7 9.15 1.87 9.04 1.73 9.92 2.14 10.09 2.25 10.55 2.14

F11 24.04 0.51 24.01 0.62 24.35 0.62 24.53 0.61 25.00 0.65

82

In general, the lower values of 𝛼 resulted in better ensemble accuracy. The

bold shaded values in Table 7.3 indicate the lower MSE for each dataset and more

than one value highlighted in the same line means that the values are statistically

similar, according to the paired t-test with a significance level of 95%. The results

indicate the best ensemble accuracies were achieved when setting 𝛼 at 0.010 and it

also contributes to more stable ensembles since at this setting lower standard

deviations were also achieved. The adjustment of 𝛼 also showed a different impact

on accuracy, according to the type of drift. The ensemble accuracy on datasets with

no drift and simulating data expansion are less affected by different values of 𝛼, while

in datasets simulating gradual and abrupt drift, the ensemble is highly affected by the

increase of 𝛼. The different effects of the smoothing factor according to the type of

drift is illustrated in Figure 7.9.

83

Figure 7.9: Effect of 𝛼 on MSE for different types of drift.

84

The smoothing factor has an important impact on the number of replacements.

The replacement is not only related to the accuracy of the ensemble but also affects

the ensemble’s computational performance. The higher the number of replacements,

the higher is the computational cost due to the training of new models. The average

number of replacements for each value of 𝑟 is presented in Table 7.4.

Table 7.4: Average and standard deviation of the number of replacements according to the 𝛼 value.

𝛼 0.005 0.010 0.050 0.100 0.200

 Avg Std Avg Std Avg Std Avg Std Avg Std

 No drift

F1 73.1 30.3 57.1 25.0 23.7 8.5 12.4 7.1 3.2 2.7

F2 58.8 19.8 55.8 20.3 29.9 10.8 19.6 7.4 10.3 3.9

F3 64.4 22.8 60.9 24.1 30.7 11.0 18.9 7.1 10.2 5.0

F7 52.5 19.9 53.3 19.3 29.7 12.8 17.1 7.4 7.7 4.1

F11 56.8 20.8 46.0 20.4 19.0 8.9 11.1 5.8 4.8 3.3

 Gradual rotation

F1 125.8 60.7 127.0 63.5 70.9 29.7 52.6 22.2 31.2 18.1

F2 99.2 51.6 91.7 49.9 54.9 31.4 38.0 18.3 27.0 16.6

F3 125.6 57.3 127.8 63.8 81.1 35.7 59.7 29.0 39.3 17.3

F7 101.9 38.8 107.2 51.4 61.1 27.0 43.6 18.3 30.9 14.2

F11 127.8 55.4 135.2 68.5 95.3 36.9 74.0 23.9 53.0 14.8

 Gradual replacement

F1 114.6 47.0 118.3 58.8 62.6 23.3 44.7 16.2 23.8 14.4

F2 95.4 35.7 104.9 49.2 57.2 18.9 42.9 12.6 29.8 8.6

F3 94.4 28.1 100.0 46.9 53.2 16.3 39.2 9.8 26.5 9.7

F7 81.1 30.1 80.0 29.1 48.8 14.3 37.1 10.0 23.0 11.0

F11 93.7 29.0 101.1 44.6 68.7 25.2 52.6 16.3 37.9 10.4

 Abrupt

F1 111.3 47.3 109.3 53.8 60.0 21.8 43.1 14.5 25.0 13.8

F2 91.2 32.0 96.1 44.1 55.5 17.4 42.4 11.5 29.8 10.2

F3 90.5 28.7 95.5 41.7 51.7 15.4 38.9 9.7 26.7 9.6

F7 76.3 25.3 80.0 30.1 48.3 14.2 36.9 10.1 23.1 11.4

F11 91.5 29.9 94.7 41.8 63.1 22.5 49.2 14.5 37.6 10.1

 Data expansion

F1 103.2 44.4 100.4 51.2 50.9 18.9 36.0 10.0 21.7 10.4

F2 90.6 37.6 77.0 39.0 36.4 10.3 27.5 8.3 14.2 9.1

F3 98.9 37.8 100.0 48.3 52.5 18.6 38.9 10.9 27.9 8.1

F7 50.1 30.0 36.6 21.4 29.9 17.7 24.9 14.6 21.1 13.4

F11 59.4 19.8 48.8 17.8 25.9 7.6 18.4 6.5 10.0 5.2

85

From Table 7.4 it is possible to observe that lower values of 𝛼 are not only

responsible for higher accuracy but also for a higher number of replacements. This

trade-off must be taken into consideration when adjusting the smoothing factor. An

important advantaged of the proposed approach is that the number of replacements

adjusts to the type of drift. The algorithm replaced fewer models when there is no drift

and, on the other hand, more models were replaced in gradual rotation drift, where

the drift is constant through the data stream. The average number of replacements

for all datasets, according to the different types of drift, are shown in Table 7.5.

Table 7.5: Average number of replacements for each type of data drift.

𝛼 0.005 0.010 0.050 0.100 0.200 Avg

No drift 61.1 54.6 26.6 15.8 7.2 33.1

Gradual rotation 116.1 117.8 72.6 53.6 36.3 79.3

Gradual replacement 95.8 100.8 58.1 43.3 28.2 65.3

Abrupt 92.1 95.1 55.7 42.1 28.4 62.7

Data expansion 80.4 72.6 39.1 29.1 19.0 48.1

The replacement threshold 𝑟 also influences the algorithm’s rate of

replacement. Table 7.6 shows the average MSE according to the 𝑟 value.

86

Table 7.6: Average and standard deviation MSE according to threshold value 𝑟.

𝑟 200 300 400 500 600

 Avg Std Avg Std Avg Std Avg Std Avg Std

 No drift

F1 6.68 0.63 6.86 0.65 6.89 0.70 7.02 0.66 7.07 0.68

F2 11.27 1.90 11.26 1.61 11.49 1.80 11.63 2.30 11.58 2.10

F3 16.80 1.97 17.07 1.85 17.30 1.98 17.53 1.90 17.65 2.19

F7 15.67 3.31 16.14 3.01 15.95 3.31 16.19 3.48 15.79 2.98

F11 23.80 0.57 23.90 0.55 23.89 0.53 23.87 0.61 23.95 0.50

 Gradual rotation

F1 20.73 8.24 25.01 11.64 26.44 12.98 33.21 19.18 38.16 33.35

F2 21.75 15.53 22.29 14.16 27.19 31.86 23.90 18.69 31.12 29.11

F3 55.32 24.76 58.47 28.55 67.45 36.88 74.03 56.00 80.24 58.24

F7 54.85 31.94 56.28 36.63 57.21 31.24 58.40 35.46 73.34 57.43

F11 40.66 3.51 42.83 3.99 45.77 4.80 49.35 5.97 53.28 7.27

 Gradual replacement

F1 22.22 4.44 24.09 6.55 27.12 11.16 32.63 18.08 35.38 19.10

F2 28.71 4.74 29.77 5.29 31.03 5.15 32.98 6.58 35.28 8.61

F3 36.40 5.04 36.91 5.06 39.52 7.64 42.00 10.70 44.13 12.28

F7 35.99 5.94 36.72 7.07 39.01 9.03 41.26 10.82 45.54 15.20

F11 39.35 3.17 39.91 2.90 41.50 3.05 43.10 3.64 45.48 6.15

 Abrupt

F1 22.32 4.62 23.64 5.94 26.83 8.95 30.79 14.25 35.06 18.36

F2 28.53 4.52 30.08 4.51 31.13 6.05 33.16 8.90 35.63 11.16

F3 36.42 5.03 37.47 5.67 39.73 7.33 41.30 8.76 43.92 12.47

F7 35.25 5.98 36.56 7.95 39.48 7.90 41.09 12.88 45.11 15.89

F11 38.94 2.76 40.37 2.95 42.04 3.10 43.70 4.06 45.50 5.34

 Data expansion

F1 6.47 1.41 6.62 1.46 7.08 1.64 7.67 2.35 8.53 3.04

F2 11.98 2.86 12.03 2.98 12.57 3.59 12.90 4.12 13.11 3.38

F3 14.56 3.46 14.97 3.39 15.95 3.94 16.42 4.07 16.63 3.46

F7 9.65 2.13 9.79 2.03 9.87 2.04 9.66 2.30 9.78 2.06

F11 24.25 0.65 24.24 0.68 24.42 0.65 24.51 0.73 24.51 0.76

In general, lower threshold values resulted in better ensemble accuracy. The

best MSE values are highlighted (bold), and when more than one value is

highlighted, it means that the values are statistically similar, according to a paired t-

test with 95% confidence. The adjustment of 𝑟 has a lower impact on the ensemble's

accuracy compared to 𝛼, especially when there is no drift and for gradual rotation

and data expansion. The effects of 𝑟 on MSE are illustrated in Figure 7.10.

87

Figure 7.10: Effect of 𝑟 on MSE for different types of drift.

88

The effect of 𝑟 on the number of replacements is shown in Table 7.7.

Table 7.7: Average and standard deviation of the number of replacements according to the 𝑟 value.

𝑟 200 300 400 500 600

 Avg Std Avg Std Avg Std Avg Std Avg Std

 No drift

F1 56.8 45.8 40.6 32.6 29.1 23.8 23.7 19.3 19.2 16.3

F2 51.9 30.6 40.2 23.5 32.3 19.6 26.8 16.5 23.3 14.1

F3 57.7 35.7 43.0 27.4 32.6 20.0 27.7 17.5 24.2 15.8

F7 48.1 30.0 36.8 22.7 28.7 18.5 25.5 16.9 21.1 14.4

F11 45.9 32.6 32.7 24.9 24.0 18.9 19.4 15.4 15.6 13.1

 Gradual rotation

F1 136.1 82.3 99.5 49.6 72.2 32.9 55.9 26.5 43.8 21.2

F2 96.3 69.0 71.9 44.2 59.8 34.3 44.2 22.7 38.6 18.2

F3 145.2 76.3 102.1 48.2 77.5 32.3 60.0 23.4 48.7 19.1

F7 106.2 61.7 80.6 41.5 63.5 32.5 51.9 24.2 42.5 20.4

F11 162.2 67.9 115.7 39.6 86.7 25.3 66.9 17.4 53.8 13.6

 Gradual replacement

F1 122.3 71.4 87.2 45.9 64.7 32.5 49.6 26.8 40.2 22.5

F2 102.4 58.2 76.1 37.3 60.3 27.4 49.4 20.9 42.0 17.8

F3 93.4 53.7 73.9 38.5 57.8 27.8 47.7 22.5 40.5 19.3

F7 77.6 39.3 63.7 30.6 49.9 22.1 43.6 21.0 35.2 18.4

F11 107.3 44.9 84.3 33.4 64.6 22.8 53.0 16.9 44.7 15.0

 Abrupt

F1 115.2 66.9 83.7 43.9 63.3 30.7 48.3 24.1 38.2 21.0

F2 96.4 51.5 70.9 33.2 58.4 25.0 48.8 20.2 40.6 17.5

F3 89.1 49.2 71.7 35.7 56.6 27.4 46.6 20.7 39.2 17.9

F7 77.1 37.7 60.4 27.5 49.9 22.0 42.1 19.3 35.1 18.1

F11 103.0 43.1 79.0 30.3 61.1 21.2 50.5 16.5 42.6 13.8

 Data expansion

F1 102.8 66.7 73.7 41.1 55.5 29.4 44.1 23.6 36.1 19.4

F2 79.1 54.7 58.3 38.3 44.0 27.7 35.0 20.4 29.3 17.6

F3 98.8 59.8 74.5 39.3 58.5 27.9 47.3 20.6 39.1 17.5

F7 51.2 30.4 39.7 24.4 31.3 20.2 26.6 17.3 22.5 14.9

F11 60.8 18.9 54.4 19.8 28.7 9.7 18.6 8.4 8.9 4.7

89

Based on the effects of 𝑟 on the MSE and on the number of replacements, a

good commitment between accuracy and computational efficiency was achieved

when setting the threshold at 300. At this level, statistically similar accuracy is

achieved in most of the cases, compared to setting the threshold at 200. The

average increase in MSE at this level is of 3.6%, while the number of replacements is

reduced, on average, by 32.6%.

In the case of benchmark datasets, the smoothing factor affects the accuracy

in different ways. While in Quality and Maintenance datasets the best accuracy is

achieved setting 𝛼 0.010, as in the synthetic datasets, in Energy and House datasets

the best accuracy is achieved with higher 𝛼 values. The results are summarised in

Table 7.8 and the best results are highlighted (bold shaded values). The results were

subjected to paired t-test with 95% of confidence and more than one value is

highlighted for the same dataset indicate that the results are statistically equal.

Table 7.8: Average and standard deviation of MSE according to the 𝛼 value.

𝛼 0.005 0.010 0.050 0.100 0.200

 Avg Std Avg Std Avg Std Avg Std Avg Std

Energy 1.02E+4 5.53E+2 9.90E+3 4.51E+2 9.62E+3 4.87E+2 9.38E+3 5.86E+2 9.06E+3 6.24E+2

House 4.65E+9 2.74E+8 4.36E+9 2.52E+8 3.90E+9 3.00E+8 3.78E+9 3.76E+8 3.79E+9 4.07E+8

Quality 0.504 0.004 0.501 0.005 0.508 0.011 0.516 0.012 0.526 0.009

Maint. 4.96E-7 2.69E-7 3.76E-7 1.10E-7 4.23E-7 6.88E-8 4.76E-7 7.09E-8 5.80E-7 9.46E-8

Similarly to synthetic datasets, lower values of 𝛼 are related to a higher

number of replacements; however, a higher number of replacements is not

necessarily related to better accuracy, as can be observed by the results in Energy

and House datasets, where the better accuracy was achieved with a lower number of

replacements. The average number of replacements for the benchmark datasets is

presented in Table 7.9.

90

Table 7.9: Average and standard deviation of the number of replacements according to the 𝛼 value.

𝛼 0.005 0.010 0.050 0.100 0.200

 Avg Std Avg Std Avg Std Avg Std Avg Std

Energy 88.8 47.7 58.6 20.8 24.0 6.2 17.8 4.8 14.0 3.6

House 158.8 91.9 135.7 71.9 87.7 34.0 76.4 29.0 64.4 26.2

Quality 73.6 38.5 49.4 24.6 19.0 8.0 10.0 6.2 3.4 3.0

Maint. 152.1 67.5 182.7 91.6 88.9 29.3 66.3 17.3 50.8 10.6

The threshold values had a similar effect on benchmark datasets, compared to

the effect on synthetic datasets. Lower 𝑟 value resulted in better accuracy and also is

responsible for a higher number of replacements. The effects of 𝑟 on MSE and on the

number of replacements are shown in Tables 7.10 and 7.11, respectively.

Table 7.10: Average and standard deviation of MSE according to the 𝑟 value.

𝑟 200 300 400 500 600

 Avg Std Avg Std Avg Std Avg Std Avg Std

Energy 9.16E+3 5.15E+2 9.40E+3 6.12E+2 9.71E+3 5.99E+2 9.84E+3 5.73E+2 1.00E+4 6.45E+2

House 3.83E+9 5.18E+8 3.92E+9 4.00E+8 4.07E+9 3.67E+8 4.25E+9 4.26E+8 4.41E+9 4.11E+8

Quality 0.502 0.008 0.507 0.012 0.511 0.011 0.515 0.012 0.518 0.013

Maint. 4.60E-7 2.29E-7 4.30E-7 1.36E-7 4.53E-7 1.16E-7 4.88E-7 1.10E-7 5.20E-7 1.61E-7

Table 7.11: Average and standard deviation of the number of replacements according to the 𝑟 value.

𝑟 200 300 400 500 600

 Avg Std Avg Std Avg Std Avg Std Avg Std

Energy 66.2 60.5 44.0 32.3 34.6 24.0 31.2 20.7 27.3 16.4

House 187.2 90.2 119.4 45.6 88.0 31.9 70.8 22.1 57.5 21.3

Quality 56.7 49.9 37.7 33.7 25.7 22.1 19.8 17.3 15.5 14.0

Maint. 153.4 105.6 131.7 79.4 101.0 51.4 83.9 39.5 70.9 30.0

Using the threshold 𝑟 set at 300 results in an average reduction of 43.5% on

the number of replacements, compared to 𝑟 set at 200. This has a limited effect on

accuracy, in case of House and Maintenance datasets, the average accuracies are

statistically similar and in case of Energy and Maintenance, the increase on average

MSE is of 2.6% and 1.1%, respectively.

91

Base on the analysis of the different settings of 𝛼 and 𝑟, it was possible to

establish their values for the next set of experiments, where the proposed ensemble

is compared to an existing approach for data stream regression from literature. For all

datasets, 𝑟 is set at 300, where good commitment between accuracy and the number

of replacements is achieved. The 𝛼 is set at 0.01 for all datasets except the Energy

and House, which showed better accuracy when 𝛼 is set at higher values, for these

datasets 𝛼 is set at 0.2.

7.6. B-NNRW VALIDATION

In this section, the proposed algorithm, using the 𝛼 and 𝑟 defined in the

previous section, is compared to two approaches, the O-DNNE (Ding et al., 2017)

and a single SLFNN. The SLFNN used in this research is trained using the

Levenberg-Marquardt backpropagation algorithm. The network is built using the built-

in Matlab® implementation with its default hyperparameters, except the number of

neurons, which is optimised using the SSHT algorithm. The initial range for the

number of nodes is [20, 250] and the optimised values found by SSHT are

summarised in Table 7.12.

Table 7.12: Number of SLFNN hidden nodes for each dataset.

 F1 F2 F3 F7 F11 Energy House Quality Maint.

Number of nodes 20 20 20 20 20 20 20 20 250

In this research, an online approach for the SLFNN is applied. For each new

instance, after the prediction is performed, the network error on that instance is

backpropagated through the network and its weights are updated. The approach is

therefore called O-SLFNN.

The second algorithm, the O-DNNE, is a recent ensemble algorithm from

literature proposed to deal with regression data streams. This approach achieved

good results compared to benchmark algorithms; however, since all the base models

must be optimised at the same time, the training and updating process becomes

92

computationally expensive, especially when the number of nodes or the number of

base models is increased. A brief description of O-DNNE and how its optimisation is

affected by an increase in the number of base models and/or hidden nodes is

presented in the next section.

7.6.1. The online DNNE

The Online DNNE (Ding et al., 2017) is an approach derived from the

decorrelated neural network ensemble (DNNE) to deal with online regression

problems. The DNNE algorithm builds an ensemble of single-hidden layer NNRWs

and incorporates the concept of negative correlation learning (NCL) in the training

process to create a well-diversified set of models. The main idea behind NCL is to

train the models simultaneously in a way that their individual errors are decorrelated

since no major gains can be obtained from a combination of outputs if they are

positively correlated (Rosen, 1996). Given a data set of size N consisting of pairs (xn,

yn) and fi(xn) the output of sample xn of the ith model in the ensemble of size (M), the

error function for the ith model can be written as Equation 7.10.

𝐸𝑖 = ∑
1

2
(𝑓𝑖(𝑥𝑛) − 𝑦𝑛)2

𝑁

𝑛=1

 (7.10)

Rosen (1996) propose a modification in the error function (Equation 7.10) to

include a decorrelation penalty term pi, resulting in the following learning error

(Equation 7.11):

𝑒𝑖 = ∑ [
1

2
(𝑓𝑖(𝑥𝑛) − 𝑦𝑛)2 − 𝜆𝑝𝑖(𝑥𝑛)]

𝑁

𝑛=1

 (7.11)

where 𝜆 ∈ [0, 1] is a regularization factor. Alhamdoosh and Wang (2014) adopted

the penalty term formulated in Equation 7.12:

𝑝𝑖(𝑥𝑛) = (𝑓𝑖(𝑥𝑛) − 𝑓(̅𝑥𝑛)) ∑(𝑓𝑗(𝑥𝑛) − 𝑓(̅𝑥𝑛))

𝑗≠𝑖

 (7.12)

93

where 𝑓(̅𝑥𝑛), which is used instead of the target value yn to reduce the correlation

among ensemble individuals mutually. The final DNNE consists of a set of weights

𝐵𝑒𝑛𝑠 = [𝛽11, … , 𝛽1𝐿, … , 𝛽𝑀1, … , 𝛽𝑀𝐿]𝑀𝐿×1
𝑇 , where 𝛽𝑖𝑗 is the output weight of the jth

hidden node of the ith model, and can be obtained by solving the following linear

system (Equation 7.13):

𝐵̂𝑒𝑛𝑠 = 𝐻𝑐𝑜𝑟𝑟
+ 𝑇ℎ

 (7.13)

The 𝐻𝑐𝑜𝑟𝑟
+ is generalized pseudo-inverse (Rao and Mitra, 1971) of matrix 𝐻𝑐𝑜𝑟𝑟.

The hidden-target matrix 𝑇ℎ = [𝜑(1,1), … , 𝜑(1, 𝐿), … , 𝜑(𝑀, 1), … , 𝜑(𝑀, 𝐿)]𝑀𝐿×1
𝑇 , where

𝜑(𝑖, 𝑗) models the correlation between the jth hidden neuron of the ith base model

and is computed as Equation 7.14:

𝜑(𝑖, 𝑗) = ∑ 𝑔𝑖𝑗(𝑥𝑛)𝑦𝑛

𝑁

𝑛=1

 (7.14)

where gij is the output of jth hidden neuron from the ith model given a data sample xn.

Finally, Hcorr is an MLxML, where each element is given the following

condition:

𝐻𝑐𝑜𝑟𝑟(𝑝, 𝑞) = {
𝐶1𝜑(𝑚, 𝑛, 𝑘, 𝑙) 𝑖𝑓 𝑚 = 𝑘;

𝐶2𝜑(𝑚, 𝑛, 𝑘, 𝑙) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

where p, q = 1,…, MxL; 𝑚 = ⌈
𝑝

𝐿
⌉; 𝑛 = ((𝑝 − 1)𝑚𝑜𝑑 𝐿) + 1; 𝑘 = ⌈

𝑞

𝐿
⌉; 𝑙 = ((𝑞 −

1)𝑚𝑜𝑑 𝐿) + 1. The constants 𝐶1 and 𝐶2, and the correlation between the jth hidden

neuron of the ith base model and lth hidden neuron of the kth base model

𝜑(𝑚, 𝑛, 𝑘, 𝑙), are formulated as shown in Equations 7.15, 7.16 and 7.17, respectively.

𝜑(𝑖, 𝑗, 𝑘, 𝑙) = ∑ 𝑔𝑖𝑗(𝑥𝑛)𝑔𝑘𝑙(𝑥𝑛)

𝑁

𝑛=1

 (7.15)

𝐶1 = 1 − 2𝜆
(𝑀 − 1)2

𝑀2

 (7.16)

94

𝐶2 = 2𝜆
𝑀 − 1

𝑀2

 (7.17)

The online version of DNNE (Ding et al., 2017), both Hcorr and Th are updated

according to new data simply by adding the Hcorr and Th computed using the new

data and then adding up to the existing Hcorr and Th, as shown in Equations 7.18 and

7.19, respectively:

𝐻𝑐𝑜𝑟𝑟 = 𝐻𝑐𝑜𝑟𝑟
𝑜𝑙𝑑 + 𝐻𝑐𝑜𝑟𝑟

𝑜𝑙𝑑

 (7.18)

𝑇ℎ = 𝑇ℎ
𝑜𝑙𝑑 + 𝑇ℎ

𝑛𝑒𝑤

 (7.19)

For further details, the reader can refer to Ding et al. (2017). Once Hcorr and Th

are updated, the 𝐵̂𝑒𝑛𝑠 is recomputed according to Equation 7.13.

The online-DNNE can process effectively a single new data sample due to the

fact that the processing cost of computing Equation 7.13 is not affected by the

number of samples to be evaluated. However, the computation of 𝐻𝑐𝑜𝑟𝑟
+ is very

sensitive to the number of NNRW hidden nodes as well as the number of models.

Considering an ensemble with n nodes and m models, an increment of one node

results in an increment in the size of Hcorr matrix in the order of 𝑚2(𝑛2 + 2𝑛 + 1);

likewise, an increment of one model in the ensemble increases the size of Hcorr in the

order of 𝑛2(𝑚2 + 2𝑚 + 1). Attempts to overcome the issue of computational

constraints due to Moore-Penrose computation have been carried out (Cao et al.,

2016), but the authors found that the results do not apply to regression problems

since they do not satisfy stability conditions.

The O-DNNE hyperparameters were optimised using the SSHT algorithm and

the best hyperparameter setting for each dataset is shown in Table 7.13.

95

Table 7.13: Optimised O-DNNE hyperparameters for each dataset.

F1 F2 F3 F7 F11 Energy House Quality Maint.

Number of Models 15 15 15 5 5 15 5 15 10

Number of Nodes 150 150 150 150 20 150 150 20 150

Initial weights range 0.1 0.11 0.1 0.1 0.1 0.1 0.8 0.1 0.8

Regularisation factor 0.01 0.01 0.38 0.01 0.01 0.01 0.01 0.01 0.38

The update of the O-DNNE is executed at pre-defined intervals, i.e. the new

instances are buffered and when it reaches 500 instances, the O-DNNE is updated.

7.6.2. B-NNRW performance on synthetic datasets

In this section, the performance of B-NNRW is compared to O-SLFNN and O-

DNNE on synthetic data streams in the presence of concept drift. The algorithms are

compared in terms of accuracy and computational time. Each algorithm runs 10 times

on each dataset and the following metrics are computed, the prequential MSE for

each run, the training time and the testing time, i.e. the time the algorithm takes to

process the entire stream, including the prediction and updating time. The results are

organized by accuracy and computational time for each time of drift and are

submitted to a paired t-test with 95% confidence to check for statistically equal

means. The accuracy of each algorithm, measure in MSE, are presented in Tables

7.14 - 7.18 for datasets with no drift, gradual rotation, gradual replacement, abrupt

drift and data expansion, respectively.

Table 7.14: Average MSE and standard deviation for each algorithm on datasets with NO DRIFT.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

F1 6.33 0.43 4.72 0.40 11.68 1.50

F2 10.60 1.00 14.68 1.53 19.65 1.85

F3 16.29 1.70 10.16 1.07 34.18 8.32

F7 14.40 3.24 8.71 0.97 20.98 3.07

F11 23.60 0.58 22.89 0.58 47.05 1.69

96

The results in Table 7.14 show how the algorithms performed on synthetic

datasets without the presence of concept drift. The average and standard deviation

of MSE of each algorithm are presented and the best results are highlighted. The O-

DNNE showed better accuracy in all datasets except F2, where the B-NNRW

performed better. The results also showed the advantage of ensemble approaches

compared to single models, the B-NNRW and O-DNNE reduced the error, on

average by 45.1% and 53.0%, respectively.

The results are also illustrated in Figure 7.11, where a 30-period SE moving

average is shown for dataset F1.

Figure 7.11: Moving average SE for each algorithm on F1 dataset with no drift.

The updating mechanisms have a limited effect on the accuracy through data

stream and do not improve the accuracy significantly. This behaviour is also

observed in the remaining synthetic datasets with no drift.

The accuracy of the algorithms on datasets with drift simulated by hyperplane

gradual rotation is shown in Table 7.15.

97

Table 7.15: Average MSE and standard deviation for each algorithm on datasets with GRADUAL
ROTATION.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

F1 22.10 6.96 69.93 46.34 17.89 3.61

F2 16.54 7.51 71.60 82.39 24.59 7.43

F3 51.94 28.85 310.95 163.14 44.46 12.16

F7 31.46 18.82 189.66 126.18 28.57 6.29

F11 39.01 0.55 100.30 1.79 51.90 1.53

The results for gradual rotation showed that the B-NNRW resulted in better

accuracy in two datasets (F2 and F11). Moreover, statistically similar accuracy,

compared to the O-SLFNN, was observed in F3 and F7, while the O-SLFNN

performed better in dataset F1. The O-DNNE performed poorly in this type of drift;

however, its accuracy could be improved by increasing the updating frequency at the

expense of an increase in computational time. Figure 7.12 shows the 30-period

moving average SE for each algorithm through the F2 simulated data stream with

gradual rotation.

Figure 7.12: Moving average SE for each algorithm on F2 dataset with gradual rotation.

98

Table 7.16 shows the results of each algorithm on datasets with gradual

replacement.

Table 7.16: Average MSE and standard deviation for each algorithm on datasets with GRADUAL
REPLACEMENT.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

F1 19.12 0.57 52.68 2.29 18.49 3.81

F2 26.40 3.83 65.46 2.81 26.28 5.31

F3 31.13 1.25 58.59 4.24 40.25 9.18

F7 32.67 4.58 58.62 2.67 25.73 3.76

F11 37.99 1.65 72.12 1.46 52.62 1.56

The B-NNRW produced a lower error in F3 and F11 datasets when the

gradual replacement is present. In datasets F1 and F2, it showed statistically similar

results compared to O-SLFNN and O-SLFNN performed better on F7. Similarly to the

gradual rotation, the O-DNNE was not effective to tackle gradual replacement, which

could be solved by improving the updating frequency. The moving average SE for F7

dataset is illustrated in Figure 7.13.

Figure 7.13: Moving average SE for each algorithm on F7 dataset with gradual replacement.

99

It is possible to observe the accuracy of O-DNNE increases when it updates

between the drift points (500, 1500, 2500 and 3500), while the updating at the drifting

points decrease the accuracy since the algorithm updates with old concepts. In

general, the O-SLFNN adapts to drift much faster compared to the ensemble

algorithms, this is mainly due to two factors: there is only one model to update and it

the model is updated at every new instance. The latter implies unnecessary

computation in the absence of drift, as observed in Figure 7.10.

The accuracy in datasets with abrupt drift is shown in Table 7.17. For the

same reasons observed on datasets simulating gradual replacement, the O-DNNE as

not able to deal with the abrupt drift adequately. The B-NNRW showed better

accuracy in datasets F2, F3 and F11, while O-SLFNN performed better in F7. In

dataset F1, both B-NNRW and O-SLFNN showed statistically similar results.

Table 7.17: Average MSE and standard deviation for each algorithm on datasets with ABRUPT drift.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

F1 19.13 0.62 54.09 1.57 18.12 3.49

F2 25.15 2.31 63.74 2.03 30.34 5.17

F3 31.91 1.40 60.13 3.94 39.47 7.62

F7 31.77 4.01 58.37 1.47 25.62 2.05

F11 37.34 1.18 73.06 1.57 55.97 1.42

The behaviour of the algorithms through the simulated F1 data stream with

abrupt drift is illustrated in Figure 7.14.

100

Figure 7.14: Moving average SE for each algorithm on F1 dataset with abrupt drift.

Similarly to the gradual replacement, the O-SLFNN adapts fast to drift, while

B-NNRW needs to replace all the models with old accuracy before the levels of

accuracy are re-established.

The last type of drift analysed in this research is data expansion, which results

are shown in Table 7.18. For this type of drift, B-NNRW and O-DNNE showed

statistically equal results in all datasets. This type of drift results in more complex

changes in the relationship between input and output, compared to the previously

simulated drifts. In this case, the O-SLFNN did not update effectively and performed

poorly compared to B-NNRW and O-DNNE.

Table 7.18: Average MSE and standard deviation for each algorithm on datasets with DATA
EXPANSION.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

F1 5.71 0.64 6.18 1.21 11.73 1.83

F2 11.17 1.78 13.80 3.74 26.21 7.71

F3 12.23 1.97 14.65 3.89 26.91 5.20

F7 8.75 1.41 8.24 1.06 18.44 3.43

F11 23.59 0.35 23.40 0.51 46.17 1.09

101

The effect of data expansion on the accuracy of the algorithms is illustrated in

Figure 7.15, for the F3 data stream.

Figure 7.15: Moving average SE for each algorithm on F3 dataset with data expansion.

The O-DNNE showed a good learning capability for datasets with data

expansion. It is possible to observe that the average accuracy does not change

abruptly in the drift points, as it happens to B-NNRW and O-SLFNN. The B-NNRW

recover its accuracy level as the low performing members are replaced, but slowly

compared to other types of drift. This is explained by the fact that the input

distribution before the drift is contained within the new distribution, i.e. instances of

the new distribution were already learnt by the models and may slow the replacing

process.

Another important aspect of algorithms for data stream is the computational

time. The training and testing time that each algorithm took to process the entire data

stream were collected. The training time refers to the time spent to train the models

using the initial data, while the testing time includes the predictions and updating of

the models. The average training and testing time of each dataset for all types of drift

were averaged and the results are shown in Table 7.19.

102

Table 7.19: Average computational time and standard deviation for each algorithm and dataset.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

Training time (seconds)

F1 0.236 0.071 37.053 0.877 0.638 0.231

F2 0.221 0.007 37.054 0.803 0.541 0.152

F3 0.223 0.010 37.066 0.740 0.627 0.177

F7 0.048 0.004 3.183 0.069 0.487 0.078

F11 0.044 0.002 0.054 0.001 0.693 0.512

Testing time (seconds)

F1 5.231 0.262 314.788 6.053 108.368 0.856

F2 4.916 0.218 315.073 6.027 107.797 2.255

F3 5.088 0.243 314.989 6.089 108.135 0.591

F7 3.878 0.043 44.829 0.849 107.733 0.521

F11 3.910 0.118 3.514 0.063 115.745 13.635

In terms of computational time, the proposed algorithm showed a significant

advantage compared to O-DNNE and O-SLFNN. The only exception was in dataset

F11, in this case, the best accuracy of O-DNNE were achieved with a reduced

number of base models (5) and nodes (20), while in datasets F1, F2 and F3, the

number of base models and nodes for the best accuracy were 15 and 150,

respectively. In dataset F7, where O-DNNE showed moderate computational time,

the optimised number of base models and nodes were 5 and 150, respectively.

These results demonstrate the drawbacks of O-DNNE when the number of models

and/or nodes need to be increased for better accuracy. The O-SLFNN showed good

training times and lower testing times compared to O-DNNE, however, the testing

time is approximately 20 times higher compared to B-NNRW.

7.6.3. B-NNRW performance on benchmark datasets

In this section, the proposed algorithm is further validated by evaluating its

performance on benchmark datasets from public data repositories, described in

Section 4.3. For each dataset, the first 1.000 data points were used for test and the

remaining data points were used to simulate the data streams. Each experiment was

103

run 10 times and the average and standard deviation of MSE were computed. The

results are shown in Table 7.20 and the lower MSE for each problem is highlighted.

Table 7.20: Average MSE and standard deviation for each algorithm on benchmark datasets.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

Energy 8.76E+03 0.34E+03 13.67E+03 0.65E+03 6.43E+03 1.30E+03

House 3.57E+09 0.32E+09 13.87E+09 3.20E+09 3.42E+09 0.16E+09

Quality 0.500 0.002 0.532 0.003 0.909 0.045

Maintenance 5.31E-07 3.74E-07 1.90E-07 0.91E-07 27.10E-07 8.86E-07

The algorithms showed different performances according to the dataset. The

B-NNRW achieved the best accuracy in Quality, where the MSE was 6.0% and

45.0% lower compared to O-DNNE and O-SLFNN, respectively. In House dataset, B-

NNRW and O-DNNE achieved statistically equal results while O-DNNE error was

approximately 4 times higher. The O-SLFNN resulted in lower MSE in Energy dataset

and the best algorithm in Maintenance was the O-DNNE. The smoothed MSE for

through the stream is illustrated in Figures 7.16, 7.17, 7.18 and 7.19 for Energy,

House, Quality and Maintenance problems, respectively.

Figure 7.16: Smoothed MSE for each algorithm on Energy dataset.

104

Figure 7.17: Smoothed MSE sample for each algorithm on House dataset.

Figure 7.18: Smoothed MSE sample for each algorithm on House dataset.

Figure 7.19: Smoothed MSE sample for each algorithm on House dataset.

105

Besides the MSE, the Mean Absolute Percentage Error (MAPE) was also

computed. The MAPE is computed according to the Eq. 7.20

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖
∗ 100%

𝑁

𝑖=1

Eq. 7.20

where 𝑦𝑖 and 𝑦𝑖̂ are the true values and the predicted value, respectively. The results

are summarised in Table 7.21

Table 7.21: Average MAPE and standard deviation for each algorithm on benchmark datasets.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

Energy 52.23% 2.82% 92.71% 2.23% 49.04% 11.52%

House 24.34% 2.16% 39.09% 1.54% 21.61% 1.04%

Quality 9.74% 0.05% 10.00% 0.02% 12.41% 0.34%

Maintenance 0.05% 0.02% 0.01% 0.00% 0.10% 0.01%

By the MAPE values, it is possible to analyse how much each algorithm

deviates from the true value on average and its impact on the final results. For

example, choosing the wrong algorithm for Maintenance problem would have a lower

impact on the results compared to the impact of the wrong choice on House dataset.

It is important to note that the datasets are used for simulating data streams and for

practical applications, a more in-depth analysis of the data would be required.

The results in terms of computational time (elapsed time) for the benchmark

datasets are shown in Table 7.22.

106

Table 7.22: Average computational time and standard deviation for each algorithm and dataset.

 B-NNRW O-DNNE O-SLFNN

 Avg Std Avg Std Avg Std

Training time (seconds)

Energy 0.15 0.11 37.42 0.18 1.45 0.44

House 0.16 0.01 3.20 0.05 0.38 0.07

Quality 0.13 0.00 0.50 0.00 0.35 0.04

Maintenance 0.20 0.01 14.96 0.14 94.22 15.46

Testing time (seconds)

Energy 19.90 0.05 1477.71 2.46 776.85 189.83

House 18.76 0.06 220.34 0.64 447.16 1.04

Quality 3.98 0.03 12.02 0.20 92.86 0.26

Maintenance 12.16 0.63 374.17 0.70 4741.52 16.37

Although the B-NNRW did not achieve the best accuracy on all datasets, it

was able to process the entire data streams much faster compared to O-DNNE and

O-SLFNN, reaching up to 390 times faster compared to O-SLFNN and 74 times

faster compared to O-DNNE.

In this chapter, a new ensemble for data stream regression with concept drift

was developed. The results showed that the proposed algorithm, the B-NNRW, is a

competitive alternative for solving data stream regression problems, especially when

time constraints are involved. It was demonstrated the trade-off between accuracy

and the number of base models and, for simplicity, the evaluation of the ensemble on

the data streams was carried out using 30 base models for all datasets. From the

results showed in Section 7.4, it is possible to observe that the accuracy of B-NNRW

could be improved by increasing the ensemble size in most of the datasets (F1, F2,

F3, F7, House and Maintenance).

The algorithm updates constantly without the need to determine the updating

frequency, adapting to all types of drift without the need of any assumption about the

type of concept drift. The updating mechanism increases or decreases the number of

replacements according to characteristics of the dataset to adapt to the various types

of drift. The main drawback identified during the experiment is the slow recovery of

accuracy levels when an abrupt drift occurs. This is due to the fact that, when an

abrupt data drift occurs, all the models are affected and the replacement tends to be

107

constant until new models, trained on the new concept, force the old models to be

replaced. Effective mechanisms to deal with abrupt drift could significantly increase

the algorithm’s performance in terms of accuracy.

108

8. CONCLUSIONS

This research has explored the data stream regression problem in the

presence of concept drift. The big data paradigm has assigned new challenges for

the ML algorithms that include processing data on high speed in a continuous

manner and adapting to changes in the environment. Despite the increasing amount

of research regarding data streams and concept drift, only a few published methods

for data stream regression can be found in the literature. The new approaches

presented in this thesis are proven to have considerably enhanced the state-of-the-

art in the area of data stream regression and hyperparameter optimisation.

This chapter is structured in four sections. Firstly, the main findings and

conclusions are presented. Then, it is shown to what level research objectives

established at the beginning of this study are fulfilled. The research contributions are

outlined in Section 8.3, and Section 8.4 closes this study by outlining some limitations

and suggestions for future work.

8.1. RESEARCH FINDINGS AND CONCLUSIONS

Several characteristics of data streams must be observed when developing

ML models. The nature of data streams requires computationally efficient algorithms,

both in terms of memory use and processing time. For this reason, non-iterative

algorithms are preferred for this type of problem.

The issue of concept drift, where the underlying concept that represents the

process being modelled changes over time, has been addressed in this thesis. Some

authors have worked on identifying the main types of drift; however, it is still not

possible to precisely determine when it happens or which type of drift taking place in

real-world applications. The existing approaches for concept drift either rely on drift

detector mechanisms or update the model at a fixed rate. In the former case, the

model can generate false alarms and be ineffective when more than one type of drift

109

is present in data. In the latter case, an inadequate adjustment of the updating rate

can lead to unnecessary computations or slow reaction to concept drift.

The ensembles have been successfully applied to solve data stream

regression and classification problems. For this type of task, some advantages of

ensembles compared to single models can be highlighted: flexibility, high accuracy

and computational efficiency. The flexibility allows the ensemble to incorporate

various mechanisms to adapt to concept drift. The ensembles are easier to

parallelise, and it is computationally more efficient to train several small models than

a single model, especially when the computational complexity of the model increases

exponentially according to the model’s size.

The assessment of data stream regression algorithms requires synthetic

datasets where various types of concept drift can be simulated. In this research, a

need for data generation approaches where the algorithms can be effectively

evaluated was identified. The existing approaches for regression data generation are

limited in terms of dimensions, which make it difficult to access the performance of

the algorithm on high dimensional datasets. It is also difficult to check the function

shape and therefore difficult to simulate the various types of concept drift.

In general, the ensemble approaches from the literature do not address base

model optimisation. The optimisation of base models can increase the overall

accuracy of the ensemble and also allows the use of fewer base models, improving

the ensemble’s computational efficiency. Different variations of NNRWs can be found

in literature, the main representatives are the RVFL and the ELM. Their optimisation

involves not only tuning hyperparameters but also design hyperparameters;

additionally, only a few research has studied the main difference between them.

8.2. RESEARCH ACHIEVEMENTS

This research was aimed at developing an ensemble algorithm to solve data

stream regression problems with concept drift. To accomplish the research aim,

110

several research objectives were set out at the beginning of this study. These

objectives have been achieved as explained below:

Objective 1: Develop a robust methodology for generating synthetic data

streams and simulating concept drift.

This objective was fulfilled in Chapter 4, where functions designed

originally for evaluating optimisation algorithms were adapted to simulate

regression data streams. The approach allows simulation of various

types of concept drift and can generate datasets with any number of

predictive variables. Moreover, it is possible to visualise the shape of the

functions at low dimensions (1 or 2 attributes), which allows assessing

the effect of the simulated drift on the data.

Objective 2: Analysis of the randomised NN approaches and their main

differences.

This objective was addressed in Chapter 5, where the main differences

between the existing NNRWs approaches were identified and analysed,

and the design decisions involving the construction of an effective NNRW

were discussed. It was found that, despite the ELM popularity, design

elements of RVFL increase the accuracy of randomised NNs.

Objective 3: Development of new hyperparameter tuning algorithms.

This objective was fulfilled in Chapter 6, where a new algorithm for

hyperparameter optimisation, the SSHT was proposed. The algorithm

works by analysing the effect of each hyperparameter on the model’s

variability and therefore prioritising the search for the optimal value.

Objective 4: Development of effective updating mechanisms to cope with

concept drift.

This objective was achieved in Chapter 7, where a new ensemble

algorithm based on NNRWs was developed. The new algorithm

incorporates an updating mechanism that replaces base models based

on their contribution to the ensemble. The updating mechanism

111

constantly evaluates each model’s performance and does not need any

previous assumption about the type of drift or when the drift is expected

to occur.

Objective 5: Test and validate the proposed approaches using synthetic and

benchmark datasets and comparing with existing methods from the literature.

This objective was achieved in Chapters 6 and 7. In Chapter 6, the new

hyperparameter optimisation algorithm was validated on the optimisation

of NNRWs and the results were compared to the GA algorithm. The

SSHT was able to achieve better convergence to optimised

hyperparameter sets with fewer evaluations compared to GA. In Chapter

7, the new ensemble algorithm for data stream regression was compared

to the existing approaches from the literature. The algorithm was able to

adapt to all types of drift and showed competitive accuracy with much

less computational effort.

8.3. RESEARCH CONTRIBUTIONS

The main contribution of this research is the development of a new ensemble

algorithm, the B-NNRW, that has improved the state-of-the-art in the data stream

regression with concept drift problems. The experiments demonstrated that the

proposed approach can achieve competitive results compared to existing approaches

in all datasets and can adapt to all types of concept drift.

The assessment on synthetic datasets with concept drift showed that B-

NNRW achieved better accuracy on 7 problems, statistically similar accuracy on 10

problems and worse accuracy on 3 problems, compared to the best technique on

each problem. In the cases where B-NNRW showed better accuracy, it reduced the

error by 25.7%, on average, while in the 3 cases where other techniques showed

better accuracy, the error was reduced 19.9% on average. The proposed algorithm

also reduced significantly the computational time by 75.1% and 95.8%, on average,

compared to O-DNNE and O-SLFNN, respectively.

112

This research study has also contributed to the knowledge by:

• Proposing a new approach for simulating data streams for regression

problems with various types of concept drift and with any number of

predictive variables.

• Advancing the understanding of the NNRWs from an optimisation

perspective and incorporating it into a bagging ensemble updating

algorithm.

• Proposing a promising hyperparameter optimisation algorithm that is able

to find optimised hyperparameter sets with less computational effort. The

SSTH showed better convergence with 55.7% fewer evaluations, on

average, compared to GA.

• Disseminating an article on data stream regression accepted to be

published by the Soft Computing journal, 2019.

8.4. LIMITATIONS AND FUTURE RESEARCH OPPORTUNITIES

The proposed data generation approach is able to successfully simulate

regression data streams and various types of drift and allows simulation of datasets

with a high number of features. Following the common practice in concept drift

studies, the proposed approach for data generation simulates only one type of

concept drift at a time. This might not be realistic in practical applications and

combining more than one drift could potentially enhance the assessment of the data

stream algorithms. Moreover, the effectiveness of the proposed approach to simulate

classification problems could be investigated.

The novel hyperparameter optimisation algorithm was effective in optimising

the NNRW hyperparameters. The SSHT algorithm uses a simple interpolation

method for searching the optimised values of continuous hyperparameters. The

SSHT can be substantially improved by replacing the interpolation method for more

advanced techniques, such as gradient-based models. A more effective search

113

mechanism could reduce even further the number of evaluations. Additionally,

comparing the SSHT to other techniques, such as Random Search or SMO based

techniques could improve the validation of the algorithm and establish its advantages

and disadvantages compared to the existing methods.

The main strength of the proposed ensemble for regression problems was its

computational efficiency. The algorithm achieved competitive accuracy, however,

investigating the causes of lower accuracy in some datasets could improve the

overall effectiveness of B-NNRW. It is important to note that the ensemble size was

fixed at 30 base models. Further research and in-depth analysis of the effects of

ensemble size on the accuracy is required to achieve better performance.

One drawback of the B-NNRW identified in this research is the slow reaction to

sudden drift compared to an online approach. This is due to the fact that, when a

sudden data drift happens, all the existing base models are affected. It is necessary

that models trained on the new concept are included in the ensemble in order to

force the replacement of models trained in old concepts. Some potential solutions to

this issue include:

• Using a few base models that are kept on the ensemble and are updated

on an online basis. These models would adapt faster to the new concept

and force the replacement of models trained with data from old concepts.

• Including an abrupt drift detection mechanism in order to trigger additional

model replacement.

114

REFERENCES

Agrawal, R.; Ghosh, S.; Imielinski, T.; Iyer, B.; Swami, A. An Interval classifier for

database mining applications. In: Proceedings of the 18th VLDB Conference,

Vancouver, British Columbia, Canada. 560-573, 1992.

Aiolfi, M.; Timmermann, A. Persistence in forecasting performance and

conditional combination strategies. Journal of Economics. 135 (1): 32-53, 2006.

Aksu, C.; Gunter, S.I. An empirical analysis of the accuracy of SA, OLS, ERLS

and NRLS combination forecasts. International Journal of Forecasting. 8: 27-43,

1992.

Alaba, P.A.; Popoola, S.I.; Olatomiwa, L.; Akanle, M.B.; Ohunakin, O.S.; Adetiba, E.;

Alex, O.D.; Atayero, A.A.A; Daud, W.M.A.W. Towards a more efficient and cost-

sensitive extreme learning machine: A state-of-the-art of recent trend.

Neurocomputing. 350: 70-90, 2019.

Alhamdoosh, M.; Wang, D. Fast decorrelated neural network ensembles with

random weights. Information Sciences. 264: 104-117, 2014.

Almeida, R.; Goh, Y.M.; Monfared, R.; Steiner, M.T.A.; West, A. An ensemble based

on neural networks with random weights for online data stream regression.

Soft Computing. 1-21, 2019.

Almeida, R.; Steiner, M.T.A. Aplicação de uma rede neural aumentada ajustada

por delineamento de experimentos para resolução de problemas de corte e

empacotamento. In: Proceedings of the XVI Simpósio de Pesquisa Operacional e

Logística da Marinha (SPOLM 2013), Rio de Janeiro, Brazil. 2013.

Armstrong, J.S. Principles of forecasting: a handbook for researches and

practitioners. Kluwer Academic Publishing, Boston. 30, 2001.

Barros, R.C.; Basgalupp, M.P.; Freitas, A.A; Carvalho, A.C.P.L.F Evolutionary

Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression

Data Sets. IEEE Transactions on Evolutionary Computation. 18(6): 873-892, 2014.

Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter

optimization. NIPS’11 Proceedings for the 24th International Conference on Neural

Information Processing Systems (NIPS). 2546-2554, 2011.

Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization.

Journal of Machine Learning Research. 13: 281-305, 2012.

115

Bhardwaj, M.; Bhatnagar, V.; Sharma, K. Cost-effectiveness of classification

ensembles. Pattern Recognition. 54: 84-96, 2016.

Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. MOA: Massive online analysis.

Journal of Machine Learning Research. 11, 1601-1604, 2010.

Bifet, A.; Holmes, G.; Pfahringer, B.; Kirkby, R.; Gavaldà, R. New ensemble

methods for evolving data streams. Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 139-148, 2009.

Bishop, C.M. Pattern recognition and machine learning. Springer-Verlag Berlin,

Heidelberg. 2006.

Breiman, L. Bagging predictors. Machine Learning. 24: 123-140, 1996.

Breiman, L. Random forests, Machine Learning. 45 (1): 5-32, 2001.

Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and

Regression Trees. Wadsworth, Belmont, CA, 1984.

Brown, G.; Wyatt, J.; Harris, H.; Yao, X. Diversity creation methods: a survey and

categorization. Information Fusion. 6: 5-20, 2005.

Bruce, R. Ensemble Learning using decorrelated neural networks. Connected

Sciences. 8: 373-384, 1996.

Brzezinski, D.; Stefanowski, J. Combining block-based and online methods in

learning ensembles from concept drifting data streams. Information Sciences,

265: 50-67, 2014a.

Brzezinski, D.; Stefanowski, J. Reacting to different types of concept drift: The

accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks

and Learning Systems, 25(1): 81-94, 2014b.

Bunn, D.W. A Bayesian approach to the linear combination forecasts.

Operations Research. 325-329, 1975.

Cao, F.; Wang, D.; Zhu, H.; Wang, Y. An iterative learning algorithm for

feedforward neural networks with random weights. Information Sciences. 328,

546-557, 2016.

Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random

weights. Neurocomputing. 275, 278-287, 2018.

Chatelain, C.; Adam, S.; Lecourtier, Y.; Heutte, L.; Paquet, T. Multi-objective

optimization for SVM model selection. In: Proceeding of the International

Conference on Document Analysis and Recognition, ICDAR 2007. 1: 427-431, 2007.

116

Chen, H.; Yao, X. Regularized negative correlation learning for neural network

ensembles. IEEE Transactions on Neural Networks. 20 (12): 1962-1979, 2009.

Deng, C.W.; Huang, G-B.; Xu, J.; Tang, J-X. Extreme learning machines: new

trends and applications. Science China Information Sciences. 58: 1-16, 2015.

Di Martino, S.; Ferrucci, F.; Gravino, C.; Sarro, F. A genetic algorithm to configure

support vector machines for predicting fault-prone components. in: International

Conference on Product Focused Software Process Improvement. PROFES 2011.

Lecture Notes in Computer Science. 6759: 247-261, 2011.

Ding, J.; Wang, H.; Li, C.; Chai, T.; Wang, J. An online learning neural network

ensemble with random weights for regression of sequential data stream. Soft

Computing, 21 (20): 5919-5937, 2017.

Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural

Computing and Applications. 25 (3-4): 549-556, 2014.

Domingos, P.; Hulten, G. Mining high-speed data streams. Knowledge Discovery

and Data Mining. 71-80, 2000.

Dua, D. and Graff, C. UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science, 2019.

Elwell, R.; Polikar, R. Incremental learning of concept drift in nonstationary

environments. IEEE Transactions on Neural Networks. 22 (10): 1517-1531, 2011.

Fan, W. Systematic data selection to mine concept-drifting data streams, in:

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD’04), Seattle, Washington, USA, 128-137, 2004.

Farid, D. M.; Zhang, L.; Hossain, A.; Rahman, C.M.; Strachan, R.; Sexton, G.; Dahal,

K. An adaptive ensemble classifier for mining concept drifting data streams.

Expert Systems with Applications. 40: 5895-5906, 2013.

Friedman, J.H. Multivariate adaptive regression splines. The Annals of Statistics.

19(1): 1-141, 1991.

Fu, A.; Dong, C.; Wang, L. An experimental study on stability and generalization

of extreme learning machines. International Journal of Machine Learning and

Cybernetics. 6: 129-135, 2015.

Gállego, P.P.; Quevedo, J.R.; Coz, J.J. Using ensembles for problems with

characterizable changes in data distribution: A case study on quantification.

Information Fusion. 34: 87-100, 2017.

117

Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with drift detection. In:

SBIA Brazilian Symposium on Artificial Intelligence, Springer Verlag. 286-295, 2004.

Gama, J.; Zliobaite, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on

concept drift adaptation. ACM Computing Surveys. 46(4): 1-37, 2014.

Gao, J.; Ding, B.; Han, J.; Fan, W.; Yu, P.S. Classifying data streams with skewed

class distributions and concept drifts. IEEE Internet Computing,

November/December. 37-49, 2008.

Ghazikhani, A.; Monsefi, R.; Yazdi, H.S. Ensemble of online neural networks for

non-stationary and imbalanced data streams. Neurocomputing, 122: 535-544,

2013.

Gomes, H.M.; Barddal, J.P.; Enembreck, F.; Bifet, A. A survey on ensemble

learning for data stream classification. ACM Computing Surveys. 50-2(23):1-36,

2017.

González-Castro, V.; Alaiz-Rodríguez, R.; Alegre, E. Class distribution estimation

based on the Hellinger distance. Information Sciences. 218: 146-164, 2013.

Granger, C.W.J.; Ramanathan, R. Improved methods of combining forecasts.

Journal of Forecasting. 3 (2): 197-204, 1984.

Guo, X.C.; Yang, J.H.; Wu, C.G.; Wang, C.Y.; Liang, Y.C. A novel LS-SVMs hyper-

parameter selection based on particle swarm optimization. Neurocomputing.

71:3211-3215, 2008.

Guo, Y.; Jiao, L.; Wang, S.; Wang, S.; Liu, F.; Rong K.; Xiong, T. A novel dynamic

rough subspace based selective ensemble. Pattern Recognition. 45: 1638-1652,

2015.

Hansen, J. Combining predictors: Meta machine learning methods and

bias/variance & ambiguity decompositions. PhD dissertation. Department of

Computer Science, University of Aarhus, Aarhus, Denmark, 2000.

Hoerl, A.E; Kennard, R.W. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics. 12 (1): 55-67, 1970.

Hofer, V.; Krempl, G. Drift mining in data: A framework for addressing drift in

classification. Computational Statistics and Data Analysis. 57: 377-391, 2013.

Huang, G-B.; Zhu, Q-Y.; Siew, C-K. Extreme learning machine: A new learning

scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE

International Joint Conference on Neural Networks. 2, 985-990, 2004.

118

Huang, G-B.; Chen, L.; Siew, C-K. Universal approximation using incremental

constructive feedforward networks with random hidden nodes. IEEE

Transactions on Neural Networks. 17(4): 879-892, 2006.

Huang, G-B. An insight into extreme learning machines: Random neurons,

random features and kernels. Cognitive Computing. 6(3), 376-390, 2014.

Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams. In:

Proceedings of the 7th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’01, San Francisco, California. 97-106, 2001.

Igelnik, B.; Pao, Y-H. Stochastic choice of basis functions in adaptive function

approximation and the functional-link net. IEEE Transactions on Neural Networks.

6(6): 1320-1329, 1995.

Ikonomovska, E.; Gama, J.; Dzeroski, S. Incremental multi-target model trees for

data streams. in: Proceedings of the 2011 ACM Symposium on Applied Computing.

Taiwan, 988-993, 2011a.

Ikonomovska, E.; Gama, J.; Dzeroski, S. Learning model trees from evolving data

streams. Data Mining and Knowledge Discovery. 23: 128-168, 2011b.

Ikonomovska, E.; Gama, J.; Dzeroski, S. Online tree-based ensembles and option

trees for regression on evolving data streams. Neurocomputing. 150: 458-470,

2015.

Iwashita, A.S.; Albuquerque, V.H.C.; Papa, J. P. Learning concept drift with

ensembles of optimum-path forest-based classifiers. Future Generation

Computer Systems. 95: 198-211, 2019.

Jiang, Y.; Zhao, Q.; Lu, Y. Adaptive ensemble with human memorizing

characteristics for data stream mining. Mathematical Problems in Engineering.

2015.

Jose, V.R.R.; Winkler, R.L. Simple robust averages of forecasts: Some empirical

results. International Journal of Forecast. 24 (1): 163-169, 2008.

Karalic, A. Linear regression in regression tree leaves. Technical Report, 1992.

Kadlec, P.; Gabrys, B. Local learning-based adaptive soft sensor for catalyst

activation prediction. AIChE Journal. 57(5): 1288-1301, 2011.

Kittler, J.; Hatef, M.; Duin, R.P.; Matas, J. On combining classifiers. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 20: 226-239, 1998.

119

Kolter, J.Z.; Maloof, M.A. Using additive expert ensembles to cope with concept

drift. In: Proceedings of the 22nd ACM International Conference on Machine

Learning (ICML’05), Bonn, Germany, 2005, 449-456.

Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanoswski, J.; Wozniak, M. Ensemble

learning for data stream analysis: A survey. Information Fusion. 37, 132-156,

2017.

Kuncheva, L.I.; Whitaker, C.J. Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy. Machine Learning. 5 (2): 181-207,

2003.

Lemke, C.; Gabrys, B. Meta-learning for time series forecasting in the nn gc1

competition. In: Proceedings 16th IEEE International Conference on Fuzzy Systems,

Barcelona. 2258-2262, 2010.

Lessmann, S.; Stahlbock, R.; Crone, S. F. Optimizing hyperparameters of support

vector machines by genetic algorithms. CSREA Press, vol. 1. 74-82, 2005.

Liang, N-Y; Huang, G-B; Saratchandran P.; Sundararajan, N. A fast and accurate

online sequential learning algorithm for feedforward networks. IEEE

Transactions on Neural Networks. 17(6), 1411-1423, 2006.

Liu, Y.; Yao, X. Ensemble learning via negative correlation. Neural Networks. 12:

1399-1404, 1999.

Liu, J.; Zio, E. A SVR-based ensemble approach for drifting data streams with

recurring patterns. Applied Soft Computing, 47: 553-564, 2016.

López, E.M.; Verdejo, V.G.; Vidal, A.R.F. A new boosting design of support vector

machine classifiers. Information Fusion. 25: 63-71, 2015.

Maclaurin, D.; Duvenaud, D.; Adams, R.P. Gradient-based hyperparameter

optimization through reversible learning. arXiv: 1502.03492, 2015.

Margineantu, D.D.; Dietterich, T.G. Pruning adaptive boosting. In: Proceedings of

the 14th International Conference on Machine Learning, Morgan Kaufmann. 211-218,

1997.

Martínez-Villena, J.M.; Rosado-Muñoz, A.; Soria-Olivas, E. Hardware

implementation methods in random vector functional-link networks. Applied

Intelligence. 41: 184-195, 2014.

Masud, M.M.; Gao, J.; Khan, L.; Han, J. A practical approach to classify evolving

data streams: Training with limited amount of labeled data. IEEE International

Conference on Data Mining. 929-934, 2008.

120

Miche, Y.; Sorjamaa, A.; Bas, P.; Simula, O.; Jutten, C.; Lendasse, A. OP-ELM:

Optimally pruned extreme learning machine. IEEE Transactions on Neural

Networks. 21(1): 158-162, 2010.

Montgomery, D.C. Design and analysis of experiments. John Wiley & Sons. 8ed.

2012.

Mousavi, R.; Eftekhari, M. A new ensemble learning methodology based on

hybridization of classifier ensemble selection approaches. Applied Soft

Computing. 37: 652-666, 2015.

Nadungodage, C.H.; Xia, Y. Online multi-dimensional regression analysis on

concept-drifting data streams. International Journal of Data Mining, Modelling and

Management, 6(3): 217-238, 2014.

Omari, A.; Vidal, A.R.F. Post-aggregation of classifier ensembles. Information

Fusion. 26: 96-102, 2015.

Oza, N.; Russell, S. Experimental comparisons of online and batch versions of

bagging and boosting. KDD ’01. 359-364, 2001.

Pao, Y-H.; Takefuji, Y. Functional-link net computing: Theory, system

architecture, and functionalities. IEEE Computer. 25(5) 76-79, 1992.

Pietruczuk, L.; Rutkowski, L.; Jaworski, M.; Duda, P. How to adjust an ensemble

size in stream data mining? Information Sciences, 381: 46-54, 2017.

Pinto, A.F.; Montevechi, J.A.B.; Marins, F.A.S.; Miranda, R.C. Algoritmos

genéticos: Fundamentos e aplicações. In: Lopes, H.S.; Rodrigues, L.C.A.; Steiner,

M.T.A. Meta-heurísticas em pesquisa operacional. Curitiba: Omnipax, 1ed. 2013.

Polikar, R.; DePasquale, J.; Mohammed, H.S.; Brown, G.; Kuncheva, L.I.

Learn++.MF: A random subspace approach for the missing feature problem.

Pattern Recognition. 43 (11): 3817-3832, 2010.

Polikar, R.; Udpa, L.; Udpa, S.S.; Honavar, V. Learn++: An incremental learning

algorithm for supervised neural networks. IEEE Transactions on Systems Man

and Cybernetics. Part C: Application Review. 31 (4): 497-508, 2001.

Rao, C.R.; Mitra, S.K. Generalized inverse of matrices and its applications.

Wiley, New York, 1971.

Read, J.; Bifet, A.; Holmes, G.; Pfahringer, B. Scalable and efficient multi-label

classification for evolving data streams. Machine Learning. 88: 243-272, 2012.

Ren, S.; Liao, B.; Zhu, W.; Li, K. Knowledge-maximized ensemble algorithm for

different types of concept drift. Information Sciences. 430-431: 261-281, 2018.

121

Rong, H.J.; Ong, Y.S.; Than, A.H.; Zhu, Z. A fast pruned-extreme learning

machine for classification problem. Neurocomputing. 72(1-3):359-366, 2008.

Rokach, L. Ensemble-based classifiers. Artificial Intelligence Review. 33: 1-39,

2010.

Rosen, B.E. Ensemble learning using decorrelated neural networks. Connection

Science. 8 (3-4), 373-393, 1996.

Scardapane, S.; Wang, D. Randomness in neural networks: an overview. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 7(2): 1-18, 2017.

Schapire, R.E. The strength of weak learnability. Machine Learning, 5 (2): 197-

227, 1990.

Schlimmer, J.C.; Granger Jr., R.H. Incremental learning from noisy data. Machine

Learning, 1: 317-354, 1986.

Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P.W. Feed forward neural networks with

random weights. In: Proceedings of the 11th IAPR International Conference on

Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology

and Systems, IEEE, 1-4, 1992.

Sharkey, A.; Sharkey, N. Combining diverse neural networks. Knowledge

Engineering Review. 12 (3): 231-247, 1997.

Shaker, A.; Hullermeier, E. Recovery analysis for adaptive learning from non-

stationary data streams: Experimental design and case study. Neurocomputing,

150: 250-264, 2015.

Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1 –

Learning rate, batch size, momentum, and weight decay. US Naval Research

Laboratory Technical Report 5510-026, 2018.

Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian optimization of

machine learning algorithms. Proceedings of the 25th International Conference on

Neural Information Processing Systems, NIPS'12 - Volume 2: 2951-2959, 2012.

Soares, S.G.; Araújo. R. An on-line weighted ensemble of regressor models to

handle concept drifts. Engineering Applications of Artificial Intelligence, 37(0), 392-

406, 2015a.

Soares, S.G.; Araújo, R. A dynamic and on-line ensemble regression for

changing environments. Expert Systems with Applications, 42, 2935-2948, 2015b.

Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y-P.; Auger, A.; Tiwari, S.

Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session

122

on Real-Parameter Optimization. Technical Report, Nanyang Technological

University, Singapore, 2005.

Sun, Z.; Song, Q.; Zhu, X.; Sun, H.; Xu, B.; Zhou, Y. A novel ensemble method for

classifying imbalanced data. Pattern Recognition. 48: 1623-1637, 2015.

Sun, Y.; Wang, Z.; Liu, H.; Du, C.; Yuan, J. Online ensemble using adaptive

windowing for data streams with concept drift. International Journal of Distributed

Sensor Networks, 2016.

Sun, Y.; Tang, K.; Zhu, Z.; Yao, X. Concept drift adaptation by exploiting

historical knowledge. IEEE Transactions on Neural Networks and Learning

Systems. 29(10): 4822-4832, 2018.

Street, W.N.; Kim, Y. A streaming ensemble algorithm (SEA) for large-scale

classification. In: Proceeding of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, New York, NY, USA. 377-382, 2001.

Thornton, C.; Hutter, F.; Hoss, H.H; Leyton-Brown, K. Auto-WEKA: Combined

selection and hyperparameter optimization of classification algorithms. In:

Proceedings of the Knowledge Discovery and Data Mining, KDD ’13. 847-855, 2013.

Tsai, C-J.; Lee, C-I; Yang, W-P. Mining decision rules on data streams in the

presence of concept drifts. Expert Systems with Applications. 36, 1164-1178,

2009.

Tsymbal, A. The problem of concept drift: definitions and related work.

Technical report. Department of Computer Science, Trinity College, Dublin, 2004.

Tumer, K.; Ghosh, J. Error correlation and error reduction in ensemble

classifier. Connection Science. 8 (3-4): 385-404, 1996.

Wang, H.; Fan, W.; Yu, P.S.; Han, J. Mining concept-drifting data streams using

ensemble classifiers, in: Proceedings of International Conference on Knowledge

Discovery and Data Mining, SIGKDD, Washington DC, USA. 226-235, 2003.

Wolpert, D.H. Stacked generalization. Neural Networks. 5, 241-259, 1992.

Wozniak, M.; Graña, M.; Corchado, E. A survey of multiple classifier systems as

hybrid systems. Information Fusion. 16: 3-17, 2014.

Yaqoob, I.; Hashem, I.A.T.; Gani, A.; Mokhtar, S.; Ahmed, E.; Anuar, N.B.; Vasilakos,

A.V. Big data: From beginning to future. International Journal of Information

Management, 36(6), 1231-1247, 2016.

Yin, X.C.; Huang, K.; Hao, H.W. DE²: Dynamic ensemble of ensembles for

learning nonstationary data. Neurocomputing. 165: 14-22, 2015.

123

Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S-H.; Patton, R.M. Optimizing Deep

Learning Hyper-Parameters Through an Evolutionary Algorithm. MLHPC2015,

15-20, 2015.

Zhang, P.; Gao, B.J.; Liu, P.; Shi, Y.; Guo, Li. A framework for application-driven

classification of data streams. Neurocomputing. 92, 170-182, 2012.

Zhang, L.; Suganthan, P.N. A survey of randomized algorithms for training

neural networks. Information Sciences. 364-365, 146-155, 2016.

Zhu, X.; Zhang, P.; Lin, X.; Shi, Y. Active learning from stream data using optimal

weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics.

40 (6): 1607-1620, 2010.

Zliobaite, I.; Pechenizkiy, M.; Gama, J. An overview of concept drift applications,

in: Japkowicz, N; Stefanowski, J. Big Data Analysis: New Algorithms for a New

Society, Springer, 91-114, 2016.

