
Expert Systems With Applications 156 (2020) 113456 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Financial portfolio optimization with online deep reinforcement 

learning and restricted stacked autoencoder—DeepBreath 

Farzan Soleymani, Eric Paquet ∗

National Research Council, 1200 Montreal Road, Ottawa, ON K1K 2E1, Canada 

a r t i c l e i n f o 

Article history: 

Received 3 October 2019 

Revised 10 February 2020 

Accepted 13 April 2020 

Available online 18 April 2020 

Keywords: 

Portfolio management 

Deep reinforcement learning 

Restricted stacked autoencoder 

Online leaning 

Settlement risk 

Blockchain 

a b s t r a c t 

The process of continuously reallocating funds into financial assets, aiming to increase the expected re- 

turn of investment and minimizing the risk, is known as portfolio management. In this paper, a portfolio 

management framework is developed based on a deep reinforcement learning framework called Deep- 

Breath. The DeepBreath methodology combines a restricted stacked autoencoder and a convolutional neu- 

ral network (CNN) into an integrated framework. The restricted stacked autoencoder is employed in order 

to conduct dimensionality reduction and features selection, thus ensuring that only the most informative 

abstract features are retained. The CNN is used to learn and enforce the investment policy which consists 

of reallocating the various assets in order to increase the expected return on investment. The framework 

consists of both offline and online learning strategies: the former is required to train the CNN while 

the latter handles concept drifts i.e. a change in the data distribution resulting from unforeseen circum- 

stances. These are based on passive concept drift detection and online stochastic batching. Settlement 

risk may occur as a result of a delay in between the acquisition of an asset and its payment failing to 

deliver the terms of a contract. In order to tackle this challenging issue, a blockchain is employed. Finally, 

the performance of the DeepBreath framework is tested with four test sets over three distinct investment 

periods. The results show that the return of investment achieved by our approach outperforms current 

expert investment strategies while minimizing the market risk. 

Crown Copyright © 2020 Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

A collection of financial assets, known as a portfolio, may con-

ist of financial instruments such as stocks, bonds, currencies, and

ryptocurrencies. The process of reallocating the various assets

orming the portfolio, in order to increase the expected return on

nvestment, is called portfolio management. The financial instru-

ents managed in such a portfolio may be assimilated to time se-

ies, which often exhibit complex behaviors, due to external fac-

ors such as the global economy and the political climate. As a re-

ult, their behaviors are inherently nonlinear, uncertain and non-

tationary ( Malkiel, 2003; Tsai & Hsiao, 2010 ). 

Generally, the erratic and complex behavior of the finan-

ial market is determined by endogenous and exogenous factors

 Filimonov & Sornette, 2012 ). In recent years, due to the constant

ise of social media, such as Twitter TM and Facebook TM , it has been
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mplicitly assumed that market evolution essentially results from

hese exogenous factors. This assumption finds its origin in the ef-

cient market hypothesis ( Fama, 1991; Malkiel & Fama, 1970 ) in

hich the price of an asset fully reflects all available information.

evertheless, various studies have demonstrated the falsehood of

his hypothesis showing that these exogenous factors have a lim-

ted impact on markets where behavior is essentially driven by

ndogenous factors ( Bouchaud, 2011; Cutler, Poterba, & Summers,

988; Joulin, Lefevre, Grunberg, & Bouchaud, 2008 ). The extent to

hich the market is endogenous is determined by the spectral ra-

ius associated with the underlying state-dependent Hawkes pro-

ess ( Filimonov & Sornette, 2012 ). 

When managing a portfolio, one must take into account the

olatility and the correlation associated with the various financial

nstruments. Portfolio management is an investment strategy that

ims at maximizing the expected return on investment (ROI) while

inimizing the financial risk by continuously reallocating the port-

olio assets i.e. by attributing the proper weight to each financial

nstrument. With recent advances in machine learning and deep

earning, it has become possible to predict complex financial be-
le under the CC BY-NC-ND license. 
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Fig. 1. Weight reallocation process. The portfolio weight vector w 

′ 
t−1 and the port- 

folio value P ′ t−1 at the beginning of period t evolve to ( t ) and P ′ t respectively. At that 

moment, assets are sold and bought in order to increase the expected return on 

investment. These operations involve commission fees which shrink the portfolio 

value to P t which result in new weights w t . 
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haviors and to automatize the decision process; at least up to a

certain extent ( Jangmin, Lee, Lee, & Zhang, 2006 ). 

Stock market behavior prediction with an artificial neu-

ral network (ANN) was proposed for the first time by

Atsalakis and Valavanis (2009) . Artificial neural networks are

data-driven machine learning techniques which do not require a

complete prior model of the data generation mechanism. Nonethe-

less, traditional multilayer neural networks do not take advantage

of the time series structure associated with financial data ( Eakins

& Stansell, 2003; Hussain, Knowles, Lisboa, & El-Deredy, 2008;

Lam, 2004 ). 

Moreover, the performance of an ANN is strongly dependent on

the network architecture, the learning, and hyper-parameters, as

well as the training, set just to mention a few. Therefore, other

alternatives have been explored in order to improve the accu-

racy such as support vector machine (SVM), random forest (RF)

and naïve Bayes with seminal work by Patel, Shah, Thakkar, and

Kotecha (2015) with non-significant improvement. A major break-

through came with the introduction of deep reinforcement learn-

ing ( Jiang, Xu, & Liang, 2017 ) in which the policy, which deter-

mines the actions taken by the agent, is either learned with a con-

volutional neural network (CNN) or with some kind of recurrent

neural network (RNN) such as the long-short-term memory net-

work (LSTM). In the portfolio management context, the actions are

the weights attributed to the various assets forming the portfolio. 

Financial data are particularly suited for deep learning be-

cause of the very large amount of data available for training

( Goodfellow, Bengio, & Courville, 2016 ). Nevertheless, deep learn-

ing algorithms performances are affected by multiple factors such

as the activation and pooling functions, noise, network structure,

which may consist of multiple sub-networks as well as the fea-

tures selection mechanism. In the financial context, noise reduc-

tion has been achieved with wavelet transforms ( Bao, Yue, & Rao,

2017 ) while more informative representations and dimensionality

reduction were obtained with Boltzmann machines and autoen-

coders ( Hinton & Salakhutdinov, 2006 ) among other techniques.

For large portfolios, dimensionality reduction is desirable in order

to optimize the learning process while avoiding the curse of di-

mensionality ( Sorzano, Vargas, & Montano, 2014 ). Various types of

encoders have been employed such as convolutional autoencoders

( Cheng, Sun, Takeuchi, & Katto, 2018 ) and stacked Autoencoders

( Bao et al., 2017 ) just to mention a few. 

In this paper, we propose an online framework for portfolio

management based on deep reinforcement learning and restricted

stacked autoencoder for feature selection. High-level features are

extracted from the input data which contain eleven (11) corre-

lated features. The restricted stacked autoencoder extracts new in-

formative features while reducing the dimensions down to three

(3). Therefore, the training may be completed very rapidly mak-

ing this approach suitable for online learning and online portfo-

lio management. The investment policy is enforced using a CNN.

The algorithm is initially trained offline which results in a pre-

trained model from historical data. Then, the weights are updated

following an online learning scheme in order to follow the evolu-

tion of the market. Both offline and online strategies are employed

for learning: the former being based on passive concept drift de-

tection ( Gama, Indr ̇e, Bifet, Pechenizkiy, & Bouchachia, 2014 ) and

the latter being based on online stochastic batching. Using pas-

sive concept drift detection, which allows the system to learn new

emerging patterns in the market while preserving the knowledge

acquired during offline training with historical data. In order to fa-

cilitate the audit and to secure the settlement process, a blockchain

is employed. 

The paper is organized as follows. The underlying mathemati-

cal formalism associated with portfolio management is introduced

in Section 2 . Features normalization and selection are addressed
n Section 3 . Our deep reinforcement learning framework, named

eepBreath, is presented in Section 4 . This framework integrates

assive concept drift detection and online stochastic batching. This

s followed, in Section 5 , by a description of the blockchain em-

loyed for settlement. Our experimental results are presented in

ection 6 . A conclusion follows in Section 7 . 

. Mathematical model for portfolio management 

The trading period for financial instruments on the stock ex-

hange is one calendar day. During this period, the price fluctua-

ions associated with a financial instrument may be characterized

y four metrics namely the price at the opening of the market,

he lowest and the highest prices reached during the day and, the

rice at the closure of the market. Based on these characteristics,

his section provides a mathematical framework for portfolio man-

gement. An approach similar to ( Jiang et al., 2017 ), which was in-

roduced earlier by Ormos and Urbán (2013) , is followed. 

The price vector V t consists of the closing price of all assets

orming the portfolio at the time in addition to the amount of cash

vailable for trading (here in USD). The normalized price vector Y t 

s defined as the element-wide division in between the price vec-

or at the time t and t − 1 : 

 t := V t � V t−1 = 

[
1 , 

V 1 ,t 

V 1 ,t−1 

, 
V 2 ,t 

V 2 ,t−1 

, . . . , 
V m,t 

V m,t−1 

]T 

. (1)

nitially, the portfolio consists solely of cash which means that the

eight associated with the cash is one (1), while the weights as-

ociated with the other financial instruments are zero (0). This

eans that no prior assumption is made about the portfolio com-

osition: the weight allocation is entirely performed by our deep

einforcement learning algorithm. Therefore, no other prior as-

umption about the portfolio composition is made: 

 0 = [1 , 0 , . . . , 0] T . (2)

n order to buy or to sell an asset, one must pay a commission fee.

s illustrated in Fig. 1 , owing to prices fluctuations, at the end of

eriod t , the value of the portfolio vector is determined by 

 

′ 
t = 

Y t � w t−1 

Y t · w t−1 

, (3)

here w t−1 is the portfolio weight vector at the beginning of pe-

iod t . At that moment, the portfolio is reallocated by buying and

elling assets in order to increase the expected return on invest-

ent; therefore, the portfolio weight vector evolves from w 

′ 
t to w t .

he portfolio reallocation involves commission fees which shrink

he portfolio value by a factor of μ ∈ (0, 1], 

 t = μt P 
′ 
t . (4)

The portfolio value at the end of period t is given by 

 t = μt P t−1 · Y t · w t−1 . (5)

he return rate for period t and the logarithmic return rate are

efined as 

t := 

P t 

P t−1 

− 1 = 

μt · P ′ t 

P t−1 

− 1 = μt Y t · w t−1 − 1 , (6a)
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Table 1 

Financial indicators employed as features. 

Financial indicators Definition 

Average True Range The average true range is an indicator that measures market volatility by decomposing the entire range of an asset price 

for that period. 

Commodity Channel Index The commodity channel index is a momentum-based oscillator used to help determine when an investment vehicle is 

reaching a condition of being overbought or oversold 

Commodity Selection Index The commodity selection index is a momentum indicator that attempts to identify which commodities are the most 

suitable for short-term trading. 

Demand Index The demand index is an indicator that uses price and volume to assess buying and selling pressure affecting a security. 

Dynamic Momentum Index The dynamic momentum index is a technical indicator used to determine if an asset is overbought or oversold. 

Exponential Moving Average An exponential moving average is a type of moving average that places a greater weight and significance of the most 

recent data points. 

Hull Moving Average The hull moving average solves the age old dilemma of making a moving average more responsive to current price activity 

whilst maintaining curve smoothness. 

Momentum The momentum is the rate of acceleration of a security’s price or volume – that is, the speed at which the price is 

changing. 

R  

i

P  

C  

i

C

w  

a  

s  

s

C

w  

h

R

μ

T  

w

μ  

T  

a  

a  

t  

r

T  

fi{

a

 

a  

a  

f

μ  

T  

w  

w

 

 

 

a

3

 

b  

r  

i  

s  

t  

n  

i  

c  

a  

(

3

 

E  

f  

l  

e  
 t := ln 

P t 

P t−1 

= ln (μt Y t w t−1 ) − 1 . (6b)

Therefore, the final value of the portfolio for a time horizon t f 
s given by 

 f = P 0 · exp 

( 

t f +1 ∑ 

t=1 

R t 

) 

= P 0 

t f +1 ∏ 

t=1 

μt Y t w t−1 . (7)

onsequently, the total amount of cash gained C g by selling assets

s 

 g = ( 1 − c s ) P 
′ 
t 

m ∑ 

i =1 

·ReLU 

(
w 

′ 
t,i − μt w t,i 

)
, (8) 

here the selling commission rate is denoted by 0 < C s < 1. As

 result, the cash reserve P ′ t w 

′ 
t, 0 becomes μt P 

′ 
t w t, 0 which corre-

ponds to the new amount of cash available for acquiring new as-

ets. On the other hand, the amount of cash spent C s is 

 s = (1 − c b ) 

[ 

w 

′ 
t, 0 + (1 − c s ) 

m ∑ 

i =1 

ReLU( w 

′ 
t,i − μt w t,i ) − μt w t, 0 

] 

= 

m ∑ 

i =1 

ReLU(μt w t,i − w 

′ 
t,i ) . (9) 

hile the buying commission rate is given by 0 < C b < 1. With the

elp of w 

′ 
t, 0 

+ 

∑ m 

i =1 w 

′ 
t, 1 = 1 = w t, 0 + 

∑ m 

i =1 w t,i and ReLU(x − y ) −
eLU(y − x ) = x − y the Eq. (9) yields: 

t = 

1 

1 − c b w t, 0 

×
[ 

1 − c b w 

′ 
t, 0 − (c s + c b − c s c b ) 

m ∑ 

i =1 

ReLU( w 

′ 
t,i − μt w t,i ) 

] 

. (10) 

he transaction factor μt is a function of the relative price Y as

ell as of the current and previous weight vectors: 

t = μt (w t−1 , w t , Y t ) . (11)

his implicit equation cannot be solved analytically. However, an

pproximation for the shrinking factor may be obtained through

n iterative process. It has been demonstrated ( Jiang et al., 2017 )

hat the sequence generated by Eq. (10) always converge to the

ight solution. 

heorem 1. Given an initial estimate μ0 , the sequence 

{ 

˜ μ(k ) 
t 

} 

de-

ned by 

˜ μ(k ) 
t | ̃  μ(0) 

t = μ0 and ˜ μ(k ) 
t = f 

(
˜ μ(k −1) 

t 

)
, k ∈ N 

}
, (12) 
f (μ) := 

1 

1 − c b w t, 0 

×
[ 

1 − c b w 

′ 
t, 0 − (c s + c b − c s c b ) 

m ∑ 

i =1 

ReLU( w 

′ 
t,i − μt w t,i ) 

] 

, (13) 

lways converge to the solution of Eq. (10) for any μ0 ∈ [0, 1] . 

The convergence rate depends on the initial value of the trans-

ction factor μt . According to ( Moody, Wu, Liao, & Saffell, 1998 ),

 fast convergence rate may be obtained if the initial transaction

actor μ0 is chosen as 

0 = c 

m ∑ 

i =1 

| w 

′ 
t,i − w t,i | . (14)

he transaction factor μt is a function of the relative price Y t as

ell as the current and previous weight vectors: In the present

ork, the following assumptions are made: 

• it is always possible to buy or to sell an asset at any time. 
• the transactions do not affect the values of the financial instru-

ments involved. In other words, the number of assets traded by

the agent is small compared to the overall market liquidity. 

In order to optimize the learning process, data normalization

nd feature selection are addressed in the next section. 

. Features normalization and selection 

As mentioned earlier, each financial instrument is characterized

y four prices: the opening price, the lowest and the highest prices

eached during the trading period as well as the price at the clos-

ng of the markets. In addition, financial instruments may be de-

cribed by a plethora of financial indicators such as the average

rue range, the exponential moving average, the commodity chan-

el index among others ( Murphy, 1999 ): each index characteriz-

ng a specific behavior of the underlying asset. The financial indi-

ators employed in our framework are described in Table 1 ; they

re among the most commonly employed in the financial industry

 Achelis, 2001 ). 

Features normalization is addressed in the next subsection. 

.1. Features normalization 

The portfolio is characterized by twelve (12) feature vectors.

ach feature vector refers to a particular feature for all the assets

orming the portfolio. The first four vectors contain the opening,

ow, high and closing price of all the assets respectively. The last

ight vectors contain the financial indicators for all the assets as
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described in Table 1 . In order for the agent to efficiently learn the

policy, these features must be normalized ( Ross, Mineiro, & Lang-

ford, 2013 ). Because both the extrema and the effective range are

unknown a priori, it is not possible to normalize them with the

min-max approach. Therefore, the low, high and closing prices are

normalized with respect to the opening price: 

V 

(Lo) 
t = 

[
Lo(t − n − 1) 

Op(t − n − 1) 
, . . . , 

Lo(t − 1) 

Op(t − 1) 

]T 

, 

V 

(Cl) 
t = 

[
Cl(t − n − 1) 

Op(t − n − 1) 
, . . . , 

Cl(t − 1) 

Op(t − 1) 

]T 

, 

V 

(Hi ) 
t = 

[
Hi (t − n − 1) 

Op(t − n − 1) 
, . . . , 

Hi (t − 1) 

Op(t − 1) 

]T 

. (15)

Such normalization is more informative than the min-max normal-

ization scheme ( Hussain et al., 2008 ) or the Z-score as it clearly

identifies the market trend (up and down). A similar approach is

followed for the financial indicators which are normalized with re-

spect to their previous trading period: 

V 

(F I) 
t = 

[
F I(t − n ) 

F I(t − n − 1) 
, . . . , 

F I(t) 

F I(t − 1) 

]T 

. (16)

As a result, the feature tensor consists of three (3) price vectors as

defined in Eq. (15) as well as of eight(8) financial indicator vectors

as described by Eq. (16) . 

Policies are more difficult to learn when the feature tensors

have a large number of dimensions which in turn has a detrimen-

tal effect on the system performance ( Choung, Lee, & Jeong, 2017 ).

Such a situation may occur when the portfolio consists of a large

number of assets; a commonplace situation in real life. In addition,

some of these features may be highly correlated which may re-

sult in sub-optimal learning; not to mention that the training pro-

cess may become computationally prohibitive. In order to alleviate

these problems, a smaller number of non-correlated and more in-

formative features must be extracted from the original ones. The
Fig. 2. Structure of the restrict
ext section describes our features selection approach which is

ased on an unsupervised stacked restricted autoencoder. 

.2. Features selection 

Features selection is performed with an unsupervised stacked

estricted autoencoder inspired by Wong and Luo (2018) . The in-

ut feature vector consists of eleven (11) features namely the nor-

alized low, high and closing prices as well as the eight normal-

zed financial indicators; all taken at the same time t . The network

s designed in order to extract low-dimensional uncorrelated fea-

ures while optimizing the training process. Autoencoders are a

ype of unsupervised feedforward neural network that reconstructs

he output from the input. It is formed of two parts namely the

ncoder and the decoder. The encoder reduces the dimensionality

f the input data in the so-called latent of hidden-layer while the

ecoder reconstructs the input data from the hidden layer; such

 network is said to be under-complete because of the restriction

mposed by the latent layer ( Bengio, Goodfellow, & Courville, 2015 ).

utoencoders are capable of learning nonlinear dimension reduc-

ion functions, removing redundancies and correlations while ex-

racting highly informative features ( Bengio et al., 2015 ). 

As mentioned earlier, we employed a stacked restricted autoen-

oder. This network consists of seven (7) layers: one input layer,

ve (5) hidden layers and one output layer. The network structure

s illustrated in Fig. 2 . The network is asymmetrical: the first hid-

en layer has (10) neurons, the second (9) neurons while the next

hree consist of (3) neurons each. The feature extraction is per-

ormed at the level of the third hidden layer. The output layer also

as only (3) neurons. The network is said to be restricted because

he decoder performs a partial reconstruction of the input vector.

ndeed, the three neurons of the output vector refer to the normal-

zed low, high and closing prices. Therefore, the financial indicators

re not reconstructed by the decoder. Consequently, our encoder is

ot only under-complete but also constrained: the constraint be-

ng the partial reconstruction at the level of the decoder. As later
ed stacked autoencoder. 
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Algorithm 1 SARSA ( ε-greedy). 

Data : α ∈ [0 , 1] Learning rate 

Data : ε ∈ [0 , 1] epsilon value 

Data : βd = 1 × 10 −2 epsilon decay rate 

Data : N t , B n , r : Number of iterations, Batch Number, Immediate 

Reward 

Data : πθ , Q : Policy, state-action value 

Data : ˜ w t : Selected action at (t+1) 

Data : A , S : Action space, State Space 

1 Initialization: 

iteration = 0 

initial ε ← 0 . 6 ≤ ε ≤ 0 . 85 

while iteration ≤ N t do 

2 if random _ number < ε then 

3 ˜ w t ← random _ action ∈ A 

4 else 

5 ˜ w t ← πθ (X t+1 , w t ) 

6 end 

7 δ ← r t+1 + γ · Q(X t+1 , w t , ˜ w t ) 

for (X t+1 , w t , ˜ w t ) ∈ S × A do 

8 Q(X t , w t−1 , w t ) ← Q(X t , w t−1 , w t ) + α · (δ −
Q(X t , w t−1 , w t ) ) . 

9 end 

10 Update: 

[ X t+1 , w t ] 
T ← [ X t , w t−1 ] 

T 

w t+1 ← ˜ w t 

Update: 

ε ← ε min + (ε max − ε min ) · exp (−βd · B n ) 

11 end 

12 Return: Q 
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c
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emonstrated by the experimental results, the partial reconstruc-

ion constraint generates more informative feature vectors while

utting the emphasis on what was foreseen as the most important

eatures. 

Our deep reinforcement learning algorithm is described in the

ext section. 

. Deep reinforcement learning 

A deep reinforcement learning algorithm ( Ivanov &

’yakonov, 2019 ) consists of an agent that takes the best ac-

ions in the environment given the state of the latter in order to

aximize a reward r . Each action taken by the agent is associated

ith a reward. The best action is determined by a policy which is

earned with deep learning techniques. The agent seeks to maxi-

ize the reward by taking proper actions. In our framework the

ction consists in determining the optimal weight vector for the

ortfolio in order to increase the expected return on investment:

 t = w t . (17) 

ue to the relation in between the return rate, Eq. (6a) , and the

ransaction factor, Eq. (11) , the current action is partially deter-

ined by the previous one. Therefore, the state vector consists of

he feature tensor at time t as well as the weight vector at time

 − 1 (the state of the portfolio at this time): 

 t = [ X t , w t−1 ] 
T . (18)

he portfolio weight vector w t−1 and the features tensor X t cor-

espond to the internal (or latent) and external states respectively.

s previously mentioned, the primary objective is to increase the

ortfolio return on investment which is determined by Eq. (7) over

n investment horizon t f + 1 . It follows that the reward is associ-

ted with the logarithmic accumulated return R , which may be

nferred from Eqs. (6b) , (7) and (11) ): 

R (s 1 , a 1 , . . . , s t , a t , s t+1 ) = 

1 

t f 
· ln 

(
P f 

P 0 

)
, 

= 

1 

t f 
·

t f +1 ∑ 

t=1 

ln ( μt · Y t · w t−1 ) = 

1 

t f 
·

t f +1 ∑ 

t=1 

R t . (19) 

he algorithm employed to learn the policy is described in the next

ubsection. 

.1. SARSA 

Portfolio management is considered a decision making process

n which the agent constantly takes actions in order to increase

he portfolio value. The SARSA algorithm ( Sutton & Barto, 2018 )

s employed to train a CNN in order to learn the investment pol-

cy. This network is described in the next subsection. SARSA is

n on-policy which means that the previous actions taken by the

gent are taken into account in the learning process. This is in con-

rast with the Q-learning algorithm in which the optimal policy

s learned irrespectively of the actions taken by the agent. Since

n-policy methods are simpler and converge faster than their off-

olicy counterpart, they are more adapted to portfolio manage-

ent ( Sutton & Barto, 2018 ). 

Our implementation of SARSA is described in Algorithm 1 . The

ormalized features tensor is fed to the staked restricted autoen-

oder for features selection and dimensionality reduction. These

ew features are employed to train the convolutional neural net-

ork i.e. to determine the weights associated with the kernel. The

tate tensor and the action vector are initialized based on the input

ensor as well as on the previous and current weight vectors. The

nitial weight vector is given by Eq. (2) and consists only of cash
hich means that the CNN is entirely responsible for the reallo-

ation of the assets. The discount rate γ determines the trade-off

n between immediate (or myopic reward) and long term strategy.

he Q value corresponds to the average logarithmic accumulated

eturn. The Q value is defined as 

(s t , a t ) ← Q(s t , a t ) + α · (r t+1 + γ · Q(s t+1 , a t+1 ) − Q(s t , a t ) ) , 

(20) 

here r t+1 is the immediate reward. Therefore, following a tran-

ition from state s t to s t+1 , the Q value must be updated accord-

ng to Eq. (20) . In other words, the Q value is continuously esti-

ated based on the current policy πθ while the latter is repeat-

dly optimized in order to increase the Q value. The action and

he state are given by Eqs. (17) and (18) respectively. Each action

s taken according to an ε-greedy strategy: a random number is

enerated from a uniform distribution: if this number is smaller

han a given threshold, a random action is taken; if not, the ac-

ion is determined by the current policy. This strategy improves

he exploration of the action space which results in turn in an op-

imal solution while avoiding over-fitting and addiction ( Garcia &

ernández, 2012 ). As such, this approach is reminiscent of simu-

ated annealing ( Van Laarhoven & Aarts, 1987 ). The ε value is ini-

ially chosen close to one and is progressively reduced toward zero

s the policy is learned. Thereafter, the policy is updated accord-

ng to Eq. (20) which is essentially a gradient descent algorithm

 Sutton, Barto et al., 1998 ). 

The implementation of the gradient descent algorithm is de-

cribed in the next section. 

.2. Online stochastic batching 

The gradient descent algorithm is implemented with an online

tochastic batching approach in order to obtain an unbiased and
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Fig. 3. Online learning batches generation. 
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optimal estimate of the gradient ( Jiang et al., 2017 ). Financial data

are sequential time series. Therefore, training batches must follow

the same time ordering as the original data. In addition, different

starting points generate completely distinctive batches. As a result,

distinct mini-batches may be obtained by simply changing their

starting point. For instance, [ t B , t B + B s ) and [ t B + 1 , t B + B s + 1) cor-

respond to two distinct batches. In this paper, the online stochastic

method, as proposed by Jiang et al. (2017) , is employed in order

to generate mini-batches. In this approach, it is assumed that the

starting points are distributed according to a geometrical distribu-

tion: 

P β (t B ) = β(1 − β) t−T B −B s , (21)

where the decaying rate is given by β ∈ (0, 1) and where the rela-

tion in between the starting point and the mini-batch size is given

by B s . This distribution tends to favor more recent events; the ex-

tent of which is controlled by the decaying rate. In order to train

the CNN, both offline learning and online learning are utilized. 

Our learning strategy is described in the next subsection. 

4.3. Offline and online learning 

The CNN learns the policy offline which means that the pol-

icy is learned from historical data. Historical data is any data an-

terior to the current calendar time. The offline learning technique

is based on online stochastic batching which has been described

in the previous subsection. Nevertheless, the underlying distribu-

tion associated with a financial time series may vary over time.

This phenomenon is called concept drift ( Gama et al., 2014 ). In the

case of financial instruments, concept drift is usually triggered by

unforeseen exogenous factors such as political turmoil, unexpected

loss or panic reaction ( Cavalcante & Oliveira, 2015 ). These factors

may affect the efficacy of the actions taken by the agent. Essen-

tially, concept drift may be handled in two different ways which

are known as the active and the passive approach ( Rodríguez &

Kuncheva, 2008 ). In the first case, a concept drift detector at-

tempts to detect the occurrence of a concept drift. This is usu-

ally achieved by determining if there is a noteworthy change in
Fig. 4. Structure of the CNN em
he underlying data distribution ( Elwell & Polikar, 2009 ). Once a

oncept drift is detected, the agent is trained afresh from the sub-

equent events ( Gama, Medas, Castillo, & Rodrigues, 2004 ). In the

econd approach, the agent is initially trained from historical data

nd then, continuously updated as new data become available. 

In our framework, we employ the passive approach which be-

tows us with feature drift adaptation ( Gama et al., 2014 ). This is

ainly motivated by two reasons: firstly, in trading, behaviors or

vents that occurred in the past are likely to repeat themselves in

he future ( Hu et al., 2015 ). By contrast, the active approach does

ot take advantage of this prior knowledge that exists in a latent

n the historical data. Secondly, if the market is unstable, concept

rift may occur repeatedly, and the agent might tend to employ

hort-term investment strategies which may have a detrimental ef-

ect on long-term investments ( Hu et al., 2015 ). Nonetheless, pas-

ive concept drift detection tends to forget patterns that do not re-

eat themselves after a certain amount of time ( Gama et al., 2004 ).

hese so-called anomalies have a relatively small impact on long-

erm investment strategies. 

The online learning is performed for both the restricted stacked

utoencoder and the CNN. The batches for online learning are gen-

rated as outlined in Fig. 3 . A buffer is designed to store the last

en (10) days of offline data along with one time-step (one busi-

ess day) of streaming data. At the end of each day, the offline

ataset is expended by adding the current data point to the offline

ataset. 

In the next subsection, the convolutional neural network re-

ponsible for learning the policy is described 

.4. Convolutional neural network 

In our framework, the policy is enforced with a convolutional

eural network which is illustrated in Fig. 4 . Indeed, convolutional

eural networks have demonstrated their ability to learn and im-

lement efficiently complex policies in a deep reinforcement learn-

ng framework ( Jiang et al., 2017 ). The policy is initially learned

ffline from historical data with SARSA in conjunction with on-
ployed to learn the policy. 
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Fig. 5. Distributed network associated with the settlement blockchain. 
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ine stochastic batching. Once the offline training is completed, the

olicy is continuously updated online as new information becomes

vailable. 

The architecture of our CNN is described in Algorithm 2 . The

lgorithm 2 Implementation of convolutional neural network. 

ata : f, m, n : Number of Features, Number of Assets, Trading Win-

dow Length 

ata : V 1 , V 2 , V 3 : Extracted Features 

nitialization: 

nput: X t = [ V 1 , V 2 , V 3 ] 
T 

hile i ≤ n do 

1. First Convolution: 

Activation Function: Tanh 

Kernel size → (1,3) 

Kernel depth → f 

2. Second Convolution: 

Activation Function: Tanh 

Kernel size → (1,n) 

Kernel depth → f 

3. Third Convolution: 

Concatenate weights for previous and current time steps 

(Weight Matrix). 

W = [ W 1 , W 2 , . . . , W i ] 
T 

Activation Function: Tanh 

Kernel size → (1,1) 

Kernel depth → f + 1 

4. Adding Cash: 

Concatenate Cash Bias and computed Weight Matrix 

5. Softmax Layer: 

Return: Distributed Portfolio Weights ← W pt f = 

[ w C , w 1 , w 2 , . . . , w m 

] T 

nd 

NN is fed with the features learned by the restricted stacked au-

oencoder. These features form a tensor which consists of the three

3) channels. Each channel forms a matrix which is associated with

 particular abstract feature. Each matrix contains the values of the

bstract feature for the assets (rows) forming the portfolio taken

or the last n days (columns). Then, convolution is performed on

ach channel with a single kernel of size 1 × 3 followed by a

anh activation function. Once more, a convolution with Tanh ac-

ivation is performed on each of the three channels obtained from

he previous convolution with a single kernel of size 1 × n in or-

er to obtain three vectors of size m . Thereafter, a fourth layer

hannel is added which consists of the weights (action) obtained

rom the previous iteration. A third and last convolution with acti-

ation is performed with a 1 × 1 kernel (the depth is equal to the

umber of channels) in order to obtain a single vector of size m .

he last two steps constitute an implementation of Eq. (18) which

tates that the current action is determined by the current state as

ell as the previous action (weights). Finally, the previous vector

s normalized with a function in order to obtain the portfolio new

eights i.e. the current action. 

The settlement process is addressed in the next section. 

. Settlement with blockchain 

So far, we have implicitly assumed that stock exchange transac-

ions may be finalized in real-time. Unfortunately, this is not the

ase. Indeed, although a sale or a purchase may be performed in a

raction of a second, a transaction settlement may take days, even

eeks ( Iansiti & Lakhani, 2017 ). This is at the origin of a major

roblem called settlement risk which results from a failure, either
n the part of the seller or on the part of the buyer, to deliver a

old asset to or to pay for the latter. 

Generally speaking, a specialized third-party coordinates legal

wnership of securities versus payment: the so-called Central Se-

urities Depository ( Schmiedel, Malkamäki, & Tarkka, 2006 ). In ad-

ition, intermediaries such as brokers, custodians and payment

gents are involved in the process ( Pacces, 20 0 0 ). Consequently,

 typical settlement process is both time, and cost consuming

 Benos, Garratt, & Gurrola-Perez, 2017 ). In order to address this

roblem, we have implemented a settlement system on a Bitcoin

lockchain ( Nakamoto et al., 2008 ). It is assumed that the assets

ay be exchanged on a digital market: the extent of which is de-

ermined by legal considerations rather than by technical ones. The

ash and assets associated with the portfolio are stored in a digital

allet ( Dwyer, 2015 ). 

Each time the reinforcement learning algorithm sells or buys

n asset, a transaction is initiated. Each transaction corresponds

o a block in the blockchain. A transaction consists of two pri-

ary components; the input object, which contains the infor-

ation about the original sender (timestamp, balance, signature,

ender’s public key) and the output object, which contains the na-

ure and the amount of the transactions as well as the address of

he receiver. The transaction is not validated by a third party but

y a distributed consensus mechanism known as proof-of-work

 Nakamoto et al., 2008 ). 

In a consensus mechanism, all the nodes forming the network,

uch as the one illustrated in Fig. 5 , compete to solve a crypto-

raphic problem which is computationally prohibitive to solve but

hose solution is easily validated. The nodes or miners may only

olve this problem on a trial and error basis which means that it

s almost impossible to obtain rapidly the solution. Consequently,

t is virtually impossible to predict which miner shall validate the

ransaction. 

The cryptographic problem consists of finding a number which

s lower than the hash ( Sobti & Geetha, 2012 ) associated with the

ew block (target hash) associated with the transaction. Not only

his number must be lower than the target hash, but it must be de-

ermined within a certain tolerance given by the nonce. The lower

he tolerance, the more difficult the problem becomes. The miner

hat first solves the problem adds the new validated block to the

lockchain and receives a reward in terms of either digital or cryp-

ocurrencies as an incentive. The validation consists of determining



8 F. Soleymani and E. Paquet / Expert Systems With Applications 156 (2020) 113456 

Table 2 

Composition of our Portfolio for the period in between January 2, 2002 and July 31, 

2018. 

Sector Name 

Technology Apple Inc. (AAPL) 

Adobe Inc. (ADBE) 

Cisco Systems, Inc. (CSCO) 

Intel Corporation (INTC) 

International Business Machines Corporation (IBM) 

Microsoft Corporation (MSFT) 

NVIDIA Corporation (NVDA) 

Oracle Corporation (ORCL) 

Financial 

Services 

Bank of America Corporation (BAC) 

HSBC Holdings plc (HSBC) 

Royal Bank of Canada (RY) 

The Toronto-Dominion Bank (TD) 

Consumer 

Cyclical 

Amazon.com, Inc. (AMZN) 

The Walt Disney Company (DIS) 

The Home Depot, Inc. (HD) 

Consumer 

Defensive 

Walmart Inc. (WMT) 

The Coca-Cola Company (KO) 

Industrials Boeing Co (BA) 

Healthcare Johnson & Johnson (JNJ) 

Merck & Co., Inc. (MRK) 

Novo Nordisk A/S (NVO) 

Novartis AG (NVS) 

Communication Services Verizon Communications Inc. (VZ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Training and test sets. 

ID Training set Test set 

Test 1 2002-01-02 to 2008-08-15 2009-06-15 to 2009-10-21 

Test 2 2002-01-02 to 2011-12-06 2012-10-03 to 2013-02-14 

Test 3 2002-01-02 to 2015-04-06 2016-02-01 to 2016-06-09 

Test 4 2002-01-02 to 2017-05-19 2018-03-19 to 2018-07-27 

Table 5 

Maximum drawdown (MDD) and Sharpe ratio ( S r ) as obtained with our system 

for the four test sets. 

ID Investment duration MDD (%) algorithm S r Algorithm 

Test Set 1 30 Days 1.71 −1.82 

60 Days 4.87 1.57 

90 Days 7.49 2.44 

Test Set 2 30 Days 2.43 −1.014 

60 Days 6.91 2.22 

90 Days 8.23 2.20 

Test Set 3 30 Days 4.62 2.9 

60 Days 9.44 2.34 

90 Days 17.46 3.47 

Test Set 4 30 Days 3.13 3.13 

60 Days 12.52 3.09 

90 Days 12.52 2.26 

Table 6 

Return on investment for our approach and for the Dow Jones Industrial 

( Bloomberg, 2019 ). 

ID Investment duration RoI (%) algorithm RoI(%) DJI 

Test Set 1 30 Days 0.24 5.62 

60 Days 3.67 10.85 

90 Days 5.74 15.52 

Test Set 2 30 Days 0.5 −6.85 

60 Days 4.83 −4.12 

90 Days 6.91 3.88 

Test Set 3 30 Days 2.43 4.88 

60 Days 7.4 9.68 

90 Days 18.09 9.33 

Test Set 4 30 Days 2.83 −2.07 

60 Days 11.14 2.4 

90 Days 11.93 3.72 

e

S  

w  

a  

e  

t  

o  

r  

t  

i  
if both the money and the asset are available and then, to final-

ize the transaction. As a result, the settlement problem is solved

without any recourse to an intermediary ( Wall & Malm, 2016 ). In

addition, such a distributed system may overcome a cyber-attack

in which 50% or less of its nodes are overtaken ( Sayeed & Marco-

Gisbert, 2019 ). 

It is important to point out that the blockchain is not an es-

sential part of our framework in the sense that it does not affect

the deep reinforcement learning investment strategy. The role of

the blockchain is to mitigate the settlement risk; a risk that is

also present in traditional trading. Furthermore, our approach is

not limited to digital assets as it may be applied to any financial

instrument traded on a stock exchange. 

Our experimental results are presented in the next section. 

6. Experiment and results 

The composition of our portfolio, in terms of stocks, appears in

Table 3 . The times series starts on January 2, 2002, and ends on

July 31, 2018. 

In order to evaluate the performance of our system in terms

of return on investment, two metrics were employed: namely the

Sharpe ratio and the maximum drawdown (MDD). These metrics

are among the most commonly employed in portfolio performance

evaluation ( Bessler, Opfer, & Wolff, 2017 ). The Sharpe ratio was in-

troduced by Sharpe (1994) and is essentially a ratio in between the
Table 3 

Hyper-parameters. 

Hyper-parameters Size Description 

Portfolio Size 23 Number of assets considered to create a portfoli

Trading Window 30 Number of trading days in which agents trained 

Trading Period 1 Day Length of time in which price movements occur

Time Interval 4172 Number of Days from 02/01/2002 to 27/07/2018

Offline Learning Rate 10 −4 Parameter α of the Adam optimization ( Kingma 

Online Learning Rate 10 −1 Learning rate for online training session. 

Sample Bias 10 −5 Parameter of geometric distribution when select

Commission Rate 1.5% Rate of commission fee applied to each transacti

Risk Free Rate 1% The theoretical investment return rate with zero

Regularization Coefficient 10 −8 The L2 regularization coefficient. 
xpected return on investment and the risk: 

 r = 

E 
[
R f − R b 

]
σd 

. (22)

here the numerator is the expectation on the differential return

nd where σ d is the standard deviation associated with the asset

xcess return (or volatility); the higher the Shape ratio the bet-

er. It is generally accepted that a Sharpe ratio below one is sub-

ptimal; a ratio in between one and two is acceptable while a

atio in between two and three is considered very good. Any ra-

io over three is regarded as excellent ( Maverick, 2019 ). The max-

mum draw down metric was introduced by Magdon-Ismail and
o 

to increase the portfolio value (investment return) 

 

 

& Ba, 2015 ) for offline training. 

ing online training sample batches. (The parameter β in Eq. (21) of Section 4.2 ) 

on 

 risk 
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Fig. 6. Evolution of the portfolio weights during the first 11 days of training for the online learning process. 

Fig. 7. Final portfolio weights distributions for the first training set. 
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tiya (2004) . This ratio is a function of the maximum P and mini-

um value L reached by the portfolio throughout a certain period

f time; performant portfolios are characterized by a high MDD. 

DD = 

P − L 

P 
. (23) 

n order to validate our approach, four training sets were gener-

ted. As mentioned earlier, the assets forming the portfolio are de-

cribed in Table 2 . Each training set covers a different period or

indow: all periods are initiated on January 2, 2002, while ending

n August 15, 2008; December 6, 2011; April 6, 2015, and May 19,

017 respectively. To these four training sets correspond four test

ets of 90 days each starting the day following the end of their
espective training sets. The training sets and their corresponding

est sets are described in Table 4 . Initially, the portfolio consists

olely of cash. For each training set, the agent learns the weights

ssociated with the assets in order to increase the expected return

n investment. The hyper-parameters associated with the agent

ppear in Table 3 . 

The final weights distributions, for the first training set, during

raining episodes, are shown in Fig. 7 . The final weights distribu-

ions of the second training set, for the four training episodes, are

hown in Fig. 10 . As it may be noticed from the figures, the final

istribution is affected by the duration of the training period. In-

eed, longer periods encompass states or events that do not occur
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Fig. 8. Final portfolio weights distributions for the first test set over a period of 30, 60 and 90 days. 

Fig. 9. Relative return on investment for the first testing set over a period of 30, 60 and 90 days. 
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in shorter periods which in turn affect the decisions taken by the

agent. As illustrated by Fig. 6 , weights fluctuate during the online

learning process. Nevertheless, some weights are subjected to im-

portant variations, such as Apple and Amazon, while others, such

as HSBC and IBM, are not. This behavior may be explained by the

fact that the assets associated with the most stable weights are

utilized in order to mitigate the risk (portfolio hedging) while the

most volatile are employed for their leverage effect which explains

the high variability of their weights. 

Fig. 8 shows the final weights distributions, for the first test set,

after thirty, sixty and ninety days respectively. Although sometimes

subtle, the corrections have nevertheless a large impact on the ex-

pected return on investment. Indeed, as illustrated by Fig. 9 , the

relative return on investment, with respect to the initial amount of
ash, steadily increases over this ninety days period with a relative

gain of almost 7%. Despite some fluctuations, there is a continued

pward trend. 

Likewise, Figs. 10–18 show the final training weights distribu-

ions for the last three training sets, the final weights distributions

or the last three testing sets as well as their respective relative

eturn on investments. In each set, a clear upward trend for the

xpected return on investment may be observed. The longer the

raining period, the more discontinuous is the evolution of the ex-

ected return on investment. The origin of the behavior is to be

ound in the fact that a longer training period allows the agent to

earn more complex actions which in turn result in more drastic

ecisions. Nonetheless, the process remains very efficient as the fi-
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Fig. 10. Final portfolio weights distributions for the second training set. 

Fig. 11. Final portfolio weights distributions for the second test set. 
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al relative returns on investment are approximately 7%, 18% and

1% for the last three test sets respectively. 

Our results are summarized in Table 5 . From the table, it should

e noticed that the Sharpe ratios associated with our approach are

ither very good or excellent for nine out of the twelve test sets;

he latter being described in Table 4 . The test set 1 has the shortest

raining window while Test set 4 as the longest. Therefore, Table 5 .

learly demonstrates that the performances of our system are im-

roved if the CNN is trained over a large historical dataset such as

est set 4. In other words, a large amount of historical data is re-

uired in order to learn efficiently the policy. Indeed, for Test set

, the Sharpe ratio is excellent for a time horizon of thirty and

ixty days while it is very good for a long-term investment made
ver ninety days. These results are corroborated by the maximum

rawdown metric. 

In order to further ascertain the performances of our system,

e compare the expected return on investment of our approach

ith the expected return on investment associated with the Dow

ones Industrial (DJI); the latter being considered a benchmark in

he finance industry ( Zhang, Wang, Li, & Shen, 2018 ). We restrict

ur discussion to Test set 4 as we have established that the agent

ust be trained over a large historical dataset in order to prop-

rly learn the policy. Our results are reported in Table 6 . With our

pproach, the returns on investment (RoI) are 2.83%, 11.14% and

1.93% over periods of 30, 60 and 90 days respectively while the

oI, for the DJI, is 2.07% (a loss!), 2.4% and 3.72% over the same
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Fig. 12. Relative return on investment for the second testing set over a period of 30, 60 and 90 days. 

Fig. 13. Final portfolio weights distributions for the third training set. 
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Fig. 14. Final portfolio weights distributions for the third test set. 

Fig. 15. Relative return on investment for the third testing set over a period of 30, 60 and 90 days. 
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Fig. 16. Final portfolio weights distributions for the fourth training set. 

Fig. 17. Final portfolio weights distributions for the fourth test set. 
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Fig. 18. Relative return on investment for the fourth testing set over a period of 30, 60 and 90 days. 
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ime horizons. These results clearly demonstrate the effectiveness

f our system. 

. Conclusion 

This paper proposed a framework for portfolio management

nd optimization based on deep reinforcement learning called

eepBreath. A portfolio contains multiple assets that are traded si-

ultaneously to automatically increase the expected return on in-

estment while minimizing the risk. The investment policy is im-

lemented using CNN; as a result, financial instruments are re-

llocated by buying and selling shares on the stock market. The

eural network, as well as its hyper-parameters, is common to all

he assets which means that the computational complexity only

ncreases linearly with the number of financial instruments. In or-

er to reduce the computational complexity associated with the

ize of the training dataset, a restricted stacked autoencoder was

mployed in order to obtain non-correlated and highly informative

eatures. The investment policy was learned with the SARSA algo-

ithm, both offline and online, using online stochastic batching and

assive online learning respectively. The passive online learning

pproach handled concept drift resulting from exogenous factors.

he settlement risk problem was mitigated with a blockchain. Our

xperimental results demonstrated the efficiency of our system. In

uture work, exogenous factors, such as social media, will be inte-

rated into the framework in order to take into account their ef-

ect on price fluctuations. In addition, the theoretical model will

e improved in order to take into account transactions in which a

arge volume of assets are traded i.e. when the actions (buying or

elling) of the agent may have a large impact on the environment

large variation in prices and market liquidity). Finally, we plan to

xplore deep reinforcement learning architectures which are more

uitable for long-term investment strategies. 
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