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Abstract

In recent years, the problem of concept drift has gained importance in the finan-
cial domain. The succession of manias, panics and crashes have stressed the non-
stationary nature and the likelihood of drastic structural changes in financial markets.
The most recent literature suggests the use of conventional machine learning and sta-
tistical approaches for this. However, these techniques are unable or slow to adapt
to non-stationarities and may require re-training over time, which is computationally
expensive and brings financial risks.

This thesis proposes a set of adaptive algorithms to deal with high-frequency data
streams and applies these to the financial domain. We present approaches to han-
dle different types of concept drifts and perform predictions using up-to-date models.
These mechanisms are designed to provide fast reaction times and are thus applicable
to high-frequency data. The core experiments of this thesis are based on the prediction
of the price movement direction at different intraday resolutions in the SPDR S&P 500
exchange-traded fund. The proposed algorithms are benchmarked against other pop-
ular methods from the data stream mining literature and achieve competitive results.

We believe that this thesis opens good research prospects for financial forecasting
during market instability and structural breaks. Results have shown that our proposed
methods can improve prediction accuracy in many of these scenarios. Indeed, the
results obtained are compatible with ideas against the efficient market hypothesis.
However, we cannot claim that we can beat consistently buy and hold; therefore, we
cannot reject it.

Keywords: Meta Learning, Adaptive Learning, Data Streams, Prototype Gener-
ation, Recurring Concepts, Concept Drift, Stock Price Direction Prediction, Structural
Breaks, Regime Changes, Computational Finance
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Chapter 1

Introduction

In this chapter, we introduce the work performed in this Ph.D. thesis. In Section 1.1,
we start describing its research context, located in the intersection between the domains
of machine learning for large scale data and finance.

This is followed by the motivation of this thesis and the description of the main
problems that we aim to address in Section 1.2. To solve these problems,a we work
under a set of hypotheses which we describe in Section 1.3. For this whole process,
we follow a set of research objectives and a research methodology that is documented
in Sections 1.4 and 1.5 respectively. After this, in Section 1.6 we explain the scientific
impact that we expect from the outputs of this research work.

Finally, Section 1.7 describes the structure of the remainder of this thesis.

1.1 Context

This Ph.D. thesis involves research work in two subfields of computer science: artificial
intelligence (AI) [314] and computational finance [255]. Nowadays, AI is applied to
numerous domains; computational finance can involve different applications in quan-
titative investing, or in algorithmic trading and high-frequency trading (HFT) [90].
Both AI and computational finance are very broad fields that are described in more
depth in Chapter 2. To be more specific, our work takes place in the overlap of two
research areas: online machine learning for data streams [48, 175] and regime changes
(RCs) in financial markets [19].

1
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The overall hierarchy of areas studied is illustrated in Figure 1.1. Computational
finance and artificial intelligence are subfields of computer science that overlap with
other disciplines, such as finance, statistics and mathematics. These are better de-
scribed and reviewed in Chapters 2 and 3.

Artificial Intelligence

Computer Science

Computational Finance

Machine Learning
Regime Changes

High Frequency Trading

Online Incremental 
Machine Learning

Drift Detection

Adaption to Changes

Online Supervised
Learning

Online Unsupervised
Learning

Figure 1.1: Context of this Ph.D. Thesis. The green area represents the current work.

This thesis will explore different online incremental learning techniques for data
stream classification (supervised learning). We will also focus on the areas of unsuper-
vised online machine learning, as well as on approaches to handle and measure concept
drifts. These concepts will be applied to predict ups and downs in stock market prices
during RCs at high frequencies (HFT). A list of the areas studied, their subfields, and
a brief explanation of each can be seen below. In any case, formal definitions for these
are given in Chapter 2.

1. Online incremental machine learning: this field focuses on machine learning al-
gorithms (a subfield of AI) to predict and train over continuous data streams on
the fly. Online learning algorithms should always be up to date and available to
predict. Here we will focus on many aspects:

• Supervised learning: supervised machine learning approaches train an al-
gorithm to recognise a target feature or label given a set of attributes or
features. They are considered supervised since the input data needs to be
labelled prior to training tasks.
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• Unsupervised learning: conversely, these techniques do not need labelled
data for training. They group the incoming data based on the similarity of
the feature vectors [386].

• Handling of concept drifts: there are different mechanisms to detect or adapt
to changes in non-stationary data or between states of stationary data [37,
118,290,386]. A machine learning algorithm for data streams must be able
to adapt to these without the need of retraining [154]. This thesis explores
passive adaption and drift detection techniques to deal with these changes
over time.

2. Computational finance: in general, AI is applied to finance for prediction of
future prices or trends in financial assets, optimisation of investment portfolios,
and sentiment analysis of news regarding assets or companies [129]. The main
application area of this thesis is price trend prediction at high frequencies. The
final purpose of our system is to serve as an indicator for HFT. We will focus on:

• Price trend classification at high frequencies: we will consider the literature
on stocks price movement classification [179] to prepare real and synthetic
datasets for predicting stock price direction;

• Regime changes: this thesis will focus on the prediction under structural
breaks. An example of changes at low frequencies can be the end of a
financial bubble or a financial crisis. However, changes can also occur at the
intraday level due to any change in the behaviour of the investors.

Online machine learning and computational finance are fields that are closely
related since financial time series can be interpreted as continuous data streams,
especially at high frequencies (HFT) [90] with data arriving at fractions of a second.
In this context, RCs can be seen as shifts in the generative process of these series. We
will parse the incoming streams of data following the relevant literature for financial
data and machine learning [179]. From this point, incoming data will be considered a
data stream. Our research will focus on the incrementalisation of different algorithms,
on the online scheme for predicting using up to date models, dealing with changes in
the generative process, and improving classification accuracy.



4
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

1.2 Motivation

In the last decade, the digitalisation of different industry sectors has accelerated the
growth of information to be processed and stored. Laney [215] settled the base for a
term big data in the early 2000’s that now has become a norm in most data-driven
companies altogether with the usage of distributed computing techniques [75]. In data
matured organisations [94], this evolution is transforming business analysis processes
with automated data pipelines and AI models to support decision-making processes.
Despite this fact, the industry continues relying on batch techniques for the application
of AI as the de-facto standard. Even in continuous scenarios where sequential deep
learning models are used, there is a frequent need for retraining strategies at some
point in time [193, 292, 303]. Most of these techniques are, in general, unable to deal
efficiently with data updates, as well as its evolution in stationary or non-stationary
domains where a hidden context [367] may influence the predictive model behaviour
over time in unforeseen ways. Moreover, many of these techniques are not scalable for
a continuous learning setup [328].

The financial domain is characterised by data intensity, noise, unstructured na-
ture, a high degree of uncertainty, and hidden relationships [184]. Financial markets
are an evolutionary and nonlinear dynamical complex system [2,329]. Albeit the stan-
dard in the financial domain is to make forecasts using traditional statistical methods,
these tend to assume that the underlying data has been created by a linear process [79].
Another line of work to make financial predictions is to use machine learning. These
algorithms have surprised financial experts [179,329] because of their success mapping
nonlinear relationships without prior knowledge [29]. For example, deep learning al-
gorithms (neural networks) and ensembles have been some of the techniques obtaining
the best results for stock trend prediction [36,58,212,271,275].

Recently, the problem of concept drift [350] has gained importance in compu-
tational finance [329]. Different crises, recessions and bubbles, such as the COVID-
19 pandemic, or pumps and dumps in crypto markets [25], have stressed the non-
stationary nature and the presence of drastic structural changes in financial markets.
During these periods, mean returns, volatilities and correlations in assets tend to change
in short periods [19]. Thus, many recent research works point out that financial assets
or companies present different states that may repeat or not overtime or evolve due to
inflation, deflation, or changes in supply and demand [104, 162, 182, 259, 319, 347, 360].
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Online incremental machine learning algorithms are scalable for continuous learning
scenarios and able to deal with non-stationarities, shifts, and drifts in the data [124].
However, stationary scenarios in machine learning for data streams (namely recur-
ring concepts) are still a subject of study [7, 156, 159, 329]. Even in scenarios where
models previously trained may become relevant again, most of the current algorithms
need to relearn previous instances as these are forgotten due to the stability-plasticity
dilemma [251]. This need for retraining results in a waste of computational resources,
longer training times, and more significant prediction errors while the model is not
up-to-date. Some authors of the literature on machine learning for data streams have
started to consider stationary scenarios in their algorithms [118, 144, 151, 290, 365].
However, in the financial field, there is a small number of research works considering
recurring concept drifts [286,287,329].

In finance, a change in the collective behaviour of market participants and their re-
actions is called a regime change. As covered by the marked efficiency hypothesis [128],
we cannot observe the individual behaviour of a trader or its intentions. Instead, we
can only observe changes in the price dynamics and macro or microeconomic variables
and extrapolate the changes that make them modify their behaviour. The execution
of these strategies is the actual generative process of these time series. The estimation
of the hidden processes driving the market into different regimes is often approached
using regime-switching models, a type of time series model where parameters can have
different values in different cycles [282]. Hamilton [167] proposed a regime-switching
model to measure these shifts in economic variables. These models are able to cap-
ture fat tails, skewness, and time-varying correlations during different periods [19,347].
However, they are not suitable for online scenarios since the number of regimes needs
to be defined in advance.

Despite the fact that artificial intelligence has recently become a trend and even
a buzzword in many industries, this has not become the main trend yet for trading
systems. This is mainly to the hard explainability and complexity of these models [174],
a must for stakeholders and decision-makers in this sector [63]. Instead, traders tend
to identify directional changes in the market state using different popular indicators
tailored according to their needs. Traditionally, the literature has used static methods
to interpret patterns based on the meaning of these indicators and their historical
correlation to future prices. However, this correlation may vary over time. Behavioural
shifts of investors changing continuously with a hidden context can also be observed
through the change in sell versus buy volumes, in differences between local minima
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and local maxima over time, and through different moving averages at different time
frames depending on the granular detail observed (frequencies) at intraday, daily or
weekly levels. Changes in financial markets challenge traders and investors since most
of their models rely on previous patterns. Hence, a way to recognise these changes is
handy as a competitive advantage since it allows to change trading strategies ahead
of other investors [209]. Detecting concept shifts also helps lower the risks of financial
exposure in HFT.

In this thesis, we try to bring to the academic community’s attention how machine
learning for data streams techniques can help in terms of scalability and liaise with
changes in regimes that apply to financial markets and other domains. Our goal is to
leverage the benefits of modern machine learning algorithms that work in continuous
scenarios and deal in real-time with any changes that may arise. For this purpose, we
will explore the incrementalisation of machine learning algorithms, strategies to keep
the model up to date, and concept drift detection techniques. Finally, we will apply
our proposal to predict stock price movements. We expect to find strategies to improve
prediction accuracy during times of change, avoiding model retraining. Hence, we aim
to efficiently increase the potential profits of any organisation using these algorithms,
avoiding the computational burden of model retraining and benefiting from always
having an up-to-date model.

1.3 Hypotheses

This research work has been carried out under a set of assumptions listed below:

• Traditional static machine learning techniques do not scale and thus are not
suitable for high frequency and non-stationary data that needs models to be up
to date with the latest trends.

• It is possible to measure and typify market states (regimes) in intraday financial
data. It is also possible to model these states and simulate a scenario where the
ground truth is known.

• Adaptive and incremental machine learning algorithms allow learning in near-
real-time. Thus, predictions can be made with a model trained with the most
recent data, avoiding extra computational costs or bottlenecks.
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• The use of adaptive techniques will improve prediction accuracy, especially during
concept drifts or changes in the underlying high-frequency data.

1.4 Objectives

This section describes the different goals of this thesis. The main research objectives
of this work are listed below:

1. Development of new machine learning algorithms to improve the state of the
art regarding forecasting of price trend in financial markets. This development
should be driven by the combination of the study of the state of the art and the
experimental work performed in this thesis.

2. Modification of techniques from the relevant literature to predict structural
change in high-frequency data. Different techniques based on online incremental
machine learning for data streams are reviewed for this purpose. This objective
can be subdivided into the next three:

• Detection of RCs through concept drift detection techniques.

• Once these structural breaks are detected, our next objective is to find the
structural patterns in the market state dynamics to detect recurrences. Our
research’s primer objective is generating specialised models for scenarios,
such as more volatile markets, or for up or downtrends may be more effective.

• Our final goal in this regard is to reuse effectively previously trained models
when a recurring market state is detected.

3. Adaption of algorithms and creation of methodologies for the identification of
market states, which involves modelling and simulation of these high-frequency
time series to adapt and react to structural changes.

4. Application of the techniques proposed to the financial domain in the intraday
market and prediction using high-frequency price series.
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1.5 Methodology

To achieve the objectives mentioned in the last section, we have performed the following
research methodology.

1. Initial review of the state of the art and relevant literature. The goal of this is
to find a problem to be addressed in this thesis and, thus, propose a solution or
improvements for it. This involves the review of financial and machine learning
literature to address high-frequency data and learning at scale.

2. Introduction of a method to solve the initial working hypotheses. This com-
prises the development of new machine learning algorithms for large scale and
high-frequency data and their documentation to enable reproducibility by the
academic community.

3. Exhaustive evaluation of algorithms and tools created during the development
stage, and comparison of such algorithms with other relevant techniques from
the literature to benchmark our proposal.

4. Validation of the achievement of the research objective mentioned in the previous
section and of the aforementioned working hypotheses.

5. Exhaustive analysis of the results, concluding about this work contributions and
introduction of future research in this area.

1.6 Contribution

This work has contributed in the following way to the scientific community:

• Improvement of the state of the art with new online incremental machine learning
algorithms.

• Enrichment of the state of the art with a benchmark of techniques of the state
of the art of online machine learning for data streams and application to high-
frequency data to the financial domain. Learning and study of how some of these
techniques perform in these scenarios.
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• Research bridge created between the literature of RCs in time series and concept
drifting data streams.

• Introduction of a methodology to model and simulate financial time series.

• Introduction of a framework to measure adaption of a model regarding the struc-
tural change in financial time series once the ground truth changes are known.

We expect these contributions and, thus, this thesis to positively impact future
research in both machine learning and the financial domain. Since we hope this work
brings different fields from the literature together, we believe this will be the start of
a new area in the application of concept drift related literature to financial markets.

1.7 Structure of the Document

The rest of this document is structured as follows:

• Chapter 2 describes the theoretical background that is the base of this thesis,
including the basics of online incremental learning for data streams, concept
drifts, and an introduction to structural changes in the financial domain.

• Chapter 3 reviews the relevant state of the art in the relevant research topics. It
covers relevant works on concept drift detection, supervised and non supervised
learning on data streams, and related research works in the financial domain
being our research context. This chapter approaches the research area of regime
changes beyond time series approaches and aims to connect it with the data
stream mining literature. So far, we are not aware of any state-of-the-art report
or survey bridging these two fields; hence, this section provides a comprehensive
review.

• Chapter 4 covers preliminary studies performed in this work before our main
proposal. Our first approach, iGNGSVM, is an incremental algorithm for classi-
fication tasks in large scale data streams. The second approach, RCARF, deals
actively with concept drifting scenarios and is applied to real-world financial data
to predict ups and downs in stock prices.
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• Chapter 5 describes and validates our proposal, namely GroCH, over synthetic
datasets where ground truth changes are known. This chapter describes a frame-
work to model and simulate synthetic sets that behave as high-frequency financial
data. In such a framework, we control structural changes and drifts. At the end
of this chapter, we benchmark our proposal over its main competitors in the
relevant literature.

• Chapter 6 applies our main proposal to a real-world scenario. GroCH is used in
real-world financial data to predict ups and downs in market prices of different
periods and frequencies.

• Chapter 7 provides the conclusions of our work and the state of the working
hypotheses. After the end of the body of the thesis, we include several appendices
that give extra information and results obtained during our research.

• Appendix A describes the parameter exploration, the algorithm design process in
our main proposal, and experimental results in more detail.

• Appendix B defines the synthetic data streams used in our proposal.

• Appendix C describes the hardware used for research tasks during this thesis.

• Glossary is a space where we include a compilation of definitions, explanations
of terms and expressions about topics covered in this document, and a brief
description of these sorted alphabetically.

• Acronyms lists all acronyms and abbreviations used in this thesis.

• Bibliography is a section that includes all research works cited in this document.



Chapter 2

Theoretical Background

This chapter serves as an introduction to the theory necessary to understand the work
performed in this thesis. First, in Section 2.1, we will cover the field of forecasting
in financial applications. We will describe problems and challenges in the area and
explain the task of stock market prediction in detail. This section explains different
ways to approach this depending on the data available and the model chosen.

Section 2.2 will describe machine learning as a subfield of AI and provide an
overview of supervised algorithms and unsupervised algorithms as well as distance
metrics used in this study. This section will also discuss performance metrics in this
field and different evaluation schemes.

Section 2.3 will provide an overview of the subfield of online incremental machine
learning for data streams. The concept of data stream will be explained, as well as
the problem of concept drift and types of drifts. Different mechanisms (active and
passive) and model reuse to deal with shifts and drifts will be reviewed. Finally, we
will explain many of the base algorithms used in this thesis, analyse the computational
costs associated with reusing models in continuous learning scenarios, and list relevant
software for online machine learning tasks.

Finally, Section 2.5 provides a summary of this chapter.

11
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2.1 Forecasting in Financial Applications

2.1.1 Overview

Early studies from the financial literature claim that financial markets are efficient [128]
and, as a result, that asset prices follow a random walk [238]. This research, which
claims that financial markets cannot be consistently beaten on a risk-adjusted basis
and that their prices cannot be anticipated, has always been a source of controversy in
the literature. Many research works have pointed to different markets being predictable
using different sources of information [30,83,146,179,229,239].

Forecasting in the financial domain can be characterised by a non-stationary and
unstructured nature and by hidden relationships [110,184]. Economic, social and polit-
ical factors within countries and international impact and add uncertainty to financial
markets [4, 26, 53, 105, 117, 223, 291]. Hence, markets can be considered an evolution-
ary and non-linear complex system [2]. The financial literature has covered different
approaches to predict market prices using statistical and, more recently AI-based meth-
ods. This section will focus on the first group as part of the domain-specific background
of our work.

In recent years, different events like the COVID-19 pandemic or the bankruptcy
of Lehman Brothers in 2008 have led to periods with changes in mean, volatilities and
correlations in stock market returns [19], stressing the non-stationary nature and the
existence of drastic structural changes in financial markets [104,182,259,319,360].

In the financial literature, changes in the price behaviour of financial markets
that go beyond their normal price fluctuations receive the name of regime changes
[106,168,347] or business cycles shifts [54]. We will cover them in Subsection 2.1.3. In
order to model these regime changes, one of the most popular techniques is the regime
switching model [19], which was first applied by Hamilton [166] as a technique to deal
with cycles of different economic activity such as recessions and market expansions.

This thesis will assume that, as the latest research suggests, some markets can
be modelled and forecasted using different statistical and AI-based methods. We will
leverage previous research where regime changes are the result of the shifts in the
behaviour of the traders, and that can be observed indirectly from market price returns
and movements [347]. This work will focus on the prediction of ups and downs in stock
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market prices at high frequencies (minutes and seconds). Since market movements are
non-stationary, we will use online incremental machine learning techniques that adapt
to any changes in the data distribution. Adapting to the new market behaviour after
structural breaks will allow predictive models to diminish any decrease in predictive
accuracy during or after these changes in the market dynamics. Finally, our main
proposal will reuse older models if a previous regime reoccurs to deal with regime
changes. In Subsection 2.1.4.2 we will explain some of the time-series-based techniques
used to model and simulate regime changes in synthetic datasets used later in this
thesis.

2.1.2 Market Efficiency

As introduced in the previous section, the early financial literature claims that financial
markets follow a random walk [238]. This random walk means that changes in stock
prices are independent of each other, and thus the market is an stochastic process, not
predictable with previous information. Another related early assertion in this field was
that stock markets are efficient, made by the economist Eugene Fama in 1965 [127].
The efficient market hypothesis (EMH) maintains all stocks trade at their fair value
because all available information about the market is already incorporated into its
prices. The hypothesis, revisited by Fama in 1970 [128], considers three degrees of
efficiency.

• Strong efficiency: this states that all information of stock prices is accounted for
(both public and private information). In this case, there would not be under
or overvalued assets, and the market would not be beatable on a risk-adjusted
basis.

• Semi-strong efficiency: this states that all public information is factored into
stock prices. In this scenario, the only reliable strategy with be to use private
information.

• Weak efficiency: this states that stock prices reflect all past prices. Under the
weak form, investors might obtain excess returns exploiting new information
(public and private) different to prices, such as news or fundamentals [55,339,378].
This will be discussed in further detail in Subsection 2.1.4.
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Conversely, in an inefficient market, assets may not reflect their true value. This
may occur for different reasons [54, 315]. The EMH has been challenged for a number
of reasons. It assumes that all investors perceive and react to the market similarly. The
idea of efficient markets expects all investors to have the same knowledge, background
and tools to analyse the markets. It also speculates with them to value assets similarly
and in parallel. In other words, it assumes that all investors share their judgment,
investment goals and targets at the same point in time. An example of this failing in
the real world are discrepancies between retail investment influencers in different social
media channels [194, 378]. For instance, in 2021, there was a boom in cryptocurrency
retail investment. Once passed the Bitcoin price all-time high in the first half of the
year, different channels and newspapers started forecasting opposite directions for its
price in the near future [213].

Financial markets can behave efficiently in many cases despite the inefficient be-
haviour of investors and firms due to market adjustments [323]. Nevertheless, the latent
repetition of events as market crashes and bubbles in the financial history reveals a
degree of inefficiency. In any case, in the rest of this thesis, we will not hypothesise
about the degree of efficiency of any market. We will rather leverage recent research
showing that certain assets at specific points in time can be predicted using previous
prices [28, 30,83,146,179,179,229,239].

2.1.3 Regime Changes

In financial markets, there are periods of time with different degrees of efficiency and
predictability. There can be moments where, due to the market-wide sentiment given
by political or economic circumstances, the behaviour of investors may change towards
a bear, bull lateral market, and periods or time frames with different levels of volatility
[54]. As anticipated in the overview of this section, changes in the price behaviour of
financial markets that go beyond their normal price fluctuations receive the name of
regime changes (RC) in the financial literature [106, 168, 347]. At the macroeconomic
level, RC are often related to abrupt breaks in long-term cycles like the break of
bubbles or economic crises [167]. Changes of market regimes could be driven as well
by investor expectations [19]. The financial literature identifies two types of regimes
easy to recognise: steady and highly volatile regimes usually linked to economic growth
or deflation periods, respectively. Figure 2.1, by Tsang and Chen [347], illustrates an
example of these breaks during the Great Recession.
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Regime changes challenge investors, making them change their trading strategies
as the collective trading behaviour of the market changes. Different examples of RC
have been covered in the recent literature. Davies in [106] analysed different cases and
consequences of regime changes in the Great Recession that impacted several asset
classes such as equities, bonds, commodities and currencies at micro and macroeco-
nomic levels. Hamilton in [168] observed alternating patterns between steady and
turbulent periods since the Second World War and subsequent recessions by looking at
US unemployment rates. Ang and Timmerman in [19] identified cyclic changes in the
behaviour of asset prices and mean, volatility and correlation patterns in stock returns
during the Great Recession and the 1973 oil crisis. Kritzman et al. [209] discovered
that investors could benefit from having different asset allocation strategies in different
market regimes to minimise losses.

Figure 2.1: Regime Changes in the DJIA Index (indicator of the United States economy)
based on daily logarithmic returns. Extracted from [347].

Many other studies consider these drastic changes an intrinsic characteristic of
financial data that might be caused by significant events, and thus, these will be
observable not only in prices and economic variables but also in other kinds of public
information [18, 102, 145, 166–168]. Hamilton proposed in [166] a time-series based
approach [282] to capture non-linear effects like RC, identify market breaks and hidden
changes in economic cycles known as the regime switching model [167]. This model,
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also known as the Markov-switching model, is fitted to observations following different
patterns in different periods and is mainly applied to recognise low volatility regimes
with economic growth vs high volatility periods with economic contractions [21]. Ang
and Timmermann in [19] applied these models to predict interest rates and equity
and foreign exchange returns. They discussed how to model RCs for these time series
models. This thesis is not focused on traditional time series models, and thus these
approaches will not be part of the scope.

We propose to deal with regime changes as shifts in the data generative processes,
also known as concept drifts, which will be explained in Subsection 2.3. From a financial
point of view, these shifts could still be due to changes in trading behaviour among
the investors, causing trained models to underperform in terms of predictive accuracy.
Techniques to model raw market data for prediction in the financial domain will be
explained in Subsection 2.1.4.

Finally, this thesis will use time series modelling approaches to characterise dif-
ferent generative processes. Transitions between generative processes are based on the
work from Shaker and Hüllermeier in [312], which will be covered briefly in Section 3.
With this in mind, time series and other forecasting techniques used to simulate syn-
thetic raw data will be introduced in Subsection 2.1.4.2. This simulation will allow
us to have a controlled scenario as ground truth and build a mechanism to deal with
structural breaks in the financial domain, enabling our approaches to react rapidly and
minimise the risk of misclassifying during changes, which maps to financial losses in
its application area.

2.1.4 Stock Market Prediction

2.1.4.1 Fundamental and Technical Analysis

In the previous two sections, we covered the EMH and the concept of RC in the financial
domain. Assuming that financial markets can be predicted in different periods, there
are two different approaches to predict stock market prices and trends; fundamental and
technical analysis [43]. Nti et al. in [269] provided a systematic review of predictions
using either or both of these approaches. Other surveys bridging the literature using
either fundamental or technical analysis and providing future research directions are
[29,79,179].
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• Fundamental analysis studies economic factors and public information that may
impact the market, such as revenue, income statements, assets, sales, liabilities
and dividends of an organisation and related news to predict future prices [55,339,
378]. Its underlying idea, more suited for long-term investment, is that investors
should learn fundamental aspects of a company, like its capitalisation and its
number of employees [357], before investing in it. For this, analysts and investors
use quantitative tools such as marketing strategies, product innovation, financial
ratios and other factors like market trends, changes in the legislation, financial
news and social networks [214].

• Technical analysis relies on the extraction of patterns from previous and current
performance of stocks to forecast the future price trend direction [79]. Technical
analysis practitioners argue that these trends are caused by the difference between
stock supply and demand [62]. The idea of technical analysis is to understand the
behaviour of other participants in the market using mathematical formulas called
indicators to track price and volume change patterns [338]. Technical indicators
can be seen as snapshots of the market price over a specific time window. Murphy
in [260] presents a typical list of these indicators, including relative strength
index, moving averages, on balance volumes, directional movement indicators,
momentum and rate of change.

Technical analysis ignores the fact that fundamentals may also influence market
movements separately [128]. Nevertheless, several research works claim that move-
ments in market prices are not random [230] and that trading strategies relying on
technical indicators can produce excess returns [70]. Technical indicators are widely
used for short-term prediction of the stock market by researchers, investors, finan-
cial economists, and brokerage firms [269,297,336] since these simplify the problem of
predicting market movements to a mere pattern recognition problem [338].

In this thesis, we do not aim to propose new measures or indicators to predict
financial markets. Due to their widespread usage in the literature, we will focus on
technical indicators to predict movements at high frequencies in the very short term.
One of our goals is to use online incremental machine learning to adapt to any changes
from any private or fundamental public information not explicitly present as a feature
in our datasets. The pre-processing steps and indicators that we will use will be
described in Section 3.6.
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2.1.4.2 Traditional Time Series Techniques

In mathematics, a time series is a sequence of numerical observations gathered sequen-
tially in time [71, 348]. Each of these observations is usually called lag feature. In
the traditional financial literature, data for different use cases tend to be modelled
in this way to feed predictive models [28, 79]. Some example applications are asset
closing prices such as different stocks, interest rates, or unemployment levels at differ-
ent frequencies over time [122]. Time series allow the identification and extraction of
trends, cycles, outliers, and seasonalities [97], use them for producing trading signals
buying and maximise then investment profits [260]. There is also a trend in the finan-
cial literature to use time series as a framework to show dramatic breaks in market
behaviours [167,347].

The problem of predicting data with temporal dependence can be formulated as
{(x1, y1) , . . . , (xn, yn)}, with xi ∈ X being an observation (stock price or return at a
given time) and yi ∈R being the predicted value [375]. Models are then fitted with past
data (X, y) [338] based on the belief that the history tends to repeat itself [260, 338].
In a time series though, the target feature yi is predicted from its previous values
(y1, y2, . . . , yi). Time series are considered stationary if their statistical properties do
not change over time. Hence, (y1, y2, . . . , yi) is stationary if yi does not depend on
i, or if patterns are repeated across time. Trends or seasonalities in time series are
non-stationary as these affect the predicted feature y at different points in time. This
tends to be the case even if these trends or seasonalities occur during cycles, as in real-
world datasets, cycles are not of a fixed length. Figure 2.2, extracted from the book
of Hyndman and Athanasopoulos [187], illustrates examples of non-stationary versus
stationary time series. Subfigures a, c, e, f and i (this last with increasing variance over
time) illustrate non-stationary trends. b and g are examples of stationary time series
according to the authors [187]. d, h and i are examples of time series with seasonality.

The predictive performance of these time series models depends on the level of
(auto) correlation of the target feature to its previous values. Hence, for this reason,
many applications in this domain use auto-regressive models, where earlier values of y
or different technical indicators are used as feature sets [179]. Two of the most popular
time series forecasting methods are autoregressive integrated moving average (ARIMA)
and generalised autoregressive conditional heteroskedasticity (GARCH). The books of
Eatwell et al. in [122] and Hyndman in [187] describe time series techniques and mod-
els such as ARIMA and other of the autoregressive models usually applied to finance.
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Andersen et al., in their book [13] provided an in-depth description of GARCH models
and variants and other time series regression techniques used to forecast stock market
volatilities. Atsalakis in [28] provided a literature review of these and other derived
time-series based forecasting applied to stock markets. However, predicting volatility of
financial time series or the conditional mean of a process due to volatility are different
challenges [13]. Many research works applied to econometrics have previously [176,335]
claimed that financial time series could be modelled by the combination of autoregres-
sive and GARCH methods. One of these combined methods, namely ARMA-GARCH,
will be used later in this thesis to model different market states.

Figure 2.2: Example of nine different time series extracted from [187].

Autoregressive moving average (ARMA) models were initially proposed for uni-
variate forecasting on stationary time series [61]. The ARIMA model, previously men-
tioned, is a generalisation of ARMA that adds and integration component. ARMA
models are the combination of two well known approaches for time series prediction
called autoregressive and moving average models.
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Autoregresive models (AR), as their name indicates, predict the target variable
yi of the time series through a linear combination (regression) of its past values
(y1, y2, . . . , yi). An autoregressive model of order p, hence an AR(p) model, can be
written as:

yi = c+ ϕ1yi−1 + ϕ2yi−2 + · · ·+ ϕpyi−p + ϵi (2-1)

where i represents the current time step and ϵi white noise. The model fits values
of ϕ depending on the correlation of previous time steps to yi. For instance, values
of ϕ close to 0 and 1 tend to generate white noise or random walks, respectively, as a
result [187].

The moving average model (MA) is another regression-like method usually used for
time series, but without observed (previous) values of the target feature y. A moving
average model of order q, hence an MA(q) model, can be written as:

yi = c+ ϵi + θ1ϵi−1 + θ2ϵi−2 + · · ·+ θqϵi−q (2-2)

Besides the good results obtained with autoregressive in financial use cases, these
methods only model the mean of a time series, being thus challenged over time in
the presence of periods exhibiting different levels of volatility. These divergences in
the behaviour of the time series may cause a non-constant variance of errors across
observations in autoregressive models, which can be defined as heteroskedasticity. Engle
in [126] demonstrated how to model mean and variance in a time series at the same
time by proposing the autoregressive conditional heteroskedastic (ARCH) model. This
approach was initially proposed to validate the conjecture of Friedman [133] about the
unpredictability of inflation due to business cycles and its impact on the investor’s
behaviour due to uncertainty [125].

ARCH was applied to financial modelling soon after its proposal due to the need
of many of its applications to predict volatility [57]. ARCH was expanded by Bollerslev
and, separately, by Taylor in 1986 [56, 337]. They proposed a generalised version of
ARCH (GARCH), which allowed the expectation of conditional variance to be modelled
with ARMA [176]. In econometrics, the term conditional variance refers to the poten-
tial variance of a random variable given the values of its correlated features. The most
popular GARCH model in econometrics is GARCH(1, 1) model, that is, p = q = 1 [13],
where p and q are the orders of σ2 (time-dependent standard deviation) and ϵ2 (white
noise) respectively. A GARCH process, following the notation of the original paper
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except for i and k (for consistency with previous equations), referred to as t and i
respectively in the original paper [56], is given by the equations that follow:

yi = x′
ib+ ϵi (2-3)

ϵi | ψi−1 ∼ N
(
0,σ2

i

)
(2-4)
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where ω,α and β represent the coefficients of the GARCH process. A deeper
mathematical explanation can be found in Andersen’s Handbook [13].

The autocorrelations of certain asset returns are incompatible with GARCH mod-
els [13]. While the relevant literature has demonstrated the good results of GARCH
model predicting volatility [12], some research works claim that it obtains a subopti-
mal forecasting performance [64, 98, 130, 191, 192, 245]. With this in mind, many re-
searchers have mixed the goodnesses of GARCH forecasting volatilities with the good
performance of autoregressive and moving average models predicting mean returns by
combining them as AR-GARCH and ARMA-GARCH models. Wong et al. in [369],
and later Tang et al. in [335] presented the mixture models AR-GARCH and ARMA-
GARCH, for exchange rates and stock price prediction, respectively. These mixture
models improved GARCH in financial prediction. ARMA-GARCH, as an improvement
of AR-GARCH, further enhanced its forecasting results. According to Atsalakis in his
literature review of statistical approaches to predict stock market movements in [28],
GARCH based models outperform in many cases other forecasting techniques such as
Autoregressive or ARIMA models.

As explained earlier in this chapter, this thesis will use ARMA-GARCH processes
to model different market states with different mean returns and different levels of
volatility. The volatility aspect is crucial since this can be the differential factor between
normal and abnormal regimes, as already covered in Subsection 2.1.3. Shifts between
states will be modelled as a change in the generative process as further explained in
Subsection 2.3 and Chapter 3.
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2.2 Machine Learning

2.2.1 Overview

In Section 2.1 we introduced the domain of forecasting in the financial domain. We
presented challenges, different indicators used for decision-making and classical fore-
casting algorithms used in econometrics. Most trading strategy systems in this domain
are based on wired rules that rely on trader assumptions or traditional time series fore-
cast models that are uni-modal as presented in Subsection 2.1.4.2. These traditional
statistical methods tend to model and predict future data based on the assumption
that the time series under study is generated from a linear process with features nor-
mally distributed [349]. This presents challenges since financial data is characterised by
non-linearity and non-stationarity besides a high level of uncertainty and noise [357].

A different approach to perform financial forecasts is with the use of machine
learning techniques. Several literature reviews show the benefits of these techniques
against traditional methods [150,179,300,302], surprising practitioners by contradicting
early theories like the random walk and EMH [128, 179, 346] described in Section 2.1.
Machine learning algorithms can handle non-linear relationships without prior knowl-
edge [29], outperforming traditional time series methods [36, 58, 212, 275]. Different
research works from the economic literature have either used technical indicators or
raw prices and returns. As covered in Section 2.1, technical indicators are able to
show behavioural patterns among traders and thus provide an extra level of signal to
predictive models. These can be valuable to automate the behaviour of short-term
traders despite being an underestimated technique as well as the inefficiency of finan-
cial markets [179]. In any case, most of the economics literature has focused on linear
processes that may not have been able to extract relevant information nor infer complex
relationships among technical indicators where some new machine learning methods
could [9].

Machine Learning is a branch of AI that finds patterns in previous data (training
vectors) and fits an algorithm to predict future events. In this branch of AI, a data
point or observation is called an instance or example. Data instances are represented by
a set of variables called a feature set or set of attributes. Machine Learning algorithms
can be traditionally classified into two types: unsupervised and supervised. supervised
machine learning algorithms are the ones that use labelled data to learn. This label
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refers to the ground-truth value that the algorithm should target to reach a perfect
forecast. Figure 2.1 illustrates an example of a labelled dataset.

x1 x2 x3 x4 x5 y

3 36 22 23 12 uptrend
3.5 31 25 28 13 downtrend
8 32 21 22 27 downtrend

6.6 35 23 27 33 uptrend
4.5 36 25 24 40 downtrend

Table 2.1: Example of labelled dataset; y represents the target (or predicted) feature and all
the X variables represent the set of attributes (predicting features).

Conversely, non-supervised machine learning algorithms do not precise a label for
training tasks. Instead, instances are grouped by similarity into clusters . This similar-
ity depends on different distance metrics. We review some of them in Section 2.2.2.2.
Unsupervised and supervised algorithms are briefly covered in Section 2.2.2 and Sec-
tion 2.2.3. The purpose of this is to provide the reader with the theoretical background
and basic concepts about these different machine learning tasks and relevant methods
that will be used in this thesis.

2.2.2 Unsupervised Learning

The objective of non-supervised machine learning techniques is to discover a set of
similar instances within the datasets. Each of these sets is called a cluster. Some
algorithms need to receive the number of clusters as an input parameter. In contrast,
other algorithms can extrapolate the number of these. Unsupervised techniques can
be categorised into different sub-types according to the literature reviewed by Nguyen
et al. in [265], all present in Table 2.2, extracted from this research paper, illustrating
various advantages and limitations of these clustering methods.

One of the oldest and most popular non-supervised machine learning algorithms
is the partitioning algorithm K-means [237], described in Subsection 2.2.2.1. K-means
will be used in Chapter 5 to visualise the theoretical limitations of the datasets used
due to the simplicity of this method. In any case, the core proposal of this thesis will
use model-based techniques to group different states of a data stream over time. These
are explained and motivated in Subsection 2.3.6.
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Type Advantages Limitations

Partitioning Simple and relatively efficient. Need to specify the number of clusters
Terminate at a local optimum.

Hierarchical Derive more meaningful Unable to discover non-spherical clusters.
cluster structures. High complexity

Density-based

Can find arbitrary-shape Sensitive to the order of the data records.
clusters. Need many parameters: density and
Robust to noises. noise thresholds.

Difficult to detect clusters with different
densities.

Grid-based
Fast and can discover The clustering quality depends on the
arbitrary-shape clusters. grid granularity.
Robust to noises. Unsuitable to high-dimensional data.

Model-based Simple and can include Depends strongly on the assumed models.
domain knowledge.

Table 2.2: Advantages and limitations of clustering approaches. Extracted from [265].

Non-supervised machine learning algorithms measure the separation between in-
stances and compute similarity using a distance function. In this regard, Euclidean
distance and Mahalanobis distance distances, due to their simplicity and their ability
to represent well data clusters , respectively, are some of the preferred metrics in the
literature [21]. Both distance metrics will be described in Subsection 2.2.2.2

2.2.2.1 K-means

The k-means algorithm finds k clusters of instances x within a dataset X. It charac-
terises each cluster with its centers, which are known as centroids. The algorithm, as
described in [237], starts with a random set of k centroids (µ). Every learning iteration,
each data instance x is assigned to their nearest centroid (see equation 2-6). The next
step in the learning process is the repositioning of the centroids using the mean of the
data instances assigned to them (the nearest ones) (see 2-7). This process iterates un-
til all data instances are assigned to centroids. Figure 2.3 illustrates k-means clusters
for k = {3, 5, 7} in an example dataset with two dimensions (F1,F2). Centroids are
marked in yellow.

S
(t)
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{
xp :
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(t)
i

⏐⏐⏐⏐⏐
2
≤
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(t)
j

⏐⏐⏐⏐⏐
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}
(2-6)
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µ
(t+1)
i =

1
|S(t)

i |

∑
xj∈S

(t)
i

xj (2-7)

K-means tries to minimise the square loss, as seen in equations 2-8 and 2-7. A
problem in k-means is that equation 2-8 tends to converge to a local minimum depend-
ing on the initialisation of the centroids. In this sense, a common approach is to run
the algorithm several times and to consider correct those clusters that repeat among
most executions.

J =
N∑

n=1

K∑
k=1

rnk||xn − µk||2 (2-8)

with rnk =

⎧⎪⎨⎪⎩1 xn ∈ Sk

0 otherwise
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Figure 2.3: An example of k-means clusters for different values of k and the same input
data.

2.2.2.2 Distance Metrics

2.2.2.2.1 Euclidean Distance One of the most commonly used distance metrics
is the Euclidean distance distance due to its computational efficiency and simplicity.
Distances between two data samples, xi and xj ϵ{x}K are computed following equation
2-9.

d (xi,xj) = ||xi − xj || =

√ N∑
l=1

(xi,l − xj,l)
2 (2-9)

The Euclidean distance distance considers all attributes to be equally important
[163]. This may create several challenges when dealing with multi-variate signals or
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indicators of different natures in financial data since attributes with larger scales will
significantly impact the overall distance between instances. In order to tackle this,
the feature set may need to be normalised to equalise the importance of different
features before the computation of Euclidean distance distances. For this purpose,
many researchers [21,68,347,373] use Mahalanobis distance distances which normalise
features using a correlation matrix.

2.2.2.2.2 Mahalanobis Distance The Mahalanobis distance distance considers the
standard deviation of xi and xj through a covariate matrix ΣK [21, 101].

d (xi, xj) =
√
(xi −xj)

T
Σ−1

K (xi −xj) (2-10)

The covariance matrix of {x}K is represented by µK = 1
K

∑K
i=1 xi; ΣK

ΣK =
1
K

K∑
i=1

(xi −µK) (xi −µK)T (2-11)

The Mahalanobis distance distance can be seen as an extension of the Euclidean dis-
tance distance, where features are weights based on a covariance matrix that accounts
for the variance of each feature and the correlation among features. This type of
distance standardises the dataset to be uncorrelated and then computes Euclidean
distance distances. Hence, the Mahalanobis distance distance can become Euclidean
distance if the features are already uncorrelated (ΣK = I) [21,68,190,373]. One draw-
back of the Mahalanobis distance distance is the high computational cost of computing
the covariance matrix depending on the dataset used [359].

In the main proposal of this thesis we will use Mahalanobis distance distances
to consider the correlation between different financial indicators when computing the
similarity to look for recurring patterns in the data stream.

2.2.3 Supervised Learning Algorithms

2.2.3.1 Naive Bayes

Naive Bayes (NB) is a probabilistic classification model based on the Bayes theo-
rem [42]. This classifier aims to describe the probability of an event (label) based on
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previous observations of it. The NB classifier is considered naive because it assumes
that all attributes are independent for each class, which is called class-conditional inde-
pendence [217]. Despite this strong assumption, NB is able to outperform other models
from the relevant literature in many classification tasks [295]. The Bayes theorem is
described by the following equation:

p (A B) =
p (B A) p (A)

p (B)
(2-12)

A and B represent independent events, and p(A) and p(B) the probability of
observing either the event A or B, respectively. p(A|B) is the conditional probability
of A if B occurs. p(B|A) represents the opposite scenario.

In this thesis, the algorithm will calculate the probability of ups and downs in
market prices. NB will classify an up or downtrend using the label with the most
significant probability. In our main proposal, we will use an incremental version of the
naive Bayes classifier trained continuously from the massive online analysis (MOA)
[48].

2.2.3.2 Decision Trees

Decision trees are one of the most used classifiers in both offline and online machine
learning. Their popularity is not only due to their good results but also to their
degree of explainability. A decision tree is made of a set of nodes. The learning
process commences by splitting the initial (root) node based on a separation metric
like information gain or the Gini coefficient [67] over the attributes of the feature set
used in the learning task. This process creates child nodes that may be divided further
during the learning process. Final nodes (without children) are called leaf nodes,
which lead to the algorithm’s prediction. Figure 2.4 illustrates this process. The
accuracy of this algorithm is enhanced in the literature by applying other algorithms
such as naive Bayes in the leaf nodes [48] or using them as weak learners in ensemble
models [66, 152], as will be covered in Chapter 3. This thesis will use online decision
trees in the second experiment and the main proposal; Section 4.2 and Chapter 5. The
theoretical background of these online models will be covered in Subsection 2.3.5.
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Figure 2.4: Example decision tree for trend classification (up or down). Root node coloured
in blue. Intermediate and leaf nodes are coloured in green and red, respectively.

2.2.3.3 Ensembles

Ensembles are collections of classifiers such as the previously mentioned decision trees
and NB. The motivation to do this is that an ensemble should be more robust and
reduce its error by considering the prediction of a set of base models. The predictions of
all base models are then combined. In this sense, a common classification combination
approach is majority voting. In this case, the ensemble prediction is equal to the
prediction of the majority of the classifiers. If there is a different degree of confidence
in each of the classifiers, then votes can also be weighted based on the performance of
the models on a validating set; this is called weighted majority voting.

The overall idea is that the ensemble predictions improve each of the base classifier
predictions. For this purpose, its base models should offer different predictions. This
is not the case if the algorithm is deterministic and it receives the same data. Thus,
to promote diversity, different methods like bagging to train each base classifier in a
different subset of data are used.

Bagging, proposed by Breiman [65], generates a set of k training sets using boot-
strapping, which is a resampling method proposed by Efron in an early version of their
work in [123]. Bootstrapping consists of randomly selecting numbers in a sequence with
equal probability to choose each number until N numbers are chosen. In bagging, this
method is applied over the random selection of instances in a training set. Then, each
of the k training sets generated of length N is used to train a different base classifier.
Bagging is generally used in models which outcome can vary largely with any small
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change in the training data (e.g. neural networks or decision trees).

Ensembles are one of the machine learning techniques obtaining the best results for
trend classification in the financial domain [179]. An example of an ensemble technique
widely used, and one of the best methods predicting stock market movements is the
random forest algorithm [36, 58, 210, 212, 275, 276]. In the second experiment of this
thesis, we will propose an ensemble approach based on an incremental version of the
random forest (RF) algorithm [66]. Random forest, proposed as well by Breiman, is
an ensemble of decision trees that promotes diversity combining the bagging method
explained above with the selection of a random subset of features per base classifier.
This random selection of features is a method known as feature bagging [72], and the
part of the RF algorithm name can be attributed to it. The other part (forest) can
be attributed to RF having a homogeneous set of tree-based classifiers. RF requires
some adaptations to handle structural changes in an online setting. These are covered
in Chapter 4.

2.2.3.4 Other Algorithms

2.2.3.4.1 Nearest Neighbours K-nearest neighbours (kNN) is a supervised algo-
rithm that classifies an instance depending on the labels of the closes data exam-
ples. Traditionally, the closest neighbours are computed using the Euclidean distance
distance described in Section 2.2.2.2. In this thesis, we use the prototype selection
technique Wilson’s edited nearest neighbours (ENN) for noise removal in the first ex-
periment. This algorithm is based on the first (kNN), as it removes any data instance
that does not match the label of the majority of its k neighbours. In the literature, tra-
ditionally, k = {3, 5, 7}. The steps followed by ENN are shown in algorithm 2.1. ENN
is used during the first experiment in Section 4.1, and can be considered a prototype
reduction technique; these methods will be described further in Subsection 2.2.4.

Algorithm 2.1 ENN algorithm according to [69]

1. Compute the k nearest neighbours for every data example based on the provided input network topology.

2. For every data example, if most of its neighbours belong to a different class, this is labelled as noise.

3. Once finished with the neighbourhood comparisons for all the data examples, it deletes all the data examples
labelled as noise.



30
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

2.2.3.4.2 Support Vector Machines Support vector machines (SVM) classify in-
stances using a hyperplane as a separator that maximises the margin between classes
[59, 96]. Although modern versions combine multiple separators, working for multiple
classes, they were initially proposed for binary classification. This technique, will be
used and covered in more detail in the first experiment in Section 4.1. Algorithm 2.2
describes a linear SVM model for binary classification.

Algorithm 2.2 Linear model for support vector machines according to [171] [120]

1. In a binary classification problem, we have Y = {A, B} where Y is the set of both possible classes (class A and
class B).

2. A set of vectors {(x1, y1), . . . , (xn, yn)} where xi ∈ Rd and yi ∈ A, B for i = 1, . . . , n is separable if there is an
hyperplane in Rd able to separate the vectors X = {x1, . . . , xn} with class yi = A from those with class yi = B.

3. Given a separable set, there will be at least an hyperplane Π : w · x + b = 0 able to separate the vectors
X = x1, . . . , xn.

4. Once the separator is determined, it is adjusted to more vectors according to Equations Π1 and Π2 below.

xi ·w + b ⩾ +1 for yi = A (Equation Π1)
xi ·w + b ≤ −1 for yi = B (Equation Π2)

+1 and −1 are labels A and B respectively. w is a normal to the hyperplane.

5. The points for which the equality of equations Π1 and Π2 hold are called support vectors of its respective class.

6. Π1 and Π2 are parallel as they have the same normal (w) and there is no data examples between them. Thus
the pair of hyperplanes that maximises the margin between classes can be obtained by minimising |w|.

7. The algorithm is formalised as: minimise |w| s.t. yi(w · xi + b)− 1 ⩾ 0, ∀xi

2.2.4 Prototype Reduction

This thesis will explore different mechanisms to reduce computational cost and make
online learning tasks manageable in high-frequency data streams. We will explore
model-based prototype reduction techniques, which can be used for different purposes
like summarising or cleaning a dataset before machine learning operations. These
techniques, which can be either supervised or non-supervised, are traditionally divided
into two different approaches [113, 344, 345]: prototype selection (PS) and prototype
generation (PG).

• Prototype Selection techniques select the data instances considered by a model to
represent the initial distribution best. We introduce one of this methods, ENN,
in Section 2.2.3.4, and we will use it in Section 4.1.
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• Prototype Generation techniques create new synthetic data points (prototypes)
to summarise the initial distribution. Many of these methods will be introduced
in Subsection 2.3.6. In Chapters 5 and 6 we will use one of these methods, GNG,
to summarise previous market behaviours.

In Section 4.1 we will use both PG and PS methods to summarise the initial data
distribution and noise removal, respectively.

2.2.5 Performance Metrics

In this section, we describe the theoretical principle of the different performance metrics
that will be used during the experiments. In order to report prediction performance,
we will mainly use accuracy and kappa statistics since these are some of the preferred
techniques in the literature of machine learning for data streams. Other metrics such
as f1 score, precision and recall have not been considered necessary since the data used
is balanced. Regarding the cost of the model, we will mainly report the RAM-hours
and the total run time for testing and training (prequentially - as in Subsection 2.2.6.2)
tasks.

2.2.5.1 Accuracy and Confusion Matrix

Confusion matrices summarise the success of classification tasks by presenting predic-
tions against ground truth results per class or label. In confusion matrices, one of their
axes is dedicated to the label predicted by the model, and the other to the ground
truth class. In a confusion matrix, the number of data instances correctly identified
positively is the number of true positives (TP). Conversely, true negatives (TN) are
the number of negatives correctly classified. False positives (FP) and false negatives
(FN) are the numbers of negatives and positives classified incorrectly as positives and
negatives, respectively. Table 2.3 illustrates an example confusion matrix for binary
classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(2-13)

Error = FP + FN

TP + TN + FP + FN
(2-14)



32
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

Predicted
+ –

Actual value + TP FN
– FP TN

Table 2.3: Example of confusion matrix for binary classification.

The accuracy metric can be derived from the confusion matrix as the total number
classifications out of all the predictions performed. This thesis will use this as one of
the main metrics to report prediction performance in balanced datasets. Equations
2-13 and 2-14 show the definitions of accuracy and its complement, the error rate (1 -
accuracy) respectively for binary classification. A more general definitions can be seen
in Eqs. 2-15 and 2-16.

Accuracy =
Correct Predictions

Total Number of Instances Predicted (2-15)

Error = Incorrect Predictions
Total Number of Instances Predicted (2-16)

2.2.5.2 Kappa Statistics

Although the datasets that will be used in this thesis have a balanced class distribution,
data streams may present differences in the class balance over time. For this purpose, in
the literature of online incremental machine learning for data streams, the convention
is to use kappa statistics. In online settings, this metric is considered more appropriate
than other metrics, like the area under the ROC curve, due to its computational
efficiency [45].

Kappa statistics (κ) is a measure that expresses agreement between observations.
This was initially introduced by Cohen [93] and considered the randomness of each
class for rating the strength of a classifier. Since there are many definitions of this
formula that are not equivalent, in this thesis, we will use the implementation offered
as an error metric in the MOA framework [52].

κ =
Po − Pc

1− Pc
(2-17)
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κ is defined by equation 2-17. Po is the observed overall agreement, in other words,
the classifier’s accuracy; Pc is the mean proportion of agreement expected; it represents
the probability of predicting correctly by chance (randomly). Po − Pc represents the
actual degree of agreement obtained. This is normalised by the maximum obtainable
agreement 1− Pc. κ = 1 if the classifier always predicts correctly. However, if the
classifiers’ predictions are only correct on the same measure than what they should be
randomly (e.g. due to class distribution), then κ = 0.

2.2.5.3 Computational Resources

An essential consideration of online incremental machine learning algorithms for data
streams is that these are must be prepared to run continuously. In this regard, when
designing an online machine learning algorithm, the user must bear in mind the run
time of the learning and prediction process for a given data stream and be aware of any
bottlenecks that may cause issues in a continuous setup. Hence, in the main proposal of
this thesis, we will report the time in seconds consumed by the algorithms for learning
and prediction tasks to process each data stream.

Another factor to consider is the pricing of computational resources over time.
Some of these models nowadays may run on the cloud vendors where there is a cost
associated per hour, and pricing in these platforms depends on the size of the machine
rented [51]. Thus, there is a cost associated with running machine learning models
more CPU, GPU, storage or RAM intensive. For this reason, RAM-hours (megabytes
of RAM used per hour) has become an important evaluation measure of the resources
used by streaming algorithms [51]. RAM-hours can be used to quantify if the cost of the
changes is worth it [44]. In this thesis, RAM-hours will be compared to improvements
in other evaluation measures such as the run-time, the overall accuracy and kappa
statistics.

2.2.6 Evaluation Schemes

2.2.6.1 Holdout

Holdout is one of the typical evaluation schemes in traditional machine learning.
However, the main idea of this scheme is that train and test are disjointed sets;
data instances do not overlap between them [143]. Hence, training and test sets in
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a holdout evaluation are independent. The splitting of these sets can be done in
different ways to adjust for learning data over time, for instance, through sliding
windows where each train and test sets represent different time windows. Figure 2.5
illustrates a simple and sliding window holdout approaches.

TestTrain

(a)

Train Test

Train Test

Train Test

(b)

Figure 2.5: Examples of holdout evaluation with disjointed train and test sets. SubFig-
ure 2.5a refers to a single training batch. In subFigure 2.5b, a sliding window
holdout approach is taken.

One of the different problems associated with this scheme is that it reduces the
amount of data available for training and testing tasks due to the splitting. Due to
this split, in non-stationary data, a model can overfit the state of the data distribution
in a given set of instances and not adapt well to out of sample instances. This split
can also create different levels of skewness across the datasets used due to the contin-
uous evolution and temporal feature and class imbalance over time in data streaming
scenarios. In this case, cross-validation, where holdout is repeated for different splits,
can be a workaround.

2.2.6.2 Prequential or Interleaved Test-then-train

Prequential or interleaved test-then-train evaluation has become popular in machine
learning for data streams since it helps monitor the error of an algorithm over time
[81,139,292,330,340].
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At the start of the testing process, the model has been trained with few instances,
impacting its predictive accuracy. In a prequential evaluation, data is continuously
evaluated as soon as it is available, hence being valuable for online learning [81]. Each
data instance is used first to predict. Then once the ground truth is known, this in-
stance can be labelled, and the prediction error of the model can be computed. Finally,
the model can be updated, using that instance for training. Figure 2.6 illustrates a
prequential evaluation as opposed to the holdout shown in Figure 2.5a. The main
difference between this approach and holdout is that test and train are not disjointed
sets. Thus, the prequential evaluation uses instances more efficiently [81], and it is
suitable for online scenarios and incremental machine learning algorithms which can
be updated and adapt to new instances. The use of this evaluation scheme avoids the
need of retraining the whole model from scratch in non-stationary scenarios [385]. For
this reason, the prequential evaluation will be the main scheme used in this document.

Test & 
Train

Test & 
Train

Test & 
Train

Test & 
Train

...

Training Instance Testing Instance

Time

t = n

t = 1

Figure 2.6: Prequential scheme. Each instance is used first for test, and then to train.

In a trading context, this continuous training process could run at high frequencies.
When a model is put into production, the model may be empty; if a pre-trained model
is loaded, it would not be fine-tuned. The performance of the model is expected to
improve over time since it will be trained with more instances. When a new sample
arrives, a trading system with a continuous learning approach would first predict and
generate a trading signal straightway. Then, once a label for this data instance is
available, this would be used for training the algorithm. Models under this training
task are always up-to-date as data is fed continuously.
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2.3 Machine Learning for Data Streams

2.3.1 Overview

Financial data can present different levels of uncertainty, non-linear behaviours, and
statistical properties over time [357]. The level of correlation between the attribute
space and a predicted feature, as well as the degree of volatilities exhibited by price
returns, might present dynamic changes [180]. In the machine learning literature, these
changes are known as the problem of concept drift [350]. As mentioned in Chapter 1,
this problem has gained importance in the financial domain [104] in recent years as
different crises like the Great Recession and the COVID-19 pandemic have stressed
the non-stationary nature and the likelihood of drastic structural shifts in markets
[104, 162, 182, 259, 319, 360]. These dynamic changes require algorithms to learn on
the fly and “not to have a separate one-off training phase followed by an exploitation
phase” [21]. Online incremental machine learning techniques are used in the academic
literature to deal actively or passively [124] with concept drifts and the non-stationary
nature of data from different domains [350]. These techniques, explained further in
Section 2.3.2, are suitable to learn from continuous data streams of information.

In Section 2.1.4.2 we have discussed the non-stationary nature of financial time
series. Despite this fact, the number of contributions using online incremental machine
learning for data streams in the economic forecasting domain is still minimal [286,
287, 329]. Rather than online models that receive incremental updates over time, the
current trend is to use offline (traditional) machine learning algorithms that need to
be retrained at some point in time. These algorithms have a cost in terms of predictive
accuracy when the model is not up-to-date and in terms of computational cost at the
time of retraining with historical data or fine-tuning. Figure 2.7, extracted from [21],
illustrates the above-mentioned differences between offline and online machine learning.

In this thesis, we propose the use of online learning in the stock forecasting domain.
Most models presented are constantly updated with the latest labelled data and learn
continuously, not needing any separate retraining phase. We explore different types
of changes (concept drifts) described in Section 2.3.3, and techniques to deal with
these that are described in Section 2.3.4. The online incremental machine learning
algorithms covered in this thesis, both supervised and unsupervised, are described in
Sections 2.3.5 and 2.3.6 respectively.
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(a)

(b)

Figure 2.7: Offline (2.7a) versus online (2.7b) learning. Extracted from [21].

2.3.2 Data Stream Mining

A data stream is defined in the literature [144, 185, 320] as a continuous data flow
of information, in the form of ordered data instances or chunks (sets of instances or
batch) arriving at different speeds or time intervals, DS = [X1,X2, . . . ,Xt], where Xt

represents the most recent data received. As in offline machine learning, every data
instance xt has a label yt for supervised settings. Each data instance is made of a set of
n attributes, as, e.g., Xt = [xt,1, . . . ,xt,n]. As opposed to time-series modelling, setting
an specific time order between these attributes is not a requirement of data instances
in data stream mining [292].

There is a clear distinction in the literature between instance incremental and
batch incremental learning in data streams. In the first one, a machine learning algo-
rithm learns from every individual instance coming from a data stream. The second
one performs a learning iteration once it has received a given number of instances. As
explained in Section 2.1.4.2 time series is a field focused on modelling in chronological
order observations over a specific time interval and where data may arrive in an online
fashion. Data stream mining has been recently seen in the literature as an extension of
the time series field [292] as these can involve temporal dependence [154] as analysed
by Zliobaite in [384].
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Data stream learning is a field that faces extra challenges apart from the ones
related to temporal dependence and time series. In data streams, instances and the
number of them and ranges for values of attributes are not given beforehand but are
received sequentially. Since data streams can be infinite, it may not be possible to
store the incoming information into memory and learners must be prepared to process
the information as it comes [152]. For this reason, there is an emphasis on achieving
one-pass algorithms (without epochs or iterations) to process and learn incrementally
from data as it comes and the need to avoid high-performance bottlenecks and re-
duce computational complexity exhibited by offline algorithms [21, 292]. According to
Zliobaite in [385], in terms of resources, “online algorithms should: (1) scale linearly
with the incoming data in terms of processing time; (2) use limited memory; and (3)
execute adaptation only if the expected utility is sufficient”.

In online learning scenarios and data stream mining, there is no clear separation
between testing and training processes as in offline learning since models need to start
predicting before the data stream is over (as this point may not exist due to the
assumption of infinite streams in this field). Thus, it is necessary to evaluate the model
continuously to assess its evolution over time and the health of the models. For this
purpose, the convention in data stream mining is to evaluate the models prequentially,
as covered in Section 2.2.6.2. In other words, a stream mining learner should always
be ready to, first, receive an unlabeled instance and predict its label with an up to
date model and, second, receive the true class label for the previous prediction and use
it for training [48]. In data stream mining access to the true labels of the instances
for supervised training may be delayed. Most of the existing works on data stream
classification assume that the true class yt for Xt becomes available before the next
data instance Xt+1 is received by the learner [152]. While this is not necessarily true
in all data streaming scenarios, in this thesis, we work on prediction settings where
this assumption is met.

2.3.3 The Problem of Concept Drift

2.3.3.1 Definition

Online machine learning algorithms do not assume stationary and static datasets like
offline methods. These receive data instances gradually over time, and, depending on
the domain, no assumptions shall be made regarding correlation among features, size,
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values or order of arrival [37]. Data streams may present non-stationary behaviour
over time, leading to changes in their probability distribution and deterioration of the
quality of the previously learned models. This phenomenon, which can be easily linked
to structural breaks as mentioned earlier in this section and must be handled when
learning from data streams to ensure a steady model performance over time, is known
in the academic literature as concept drift [350]. Different techniques used for this
purpose are covered in Section 2.3.4.1.

A concept (C) can be defined as a set of prior class-conditional probability density
functions and class probability distributions [266] as seen in Equation 2-18.

C =
⋃

yi∈Y

{(P [yi] ,P [x⃗ | yi])} (2-18)

For a given data stream DS, each instance produced overtime Xt will be created
by a generative process or concept Ct (or ground truth state as presented in the next
Subsection). While Cti = Cti−1 , the concept of the data stream is considered stable.
If at some point Cti ̸= Cti−1 , then we consider that there has been a shift or drift
in the data [49, 144]. Equation 2-19 defines a concept drift as a change of the class-
conditional probability density functions and class probability distributions (p) between
two timestamps t0 and t1.

∃X : pt0 (X, y) ̸= pt1 (X, y) (2-19)

In data stream learning, there may be periods where concepts are stable (remains
the same) and periods with concept drifts of different lengths. For this reason, online
learners are required to balance the retention of previously learned knowledge (stability)
while adapting to new concepts (plasticity). This tradeoff is known as the stability-
plasticity dilemma by the literature of online learning for data streams [144,222].

2.3.3.2 Our Definition of Ground Truth

In artificial intelligence research, ground truth tends to refer to the fundamental truth
in an underlying prediction problem. This can refer to the true class label in supervised
learning tasks, the actual position of an object in an image in object recognition, or
the absolute number of clusters in unsupervised settings.
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Since part of this work is about change detection, when we talk about ground truth
changes in this thesis, we refer to having explicit information or knowledge regarding
when a concept drift starts and finishes (ground truth changes). If we mention a ground
truth state, then we refer to the actual market state at a point in time.

2.3.3.3 Concept Drift Categorisation

As mentioned in Subsection 2.3.3, concept drifts can be described as transitions be-
tween generative processes in a data stream. These transitions can occur with different
speeds, severity and distribution [181]. Drifts can be classified differently depending on
the impact, interval, distribution or speed of the change. Thus, in the relevant litera-
ture [118,151,207] there are various approaches to categorise concept drifts considering
these aspects:

• Impact on the boundaries of the data distribution. The literature makes a dis-
tinction between real and virtual concept drift. The first one affects decision
boundaries and deteriorates the performance of the models learned. The second
one (virtual) only impacts the conditional probability density function. It does
not impact the posterior probabilities as real drifts [290]. Figure 2.8 illustrates a
difference between these two types of drift.

• Distribution and reach of change. Drifts can occur within a given class or clusters
or among many of these [181], hence, being considered local or global drifts,
respectively.

x1

x2

(a) Original data
x1

x2

(b) Virtual Drift
x1

x2

(c) Real Drift

Figure 2.8: Types of drift depending on their areas of influence. x1 and x2 represent two
attributes of the feature set. Classes in blue and red colours.
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• The interval of occurrence of drifts. If drifts always occur after the same time
interval, these are considered periodic drifts. If the time of occurrence is not
fixed, these are considered irregular.

• Speed of change. This speed is defined by the number of instances or batches
until the shift completes, and the change is considered completed when data is
only generated by the new process [254]. Figure 2.9 represents the different types
of transitions graphically depending on the speed of change.

– Sudden or abrupt drifts occur in short periods. Usually in very few data
instances. For example, if the generative process of a data stream changes
between two consecutive data instances or batches Cti ̸= Cti−1 , we talk
about a sudden drift.

– Gradual drifts are characterised by a more moderate speed than sudden
drifts. These exhibit a longer transition phase and data instances are gen-
erated by a mixture of the previous Cti−1 and the new Cti concepts.

– Incremental drifts are characterised by the slowest speed of change, and
differences between data instances in the transition period may not even be
statistically significant.

• Recurrence. Recurring (or recurrent) drifts are transitions to concepts previously
seen. These represent a change leading to stationarity in the data stream. For
instance, if the data stream has a set of states DS = {S1,S2, . . . ,Sn}, where
each state Si is generated by a different generative process Ci, transitions to
these know processes previously seen (e.g. S2) are considered recurring drifts
when they occur as a new drift Sn. This is well defined formally in [290] as
Si+1 = Si−k, where k represents the kth previous generative process. A recurrent
drift can be sudden, gradual or incremental depending on its speed, and periodic
or irregular depending on its intervals of repetition.

• Blips (or outliers) and noise tend to be ignored in the literature as they may
represent random shifts for short timeframes and represent residual concept tran-
sitions, respectively.

Several surveys from the state of the art in data stream mining [181,290] consider
abrupt drifts those of length equal to one. Thus, assuming that sudden drifts do
not have any sort of transition period. In the financial domain, structural breaks do
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not tend to be sudden from one data instance to the next one. This is especially
at high frequencies since the adoption of different behaviour by investors does not
occur simultaneously. In these and other domains, sudden structural breaks can have
a transition period. Hence, due to the financial background of this thesis, we will
adopt this terminology and consider that sudden drifts could still take more than one
time step to complete. Consequently, we will name gradual drifts those changes of
considerable longer transition periods than what we will define as abrupt drifts.
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Figure 2.9: Different types of drifts depending on their speed and sharpness.

Furthermore, the reader must note that in real-world data streams, drifts and
their types are unknown beforehand. In certain cases, a concept drift may appear as a
mixture of the types mentioned above, or multiple single drifts may occur concurrently
in the data stream. For the sake of simplicity, in this thesis, we assume that drifts
occur once at a time (single drifts). For us, as explained earlier in this section and
Chapter 1, drifts are changes in the generative process of the data stream instances. We
will consider concept drifts of different transition speeds that we will name as abrupt or
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gradual drifts depending on the sharpness of the change. One of the goals of this thesis
is to correctly identify recurring drifts to avoid model retraining if an algorithm has
been previously trained for a given generative process. In real-world datasets, we will
consider irregular intervals for any drifts. In simulated streams, we will create periodic
transitions to simplicity the problem of detecting recurring concept drifts at various
speeds. We will mainly deal with real drifts deteriorating classification performance
since our final goal will be to obtain the best classification accuracy in stock trend
prediction. In this regard, we will not make any distinction between local or global
drifts. Blips and noise will not be directly covered, but we will use techniques from the
state of the art that should be resilient to these and are introduced in the next section.

2.3.4 Learning under Concept Drift

2.3.4.1 Passive versus Active Drift Handling Approaches

Section 2.3.3 covered the concept drift phenomenon and how drifts can occur unex-
pectedly or gradually in a data stream in various ways. As shifts can have an impact
on the performances of the trained model, the search for strategies to handle changes
in data streams is an active area of research [37, 144, 151, 290]. Broadly, there are two
different approaches to handle concept drifts.

• Passive (adaptive) approaches. Models that react passively to concept drifts
incorporate mechanisms to adapt to changes in the latest data instances received.
These sorts of approaches work better with incremental or gradual shifts or data
streams that change continuously over time.

• Active or explicit (detection) approaches. Active drift detectors follow quanti-
tative methods to observe patterns breaking periods of stability and react con-
sequently (e.g. sliding windows based approaches [37, 39, 151]). These can be
integrated as part of online algorithms for data stream learning [152] or com-
bined with them to decide when to replace, update or re-train a model [14,290].
Active approaches are aimed to sudden concept drifts as these can react rapidly
to any changes in the data distribution [147] or in the learning accuracy [39].

In this thesis, we will use both passive and active approaches to handle concept
drifts. The next section describes the drift detectors that will be used in Chapters
4 and 5.
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2.3.4.2 Drift Detection

In this thesis, we will use some of the drift detectors that have proven to achieve
better results in the literature [39,107,160]. These drift detectors that we will use fall
into the category of supervised drift detectors and generally receive a sliding window
of (online) prediction errors obtained by a supervised machine learning algorithm to
monitor potential changes impacting the learner’s performance. These errors indicate
if the base classifier predicts the arriving instance correctly or not, decreasing when the
learner classifies an instance correctly. Changes in these online errors or other statistics
gathered and based on rolling windows are considered a potential drift.

Many of these detectors work in a two-stage setting where a lower confidence level
raises a warning that indicates a potential drift [290]. Thus, this setting illustrated by
Figure 2.10 raises the following two signals:

• Warning signal. This is produced at a lower confidence interval to report a
potential drift when it starts. It reports that a change is suspected in the data
stream. Hence, concept drifts handling strategies tend to create a new base
classier to be trained in parallel to the active model but only with the new data
stream instances.

• Drift signal. This has the highest confidence level of the two and reports that
a change has already occurred. Drift-handling strategies generally replace the
active model with a new learner when this signal is raised.

Figure 2.10: Illustration of a two-stage drift detection mechanism, extracted from [207].
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These supervised detectors need to test learners over a certain number of data
instances of the stream to measure the change in classification error and thus raise
warning and drift signals. This design implies a delay between the real drift point
and any warning or drift signal being produced by the detectors, as illustrated in
Figure 2.10. The time between the warning and drift signals in the relevant literature
is referred to as warning window [158,252].

The drift detectors used in this thesis are listed below. For a more detailed de-
scription, see [107,160].

• Drift detection method (DDM). Proposed by Gama and Labidi in [142], it uses
classification results to compute the online error rate of the base learner. DDM
considers that, when the concept changes, the base learner will incorrectly classify
the arriving instances that are created by a different generative process. Thus, if
the error rate increases up to a certain threshold, it raises a concept drift signal.

• Early drift detection method (EDDM). This detector was proposed by Baena-
García et al. in [32] as a variant of DDM that analyses the distance between two
consecutive misclassifications instead of the number of misclassifications. One
advantage of this detector is that it does not have any input parameters.

• ADaptive WINdowing 2 (ADWIN2). Bifet and Gavalda proposed this drift de-
tector in [46]. It maintains a sliding window divided into two sub-windows rep-
resenting old and new data and adjusting dynamically. ADWIN2 signals drift if
the mean difference between both sub-windows surpasses a threshold. The size
of the window decreases in the presence of drift and increases during periods of
stability. This detector has recently been used in the literature to detect concept
drift using online classification error rates [152]. A separate instance of ADWIN2
needs to be in place with a lower threshold to detect warnings.

• Reactive drift detection method (RDDM). This detector was proposed by Barros
et al. in [38] as an improvement of DDM, which sensitivity decreased over time in
very large concepts. RDDM continuously recomputes the statistics responsible
for signalling warnings and drifts. It discards old instances and forces drift in
concepts and warnings active for long periods, respectively. RDDM has been
demonstrated to be one of the best-supervised drift detectors of the literature for
gradual drifts in synthetic datasets [107].
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• Drift detection method based on Hoeffding’s inequality (HDDM). This detector
was proposed by Frías-Blanco et al. in [132]. It applies “probability inequalities
that assume only independent, univariate and bounded random variables to obtain
theoretical guarantees for the detection of such distributional changes”. HDDM
monitors false positive and negative rates, not assuming that the results come
given by a Bernoulli distribution. The authors of HDDM propose two different
versions:

– A-test (HDDMA) uses two moving averages to track changes.

– W-test (HDDMW ) uses weighted moving averages for the same purpose.

HDDM’s A-test and W-test are aimed for abrupt and gradual changes respec-
tively [107].

2.3.4.3 Model Reuse

State-of-the-art papers on data stream mining focus on different types of drifts and
shifts that can either impact or not in the learning models’ error rates. This has
been explained in Subsections 2.3.3.3 and 2.3.4. In this context, changes are normally
associated with non-stationarities in a data stream. However, stationary data streams
can have concept drifts at the time of change between different stationarities or states.

The relevant literature claims that reusing a classifier previously learned for the
current state is more efficient than rebuilding a classifier from zero. At least, there
should be a shorter time spawn to have a model trained for the current data, and this
impacts not only computational cost but also the learning model error rates. The task
of reusing a previous model is often seen in the literature as a sort of transfer learning
task (TL) [165, 292]. However, this term is usually associated with the deep learning
field.

However, and especially in data streams with more than two concepts, one of the
challenges of the task of reusing a previous model is to identify what is the suitable
model to be reused. In certain contexts, there may be dozens or hundreds of previ-
ously learned models in a history of saved learners (concept history), and finding the
right metrics to select the most appropriate one is already a research branch in data
stream mining. Two different metrics used for this purpose in this thesis are conceptual
equivalence and concept similarity. These are briefly described on the next page.
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• Conceptual equivalence was initially proposed by Yang et al. in [376] and assumes
that when two classifiers behave similarly predicting during a time window, both
describe the same concept. When drift is signalled, all classifiers are given a set of
new data instances to predict. If, for a data instance, two classifiers produce the
same output, then the conceptual equivalence between the two increases. The
total score is the mean conceptual equivalence for all the data instances compared
across all classifier pairs. The full algorithm can be found in [376].

• Concept similarity was initially proposed by Li et al. in [221] to detect recurring
drifts in the absence of labelled data. The approach in [221] aimed to recognise
similar concepts using Euclidean distance distances between clusters representing
different concepts (namely concept clusters). They defined a set of thresholds
to decide between the occurrence of drifts, noise and recurrences. The latter
(recurrent concepts) are recognised if the deviation between a new and a previous
cluster is lower than a certain threshold.

2.3.4.4 Meta-learning

Another challenge for reusing previous models is how to store them in memory. There
can be scenarios where novel concepts keep appearing in the data stream, and thus,
the stack of historical models will grow infinitely. This leads to research in setting a
maximum pool size for historical models and pruning and replacement strategies of old
or unused learners. The data stream mining literature uses online machine learning
models to manage strategies and operations with classifiers [14,140,141]. These models
(or frameworks) that manage how, when, and what-to-learn [355], and that are beyond
the learner used (algorithm-agnostic), are known as meta-learners and are often used
to handle scenarios with recurring concepts [16,140,252].

Meta-learning approaches can either decide when to train, when and what model to
replace, when to forget (prune) a learner and when to create one [143,299] by using the
evaluation performance metrics of active and historical models (meta-features) [356].
These approaches can also help with model selection for a given dataset. Hence, meta-
learning is considered a subfield of AutoML despite being an older branch of research
[294,353]. This subfield is inspired by the human learning system that reuses previous
knowledge to learn new tasks, not starting from zero every time. In data stream
mining, meta-learning algorithms tend to manage a pool of learners and estimate the
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weights of these training them as an ensemble algorithm [188, 354]. We will use these
in Chapter 5 to handle recurring changes in the financial domain.

2.3.5 Supervised Learning in Data Streams

One of the differences between online and offline (batch) supervised learning techniques
is their interleaved nature, as explained in Section 2.2.6.2. In an offline setting, the
entire dataset is available at the start of the training task, and a whole batch of data
is fed to the model, often in multiple iterations or epochs.

Conversely, in online scenarios, data instances will be available incrementally over
time and thus should learn from them as soon as these become available [139]. At
the same time, the nature of the prediction in an online scenario is to occur at any
point in time with the current learning model, which creates a set of challenges [240]
as seen along this chapter. Another difference, as covered in the previous section,
is the presence of concept drifts that can invalidate the model learned, which gives
importance to the adaptive learning process and the interleaved evaluation [152].

This subsection describes Hoeffding trees (HT) and Hoeffding adaptive trees
(HAT). The incremental version of naive Bayes that we use is not described as its
theoretical background has been already covered in Section 2.2.3.1. Beyond the incre-
mentalisation of other approaches or ensemble models, HT and HAT, which are state-
of-the-art one-pass incremental learners for stationary and non-stationary streams,
respectively [240] will be the online learners that will be used in this thesis.

2.3.5.1 Hoeffding Trees

The Hoeffding tree (HT) algorithm is a version of CVFDT of the concept-adapting
very fast decision tree online learner (CVFDT) proposed by Hulten in [185]. This
algorithm starts its learning process using the first data instances received to choose
the attribute used to split the root node. All the following instances received are
passed to HT until reaching the leaves. Child nodes keep statistics representing the
data distribution seen by them, and these statistics are used to decide what nodes to
split and what attributes to use as separation boundaries. In its default setting, HT
creates a naive Bayes classifier at the leaves if it provides better accuracy than using
the majority class. Child nodes are evaluated recursively for further splits [119, 185].
Thus in HT, there are two types of nodes:
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• Learning nodes: leaves used to predict and gather statistics over time.

• Filtering nodes: root and intermediate nodes used to forward examples to the
right child.

One of the challenges online trees face is deciding the best time to produce a
split. This is because instances are not processed at once, unlike offline trees, and data
streams may be infinite. In this regard, HT runs a statistical test called the Hoeffding
test over child node statistics [119, 173] to decide when there is enough confidence in
the stream to place a decision boundary by splitting a node. The Hoeffding inequality
provides upper and lower bounds of the number of examples necessary to produce
a split at each node. This algorithm has been studied recently in [240]. Despite
being proposed for stationary streams, it can adapt to concept drift (especially abrupt
changes). Part of this is because child nodes split in non-stationarities, resetting their
previously gathered statistics. This model does not store previous instances, and thus,
it does not reconstruct node statistics (forgetting them) after a split. Hence, splits in
Hoeffding trees help them to adapt to concept drifts.

This algorithm will be used as a base classifier in Section 4. algorithm 4.3 will
refer to Hoeffding trees with a bagging mechanism, which is part of an ensemble model.
For more information about HT or to see the full algorithm, see [240].

2.3.5.2 Hoeffding Adaptive Trees

Hoeffding adaptive tree (HAT) is an adaptive version of the Hoeffding tree proposed
by Bifet in [47]. It uses ADWIN2 as the default supervised drift detector and monitors
changes in the error metrics of different subtrees (branches). HAT replaces them with
more accurate branches (background subtrees) if the error of the former one decreases
over time. HAT also improves the HT algorithm with a bootstrap sampling strategy
which usually is a feature of ensembles.

The main differences of the HAT with respect to HT contributing to fast reaction
in case of abrupt changes are the following two actions during training:

• Creation of new subtrees: background subtrees are created directly when a drift
is detected, not depending on any pre-established number of instances or buffer.

• Replacement of subtrees: HAT replaces old branches with the background subtree
once the second is more accurate [48].
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2.3.6 Unsupervised Learning in Data Streams

Online methods need to take into consideration the potential presence of concept drifts
in the incoming data stream. The use of offline techniques implies storing the training
datasets for retraining and re-evaluation purposes later. The literature of data stream
mining assumes that streams can be unbounded, and thus their storage is not feasible
after a certain point [320]. Hence, online methods avoid the computational and storage-
related costs by applying incremental updates over time. Online unsupervised learning
(or stream clustering) algorithms continuously feed new data instances to existing
models. Clustercentres are updated incrementally accordingly to the latest instances
seen, and old data can be forgotten over time if this is not relevant to the model (e.g.
low weights) [320].

Like traditional data clustering methods explained in Section 2.2.2, stream cluster-
ing can be classified into five categories: i) partitioning methods, ii) hierarchical meth-
ods, iii) density-based methods, iv) grid-based methods, and v) model-based methods.
This work will focus on model-based methods because these aim to “optimise the like-
lihood between a dataset and statistic models” [265], and we will use statistical methods
to model ground truth market states. For a deep insight into the relationships between
traditional clustering methods and stream clustering methods, see [265].

Model-based clustering methods train their model and grow the list of centroid-
like entities (or neurons) based on the model’s error. While other methods only look at
the data distribution and the error between instances and centroids [111]. We believe
that this property of model-based techniques can help us represent in a non-supervised
manner a concept or state.

In Chapter 4 we will use model-based techniques to summarise the data distribu-
tion. Chapter 5 uses an online unsupervised learning algorithm to represent our inter-
pretation of different financial market states. This algorithm, namely growing neural
gas, and the algorithms it leverages from are described in the following subsections.

2.3.6.1 Self-Organising Maps

Kohonen proposed the self-organising maps (SOM) algorithm in [202]. This algorithm
is a shallow neural network that consists of an input and a competitive layer. The first
layer has a set of neurons (also called prototypes in our work) that are connected among
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them. Each neuron is assigned a vector of weights to be updated during training. An
in-depth description of this competitive learning strategy can be found in [204].

After training, SOM splits the feature space into a set of sub-regions that receive
the name of voronoi regions and assigns neurons as the centres of each of these
regions. As these region centers act as centroids, this technique can be categorised
as a model-based clustering algorithm. Additionally, SOM projects (preserving the
original topology) the input feature space into a lower dimension. It adapts weights
of neurons to the topological regions with more density to find clusters in a 2D or
3D space, which allows its use for data visualisation of high-dimensional spaces [226].
This mapping to a low dimensional space is illustrated by Figure 2.11.

Figure 2.11: Example of SOM representing multiple clusters as different colors. From [92].

Some limitations of SOM, according to [226, 322] are that the results obtained
can change highly by a set of predefined parameters that are hard to establish before
knowing the data distribution. For instance, the size of the network (neurons) is
specified before and is immutable during the learning process. Too large or small size
can make the model over or under fit to the data distribution respectively. A solution
for this, which in any case may not work for complex cluster shapes, is to determine the
shape of the distribution in parallel to the desired number of neurons in the network
at the training stage. This approach implies multiple training iterations, which makes
SOM unsuitable for both online scenarios and dynamic distributions [309,316].
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Different continuous learning alternatives to SOM have been proposed in the lit-
erature [136, 250]. One of them, described in Section 2.3.6.3, will be used in Chapters
4 and 5 of this thesis.

2.3.6.2 Neural Gas

Martinetz and Schulten initially proposed the prototype generation neural gas (NG) al-
gorithm in [242]. This approach can be categorised as an unsupervised self-generating
learning algorithm. The learning process starts with a fixed number of prototypes
(or neurons) not connected among themselves. When NG receives instances, the pro-
totypes move in the feature space, and connections are created among the closest
prototypes to the instances received. During the learning process, prototypes can be
removed if they surpass a maximum age.

This algorithm, which served as a theoretical base to the unsupervised learning
algorithm that will be used in this thesis, is covered in more detail in Section 2.3.6.3.
This algorithm faces similar limitations to the SOM algorithm presented in the pre-
vious section since it is not prepared for online scenarios and depends on predefined
parameters.

2.3.6.3 Growing Neural Gas

Growing neural gas (GNG) was proposed by Fritzke [136] as an incremental version of
NG. It could also be seen as a modification of the SOM algorithm that does not have
a fixed number of prototypes. Instead, the number of prototypes evolves during the
competitive learning training process.

The training process of this prototype generation method is made of two stages,
the adaption process and the growth of the network. The adaption process selects an
input vector depending on a distribution function (neighbourhood function) and the
closest prototype (neuron) to each instance received. This adaption mechanism, which
can be compared to the adaption process in k-means explained in Section 2.2.2.1,
is also used by SOM with the only difference that the distribution function is only
applied to neighbours of the closest prototype [256]. GNG starts with two prototypes
placed randomly in the feature space. Edges (connections) are created between two
prototypes with most activity if there is no connection between them. The network of
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connections is evaluated iteratively. As data stream instances keep coming, prototypes
are created where the local error is larger or pruned following a competitive Hebbian
learning fashion if they are older than a certain threshold and do not have connections.
This process, illustrated in [135], can be seen in Figure 2.12 and step by step in
algorithm 2.3. In Figure 2.12, original instances are coloured in green, topology
prototypes represented as blue dots, and neighbourhood connections are represented
as edges in the graph.

Algorithm 2.3 Growing neural gas algorithm subtracted from [136]

1. Start with two units a and b at random positions wa and wb in Rn.

2. Generate an input signal ξ according to P (ξ).

3. Find the nearest unit s1 and the second-nearest unit s2.

4. Increment the age of all edges emanating from s1.

5. Add the squared distance between the input signal and the nearest unit in input space to a local counter variable:

∆errorss1 = |ws1 − ξ|2

6. Move s1 and its direct topological neighbours towards ξ by fractions ϵb and ϵn, respectively, of the total distance:

∆ws1 = ϵb(ξ−ws1)
∆wn = ϵn(ξ−wsn) for all direct neighbours n of s1

7. If s1 and s2 are connected by an edge, set the age of this edge to zero. If such an edge does not exist, create it.

8. Remove edges with an age larger than amax. If this results in points having no emanating edges, remove them
as well.

9. If the number of input signals generated so far is an integer multiple of a parameter λ, insert a new unit as
follows:

• Determine the unit q with the maximum accumulated error.

• Insert a new unit r halfway between q and its neighbour f with the largest error variable:

wr = 0.5(wq + wf ).

• Insert edges connecting the new unit r with units q and f , and remove the original edge between q and
f .

• Decrease the error variables of q and f by multiplying them with a constant α. Initialise the error variable
of r with the new value of the error variable of q.

10. Decrease all error variables by multiplying them with a constant d.

11. If a stopping criterion (e.g., net size or some performance measure) is not yet fulfilled go to step 1.

The GNG algorithm is considered suitable for continuous online learning and
dynamic data clustering. As a disadvantage versus SOM, GNG does not perform
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dimensionality reduction and thus is not suitable for data exploration purposes. This
fact is not an issue in our current work, as visualisation of feature maps is not a task
in scope. The authors of [186] perform a basic comparison between a dynamic version
of SOM and GNG. Unlike in SOM, in GNG, the connections between prototypes are
not permanent, which allows the continuous evolution of a concept and the continuous
change of the spatial distribution of a class. Finally, conversely to offline algorithms
like SOM and k-means, growing neural gas also adapts the size of its topology of
prototypes to the data received.

(a) (b)

(c) (d)

Figure 2.12: Example of learning process in growing neural gas over time. Behaviour of a
variant of GNG extracted from [149].
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2.4 Relevant Software

This thesis will use massive online analysis (MOA) [52], a tool developed in Java
by the University of Waikato. This tool will be used to simulate data streams and
test the models developed in a sort of back-testing fashion. The online incremental
machine learning algorithms proposed in this thesis will also be developed for the MOA
framework. The reasons to select this framework were: i) its popularity, being the most
widespread technology for online learning for data stream mining at the start of this
thesis [48], and ii) that the majority of the state-of-the-art algorithms were already
implemented in this framework. Experiments in this thesis have been run as bash
and Python scripts. Training and evaluation of MOA algorithms, coded in Java, was
triggered using bash. The Python programming language has mainly been used for
data pre-processing, analysis of results and visualisation.

The reader must note that currently there is a growing number of alternative
tools for the simulation (or development in production) of data streams and online
machine learning apart from MOA that are gaining popularity among both academics
and practitioners. For instance, if we consider stream processing, which is the first
step in production environments to produce, receive and parse incoming data flows,
there is a number frameworks such as Apache Spark, Flink, S4, Storm, and Kafka that
have gained popularity in the last years. Chintapalli et al. in [87] and Lopez et al.
benchmark them in [231]. Mehmood and Anees in [247] provide a systematic literature
review on the challenges of real-time data processing in big data streams.

In parallel, due to the adoption of AI in industry, frameworks for continuous de-
livery and integration of machine learning models such as CML 1 are gaining traction
to allow retraining strategies and model reuse with offline algorithms, which may re-
quire updates over time [34]. Offline learning remains the main trend in the industry.
However, there has been an increase in the popularity of continuous deep learning and
reinforcement learning algorithms [317,334] that have proved their usefulness in learn-
ing from data streams [154]. A selection of these methods will be cited at the end of
Subsection 3.2.1. In any case, new frameworks like River2 [257] are appearing to allow
developers outside academia to use and develop online machine learning algorithms.
Imbrea in [188], and Gomes et al. in [154], mention relevant tools in this domain.

1 https://github.com/iterative/cml
2 https://github.com/online-ml/river
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2.5 Summary

This thesis introduces new algorithms to make predictions in high-frequency time series
under structural changes like intraday stocks prices in the financial domain. In this
chapter, we have laid the foundation of this new connection between the online machine
learning and the financial literature by introducing their theoretical backgrounds. We
have focused on the idea of structural breaks in markets that may present a level of
efficiency depending on their traders’ perception and geopolitical situations.

First, in Section 2.1 we covered the concept of financial time series. Second, in
Section 2.2 we used time series as a framework to present the use of adaptive machine
learning techniques in the financial field. Using these approaches to handle structural
breaks is beneficial to minimise the prediction error during periods of instability and
allow continuous learning, which can lead to a financial advantage in markets that are
non-stationary by nature. Section 2.3 covered the field of data stream mining. In this
regard, we compared financial time series with incoming data streams of data. We
continued comparing structural breaks to the concept drift phenomenon. Then, we
introduced the theoretical background of different offline and online machine learning
algorithms that will be used in this thesis. Finally, Section 2.4 mentioned relevant
software and relevant reviews to guide any reader interested in data stream mining
and direct future research.

Chapter 2, attempted to provide the reader with the necessary theoretical base
to understand the rest of this work. In Chapter 3, we will cover recent and relevant
research to the approaches that will be presented later in this thesis. The application
of the data stream mining literature to the financial domain was not widespread at the
time of writing this thesis. Thus, in the next chapter, we will provide what for us is
the state of the art in this subject.



Chapter 3

State of the Art

Once explained the theoretical background of this thesis in Chapter 2, this chapter
will study related works in the two fields approached: i) online incremental machine
learning and ii) price stock movement prediction. We aim to bridge the gap between
both research topics and the problem of concept drift in data stream mining, which
are commonly studied separately. In fact, these similar fields are not connected in the
literature since financial experts have not used machine learning (ML) traditionally,
and data stream mining has been until now barely explored in industry.

First, in Section 3.1, we will introduce the research field of structural breaks
(regime changes) and relevant works. Then, in Section 3.2 we will review contributions
regarding concept drift. This will cover different approaches and metrics to handle and
measure drifts in the literature. In Section 3.3 we will cover a selection of remarkable
supervised learning works in data stream mining. This includes relevant works that
automate the ensembling, replacement and reuse of classifiers over time. Section 3.5
will cover research works about the topic of non-supervised learning under concept drift.
We will analyse different alternatives to traditional clustering approaches to support
the selection of models in continuous learning settings, which can benefit online learning
across different market states.

Section 3.6 will study the main contributions regarding price trend classification.
This will include previous research works and the main approach that we will use to
model financial data. Finally, we will summarise this review of the relevant literature
and analyse potential research opportunities in Section 3.7.

57
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3.1 Structural Changes as a Type of Concept Drifts

In computational finance, changes in the behaviour of the market are normally referred
to as regime changes or switches [19, 164, 169], structural breaks or changes [17, 109,
280, 280], volatility shifts [31], switching processes [288] or market states [259]. In
this kind of data, long periods of stability might be interrupted by short episodes of
abrupt changes [169]. Changes that may or not be transitory since a newly adopted
behaviour by the market, reflected as part of the mean returns, their volatility or
correlation among them, may persist for many periods. Timely recognition of these
sudden behavioural changes in markets can significantly lower the risk of financial
exposure. This has inspired the materialisation of techniques such as regime switching
models in the financial literature. Regime switching models work under the premise
that new dynamics of price returns and fundamentals persist for several periods after
a change. A key element in these models is if the exact market regimes reoccur over
time (e.g. across recessions or periods of economic growth) or if new regimes deviate
or have evolved from previous ones [19].

The prediction of future values in financial markets is a common application area
for ML. Previous research works report high accuracies forecasting price changes with
advanced techniques and the feasibility of making profits using these predictions, which
is against the EMH (explained in Chapter 2), that points to unbeatable markets. An al-
ternative theory is the adaptive market hypothesis (AMH) [227], introduced by Andrew
Lo in 2004. This theory, with empirical evidence in a increasing number of research
works [351], combines the EMH with principles from behavioural finance, allowing the
ideas of market efficiency and inefficiencies to co-exist. Under the AMH, the efficiency
of a market evolves as market participants adapt to an environment that changes
continuously. In this regard, participants rely on heuristics to make their investment
choice, leading to mostly rational markets under those heuristics (like the EMH). The
main difference is at the time of major behavioural shifts in the market participants,
as in economic shocks or crises. In this case, the AMH considers a market that evolves,
and the initially adaptive heuristics may become static in certain market situations.
Consequently, the EMH may not continue under periods of abnormal conditions, stress
or abrupt changes in the market. Hence, financial markets may be predictable in cer-
tain periods, as demonstrated by Lo [228]. Therefore, convergence to market efficiency
is neither guaranteed nor likely to occur. The level of efficiency depends on the market
participants and the market conditions at that time.
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One of the very few financial studies citing concept drift explicitly, being external
to use cases of evolving or adaptive AI research, can be found in Masegosa et al. in [243].
The authors of [243] analysed data of the Great Recession and claimed that economic
changes during this period manifest as concept drifts in their generative processes.
An intermediate example of trying to predict financial crises using machine learning
methods can be found in Samitas et al. in [305], where the authors studied possible
contagion risks between financial markets that could trigger financial crises to signal
warnings at an early stage.

Figure 3.1: Representation of financial crises (blue areas) versus moments of stability
(white) comparing the correlation across assets of the S&P 500. Extracted
from [259].

Two key research pieces in this regard are the works from Tsang [347] and Münnix
et al. in [259], which proposed mechanisms to identify points of drastic changes in
financial time series. Tsang [347] used statistical-based and traditional machine learn-
ing (e.g. naive Bayes) approaches to classify normal versus abnormal regimes. They
proposed a framework based on the change speed of price returns and the degree of
changes to visualise and discriminate between different market regimes depending on
the volatility of their price returns. The book of Tsang [347] provides an insightful
review of the literature on the topic of regime changes (RCs) in financial markets.
Münnix et al. in [259] visualised differences in the correlation structure of the price
returns across assets in the S&P 500 during the Great Recession (see Figure 3.1). They
extended the selection to a sample from 1992 to 2010, identifying eight market states
repeating behavioural changes over time.
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However, most of these previous research works focus on the likelihood of daily
or monthly changes, where retraining a model is an achievable task. In this thesis,
we focus on structural breaks and changes in intraday trading and at high frequencies.
Little research is focused on the seasonalities and changes at the intraday level [134,138,
307, 308, 366]. Due to the computational cost of ML and statistical methods, and the
high amount of data received at these resolutions, there is a need to keep models up to
date. For this reason, we will apply the data stream mining literature as a framework
to train online models that are always up to date. This approach will allow us to tackle
changes in the market structure as concept drifts. In Sections 3.2, 3.3 and 3.5 we cover
the most relevant research works in concept drift handling and data stream mining
machine learning algorithms.

3.2 Contributions Regarding Concept Drift

3.2.1 Introduction

The problem of concept drift was covered in Chapter 2 as a change in the data dis-
tribution and evolution of relationships between attributes and the target feature over
time. Chapter 2 explained the difference of passive adaption and active drift detec-
tion mechanisms and Subsections 3.2.2 and 3.2.3 will cover relevant research works
in this regard. This thesis will also explore the presence of stationarities in financial
data. Since in these scenarios previous learned models may become relevant again
in the future, we tackle this issue with solutions proposed for the problem of recur-
ring concepts [7, 156, 159], of increasing popularity in the data stream mining litera-
ture [118,144,151,290,365]. Considering potential concept recurrences is suitable since,
as part of the stability-plasticity dilemma mentioned in Section 2.3.3, online incremen-
tal machine learning algorithms may have to relearn previous concepts if these do not
have explicit mechanisms to remember them. This process has a high computational
burden, as it implies adapting or training a new model from scratch. Thus it causes
a lower predictive accuracy while the models are not up to date to the latest state of
the data stream.

Wares et al. in [364] described important challenges encountered in concept drift-
ing data streams. Online machine learning models need first to learn the latent space
representation of the dataset and then handle changes in the probability distribution
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and deal with catastrophic forgetting. Catastrophic forgetting, a challenge faced in con-
tinuous learning and especially in evolving data streams [206, 334], refers to adaptive
models forgetting previous knowledge when learning new patterns over time.

An open issue in the data stream mining field is the lack of links with the tra-
ditional time series literature [154]. This has started being studied by Jesse Read
recently [292,293], who aimed to unify the concepts of data streams and time series by
assessing their definitions in the literature and theoretical formulation. Read in [292]
proposed to interpret concepts as temporal sequences to allow continuous adaptation
and transfer knowledge to the next concept, as an effective alternative to explicit con-
cept drift detection. He noted that approaches such as stochastic gradient descent
would be able to perform this continuous adaption and referred to the literature of
transfer learning (TL) [272] and therefore neural networks (either shallow or deep) as
a way to deal with concept drifting data streams. The approach suggested by Read
was based on the temporal dependence that he perceived in the context of gradual or
partial concept drifts, a behaviour also observed by Mello et al. in [108]. Although
traditionally, TL has been used in offline settings, requiring the entire training set to
be present in memory before training commences, a few recent studies applied it to
non-stationary data streaming environments [253]. The authors in [24] presented a
way to include information about the current data distribution and its evolution over
time into machine learning algorithms.

Several approaches from the deep learning (DL) field (e.g. RNNs), which has ob-
tained state-of-the-art results in some financial applications [218, 271], have also tried
to face the problem of concept changes when learning continuously [206,303,334,379].
While its application to high-frequency markets is still an open problem, recent
research works using DL [321] claimed that financial data at high-frequencies exhibit
stylised facts and may hold learnable stationary patterns over long periods. In [313],
the authors reviewed modern ML and DL approaches applied to high-frequency
trading at the minute level. In [154] the authors analysed the usefulness of DL and
reinforcement learning (RL) methods in data streaming applications and cover further
the links between time series and data streams. Both techniques work naturally for
prediction in streaming contexts, but these have not been widely approached yet in
the data stream mining literature due to different reasons like their difficulty to be
trained and their need for reward functions instead of true labels.
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Despite the promising potential of DL approaches, this thesis does not focus on
these and is instead focused on prototype generation, meta-learning and ensembles.
We have done this following the current trend in the literature that will be presented
in this chapter. In this regard, a good subset of adaptive approaches in data stream
mining tend to use ensemble learners, so each base classifier adapts to a different non-
stationary behaviour or scenario that may re-appear in the future. This topic will be
covered further in Section 3.3.

As covered in Section 2.3.4, the literature on data stream mining makes a clear
distinction on the design of mechanisms to learn new data over time. Both passive and
active methods to handle concept drifts present different challenges in the literature.
Subsections 3.2.2 and 3.2.3 will cover related works regarding adaption and detection
to concept drifts respectively. Finally, Subsection 3.2.4 will touch relevant metrics in
the literature to measure the detection of concept changes.

3.2.2 Adaption to Changes

The main difference between incremental and adaptive algorithms is that the second
group considers explicit strategies to forget irrelevant information. In fact, according
to Gama et al. [144], adaptive learners can be interpreted as “advanced incremental
learning algorithms” that can adapt to changes in a data stream. The evolving nature
and speed of dynamic environments like high-frequency data streams produces a set of
issues at the storage and learning stage in machine learning algorithms. In this type of
non-stationary data, the underlying generative process of a time series can change over
time; models trained on old data instances may reduce their performance under such
changes. Hence, a priority in this field is to create mechanisms to handle and adapt to
concept drifts [233] while still accounting for periods of stability. The authors in [33]
provided a survey discussing research constraints and the state-of-the-art in different
supervised and non-supervised learning in data stream mining.

The trade-off between cost efficiency and performance [181,310,385] is one of the
most significant challenges in data stream mining. Online machine learning algorithms
have additional requirements compared to offline learners, such as the need to process
instances incrementally to avoid storing data for multiple passes. In terms of passive
adaption approaches to concept drift, ensembles have been one of the mechanisms
with the greatest predictive and computational performance in the relevant literature.
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Ensembles naturally fit the purpose of distributed computing frameworks, being easily
scalable to deal with massive data streams. However, the incremental nature of the
online learning process, and especially of the techniques to handle concept drifts are
purely sequential and become a computational bottleneck for base learners running
in parallel. In these scenarios, an adaptive framework can benefit from a mini-batch
strategy as proposed in [77]. Mini-batch approaches have been widely used in the
literature of data stream mining to port offline state-of-the-art algorithms to work with
dynamic environments or non-stationary data. These have also been used extensively
in ensemble learning for data streams as will be covered later in Subsection 3.3.2. A
drawback of mini-batch techniques is that, depending on the speed of the changes in
the generative process of the stream, approaches with fixed-size batch sizes may not
react in time to drifts. Thus, tuning the size of the batches becomes vital in these
non-purely incremental approaches. Small sizes can help to adapt to abrupt drifts
but can impact the predictive performance of the learners negatively during periods of
stability and have a higher computational cost [73].

Training a model continuously has become a convention in the data stream mining
literature, as this focuses typically on concept drifting data streams. However, continu-
ous learning may only be a requirement in non-stationary scenarios, as other stationary
processes could be handled by model reuse. Having said this, in an infinite data stream,
there may be small non-stationary learnable patterns inside each state, and stationary
states could also evolve continuously over time. Zliobaite in [385] proposed a frame-
work to assess the utility of having adaptive learners in different prediction problems.
Furthermore, each use case and domain may need different adaption strategies, but the
manual development of a strategy is a time-consuming process. Bakirov et al. in [34]
proposed a flexible mechanism to automate the development of adaption strategies.
However, this is a very recent proposal; its use is not widespread and does not have
enough competitors.

Another research area of interest for classification using online data streams are
evolving intelligent systems (EIS) [23, 40, 197], or evolving fuzzy systems [235] [234]
[236] [284]. These online and incremental systems are able to adapt themselves to
concept drifts of different nature on-the-fly through adaptive fuzzy-rules [22]. EIS
are based on fuzzy systems, which have already demonstrated their ability to solve
different kinds of problems in various application domains like the financial one [95,225].
These have achieved great results classifying non-stationary time series [162,286,287].
Recent EIS approaches can work as ensembles of rules [21] and apply meta-cognitive
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scaffolding theory for tuning the learned model incrementally in what-to-learn, when-
to-learn, and how-to-learn [306]. These have also introduced the ability to deal with
recurrent concepts explicitly and have beaten other methods at predicting the S&P
500 [283, 286, 287]. For instance, Pratama, Lu, Lughofer, Zhang, and Anavatti [285],
and Pratama, Lu, Lughofer, Zhang, and Er [286] employed an evolving type-2 recurrent
fuzzy neural networks to learn incrementally and handle recurring drifts. In any case,
there is still a significant gap between EIS and the rest of the literature for data streams
classification. Hence, these have been left out of scope of this work.

3.2.3 Drift Detection

While the literature has proved that continuous adaption is a good mechanism to
handle gradual or incremental drifts, in case of abrupt changes, incremental learners
may need time to adapt due to the model trained already for previous instances of a
prior concept. In these cases, the convention in this research field is to monitor either
change points (or intervals [41]) in the data distribution or the predictive performance
of a learner to quantify or characterise a drift. Different techniques to track these
changes and detect drifts able to maintain the performance of a model under unknown
changing conditions were presented in Section 2.3.4.2.

When drifts occur, algorithms in this field tend to completely or partially replace a
model when a significant change is detected. Many online classifiers use drift detectors
as a solution embedded in their approach. For instance, HAT [47], uses the detector
ADWIN2 at each node of the tree, cutting branches if drift is detected, and these will
grow again when learning new data instances from a new concept. J. Lu and A. Liu
et al. in [233] reviewed the state-of-the-art in concept drift detection and adaption,
unifying the general framework being used by most works in the literature for this
purpose. This, made of four different stages, is illustrated in Figure 3.2.

1. Retrieval of data stream instances (both historical and new).

2. Data pre-processing and modelling.

3. Test statistic calculation.

4. Hypothesis post-hoc tests.
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Figure 3.2: Example overall framework for concept drift detection, from [233].

The fast growth of research works highlighting the importance and proposing
new drift detection mechanisms has recently triggered the appearance of many works
surveying and benchmarking the main explicit drift detectors. The authors of [15,20,86]
benchmarked the impact of different detectors such as DDM across different state-of-
the-art incremental classifiers.

Gonçalves et al. in [160] and Pesaranghader and Viktor in [279], performed a
comparison of the state-of-the-art concept drift detectors. In both works, the drift
detection method (DDM) presented an overall good performance. A summary of the
best performers in their experiment is illustrated in Table 3.1. Barros et al. in [39,107],
proposed the drift detector RDDM described in Section 2.3.4.2. They benchmarked
different concept drift detectors as auxiliary methods in ensembles in terms of final
predictive accuracy under abrupt and gradual concept drifts. Their method (RDDM)
and HDDMA were the best detectors overall depending on the type of drift (gradual
or abrupt) and the base classifier used (naive Bayes or a Hoeffding tree).
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Methods Metrics

Abrupt Gradual Real-world Overall Execution DT FA MD
accuracy accuracy accuracy accuracy time

ADWIN2 ⇓ ⇑ ⇑ ⇑ ⇑ ⇓ ⇑ ⇓
DDM ⇑ ⇑ ⇓ ⇑ ⇑ ⇑ ⇑ ⇑

EDDM ⇓ ⇓ ⇓ ⇓ ⇑ ⇑ ⇓ ⇓

Table 3.1: Summary of the comparison of classification accuracy in data streams with
abrupt, gradual drifts and real-world data by Gonçalves et al. [160]. MD: mean of
examples seen until drift detection; FA: false alarms; MD: miss detection rates.

Something in common between all of these studies is that the performance of
these detectors over a classifier depends on the nature of the data stream itself and
the base classifier used. For this reason, and since HT and NB are the main base
learners used in the previous surveys and benchmarks, in this thesis, we will use these
two as base classifiers. Chikushi et al. in [86] performed a benchmark of detectors
across classifiers for different datasets and concluded that every type of data needs
needs its own evaluation process to decide a suitable drift detector. De Mello et al.
in [108] proved that, depending on their application fields, different data streams may
also need different metrics for concept drift detection.

In this thesis we aim to use different types drift handling mechanisms to deal with
gradual, abrupt changes to a new or a recurring model. While these detectors can be
used to deal with changes in the market behavioral structure [37,118,142,144,290,365],
we must recognise the scientific evidence in this section. Thus, since none of these
studies has been performed in financial data to the best of our knowledge, in Chapter 5
we will evaluate what detector and parameters to use across the main techniques from
the state-of-the-art. Each drift detector may identify different patterns and make base
classifier to require a different time window to recover from a concept drift. The
relevant literature regarding this comparison to be performed and the different metrics
involved in this recovery phase will be explained in more detail in Subsection 3.2.4.

3.2.4 Metrics to Measure Drift Detection Performance

Recently, the literature has shown that despite the good performance exhibited by
many supervised drift detectors, the error rate of the learners that these detectors
monitor can be based on temporal dependence [44, 384]. There can be adaptation
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errors in these scenarios if this temporal dependence is ignored, leading to reduced
predictive performance due to suboptimal decisions regarding what base learners to
use for predictions [165]. Hence, in cases of sharp changes where passive adaption is
not enough, many recent approaches to handle drifts considering temporal dependence
have been proposed [99,100,352].

Indeed, the idea of perfect change detectors lies in the ability to accurately identify
each time than the data stream generative process changes. In practice, all of the
studies presented in the previous subsection tend to underestimate or overestimate
the number of changes in a stream, with a higher or lower degree of false or true
positives. The task of concept drift detection does have associated costs, both in
predictive accuracy and computational. This has motivated researchers to propose
different metrics to measure the accuracy of the detection versus the ground truth and
the associated costs while a model retrieves from a change.

To handle concept drift in real-world data, detectors face the problem of ignoring
when an actual (ground truth) change occurs and for how long. Furthermore, there is
no real baseline of what should be the predictive accuracy of a learner if the concept
drift does not happen. Hence, it is not feasible to estimate if a learner has recovered
from a drift. To do this effectively, the ground truth changes in the data stream must be
known. In many domains, the most reasonable way to know this is through a controlled
experiment generating synthetic datasets, that simulate ground truth changes. This
gives warranties of the real switches allowing the evaluation of the change detectors.
In this scenario, all changes signalled by a drift detector should be counted as false
alarms if these occur before their true change. Apart from this, two metrics that
should be considered would be the number of times a model is replaced accurately
and if this occurred at the right time. The design of a concept drift detector in the
relevant literature is described as a trade-off between maximising the true changes and
minimising both the false alarms detected and the recovery phase of the underlying
classifiers.

A drift detector adds extra complexity to an algorithm. Thus, its addition should
be reflected as a faster adaptation process or increased predicted accuracy. Zliobaite
in [385] analysed how depending on the scenario or the problem to solve, the cost to
detect or react to a concept drift may not be worthwhile. Metrics as the duration of the
recovery phase and maximum performance loss, proposed by Shaker and Hüllermeier
in [312], may suit this purpose.
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Shaker and Hüllermeier in [311] applied a survival analysis method to recognise
dynamic events in data streams. Survival analysis (also known as ’time to event’
analysis) represents a set of statistical tools used to know when a particular event will
occur. Inspired by this work, Shaker and Hüllermeier introduced recovery analysis [312]
one year later, which is an experimental protocol and a graphical presentation of the
learner’s performance in a data stream. They also proposed measures to maintain
the quality and generalisation performance of the models. Their protocol aimed to
estimate the inherent delay recognising changes and the recovery time; being this last
when will the system recover from an event. Finally, synthetic data has the risk of
being idealised and unrealistic. Hence, many approaches from the literature, such as
the work by Shaker and Hüllermeier [312] try to produce semi-synthetic datasets by
simulating many data streams and changes in the generative processes over time. In
Chapter 5 we will propose an approach inspired by this work to generate synthetic-like
data using financial data generative processes.

Figure 3.3 depicts an example of the graphical process described in Shaker and
Hüllermeier [312]. Instead of using a single data stream, their proposal worked with
three data streams in parallel: two “pure streams” and one “mixture” stream.

Figure 3.3: Schematic illustration of the recovery analysis graphical process. Extracted from
the work of Shaker and Hüllermeier [312].

The three lines in Figure 3.3 represent the performance of a model these three
data streams. The darker grey area represents the time window when the concept
drift occurs. SA, SB represent the performance of a model trained in two data streams
representing the two different concepts. SC represents the performance of a model
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trained in a data stream that drifts from concept A to concept B. It can be seen that
from the start of the drift, there is a recovery phase until t = T when the performance
of the model trained with the concept drifting stream converges with the performance
of the model trained only with SB. The recovery analysis protocol proposes metrics to
estimate this recovery’s length (t) and the maximum drop in SC after a drift.

Shaker and Hüllermeier [312] proposed mainly two metrics to measure drift detec-
tion: i) the duration of the recovery phase (suboptimal performance of the algorithm)
and ii) maximum performance loss (max. error peak). Other authors that have pro-
posed metrics in this regard are Bifet and Zliobaite.

Bifet in [44] proposed different metrics to measure false alarms in drift detection.
Some of these were mean time between false alarms, missed detection rate (accounting
for the non-detected changes) and mean time to detection (detection delay). The met-
rics proposed by Bifet [44] are mostly focused on the actual performance of detectors,
which is not the purpose of our research. Nonetheless, some of the metrics that will be
presented in Chapter 5 used to measure the reliability of drifts in the final classification
results of our experiments are based on his work. In any case, for most of the drift
handling related experiments, our research will make more emphasis on the recovery
analysis approach.

Zliobaite in [385] defended that a model should adapt to drifting concepts if the
improvement over the error exceeds the cost of the resources required for such adap-
tation. There is a cost associated with the retraining and the update of a model (e.g.
the cost of not predicting the market trend on time for being training a clustering algo-
rithm at the time of a drift). Inspired by this, Zliobaite in [385] proposed RAM-hours
to measure the performance of a model.

As mentioned at the end of Subsection 3.2.3, this thesis will benchmark
different drift detectors in financial data. As done in many relevant approaches
from the literature [16, 312], we will propose a framework to produce financial-like
data to produce a controlled environment to rate concept changes accordingly.
The comparison of drift detectors will be performed at two levels. First, classi-
fication accuracy will be used to select the top detectors as in related research
works [15]. Then, we will propose a set of metrics to measure change detection
that is inspired by the work covered in this subsection. Finally, RAM-hours will
be used as a computational performance metric to report the final results of all models.
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3.3 Supervised Learning under Concept Drift

3.3.1 Introduction

Chapter 2 described the theoretical requirements and limitations of online incremental
machine learning algorithms for data streams. Online algorithms need to be single-pass
(or one-pass), be always up-to-date and ready to predict, and need to handle changes in
data streams [340]. Thus, when trying to adapt offline machine learning algorithms to
work in an online setting, a common approach is to fill a buffer with the incoming data
instances and train them using in a mini-batch setting to support (batch) incremental
learning [144]. An example in this regard is OISVM [382], proposed as a mini-batch
approach for support vector machines (SVMs) that we will cover in more detail in
Chapter 4. SVMs [171] [358] have proved their performance in the literature dealing
with non-linear and complex datasets and have been widely and successfully used in
the financial domain for price trend prediction [275].

N.A. Syed et al. [333] proposed an incremental version of SVMs that dealt with
the SVs of previous batches. However, that algorithm needed to be fully re-trained
at every batch to pick which support vectors should be considered at the next batch.
Cauwenberghs et al. [78] proposed another alternative for incremental learning and
decremental unlearning using SVMs that has not been widely accepted in the literature
[332]. Stefan [301] proposed a weighted model where the oldest SVs has a greater cost
to the model, facing then changes of the feature space across time. Laskov et al. [216]
proposed another online algorithm based on support vectors. However this approach
suffered from a high computational cost. In Chapter 4 we will propose an incremental
version of SVM using mini-batching.

In this thesis we will also use purely incremental algorithms [144, 185] such as
Hoeffding trees (HT) and naive Bayes (NB) models presented in Chapter 2.

In Chapters 5 and 6 we will use them as base classifiers. However, the focus of
this thesis goes beyond supervised classification, and we will use different techniques
to handle different types of concept drifts such as for ensembles and meta-learning.
The relevant literature in the field of data stream mining for ensemble approaches and
meta-learning will be reviewed in Subsections 3.3.2 and 3.4 respectively.
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3.3.2 Online Ensembles

In evolving data streams, changes may be followed by stable periods of different du-
ration. Ensembles can store a set of weak learners trained during different periods,
which makes them suitable techniques to adapt to concept drifting data streams [298].
These systems were described in Chapter 2 and introduced for adaptive learning in
Section 3.2.2. In fact, offline ensembles are known for their good results predicting
both cyclic, and non-stationary data such as stock prices [36,275,276], and in the last
years, many incremental ensembles have been proposed in the data stream mining lit-
erature [207] to deal not only with stationary data and recurring drifts but as well with
non-stationary data in evolving data streams [124,156,177,178,196,205,221].

Gomes et al. in [151] proposed a taxonomy for data stream ensemble learning de-
rived from reviewing the most relevant approaches at that point in time (see Figure 3.4)
and covering aspects like the aggregation of predictions, methods to achieve diversity,
and type of model updates. In this thesis, our main approach will be a meta-learner
with only one active classifier at a time. However, in preliminary work (Chapter 4), we
will propose an ensemble that, following this taxonomy, will use adaptive windowing,
weighted voting and a flat architecture. A full analysis of how the relevant literature
falls into this category can be seen in [151].

According to Gomes et al. in a later work [154], ensembles for data streams
traditionally could be divided into two groups depending on their approach to handle
concept drifts:

• Passive ensembles (reactive) are updated continuously and assign weights to base
models depending on their latest or accumulated predictive accuracy. Two exam-
ples of passive ensembles from the literature are the streaming ensemble algorithm
(SEA) [325], dynamic weighted majority (DWM) [205] and the accuracy updated
ensemble (AUE) [73].

• Active ensembles apply drift detection algorithms to reset weak learners. An
example of these is ADWIN bagging, which combines ADWIN2 [47] and online
bagging [270].

Some more recent works combining both approaches are the adaptations of random
forest (RF) (introduced in Chapter 2) and random patches [232] algorithms; adaptive
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random forest (ARF) [152] and streaming random subspaces (SRP) [153, 155] respec-
tively. These models can weight different weak learners based on their past performance
and replace them when a drift detector specific to their base learners detects a change.

Figure 3.4: Taxonomy of data stream ensemble classifiers. Extracted from [151].
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ARF updates its base trees continuously (HTs by default). However, if a warning
is detected, it starts training a new tree in the background only with new incoming
data instances. If a drift is signalled, the background tree becomes the new active
tree, and the old one is forgotten. ARF trains its HTs using a resampling algorithm
based on online bagging [270] and uses ADWIN2 as a drift detector, having thus some
similitude with ADWIN Bagging. It uses boosting to train classifiers iteratively and
increases the weight on instances that have been misclassified. Base learners (trees)
are weighted using their prequential error. The main difference between the ARF and
SRP algorithms is the logic applied to random subspaces in their base learners. While
ARF applies them at every base tree independently (locally), SRP ensures a global
subspace strategy that increases diversity across weak learners.

Another approach using boosting was proposed by Montiel et al. in [258], who
adapted XGBoosting for data stream mining, namely adaptive XGB (AXGB). How-
ever, their approach was a block-based (mini-batch) ensemble and not purely incre-
mental like ARF and SRP.

3.3.3 Block-based Ensembles

In block-based ensembles, base learners are trained with a batch of data of a fixed
length. Most of these approaches create new ensemble members with new batches,
setting maximum ensemble sizes and policies to update or replace the current base
learners.

AUE, DWM, Learn++.NSE [124] and the recurring concept drift framework
(RCD) [159] are examples of some of the first block-based ensembles for data stream
mining. RCD [159] considered the detection of warning signals before drifts and in-
corporated the idea of background models that start training in parallel while the
predictions are performed by a classifier already trained (active or foreground classi-
fier). The addition of background base learners helps online algorithms to shorten the
duration of their recovery phase and lower their maximum performance loss. This is
something that has been included in many approaches thereafter like ARF [16,152].

Block-based ensembles (see Figure 3.5) are, in general, passive approaches. Thus,
as mentioned in previous sections, this type of adaption is not suitable to cope with
abrupt drifts since they will adapt slowly to those changes, having out-to-date base
learners and weights for the global prediction. For this purpose, RCD uses DDM to
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detect warnings and drifts. AXGB uses ADWIN2 (as ARF). Block-based ensembles
suffer from the main dilemma of other mini-batch algorithms introduced in this chapter.
Small blocks can help to react to abrupt drifts, but this has a computational cost and
may damage the predictive accuracy of the ensemble in periods of stability [73]. Thus,
tuning the block size is of vital importance.

Figure 3.5: Example training process of a block-based reactive ensemble. Extracted from the
work of Yang et al. [376].

3.3.4 Base Learners for Recurrences and Seasonalities

ARF [152] is nowadays one of the state-of-the-art methods in data stream mining,
and it incorporates most of the mechanisms described in this subsection. However, a
drawback of this approach is that it lacks an explicit mechanism to deal with concept
recurrence or seasonalities in a data stream. Many different ensemble learners like
Learn++.NSE and DWM propose a robust mechanism to deal with recurrent concepts
since base learners are not updated after being inserted into the ensemble.

Approaches like ARF constantly train all active base classifiers, which may make
base learners evolve and forget the previously learned concept (catastrophic forgetting)
before this concept reoccurs. ARF also discard trees when a drift is detected, so these
need to be trained from scratch if a concept reoccurs. For this reason, many approaches
in the literature have presented the idea of a concept history to store a cold copy of
previously learned base classifiers to be reused if they become relevant again in the
future. The idea of a concept history adds extra challenges to identify what concept is
present in the data stream at each time. Different approaches have been proposed for
this purpose, like conceptual equivalence and concept similarity), described in Chap-
ter 2. The concept history is not an item exclusive of online ensembles. It can also
be used for single learners that follow a meta-learning approach to change the base
learner for different concepts (see Figure 3.6). Thus, we will extend further about this
topic in Subsection 3.4, dedicated to meta-learning for data streams.
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3.4 Meta-learning and Detection of Recurrences

3.4.1 Introduction

As mentioned earlier in this chapter, drifts detectors collect a series of statistics to
signal changes in the underlying data distribution or in the classifier performance over
time. This collection process implies a delay between the start of the current drift and
the time when this is detected, namely the recovery phase as seen in Subsection 3.2.4.

There are two major challenges to reduce the duration and maximum performance
loss of the recovery phase: i) to anticipate when will the next drift occur and ii) devising
what concept will be the next to ensure a faster adaption [370].

As mentioned in Subsection 3.3.2, many approaches try to reduce the impact of
the recovery phase by incorporating a warning detector. However, signalling warnings
still implies delay from the actual change point since these are based on the same data
collection process only using a more sensible parametrisation (e.g. higher confidence
intervals in ADWIN2). Models still need to be retrained from the warning detection
point, increasing the computational cost of the training process and not being an
effective solution in case of very sharp changes, when a drift will be recognised a few
data instances later. In this case, the learner will have a short warning window where
the background learners will not be trained with a representative sample of the current
concept.

If the data stream presents stationarities or seasonalities at some point in time,
a way to alleviate this problem is through model reuse. In general, machine learning
frameworks doing this tend to assume that discrete concepts exist. In the last years,
many research works have approached the problem of recurring concepts by reusing
models trained previously [376].

Two relevant learners from the literature that incorporate the reuse of previous
base learners are RCD [159], introduced in the previous subsection, and the concept
profiling framework (CPF) [14]. These methods, independently of their number of
base learners (one or many), act as a wrapper to decide at each time what is the
best algorithm to make predictions and allow the use of any base model and detector,
being thus meta-learners (already introduced in Chapter 2). Both RCD and CPF will
be used in this thesis to compare the performance of our ensemble and meta-learner
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in Chapters 4 and 5 respectively. The objective of both is to improve classification
accuracy, as for many other relevant methods such as leveraging bagging [50], and
AUE [73], but this does not necessarily imply improving the detection of drifts as
covered in Subsection 3.2.4.

Figure 3.6: Example framework using a concept history, extracted from [157].

Many meta-learning approaches aim to represent concepts using non-supervised
techniques to describe the current state of the stream and predict potential changes. In
this regard, different research works have proposed different mechanisms to represent
and measure distances among concepts. Meta-learners generally have a higher number
of parameters to fine-tune since these may combine different approaches and compare
learned models. For this reason, recent research works are starting to propose methods
for continuous parameter tuning in non-stationary data streams to cope with this
[33,361].

To the best of our knowledge, there was a lack of literature reviews regarding
meta-learning approaches for data streams at the time of writing this thesis. This fact
motivated the review provided in the following subsections.
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3.4.2 Drift Detection in Meta-learning

Most meta-learning frameworks from the literature evaluate models to be reused only
when a change is detected. This allows these frameworks to leverage offline models,
using mini-batch approaches and reusing previous models when relevant. For instance,
Trajdos and Kurzynski in [343] incrementalised an offline classifier using the detector
ADWIN2 to signal drifts. In any case, the majority of the new approaches from the
literature work over adaptive base classifiers since these can learn gradual changes in
the data stream without the help of any explicit drift detection mechanism.

Angel et al. [252] proposed a meta-learner that used hidden Markov models
(HMM) to predict the sequence of change between discrete concepts. Their approach,
which used fuzzy logic rules to compare classifiers for model reuse, was not able to
deal efficiently with incoming data streams. Maslov et al. [244] proposed a method to
use patterns acquired during previous changes and assumed a Gaussian distribution
for the duration of the changes to predict the time of the next change point.

A similar approach was proposed by Chen et al. [85]. Their method predicts
future changes using a probabilistic network using previous drifts. Their proposal
was independent of drift detection methods and relies on volatility patterns in the
data stream. ProChange, in [201] also used volatility patterns during changes and a
probabilistic network to predict different types of drifts in unlabelled transactional data
streams. More recently, the authors of Nacre in [370], a meta-learner with active drift
detection for data streams, proposed a method called drift coordinator to anticipate
change points assessing each concept.

The literature of meta-learning and ensemble learning for data streams is closely
related. As mentioned earlier in this section, Gonçalves et al. [159] proposed the
ensemble RCD with active drift detection and a history of previous models to handle
recurring concept drifts. The evaluation of what model to retrieve is based on the data
distribution of the incoming stream. For this purpose, a sample of the data received
is stored in a buffer for each of the classifiers and is compared to the incoming stream
in case of concept drift. Sakthithasan and Pears in [304] applied discrete Fourier
transforms to decision trees to capture recurring concept drifts. The evaluation for
model reuse was performed by comparing a compressed version of the learned trees.
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3.4.3 Explicit Handling of Recurrences

Elwell et al. [124] dealt with recurrent concepts using a block-based reactive ensemble
that did not limit the number of base learners. The authors claim that Learn++.NSE
trained one concept per batch received. The algorithm employs a weighted voting
mechanism using each individual classification accuracy. In the case of recurring con-
cepts, it is expected that the weight of the base learners representing that concept will
increase and hence the global prediction will take into consideration old but relevant
knowledge.

Conversely, base learners would reduce their weights if their predictive error in-
creases, not being considered for predictions when these do not match the current
concept. Like other similar approaches that came after as other similar approaches
that came after [8,178], the idea of Learn++.NSE is to keep all the learned knowledge
in a pool of classifiers, either active (as a part of an ensemble) or inactive (stored
as a concept history), to be used in the future when they become relevant. Other
meta-learning ensemble approaches of the same kind have been proposed to determine
dynamically a suitable ensemble size [121,281].

The use of a concept history became popular about a decade ago and has received
different names like pool of classifiers, concept list and concept repository. Approaches
like [7, 156, 157, 221, 376] proposed the explicit handling of drifts using different tech-
niques to evaluate the relevance of historical concepts. Yang et al. introduced the
idea of a concept repository and the idea of conceptual equivalence in [376] in their
ensemble classifier RePro. Their method used a Markov chain to learn concept transi-
tions. Figure 3.6 illustrates one of the first approaches targeted to model reuse in data
streaming which has a flat structure. However the idea design of a concept history
can follow different architectures. For instance, Sidhu and Bhatia [318] proposed a
recurring dynamic-weighted majority (RDWM), which alternates two ensembles, one
with active learners and another working as a pool of historical models.

Ahmadi and Kramer [6] presented the GraphPool framework, which maintained
a pool of historical concepts and kept transitions between concepts using a first-order
Markov chain to allow model reuse. Like Learn++.NSE, their approach is considered
that every batch of data received would represent a new concept, which is not the case
in every data streaming application. In the GraphPool framework, concepts that are
similar among them would be merged within the history. Wu et al. in proposed the
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ensemble algorithm PEARL [371] as an extension of ARF that uses a probabilistic
graphical model and lossy counting [241] for model reuse when a drift is detected.

A very relevant meta-learner from the literature is the concept profiling framework
(CPF), proposed by Anderson et al. in [14]. This framework, which has only one active
base classifier at a time, handles recurring concepts explicitly using a concept history
and evaluating previous models to be reused when detecting a concept drift. CPF is
illustrated in Figure 3.7. In CPF, new models are only inserted into the history in case
of drift if these do not perform similarly to any historical model. Historical models are
compared using a conceptual equivalence approach, using classification accuracy.

Figure 3.7: The Concept Profiling Framework. Extracted from [14].

To limit and maintain the size concept history over timeCPF, CPF prunes his-
torical models using a mechanism called fading. This mechanism prunes old models
depending on how frequently have these been reused, and it gives more importance to
older models than recent ones. This is a design choice that may help domains with a
finite number of non-evolving concepts. However, it may not suit many real-world data
streams which concepts may evolve. Perhaps due to this, CPF obtained state-of-the-
art results in synthetic data with clear recurring patterns but could not outperform
other methods such as RCD in real-world benchmarks.

The authors of CPF suggested setting a high-similarity threshold (m) for com-
paring learners with the history. Lower similarity thresholds may lead CPF to have
a smaller selection of more general classifiers. At the same time, CPF tries to make
historical learners to differ as much as possible from each other.
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A problem of CPF is that it relies on a fixed-size buffer of instances to determine
what model to reuse. To avoid the high computational cost of this task and improve
the scalability of CPF, Anderson et al. in [16] proposed enhanced CPF (ECPF). ECPF
saves copies of the reused classifiers instead of only the original ones as CPF, which
allows concepts to evolve over time. Furthermore, background learners start being
trained when a warning is detected (as in ARF) to replace the active learner in cases
where no historical models represent the new concept.

3.4.4 Concept Clusters in Meta-learning

Another representative set of online meta-learners is the one focused on an unsuper-
vised representation of concepts and the use of different distance metrics for concept
similarity [157,221,248,252,372,383]. Several of these methods are, in fact, supervised
but have a non-supervised representation of the concepts. For instance, the semi-
supervised learning tree-based ensemble REDLLA was proposed by P. Li et al. [221]
for recurring changes in data streaming environments with limited labelled instances.
Their approach uses k-means and introduces the idea of concept similarity and concept
clusters introduced in Chapter 2. Figure 3.8 illustrates the concept clusters from this
proposal and the idea of a cluster radius to set distance thresholds in the evaluation of
similarity.

Figure 3.8: Cases of concept drift using the radius of a concept cluster in [221].

The authors in [220] proposed a block-based ensemble model mixing both super-
vised and non-supervised techniques. Their ensemble counted with a concept history
of unlimited size and was aimed to data stream classification. However, it also trained
a cluster with each batch received. One of the novelties of their approach was a concept
drift detection method based on the divergence of the clusters among batches. Kataris
et al. presented in [198], another reactive block-based ensemble that used conceptual
vectors to represent each batch to approach the idea of a concept history. They used
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an incremental clustering algorithm to group these conceptual vectors and generate
concepts. Gomes et al. in [157] and later in [156] proposed to use two data streams
in parallel. The second data stream used, counted with variables created by the user
specifying context, as a proxy to have a certainty of the ground truth changes. Learners
were created over time in their approach or reused from a concept repository depend-
ing on the similarity of their contextual information. Similar methods were proposed
in [252] and [248] considering the idea of warning windows, later used in ARF and
ECPF to train background classifiers. The approach of Gomes et al. in [157] was
already illustrated in Figure 3.6.

The number of research approaches mixing unsupervised learning and meta-
learning techniques to handle recurring concepts is indeed increasing. Many of these
approaches are ensemble learners, which can be purely incremental or block-based.
CONDOR [381] was a block-based ensemble compared to DWM by their authors, but
with different weight update strategies and the addition of a meta-learning approach
to reuse update previous models inside the pool of classifiers. Namitha and San-
thosh in [262] presented another cluster-based method to handle recurring concepts
in data streams. However, their approach, that used clustream [5] as base clustered,
and performed unsupervised drift detection was entirely unsupervised, thus not being
comparable to the rest of the approaches from this section.

Sun et al. in [331] and Chiu and Minku in [88] proposed ensembles that incorporate
concept clusters to limit the ensemble maximum size using a diversity measure. The
motivation behind these approaches was that a diverse pool of learners could be more
likely to keep a set of representative learners over time with considerably different
concepts, which should help in the case of model recurrence.

After this, Chiu and Minku in [89] proposed a similar ensemble using Euclidean
distance distances for concept similarity, to handle multiple types of drifts. They
intended to maximise the diversity of the ensembles having concepts that are dis-
tant among them. Their approach, namely CDCMS, only created new models in the
ensemble beyond a dissimilarity threshold, and concepts were represented using the
expectation maximisation (EM) algorithm.

As seen in this section, handling recurrence concepts is a research topic that
converges both with the literature of ensemble learning approaches for data stream
mining and with meta-learning methods. In the last group, non-supervised learning
covers particular relevance to represent concepts and identify the current state of the
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ground truth. This gives advantages like bringing the ability to predict changes and
facilitate the identification of previous concepts or transition sequences for model reuse.
Non-supervised learning is a broader subfield that goes out of the coverage of this
section. The use of these approaches as part of a meta-learner is a discussion that we
continue in 3.5.

3.5 Model-Based Clustering under Concept Drift

The problem of concept drift is a data stream mining specific topic, and it involves
different challenges storing, pre-processing and learning from data stream instances.
In a non-supervised setting, the number of clusters , their densities, sizes or shapes can
evolve due to different non-stationarities in the incoming stream. Recently, Zubaroglu
and Atalay in [386] provided a comprehensive review on data stream clustering al-
gorithms and analysed the non-supervised methods, computational complexity and
predictive accuracy of these approaches.

The motivation to use non-supervised learning in this thesis can be seen in the
discussion started in Subsection 3.4 about the inclusion of non-supervised methods as
a support for model reuse in data stream classification.

Back in 2001, Wagstaff et al. and two years later Xing et al. in [373] proposed
methods for clustering with similarity information using side-information (a context, as
seen in Subsection 3.4). Many recent research works have approached the problem of
time changing (and recurring) concept representations in a streaming setting using data
stream clustering or deep clustering methods [116,262,379]. In these, micro-clusters or
latent features would be used to make a synopsis of the incoming instances and reduce
the computational cost of finding similarities among data distributions.

However, the problem of representing a concept (or model) using non-supervised
learning started becoming popular with model-based clustering approaches. These
algorithms find a model to fit best to the input data and are robust to noise [161,
246]. Section 3.4.4 introduced some research works using the model-based clustering
method expectation maximisation (EM) [112] to improve model reuse. This algorithm
fits a mixture of Gaussian distributions to the data [76]. Chiu and Minku in [89]
used it in CDCMS to create concept representations and keep a diverse ensemble
learner. Zheng et al. in [383] used it to minimise the intra-cluster dispersion and cluster
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impurity. Tsang and Chen in [347] applied the Baum–Welch algorithm, an especial
case of EM, to both detect the time of a change point and predict the next state (or
concept) of financial data using an HMM. Gomes et al. in [154] also hypothesised about
using Baum–Welch in conjunction with HMMs for data streaming scenarios. In any
case, Baum–Welch is not an online approach. Still, it has been used in the financial
domain together with other specific versions of EM and Gaussian mixture models
(GMM) to forecast change direction in stock prices [274,380] and to represent market
regimes [114,170,209,347]. Although incremental versions of the EM and Baum-Welch
algorithms have been proposed [103, 363], one of their major disadvantages is their
assumption of normally distributed data instances. This can cause many challenges in
complex domains or deal with non-stationarity distributions where changes may not
be foreseeable.

An alternate approach to represent different concepts in the literature is through
the use of data partitioning methods. These, also unsupervised, can be compared to
model-based clustering or other techniques with micro-clusters since all of these are able
to summarise a data distribution into a set of locally optimal structures. For instance,
Angelov in [21] proposed several ensemble algorithms that have a (rule-based) model
optimised per data cloud (see Figure 3.9). They used the term data cloud to refer
to a set of prototypes identifying a concept and created an autonomous approach to
partition the data using their data clouds.

As presented in the book by Angelov [21], the machine learning literature has
many approaches to interpreting the state of data distributions that do not necessarily
need to be non-supervised. An example of this is instance-based learning methods such
as nearest neighbour based algorithms (introduced in Chapter 2). These can be seen as
a particular type of prototype-based classifiers [278] which requires the entire dataset
to be in memory. A more conventional example of a prototype-based classifier could
be the SVM algorithm. Support vectors can be considered prototypes reduced from
the input data; only these are needed to classify. As a first approach in this thesis,
we will use support vectors as a mechanism to transfer knowledge in an incremental
SVM based classifier over time while allowing adaption to new changes. This will be
done as part of the preliminary studies in Chapter 4. Something that differs across
prototype-based classifiers impacting the computational cost of the approaches is the
selection or generation mechanism to produce prototypes [21], which impacts directly
on their computational cost. As covered in Chapter 2, these can be reduced (as seen
in the previous paragraph) or created from the input distribution.
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One example of a classifier that generates prototypes is learning vector quanti-
sation (LVQ) [203]. Different incremental algorithms based on this algorithm have
been proposed [374, 382]. OISVM, presented in [382], combines uses an approach
based on LVQ to summarise the data input and feed it into an SVM classifier and
reduce the computational cost at the training stage. This is as well a common use
of prototype generation techniques like self-organising maps (SOM), growing neural
gas (GNG) in the literature [113, 224, 264, 344]. PG techniques have also been used in
the financial domain for data partitioning and model selection [91, 277]. Ajalmar et
al. [264] provided a good overview of these, and Smith and Alahakoon [322] compared
them looking at their growth rate, growth conditions, growth inhibition, and data
example pruning.

Figure 3.9: Data clouds formed around a set of prototypes (red dots). Extracted from [21].

The SOM algorithm, described in Chapter 2, is an offline method and thus is
only able to learn static data. For this reason, this algorithm has been adapted in
different research works [10, 11, 226, 289, 316] that have suggested dynamic (growing)
methods for online learning. An example of these is growing self-organising maps
(GSOM) [137, 362]. It grows nodes at the edges of the map when the total distance
of an example exceeds a threshold, which allows it to track regions that may present
dynamic behaviours when the original SOM would stabilise and lose its capacity to
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re-shape. GSOM is an incremental approach, but not adaptive since this does not
have a forgetting factor like GNG (explained in Chapter 2).

Regarding other surveyed methods to create or select prototypes, SVMs, LVQ
or instance-based algorithms (kNN) are supervised approaches and thus differ from
neural gas and self-organising maps based techniques. Non-supervised applications like
representing non-discrete concepts are not able to leverage these approaches. Moreover,
although LVQ has also been used recently to learn in non-stationary environments [324],
to the best of our knowledge, this algorithm, as SOM, has not been widely applied to
data stream mining yet. The performance of an incremental version of LVQ and GNG
is compared in [327]. GNG has been proven to be an effective method reducing the
number of instances massively in a dataset preserving the original topology [136]. It
has already been used in conjunction with a state of the art machine learning classifiers
[60,224,267].

The main benefits of GNG against other commonly model-based unsupervised
methods such as EM are its ability to handle non-Gaussian distributed clusters and
its growing (online) evolving nature. GNG does not have an offline phase as EM, and
it can be trained continuously, unlike SOM. Furthermore, EM has slow convergence,
which can impact online scenarios at high frequencies. For this reason, GNG will be the
primary technique used in this thesis to generate prototypes. In any case, one of the
research objectives of this thesis is the creation of a meta-model where the different
base algorithms are interchangeable; this includes the non-supervised component to
support model reuse. We expect this thesis to attract future research which may
perform studies on specific base algorithms and different domains.

3.6 Contributions Regarding Price Trend Classification

Computational finance and, more specifically, the problem of stock price forecasting
is an application area that has attracted extensive AI research since the 1990s. Many
literature reviews of deep learning [218, 268], machine learning [79, 129, 172, 179], and
neuro-fuzzy methods [29] have been published in this domain since then. These look
at different financial indices and benchmark different machine learning approaches and
econometric methods. For instance, Ferreira et al. in [129] reviewed 2,326 financial
investment papers from the Scopus research platform that were published between 1995
and 2019. The most commonly used machine learning methods for prediction in these
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reviews involve SVMs, ensembles and neural networks. Of these, in this thesis, we will
use SVMs and different online ensembles for stock trend prediction.

Overall, the above-mentioned literature reviews confirm that machine learning
techniques can be used to predict price changes, but this entirely depends on the time
horizon and efficiency of the market in the period predicted. Cavalcante et al. in [79]
provided another interesting review of pre-processing and clustering techniques used
in the financial domain and to forecast future market movements. They pointed out
the relevance of concept drifts in financial markets and suggested that the data stream
mining literature is of great importance in future research due to the non-stationarity
and evolution of financial markets [80].

As covered in Chapter 2, the prediction of future financial trends can be ap-
proached using fundamental or technical analysis. As an example of the first approach,
the authors of [148] focused on the short term, intraday and high-frequency forecast
using news data. Nonetheless, despite the controversy regarding the potential of this
to produce profitable trading strategies [128, 230], as introduced at the start of this
chapter, this thesis focuses on technical analysis because these have been widely used
in short term trading [336].

Hence, some of the literature reviews already cited describe common technical
indicators used for future stock market value and trend prediction. Many of these
papers, like [29] have shown that different pre-processing steps like the frequency level
of the input data can impact its predictability. While a common approach in this regard
is data normalisation, in the literature of data stream mining data normalisation is not
a usual practice since maximum and minimum values for each attribute in the data
stream are unknown beforehand [48]. Some research works cited on these surveys,
as Patel et al. [275], discretised features based on the human approach to investing
and deriving the technical indicators using assumptions from the stock market. This
last approach, though, introduces human bias in the process, being an opposite way to
approach the problem of trend prediction compared to recent deep learning approaches
that feed dozens of automatically generated indicators [218]. While we are aware
of many potential ways to approach the problem of price trend prediction, as the
approaches reviewed in this section, the focus of this thesis is instead on the usage of
online incremental techniques in financial data streams.
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In our work, we will focus on a common approach used in the literature proposed
by Kara et al. in [195]. They proposed the selection of ten technical indicators as
feature subsets of publications presented by domain experts and researchers of this
field [27, 115, 183, 199, 200, 211, 377], which can be found in Table 3.2. This approach
has been used in several works afterwards [179].

Indicator Formula

A/D Ht−Ct−1
Ht−Lt

CCI Mt−SMt
0.015Dt

LWR Hn−Ct
Hn−Ln

× 100
MACD MACD(n)t−1 + 2/n+ 1× (DFt −MACD(n)t−1)
MOM Ct −Ct−n

RSI 100− 100
1+(

∑n−1
i=0 Upt−i/n)/(

∑n−1
i=0 Dwt−i/n)

SMA Ct+Ct−1+...+Ct−n+1
n

SD
∑n−1

i=0 Kt−i%
n

SK Ct−LLt−n
HHt−n−LLt−n

× 100
WMA n×Ct+(n−1)×Ct−1+...+Ct−n+1

n+(n−1)+...+1
Ct: closing price; Lt: lowest price; Ht: highest price at time t; DF : EMA(12)t −EMA(26)t; EMA: Exponential
moving average; EMA(k)t: EMA(k)t−1 + α× (ct −EMA(k)t−1); α: smoothing factor: 2/1 + k; k: time period
of k minute exponential moving average; LLt and HHt: mean lowest low and highest high in the last t minutes;
Mt : Ht + Lt + Ct/3; SMt :

∑n

i=1 Mt−i+1)/n; Dt : (
∑n

i=1 |Mt−i+1 − SMt|)/n; Upt: upward price change; Dwt:
downward price change at time t.
Indicators: A/D: accumulation/distribution oscillator; CCI: commodity channel index; LWR: Larry William’s
R%; MACD: moving average convergence divergence; MOM: momentum; RSI: relative strength index; SMA: simple
moving average; SD: stochastic D%; SK: stochastic K%; WMA: weighted moving average.

Table 3.2: Technical indicators used in the analysis. Formulas as reported in [195].

The reader must note that Kara et al. [195] uses a mathematical notation that
considers t as the last known value. For instance, they compute the simple moving
average of the close price at time t, which usually represents the target feature in time
series forecasting. In this thesis, we have respected the original notation from their
original paper, but we refer to the time step t as the last know value instead of the
future time horizon to be forecasted. Another important point about this paper is that
the presented indicators were not selected as an intraday but rather for an interday
forecast. However, as far as we know, there is no other standard set of technical
indicators for high frequencies; hence, we will use this.
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3.7 Summary

This chapter reviewed the state of the art of data stream mining and machine learning
for stock trend prediction. Although an initial systematic literature review took place
initially in this thesis, the review has been an amalgamation of related research and
searches performed during the whole Ph.D. period (2017-2022).

The application of AI to computational finance is a research field of high research
attention since the 1990s. However, online incremental algorithms for data streams
have not been widely applied to financial forecasting yet. We have approached the
financial domain through the problem of concept drift as a sort of structural break
that can occur at any frequency level. This has been covered in Section 3.1. After this,
Section 3.2 covers relevant and recent works in data stream mining.

Section 3.3 covered recent literature for supervised machine learning. The section
was introduced with offline approaches used in financial forecasting like SVMs, which
will be used in preliminary work to our main proposal in Chapter 4. After this,
Section 3.3 focused on the data stream mining field and covered works the recent trends
of ensembles. Section 3.4 covered meta-learning in data stream classification. Many
meta-learning approaches in the literature use non-supervised algorithms to identify the
recurrence of a concept and retrieve previous models or detect drifts. We have covered
these works and other approaches based on prototypes used for data partitioning in
Section 3.5. Finally, Section 3.6 reviewed the stock price trend prediction field and
described the most common set of indicators used in the literature for technical analysis.

This thesis contributes to the topics of meta-learning and ensembles for super-
vised learning under evolving data streams. Our primary approach will be proposed in
Chapter 5, and the differences against relevant works in the literature will be covered
in Subsection 5.1.4. We will apply our main proposal to price trend prediction in the
financial domain following the approach covered in Section 3.6, with a semi-synthetic
and a real-world dataset in Chapters 5 and 6 respectively. The use of a semi-synthetic
dataset will be to create a controlled environment to measure the suitability of concept
drift detection approaches as also performed by the relevant literature (see Subsec-
tion 3.2.4). Before our main proposal, we will describe our introductory research work
regarding the scalability of online incremental learners for data streams and their ap-
plicability to financial data. These initial studies will be presented in Chapter 4.



Chapter 4

Preliminary Studies

This chapter will detail the first two experiments that serve as the base to our main
proposal, which will be described in Chapter 5.

The first experiment will be detailed in Section 4.1. This experiment will aim
to improve the scalability of traditional machine learning algorithms to be used in a
continuous training setup. We will propose a system that deals with concept drifts
passively and that makes use of both supervised and non-supervised methods. The
results demonstrate that incremental mini-batch techniques and topology extraction
methods can improve the scalability of training machine learning models continuously.

The second experiment will focus on the application of online incremental machine
learning algorithms to stock market price classification. In this experiment, we propose
a system that deals with concept drifts both passively and actively. This is detailed
in Section S4.2. As seen in Chapter 3 ensembles are known for their good results
predicting during cyclic and non-stationary scenarios as stock market prices. The
proposed system ensembles many base classifiers to deal with the complex behaviour of
financial time series and reuses previous models when these improve the new classifiers
at the time of a concept drift. The system is applied to predict the SPDR S&P
500 Exchange-Traded Fund price movement direction one minute ahead, improving
the results of other algorithms from the online incremental machine learning literature.

89
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4.1 Using GNG to Model Data Distributions in Streams

4.1.1 Introduction

Data stream mining is a growing research field covering machine learning algorithms
that adapt to learn over time in continuous data streams. The rise of Data Mining
approaches over streams of data gained popularity a few years back with technologies
such as Apache Kafka and Spark Streaming, mentioned in Chapter 2. Since then,
it has gradually been adopted in industry to deal gradually with huge amounts of
data. However, while Stream Processing technologies are common, online incremental
algorithms are still in a phase of early adoption in the industry, with libraries like
CremeML, scikit-multiflow or River, also mentioned in Chapter 2. In this regard,
the standard in the industry is still to use specific infrastructures and high resources
in terms of memory, computing nodes and GPUs for data preparation and model
retraining.

As mentioned in Chapter 1, one of the goals of this thesis is to apply novel ma-
chine learning techniques to learn and predict high-frequency data. For this, the first
experiment of this chapter studies the advantages of using data stream mining algo-
rithms from the scalability point of view. The goal is to compare the behaviour of
static models and tackle issues that arise in online learning scenarios that we will face
later in this thesis. To do this, in this first experiment, we focus on one of the most
common traditional machine learning algorithms for stock trend prediction; support
vector machines (SVM). SVMs are well known in the literature [171] [358] for their
good results dealing with non-linear and complex datasets. However, these classifiers
piggyback a high computational complexity [82] when dealing with large-scale data,
hence these can be problematic operating at high frequencies. In the literature, the
use of this method in these scenarios has required its incrementalisation [342] or to
combine it with other techniques such as prototype selection, or prototype generation
techniques such as learning vector quantisation [382] [264] [224] [344] [113], to reduce
the amount of data in training stage. Ajalmar et al. [264] provided an overview on
this.

In this section, we propose an adaptive approach through the incrementalisation
of the SVM classifier. Our approach trains a new support vector machine for every
new batch of data received. Then, it retrieves previous knowledge of the prior model
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(previous batch) to train each new one. We have also used this in combination with the
PG technique growing neural gas to train the SVM classifier in a reduced representation
of the current batch and help it to scale. The final objective of this section is to
verify that online incremental machine learning methods can help improve runtime,
not affecting the classification accuracy. Thus we pursue to validate the relevance of
data stream mining techniques for classification tasks at high frequencies. This will
allow us to use these techniques for stock trend classification at high frequencies in the
remainder of this thesis.

This section is structured as follows: first, Section 4.1.1 has introduced this first
experiment that we aim to perform; Subsection 4.1.2 explains the features of the pro-
posed system for the experiment. The experimental protocol and the parameters tuned
will be explained in Subsections 4.1.3 and 4.1.4 respectively, and Subsection 4.1.5 will
contain the experimental results of this section. Finally, Section 4.1.6 will explain the
conclusions reached and the future lines of work in this regard, as part of this thesis
and new research branches from here.

4.1.2 System Features

Our approach in this section will inherit features from two previous incremental frame-
works using SVMs. The SVM classifier creates one or a set of hyperplanes during
training in a high-dimensional space at the largest distance to the nearest prototypes
of any class [59]. This is built in terms of a relatively small number of training exam-
ples. These examples, namely support vectors, are the nearest data points of each class
to this hyperplane, defining each class boundary. The two works that we will leverage
in the current section are:

• GNG-SVM [224], uses of growing neural gas (GNG) prior to the classification
task. Their underlying idea was to reduce the number of input examples replacing
them with a set of prototypes reproducing the topology of the input examples.
A GNG model was applied independently to each class. After this, topologies
of all classes were combined and then the SVM classifier is trained with the the
combined output of all GNG models.

• OISVM [382], also leverages from prototype generation before the classification
task but creating prototypes simultaneously instead of through different mod-
els like GNG. OISVM works in a mini-batch setting and retrains new models for
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each batch, reusing support vectors of the SVM classifier of the previous iteration.
However, as seen in an earlier study mentioned in [328], OISVM presents scala-
bility bottlenecks over time in certain scenarios by creating unnecessary support
vectors if the boundaries overlap across models of previous and new iterations.

In this section, we will propose an algorithm, iGNGSVM, that combines both
approaches and is also based on an initial study of different incremental algorithms
to improve scalability on online learning tasks performed by us in [327]. iGNGSVM
will use GNG as a PG method to summarise the dataset sent to the SVM classifier, as
seen in GNG-SVM. It will inherit support vectors from classifiers trained at previous
batches, as OISVM. This aims to be an introductory approach to classify continuous
data streams of information at high frequencies in an online learning fashion.

4.1.2.1 Definition of the iGNGSVM Algorithm

As summarised above, iGNGSVM performs two steps iteratively each time a new mini-
batch of training examples is received through an incoming data stream. The first step
involves using the GNG algorithm for prototype generation. This is done to reduce the
computational cost of training the SVM classifier in a second step.

The growing neural gas algorithm [136] was introduced in Section 2.3.6.3. The
number of prototypes generated in a topology by a GNG is specified in the stopping
criterion (step 11) in Algorithm 2.3. The value of the stopping criterion, all together
with the λ and amax parameters (in charge of the generation of removal of exam-
ples, respectively), is a key factor for the computational cost of GNG in iGNGSVM.
Assuming a stable concept, the larger the value of the stopping criterion, the lower
the quantisation error of the new topology, since the set of prototypes generated ap-
proximate gradually to the incoming distribution. However, the larger the stopping
criterion, the greater the computational cost of GNG and the larger the distribution
received by the SVM classifier (and thus its cost). The value of these three parameters
is crucial to produce a good summarisation of the incoming batches and not penalise
the classification performance.

In this section, we focus on linear models and binary classification for the sake of
simplicity. For this setting, as described in Section 2.2.3.4, the SVM classifier aims
to find the hyperplane that maximises the separation distance between two classes.
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The training examples supporting this hyperplane (its nearest examples) are called
support vectors (SV). The behaviour of a linear SVM classifier [171] [82], was shown
Algorithm 2.2. Since SVM receives the output of GNG (first step), any mention to
data points or vectors in Algorithm 2.2 refers to this in the iGNGSVM framework.

(a) iGNGSVM1

(b) iGNGSVM2

Figure 4.1: iGNGSVM1 and iGNGSVM2 training workflows.

The technique we propose, iGNGSVM, aims to be an adaptive approach that
reuses previous knowledge over time. Hence, mini-batches are not independent tasks
besides the training of a new SVM classifier. Consequently, each iteration that receives
a batch of data reuses the support vectors that were obtained from the SVM classifier
in the previous batch. These SVs are merged with the prototypes obtained by GNG
in the new batch at the training stage (see Figure 4.1a). The fact of training new
classifiers aims to act as a forgetting mechanism and over time, while the inheritance
of SVs across iterations seeks to evade catastrophic forgetting [296].

An issue found in predecessors of our proposal such as OISVM was model bloating
due to the increase in the number of the SVs across iterations if the boundary of the
class gradually evolves across batches [328]. This makes the model unscalable and
unfeasible for data stream mining. To tackle this, we used the prototype selection
techniqueWilson’s edited nearest neighbor (ENN) [69, 341] as an intermediate step
between GNG and SVM. ENN, briefly introduced Section 2.2.3.4, is covered in
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Algorithm 2.1. iGNGSVM uses ENN to remove SVs that are no longer relevant due to
a gradual concept drift or prototypes surrounded by a majority of prototypes or SVs
from the opposite class. Hence, cleaning data points causing the unbounded growth
of SVs over time seen in the predecessors of this proposal.

Algorithm 4.1 iGNGSVM1 training algorithm. Extracted from [328].

1. It receives a set of training examples S (data-chunk in Figure 4.1).

2. It divides the set of examples in one subset per class (S1, ..., Sn / n classes).

3. It obtains the topology of every isolated subset using GNG with a stopping criterion
that can be a number of prototypes to create or a percentage according to every subset
size.

4. It merges all the subsets, putting the topology of all the classes together (S∗).

5. If iteration number > 1: It adds the SVs of the previous iteration as prototypes to S∗
to remember the prior model.

6. It runs ENN removing prototypes from S∗ or SVs surrounded by a majority of neigh-
bours of the opposite class.

7. It trains a new SVM using the new data chunk topology S∗.

8. It saves the SVs calculated for the next iteration. Then it waits for the starting condi-
tion to process the next data chunk (step 1).

The initial version of iGNGSVM (iGNGSVM1) proposed is explained in Algo-
rithm 4.1. First, data instances received from a Data Steam are stored in a buffer.
Once this buffer reaches a given size (starting criterion), the instances from the buffer
are used as a batch of data, and a training iteration takes place. Then, training in-
stances are separated depending on their class, and a separate instance of GNG creates
a topology of each class distribution. After this, both topologies are merged with the
SVs from the previous iteration. ENN receives the resulting set for noise removal and
feeds the SVM classifier of the current iteration.

In parallel to the iGNGSVM1, we will present a second version of the algorithm
aimed at non-stationary datasets with fast drifts. Figure 4.1 illustrates both versions
of iGNGSVM. The main difference between both versions is that iGNGSVM1 (Fig-
ure 4.1a) inherits the SVs as prototypes (it merges then with the output topology from
GNG), and iGNGSVM2 inherits the SVs as examples (and thus are fed into GNG to-
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gether with the batch of data). This design makes previous knowledge have less weight
in iGNGSVM2 and be more suitable for settings that change continuously. Finally,
both versions of iGNGSVM use ENN to filter out no longer relevant SVs. The full
version of iGNGSVM2 is shown in Algorithm 4.2.

Algorithm 4.2 iGNGSVM2 training algorithm. Extracted from [328].

1. It receives a set of training examples S (data chunk in Figure 4.1).

2. If iteration number > 1: It adds the SVs of the previous iteration as examples to S.

3. It divides the set of examples in one subset per class (S1, ..., Sn / n classes).

4. It obtains the topology of every isolated subset using GNG with a stopping criterion
that can be a number of prototypes to create or a percentage according to every subset
size.

5. It merges all the subsets, putting the topology of all the classes together (S∗).

6. It runs ENN removing prototypes from S∗ that are surrounded by a majority of neigh-
bours of the opposite class.

7. It trains a new SVM using the new data chunk topology S∗.

8. It saves the SVs calculated for the next iteration. Then it waits for the starting condi-
tion to process the next data chunk (step 1)

4.1.2.2 Computational Complexity

In order to understand the solution proposed in this section, in this subsection, we
want to clarify that the computational complexity of iGNGSVM depends mainly on
its three algorithms: GNG, ENN and SVM.

• In our proposal, we have used the implementation of WEKA of LibSVM1. Ac-
cording to [82] and [1], its Big O notation complexity is O(nfeatures × n2

samples)

assuming O(n) for each kernel evaluation.

• For GNG and ENN, their basic implementation has a notation of O(n2) according
to [249] and [189] since they iterate through the neighbourhood of each data
instance received by them.

1 LIBSVM is a Library for support vector machines: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Table 4.1 shows the estimated complexity of the iGNGSVM1 algorithm step by
step in Big O notation. The main difference with iGNGSVM1 is the order of the
steps, but not their complexities. Loops over a set of examples in this notation have a
complexity of O(n). When the algorithm only iterates over a number of classes as in
step 4 in Algorithm 4.1. The complexity is O(k) when the iteration is only over the
number of classes (see step 4 in Algorithm 4.1).

Repeat the next for every mini-batch Complexity Input

(1) Divide the batch of instances in one subset per class. O(n) |TS|
(2) Obtain the topology of every subset using GNG by separate. O(k× n2)

∑
(|Sclassi

|)
(3) Merge all the subsets in a prototypes final set. O(k) #classes
(4) Run ENN to label and remove noise. O(n2) |S ∗ |
(5) Inherit the SVs of the previous iteration. O(n) SV s

(6) Train a new SVM using the new data chunk topology. O(n3) |S ∗ |+ SV s

(7) Save the new SVs for the next iteration. O(log(n)) SV s

|S ∗ | = #classes× stoppingCriterion

Table 4.1: iGNGSVM1 complexity analysis. Extracted from [328].

iGNGSVM does not improve the computational complexity of any of its three
components. Instead, it reduces the cost of running the SVM classifier by reducing
the number of input patterns in this. For this reason, in Table 4.1 we also show the
dataset input size at every step as reference. The batch-size |TS| represents all of the
data instances received in one batch.

The global computational complexity of both versions of iGNGSVM is O(n3),
corresponding to the larger O in Table 4.1 due to the SVM classifier. As mentioned
before, the scalability improvement is performed by training the SVM using a number
of prototypes of many orders of magnitude lower than the number of instances received
in a batch (|S ∗ |+ SV s rather than the full batch |TS|).

4.1.2.3 Preliminary Studies and Validation

This subsection uses synthetical data of a non-stationary nature to compare differences
between the two versions of iGNGSVM proposed in the previous subsection. Fig-
ure 4.2, compares iGNGSVM1 and iGNGSVM2 in a dataset for binary classification
built by sampling two overlapping distributions of two dimensions which centres move
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at constant speed on both axes. Classes are represented in blue and red colours.
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Figure 4.2: Support vectors created by iGNGSVM1(top row, 4.2a and 4.2b) and iGNGSVM2
(bottom row, 4.2c and 4.2d). Extracted from [328].

Figure 4.2 depicts the behaviour of the different versions of iGNGSVM under an
evolving data stream. Small dots in Figure 4.2 represent instances for both classes in
the entire data streams. Stars and circles represent the prototypes created by GNG
in the current batch and the SVs outputted by SVM in that batch respectively. Fig-
ures 4.2a and 4.2c show that iGNGSVM1 is the version generating more SVs even at
the initial batch (Figure 4.2a). Figures 4.2b and 4.2d show how iGNGSVM1 keeps a
summary of the data distribution in the form of SVs even in the final batch (4.2c).



98
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

Table 4.2 shows the classification performance and numbers of final SVs for
iGNGSVM1 and iGNGSVM2 with different batch sizes and a different number of
neighbours in ENN, or disabling ENN (N/A). Tests were run for the non-stationary
dataset of Figure 4.2 (ntransSingle1) and an static version of it not moving the axes
(stbal1). In the non-stationary dataset, iGNGSVM1 and iGNGSVM2 tend to obtain
better results when ENN is not disabled. In the static dataset, ENN does not seem
to be beneficial in classification performance. However, the use of ENN helps reduce
the number of SVs and, therefore, improving our proposal’s scalability with a cost of
classification accuracy lower than 1%.

stbal1 ntransSingle1
|TS| # ENNne % Acc1 SV s1 % Acc2 SV s2 % Acc1 SV s1 % Acc2 SV s2

100
N/A 91.96 753 91.88 52 85.36 3,714 89.72 54

3 91.40 268 91.44 28 84.6 745 90.28 12
5 91.00 249 90.72 28 83.28 667 91.44 12

200
N/A 91.76 400 91.56 44 84.84 1,910 88.44 54

3 91.40 96 90.72 20 85.04 372 89.56 10
5 91.24 109 90.56 27 84.32 344 89.76 4

300
N/A 91.48 282 91.56 40 84.8 1,263 86.04 50

3 91.36 101 91.40 25 85.00 214 86.6 3
5 91.24 102 91.32 23 84.80 105 88.4 6

500
N/A 92.00 161 91.44 45 84.64 759 85.76 51

3 91.56 40 91.12 21 85.6 38 85.76 7
5 91.32 36 91.52 17 84.6 4 83.48 4

ENNne: number of neighbours (N/A if ENN is disabled); |TS|: batch size;
Acc1 and Acc2 refer to the classification accuracy of iGNGSVM1 and iGNGSVM2 respectively;
SV s1 and SV s2 refer to the final number of SVs for iGNGSVM1 and iGNGSVM2 respectively.

Table 4.2: Results of iGNGSVM1 and iGNGSVM2 for several batch sizes over a stationary
(stbal1) and a non-stationary (ntransSingle1) synthetic dataset. Extracted
from [328].

Concept drifts in the same batch are not handled by our approach since it is not
purely incremental. However, iGNGSVM adapts to changes occurring between batches
with the removal of SVs using ENN and GNG to represent the current topology. In
iGNGSVM2, any SV outside of the main distribution of prototypes will be likely to
disappear over time depending on the parameters selected in GNG. ENN may not be
self-sufficient to handle the growth of SVs over time (see Figure 4.2b). In summary,
iGNGSVM1 exhibits more long-term memory, being more suitable for recurring con-
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cepts; iGNGSVM2 shows an adaptive behaviour that tends to forget faster the previous
data distribution and may suit data streams under continuous change.

4.1.3 Experimental Protocol

In this subsection, we introduce the setting used for the first experiment of the thesis.
We compare the accuracy rates and run times of both iGNGSVM variants against a
mini-batch version of LibSVM (namely LibSVM*). We have developed LibSVM* as a
baseline for our experiments. The idea is to compare the raw executing time of using
SVM in batches without inheritance of SVs, prototype reduction and noise removal to
iGNGSVM. The static version of LibSVM was not valid for the current experiments
since the amount of data to be processed did not fit in the main memory. Thus we
needed either a mini-batch or an incremental way to feed these examples.

For the first experiment, we will not use data from the financial domain. We have
two large binary classification datasets from the UCI repository: HIGGS 2 and SUSY 3,
due to their size. HIGGS has 11M data instances and 28 features, and SUSY has 5M
data instances and 18 features. These synthetic sets were generated using Monte-Carlo
simulations for classification tasks using deep learning in [35]. Since these datasets are
in a format ready for machine learning tasks, we have not performed any cleaning or
pre-processing steps. The server used for this experiment is a Macbook Pro 13 inch
from early 2011 with an i5 processor of 2,3 GHz and 4GB of RAM. The goal of using
this machine for the experiment is to show the performance of iGNGSVM with limited
computational resources, which is eventually always the scenario when dealing with
massive datasets or data streams of information at high frequencies. Both datasets are
passed to iGNGSVM using the MOA framework4 as a finite, ordered stream of data.

In the experiments of this section, we will perform a prequential evalua-
tion. This means that while the instances received for training are stored in
a buffer until reaching a minimum batch size, these are first used for testing
and evaluating the model. These tests are performed over the last SVM classi-
fier trained. This evaluation method avoids the accumulation of many batches of
data in memory. The results are reported using the evaluation task from MOA

2 https://archive.ics.uci.edu/ml/datasets/HIGGS
3 https://archive.ics.uci.edu/ml/datasets/SUSY
4 MOA is an open-source framework for data stream mining related to the WEKA project:

http://moa.cms.waikato.ac.nz
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moa.evaluation.WindowClassificationPerformanceEvaluator. This task reports mean
average results on windows of a given number of data instances. The default window
size is 1,000 instances. The final result reported in the experiments will be the mean
accuracy across all windows.

4.1.4 Parameter Tuning

Large values for the stopping criterion in GNG or increasing the number of patterns
received by SVM will clearly increase the runtime of iGNGSVM. ENN is also a crucial
component in iGNGSVM as seen in Subsection 4.1.2.3. In consequence, in this sub-
section we will optimise the values for batch size, the GNG stopping criterion and the
number of neighbours in ENN. All other parameters are set to their default values in
related research [69] [224]. As mentioned already, for the SVM classifier, we have used
the version of WEKA of LibSVM, and we have used a linear kernel with a plain vanilla
setup.

• For the stopping criterion of GNG, the goal is to reduce the input set to the
lowest possible number of prototypes to avoid scalability bottlenecks in SVM
and still create an accurate topology for the current batch; thus, we will explore
values in the range of [100, 500] prototypes generated.

• For the batch size, small sizes increase the run time since the number of iterations
increases, and with this, the number of topologies and SVM classifiers is built
over time. Large sizes will encounter bottlenecks in the classifier and will not fit
in memory in the server used. We will explore sizes in the range [25, 2 million]
data instances per batch.

• For the number of neighbours in ENN, following recommended values from the
literature, we will explore to consider the 3, 5, and 7 closes instances as neighbours
for prototype reduction.

Parameter tuning was performed over the first 2M instances of each dataset. These
instances were excluded from the final experiments in Subsection 4.1.5. The selected
values were optimised to reduce run time, not compromising the classification perfor-
mance. In Table 4.3 we show the parameters that obtained maximum accuracy rates
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Dataset Algorithm Batch size GNG stop.crit. ENN SVM cost

SUSY iGNGSVM1 400k instances 300 prototypes 3 neighbours 8
iGNGSVM2 400k instances 300 prototypes off 8

HIGGS iGNGSVM1 100k instances 300 prototypes 3 neighbours 8
iGNGSVM2 100k instances 150 prototypes 3 neighbours 8

Table 4.3: Parameters obtaining maximum accuracy rates in iGNGSVM.
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Figure 4.3: Accuracy rates (4.3a) and run times (4.3b) for different stopping criterion
in SUSY and HIGGS, and across batch sizes and number of neighbours
(4.3c and 4.3d) in SUSY.

in SUSY and HIGGS. However, the best balance of accuracy vs execution time was
obtained using a similar setting but batch sizes of 1 million examples as shown in Fig-
ure 4.3. Hence, in the benchmark of the next subsection, we used the parameters from
Table 4.3 with batch sizes of 1 million examples.

Figure 4.3 shows the performance of both versions of iGNGSVM for the different
during parameter tuning. Both variants of iGNGSVM performed similarly in terms of
accuracy and run time balance for both datasets with a different number of neighbours
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in ENN. It did not vary much for different batch sizes in terms of accuracy rates in the
set used for parameter tuning. The trade-off between batch size and GNG stopping
criterion was a key factor. Larger batches implied a more significant reduction of the
input patterns in SVM, impacting classification performance.

4.1.5 Results

The results of the first experiment of this thesis are shown in Figure 4.4 and Table 4.4.
These show the mean run time and accuracy over five executions of each algorithm in
SUSY and HIGGS.
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Figure 4.4: Accuracies (4.4a) and run times (4.4b). SUSY in blue bars, HIGGS in red bars.

In the dataset SUSY, the mini-batch version of the SVM classifier with batches
of 10k examples (LibSVM*) resulted in a mean accuracy of 79.36% which was accom-
plished in a mean runtime of 10,200 seconds. In comparison, iGNGSVM was able
to obtain comparable results in terms of classification performance in only 700-800
seconds.

In HIGGS, the largest of the two datasets, iGNGSVM loses ≈5% accuracy com-
pared to the static SVM classifier. In any case, the reduction in terms of the runtime
is visible, and for instance, iGNGSVM2 has a run time speed of 37x compared to the
SVM classifier.

The results achieved with iGNGSVM receive comparable classification perfor-
mance to the static SVM and to the results obtained in the relevant literature [35], but
for considerable lower run times. The techniques used have helped avoid scalability
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LibSVM* iGNGSVM1 iGNGSVM2

Dataset Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
SUSY 79.36 10,194 78.52 783 79.44 761
HIGGS 63.74 97,790 58.76 4,753 59.60 2,567

Table 4.4: Mean accuracy and run times obtained with LibSVM* and both versions of
iGNGSVM.

bottlenecks in large scale datasets using SVM classifiers. We have thus verified the
advantages in terms of runtime reduction when using prototype-based summarisation
techniques such as GNG and ENN. The inheritance of SVs also plays a role in the
accuracy rates obtained. For instance, in SUSY, iGNGSVM can reduce the run time
without a high cost on accuracy rate and improve the accuracy rate in iGNGSVM2.

4.1.6 Summary & Discussion

Section 4.1 has covered the first experiment of this thesis as an introduction to online
incremental learning and problems associated with the continuous learning nature of
algorithms in the data stream mining domain. The experimental results have shown
the power of adaptive learning and prototype generation techniques to deal with large
scale data not requiring complex big data architectures. We have proposed two versions
of our algorithm that differ in the mechanism used to transfer previous knowledge to
new batches:

• iGNGSVM1 transfers learning (support vectors) of the prior batch as prototypes
in a new batch. Hence, it trains the new classifier using previous SVs and proto-
types generated by GNG.

• iGNGSVM2 transfers previous SVs as data instances. Thus, SVs are fed together
with the instances from the new batch into GNG for the generation of prototypes.

According to our preliminary studies in Subsection 4.1.2.3 each variant suits dif-
ferent types of datasets.

iGNGSVM2 transfers SVs as examples, and since GNG grows from its centre and
expands, the resulting topology may not reach any SVs located at the boundaries of
the data distribution. In certain scenarios, this artefact from iGNGSVM2 can help
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to reduce overlap between classes and improve the separability of a dataset for data
classification tasks. In other circumstances (e.g. non-stationary distributions), knowl-
edge from previous batches can be compromised, affecting thus the performance of the
algorithm in case of future recurring concept drifts. In Subsection 4.1.2.3, iGNGSVM2

performed better in a non-stationary dataset. Conversely, iGNGSVM1 can help in the
case of recurrence in the short term since it has demonstrated to accumulate a small
amount of SVs over time across batches. However, for any conclusions regarding con-
cept recurrence in the long term, we would require more experiments that we consider
out of the scope of the work aimed in this subsection.

The static version of the SVM was re-purposed as a mini-batch algorithm with-
out the transfer of support vectors between learning iterations. This was due to the
volume of data to classify and the impossibility to fit the data in memory. iGNGSVM
demonstrated to be able to obtain comparable accuracies to this static version, with
greater rates in individual tests (e.g. iGNGSVM2 in the SUSY dataset). iGNGSVM
was also able to overperform up to 37x the static classifier’s run times, demonstrating
its ability to execute classification tasks at scale in continuous data streams.

Both versions of iGNGSVM used ENN to remove overlapping SVs over time to
avoid model bloating. However, in the experiments performed, iGNGSVM1 benefited
more from ENN to reduce the accumulation of SVs over time (especially in drifting
data). In this scenario, the impact of increasing the number of neighbours in ENN
accentuated over time as the total number of batches increased. The transfer of SVs
as prototypes in iGNGSVM2 acts by design as a forgetting mechanism, and individual
tests in this variant performed better with ENN disabled. In any case, this behaviour
depended as well on the batch size and the distributions of instances of each class
received. For example, hypothetical scenarios with data skewness or different degrees
of bias over time can result in different topology summaries and a changing distribution
of SVs that does not need to relate to a concept drift as such.

This experiment was conducted using linear SVM and ENN methods. The study
performed in iGNGSVM was not exhaustive. Most parameters used the plain vanilla
configuration except the GNG stopping criterion and the number of neighbours in ENN.
However, there is room to improve the results, and the reduction of SVs with ENN
could be further enhanced with non-linear kernels. We believe that we have satisfied
the target of this first experiment, which lies on the computational aspect. A potential
consequence of the transfer of SVs designed in iGNGSVM is the loss of accuracy rate
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over time when receiving consequent batches. This could be the reason for the lower
accuracy rates obtained with HIGGS, which had the highest number of batches. In the
end, this may derive from introducing forgetting mechanisms in algorithms run over
datasets not exhibiting non-stationarities as SUSY and HIGGS.

In this experiment, we have validated the use of GNG to summarise data distribu-
tions and produce knowledge that will be reused over time (SVs). In the main proposal
of this thesis, in Chapter 5, we will use lessons learned from this section to summarise
concepts using GNG and allow model reuse in case of recurring concept drifts. Before
this, we must consider other aspects of our research. The first experiment focused
on synthetic datasets, and thus we have not yet explored the behaviour of adaptive
algorithms in real-world financial data. Furthermore, iGNGSVM has explored passive
mechanisms for concept drift adaption. Still, it would be interesting to explore active
drift handling mechanisms like the approaches explained in Chapter 2 (e.g. ADWIN2
as drift detector [46]). These aspects will be explored in the second experiment of this
thesis, in Section 4.2.
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4.2 Changes over Adaptive Random Forest for Recurrences

4.2.1 Introduction

In Section 4.1 we performed the first experiment with online incremental learners
mainly to tackle the computational cost and scalability issues of traditional machine
learning algorithms in data streaming scenarios. In this second experiment, we will
propose an adaptive algorithm to handle a financial data stream. The goal is to classify
price movement directions one second ahead in the SPDR S&P 500 Exchange-Traded
Fund. In this regard, we will propose an ensemble-based method since, as explained
in Chapter 3, ensembles are widely known for their good accuracy rates in stock trend
classification. This method will be an extension of the adaptive random forest classifier
(presented in Chapter 3) to deal actively with recurring concept drifts.

As introduced in Chapters 2 and 3, the problem of concept drift has recently
shown its relevance in the financial domain as a different way to react to structural
breaks and RCs. The algorithm proposed in this section will handle both gradual and
abrupt regime change in the financial markets and predict the future direction of the
market anytime with the best model available. We will benchmark some state-of-the-
art algorithms in data stream mining and evaluate their performance in real-world
financial streams. The final objective of this section is to evaluate the impact of
active drift handling techniques and introduce a mechanism to handle recurring drifts
explicitly that will be later used in our main proposal. This will be done by storing
previous concept representations in a concept history inspired by previous research
[7, 156,157,221,376], but using a dynamic time window as a novelty to decide what is
the most relevant model in a given point in time.

This section is structured as follows: Section 4.2.1 has introduced the second
experiment of this thesis; Subsection 4.2.2 explains the features of the proposed
system for the experiment. The experimental design and selection of parameters will
be explained in Subsections 4.2.3 and 4.2.4 respectively. Then, Subsection 4.2.5 will
present the empirical results of this section and discuss their implications. Finally,
Section 4.2.6 will explain the conclusions reached and the future lines of work in this
regard as part of this thesis.
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4.2.2 System Features

In this section, we propose an approach that leverages work from the adaptive random
forest classifier (ARF), described in Chapter 3. ARF handles gradual and concept
drifts.

• Gradual drifts are handled passively, training decision trees incrementally.

• Abrupt drifts are handled actively, replacing active trees with new ones trained
only with recent market data when a change detector signals a drift.

Our proposal targets the explicit handling of recurring concept drifts explicitly.
This algorithm receives the name of Recurring Concepts Adaptive Random Forest
RCARF. In our algorithm, decision trees can also be replaced with previously learned
trees to retrieve seasonal and recurring behaviours previously learned. The objective
of making RCARF able to adapt to gradual, abrupt and also recurring concept drifts
is to prepare it to deal with the chaotic behaviour of financial data streams, which can
exhibit evolving behaviours but also cycles and stationarities. To do this, we have to
propose a mechanism to select the best decision tree among the old ones (in case of
cyclic events) or the new active tree in case of a concept drift to a market state unseen.
RCARF is described in more detail in the following subsections.

4.2.2.1 Definition of the RCARF Algorithm

Our proposal, namely RCARF, is an adaptive version of the random forest (RF) ensem-
ble [66], introduced in Subsection 2.2.3.3. RCARF extends ARF to handle recurring
concept drifts explicitly. Both ARF and RCARF use Hoeffding trees as base classifiers.
Thus, we use the term tree to refer to these base classifiers in the rest of this section.
In any case, it is important to note that our proposal is not base-classifier specific, and
this can be replaced as a parameter in our implementation. In RCARF a tree is always
in one of the following states:

• Active: base trees running in the ensemble used for test and training purposes.
In case of drift, an active tree is moved to the concept history, defined below.
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• Background (one per active tree): if a detector signals a warning for an active
tree, a new tree starts being trained in the background (in parallel to the active
tree) until the concept drift is confirmed. These trees are only used for training.
Then, either background or an idle tree replaces the active. In this section, we
call warning window to the training time of a background tree. As a feature
inherited from ARF [152], the background tree inherits algorithm parameters
values and subspace sizes (related to bagging).

• Idle (concept history): trees that were active previously but replaced due to
their low performance in a certain period (in a concept drift). These trees are
not tested (by the global evaluator) nor trained unless they re-activate. In this
section, when these trees are re-activated, we call them recurring trees.

Figure 4.5: RCARF training workflow.

The different components of RCARF are illustrated in Figure 4.5. Data instances
are received from a data stream and used for test and train. First, RCARF tests the
accuracy of the top voted class using the weighted vote of all active classifiers (global
evaluator). After testing, each data instance received can be used for training an active
tree (and a background tree if this exists).
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RCARF uses an active approach to handle concept drifts. This mechanism follows
the two-stage convention in data stream mining literature described in Section 2.3.4.2.
It has two (supervised) change detectors with different thresholds to signal warnings
and drifts. The idea of this is to detect potential drifts as soon as possible and ensure
a smooth transition to new trees. When the most sensitive change detector raises a
warning signal, RCARF immediately creates and starts training a background tree
for the affected classifier. If at some point later the second detector (less sensitive)
signals a concept drift, the active tree will be replaced with the new background tree.
Otherwise, this background tree will be discarded. When a classifier raises a warning,
a temporal copy of it is made to be added to the concept history in case of concept
drift. From now on, we will refer to this copy as the active tree snapshot. The purpose
of this copy is to store the clean classifier in the concept history before it evolves (is
trained) during the warning window.

We believe that the warning window represents the process of changing from one
concept (state of the market) to another. Thus, the working (active) tree could add
noise to the concept history since, as a feature inherited from ARF, the active tree
keeps training during the warning window.

Algorithm 4.3 Random forest tree train (RFTreeTrain). Symbols: λ: fixed parameter to Poisson
distribution; GP : Grace period before recalculating heuristics for split test; m: maximum features
evaluated per split; t: decision tree selected; (x, y): current training instance. Adapted from [152]
1: function RFTreeTrain(m, t, x, y)
2: k ← P oisson(λ = 6)
3: if k > 0 then
4: l← F indLeaf (t, x)
5: UpdateLeafCounts(l, x, k)
6: if examplesSeen(l) ≥ GP then
7: AttempSplit(l)
8: if DidSplit(l) then
9: CreateChildren(l, m)
10: end if
11: end if
12: end if
13: end function

As mentioned at the start of this subsection, RCARF leverages some components
from ARF. The first inherited part is related to the ensemble approach (bagging,
weighting and voting).

The full RCARF (forest) classifier performs a prediction for each incoming data
stream instance. Each instance is pushed to most base classifiers for voting (following
a bagging approach). Each vote is multiplied by the base classifier’s weight; a value
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adapted later depending on whether the related base classifier prediction matches the
real class of the example. Other parts reused from ARF are the function to train
new decision trees (see Algorithm 4.3) and the aforementioned active drift handling
mechanism (lines 1-11, 14-15 and 22-24 in Algorithm 4.4).

Algorithm 4.4 Recurring Concepts Adaptive Random Forest (RCARF). Extracted from [329].
Symbols: m: maximum features evaluated per split; n: total number of trees (n = |T |); δw: warning
threshold; δd: drift threshold; C(·): change detection method; S: data stream; B: set of background
trees; W (t): tree t weight, P (·): learning performance estimation function; CH: set of historical
concepts; R: best transition (between B the model in CH with lowest error); TC: temporal concept
saved at the start of warning window.
1: function RecurringConceptsAdaptiveRandomForests(m, n, δw, δd)
2: T ← CreateT rees(n)
3: W ← InitW eights(n)
4: B, CH ← ∅
5: while HasNext(S) do
6: (x, y)← next(S)
7: for all t ∈ T do
8: ŷ ← predict(t, x)
9: W (t)← P (W (t), ŷ, y)
10: RF T reeT rain(m, t, x, y) ▷ Train t on the current instance(x,y)
11: if C(δw, t, x, y) then ▷ Warning detected?
12: lastError ← evaluate(t) ▷ Save overall error of t
13: T C ← copy(t) ▷ Copy current tree at the start of warning window
14: b← CreateT ree() ▷ Init background tree
15: B(t)← b
16: end if
17: if C(δd, t, x, y) then ▷ Drift detected?
18: t← bestT ransition(t, B(t), CH)
19: addT oConceptHistory(T C) ▷ Push current concept to CH
20: end if
21: end for
22: for all b ∈ B do ▷ Train each background tree
23: RF T reeT rain(m, b, x, y)
24: end for
25: end while
26: end function

As a novelty, RCARF introduces a component to detect the relevance of trees
trained previously and retrieve them from a collection of inactive classifiers called
concept history. Hence, RCARF introduces steps required to manage historical trees
and perform select the best candidate to replace active trees in case of drift (lines
12-13, and 18-19 in Algorithm 4.4). This collection of inactive trees, shared across
all classifiers of the ensemble, is described further in Subsection 4.2.2.2. In order to
assist the decision-making process of finding a relevant tree, RCARF has a specific
component called internal evaluator (coloured in red under each classifier and concept
history in Figure 4.5) that has a dynamic sliding window to consider the last data
instances. The internal evaluator is explained in Subsection 4.2.2.3.
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4.2.2.2 Concept History

One of the core components of RCARF and one of the novelties of our proposal is the
addition of a concept history in an adaptive ensemble with supervised drift detectors.
The concept history (CH) is a collection of trees previously trained that are available
across classifiers for future use if a recurring concept drift is detected. If an active tree
is inserted in the concept history, it becomes available for the whole ensemble. If a tree
from the concept history is promoted to be an active tree, it is immediately removed
from the concept history.

We propose RCARF under the assumption that in very sharp changes such as
abrupt concept drifts, a new tree (background) may not offer a good classification
accuracy in the short term if it replaces the active classifier. Hence, when a change is
detected, two different actions take place. First, RCARF selects the best tree between
the background and idle trees in the CH. This can be seen in line 18 of Algorithm 4.4,
and in Algorithm 4.5. Second, the active tree affected is moved to the CH and becomes
idle, being retrievable in a future concept drift by any other classifier of the ensemble.
The idea of a concept history is appealing especially for those circumstances and also
in the presence of recurring concepts. In the last scenario, the CH will store trees
already trained with concepts that will reappear.

Change detectors in ARF and RCARF monitor the error statistics over time in
each base tree. Depending on the thresholds set for each detector, a warning or a
concept drift will be raised as the error increases. The term warning window in super-
vised drift detection has been previously defined in Section 2.3.4.2 as the period (and
data instances processed) between a warning and a drift signal. In ARF, each active
tree has its own detectors and thus its own warning window. When a change detector
signals the likelihood of a concept drift (warning detection, line 11 in Algorithm 4.4)
in the active classifier, a background tree is created to replace this classifier in case of
concept drift. In case of confirming the drift (drift detection, line 17 in Algorithm 4.4),
its warning window finishes, its background tree becomes active, and its active tree is
moved to the CH. In RCARF, we propose an novel mechanism to compare the back-
ground learner to all the historical trees from the CH. At the start of the warning
window, all trees from the CH start being evaluated (tested) to compete with this
new background tree. This competition is performed as part of the internal evaluator
explained in Subsection 4.2.2.3.
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4.2.2.3 Internal Evaluator

RCARF has two types of evaluators visible in Figure 4.5; the ensemble (global) one,
and the internal one (drawn inside classifiers and CH).

• Ensemble evaluator (global, line 8 in Algorithm 4.4): This evaluator handles
the predicted accuracy and classification performance of RCARF.

• Internal evaluator (tree-specific, Algorithm 4.5): This is one of the novelties
presented in this section. During the warning window, RCARF collects relevant
information for the selection of the new active tree in case of concept drift. This
information is collected over a dynamic sliding window containing the last exam-
ples after the warning was signalled. The internal evaluator is updated every time
that a new instance is tested. Algorithm 4.6 explains the resizing mechanism of
the internal evaluator sliding window in each classifier.

Algorithm 4.5 Internal Evaluator. Extracted from [329]. It computes the best transition in case of
drift. Symbols: t: active tree; b: background tree; CH: concept history; c: tree from CH; WS(CH):
fixed window size in CH; WS(b): current window size in b, W (c): error statistics in c for the latest
examples in WS(CH); W (b): error statistics in b according to WS(b).
1: function BestTransition(t, b, CH)
2: for all c ∈ CH do ▷ Rank of errors of each tree in CH
3: addT oRank(c, countErrors(W (c))/W S(CH))
4: end for
5: if minError(rank) ≤ (countErrors(W (b))/W S(b)) then
6: R← extractClassifier(CH, minErrorKey(rank)) ▷ Get and remove tree from the concept history
7: else
8: R← b
9: end if
10: return R
11: end function

Algorithm 4.6 Resizing of the Dynamic Internal Evaluator. Extracted from [329]. Symbols: WS:
evaluator window size; W : evaluator window; SI: size increments; MS: minimum size of window.
1: function AddEvaluationResults(value = correctlyClassifies ? 0 : 1)
2: removeF irstElement(W )
3: add(W , value) ▷ Add result [1 (error) or 0 (success)] to window
4: updateW indowSize()
5: if (countOfErrors(W )/W S) < getErrorBeforeW arning then
6: W S = W S + SI
7: else if W S > MS then
8: W S = W S − SI
9: end if
10: end function

When a concept drift is signalled (line 17 in Algorithm 4.4), the tree with the
lowest error according to its internal evaluator is promoted to active. The snapshot
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of the active tree (taken when the warning was detected) is then moved to the CH
(lines 18 and 19 in Algorithm 4.4). Figure 4.6 describes the sliding window resizing
mechanism in the internal evaluator. The window size (WS) decreases when the mean
average error of the background tree in the sliding window is lower than the error
obtained by the active tree when the warning was detected. WS does not decrease
beyond a given minimum window size (MS) specified as an input parameter. The
window sizeWS increases when the mean average error of the background tree in the
sliding window is greater than the error obtained by the active tree when the warning
was detected. Otherwise, WS remains the same. The increments and decrements of
the WS are performed according to an input parameter that defines size increments
(SI ).

The resizing mechanism proposed in this subsection is based on our interpretation
of the error metrics obtained by the background trees during the warning window.
Based on observations during the validation study of RCARF, we believe that a con-
siderable part of the errors obtained by background trees during the warning windows
is because these have not been trained with enough data instances yet to produce re-
liable predictions. Other reasons could be underlying data of a continuously evolving
nature or a period of quick changes that led to a background classifier trained for
several concepts. In these scenarios, the latest examples could be a better metric to
measure the classification performance of a given decision tree; hence, WS decreases.
Otherwise, we believe that a larger sample may be desirable since the new tree will
have been tested in a more representative sample; then, then WS increases. For the
sake of efficiency and reducing computational costs, the internal evaluator changes size
dynamically during the warning window only in the active classifiers and background
trees. In this section, trees from the CH have a fixed window size provided as an input
parameter.

4.2.2.4 Training of the Available Trees

RCARF introduces a novel mechanism to replace the active trees. This creates a
need to discuss how data instances are used to train the trees. In ARF, active and
background trees are trained with data instances as soon as these become available in
the data stream (lines 10 and 23 in Algorithm 4.4). However, in RCARF, there is an
added constraint due to the idle trees from the concept history. Idle trees belong to a
previous concept and are only trained if selected to replace the active tree.
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Background and active trees are trained in parallel during the warning window.
Thus, there is no data loss in the case of concept drift transitioning to a background
tree since all instances received during the warning window will have been used to
train the new active tree. Conversely, trees from the concept history are not trained
with data instances received during the warning window if selected in case of concept
change. An assumption made by us is that if an idle tree performs better for the
last instances, we consider that this has already been trained in the past for a similar
concept and thus re-feeding the examples of the warning window is unnecessary.

According to Alippi et al. in [7], there is an intrinsic delay from the start of a
concept drift in the ground truth to the start of the warning window. This delay
implies that there is at least one period where the model will be inevitably trained
with more than one concept. In this section, we avoid considering this delay as part of
our analysis for the sake of simplicity. For this reason, we consider that the time when
a tree is better adapted to a concept is just before the start of the warning window.
This motivates our reasoning in the design of RCARF. Due to this, first, RCARF uses
the accuracy of a base tree before warning as a baseline for the window resizing logic
of the internal evaluator; second, RCARF pushes the snapshot of the active tree before
warning to the CH in case of concept drift (lines 13 and 19 in Algorithm 4.4).

4.2.3 Experimental Protocol

In this subsection, we introduce the setting used for the second experiment of the
thesis. As introduced at the start of the chapter, one of the objectives of this section
is to benchmark data stream mining techniques in real-world financial data. For this
purpose, we have used Exchange-Traded Fund (ETF) SPY prices for the entire first
quarter of 2017 at the second level from QuantQuote5. This ETF that will be described
in more detail in Chapter 6 is one of the most heavily-traded ones, tracking the popular
US index S&P 500.

The feature set used for classification tasks is a selection of 10 different technical
indicators based on the work by Kara et al. [195], covered already in Chapter 3. This
set of indicators is mainly used in the literature at the daily level, and most moving
averages use a period of 10 days to compute most of these. We leave the default value
to the last 10 prices (thus, n=10 seconds) and add extra moving averages for 5 and

5 Data source—https://www.quantquote.com
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20 seconds. Therefore, we have used a total of 14 features as described in Table 4.5.
The indicators are computed using the technical analysis library TA-Lib6 with all of
the default parameters apart from the period (10).

Name of Indicators Formulas

Simple n-second moving average (5, 10, 20) Ct+Ct−1+...+Ct−n+1
n

Weighted n-second moving average (5, 10, 20) n×Ct+(n−1)×Ct−1+...+Ct−n+1
n+(n−1)+...+1

Momentum Ct −Ct−n

Stochastic K% Ct−LLt−n
HHt−n−LLt−n

× 100

Stochastic D%
∑n−1

i=0 Kt−i%
n

RSI (Relative Strength Index) 100− 100
1+(

∑n−1
i=0 Upt−i/n)/(

∑n−1
i=0 Dwt−i/n)

MACD (Moving average convergence divergence) EMA(12)t −EMA(26)t

Larry William’s R% Hn−Ct
Hn−Ln

× 100
A/D (Accumulation/Distribution) Oscillator Ht−Ct−1

Ht−Lt

CCI (Commodity Channel Index) Mt−SMt
0.015Dt

Ct is the closing price; Lt the low price; Ht the high price at time t; EMA: exponential moving
average, EMA(k)t: EMA(k)t−1 + α × (ct − EMA(k)t−1); α: smoothing factor: 2/1 + k; k is
the time period of k second exponential moving average; LLt and HHt mean lowest low and
highest high in the last t seconds, respectively; Mt : Ht + Lt + Ct/3; SMt :

∑n
i=1Mt−i+1)/n;

Dt : (
∑n

i=1 |Mt−i+1 − SMt|)/n;Upt means the upward price change; Dwt means the downward
price change at time t. n is the period used to compute the technical indicator in seconds.

Table 4.5: Selected technical indicators. Formulas as reported in Kara et al. [195] applied
to the 1-second level. Extracted from [329]. Exponential and simple moving
averages for 5 and 20 seconds added as extra features.

The predicted feature (class) has been computed accordingly to Kara et al. [195]
for binary classification to indicate the direction of the next price change one second
ahead in the EFT.

• If the close price of SPY from a given time (t− 1) to the second after (t) increases,
then the direction is labelled as 1.

• Conversely, if the close price from t− 1 to is equal or lower than the close price
at t, then the trend direction is labelled as 0.

The experiments only consider data inside trading hours. This is because short-
sellers operating in intraday markets tend to be reluctant to hold positions over non-
market hours and try to close before the end of the day [84] to avoid price jumps

6 Technical Analysis library—http://ta-lib.org/
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or market behaviour changes overnight. Since some technical indicators selected rely
on the 35 previous prices, the first 35 seconds each trading day are discarded after
processing the technical indicators to avoid the influence of previous trends and prices
before market hours.

The resulting dataset is then modelled as a finite, ordered stream of data, and
evaluation and training are performed simultaneously using the interleaved test-then-
train (prequential) evaluation [49], described in Chapter 2. The error metric used in
our experiments is the accumulated classification error. This is computed as described
in Equation 2-16 in Section 2.2.5.1. In any case, this accumulated error does not
reflect the performance of the algorithms in particular moments. In order to show
the results over time graphically, we also report the mean average error on windows
over a fixed window of time as done in Section 4.1, using evaluation task from MOA
moa.evaluation.WindowClassificationPerformanceEvaluator. The window size set in
this experiment is 500 instances, which translates to windows of ≈ 8 minutes of length.

Again, apart from benchmarking the data stream mining state-of-the-art algo-
rithms for stock trend classification, another goal of this section is to evaluate the
utility of the novel recurring drift detection mechanism proposed in RCARF against
its state-of-the-art competitors. For this, apart from ARF, we have selected the fol-
lowing learners the data stream mining literature: DWM [205] using Hoeffding trees
as base classifiers, an RCD learner [159] of Hoeffding trees, and a Hoeffding adaptive
tree (AHOEFT or HAT) [47]. When possible, all algorithms use ADaptive WINdowing
(ADWIN2) [46] change detector for warning and drift detection, Hoeffding trees as the
base classifier, and the same number of base trees in their configurations. The rest
of the parameters used are a plain vanilla setup. Adaptive random forest is an algo-
rithm prepared for multi-threading, training base trees in parallel. Since the number of
threads can impact the results obtained by RCARF due to the shared concept history,
we have decided to run the experiments in a single thread. For simplicity, we have
decided to leave the impact of multi-threading as something out of the scope of our
current proposal.

Given the stochastic nature of the RF-based algorithms used in this section, we
will run 20 tests for each with different random seeds and report their mean results.
The group of individual results per algorithm will be used for post-hoc analysis. The
statistical significance of the performance differences among the algorithms will be
formally studied first, testing the normality of the distribution of prediction errors
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using the Lilliefors test. If the null hypothesis of normality is rejected, we will rely on
the Wilcoxon test [368]. Conversely, we will test for homoscedasticity using Levene’s
test and, depending on whether we can reject the null hypothesis or not, the process
will end testing for equality of means using t-test. The significance levels that we will
consider in the tests for normality and homoscedasticity are at 5%. For the rest, we
will consider both 5% and 1%.

In summary, our proposal in this section aims to predict market trends in the
very short term and very high frequencies (second level). Still, the generation of any
trading signals used to create trading strategies is out of the scope of this thesis. All
the algorithms used in the experiments use the raw values of the technical indications
(without any normalisation) for binary prediction of ups or stable/downs in incoming
instances every second. The ensemble approaches used in this section have a set of
base classifiers which predictions are combined through voting to produce a global
stock trend classification.

4.2.4 Parameter Selection and Sensitivity

This section does not perform a systematic parameter optimisation since this is only
a preliminary study. Hence, the reader must be aware that the performance of the
algorithms might be understated. In the experiments, we will use most of their authors’
recommended parametrisations or default setups. In any case, the following parameters
deserve to be mentioned.

• Base classifier : As mentioned in the previous subsection, we will use Hoeffding
trees as the base classifier across all ensembles.

• Change detector : We use ADWIN2 in all of the ensembles in our experiments as
the active change detection method. ADWIN2 is the default change detector in
ARF, proving its good performance in [152].

• Ensemble size: The number of base classifiers for all ensembles in this experiment
is 40. We set this value due to the results reported in [152].

• Batch size: ARF, RCARF and AHOEFT are purely incremental approaches. We
will process data instances one by one (batch size = 1). In RCD, we will process
data in batches of 600 examples, which translates to one batch each 10-minutes.
For DWM, we use its default setup.



118
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

As mentioned in the previous subsection, in the experiments for ARF and RCARF,
we use the ADWIN2 [47] as change detector, described in Chapter 2. ADWIN2 uses a
parameter (δ) that relates to its sensitivity. Large values for δ map to smaller thresholds
for changes in the statistic monitored (error rate in our case) to detect warnings or
drifts. The value of parameters of this sort relies on the signal-to-noise ratio of the
specific data stream and critically impact the algorithms’ performance using this active
drift detection approach.

In ARF and RCARF, there are two ADWIN2 detectors with different δ values
to detect warnings and drifts. The value set for the warning detector (δw) has to be
greater than the value set for the drift detector (δd), and a proper balance of these
values is critical to ensure an appropriate transition to a new active tree after the
warning window.

Parameters ARF[M] ARF[F] ARF[U] & RCARF RCD
δw 0.0001 0.01 0.3 0.15
δd 0.00001 0.001 0.15

Table 4.6: Sensitivity parameters for ADWIN2.

Although further experimentation may be needed, during the validation of
RCARF, we observed that the δ values set would generally impact more in the ARF
ensemble. We believe that RCARF is more robust than ARF since, in case of early
drifts, it can switch to an already trained (idle) tree from the concept history instead of
switching to untrained background trees as ARF. Because of the sensitivity of ARF to
the values set for δ, we have tested three configurations for ARF (two of them: “mod-
erate” and “fast” (ARF[M] and ARF[F] respectively), recommended by the authors
in [152]). During the validation of RCARF, we also noticed that large values for the
change detector (δw and δd) are favourable in RCARF to ensure that enough changes
are detected and to use the concept history. These are δw = 0.3 and δd = 0.15 and
are also used in ARF for a direct comparison (ARF[U]). All the δ parameters used for
ADWIN2 are shown in Table 4.6. RCD can only use a single ADWIN2 detector; thus,
we have selected the same value used for drift detection in RCARF.

Other parameters worth a mention are the related ones to the internal evaluator.
The starting size of the dynamic sliding window is 10 instances, with increments and
decrements of 1 instance in the background trees and a minimum window size of 5
instances. Finally, we also tested a second configuration for RCARF that resizes the
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sliding window of the internal evaluator for the idle models of the concept history using
the same logic as the background trees and managing independent window sizes in each
of the trees. This did not result in major differences.

4.2.5 Results

4.2.5.1 Global Performance Benchmark

In this section, we summarise the results obtained in the second experiment of this
thesis predicting the market trend a second ahead. Table 4.7 provides the main de-
scriptive statistics for the accumulated error (%) for all the benchmarked algorithms
over 20 runs in the full test and train set. The results are sorted in ascending order from
best (lowest) to worst (highest) classification performance. RCARF obtains the most
competitive results in terms of mean and median error. The results from Table 4.7
were formally tested with the protocol described in Subsection 4.2.3 and all differences
among algorithms are statistically significant at 1%.

Mean Median Var. Max. Min.
RCARF 34.7533 34.7538 0.0002 34.7791 34.7285
ARF[M] 34.8008 34.8007 0.0002 34.8362 34.7769
ARF[F] 34.8309 34.8335 0.0003 34.8591 34.7902
RCDHOEF 35.0469 35.0469 0.0000 35.0469 35.0469
ARF[U] 35.1104 35.1114 0.0002 35.1392 35.0881
DWM 35.2364 35.2364 0.0000 35.2364 35.2364
AHOEFT 35.4661 35.4661 0.0000 35.4661 35.4661

Table 4.7: Global comparison. Accumulated error (%) on the full dataset. Main descriptive
statistics over 20 runs. Differences are significant at 1%.

We believe that the ability to replace active trees with idle trees makes RCARF
outperform ARF, which switches to barely trained base trees in the presence of quick
concept changes. Since these gains in terms of error are not over the whole period, the
final difference between ARF and RCARF is lower than 1% error. This is due to times
of stability in the data stream passed and due to other gradual concept drifts that may
be handled already by the base tree used (Hoeffding trees). In any case, the financial
domain is known for its low signal to noise ratio; thus, any small gains in classification
performance can create a competitive advantage for traders or investors using RCARF
as an extra indicator for their decision process.
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In Table 4.7, ARF[M] and ARF[F] obtain the second and third-best results, fol-
lowed by RCD and AHOEFT. The fact that AHOEFT obtains the largest error was
expected since this is the only not ensemble algorithm used in the experiment (it has a
single tree). As covered in Chapter 3, ensembles are known in the literature for improv-
ing classification performance in different domains. ARF[M] and ARF[F] overperform
ARF[U], a parametrisation that was suggested for a direct comparison with RCARF.
As covered in Subsection 4.2.4, this may be because ARF is more sensitive to the drift
detector used and its parametrisation than RCARF. Our proposed method can switch
to already trained trees if the background tree is not the best alternative in terms of
error during the warning window, and this seems to impact the prediction accuracy
obtained in the second experiment.

Mean Median Var. Max. Min.
# Drifts 3411.1500 3411.5000 3120.2395 3518 3279
Drifts per tree 85.2788 85.2875 1.9501 88 82
# CH Trees 118.2500 119.0000 46.0921 130 106
# Drifts: Number of drifts during the execution; Drifts per tree: number of total
drifts during the execution divided by the ensemble size; # CH trees: number of
trees in the concept history at the end of the execution.

Table 4.8: Internal statistics for RCARF on the whole dataset over 20 runs.

Regarding the impact of the active drift detection mechanism, Table 4.8 shows
summary statistics about the number of concept drifts detected by RCARF. The mean
size of the concept history at the end of the execution was 118 trees, which translates to
≈118 background drifts. ADWIN2 detected a mean of approximately 3,411 drifts (≈85
per tree). Thus >3,000 drifts were recurring (to idle trees of the CH). The fact that
most of the drifts are recurring and the good classification performance obtained by
RCARF prove that the recurring drift method proposed in this section can be valuable
in the financial domain. While a more profound analysis regarding the accuracy is
desirable, this would require us to be aware of the ground truth regarding concept
changes in this financial data stream. This would imply defining what a concept is in
financial data, something that we will introduce in Chapter 5 but that we consider out
of the scope of this section.

In terms of execution time, RCARF processed the whole data stream on a mean
time of 35,263 seconds across the 20 tests. This is less than 10 hours to compute an
entire quarter of market data at the 1-second level. Although we have not performed
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this experiment in the stocks market in real-time, RCARF has demonstrated its
ability to classify high-frequency data streams in near real-time.

4.2.5.2 Analysis of Results over Time

Figure 4.6 shows the evolution of the error in RCARF for a short period (the first
trading day of the year). The error shown is measured on windows of 500 examples,
and drifts are marked with vertical lines. Red dotted lines indicate times when a
background tree becomes active, while blue dashed lines indicate times when a concept
history tree is re-activated (recurrent drift). Concept drifts are detected throughout
the entire stream as shown in Figure 4.6.
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Figure 4.6: Sample run of RCARF on a single test for the trading first day. Red-dotted
and blue-dashed vertical lines mark drifts to background and recurring trees,
respectively.

The start of the sample run in Figure 4.6 shows higher errors. This is because
models are not trained yet with a representative number of data instances. Conse-
quently, ADWIN2 detects more changes at the start of the execution, in some cases
with very short time frames between them. The time between drifts is are more sparse
at the end of the sample execution. It can be observed that most of the transitions
are to idle trees from the CH (blue dashed lines), and very few background trees are
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selected (red dotted lines). Again, this proves that the storage mechanism proposed in
this section helps our algorithm in this real-world financial data stream.

Figure 4.7 shows how the different algorithms compare over time in terms of
classification accuracy (error) during part of the test and train set. Due to the noise
level at the second level, we have smoothed the plot averaging the error on windows of
1, 000 instances to make the trends visible. Still, Figure 4.7 does not seem helpful to
extract conclusions of how these algorithms compare to each other. Instead, we rely
on the conclusions reached in the previous subsection based on the global performance
indicators, and statistical tests reported Table 4.7.
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Figure 4.7: Algorithm comparison over a sample period. For RCARF, ARF[U], ARF[F]
and ARF[M] we show the average result of 20 runs.

In any case, Figure 4.7 is consistent with the results as mentioned earlier. RCARF
and ARF[M] behave similarly and often overlap. Their mean results over time tend
to be below the errors seen in the rest of the algorithms. This is worth mentioning
since it suggests that RCARF and ARF are superior most of the time and not under
specific market conditions. RCARF proves to obtain lower errors for short periods in
many circumstances. We believe that this is due to the concept history implemented
in this section, which helps our method to adapt faster to concept drifts than ARF.
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4.2.6 Summary and Conclusions

Section 4.2 has covered the second experiment of this thesis as an introduction to
active drift handling and benchmarked state-of-the-art data stream mining approaches
in real-world financial data at the 1-second level. With this in mind, we have introduced
RCARF, a tree-based adaptive ensemble that handles recurring concepts.

RCARF inherits several features of adaptive random forest (ARF) and adds an
element, namely concept history, to store and manage a collection of idle trees that
represent previous market behaviours. For this, we have created a decision strategy that
selects the best candidate between inactive and new trees to replace active classifiers
when these present a concept drift. These features have been designed to optimise
classification accuracy in case of abrupt drifts and provide a timely reaction to changes
in near-real-time. We consider that RCARF is thus a suitable technique for high-
frequency data streams.

The experiment was conducted over a whole quarter of market prices and trade
volumes of the SPY with an ETF of high liquidity that tracks the S&P 500 index.
Raw data was downloaded at a resolution of 1-second and was pre-processed using a
common set of technical indicators from the literature for stock trend classification.
The predicted feature indicated if the price increases or stays/decreases one second
ahead. Once pre-processed, the dataset was modelled as a finite ordered data stream
and fed for online machine learning to RCARF and a set of relevant competitors from
the data stream mining literature.

RCARF offered the lowest accumulated error and was statistically significant in
20 tests with a p-value of 1% over its competitors. The main design difference between
ARF and RCARF is the ability of RCARF to save old trees and retrieve them in
case of recurring concepts. Thus, in this experiment, we have validated the hypothesis
that a collection of historical models with previous market behaviours adds more value
than simply continuous adaption. In the main proposal of this thesis, in Chapter 5,
we will use the idea of reusing previous models that achieved the best results that
in this chapter. This has exciting implications in the domain tackled in this thesis
since it could support the notion of stationarities and cycles in the market structure.
Being able to recognise these previous states can give traders an investor competitive
advantage to obtain excess returns. Hence, it is something to be covered further in the
rest of this thesis.
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The second experiment has focused on stock trend prediction with different mech-
anisms to handle concept drifts. Still, as mentioned already, we do not intend to derive
any trading system. Instead, we target the intersection of the data stream mining and
computational finance domains from a research point of view. RCARF aims to indicate
up or stable/downs in the stock price and may be helpful to traders. Recognition of
this fact is an extra insight for financial experts that can lead to profits in the markets.

Future extensions of RCARF could include a refinement of the: i) internal evalu-
ator, ii) the decision mechanism during the warning window, and iii) the management
of classifiers performed in the concept history. Some of these are considered in our
main proposal in Chapter 5.

Other extensions of this work beyond the scope of this thesis could include: i) high-
performance optimisation of RCARF for ultra-high frequencies (tick-level resolution)
like its parallelisation for distributed systems, and ii) the addition of a meta-learning
layer to evaluate the likelihood of transitioning to different recurring market behaviours,
as seen in many of the approaches described in Section 3.4.

Having said this, the reader must note that both sections in this chapter were part
of preliminary research works that led to the proposal in Chapter 5. While iGNGSVM
gave us a reliable mechanism to summarise concepts, from RCARF, we have learned
the basis to build a collection of idle classifiers for model reuse. In Chapter 5 there will
be further need than in this chapter to know and analyse the ground truth in order to
evaluate the changes and recurrences detected further than in this section. With this
in mind, we will aim to simplify our solution to propose a novel approach that allows
us to analyse the accuracy of the drifts recognised. Hence, our main proposal will not
use components like the SVM classifier from iGNGSVM, the bagging component or
the ensemble approach from RCARF.



Chapter 5

Proposal

5.1 Meta-classifier to Deal with Drifts and Recurrences

As covered in Chapter 2, financial time series may exhibit both non-stationary and
stationary behaviours. In some cases, patterns will repeat stationarily but may also
evolve up to a certain degree, and non-stationary patterns may also occur within a
given market state. This topic from the financial literature can be easily mapped
to the literature of evolving data streams and recurring concept drifts. With this in
mind and from lessons learned in Chapter 4, in this third experiment, we propose
a meta-learner, namely Growing Concept History of Recurring Classifiers (GroCH),
that replaces its active classifier in case of concept drift as illustrated by Figure 5.1.
Historical classifiers can be retrieved from a list of concepts or groups called concept
history. GroCH combines many meta-learners when there is a potential drift occurring.
This is done to deal with concepts that come and go during gradual shifts and improve
prediction accuracy during changes in the time series. We apply this algorithm to a
dataset that behaves as financial data to identify different market states as groups in
the concept history. Each group is identified by a topology (or set of prototypes) and
has a number of old active classifiers.

This chapter is structured as follows: first, we define the features of the algorithm
proposed; then, we describe the framework used to evaluate the algorithm during
concept drifts, and the simulation of financial time series to know the ground truth.
Finally, subsection 5.3 details the experiments performed, including the parameter
optimisation process, the analysis of results, limitations and future lines of work.

125
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Figure 5.1: Changes between active classifiers at concept drifts. The right hand side rect-
angle represents the history of previous classifiers to be reused in the future.

5.1.1 System Features

The idea behind our proposal, a growing concept history of recurring classifiers (namely
GroCH), is the development of a one-pass and adaptive framework that works for
different types of drifts and stationarities or recurring behaviours. Some of the con-
tributions of this approach are: i) new mechanism to handle recurring drifts and to
evaluate using the best learner during the warning window, ii) the notion of groups
inside the concept history, and iii) the techniques used to disable warnings and drifts.
Part of our proposal is targeted at cases of abrupt drifts. In such scenarios, retrieving
a classifier snapshot from the past has a lower computational cost than training or
adapting a new classifier (see Section 4.2).

In GroCH, a classifier can be in one of three states as seen for RCARF in Sec-
tion 4.2, albeit the definition of these states changes slightly from the previous work
presented. These states are the following:

• Active: classifier currently being tested and trained. In the case of concept drift,
the active classifier is moved to a group of the concept history.

• Training in the background: called background learner, this is initialised at the
start of the warning window and trained in parallel until the detectors signal a
concept drift in GroCH. Then, it can become an active classifier if this is the best
performer in the last testing examples (warning window evaluator). This learner
is also available for testing during the warning window; this is explained further
in Subsection 5.1.3.2.

• Idle: The concept history is a set of groups with pools of idle classifiers that were
active, replaced in previous drifts. At the time of drift, an active classifier is sent
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to a group of the concept history that resembles the current concept; this is then
replaced by background or an idle classifier. Throughout this work, when these
classifiers are re-activated, they are called recurring classifiers.
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Figure 5.2: GroCH training workflow.

Figure 5.2 shows the flow followed in GroCH. First, incoming data examples are
tested using the predictor. After this, each example is also used for training the active
classifier. As in other algorithms using drift detection in the literature [14, 151, 159],
when the error statistics increase over time up to a certain threshold, a warning is
activated, and a background classifier is created to replace the active model in the case
of drift. A change detector decides if the algorithm must be prepared for a concept
drift (warning detection, Algorithm 5.1, Line 9) or if the drift has already happened
(drift detection, Algorithm 5.1, Line 15).

The warning window is defined as the period of time that starts when GroCH
raises a warning and finishes when it detects a drift. The warning window resets if its
length is greater than a certain threshold (Algorithm 5.1, Line 36), but it does not reset
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in the case of false alarm (Algorithm 5.3). In GroCH, there is an online evaluation of all
the classifiers to compare their performance on the latest examples during the warning
window. Only when a drift is detected, a copy of the classifier with the lowest error
according to the warning window evaluator becomes active (Algorithm 5.1, Line 28).
The former active classifier is moved as an idle classifier to the closest group in the
concept history (Algorithm 5.1, Line 22). If during the warning window, the active
classifier performs with lower classification error than the background classifier and
all the classifiers of the closest group from the concept history, and a false alarm is
produced. Thus, the drift signal resets, but the GroCH remains in the warning window.
As the warning window continues, in this case, the topology is not updated, and the
active classifier is neither replaced nor pushed to the concept history.

In certain cases, due to the sharpness of a change, GroCH does not capture enough
examples during the warning window to have a decent spatial representation of the new
concept. In this chapter, we call early drifts to any changes signalled by detectors under
this circumstance. A concept drift is considered to be early if its warning window
receives less than β examples. In this scenario, GroCH does not consider historical
classifiers, and only background drifts or false alarms can be produced.

5.1.2 History Management and State Detection

Algorithm 5.1 shows the overall pseudo-code for the GroCH algorithm. A warning
signal (raised by a drift detector) triggers the creation and training of a new background
classifier. If a drift signal confirms the drift later and the background classifier presents
the lowest error, it replaces the active learner. Otherwise, this is discarded. If the active
learner is replaced, this is moved to the concept history as an idle classifier.

The concept history is divided into sets called groups. Each group has a pool of
inactive classifiers and a topology representation of the ground truth during the warn-
ing. Topologies are a summary of the data distribution received during a concept and
are used to compute concept similarity. This is explained in Section 5.1.2.1. Groups
contain a set of classifiers that were created during the execution of the algorithm
and stored for future usage when an episode of concept drift impacts the performance
of the active classifier. If during a drift, a group from the concept history resembles
the current dynamics of the data stream, classifiers from this group are taken into
consideration to be retrieved from the concept history (recurring drift).
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Algorithm 5.1 GroCH algorithm. δw: warning threshold; δd: drift threshold; S: data stream; c:
classifier; b: background classifier; CH: concept history; W: set of instances received during the last
warning window; P: set of prototypes of the topology before warning; T: topology containing a set
of prototypes or cluster-centers representing a data distribution; TC topology representing the actual
distribution; TD: topology that represents the data distribution of the selected classifier for drift; G:
a group of classifiers in CH, represented by a topology of prototypes; GC : group of the base classifier
representing the distribution before the warning window; cT emp: temporal copy of the active classifier
and topology saved at the start of warning window; (x, y): current training instance; µ represents
the threshold for the maximum size of the warning window; β: minimum of instances seen by the
active classifier for insertion in the CH; θ threshold for the minimum size of W, otherwise a drift is
considered early drift; Ω: max. number of classifiers per group.
1: function GrowingConceptHistoryOfRecurringClassifiers(δw, δd)
2: b, GC , GH , CH ← 0
3: if preTraining == True then prePopulate(CH) end if ▷ The CH can be prepopulated (see subsection 5.1.3.5)
4: W ← -1 ▷ Warning window disabled initially
5: TC ← StartTopologyAlgorithm() ▷ GNG starts (only one topology)
6: c ← CreateClassifier()
7: while HasNext(S) do
8: (x,y) ← next(S)
9: if C(δw, x, y) then ▷ Warning detected?
10: UpdateTopologyAlgorithm(TC , W) ▷ Add examples from prior warning to TD before reset W
11: W← 0
12: cT emp ← c ▷ Save a temp copy of c as snapshot
13: b← CreateClassifier()
14: end if
15: if C(δd, x, y) then ▷ Drift detected?
16: if size(W) ≥ θ then ▷ Insertion and retrieval from CH
17: P ← getPrototypes(TC)
18: GC ← FindGroup(P) ▷ Group for storing old state
19: if CH is empty or GC is Null then GC ← CreateNewGroup(TC) end if ▷ New group with TC

20: if InstancesSeen(c) ≥ β and (GC ̸= GH or Error(ctemp) ≤ minError(GC)) then
21: if Size(GC) > Ω then RemoveClassifier(GC) end if ▷ Usage of policy
22: CH(GC) ← cT emp ▷ Push current classifier to GC

23: end if
24: GH ← FindGroup(W) ▷ Group for retrieval of next state
25: else
26: GH ← −1 ▷ No retrievals in case of early drift
27: end if
28: c, TD ←SelectDrift(c, b, GH) ▷ Find best transition for next state
29: TC ← UpdateTopologyAlgorithm(TD, W) ▷ Add instances from warning to TD and replace
30: W← -1 ▷ Reset of W in bkg or recurring drift
31: end if
32: if size(W) ∈ [0, µ] then ▷ In warning window
33: UpdateWeights(c, b, x, y) ▷ Update weights for the evaluation according to equation 5-1
34: ClassifierTrain(b, x, y) ▷ Train the background classifier
35: W(t) ← (x,y) ▷ Add example to W
36: else if size(W) > µ then ▷ Disable warning if W.size > threshold µ
37: b, cT emp ← 0
38: UpdateTopologyAlgorithm(TC , W) ▷ Add instances from warning to TD

39: W← -1
40: else ▷ If not in warning window
41: UpdateTopologyAlgorithm(TC , x, y) ▷ Update topology
42: end if
43: ClassifierTrain(c, x, y) ▷ Train c on the current instance (x, y)
44: end while
45: end function

A group models the relationship between a state of the data distribution (a topol-
ogy) and a classifier set. For instance, in a simple scenario, a topology would relate
to a unique classifier. However, in practice, a topology may map to many classifiers.
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This can happen due to the lack of attributes able to reflect the hidden context in the
case of concept drift. For this reason, in GroCH, each group stores a pool of many
classifiers. There is still a maximum number of classifiers per group, denoted with
Ω, that can be set to 1 for simple scenarios. When a group has reached Ω classifiers
(line 21), a replacement policy manages what classifier should be removed. By default,
the classifier retrieved the least number of times is the one replaced. In case of a tie,
it replaces the oldest of the least used classifiers of that group (LUFO policy).

Finally, GroCH allows to pre-train the concept history. It prepopulates a set of
groups and classifiers to be available at the start of the execution. This is explained
further in Subsection 5.1.3.5.

5.1.2.1 Concept Similarity

A topology summarises the data received at a given point in time. Topologies are
represented as part of the state detection module in Figure 5.2, and are a novelty in
our approach. They help improve the selection mechanism in the case of concept drift.
This is achieved by considering the state of the data stream apart from the performance
of the active classifier, which is monitored by the change detectors.

Each group is represented by one topology, which summarises the examples re-
ceived during the warning window when the group was created. Each summary or
topology is computed using a space tessellation through the generation of prototypes
created the first time that a classifier was added to the group.

Algorithm 5.2 Concept history grouping. CH: concept history; G: single group in CH; P: the set of
prototypes or cluster-centers received; PG: the set of prototypes describing a group G from CH; σ:
maximum radius from P to PG allowed to belong a certain group G.
1: function FindGroup(P)
2: min ← FloatMaxValue()
3: for all G ∈ CH do
4: distancesToGroup ← 0
5: dist ← getMeanDistanceToNearestNeighbour(P, PG)
6: if dist < min then
7: min ← dist
8: group ← g
9: end if
10: end for
11: if dist < σ then
12: return group
13: else
14: return null
15: end if
16: end function
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When a drift is signalled, GroCH stores the classifier that belongs to the previous
concept (saved at the start of the warning window) and retrieves a classifier from a
group representing the next concept from the CH (if it reoccurs). To perform this,
distances need to be computed between the latest received examples and trained
prototypes of a group topology (for retrievals and insertions, respectively).
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Figure 5.3: Example flow of GroCH groups’ management.

We introduce the idea of topologies to represent a set of classifiers that work well
in a certain type of circumstances and support the calculation of distances for concept
similarity. For example, each group can hold memories of how market operators reacted
in the past in similar situations.
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There are three primary functions concerning concept history groups:

• Retrieval: At the time of the drift, the mean distance between the examples
received during the warning window and their (closest) prototypes are computed
for all existing topologies (one per topology). If the mean distance between any
of the groups is under the maximum topology radius (distance threshold σ in
Algorithm 5.2), all classifiers from the nearest group are compared for the set of
examples received during the warning window. Comparisons are performed by
conceptual equivalence [376]. If two or more classifiers of a group present a similar
conceptual equivalence during the warning window, the algorithm follows a FIFO
(First In, First Out) or a LIFO (Last In, First Out) policy, giving priority to old
or new classifiers respectively. If a classifier from the nearest group is finally
selected, this is copied (not removed) from the group as a new active learner.

• Insertion: After the new active classifier is selected, the old active classifier is
pushed to a group from the concept history (Algorithm 5.1, line 22). For this,
the algorithm shall find the best group for insertion using a topology trained for
the old active classifier up to the start of the warning window (from the last drift
to the last warning signal). To detect the most similar group for insertion, the
algorithm computes the mean distance between each group’s topology and the
set of prototypes of the old active learner’s topology. A classifier is not inserted
into a group when, during concept drift, the retrieval and insertion point to the
same group and the conceptual equivalence of the old classifier is not greater
than for the best classifier of the group to be inserted. The motivation for this
is to reduce noise in the groups due to false positives of the drift detectors.

• Creation: If at the time of the insertion, there are no existing groups in the
concept history, or if the mean distance between the old active learner’s topology
and all groups exceeds a threshold (σ), then a new group is created. The process
to create a group is illustrated in Figure 5.5.

A more detailed and simplified example flows for insertions and retrievals can be
seen in Figures 5.3 and 5.4 respectively. In the next page, we explain step by step each
action in Figure 5.4. To simplify the example, we assume that all relevant concepts
are represented in the concept history; thus, not needing to create a group.
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1. First, GroCH trains a topology with the received examples up to the warning
signal.

2. Once GroCH flags a warning, all received examples are saved in a buffer up to
the time of the drift (during the warning window). At this time (drift) is when
the algorithm evaluates insertions and retrievals.

3. The algorithm inserts the previous concept to a concept history group. For this,
the topology trained in the previous concept (up to the warning) is compared to
all existing group topologies. The ideal behaviour in the first and second drifts is
to insert a group mapping to the grey and red concepts in Figure 5.4 respectively.

4. Then the algorithm retrieves classifiers from the nearest group to compare their
performance during the warning window. The group to be retrieved is identified
by computing distances to examples received during the warning window. As
these examples belong to a transition period, these are considered a represen-
tation of the next concept. Assuming that the concept drifts are recurrent, the
ideal behaviour in the first and second drifts is to retrieve a pre-trained classifier
from a group that maps to the red and blue concepts in Figure 5.4 respectively.

5. Finally, after the concept drift, the algorithm starts classifying using the new
learner retrieved. In the background, a new topology is trained, starting again
step 1.

In this work, concept or group similarity has been computed using Euclidean
distance and Mahalanobis distance distances in different experiments.

Drift DriftWarning Warning

Warning WindowWarning Window

Training Topology 1 Training Topology 2 Training Topology 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

Figure 5.4: Example of events in a data stream in our proposal. Each t in a cell represents
a period of one or many time steps. Gray, red and blue coloured cells belong to
separate ground truth contexts. Brown and purple coloured cells correspond to
periods of transition. Drift-related events performed by the algorithm are marked
as a warning or a drift; topology training and instance-buffering processes take
place during the warning window.
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Figure 5.5: Process to create or insert into existing groups of the concept history depending
on the value of the maximum topology radius (σ). In 5.5a, during retrievals,
there is no chance of recurring drift, and during insertions, a new group is
created. In 5.5b, the classifier is retrieved or inserted in the closest of the two
(red) groups inside σ.

5.1.2.2 Learning Topologies

The approach proposed in this chapter is a modular meta-learning framework where
all base algorithms can be changed. However, in this first proposal group’s topologies
are computed using the growing neural gas (GNG) algorithm [136], also used in the
first preliminary study.

As described in Chapter 2, GNG is a prototype generation technique that
creates a growing network of neurons (which we will call prototypes from now on)
interpolating the examples of the farthest distribution from the network. Hence,
prototypes are created incrementally at mid-distance between the closest prototype
already created in the network and the example fed with the largest accumulated
squared error. The process runs until satisfying a stopping criterion that, in our
case, is the drift signal. Topologies are trained as a one-pass algorithm. Each data
instance received by GroCH up to the warning window is only fed to once to a topology.
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Although GNG computes Euclidean distance distances by default, we have im-
plemented Mahalanobis distance distances for experiments using these to compute
similarity (as seen in the previous section). The reason to choose Mahalanobis dis-
tance distances is that Euclidean distance distances do not focus on the relationship of
the different indicators of the dataset as the former does. The Mahalanobis distance
distance metric considers the intersections of different features and their intrinsic cor-
relation as part of the definition of a state or stationarity in the data stream.

Later, in the experimental section, we also mention the usage of feature subsets
for the topologies. This is specific to the use of financial time series, where we have run
experiments looking at smaller feature sets that are scaled only to reduce the effect of
explosive price changes.

5.1.3 Classifier and Drift Management

Once a concept drift is detected, GroCH updates both the current topology and the
active classifier. The classifier obtaining the lowest classification error using the exam-
ples received from the last warning is selected as the new active learner. The choice is
made between i) the active classifier, ii) a classifier trained in the background since the
warning signal, and iii) any classifier considered for recurrence from a concept history’s
group. Therefore, there are two types of drift:

• Background drift: the background classifier is selected as the new active learner.

• Recurring drift: a classifier from the nearest group of the concept history is
selected as the new active learner.

There is a third case when the active classifier is selected as the best performer
despite the drift signal raised by the drift detectors. This case is considered a false
alarm, as it was advanced in Section 5.1.1.

5.1.3.1 Evaluation During the Warning Window

The period between a warning and a drift signal is called warning window by the
relevant literature [158]. During the warning window, examples are sent to a buffer W
(Line 35 in Algorithm 5.1), and the topology is not trained. Once the drift is confirmed,
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the active topology can either reset (in the case of background drift) or be replaced
by another topology from the concept history(in the case of a recurring drift). Then,
the newly reset or replaced topology is trained with the examples from the buffer W
(Line 29 in Algorithm 5.1). The input parameters of the warning detector must be
more sensitive than the drift detector to ensure the proper behaviour of GroCH.

GroCH evaluates the performance of the classifiers at two different levels. Follow-
ing Figure 5.2, it evaluates after the prediction block and it evaluates as well in the
classifier management block. The first evaluation is used for the testing task (overall
performance of the algorithm over time). The second level of assessment occurs during
the warning window; this is used for selecting the new active learner in case of concept
drift. These two algorithm evaluation levels can be further described as follows:

• Testing evaluation: this is the main evaluation of the algorithm. The predicted
accuracy of the algorithm is reported by this.

• Warning window evaluation: during the warning window, GroCH only compares
results from the latest examples received. Considering that the time series is
switching to a different state, this evaluator is used to optimise the decision of
the best classifier if the drift is finally signalled. To enable a one-pass setting for
data streams, this evaluator is updated every time that a new example is tested.

Once a concept drift is signalled, a classifier for the next concept must be selected
(Algorithm 5.3). The evaluation process during the warning window processes the
errors of all relevant classifiers for the full warning window. It plays a key role in this
decision-making process which is as follows:

1. Evaluation of relevant classifiers: at the time of drift, active, background and
every classifier from the closest group (if any inside a predefined threshold) of the
concept history are evaluated over all the examples received during the warning
window.

2. Transition to a new classifier : of all relevant classifiers, the one with the low-
est accumulated error over the examples received during the warning window is
selected as the new active learner.
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5.1.3.2 Ensembling for Predictions in the Warning Window

As explained at the start of this section, GroCH creates a background classifier at
the start of the warning period. Thus, during this time spawn, GroCH trains two
different classifiers representing the previous and next concept in the data stream.
As a novelty in our approach, GroCH becomes an ensemble classifier only during
the warning window. The purpose of this is to use the best available classifier for
predictions at every time. There may be cases (e.g. gradual shifts) where concepts
start changing, or even end before a concept drift is signalled. We believe that GroCH
can handle such scenarios using an approach where the active classifier competes with
the background classifier for every prediction.
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Figure 5.6: Illustration of the weighting mechanism of GroCH in the warning window. Blue
rectangles indicate predictions made by the background evaluator, and their
length indicates their relative weight. W: warning; D: drift; FA; false alarm.

To achieve this, both active and background classifiers have a weight associated.
The initial weight is 1 (max) for the active classifier and 0 (min) for the background
classifier. The weights of both learners evolve using a punishing factor (β) like the
one seen in [205]. The main difference with [205], as well a novelty in GroCH, is that
learners are also rewarded when they classify correctly to deal with the graduality of
some concept drifts.

wt ← (wt−1 ∗ β ∗ correctlyClassified +
wt−1
β
∗ correctlyClassified) (5-1)

This evolution follows the equation 5-1 and is based on the performance of each
learner during the examples received over the warning window. The update of weights
can be seen in the line 33 of algorithm 5.1. Weights are reset at the start of the warning
window and are only updated during this window.
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For every batch of examples (each example if batch size = 1), equation 5-1 is
computed over both active and background classifier. At every iteration, GroCH pre-
dicts accordingly to the learner with the greatest weight. This process is illustrated by
Figure 5.6. A version of this equation for a regression setting may only imply replacing
correctlyClassified and correctlyClassified with error and (1−error) respectively,
and to change majority voting with another aggregation technique (mean result).

5.1.3.3 Alignment of Classifiers and Topologies

The active topology (Tc in Algorithm 5.1) is not trained during the warning window as
this belongs to the previous concept. However, if this warning does not materialise as
a drift, the examples received during the warning window can still be relevant to this
topology. This materialises in the case of having a false alarm or if another warning
signal replaces the previous warning, which can occur depending on the drift detector
used. In these scenarios, GroCH feeds the instances received during the warning win-
dow, saved in a buffer (W), to the topology (lines 10, 29 and 38 in Algorithm 5.1).
This step ensures that classifiers and topologies have seen the same instances at the
point in time of retrievals and insertions from and to the CH.

This training of the topologies with instances from W also takes place in the case
of background drifts. A new topology is created then, and the examples seen during
the warning window are their first training examples (line 14 in Algorithm 5.3 and
line 38 in Algorithm 5.1). Albeit the active classifier is trained during the warning
window, the classifier used for insertions is a snapshot of this made at the start of the
warning window.

5.1.3.4 Drifts and False Alarms

The warning and drift change detectors, and the actions taken in consequence, are in
lines 9-14 and 15-31 in Algorithm 5.1. Actions performed during warning that impact
in the topologies are in lines 32-42, and reset of warning in lines 36-40. The steps
required to manage the concept history and how to perform an informed decision as
the replacement of the active classifier in case of concept drift are in lines 17-19 and 22-
29.
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Algorithm 5.3 Decision-making mechanism when a concept drift is detected. Warning window
(internal) evaluator. It computes the best transition in the case of drift. Symbols - c: active classifier;
b: background classifier; W: set of instances received during the last warning window; θ: threshold
for the minimum size of W; TC : active topology; TG: topology of group G; G: a group of historical
classifiers in concept history; idleC : classifier from group G in CH; W(c): error statistics in the active
classifier (c) during the warning window; W(b): error statistics in the background classifier (b) during
the warning window; W(idleC): error statistics of a classifier of the closest concept history group
during the warning window.
1: function SelectDrift(c, b, G, TC , TG)
2: if G is not null and size(W) ≥ θ and TG ̸= 0 then ▷ If it is not an early drift and a relevant CH group exist
3: for all idlec ∈ G do ▷ Rank of errors of each classifier in G
4: addToRank(ch, W (idlec))
5: end for
6: if minError(rank) ≥W (c) and W (b) ≥W (c) then
7: n← c ▷ False alarm: same classifier and topology
8: t← TC

9: else if minError(rank) ≤W (b) then
10: n← copyClassifier(CH, minErrorKey(rank)) ▷ Recurring drift: classifier and topology from G
11: t← TG

12: else
13: n← b ▷ Bkg drift: drift to bkg classifier new topology
14: t← 0
15: end if
16: else ▷ Select only between background and active (no drift)
17: if W (b) ≥W (c) then
18: n← c ▷ False alarm: same classifier and topology
19: t← TC

20: else
21: n← b ▷ Bkg drift: drift to bkg classifier new topology
22: t← 0
23: end if
24: end if
25: return n, t ▷ Return next classifier and the relevant topology
26: end function

In GroCH, both the active and background classifier are trained with new examples
as soon as they are available (lines 43 and 34 in Algorithm 5.1). However, idle classifiers
in the concept history are not retrained unless selected to become the active classifier.
In the case of drift, the active classifier is replaced by either the best idle classifier
or the background classifier (line 28 in Algorithm 5.1) following Algorithm 5.3. If the
background classifier is selected, the training examples from the warning window would
already have been used for its training. Conversely, if an idle classifier was selected,
these training examples won’t be fed to any learner.

In the scenario of a false alarm, the drift signal resets but the warning window
continues. See Algorithm 5.3 for reference. In the case of false alarm, classifier c (the
active one) and TC (current topology) is selected. Otherwise, either the background
classifier and an empty topology or the best idle classifier from the closest group and
the topology of the same group are selected (see Algorithm 5.3).

GroCH considers the number of data instances received during the warning win-
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dow as part of the drift decision mechanism. Many explicit drift detectors from the
data stream mining literature (e.g. RDDM [38]) take this into account. Thus, this
consideration could be considered excessive when using such detectors. However, this
chapter proposes GroCH as a meta-learner agnostic to the drift detector used. Hence,
it explicitly deals with the length of non-stable periods to improve the results when
using detectors that do not consider it. GroCH allows changing these thresholds for
scenarios not needing this feature.

5.1.3.5 Pre-training of the Concept History

The concept history of GroCH can be prepopulated with a set of group and classifiers.
This prepopulation is made before starting the prequential evaluation of the algorithm.
This, which can also be defined as a pre-training step, uses each dataset from many to
populate one group from the CH with one classifier and a topology.

This pre-training step is an opportunity in many domains to prepopulate known
and potential states of the time series that may reoccur. For instance, in the appli-
cation area of this thesis (the financial domain), these steps can help investors with
a pre-conception of what a market state is in their financial series. In this scenario,
a predefined market state may not be a ground truth, albeit it can be used as a gold
standard. In any case, we are aware of the challenge defining market states, and their
definition has not been resolved or agreed upon in the financial literature.

5.1.4 Differences with the Literature

Table 5.1 covers the comparison of GroCH against against other relevant methods
from the literature. Most drift detectors with state-of-the-art results [39, 160] have
intervals to handle both warnings and drifts. Other algorithms from the literature like
adaptive random forest [152] make use of two separate drift detectors for warning and
drifts obtaining state-of-the-art results in specific types of drifts like ADWIN2 [46].
In order to make use of ADWIN2 as a drift detector in GroCH, we developed a
drift detector called ADWIN-based drift detection method (ADDM). This contains
two adaptive windowed confidence intervals (ADWIN2 drift detectors) to handle
warnings and drift detection respectively. The code for this can be accessed in:
https://github.com/cetrulin/groch-moa.

https://github.com/cetrulin/groch-moa
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Another difference between GroCH and adaptive random forest is the error passed
for the supervised drift detection. ARF uses the error after training with that instance.
While the objective of this is not clear in their proposal, we assume that this could
work as an approach to flag if a weak learner from ARF does not adapt appropriately
to the current concept. Conversely, and according to other relevant ensembles like
RCD, GroCH feeds the prediction error of the active classifier to the detector.

GroCH has a concept history with previous models to be reused in the future.
RCARF, RCD, CPF and ECPF also keep historical classifiers, although the naming
of this may vary. RCD, CPF, ECPF and GroCH are meta-learners that use any base
classifier in their MOA implementations. They also support any drift detector as long
this follows the convention created with DDM and has a warning zone.

*CPF RCD ARF RCARF DWM GroCH
DD uses Prediction Error ✓ ✓ (no DD) ✓
DD reset after drift ✓ ✓ (no DD) ✓
Trains Active during WW ✓ ✓ ✓ (no WW) ✓
Collection of Concepts (CH) ✓ ✓ ✓ ✓
Conceptual Equivalence ✓ ✓ ✓
Ensemble ✓ ✓ ✓ Bkg votes during WW
Can use any base classifier ✓ ✓ ✓ ✓

Table 5.1: Comparison of GroCH to the relevant SOTA. Abbreviations - DD: drift detec-
tor; WW: warning window; Bkg: Background Learner; *CPF used as a cross-
reference to both CPF and ECPF.

While and RCD, ARF, RCARF, and DWM are ensemble learners with many
active classifiers testing and training at a time, CPF and ECPF only have an active
learner in their pool. GroCH only has a single active learner, but during the warning
window (equivalent to warning zone in CPF and ECPF) the background learner is also
considered for predictions (weighted).

CPF, ECPF and RCARF use conceptual equivalence; hence, they consider that a
historical learner represents the current concept if it classifies the current data distri-
bution with lower error than the active classifier. CPF and ECPF store only dissimilar
classifiers in their story. Using lower levels of this threshold (m) makes them have a
lower number of more generic classifiers. Conversely, a greater level makes them store
a more significant number of more specific classifiers. A similar effect can also occur in
GroCH balancing the concept similarity distance metric. A greater or smaller distance
threshold leads to a smaller number of more general or greater number of more specific
groups in the concept history respectively.
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Finally, CPF, ECPF and RCD do not reset drift detectors after a drift at the im-
plementation level. Hence, allowing warning detection straightway if the error obtained
by the base learners is still unstable. Conversely, ARF, RCARF and GroCH reset the
detectors. As an addition to ARF and RCARF, GroCH includes the possibility of false
alarms if the active classifier is the best performer during the warning window. GroCH
also has a minimum and maximum length for the warning zone that can help in do-
mains where changes are expected to have a certain duration or sharpness. Warnings
windows below and over those thresholds do not consider the history or are ignored
respectively.

CPF and ECPF do not train their base learners during the warning window; ARF,
RCARF and GroCH do this but save a snapshot of the classifier at the time of the
warning signal to be inserted in the history in case of concept drift. If there is a
drift confirmation, the snapshot saved will not include the instances seen during the
warning, but the active classifiers are up to date to predict for the time being. Also,
in GroCH, in cases where the base learner does not adapt well to the new concept, the
background learner can be used to predict during the warning zone. DWM does not
have a drift detection mechanism.

5.2 Framework to Characterise the Algorithm

In this section, we define a framework to evaluate the proposed algorithm in classifica-
tion tasks and also to recognise concept drifts accurately. Another goal of this section
is to evaluate if the states recognised during retrievals and insertions to the concept
history are successful. In order to measure this effectively, we need to know the ground
truth (GT). This is, what concept changes are there in reality and when are these pro-
duced. For this purpose, we have generated a set of synthetic time series that simulate
structural breaks in financial datasets. These datasets are then pre-processed and fed
to our algorithm as a data stream for price trend classification. The results are then
compared to the ground truth to evaluate the performance of our contribution.

This section is structured as follows: first, we present the evaluation metrics used;
then, we describe the series created, the data pre-processing and the resulting set.
Finally, we summarise the classification problem, the experimental design to compare
against the ground truth, the parameter search performed, and we analyse the results.
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5.2.1 Evaluation Metrics

This section describes briefly the different procedures and metrics used for evaluation
tasks.

5.2.1.1 Classification Error

In this chapter, the classification performance of all algorithms is evaluated following a
prequential scheme. As described in Chapter 2, this scheme is aimed at scenarios where
the data arrives continuously. Each sample servers two different purposes (testing and
training), and these are analysed in sequential order of arrival.

The prequential error is computed by predicting with each individual instance just
before training the model with it. We report the mean classification error computed
over sliding windows of 1,000 instances (default value in MOA , the framework used).

5.2.1.2 Classification Performance under Switch

We use mainly two metrics to evaluate the algorithms during concept drifts.

First, we define the metric accuracy under switch (AUS) as the overall predicted
accuracy on data instances that occur during a switch (transition between states) in
the ground truth.

Then, as there might be scenarios where drifts occur to new (background) clas-
sifiers that may not produce robust predictions due to its short training window, we
also report kappa statistics under switch (KUS). Kappa statistic aims to subtract the
bias in the actual distribution and thus is a suitable metric to evaluate the strength of
the algorithms.

The reader must note that AUS and KUS are calculated as accuracy and kappa
statistics, previously defined in Subsection 2.2.5. The only difference in com-
puting such metrics is that the evaluation is only performed over the instances
received during a switch in the ground truth.

Likewise, in Appendix A we also provide similar evaluation measures like kappa
temporal statistics under switch for the results of this chapter.
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5.2.1.3 Metrics for Concept Drifts and Recurrences

GroCH performs three main actions in the presence of a variation between concepts:
i) detection of those changes (drifts), ii) retrieval of group from the CH representing
the new state, and iii) insertion into a group of the CH.

In this subsection, we define different metrics to evaluate these three actions during
variations: v1acc, v2acc and v3acc respectively. These metrics are mainly reported as
the percentage of accumulated actions performed correctly at the end of the execution
of the experiments. In order to understand these performance metrics, the reader must
consider the following two points:

• A drift can occur at any data instance of the data stream. Hence, the number
of true negatives (TN) detecting drifts is a large value close to the number of
examples of the data streams used in the experiments.

• GroCH uses supervised drift detection to address changes in the data stream.
Drifts may be detected outside a ground truth change, and this is not necessarily
an incorrect behaviour. There may be other changes in the data stream dynamics
affecting the active learner, which may need to be replaced. We penalise con-
cept drifts detected at the wrong time, but not insertions or retrievals. This is
explained further in the following subsections.

Due to these points, and for the sake of simplicity, we mainly report percentages
of drifts, retrievals and insertions that are correctly classified, provided that there are
no drifts, retrievals or insertions detected in all instances.

Still, there are scenarios where depending on the sensitivity of the parameters and
thresholds selected, there can be a many to one mapping between concept drift and
ground truth switches (see Figure 5.7). For this purpose, in the experimental section,
we also report true positives from the ground truth perspective (TPGT ). Metrics with
base D express concept drift, and metrics with base GT express number of ground
truth events. True and false positives, and true and false negatives for each of the
metrics (v1, v2 and v3) are reported in the Appendix A.3.
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Drift DriftWarning Warning

Ground Truth SwitchGround Truth Switch

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

D1 D2 D3 D4 D5

Figure 5.7: Many to one mapping between concept drifts (vertical lines) and ground truth
switches.

We leave warnings outside of our analysis since they do not perform changes on
the active learner. False alarms are considered for drifts (v1) and retrievals (v2), but
these do not insert groups. Early drifts are still considered as drifts for v1 and v3, but
these do not retrieve groups. Therefore, early drifts and false alarms are not considered
for v2 and v3, respectively.

5.2.1.3.1 Evaluation of Drift Detection (v1) This metric rates the performance of
all drifts detected by GroCH. The meaning of true and false positives, and true and
false negatives in the context of this metric is:

• True positives (TPD): drift detected when a change occurs. For this we allow a
delay of d instances.

• True positives from the ground truth (TPGT ): switches from the ground truth
detected as a drift.

• True negatives (TND): drifts not detected when there were no changes in the
ground truth. This is expected to be close to the number of instances received
and is omitted from our analysis.

• False positives (FPD): number of drifts detected by GroCH when the ground
truth does not change.

• False negatives (FNGT ): it does not detect a drift, but there is a change in the
ground truth.

We define drifts accuracy percentage (v1acc) as the rate of concept drifts detected
that occur during a transition between ground truth states.
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v1acc =
Number of Drifts Correctly Identified

Number of Total Drifts (5-2)

where Number of Drifts Correctly Identified represents all drifts detected by
GroCH inside the drift detection delay threshold (d) introduced in the following sub-
section. Number of Total Drifts represents all drifts signalled by GroCH.

5.2.1.3.2 Speed of Detection (v1.2) This metric reports the delay switching to a
new classifier compared to the actual change in the ground truth. It only considers
drifts recognised accurately (TPD).

1
n

n∑
i=1

(tDi
− tGTi) (5-3)

where n = |TPD|, Di represents every true positive drift recognised by GroCH and
GTi represents the previous ground truth change meeting the equation:

d ≥ (tDi
− tGTi

) for i ϵ[1,n] (5-4)

where d represents the drift detection delay threshold and is defined in Subsection
5.2.1.4.

5.2.1.3.3 Ratio of States Recognised (v1.3) This metric rates how many states
from the ground truth are covered as a group in the concept history. It also covers
how many groups has the algorithm created per ground truth state. This metric is
expected to have a result equal to 1 if concept history groups are prepopulated. Since
this is the case in the experiments performed in the final benchmark of this chapter,
we do not report this metric.

States Ratio =
Number of Ground Truth States Recognised

Total Number of Ground Truth States (5-5)

where a given ground truth state is recognised if there is any insertion to the
concept history in a period that is in, or transitions from that ground truth state.
Insertions are covered in Subsection 5.2.1.3.5.
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5.2.1.3.4 Evaluation of Retrievals (v2) This evaluates the performance of all re-
trievals produced in GroCH that select groups representing the state of the ground
truth at that point in time (allowing a delay of d instances). The meaning of true and
false positives, and true and false negatives in the context of this metric is:

• TPD: Once the state is represented in the CH (known), this counts how many
times does GroCH retrieve a classifier from a group representing the GT state at
that point in time (being considered a correct retrieval).

• TPGT : switches from the ground truth covered by a correct retrieval.

• FPD: the state has never been seen before (not known), but the algorithm re-
trieves a group from the CH instead of selecting the background classifier. This
is expected to be equal to zero if the concept history has been prepopulated with
groups representing all ground truth states.

• FND: FN1 + FN2

– FN1: the state exists (known), but the algorithm selects the background
classifier instead of retrieving a group from the CH.

– FN2: the state exists (known), and the algorithm selects a group from the
CH, but this is the wrong one.

• TND: the state has never been seen before (not known), and the algorithm
consequently selects the background classifier.

We define the retrievals accuracy percentage (v2acc) as the rate of retrievals to
a group representing the right state. Hence, retrieving a group matching the current
ground truth state.

v2acc =
Number of Retrievals of the Right State

Total Number of Retrievals (5-6)

where Number of Retrievals of the Right State refers to all retrievals of groups
mapping to their respective states, or transitioning states of the ground truth. This
mapping is described at the end of the following subsection.
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5.2.1.3.5 Evaluation of Insertions (v3) This metric reports the performance of all
insertions performed by GroCH that select groups representing the state of the ground
truth at that point in time (allowing a delay of d instances).

As defined earlier in this chapter, a new group should be created in the CH only
when there is a new state. GroCH does this when the distance of the instances
received between the previous drift and the last warning signal to all the CH
group topologies surpasses the topology radius (threshold). Insertions are made
only in cases of background or recurring drifts (not in false alarms). For this
reason, this evaluation measure (v3) can help report cases where information
belonging to a new state is added to a pre-existing group (mistakenly) or when
a classifier is inserted into a group representing a state that mismatches the GT.

The meaning of true and false positives, and true and false negatives in the context
of this metric is:

• TPD: the state exists (known) or is created accordingly to the ground truth.
Thus, the new information is added on the top of the existing or new group.

• TPGT : switches from the ground truth covered by an accurate insertion.

• FPD: the state has never been seen before (not known), but the algorithm selects
a group from the CH, and the information is added there. This is expected to be
equal to if the concept history has been prepopulated with groups representing
all ground truth states.

• FND: FN1 + FN2

– FN1: the state exists (known). However, the algorithm creates a new group
in the CH.

– FN2: the state exists (known). However, the algorithm adds the information
to the wrong group.

• TND: the state has never been seen before (not known). Thus, the algorithm
creates a new state in the CH. This is expected to be equal to if the concept
history has been prepopulated with groups representing all ground truth states.
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We define the insertions accuracy percentage (v3acc) as the rate of insertions to a
group representing the right state. Hence, inserting into a group matching the ground
truth state prior to concept drift.

v3acc =
Number of Insertions into the Right State

Total Number of Insertions (5-7)

where Number of Insertions into the Right State refers to all insertions into groups
mapping to their respective states, or transitioned states of the GT. The mapping of
ground truth states and groups is defined by the data instance when the first insertion
into new groups in the concept history is produced. A group maps to the ground truth
state exhibited by (or transitioned from) the data instance when the concept drift of
its creation was signalled.

5.2.1.4 Speed Adapting to Changes

Due to the nature of the drift detectors used, drifts are recognised once the distribution
is drifting or has drifted completely. There is an intrinsic delay from the ground truth
in this detection. However, depending on the abruptcy and the difference between the
initial and final concepts of the switch, this can vary. The average delay of the accurate
drifts is one of the metrics reported (v1.2).

Furthermore, in our analysis, to identify a drift, retrieval or insertion as part
of the ground truth, we allow a delay of d data instances, d a parameter known as
the drift detection delay threshold detecting concept drifts. d affects many of the
metrics reported, as seen in Subsection 5.2.1.3.2 and Subsection 5.2.1.3.1. The decision
mechanism to select this is described further in the next section, along with other
parameters optimised.

5.2.1.5 Memory Usage and Model Complexity

Since data streams may arrive continuously, a metric to consider in order to achieve
an scalable model is the cost of the model. We use RAM-hours as our main metric to
benchmark the cost of the models. Prequential running time is also reported in the
Appendix A.3.
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5.2.2 Research Data

In this chapter, we have used synthetic datasets to validate the behaviour of GroCH in
data where the GT is known, but that still resembles a generative processes from real-
world data. In order to evaluate concept drifts accordingly, to compare change detectors
the ground truth changes must be known [16]. This section describes the generation of
the synthetic datasets used to compare events such as retrievals, insertions and drifts
to the GT. For this purpose, we define a framework to generate synthetic time series
with similar properties to stock market prices.

Our proposed framework fits several auto-regressive (ARMA-GARCH) models to
different stock market returns. Each model is fitted to a distinct EFT type exhibiting
different behaviour. The purpose of this is to fit models to different market states;
e.g. bear or bull markets, lateral movements, and periods of low vs high volatility, to
simulate switches between these.

Our hypothesis is that the proposed algorithm should be able to detect these tran-
sitions as drifts or variations between market states. To the best of our knowledge, this
is, although not perfect, one of the cleanest ways to model the current problem. These
synthetic datasets created include recurrent changes of different sharpness. Using the
work from Shaker and Hüllermeier [312] as an inspiration to model drifts, we have
designed these as sigmoidal transitions of 100 and 1,000 data instances between the
different states. Each state is generated through a generative process, and the simu-
lation produces switches between them in parallel to the generation of new data points.

Generative Process 1

Generative Process 2

Generative Process 3

Generative Process 1

Figure 5.8: Concept drifts illustrated as sigmoidal transitions between generative processes
(green, orange and purple sections). During changes, the output simulated at
each timestamp is the weighted mean of the previous and the next generative
process. Both processes receive up to the last step time of the output stream
(mid-line) to simulate each data instance during the transition.
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Before fitting the models, the best values for the input lags for the auto-regressive
models are selected in the range of [1−15]. Once the models are fitted, the specification
of each model is saved. Then, the series is generated using the prediction of the model
representing a current state, or as a weighted mean of the prediction of the models
representing the old and new concepts.

The simulation process, illustrated in Figure 5.8, is as follows:

1. The creation of the synthetic time series starts with the prediction of the first
model. Models will only simulate using their own input data only at the start of
the simulation, before the length of the synthetic series is equal or greater than
the minimum input lag of the current model; thus, only if there is not enough
data in the stream yet to be fed into a time series model specification.

2. From this point, the process switches to different models, with transitions of
different duration, as mentioned on the previous page.

• During a switch between generative processes, weights between the old and
new models will change progressively, following a sigmoid curve for the tran-
sition. The value of the return predicted during a switch results from a
weighted mean (the weight of the old model reduces progressively. The
weight of the new model = 1 − weightold). In [312], Shaker et al. pro-
posed a similar transition from one concept to another in the domain of
non-stationary data streams.

• During the simulation process that uses ARMA-GARCH models, in a given
time point, the model or models that belong to the current state, or the two
current states (in case of concept drift) respectively, are used to generate
the following time steps of market price returns.

3. Prices are finally reconstructed from the returns, and a set of technical indicators
from the relevant literature is then computed.

The sequence of changes is created by a transition map that is summarised in
the Appendix B.2. Each of the drift types (gradual or abrupt, depending or their
sharpness) is generated with all of the four concepts illustrated in Figure 5.10.
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The order and variation between generative processes and the duration of the
changes were chosen iteratively by studying the behaviour of the base classifiers that
we use later in this chapter to the synthetic sets produced. The length of stable
periods between drifts has been set to a value that allows base classifiers to learn from
the data stream. At the end of the execution, the generated time series of returns
is reconstructed to prices using the last close price of the dataset used to fit the first
model. As will be explained in the following subsection, the simulated series is used to
compute technical indicators. Then, the resulting dataset is streamed using MOA to
measure the classification performance during different types of concept drift (abrupt or
gradual). This process is repeated for each data stream produced for our experiments.
The end-to-end flow from fitting the four models to producing final data with indicators
can be seen in Figure 5.9.

State 1  State 2

State 3 State 4

Model 1

Model 3

Model 2

Model 4

Simulation of 

univariate time series 

Fit modelsRaw data  
(univariate series of close price returns)

Price reconstruction  
(simulated series treated as close price).  

Experiments Generation of
technical indicators 

(multivariate)

Stream
generated data

0 1 2

3456

Figure 5.9: End-to-end process from raw data to simulation and experiments.

The entire simulation and data preparation process (steps 0 to 4 in Figure 5.9)
is developed in Python 3.7. The software used to fit the ARMA-GARCH models
is the rugarch R library, called from Python using the wrapping library RPY. The
code of the simulation process is open source and can be found in the following URL:
https://github.com/cetrulin/regime-switching-series-generator.

https://github.com/cetrulin/regime-switching-series-generator
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5.2.2.1 Assumptions and Concept Representation

In this chapter, we use research data that is based on financial price returns. Our aim
for every concept in the synthetic set is to represent a financial market state.

The experiments in this section rely on the assumption that financial intraday
market states can be modelled by fitting ARMA-GARCH models over the close price
returns series at different frequencies. In this process, we assume that a market
switching process should also be reflected as a change in the correlation between
different technical indicators.

From now on, in this chapter, we talk about shifts of market states and concept
drifts interchangeably. Concept drifts are changes in the generative process of
the time series of price returns that also impacts the indicators generated as
attributes and their mapping to ups and downs (target feature) in the datasets
used for the experiments.

5.2.2.2 Generation of Semi-synthetic Series with Structural Breaks

As explained at the start of Subsection 5.2.2, we propose a simulation process that fits
ARMA-GARCH models for each market state to be modelled in the generated series.
One model is fitted to each raw of the series of price returns where the market behaves
differently. Then we use these models to generate a series of prices.

We propose a mechanism to switch between models during the generation of the
returns series. The objective of this is to simulate structural breaks and transitions
between different market states.

The structure of this subsection is as follows. First, we present the datasets used
as a base of different market states (different contexts). Then we cover challenges
associated with the spatial representation and separability between the states. Finally,
we describe the simulation process in more depth and the variations chosen between
concepts.
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5.2.2.2.1 Ground Truth Market States We selected the first 1,000 data points
(close prices) at the 5-minutes level resolution from January 2020 for a representative
ETF from each of the following types: i) equities, ii) securities (fixed-income preferred),
iii) real-state and iv) international bonds. Each of the ETFs price return series was used
to represent a ground truth raw state for generating the synthetic sets. The ground
truth states fed to the generator are the next ones:

1. State 1: Equities - SPDR S&P 500 ETF (SPY). Lateral movement. Price
uptrend followed by the start of a downtrend. See the close prices for that period
in Figure 5.10a.

2. State 2: Securities/Fixed-income preferred - iShares Preferred and Income Secu-
rities ETF (PFF). Uptrend. See the close prices for that period in Figure 5.10b.

3. State 3: Real-estate - Vanguard Real Estate ETF (VNQ). Volatile lateral move-
ment. See the close prices for that period in Figure 5.10c.

4. State 4: International bonds - SPDR Barclays International Treasury Bond
ETF (BWX). Lateral movement with a slow uptrend. See the close prices for
that period in Figure 5.10d.

5.2.2.2.2 Challenges in the Generation Our goal with each of the models from the
previous paragraphs is to model the generative process that defines the price returns
in a market state. However, even if we had fitted models, there would be different
challenges to address. The first challenge is the fact that models are fitted for a
specific sample that will very likely differ from the inputs passed during the generative
process, as the output of model “A” will be passed as an input series into model “B”
from a concept drift as seen in Figure 5.8. “B” or any of the other models have not
been trained for some of the trends, volatility or sharpness of movements exhibited by
any of the other models. Thus, the generated stream that is passed as an input at
every time step impacts the model, and the new outputs can exhibit behaviours never
seen in the raw samples used to fit such models.

One behaviour that we had to bring down was the explosion (up and down) in
values of the time series once the prices were reconstructed. Part of this was due to
the size of the sets generated (1.5 million time points). We would have to handle either
very low prices or values exhibited in financial time series as the effect of inflation or
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deflation over dozens or hundreds of years in certain symbols. This could also break
the correlations between the technical indicators. Hence, having an impact on GroCH
at the experimentation level once generated the test and train sets. To mitigate this,
the selection of ETF was for series with mean price return close to zero in the first
trading week of 2020. We looked for slightly negative or positive mean returns, thus
softly down or up in prices, with more or less volatility, so these likely lateral trends
define different states.

(a) S1: Equities (SPY) (b) S2 - Fixed-income preferred (PFF)

(c) S3 - Real-state (VNQ) (d) S4 - International bonds (BWX)

Figure 5.10: Close price from time series used to fit the four ARMA-GARCH models.

5.2.2.2.3 Fitting Process Each dataset described in the previous section has been
converted to returns and used to fit a different model. For each model, the fitting
process has been performed using the best autoregressive (p) and moving average (q)
orders for both the ARMA and GARCH components and both lagged values for the
GARCH component. The resulting ARMA-GARCH models have been saved from
being used during the simulation process.
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5.2.2.2.4 Model Optimisation The best autoregressive (p) and moving average (q)
were chosen by selecting the orders with the lowest Akaike information criterion (AIC).

AIC = 2k− 2ln(L) (5-8)

In equation 5-8, k denotes the number of parameters and L denotes the maximised
value of the likelihood function. For model comparison, the model with the lowest
AIC score is preferred [74]. The best values found through a grid search for p and q
for ARMA and GARCH per ETFs are listed in Figure 5.2. This grid search covered
the range of 1-25 for ARMA p and q, and 1-5 for GARCH p and q.

ETF pARMA qARMA pGARCH qGARCH

SPY 9 25 4 4
PFF 12 1 1 5
VNQ 9 5 1 4
BWX 21 2 1 1

Table 5.2: Best orders obtained for MA and lags of the four ARMA-GARCH models fitted.

5.2.2.2.5 Simulation Process The synthetic dataset was generated through a sim-
ulation of the models pre-trained during the fitting process explained in the previous
subsection. This process uses a transition set that provides information about:

• Row (time step): when does each switch occur.

• Length (duration): how long is every switch. For this, we have used two different
configurations: abrupt and gradual switches of 10 and 100-time steps, respec-
tively.

• New model (transition): what is the next model at each switch.

The forecast horizon in the simulation process is only of 1-time step during the
switching process. This is explained further in the next subsection. Once the switching
is performed, the forecast horizon is up to the next transition in the transition map.
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5.2.2.2.6 Transition Map Proposed For the experiments of this chapter, we have
simulated data streams with changes in their generative processes (concept drifts)
every 5,000 data instances. We have defined both gradual and abrupt shifts, randomly
allocated to each transition, but with an even proportion.

There is a total of four generative processes that are shared across streams (fitted
as seen in Table 5.2). Each stream has a total of 1.5 million data instances. Hence,
75 switches per ground truth state; a total of 300. Only 1 million instances have been
used for machine learning tasks. 500,000 instances have been used to test and train
the models (100 concept drifts). These transitions are randomised in the transition
map, and different combinations of shifts between states are evenly distributed. The
transition map shared across data streams as well, can be seen in Appendix B.

5.2.2.2.7 Switching Process During the transition between the two states, two dif-
ferent forecasts are taken into account. The one belonging to the old model and the
one that belongs to the new one. Each time step during the switching process will be
a weighted average between the forecasts of both models. The weights will update in
each timestep, decrementing the weight of the old model and incrementing the weight
of the new ones. Changes in weights follow a sigmoidal curve as suggested in the
relevant literature for recovery analysis [312] introduced in Section 3.2.4.

Regarding the duration of the switching process, this has been programmed with
two possible lengths: 100 time steps for an abrupt switch and 1,000 time steps for a
gradual switch. Each variation from one market state to another is either gradual or
abrupt.

5.2.2.3 Feature Set Selection

Once the time series of price returns are simulated, a price for those returns is
reconstructed. This reconstruction is the cumulative sum of the simulated returns
from the initial close price at the start of the simulation. This initial close price is
the last price seen in state 1, at the end of the raw dataset from Figure 5.10. Then,
we proceed with the generation of technical indicators. The generated time series is
considered at the 1-minute level. Due to the fact that we only produce price returns
and not volumes with the generator, we only use indicators based on OHLC prices.
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Open, min and max prices for a time step are extrapolated from the current and
previous close price reconstructed.

The feature set selected has a set of technical indicators common in the stock
price trend classification literature [179]. These are 15 technical indicators that overlap
across most papers for price trend prediction in the financial domain [3, 27, 115, 179,
183,200,208,261,275,377]. The full list can be seen below:

• Commodity Channel Index (CCI).

• Larry William’s R (WILLR).

• Momentum (MOM).

• Moving average convergence divergence (MACD).

• Relative Strength Index (RSI).

• Simple n-minute moving average (SMA) over 5 and 10 lags.

• Stochastic D% (SD).

• Stochastic K% (SK).

• Weighted n-minute moving average (WMA) over a 10 lag.

• Exponential n-minute moving average (EMA) over a 10 lag.

• Average directional n-minute moving average (ADW) over a 10 lag.

• Triangular n-minute moving average (TRIMA) over a 10 lag.

• Rate of change (ROC) over a 10 minutes lag.

• Bollinger upper and lower bands.

• Aroon Up/Down.

The selected set is partially based on a popular set first used by Kara et al. [195],
extended with additional short moving averages of 5 minutes. The initial set of indi-
cators, also used in Section 4.2, was shown in Table 3.2. Other sets were explored but
not chosen as described in Appendix A.2.4.
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The reader must bear in mind the nature of the tendency to use technical indicators
in financial markets. Moving averages tend used in this context for the definition of
trading rules and identify buy and sell signals. The addition of indicators that use
moving averages of longer and shorter lengths may reveal changes in the markets.
Momentum indicators help to measure the strength of a trend by looking at price
differences on short time scales. Neely et al. [263] provide some examples of trading
rules that can be produced with some of these indicators.

5.2.2.4 Resulting Synthetic Set

The 30 semi-synthetic series generated can be seen in Appendix B. All of them follow
a similar transition map. Thus, GT switches occur at the same time points in all
sets. After the computation of technical indicators, each data stream has ≈1 million
data instances. The first 500k instances are left as a development set, for parameter
optimisation and for the training of the Mahalanobis distance matrix. The rest of the
instances are left for the test and train evaluation and, thus, for the analysis of results.

As a recap from this subsection, to create the final datasets, synthetic series cre-
ated were first converted to a series of prices. Then, the series of prices were then
transformed to open-high-low-close (OHLC) data. This was converted as follows:

• Close Price: generated values in Figures B.1, B.2, B.3 and B.4 at Appendix B;

• Open Price: close price of the previous time step;

• High Price: same as close price;

• Low Price: same as close price.

Then, the set of indicators explained in Section 5.2.2.3 are computed over the
synthetic OHLC data. The label is created accordingly to section 5.2.2.3, for ups or
stable/downs of the close price. The class distribution for the 500k examples analysed
varies depending on the synthetic set but is always in the range of 45-55% for the
label 0 (downtrend) and the residual part for label 1 (uptrend).
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Mean Std. Min. 25% 50% 75% Max.
RSI10 50.620 13.179 1.801 41.957 49.474 57.940 99.999
WILLR10 -47.700 35.520 -100.000 -79.286 -48.068 -12.532 0.000
MACD -0.000 0.070 -2.718 -0.016 -0.002 0.013 1.953
CCI10 0.794 101.982 -333.333 -78.932 0.878 86.799 333.333
MOM10 -0.001 0.172 -7.050 -0.034 -0.001 0.032 7.494
SK 53.453 29.211 0.000 29.119 53.172 78.550 100.000
SD 53.453 26.516 0.000 32.360 52.857 74.788 100.000
SMA5 260.808 21.003 220.642 242.941 260.208 274.216 333.426
SMA10 260.809 21.003 220.677 242.940 260.208 274.217 333.404
WMA10 260.808 21.003 220.657 242.942 260.209 274.215 333.428
EMA10 260.809 21.003 220.668 242.940 260.208 274.215 333.419
TRIMA10 260.809 21.003 220.684 242.940 260.208 274.217 333.404
ADX10 32.167 17.341 2.630 19.003 28.266 41.481 100.000
Bollingerupperband 260.937 21.030 221.003 243.096 260.310 274.336 333.716
Bollingerlowerband 260.680 20.978 220.295 242.811 260.113 274.083 333.117
ROC10 -0.000 0.065 -2.601 -0.013 -0.000 0.012 2.855
AroonDOW N 51.430 37.307 0.000 10.000 50.000 90.000 100.000
AroonUP 53.729 37.684 0.000 20.000 50.000 90.000 100.000

Table 5.3: Descriptive statistics of the first 1 million instances of the first synthetic stream
created. Set of indicators covered in Subsection 5.2.2.3.

Table 5.3 shows descriptive statistics about the feature set generated for analy-
sis. There is a clear distinction between scaled values (RSI, WILLR, CCI, SK, SD,
ADX, ROX, AROON ) and non-scaled indicators (MACD, MOM, SMA, WMA, EMA,
TRIMA, Bollinger Bands), which may exhibit explosive behaviours depending on the
market states simulated.

5.2.3 Classification Problem

The experiments of this section perform binary price trend classification in a synthetic
dataset that resembles the properties of different financial time series.

As described in Section 5.2.2.2.1, four datasets representing ETFs of different
types have been used. The resulting dataset has been pre-processed to predict ups
or stable/downs movements. The approach followed to parse the price to binary
labels and the usage set of technical indicators as a feature set can be seen in
different approaches from the literature [179, 195, 275]. This is further explained in
Subsection 5.2.2.3.
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5.2.4 Clustering Problem

The book written by Tsan and Chen [347] proposes a framework to characterise market
states and tag directional changes (DC) based on differences in time scales and price
returns. Their framework provides an original approach to visualising these states by
creating two indicators based on the returns and the difference in time between price
changes.

This thesis does not aim to define a model to represent market states. Rather than
this, we only aim to approach changes between them as a concept drift. We believe
that if a market state can be reflected in the liquidity, price returns and, or volatility
of a stock symbol, the technical indicators from section 5.2.2.3 should also be able to
reflect this. Thus, we have the indicators presented in [347] to represent the differences
between the ETF data used to generate the semi-synthetic series: SPY, PFF, VNQ
and BWX. The different plots in this subsection depict the challenge of differen-
tiating between the different stock symbols fed for the generation of the synthetic series.
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Figure 5.11: Histogram of the logarithmic R indicator from [347] applied to the four states
used in the datasets used for the generation of the synthetic sets.

The histogram in Figure 5.11 shows how state 1 displays the lowest returns as
opposed to state 3. States 2 and 4 are more centred in the histogram. It can be
observed that state 4 is closer to a normal distribution, although state 2 is skewed
towards three specific bins in the centre of the distribution. The set of indicators for
this representation is:
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• Indicators to express price returns: R (return), LR (logarithmic return) and TMV
(total price movement).

• Indicator to express time between each price return: T (time).

Figures 5.12a and 5.12b show a bidimensional plot based on a price return and
time components as showcased in [347] for our four states. Figure 5.12a shows that,
for the raw sets, states 1, 2 and 3 do not present as many challenges to be separated
from each other. However, state 4 can overlap with states 2 and 3.
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(b) Synthetic states

Figure 5.12: Representation based on the work from [347] of the fours states used for the
generation of the synthetic sets used in these experiments. Raw and synthetic
data in Figures 5.12a and 5.12b respectively.

Figure 5.12b shows a similar bi-dimensional histogram over a sample of 1,000
points of those states generated synthetically. It can be seen how the separability of
the different states in the vector space of the synthetic sets presents more challenges.
Most states move in the histogram, and state 3 expands to the top of the histogram
with greater price returns. These changes are due to the simulation process that,
besides being trained for the states depicted in Figure 5.12a, it has a stochastic
component. This random component will make different samples of the states evolve
and change over time.
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Bear in mind that the analysis of this subsection does not consider the fact that
drifts and shifts producing variations between states could make the output data trans-
form under the same generative process. Due to the graduality of transitions between
states, the switching process will input data generated by the transitioning model into
the transitioned model and vice versa. This fact, for instance, generated explosive price
movements for different raw datasets during the selection of the four ETFs finally used.

In this chapter, we assume that a market state is represented by the same gener-
ative process (or concept [144]) and, in the case of state evolution, GroCH can create
a new group for this.

This analysis shows that, even in a scenario where the data behaves identically
than in the raw datasets used to train the generative processes in Figure 5.12a, there
would be challenges to reach rates of retrievals and insertions greater to 75% in GroCH.
Hence, we assume that one of the states may not be separable and not consider potential
information loss from the subset of technical indicators used in the datasets used for
testing and training.

Figure 5.13 shows how k-means for k=4 cannot recognise the four states from
Figure 5.12b. This analysis proves the lack of signal to switch between market states
accurately under all concept variations later in this chapter.
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Figure 5.13: K-means cluster centers for k=4 over the same data than in Figure 5.12b.
Colouring of centroids does not correspond to ground truth states in Fig-
ure 5.12.
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5.3 Experimental Section

In this section, we present the experiments performed for a thorough evaluation of the
algorithm. First, we describe the experimental plan, and then we briefly mention the
parameter search performed to achieve the results that we show in the last subsection.

In order to avoid confusion and to have a clear terminology from here onwards
in this section, a change in the ground truth is called a (regime) switch, while
the events recognised by GroCH are called drifts.

5.3.1 Experimental Design

As explained throughout this chapter, we have designed a framework to measure
the overall performance of our algorithm. Apart from classification accuracy during
switches, we evaluate the identification of regime switches and the accuracy of concept
history management operations such as insertions, retrievals and creation of groups.

GroCH and its main competitors in this section produce deterministic results.
Thus, as explained in Section 5.2.2.4, to produce a benchmark with post-hoc tests, we
simulated a set of 30 synthetic time series of 1 million data instances. Then we created
a feature set of technical indicators with a binary target for price trend classification.
The resulting datasets will be used in the experiments, and their results will populate
the statistical tests. These synthetic sets will be streamed to all algorithms using
moa.stream.ArffFileStream. Then, the obtained results and detected drifts will be
compared to the actual regime changes designed in the simulation process (transition
map) to validate, evaluate and benchmark our proposal. Part of this comparison to
the ground truth involved the evaluation of the accuracies on the insertions (v3acc) and
retrievals (v2acc) to or from (respectively) the right concept history group.

Concept history groups are aimed to represent ground truth states. However, GT
states do not necessarily have a one-to-one mapping to the number of groups detected.
In order to evaluate the performance of GroCH managing the CH, the equivalence or
mapping between each group and each state in the transition map must be known.
We have done this by creating market state and group identifiers. Even assuming a
sequential assignment of identification numbers, identifier values may differ between
market states and groups. Groups are identified depending on their order of creation,
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and any misdetection or failure detecting a drift may create a cascade effect in GroCH.
In order to compute this equivalence, we map groups and classifiers depending on the
position (instance) of the data stream when they were produced and then compared
to the expected state at the GT (transition map described at Subsection 5.2.2.2.6).

In order to evaluate classification accuracy and kappa statistics, we have used the
window classification performance evaluator from MOA with its default configuration,
which is a window width of 1,000 data instances. The main metric used to report
classification accuracy results is AUS, already described in the previous section. After
this, we run post-hoc tests over the averaged results to check for statistical significance
and conclude the experiments. First, we perform a normality test. If the distribution
is normal, we use Welch’s t-test to test for statistical significance. If the normality test
is rejected, we apply the non-parametric Mann-Whitney Wilcoxon test.

5.3.2 Data Splitting

Before the parameter optimisation process, GroCH may need a previous sample of
data to compute a Mahalanobis distance matrix of covariances (for concept or group
similarity). Furthermore, GroCH has an optional training phase before its prequential
evaluation that involves the prepopulation of the concept history. For this purpose,
we allocate data instances from the data streams in the following way:

• The initial 25% of the data stream is used for the computation of covariances or
any prepopulation (optional) at pre-training stage. To do this, the data instances
used to prepopulate the CH are also used for the Mahalanobis distance matrix.

• The next 25% of the stream is used for the parameter tuning of all algorithms.

• The other 50% of the data stream is used to test and train models with their best
performing parameters.

Regarding the first point above, the Mahalanobis distance matrix is created using
the concatenation of the set of many datasets defined for pre-training and used to
scale distances between groups. Each of these datasets is also used individually to
prepopulate the concept history with one group per dataset, and one topology and
one classifier per group. After this, all of these sets are concatenated to create the
Mahalanobis distance matrix.
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The splitting of the streams is done to support first the parameter tuning of all
algorithms and then prequential evaluation. This is depicted by Figure 5.14.
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Figure 5.14: Experimental design workflow covering from the simulation of the synthetic
sets to the final results.

5.3.3 Parameter Selection

GroCH, as the other algorithms evaluated, relies on a set of parameters that should
be predefined. Due to the number of experiments needed and the large number of
parameters in GroCH, the optimisation of these, is conducted in two stages:

• Stage I involves a larger number of parameters to be optimised with fine granular
detail. Part of this phase is the selection of drift detectors and a common range
of parameters for them.

• Stage II is focused on the exploration of a shorter range of parameters for the
entire set of 30 data streams. This stage starts from the results of Stage I to
narrow the search space.

This search is performed to maximise the mean accuracy during the test and
training set. Albeit the metric used to evaluate the algorithm over the test and train set
is mean AUS, we perform an exhaustive grid search using mean accuracy over the whole
set to align with the optimisation performed for real-world datasets in the next chapter.
The reader might want to consider other parameter optimisation techniques such as
Bayesian optimisation or hyperband if the computational cost becomes an issue [219].
This is not the case during this thesis, as will be mentioned in Appendix C.2.
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Coming back to Figure 5.14, since the optimisation process in Stage II is repeated
for each of the 30 data streams, each algorithm may be trained for different param-
eters at each data stream in the final experiments. Stages I and II are described in
Subsections 5.3.3.1 and 5.3.3.2 respectively. Findings during the pre-study performed
as part of Stage I, that drive the parameter search performed for the final experiments
(Stage II), will be shown in Subsection 5.3.4.

5.3.3.1 Stage I: Pre-study of Parameters for One Stream

The first stage of the parameter exploration consists of a pre-study of the best per-
forming ranges to understand the key parameters to be optimised. It involved ∼4,000
experiments per base classifier. In this subsection, we describe some of the parameters
explored and analyse their impact on the first synthetic set. This data stream, with an
overall binary class distribution of ∼55-45% for labels 0 and 1 respectively, is further
described in the Appendix B.

Tables 5.4 and 5.5 show the parameter space explored in GroCH and its main
competitors. While for GroCH a larger set of parameters need to be explored to
understand the effects of their variation, for CPF and ECPF we have explored the
author’s recommended parameters and ranges [14, 16]. Table 5.4 shows the initial
search performed in GroCH. Further details about the behaviour and description of
each parameter are given in Appendix A.2.

Parameter Range explored in Stage I Selection for Stage II
Drift Detector DDM, EDDM, HDDM, RDDM, ADDM EDDM and RDDM
Ω: Max. Classifiers per group 1, 3, 5, 7, 10 and 12 10
Topology radius (distance threshold) 0.5 to 3.5 1-2.5
Removal Policy from CH groups (>Ω) LUFO or FIFO LUFO (remove less used)
Selection Policy for CE draw LIFO and FIFO FIFO (select oldest)
Punishing factor during WW (β) 0.5 (not optimised) 0.5
Concept similarity Metric Euclidean, Mahalanobis Mahalanobis
Topology Feature Subsets 6 or 9 indicators. 6
GNG lambda 5-200 5
GNG max ages 100-500 200
Min. instances seen for insertion 100-300 200
Min. instances in WW 10-100 (every 5) 15

Table 5.4: Ranges explored during the parameter exploration in GroCH. The entire explo-
ration process was performed for both HT and NB as the base classifier. WW:
warning window; CE: conceptual equivalence.
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To illustrate the impact of using different values of some of the main parameters
explored, we present plots over the simulated stream using HT as the base classifier
in Figure 5.15. These plots are computed using the mean of all experiments with
different experiments in this pre-study.

(a) ECPF m (similarity threshold) (b) ECPF fading

(c) ECPF f (max concepts) (d) CPF min buffer size

(e) GroCH topology radius (f) GroCH subtopology

Figure 5.15: Example behaviour of parameters in ECPF and GroCH. ECPF parameters are
also present in CPF behaving with the similar trends. Subtopology 1 represents
the shorter feature set and 2 represents the larger.

The impact of these parameters for naive Bayes follows similar trends. In the
dataset used in this stage, the higher values of m in ECPF and CPF and greater buffer
size in CPF performed better in terms of classification accuracy. In this regard, fading
in ECPF and CPF did not perform well, probably due to the recurring behaviour of
the stream. See the explanation of fading in Subsection 3.4.3.
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Regarding GroCH’s topologies, 2.5 was the radius obtaining the best result when
prepopulating the concept history. Otherwise, a radius of 1 (using the shortest
subtopology) and of 1.5 (using the largest subtopology) obtained the best results.
The best subtopology was the one with the shortest set of features.

Two different feature subsets were chosen for the topologies as a result of the data
exploration process. We selected technical indicators that, by design, are scaled. From
the set of indicators used in our approach, this set is: RSI, WILLR, CCI, SK, SD,
ADX, ROC, AroonDOW N and AroonUP . In some synthetic sets with events such as
prices skyrocketing or dropping over time, we observed that certain parameters could
have values tending to the maximum or minimum of their scales (to 100 or 0). Thus, we
also created a second set by discarding the RSI and STOCH (SK and SD) indicators.
Therefore, the two subtopologies used in Stage I were:

• Subtopology 1 (6 indicators): WILLR, CCI, ADX, ROC, AroonDOW N and
AroonUP .

• Subtopology 2 (9 indicators): RSI, WILLR, CCI, SK, SD, ADX, ROC,
AroonDOW N and AroonUP .

The shortest subtopology (6 indicators) in GroCH performed generally better in
Stage I in terms of classification, retrievals and insertions accuracy. Other parameters
explored in GroCH impacting the topologies were the max. age of GNG (300) and
GNG’s λ (λ=5 for subtopology 1 and λ=15 for subtopology 2). The value of λ was
selected by also evaluating the mean quantisation error of GNG across concepts in
this stream. In Appendix A.2.2, we summarise different variants considered for the
training scheme of the topologies. Multi-pass learning was also considered to reduce
the quantisation errors but this was discarded as it increases the computational cost
of training a topology in GroCH.

While the default value for λ in GNG is λ=200, the one-pass training forced us to
decrease this value to a minimum to feed more data instances between concepts and
reduce the quantisation error. GNG computational cost increases as its network of
prototypes increases [131]. Hence, we were only able to go down to λ=5. Figure 5.16
illustrates the decrease of quantisation error with greater number of prototypes in GNG.
This inspired the selection of lower values of λ to create more prototypes between drifts
and achieve a better representation of the ground truth states.
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Figure 5.16: Example of quantisation error in GNG per prototype created using λ = 100.

Algo. Parameter Range explored in Stage I Selection for Stage 2
CPF and ECPF m 0.85, 0.9, 0.925, 0.95, 0.975, 0.99 [0.925, 0.99]
CPF and ECPF fade Models Yes/No No
CPF and ECPF Detectors DDM, EDDM, HDDM, RDDM, ADDM EDDM and RDDM
CPF and ECPF f 1-15 4
CPF Min. buffer size 30, 60, 120, 180, 240 [60, 180]

Table 5.5: Ranges explored during the parameter exploration in CPF and ECPF based
on [14, 16]. The entire exploration process was performed for both HT and NB
as base classifiers.

In GroCH we also optimised the minimum size of the warning window (15), mini-
mum instances for insertion (200) and the maximum of classifiers per group (10). Other
parameters like removal or selection policies concept similarity distance metrics, the
punishing factor for weighting active versus background classifiers, were only explored
briefly but left finally at their default values in GroCH (listed in Appendix A).

Finally, a key parameter optimised in all algorithms was their drift detection
algorithm (EDDM and RDDM). The evaluation of the drift detectors was a major step
in the exploration phase since a nested parameter exploration per drift detector had
to be run. In our study, we used the best performing detectors from the literature (see
Chapter 3). The reader must note that these techniques for supervised drift detection
rely heavily on the base classifier used. Thus, the exploration had to be repeated for
each base classifier. ADDM, proposed at the start of this chapter, was one of the
drift detectors used. This is based on ADWIN2, one of the best performers in drift
detectors in the SOTA (Chapter 3). However, for the experiments of this subsection,
we were not able to find a parametrisation that could compete with RDDM and
EDDM. Thus, despite its proposal in this section, this was no longer used in Stage II.
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The reader must note that the goal of this work is not to perform an exhaustive
analysis on the suitability of different drift detectors to a specific dataset. Rather,
we aim to obtain a parametrisation that captures drifts at the right level of
granularity. Thus, in general, drifts should map to ground truth switching events
in the simulation of the time series.

As this requirement was already met for HDDMA and DDM using their default
parameters for their implementation in MOA, for the sake of simplicity, this was the
parametrisation selected and not optimised. Conversely, to avoid extra exploration,
HDDMW was discarded since HDDMA reacted more accurately to drifts in its vanilla
configuration and thus was chosen as the version of HDDM used in Stage I.

The parameter search performed for the rest of the drift detectors used each of
the algorithms benchmarked, and every base classifier can be seen in Table 5.6.

Detector Warning Range Drift Range
ADDM (1.0E-1, 1.0E-4) (1.0E-2, 1.0E-5)
RDDM 1.03, 1.23, 1.288, 1.43, 1.63, 1.688 1.8, 2.0, 2.2, 2.258

Table 5.6: Parameter range explored for warnings and drifts in the drift detectors. Warning
detection parameters in RDDM are in regard to drift detection parameters are
always values -0.670, -0.970 on top of the drift detection intervals. This equiva-
lence is based on the plan vanilla parameters for RDDM. EDDM does not have
any input parameters.

A core piece of this first stage was the analysis of the accuracy detecting drifts, and
recognising retrievals and insertions to the right ground truth state. The detection of
concept drifts is a key aspect in GroCH, since this can impact the accuracies retrieving
(v2acc) or inserting (v3acc) to the right group in the concept history, and thus, has a
cascade effect in the classification accuracy. This is covered further in Section 5.3.4.

5.3.3.2 Stage II: Optimisation for Multiple Streams

This final stage of the parameter optimisation was applied over the 30 data streams.
Algorithms were optimised for each synthetic set independently before the test and
train split of the stream. As mentioned earlier in this section, this second stage started
from the results from Stage I to shorten the search space due to the number of tests
to be run.
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The parameters used for GroCH in Stage II can be seen in the right-hand side
column of Table 5.4. The main optimisation performed in GroCH was for the radius
distance threshold (topology radius) for concept similarity which was performed for
the values {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5}. This is the range of values that we would
generally recommend. The other important piece optimised for each stream was the
drift detector. As base classifiers, HT and incremental NB were used. Hoeffding trees
are one of the most common techniques used in the state of the art of data stream
classification [240]. The other base classifier used was the incremental version (but not
adaptive) of naive Bayes.

For CPF and ECPF, we performed a similar exploration than in Stage I (see
Table 5.5) with the exception of fading, disabled as per results of Stage I and avoiding
limiting the identification of recurrences as explained in [14], and f=4, since there are
four states in the ground truth. We aim to allow four concurrent models.

Regarding drift detectors, RDDM and EDDM were the main methods used since
these obtained the best overall results recognising regime switches. The RDDM drift
detection confidences explored were: {1.8, 2.0, 2.2, 2.258}. For warning, values were
lower by 0.670 and 0.970, in the range (1, 2). The difference in value between drifts
and warnings were extrapolated from the default values of RDDM in MOA.

5.3.4 Behaviour of GroCH During the Pre-study

5.3.4.1 Drifts and Recurrences in GroCH

During the first stage of the parameter optimisation, we realised the need for an in-
depth analysis of the market states. First, we found that across experiments, there
could be a tendency to recognise the same group for retrieval and insertion at the
same concept drift. By design in GroCH, this could be the expected behaviour in the
following two cases:

1. If the warning window starts way before the switch. Thus, when the concept drift
is signalled, the state recognised should be still the same one prior to the warning.

2. If a concept drift is detected in a moment when the state has not changed. This
point is especially relevant if we evaluate retrievals and insertions outside the
drift detection delay threshold (d), showing the importance of this parameter.
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In a scenario where a concept drift is detected, but there is not an actual switch in
the ground truth (false positive), the hypothetical right behaviour of GroCH would be
to detect a false alarm and to continue with the same active classifier. However, GroCH,
is unaware of the GT; hence, to realise the presence of a false alarm, it needs to retrieve
a group to check for recurrence and find the classifier with the lowest error. In any case,
there are cases where a recurring drift is recognised in case of a false positive in drift
detection. This can happen, for instance, if the current state is already represented by
a group of the ground truth (recurrence). This behaviour can still help GroCH improve
classification accuracy, and thus, it is not undesired.

In case of a false positive in the drift detector, GroCH should retrieve the group
that represents the active classifier (current ground truth state). Consequently, if a
retrieval or insertion does not correspond to a regime change, the group recognised
should match the current ground truth state. The drift detection delay threshold (d)
is used to evaluate if a concept drift detected by GroCH corresponds to an actual
regime switch. Hence, the selection of this value is of critical importance. To do so,
one must take into consideration the mean length of warning windows using GroCH
in this data stream and the expected maximum duration of the changes. While the
first parameter can be easily obtained by running GroCH over any dataset, the second
parameter would need a subject expert of the dataset utilised, unless there was actual
knowledge of the ground truth (as in this chapter). In our analysis, d = 1,500 data
instances. This value was obtained by exploring the range of [1,000, 2,000] instances,
with being 1,000 the maximum length of regime change.

We noticed experiments in the pre-study where ground truth states and shifts
leading to them may take several occurrences to be actually recognised by drift detec-
tors. These cases were outputting low hit rates in retrievals and insertions in regard
to that ground truth state.

A dilemma that arises here is whether to penalise misretrievals if a state is not
represented yet by a group in the concept history as it would be done by default.
As part of our analysis, we decided only to penalise misretrievals if there is
already a group from the concept history that already represents that ground
truth state. The rest of the retrievals and all insertions are taken into account
for the statistics.
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Suppose retrievals or insertions occur outside of the threshold of d instances after
a ground truth change. In that case, these will be counted as accurate events as
long as they retrieve or insert the group that maps to the current state of the ground
truth. Conversely, retrievals and insertions that occur inside the drift detection delay
threshold are considered successful if the closest group by concept similarity belongs to
the destination and the starting ground truth state in the current shift, respectively.

As mentioned in the Appendix A.2, three key parameters of GroCH impacting the
identification of recurring states are i) λ in GNG, ii) the topology radius and iii) the
drift detectors with their respective parameters. Growing neural gas generates (through
interpolation) a spatial summary with a number of prototypes λ times lower than the
number of data instances received. Changing the feature set used in the topology also
has a cascade effect in some of these parameters. The sub-topology with more features
needed a greater topology radius to successful (1.5 instead of 1) and greater GNG λ.
λ=15 obtained better results for the subtopology with the largest number of features,
while λ=5 was the best overall. We believe that this is because adding extra features to
the subtopology over the generated streams added noise, and greater λ can help clean
part of this noise by summarising its spatial representation; especially if this noise is
at the outer boundaries of the topologies, as explained in Chapter 2.

5.3.4.2 Impact of Parameters in GroCH

Results obtained in the pre-study helped to understand the behaviour of the different
algorithms and different base classifiers compared in the simulated stream. As
explained in previous subsections, GroCH, CPF and ECPF use supervised drift
detection algorithms and thus, changing the base classifier produces a cascade effect in
drift detection and classifier management actions such as replacing or training a new
classifier. Furthermore, each base classifier used has a different degree of adaptability.
While the incremental version of naive Bayes does not have any forgetting mechanism,
Hoeffding trees reset node statistics as part of the split, performed over time.
Therefore, this section explains results for each of the base classifiers used, leading to
the final parameter set explored with the 30 streams for the experiments.
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For naive Bayes as a base classifier, RDDM was the best performing drift detector.
Over HT as a base classifier, EDDM has been the drift detector ensuring the greatest
classification accuracies. An issue that arose here, though, is that in those experiments,
EDDM barely detects any drifts, and most of them are signalled at the start of the
data stream.

Covered in Chapter 2, HT (or VFDT) is an algorithm designed for stationary
data, but that has achieved good results in concept drifting scenarios. This can be
explained by the splitting algorithm of the leaf nodes, which resets the statistics of
those and works, thus, as a kind of forgetting mechanism. According to these results,
we believe that the synthetic stream used in Stage I is easily interpreted by HT and
thus, this adapts well to the switches defined of 100 and 1,000 data instances of length.
Furthermore, the four recurrences that this stream has (simulating market states)
exhibit stationary patterns (in terms of price returns) despite their different price
scales over time. It could also be the case that the switches from the ground truth are
not abrupt enough for HT to fail in the short term. Regarding EDDM, this is a drift
detector that, as explained in Chapter 2, is targeted to gradual drifts. It measures
the distance of two misclassifications in terms of classification accuracy. The results
with HT show that once the classifier has been training with enough data instances,
its classification accuracy stabilises and thus, EDDM barely detected drifts after this
point.

Different combinations of drifts detectors and base classifiers react differently,
adapting and reacting to concept drifts. The impact of changing predefined parameters
will vary significantly across them as the supervised drift detector, and replacement
of classifiers relies on the classification accuracy obtained by the base models.
Misdetection of concept drifts impacts in the accuracies retrieving (v2acc) or inserting
(v3acc) to the concept history. The selection of the drift detector has a critical impact
on the performance of all of these algorithms. On the one hand, a parametrisation
very sensitive to drift will tend to replace classifiers at any minor drop in classification
accuracy, not giving them time to be trained with a representative amount of data
and become robust learners over time. On the other hand, a parametrisation set for
very abrupt drifts can help in different critical scenarios but may not be able to detect
relevant regime changes at higher frequencies which may be more gradual in nature.
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The last fact that we observed during the pre-study is that the prepopulation
of the concept history helps GroCH to identify all ground truth states, and thus, to
improve classification accuracies during the development set and final test and train
set used in this stage. Conversely, experiments not applying this prepopulation only
were able to detect up to three out of four ground truth states. Experiments not
pre-training only detected three out of four ground truth states. Thus, we believe that
pre-training helps to tackle the limitation presented at the start of the section regarding
the spatial representation and separability between ground truth states in the datasets
used. Consequently, all the experiments in Stage II prepopulate the concept history.

5.3.5 Results

In this section, we present the results of this chapter. First, we analyse the performance
of GroCH detecting drifts and recognising the ground truth states in the simulated
streams. Second, we benchmark GroCH with CPF and ECPF, its main competitors
in the literature. Finally, we discuss the conclusions and limitations of our work.

5.3.5.1 Performance Retrieving and Inserting Groups

Figures 5.17a and 5.17b show the accumulated accuracies detecting drifts, and retriev-
ing or inserting the right ground truth state using naive Bayes and Hoeffding trees,
respectively, as base learner in one of the synthetic streams simulated. Markers indi-
cate the time of a drift (blue), retrievals (orange) and insertions (green). It can be
seen how results may vary depending on the base learner. For instance, in this specific
stream, when using HT, GroCH obtains greater accuracies detecting structural breaks
up to d instances later; it also obtains better accuracies in HT in insertion to groups
representing the right state each time.

The red line in Figures 5.17 shows the increase over time of the pool of learners
stored in the concept history up to the maximum number of classifiers per group
selected in Stage 2. Something that is not visible in this example but could also occur
is that groups of a certain age could become obsolete if the correlation between the
feature subset used for the topologies changes over time. In the semi-synthetic streams
generated in this chapter, this can happen, for instance, if the generated price in the
artificial series rises up or down much in time.
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Figure 5.17: Drift and group detection metrics in the first stream simulated.

Another example is when prices vary much from the start, duplicating or beyond.
In such scenarios, GroCH would create a new group. An alternative to this represen-
tation using prices is to use price returns, but this is currently out of scope as we focus
on technical indicators.
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Figures 5.18 and 5.20 provide a quantitative point of view regarding the perfor-
mance of GroCH dealing with changes in the 30 data streams simulated. These figures
show the accuracies inserting (v2acc) or retrieving (v3acc) from a group representing the
right state, and the percentage of drifts detected within d instances from GT changes.
Subfigures 5.18a and 5.20a provide a summary of this, while the rest of the sub-figures
show the performance per ground truth state.
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Figure 5.18: Analysis of drifts in GroCH using naive Bayes as base classifier.

Subfigures 5.18a and 5.20a show mean metrics across experiments in the range of
≈50%-60% the accuracy for drifts (v1), retrievals (v2) and insertions (v3). An analysis
of this in a quantitative point of view is a challenge since v2 and v3 rely not only
on v1 but also on the time factor. We did not see significant differences in GroCH
reacting to gradual versus sharper drifts. The size of the warning window in GroCH
can come not only due to the speed of the drifts but also due to the delay detecting
these. There can be scenarios where a learner keeps classifying the previous state
well; thus, the supervised drift detector does not trigger even a warning signal. This
scenario is acceptable from the point of view of GroCH, which tries to keep the best
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classifier during times of change, but can create problems in cases where this delay is
converted into a sharp drift all of a sudden after the GT transition has ended. The
mean delay detecting concept drifts (v1) inside d is 647 and 711 instances for NB and
HT respectively. Figure 5.19 shows the distribution per base learner of these delays
in all drifts that occurred in the 30 streams. Medians are similar across learners, but
there is a slight greater delay on gradual drifts on Hoeffding trees. These can be due
to the adaption ability of this learner.
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Abrupt Ground Truth Switches
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(a) NB
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Figure 5.19: Distribution of drift detection delay per drift abruptcy using d = 1500.

Subfigures 5.18b and 5.20b have a different interpretation than v1 in (a). They
measure for each GT state what percentage of the switches leading to each state
has been successfully detected by the drift detectors. This metric (as well as v1)
is independent of the result of the drift, which can be a false alarm, a background
drift or a recurring drift that retrieves and inserts to the right group or not. Subfig-
ures 5.18b and 5.20b measure detection of transitions from the ground truth perspective
(TPGT ). Thus, this does not penalise the overdetection of drifts, as done by the mea-
sure v1acc in 5.18a and 5.20a. It can be seen how GroCH has detected ≈70-80% of the
GT transitions in the 30 data streams. In Figures 5.18a and 5.18b we also see that
drift detectors miss more transitions to state 1 consistently using both base learners.
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Figure 5.20: Analysis of drifts in GroCH using Hoeffding trees as base classifier.

Subfigures c and d in 5.18 and 5.20 show retrievals and insertions per market state.
Total numbers of insertions and retrievals are reported in Appendix A.3. The mean
number of groups created on the top of the four prepopulated groups in NB across the
30 streams is 0.73 extra groups, in a range [0, 3]. In HT, the mean is 0.53, in a range
[0, 2].

• Insertions: Figures 5.18d and 5.20d represent the accuracy of the insertions per-
formed in GroCH split by the GT state at the time of the insertion. This has
been recognised in overall with a ≈50-60% accuracy, better when using Hoeffding
trees.

• Retrievals: Figures 5.18c and 5.20c represent the accuracy of the retrievals per-
formed in GroCH split by the GT state at the time of the retrieval. This has
been recognised in overall with a ≈50-60% accuracy when using Hoeffding trees,
but with lower accuracies in naive Bayes.
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In general, state 1 is the worst-performing state in drifts, retrievals and insertions
across all experiments with both base classifiers. This is followed by state 4 (second-
worst). Plots shown in Section 5.2.4 justify this behaviour. State 4 is not shown as
an easily separable state in Section 5.2.4, and state 1 is wrapped inside state 4 in the
synthetic sets (Figure 5.12b in Section 5.2.4). The full set of metrics in this study, both
overall and by state (including confusion matrices) can be seen in Figures A.10 and A.11
at Appendix A.3.

In the results obtained, GroCH appears to recognise groups and drifts better using
Hoeffding trees. However, these tests are not entirely comparable since the parameter
optimisation was performed for each of the 30 streams and base classifiers. Hence,
Figures 5.18 and 5.20 use different parameters and components across the different
executions for the 30 data streams (e.g. different drift detectors and intervals). Differ-
ent parameters when using naive Bayes as base classifier may lead to similar or better
results, but the selection made in this section was for the best performing configuration
in each of the 30 development sets (see Section 5.3.2).

5.3.5.2 Benchmark

In this section, we compare the results obtained in GroCH and other relevant algorithms
using 30 simulated data streams with their best parametrisation for each one (see
section 5.3.3.2). But first, the reasoning behind the comparison to be performed must
be explained. Subfigures 5.21a and 5.21b show an example run for the first 100k
instances of the same data stream shown in the previous section (Figure 5.17). They
provide a good overview of the performance of each algorithm over time. In Figure 5.21,
background drifts detected with GroCH are marked in red. Recurring drifts are marked
in purple, and retrievals (signalling the number of the group and state retrieved) from
the concept history are marked in green. Ticks in the x-axis, every 5,000 instances,
represent the start of a change in the ground truth. The accuracy of GroCH during
ground truth switches is represented by GroCH[D].

All metrics under regime switches used in this section correspond to the prediction
results in the data instances marked by a purple discontinuous line (same instances
marked by GroCH[D]) in Figure 5.17. Metrics under switch are computed only during
periods where the ground truth is shifting from one state to another, not being specific
to any algorithm or drift detection signals. Hence, these are relevant metrics to rate
all algorithms during shifts.
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Figure 5.21: Sample performance of GroCH, CPF, ECPF, and their base learner, along
with drift-related actions in GroCH for the first 100k instances of the first
stream simulated. Symbols: B: background drift; R: recurring drift; T: transi-
tion.

In Figure 5.21 we see a different behaviour across meta-learners when we
change the base classifier. This is one of the reasons why we have decided to carry
on our study with two different learners, one that is not able to forget (incremen-
tal naive Bayes), and another one that can forget as part of its nature (Hoeffding trees).
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For instance, in Figure 5.21 GroCH performs worst in the case of concept drift at
early stages using NB (see the drop during the switch in instance 20k), but it does not
see any significant relative drops to the other algorithms after that point. Figure 5.21
shows how not every GT switch triggers a background or recurring drift. As part of
the behaviour designed, GroCH only changes the active learner if: i) there is a drift
signal due to a decrease in its accuracy over time and ii) the active learner is not the
best performer during the warning period. Figure 5.21 also shows how drifts occur at
distinct times when using different base learners. The base naive Bayes by itself and
CPF tend to be the worst performers in terms of classification accuracy in the first
100k instances for this stream.

Moving on to a quantitative analysis of results, Table 5.7 shows the mean AUS
over the 500k instances reserved for test and train in the 30 data streams (over 100
concept drifts). GroCH obtains the best overall results during switch using HT as the
base classifier with a statistical significance of 0.01 to the rest. Using NB as the base
classifier, ECPF is the algorithm obtaining the best results with a p-value of 0.01.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 65.33 0.97 62.29 64.98 65.62 65.88 66.76
ECPF 66.46 0.66 63.31 66.37 66.60 66.78 67.10
GroCH 66.83 0.27 66.36 66.64 66.76 67.09 67.32
Base 66.79 0.40 65.70 66.59 66.74 67.10 67.53

NB CPF 60.67 0.59 59.19 60.35 60.69 61.09 61.77
ECPF 63.78 0.62 62.38 63.29 63.92 64.22 65.01
GroCH 63.24 0.50 61.77 63.05 63.26 63.52 64.12
Base 61.17 0.45 59.99 60.88 61.07 61.56 61.93

Table 5.7: Summary of accuracy under switch results across the 30 synthetic sets for 500k
examples. Best mean results statistically significant per base learner marked in
bold.

Figure 5.22 shows that, using HT as base classifier, GroCH obtains higher
accuracies than CPF and ECPF during structural breaks. However, HT tends to
adapt very well to the majority of the data streams simulated, showing that in these
data streams with changes of 100 and 1,000 data instances, an active drift detection
mechanism may not be necessary. HT is even able to deal with periods of change and
compete with GroCH, which is the best algorithm during switch in terms of accuracy.
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Figure 5.22: Distribution of classification accuracy and kappa statistic overall (left) and
during switch (right) across the 30 data streams with HT as base learner for
500k instances.
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Figure 5.23: Distribution of classification accuracy and kappa statistic overall (left) and
during switch (right) across the 30 data streams with NB as base learner for
500k instances.



Chapter 5. Proposal 185

Figure 5.23 shows that, using NB as base learner, ECPH is the best algorithm
overall and during ground truth changes in terms of classification accuracy. However,
looking at other metrics such at the kappa statistic, the base classifier NB appears
to obtain the fairest predictions in this problem for all the data instances. However,
the main goal of our research is to classify accurately during these times of change.
Here, we find that GroCH is the strongest algorithm in terms of kappa statistic during
regime switches, being statistically significant at 0.01 with Welch’s Test.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 19.52 2.53 15.22 17.06 20.49 21.74 23.49
ECPF 19.35 1.02 16.76 18.79 19.17 19.99 21.87
GroCH 20.38 0.81 18.56 19.86 20.31 20.76 22.16
Base 23.52 0.84 21.40 23.05 23.69 24.02 24.90

NB CPF 16.93 1.02 14.58 16.17 16.89 17.50 18.93
ECPF 17.61 0.83 15.80 17.11 17.46 18.29 19.28
GroCH 18.79 0.86 16.79 18.12 18.95 19.55 20.09
Base 16.49 0.63 14.59 16.06 16.50 16.91 17.70

Table 5.8: Mean results in terms of KUS for the 30 for 500k instances in the 30 streams.
Best mean results per base learner statistically significant marked in bold.

Kappa statistic is a good measure to find the best classification algorithm in data
streams tasks as it considers the randomness of each class. The reader must note that
the simulated sets are based on different ground truths; class balance is expected to
change over time. Table 5.8 summarises the kappa statistic obtained by all algorithms
in the same experiments as in Table 5.7.

When looking at this metric on the experiments using HT, GroCH also has better
results than ECPF during switches (KUS). CPF obtains competitive results with both,
but it shows a high deviation across the experiments and does not look like a reliable
meta-learner. Hoeffding trees obtain the best results during switches in terms of kappa
statistics; hence these could be considered the best overall algorithm. The reader must
note that parameter optimisation was performed for classification accuracy. Different
experiments would need to be run to verify whether the other algorithms behave more
suitably for this metric with other parameters during the development set.

As algorithms evolve over time, the best parameters for them should also change.
This is, though, something that has been left as a future piece of work, and it is a
research trend in machine learning for data streams. We have seen that HT was the best
classifier, although GroCH obtained competitive AUS. GroCH was the best performer
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using NB in terms of KUS, but NB itself (without a meta-learner) performed better
outside changes (during moments of stability). We have experienced through Stages I
and II, though, that these meta-learners are algorithms susceptible to the parameters
selected. Thus, experiments with a shorter data stream could be beneficial.

Table 5.9 shows the results at the middle of the test and train data streams. For
250k instances, GroCH using HT is the best algorithm during changes, and this is
statistically significant at 0.01. The second best algorithm predicting is ECPF using
HT as its base classifier, but this is not statistically significant (Mann–Whitney p-val
0.2) compared to running the base classifier (HT) alone. However, HT is still the
strongest algorithm in terms of kappa statistic (see Figure 5.24).

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 64.94 1.01 62.72 64.27 65.07 65.75 66.36
ECPF 66.57 0.68 63.76 66.38 66.65 66.95 67.49
GroCH 66.93 0.37 66.13 66.70 66.99 67.17 67.55
Base 66.55 0.45 65.39 66.29 66.59 66.85 67.31

NB CPF 60.72 0.89 59.01 60.12 60.80 61.35 62.23
ECPF 63.54 0.74 62.03 63.03 63.64 64.07 64.81
GroCH 63.26 0.65 61.63 63.03 63.29 63.74 64.21
Base 60.93 0.63 59.79 60.50 60.93 61.37 62.66

Table 5.9: Summary of accuracy under switch in 30 synthetic sets for 250k examples. First
50% instances from Table 5.7. Best mean results statistically significant marked
in bold.

Regarding algorithms using naive Bayes as their base classifier, both ECPF and
GroCH are the best performers, statistically significant with a p-value of 0.01 to the
rest. However, GroCH is significantly stronger during GT changes (see Figure 5.25).
From these results, we see that, in the case of stationarities, both GroCH and EPCH
are more beneficial in the short term. We would expect different base classifiers
and their base learners to be converging in the metrics reported in the long term.
Nevertheless, we saw that in the overall results for 500k instances, naive Bayes was the
strongest algorithm (kappa statistics) besides obtaining one of the lowest classification
accuracies (see Figure 5.23). A reason for this could be that an incremental naive
Bayes is trained with a set that represents well the four different ground truth states,
but the meta-learners keep replacing their classifiers every time that there is a minor
inconvenience.
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Figure 5.24: Distribution of classification accuracy and kappa statistic overall (left) and
during switch (right) across the 30 data streams with HT as base learner for
250k instances.
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Figure 5.25: Distribution of classification accuracy and kappa statistic overall (left) and
during switch (right) across the 30 data streams with NB as base learner for
250k instances.

In any case, our current research aims to classify better during changes, and for
this purpose, if we consider both metrics GroCH is the best meta-learner using NB.
GroCH also performs better than its base classifier when using NB.
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Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.
HT CPF 9.26E-01 3.03E+00 4.14E-04 6.68E-04 2.50E-03 6.41E-02 1.42E+01

ECPF 1.06E+00 5.81E+00 1.07E-04 4.18E-04 7.43E-04 1.16E-03 3.18E+01
GroCH 1.03E+00 2.12E+00 2.39E-01 2.74E-01 4.38E-01 7.37E-01 1.18E+01
Base 2.95E-04 3.68E-05 2.42E-04 2.61E-04 2.92E-04 3.15E-04 3.99E-04

NB CPF 2.21E-04 5.90E-04 3.68E-05 5.93E-05 8.32E-05 1.69E-04 3.32E-03
ECPF 5.96E-05 2.76E-05 2.63E-05 3.73E-05 5.14E-05 8.33E-05 1.26E-04
GroCH 1.52E+00 3.17E+00 1.01E-01 3.05E-01 6.21E-01 1.18E+00 1.73E+01
Base 3.92E-08 5.11E-09 3.37E-08 3.52E-08 3.80E-08 4.09E-08 5.13E-08

Table 5.10: Model cost per algorithm and base classifier (RAM-hours).
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(a) Hoeffding trees as base learner
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(b) Naive Bayes as base learner

Figure 5.26: Distribution of runtime performance metrics, RAM-hours (left) and CPU sec-
onds (right), across the 30 data streams in the different algorithms for 500k
instances.

Table 5.10 shows the cost of each model expressed in RAM-hours. It can be seen
how GroCH is the algorithm with the greatest computational overhead for both base
learners. ECPF is the meta-learner with the lowest mean computational cost. However,
in Figure 5.26 it can be seen how, considering outliers, ECPF is the algorithm with
the greatest maximum computational cost in terms of CPU seconds also the algorithm
with the greatest maximum in RAM-hours using NB. Thus, in certain scenarios, ECPF
is not a computationally cost-effective solution.
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In summary, results in this section show that ECPF and GroCH as promising
alternatives for periods of change when the base classifier did not have any forgetting
mechanism (NB). Between these two, GroCH showed a better strength classifying
(kappa statistic). GroCH seems to outperform all of the competitors in the short term
(250k data instances). However, in the long term, base learners and competitors can
improve their behaviour to the stationary behaviour of the series due to the recurrences.
In the results using Hoeffding trees, while GroCH is still the best performer (greatest
mean and lower std. in AUS), there is no statistical significance compared to its base
classifier. Regarding kappa statistics, we see that in experiments using NB, meta-
learning increases the strength of the predictions during changes.

Finally, while GroCH can be seen as a computationally expensive algorithm, this
should not impact scenarios where the model needs to operate at minute level (or 30-
second level) frequencies. In any case, the improvement of the computational cost in
GroCH, which should first focus on the calculation of topologies, is left as future work.
We extend on this in Section 5.5. As of now, the best cost-effective solution for the
overall stream relies on the base learners themselves. But it depends on the context
and application areas whether it is actually worth applying a meta-learner or not.
For instance, any improvement during changes in the data distribution can become a
competitive advantage in the financial domain.

The improvement of the predictions in GroCH relies on future work to find i)
more accurate drift detectors to predict structural breaks, ii) feature sets data with
more signal, iii) fewer clustering limitations (as covered in Section 5.2.4), and iv) more
accurate distance metrics to differentiate states.

5.4 Limitations

One of the limitations of our approach, GroCH, is its high computational cost. How-
ever, this is not an issue impacting only our approach. The experimental results have
demonstrated how other meta-learners exhibit higher computational costs in some sce-
narios. In the case of GroCH, we have observed that one of the main computational
bottlenecks in our experiments was training topologies using GNG over time. This
impacted significantly when many consecutive changes in the GT were not signalled
by the drift detectors, causing the topology to train with extra thousands of examples.
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GNG creates new prototypes by interpolation in the spatial areas with the most
significant error. This causes a computational burden as the network of prototypes
grows. In our scheme, we have trained topologies using a one-pass setting. To achieve
a good spatial representation of the topologies and minimise the quantisation error,
we had to use low values for λ (5); this is by default in the order of hundreds (200).
Thus, while the cost in our experiments was a current limitation of our work, using a
different algorithm to train topologies could improve this issue. This is out of scope
from this thesis, as various extra experiments would need to be carried out, and we
would probably see an impact of this change in other parameters.

Another significant limitation in our approach is that the supervised drift detection
mechanisms do not detect every potential shift in the generative process. Thus, groups
may not be representing the ground truth states accurately. Therefore, transitioning
between states is not an optimal task. The pre-training of the concept history helps in
this regard, but it is not exempt from potential noise that could be input in the history,
causing the creation of new groups later. A mechanism to prune unused groups over
time and unsupervised drift detection would help GroCH converge to a better solution.
Both solutions are mentioned as future lines of work.

Finally, a limitation of the dataset selected is the hard separability between dif-
ferent market states (as seen in Subsection 5.2.4). This makes GroCH have difficulties
detecting all different concepts. These issues could also be due to a lack of signal in
the technical indicators selected (Subsection 5.2.2.3) used for classification and (the
subset of them used for) clustering tasks. This can impact as well in the metrics for
concept similarity used. A major issue with the Mahalanobis distance distance is that
this needs to compute the inverse of the correlation matrix for the calculations. This
cannot be computed if the variables are highly correlated [359]. This has not impacted
the model in any of our experiments. Still, there could be constraints to compute the
matrix in specific periods if the correlation across features drifts much over time.

5.5 Future Lines of Work and Changes in GroCH

Stages I and II comprehended the initial data exploration, pre-study and parameter
optimisation in different phases. During these phases, we experienced that by reducing
the topology radius, more groups would tend to be created, and GroCH would not
recognise relevant concepts in the concept history that often.
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We saw that in this scenario, the classification and retrievals accuracy (retrieving
the right ground truth state) would tend to be overperform over time other experiments
with greater values for the topology radius. However, this makes the accuracy of the
insertions drop significantly. We believe that this could be due to the set of technical
indicators selected; these may not represent well the current context in the ground
truth in all scenarios. An automated feature selection process could be a future line of
work.

The detection of drifts and the recognition of previous market states could be
other flags that may be also valuable for traders. These, together with the evolution
of volume over time and the big picture of things in the market (daily and weekly
figures), can help indicate the return of an event, a market season, or a bear, bull, or
very volatile market. These can translate to strong price pumps and dumps and be
eventually more valuable than a simple up or down signal. Whether this works or not
for real-world scenarios to identify regime or market state changes, it is a matter of
market efficiency and adaptability to the market dynamics. During our experiments,
this was demonstrated to be related to the selection of the feature set for classification
and clustering tasks. Different indicators may exhibit different levels of signal or noise
in different periods.

This domain is also subject to frequent changes over time. These changes impact
the class distribution, the feature to target probability distribution (real changes) and
the correlation and mutual information across the different features selected (virtual
and feature drifts). Pursuing a profitable model would need to include trading strate-
gies, fundamental indicators and sentiment from news and social media to tackle the
lack of information and the high degree of noise in financial markets.

Guided by our initial hypotheses and data analysis at early stages, we came
up with the logic for Algorithm 5.1. There was, in any case, a long design process
iterating through different variants of this algorithm during Stage I of the study. In
this section, we cover most of the versions that we explored. We believe these could
lead to future research for this or related algorithms. In the following three pages, we
list point by point these different variants of GroCH. We left them for future research
as they would need further experimentation and refinement.
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• Insertions in case of early drift: the main version of GroCH proposed in this thesis
does not insert classifiers in the concept history in the case of early drifts (this is
when the size of the warning window is smaller than a certain threshold). During
the pre-study covered in this section, we ran some experiments inserting classifiers
when early drifts were signalled. Still, we did not see any major improvement,
and we left this feature disabled to be consistent with the retrievals.

• Insertions in case of false alarms: this was briefly explored during the design of
the algorithm but considered out of scope in our current work.

• Training of active classifiers during the warning window: other algorithms from
the literature do not train their active classifiers during warning (e.g. CPF), and
thus, predictions during this time window are based on the training state of the
classifier before warning. While this is something that may or may not work in
different data streams, it is something that could be implemented as a variant in
GroCH.

• Training of retrieved learners with examples of the previous warning window:
GroCH assumes that recurring learners have been already trained on relevant or
similar datasets and does not train them with the data instances received during
the last warning window. We performed a small set of experiments during the
pre-study in this matter, and we did not see significant improvements in any of
the metrics over time. It may be worth exploring this, though, when applying
GroCH to different data streams.

• Retrieval of many groups within the maximum topology radius: a small exper-
iment we performed in GroCH was to use the cluster radius as a threshold to
bring all groups inside. Then, all groups retrieved would compete, and we would
select the one with the greatest conceptual equivalence (having a classifier with a
lower error in the warning window). We observed that short term, this resulted
in an improvement in retrieval and insertions accuracy. However, after 250k data
instances, we obtained better results with the initial approach (get only the clos-
est group). We left this potential change in the algorithm as a future line of
work. Further experimentation may be needed to determine the root cause of
the results that we saw in the pre-study.

• Continuous training of group’s topologies: currently in GroCH, topologies are
not updated over time, and if this changes much, eventually a new group will
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be created with a new topology, probably representing the evolution of a state
that has an old topology in place. A future line of work here is to allow topology
updates. One way to approach this is to update or replace the topology at the
time of the insertion. We evaluated this during the pre-study and found that due
to misinsertions, some noise would be introduced at some point, impacting the
performance of the predictive model. Proper experimentation with this needs to
be carried out to update topologies continuously over time to deal with the evolv-
ing nature of concepts in the concept history and not compromise the number of
groups.

• Continuous training of group’s learners instead of classifier insertions: GroCH
saves a classifier in a group of the concept history at the time of a concept drift.
A variant that we considered in this aspect was to keep a single classifier per
group in the concept history. Then, at a concept drift, data instances would be
fed (for training) to the classifier of the closest group instead of pushing another
or replacing this classifier. In initial tests, this version showed promising results
but presented many challenges in terms of computational costs as data instances
would need to be kept in memory up to the concept drift. Since this approach
required more work for high-performance and memory optimisation, it was left
as future work.

• Merging of classifiers in a group, pruning, and control of the number of groups:
since groups may become obsolete, a mechanism to remove groups that are no
longer used over time could help increasing runtime performance in GroCH. This
mechanism, similar to the method used by GroCH to remove the unused clas-
sifiers with the LUFO policy, could remove groups that have not been used in
a given number of concept drifts or the group that has been used less recently
if a maximum number of groups, which we would have to define previously, is
reached. Another manner to address this would be adding mechanisms a fading
in CPF [14], to constrain the size of the collection of groups.

• Dynamic selection of parameters: the number of parameters used in GroCH
is quite large. An approach that handles different values, depending on the
performance obtained over time, may be another future line of work. For instance,
various experiments were run on this behalf during the design of RCARF [329]
to set different values in their internal evaluator.
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• Unsupervised drift detection: GroCH would greatly benefit from an approach to
recognise drifts from changes in the topology instead of using supervised drift
detection techniques. This is a significant change in the design of the algorithm,
but it could be considered a future piece of work.

• Dynamic selection of feature subsets for topologies: the feature subset for the
topologies in the experiments of this section was primarily aimed to discard
technical indicators that are not in a given scale or can vary hugely over time,
damaging the idea of ground truth states and recurrences in GroCH. In any case,
future work with feature engineering at the topology level, or the use of a different
attribute space for the topologies (e.g. usage of other indicators such as ARIMA
forecasts or price returns instead of indicators based on close price) is of great
interest to improve the results in both synthetic and real datasets.

• Changes in the topologies: we have conducted experiments in GroCH using GNG
as the PG algorithm to build topologies. As covered in Chapter 2, different
algorithms could be used for this purpose. In the case of GNG:

– In this chapter, GroCH used the drift signal as a stopping criterion. It
trained the algorithm using a one-pass training schema. We explored the
usage of multi-pass training using a quantisation error percentage for early
stopping, but this created performance bottlenecks in the training of GNG,
and we had to leave it as future work.

– During the experimental design, we also considered not to use topologies in
GroCH and calculate distances over all the examples received for a group.
However, we found that using prototypes generated with GNG, lower in
number than data instances, helps to reduce the computational costs when
computing distances.

– Other distance metrics beyond Euclidean distance and Mahalanobis distance
distances could also be used for concept similarity.

– Another variant explored at the early stages in the design of the algorithm
was the computation of a Mahalanobis matrix per topology or concept and
then comparing the changes in the matrix correlations as a concept similarity
measure. This was discarded due to the computational cost of computing
such matrices, but it may be worth to be revisited in the future. In our
proposal, GroCH used a single matrix to scale distances between groups.
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5.6 Summary

In this chapter, we have proposed a meta-algorithm to handle different types of concept
drifts in data streams. The main goal of our algorithm is to improve classification
accuracy during times of change in time series of various natures.

Section 5.1 presented our approach, a growing concept history of recurring classi-
fiers (GroCH) and compared it to the relevant literature. GroCH has a history where
classifiers are grouped using a non-supervised approach. Our work brings together
many different ideas from the state of the art of data stream classification. GroCH
tracks change actively using a supervised drift detector. Classifiers can be retrieved
from this history when the drift detector recognises a concept drift. If no similar mod-
els are stored from the past, a new classifier is created. If the base classifier adapts
well to the non-stationary nature of the data stream, the detector should not raise any
concept drifts. Thus, GroCH also allows passive adaption to concept drift. In the case
of stationarities, as soon as a concept drift is detected, GroCH checks for classifiers
from a similar state of the stream (closest groups from the concept history) that obtain
a lower error than the currently active and background learners.

To evaluate GroCH and the classifier management operations performed, we pro-
posed a framework that allows us to know the ground truth regarding changes in the
states of the stream. This was done in Section 5.2. First, we selected a set of time se-
ries with different generative processes and fitted different ARMA-GARCH models to
them. Each model represented the generative model of one market state in our frame-
work. We simulated transitions between them of varying levels of sharpness. From
the resulting time series, we created a feature set using a set of technical indicators
common in the state of the art. This dataset was then used as an artificial data stream
in MOA. To benchmark GroCH to state of the art, we use different metrics as kappa
statistics and classification accuracy during times of change in the ground truth (KUS
and AUS respectively).

Section 5.3 covered the experiments of this chapter. GroCH obtained competitive
results with state of the art during changes and provided more robust predictions
than its main competitors. As a drawback, GroCH exhibited a high computational
cost. GroCH may not be suitable for online scenarios at the one second and higher
frequencies if the current implementation of GNG [136] is used to train topologies.
Section 5.4 explained this and other limitations of our approach.
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In any case, in this chapter, we have introduced GroCH as a meta-learner that is
agnostic to the base learner, non-supervised techniques, distances to identify groups,
and to the drift detectors used. Our objective was to propose a scheme to manage
classifiers in various concept drifting scenarios that can inspire future research in data
stream learning. Section 5.5 pointed out different variations of our approach that may
lead to future related work.

To wrap up, in this chapter we have presented and benchmarked GroCH in semi-
synthetic data stream generated from ETF price returns. We have used a common
approach in the literature to produce technical indicators and predict price ups or
stable/down movements in the next time step. In the synthetic sets produced, GroCH
outperformed its main competitors in terms of kappa statistics during regime changes.
The next step in this thesis is to use and analyse the performance of GroCH in a
real-world data stream. This will be done in Chapter 6.



Chapter 6

Application to Real Financial Data

6.1 Introduction

In this thesis, we have approached financial time series as a data stream mining sce-
nario. Section 2.1 described them as a complex dynamic system in which behaviour
can drastically change depending on business cycles or drastic events. This is also
widely covered by the academic literature [54, 259, 347]. The experiments performed
in Chapters 4 and 5 have demonstrated the suitability of different algorithms to deal
with massive data streams and high-frequency data.

After these experiments, a benchmark with real-world data for the main proposal
of this thesis that was presented in Chapter 5 is still missing. This chapter will per-
form such a benchmark as the fourth and last experiment of the thesis. Hence, we
will apply the meta-algorithm proposed in Chapter 5 to improve stock trend classi-
fication in real-world data from the financial domain. Our aim is not to produce a
trading strategy. Instead, our approach will predict ups and stable/down movements
(not their strength) in the market price to act as a trading signal (or indicator) for
decision-making processes for traders or investors, or to be fed to a trading strategy
afterwards. This chapter is structured as follows: Section 6.2 covers the experimen-
tal design, introduces the classification problem targeted, describes the datasets used
and their pre-processing steps, and explains the experimental protocol; Section 6.3 will
show the results and provide an analysis of all the experiments. Finally, Section 6.4
will summarise the chapter and conclusions reached with real financial data streams.

197
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6.2 Experimental Design

6.2.1 Classification Problem

A stock trend can be defined by the general direction of the market prices. In Chapter 5
we proposed a meta-algorithm for data stream classification applied to financial-like
synthetic data. The data preparation in Chapter 5 used technical indicators as a
feature set to train different active classifiers over time. This was based on the financial
literature [179], where, also backed by research focused on business cycles changes and
market inefficiencies [273], technical analysis is used to identify trendlines and patterns
in events to predict uptrends or downtrends. Technical analysis was described in more
detail in Section 2.1.

6.2.2 Financial Data

In this experiment, we have chosen SPDR S&P 500 Trust ETF (SPY) prices as a
real-world financial data stream. The SPY ETF tracks a well-diversified market-cap-
weighted index of U.S. large-and midcap securities known as the Standard & Poor’s
500 Index (S&P 500). The S&P 500 is typically used as one of the main benchmarks to
measure the stability and financial health of the U.S. economy. The SPY, which gives
almost all of its funds into common stocks included in the S&P 500 Index, is one of the
best-recognized and oldest US-listed ETFs, with large liquidity and trading volume.
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Figure 6.1: SPDR S&P 500 Trust prices, log returns and volume from 2001-01 to 2020-12.
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Figure 6.1 illustrates close and low prices of the SPY over time between January
2001 and December 2020. This time range, which has periods of stability, crashes, and
inflation, will be used across all our experiments at different frequencies at the intraday
level. In Figure 6.1, periods of instability such as the Great Recession in 2008 and the
COVID-19 pandemic in 2020 correspond to more significant trading volumes (in green)
and volatilities (price returns in red colour).

In this chapter, we will split the fourth experiment of the thesis into two sub-
experiments to compare the algorithm and its main competitors from Chapter 5 in
different circumstances. These two sub-experiments will be named Experiment I and
II along this section for the sake of simplicity. Furthermore, we will run experiments
for different sampling frequencies at the minute and second levels in Experiment I.
Since the number of instances explodes at the second level, we will shorten the length
of the individual tests at the second level to reduce computation. Thus, we divide
Experiment I into sections A and B depending on the frequency of the data as shown
in Table 6.1.

Period Frequency Period per test
Experiment I.A 2001-2020 1h, [30, 15, 10, 5, 1] min 1 year
Experiment I.B 2016-2020 [30, 15, 10, 5, 1] s 1 quarter
Experiment II 2011-2020 10 min 10 years

Table 6.1: Summary of SPY periods and frequencies used at each experiment.

The mean volume of data that will be used in the tests of Experiment I for each
frequency is illustrated in Figure 6.2. Experiment I.A and I.B are coloured in blue
and orange, respectively, in this plot. Regarding the volume of data in Experiment II,
there is a single test period of 82,989 instances.
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Figure 6.2: Mean number of instances per period for different frequencies in Experiment I.
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The approach that will be followed to parse the price to binary labels and the set
of technical indicators that will be used as a feature set are common approaches in the
relevant literature [179, 195, 275]. All this will match the data preparation performed
in Chapter 5 and explained in Subsection 5.2.2.3.

The class balance distribution, even for the minute level, varies depending on the
frequency. We will use the mean class balance distribution across all seeds as a baseline
for classification accuracy in our experiments. The baselines for all frequencies that
will be tested in this chapter are shown in Table 6.2.

Exp I.A Exp I.B Exp. II
Class 1 h 30 m 15 m 10 m 5 m 1 m 30 s 15 s 10 s 5 s 1 s 10 m
0 47.98 49.11 49.73 50.32 51.40 54.55 52.81 54.19 55.21 57.42 68.48 49.57
1 52.02 50.89 50.27 49.68 48.60 45.45 47.18 45.81 44.79 42.58 31.52 50.43

Table 6.2: Classification baselines. Mean class balance (%) across all ind. tests per experi-
ment.

6.2.3 Experimental Protocol

As introduced in the previous subsection and in Table 6.1, we will cover a total of three
different periods in our experiments.

• Experiment I.A: this experiment will train models with yearly datasets between
2001 and 2020. Models will be trained independently for a total of 20 annual
periods. The objective is to show the statistical significance and benchmark the
different models from Chapter 5 at different intraday frequencies.

• Experiment I.B: this experiment will also train models independently for 20 dif-
ferent periods. However, this time the data will be at the second level to compare
the performance of the same algorithms than in Experiment I.A at greater fre-
quencies.

• Experiment II : the second sub-experiment of this chapter will compare the per-
formance of the same algorithms than in Experiment I over a long period of
market data (10 years). The objective of this will be to see how the different
algorithms can perform when running continuously for many years at high fre-
quencies without retraining.
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In all the sub-experiments, the classification error is reported as in Chapter 5
(see Section 5.2.1.1). The following two subsections will explain the protocol used to
optimise models and run each sub-experiment in more detail.

6.2.3.1 Protocol in Experiment I

GroCH and its main competitors are meta-learners that produce deterministic results
for the selection of base learners and detectors used. To perform post-hoc tests over the
experimental outcome, check for statistical significance and reach conclusions, Experi-
ment I will split the entire period from Table 6.1 into 20 different subperiods. Models
will be tested and trained using a prequential evaluation for each of these periods.

Each of those 20 subperiods will be considered individual tests for the post-hoc
analysis. Thus there will be a total of 20 tests per group representing the results of an
algorithm at a frequency level. This is illustrated in Figure 6.3, where each algorithm,
except from HT or NB, represents a combination between a meta-learner and a base
classifier. Over each group of results, we will perform a normality test. If the distribu-
tion is normal, we will use Welch’s t-test to test for statistical significance. Conversely,
we will apply the non-parametric Mann-Whitney Wilcoxon test if the normality test
is rejected.
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Figure 6.3: Methodology with real data in Experiment I.
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Before each test is run, we will perform the parameter tuning of GroCH and its
competitors independently for each of the 20 periods. This process will be further
repeated for each of the frequencies of data that will be tested. Thus, the optimisa-
tion will be performed for each algorithm, base classifier, level of data (11 different
frequencies) and period (20 periods per frequency) at the intraday level. This will
be a total of 220 datasets used for parameter tuning over three meta-learners using
two base classifiers. The parameters to be optimised will be selected according to the
study performed in Chapter 5. Thus, the exploration will coincide with Stage II, in
Section 5.3.3.2.

Figure 6.4 illustrates the allocation of data for testing, training and parameter
tuning purposes. In this regard, we will select parameter values for each individual
test. Hence, each algorithm and subperiod will use different parameters. With this
in mind, we will select parameters for each test using the previous period of data
(following temporal order). For instance, for a test in algorithm 1 using a period p for
training, we will select parameter values for algorithm 1 before training using period
p− 1. We will call development set (devset), for each individual test, the dataset used
for tuning the parameters of an algorithm.

Likewise, data from the time before each devset will be used to pre-train the
concept history and compute the Mahalanobis distance matrix of GroCH. This will be
named Mahalanobis set or pre-training set for the rest of the chapter. As in Chapter 5,
we will pre-train the concept history of GroCH with different price trends. Due to the
number of datasets used for the tests in this chapter (220), the selection process of
these trends used to train states in GroCH is automated to select an uptrend, a lateral
movement and a downtrend using mean price returns as described below:

• State 1 : the lateral movement has been selected as the set of timesteps with
the highest standard deviation of when the mean returns are close to zero (lower
than 1× 1014, which was obtained through trial and error for the periods used).

• State 2 : the downtrend has been selected as the set of timesteps with the min-
imum mean returns, filtering down the periods of close to zero return to avoid
issues with lack of liquidity at the second level.

• State 3 : the uptrend has been selected as the set of timesteps with the maximum
mean returns.
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Each of these trends will be selected programmatically from the period compre-
hending the Mahalanobis set and used to train a historical classifier in a group of the
concept history. This will create one group per trend at the pre-training stage. Fi-
nally, the sets of data selected to pre-train the groups will be concatenated and used
in conjunction to compute the Mahalanobis distance matrix used in GroCH.

The difference between the Mahalanobis (pre-training), development and test
(and train) sets is illustrated in 6.4.

Mahalanobis sets

Development sets

Test and Train sets

x-2 1999 2000 2001 2017 2018

x-1 2000 2001 2002 2018... 2019

x 2001 2002 2003 2019 2020

px p1 p2 p3 p20p19

Example periods

Figure 6.4: Example data split across 20 periods in Experiment I.A.

The reader must note that with the pre-training of GroCH using this automated
approach in the financial domain, we risk adding noise to the models of the concept
history and also to affect the parameter tuning process. In this regard, we have made
our best to include states as separable as possible in each SPY test. Still, as explained
in the previous chapter, a deeper analysis would be required in order to optimise the
performance of GroCH.

As previously introduced, our only objective in this chapter is to explore the appli-
cability of GroCH to these types of real-world streams and see if we obtain comparable
results to our main competitors from Chapter 5.

6.2.3.2 Protocol in Experiment II

In Experiment II, we will evaluate the performance of the best base classifier and
meta-learners over a period of 10 years of data. The goal is to benchmark the best
approaches in a continuous data stream mining scenario.
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Experiment II will be focused on the price trend data frequency and the base clas-
sifier obtaining the best classification performance across meta-learners in Experiment
I. The test and train period from Experiment II will cover the period 2011-Q1 to 2020-
Q2. The full-year 2010 will be used used as a development set for parameter tuning
following the approach from Experiment I. Regarding the set for the pre-training of the
concept history and the computation of the Mahalanobis distance matrix, the selection
of the states will be as follows:

• State 1 (S1): bear trend made by the entire Q4 of 2008.

• State 2 (S2): bull trend made by the whole Q2 of 2009.

• State 3 (S3): overall uptrend made by the entire Q4 of 2009 that ends with a
lateral trend.

Market prices belonging to the periods used to pre-train the concept history are
illustrated in Figure 6.5.
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Figure 6.5: Periods of SPY data used for the Mahalanobis set in Experiment II.

As in Experiment I, each state will be used to train a classifier and a concept
history group. For the computation of the Mahalanobis matrix, we will concatenate
these three. The objective of this pre-training is still to give GroCH a reference of
separable price change trends. One of the differences with Experiment I is that, in the
former experiment, we are automating the process of selecting the pre-training states
due to the number of tests that will be performed.

We expect the manual selection for Experiment II to improve the accurate
detection of regime switches and, with this, the classification results of GroCH.
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6.3 Experimental Results

6.3.1 Experiment I

In Experiment I, we will benchmark the performance of the meta-learners of Chapter 5
and their base classifiers. The main difference with the previous chapter is that since
the ground truth regarding concept drifts is not known for the real datasets, we can
only benchmark the algorithms during the whole period, and not only during changes.

A summary of mean results can be seen in Figures 6.3 and 6.4. It can be appre-
ciated how the classification accuracy obtained is greater for the higher frequencies,
albeit this is due to the class balance that was shown in Table 6.2. In Figure 6.4 it can
be appreciated how models do not seem to learn in the datasets with the lowest number
of examples in Experiment I.A (frequencies 1h, 30min and 15min). Only frequencies
below the 15-minutes level have positive kappa statistic percentages.

Algo Base 1h 30m 15m 10m 5m 1m 30s 15s 10s 5s 1s

CPF HT 50.287 50.245 50.626 50.726 51.559 54.147 52.004 53.553 54.642 57.022 68.207
NB 49.698 49.779 50.215 50.615 51.622 52.957 51.328 52.343 52.638 54.197 63.075

ECPF HT 50.015 50.743 50.750 50.964 51.661 54.171 52.100 53.560 54.659 57.054 68.218
NB 49.959 49.457 50.377 50.937 51.514 53.420 51.789 52.709 53.759 55.920 66.532

GroCH HT 50.700 50.708 50.374 50.851 51.574 54.160 52.112 53.402 54.491 56.866 68.149
NB 49.527 49.404 50.156 50.565 51.585 53.309 51.644 52.787 53.682 55.446 65.696

HT Base 51.078 51.054 50.797 51.223 51.813 54.321 52.258 53.669 54.700 57.018 68.237
NB Base 49.632 49.481 50.559 51.131 51.991 53.282 51.876 52.768 53.431 55.188 64.124

Table 6.3: Mean accuracies across frequencies in Experiment I.

Algo Base 1h 30m 15m 10m 5m 1m 30s 15s 10s 5s 1s

CPF HT -2.082 -1.349 -0.169 0.555 1.457 1.500 0.473 0.491 0.584 0.998 0.431
NB -0.911 -0.365 0.496 1.314 2.915 2.670 1.220 1.265 1.174 1.438 1.892

ECPF HT -2.615 -0.969 -0.101 0.782 1.642 1.248 0.338 0.302 0.298 0.516 0.197
NB -0.555 -0.517 0.676 1.721 2.820 1.647 1.290 1.015 0.878 0.749 1.427

GroCH HT -1.681 -1.124 -0.780 0.531 1.332 1.517 0.322 0.139 0.348 0.714 0.338
NB -0.843 -1.089 -0.003 0.940 2.591 2.780 1.341 1.150 1.160 1.422 2.010

HT Base -1.803 -1.141 -0.193 1.466 2.074 1.766 0.721 0.752 0.875 1.425 0.655
NB Base -0.446 -1.014 0.776 2.145 3.455 3.132 1.713 1.360 1.353 1.512 2.273

Table 6.4: Mean kappa error across frequencies in Experiment I.

In the following subsections, we will analyse the results in more detail for Exper-
iments I.A and Experiment I.B, as this will help us to conclude about the results of
Experiment I.
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6.3.1.1 Experiment I.A: Minute-level Yearly Models

As shown in Figures 6.3 and 6.4, the meta-learners benchmarked only learn for higher
frequencies than the 15 minutes level. Thus, we discard lower frequencies from this
analysis. Table 6.5 summarises all mean results across tests for all algorithms and
frequencies.

Freq. Algo Base Acc. (%) Kappa (%) K.Temp. (%) Time (CPU s) Cost

15 min

CPF HT 50.625635 -0.168635 4.140715 4.440432 7.031443e-07
NB 50.215269 0.496475 3.306056 3.354200 5.464557e-07

ECPF HT 50.750495 -0.100835 4.392347 4.543093 7.590412e-07
NB 50.376513 0.676401 3.610212 2.909704 4.457551e-07

GroCH HT 50.373846 -0.780477 3.643696 45.363687 3.307277e-05
NB 50.156231 -0.002787 3.207645 39.261750 2.927758e-05

HT Base 50.796646 -0.193421 4.467256 0.560665 2.239306e-09
NB Base 50.559023 0.775780 3.970774 0.314121 6.520575e-10

10 min

CPF HT 50.726358 0.555074 4.592256 10.686744 8.549173e-06
NB 50.614641 1.314386 4.378276 10.572358 1.017589e-05

ECPF HT 50.963872 0.782200 5.046427 6.330838 1.061184e-06
NB 50.937006 1.721050 4.996811 4.353567 8.008626e-07

GroCH HT 50.851440 0.531301 4.848333 76.482718 8.471903e-05
NB 50.564950 0.940169 4.276489 65.581534 6.656402e-05

HT Base 51.222738 1.465544 5.546203 0.931045 5.335082e-09
NB Base 51.130890 2.145092 5.368556 0.446600 9.270582e-10

5 min

CPF HT 51.559246 1.456773 6.679428 34.144369 4.637861e-05
NB 51.621863 2.914828 6.795963 33.177237 7.189500e-05

ECPF HT 51.660859 1.642485 6.872221 34.122541 4.754290e-05
NB 51.513824 2.820053 6.572342 27.664668 6.786252e-05

GroCH HT 51.573544 1.331863 6.713741 284.276269 5.771703e-04
NB 51.584565 2.591281 6.724578 267.658174 5.956631e-04

HT Base 51.812925 2.074320 7.162360 2.402851 2.784169e-08
NB Base 51.990867 3.455130 7.503564 0.852650 1.769944e-09

1 min

CPF HT 54.147265 1.500145 9.905884 1678.826702 2.686176e-02
NB 52.957081 2.669583 7.525732 541.812300 4.615015e-03

ECPF HT 54.170954 1.248487 9.952015 120.959643 7.366512e-05
NB 53.420338 1.647105 8.476755 816.013173 9.702578e-03

GroCH HT 54.160451 1.516583 9.929975 9016.449602 9.500103e-02
NB 53.308749 2.780393 8.230000 5477.057671 5.428380e-02

HT Base 54.320535 1.766477 10.241612 36.444984 2.189349e-06
NB Base 53.281945 3.131916 8.159272 3.103569 6.442434e-09

Table 6.5: Mean evaluation results of all models at the [15, 10, 5, 1] minute levels. Acc:
accuracy; K.Temp: kappa temporal statistic; Cost expressed in RAM-hours.

Figures 6.6 and 6.7 show a boxplot of the classification accuracies obtained for
each frequency using Hoeffding trees and naive Bayes as base classifier respectively.
The base classifier also appears in the benchmark, and the baseline for classification
accuracy appears in Figure 6.6 to allow a direct comparison.
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Figure 6.6: Distribution of classification accuracy using HT as base classifier across the 20
periods at the [15, 10, 5, 1] min level.

47 48 49 50 51 52 53
classifications correct (percent)

CPF

ECPF

GroCH

NB

Al
go

rit
hm

(a) 15 min

49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5
classifications correct (percent)

CPF

ECPF

GroCH

NB

Al
go

rit
hm

(b) 10 min

48 49 50 51 52 53 54 55
classifications correct (percent)

CPF

ECPF

GroCH

NB

Al
go

rit
hm

(c) 5 min

49 50 51 52 53 54 55 56 57 58
classifications correct (percent)

CPF

ECPF

GroCH

NB

Al
go

rit
hm

(d) 1 min

Figure 6.7: Distribution of classification accuracy using NB as base classifier across the 20
periods at the [15, 10, 5, 1] min level.
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Figure 6.8: Distribution of kappa statistic using HT as base classifier across the 20 periods
at the [15, 10, 5, 1] min level.
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Figure 6.9: Distribution of kappa statistic using NB as base classifier across the 20 periods
at the [15, 10, 5, 1] min level.
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Figures 6.8 and 6.9 show a boxplot similar to the previous ones with Hoeffding
trees and naive Bayes as base classifiers, respectively as well, but using the kappa
statistic as a performance metric. In all of these figures, it can be seen that GroCH
does not improve the other meta-learners from the state of the art. In any case, in
general, meta-learners underperform their base classifiers and baseline for classification.
It appears that the selection of 20 subperiods may not be appropriate for these data
stream mining algorithms.

Across all tests of Experiment I.A, none of the algorithms offers a statistically
significant better performance than GroCH at a p-value of 0.01. Thus, we can conclude
that GroCH offers comparable results in these datasets.

6.3.1.2 Experiment I.B: Second-level Quarterly Models

In Experiment I.B we benchmark the algorithms at higher frequencies up to the 1-
second level. As mentioned in Section 6.2 due to the amount of data and the number
of tests run, each subperiod represents a quarter of the SPY. Table 6.6 shows mean
performance results of the meta-learners compared and base classifiers across all tests
for the different frequencies used. Thus, for {30, 15, 10, 5, 1} seconds.

Figures 6.10 and 6.11 offer the distribution of kappa statistics across tests using
Hoeffding trees and naive Bayes as the base classifiers, respectively for the four higher
frequencies. In the first place, these figures suggest that the usage of naive Bayes as
the base classifier seems to benefit drift detectors, which is discussed further in the
next subsection.

When using naive Bayes, it appears that GroCH obtains the best performance
across tests for the three highest frequencies; see {10, 5, 1} second level frequencies
in Figure 6.11. However, GroCH is not statistically significant at a p-val of 0.05
when compared to its base classifier. Hence, we cannot conclude that GroCH is the
algorithm with the greatest classification accuracy at second level frequencies. Again,
as for the minute level, the subperiods selected at the second level do not seem to suit
the purpose of the chosen meta-learners. Different reasons for this are discussed in
Subsection 6.3.1.3, and Experiment II is selected accordingly.
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Freq. Algo Base Acc. (%) Kappa (%) K.Temp. (%) Time (CPU s) Cost

30 s

CPF HT 52.003609 0.473161 5.200072 109.546227 2.490056e-04
NB 51.327781 1.219921 3.846578 210.976599 1.100825e-03

ECPF HT 52.100362 0.338144 5.393849 49.025945 1.253487e-05
NB 51.789261 1.290411 4.762889 23.225465 4.400021e-06

GroCH HT 52.111786 0.321968 5.418116 1492.244260 7.454636e-03
NB 51.644088 1.340549 4.468484 1317.496278 6.360009e-03

HT Base 52.257807 0.720936 5.696948 10.299842 3.033626e-07
NB Base 51.876226 1.712654 4.924695 1.834570 3.808227e-09

15 s

CPF HT 53.553330 0.491457 8.388418 334.889022 2.418849e-03
NB 52.342541 1.265194 5.971442 998.479729 9.035679e-03

ECPF HT 53.559716 0.302304 8.409514 193.064178 6.492341e-04
NB 52.709386 1.014607 6.708591 159.512693 8.130591e-04

GroCH HT 53.401620 0.138540 8.098338 3999.240984 3.571885e-02
NB 52.786762 1.150000 6.851343 6214.750751 6.342857e-02

HT Base 53.669268 0.752361 8.613913 34.794436 2.111591e-06
NB Base 52.767708 1.360118 6.798289 3.137084 6.512004e-09

10 s

CPF HT 54.642359 0.583919 10.268508 911.971597 8.698563e-03
NB 52.637610 1.173558 6.168360 2201.440803 3.878805e-02

ECPF HT 54.659169 0.298263 10.305259 144.308335 3.025303e-05
NB 53.759271 0.878207 8.494832 93.909170 1.835333e-05

GroCH HT 54.490741 0.348318 9.973504 8799.605140 1.338077e-01
NB 53.681975 1.160491 8.317790 11812.214214 1.929398e-01

HT Base 54.700306 0.874751 10.378035 77.748629 7.117689e-06
NB Base 53.431109 1.352624 7.812912 4.606199 9.561615e-09

5 s

CPF HT 57.021831 0.998195 15.067405 18393.775704 9.693022e-01
NB 54.196955 1.437704 9.231002 3494.468176 6.056469e-02

ECPF HT 57.054195 0.515769 15.143417 414.355138 1.294060e-04
NB 55.919672 0.749211 12.859058 943.735555 6.960924e-03

GroCH HT 56.866468 0.714473 14.765123 29851.930866 8.720825e-01
NB 55.446024 1.422432 11.867166 51279.313167 1.715619e+00

HT Base 57.017599 1.425214 15.051285 297.441687 5.383996e-05
NB Base 55.188306 1.512116 11.311316 9.142903 1.897897e-08

1 s

CPF HT 68.206638 0.431090 29.069109 10560.589654 1.925935e-02
NB 63.075230 1.892301 16.899395 30531.168885 2.770322e-01

ECPF HT 68.218475 0.197363 29.092652 3493.713902 3.199121e-03
NB 66.532303 1.426525 25.283804 3200.600923 1.452818e-03

GroCH HT 68.149391 0.338118 28.954258 65410.637579 4.274959e-01
NB 65.695672 2.010251 23.264354 274999.193882 1.307663e+01

HT Base 68.236915 0.655152 29.123149 9503.935768 8.961293e-03
NB Base 64.123848 2.272633 19.387134 118.975285 2.469706e-07

Table 6.6: Mean evaluation results of all models at different second level frequencies. Acc:
accuracy; K.Temp: kappa temporal statistic; Cost expressed in RAM-hours.
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Figure 6.10: Distribution of kappa statistic using HT as base classifier across the 20 periods
at the [15, 10, 5, 1] seconds level.
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Figure 6.11: Distribution of kappa statistic using NB as base classifier across the 20 periods
at the [15, 10, 5, 1] seconds level.
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6.3.1.3 Analysis of Experiment I

Experiments I.A and I.B have shown how, in general, meta-learners obtain comparable
results across all frequencies for the same base classifier for the yearly and quarterly
subperiods, respectively. GroCH does not improve the accuracy performance of any
of the models with statistical significance on any of the frequencies. It can be seen
how for different frequencies, either ECPF or GroCH can be the best meta-learner in
terms of classification performance, but not in all cases they do better than the base
classifier. For instance, using naive Bayes as the base classifier at the 15-seconds level,
GroCH obtains the best classification accuracy over all the meta-learners using NB and
overcomes its base classifier. However, GroCH does not improve the kappa statistic
obtained by its base classifier (NB) for this frequency (15s).

It appears that second level frequencies seem to benefit GroCH when compared
to other meta-learners. It is not clear if this is due to the price trend dynamics at such
levels of granularity or due to having more data. It can also be due to the different
subperiods selected, representing quarters from Q1 of 2016. In general, it can be seen
how all learners obtain greater kappa temporal statistics for the higher frequencies.
This expresses a lower error when not considering temporal dependency. This can be
caused by the higher degree of noise at the higher frequencies.

At this point, we have not mentioned yet how do different models compare in terms
of cost. These behave has already been seen in Chapter 5. GroCH can be the meta-
learner with the highest computational cost. Although in some tests, CPF obtains
comparable or even highest costs. ECPF tends to be the meta-learner performing with
the lowest cost in most circumstances.

Chapter 5 focused on the learning performance during structural breaks. How-
ever, in this chapter, this is not feasible since, in real-world financial data, we
lack ground truth knowledge regarding actual shifts.

There is a challenge to draw a line on what algorithm is best for times of change.
The benchmark of GroCH for error metrics that comprehends the whole data stream
(with moments of stability) does not seem to show the benefits that we saw in the
previous section in Experiment I. An open question addressed in Experiment II is how
these classifiers would handle longer data periods.
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Something that catches our attention is the fact that in some scenarios, GroCH
and ECPF obtain a greater accuracy using naive Bayes rather than Hoeffding trees as a
base classifier. A hypothesis here is that HT could adapt to some of the gradual drifts,
which could be more frequent than in the synthetic set from the previous chapter. This
adaption could create a snowfall effect on the drift detectors that may not be able to
trigger drifts from the variations of errors obtained by the base classifier.
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Figure 6.12: Kappa statistics and classification accuracy across frequencies in Experiment
I.A and I.B.

Parametrisations that are more sensitive to concept drift for the detector could
help use HT as a base learner. This has not been something visible from the parameter
optimisation done beforehand. As seen in Figure 6.12, the 10-minutes level frequency
appears to be the frequency where the algorithms learn more, and this could mean
that the data has a higher signal-to-noise ratio.
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This section has tested the performance of GroCH in short periods that may need
or not of adaptive models. The experimental results show that our novel approach
GroCH obtains comparable results to other meta-learners from the state of the art.
However, base classifiers also obtain comparable results with a lower computational
cost. This could mean either that this dataset is not suitable for this technique, or
any improvement of classification accuracy during moments of change, as analysed in
Chapter 5, is jeopardised by times of stability in the model. We are afraid that this
analysis cannot be performed at this stage in this chapter since we are not aware of
the real ground truth regarding structural breaks in these data streams.

As a final approximation of what an infinite data stream could be in the financial
domain, in Experiment II, we will compare all algorithms for a period of 10 years. Led
by the results of Experiment I, this will be done at the 10-minutes level and using naive
Bayes as the base classifier.

6.3.2 Experiment II: 10 Years of Intraday Data

Figure 6.12 showed that in Experiment I, models tend to beat their baseline (class
distribution) between the 15 and the 5-minutes level. Models also report the highest
mean kappa statistic between the 10 and 1-minute level frequencies. This could be due
because the signal-to-noise ratio of this intraday frequency being better for the current
periods [138]. 10-minutes seems to be the only frequency where all learners overcome
their baselines. Hence, in Experiment II, this is the level of data that we will use. We
will also focus on naive Bayes as the base classifier since the kappa statistics obtained
with NB in Experiment I are higher across meta-learners.

Algo Acc. (%) Kappa (%) K.Temp. (%) Kappa M (%) Time (CPU s) Cost

GroCH 51.3001 2.2162 5.2374 -0.1698 7868.3 0.082269140
NB 51.2734 2.1645 5.1862 -0.2244 3.9 0.000000008
ECPF 51.2005 1.9240 5.0551 -0.3734 54.6 0.000011598
CPF 49.4211 0.1310 1.6103 -4.0522 11299.1 0.217060600

Table 6.7: Mean results in Experiment II. Acc: accuracy; K.Temp: kappa temporal statistic;
Cost expressed in RAM-hours.

Table 6.7 summarises the mean results of Experiment II. Algorithms are sorted in
descending order by classification performance. As for Experiment I, the results show
the overall accuracy of GroCH, because the ground truth for this set is unknown.
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We cannot perform a significance analysis as in Experiment I, but these learners
give deterministic results. Thus we believe that GroCH could offer a better classifica-
tion performance than the other algorithms used in this chapter for this long period,
but we cannot confirm this statistically with a population of experiments.
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Figure 6.13: Classification accuracy and kappa statistics across classifiers in Experiment
II.
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Figure 6.14: Classification accuracy of meta-learners over time in Experiment II. GroCH,
ECPF and CPF in green, orange and blue, respectively.

All meta-classifiers obtain greater accuracy than the base learner (NB), and
GroCH seems to be the algorithm obtaining the greatest classification performance
for accuracy and kappa statistics. This can be seen more closely in Figure 6.13, which
shows both metrics for each of the meta-learners and naive Bayes (base classifier)
against the classification baseline (red line). Figure 6.14 shows the performance of
the three meta-learners during the experiment and, while GroCH seems to be the
best overall performer in terms of classification accuracy, there are times where ECPF
overperforms this.

Regarding the model’s cost, as shown in Table 6.7, CPF is the model with the
highest computational cost, followed by GroCH. ECPF proofs to have a lower cost in
terms of memory and a lower running time in Experiment II.
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As for other experiments, naive Bayes obtains comparable results with lower com-
putational costs. We believe that this is due to the high degree of noise in this domain.

GroCH is a novel approach and offers promising results since in some scenarios
it compares or improves other meta-learners from the state of the art. Different ap-
proaches to clean the data or improve the detection of changes in the financial domain
still need to be approached as future lines of work.

Even if GroCH and the other meta-learners improved the accuracy of NB dur-
ing moments of change with these real datasets from the financial domain, it would
not be measurable due to the lack of knowledge about ground truth changes. The
longest the periods or greatest the number of examples, the most likely the obtained
accuracy metrics could end converging with the results obtained by the non-adaptive
algorithm naive Bayes due to the potential presence of recurrences in this domain and
the potential prevalence of stability periods over time. However, all this depends on
the definition of concept drift in the financial field, which could be the focus of a future
research piece by itself.

6.4 Summary

In this chapter, we wanted to benchmark the meta-algorithm proposed in Chapter 5
for stock trend classification in real-world financial data. This was introduced in Sec-
tion 6.1. Section 6.2 explained the classification problem, the research data and the
experimental protocol. As part of this protocol, we decided to split the fourth experi-
ment of this thesis into two sub-experiments: one experiment where different frequency
levels are addressed to find the frequency level with the best signal, and a second ex-
periment running the algorithms over a long period of time.

Section 6.3 analysed the experimental results of this chapter. Results obtained in
Experiment I concluded that these meta-learners are not suited for the current selection
of yearly periods at the minute levels or quarterly periods at the second level. Then,
in Experiment II, GroCH obtained the best classification performance for a single long
period.
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Clustering financial data streams is a subject that presents numerous challenges
due to symbol liquidity, large amounts of data, the presence of unbalanced data at
different points in time, concept drifts, and a high degree of noise [54,347].

Identifying good quality clusters to leverage from GroCH in a real-world dataset
highly depends on the level of signal shown by different technical indicators used as
feature sets and their evolution over time. There may be periods in different symbols
with a clear trend that a machine learning model, either supervised or non-supervised,
could learn. A major challenge is learning continuously and adapting to all these
changes as data stream mining algorithms.

GroCH demonstrates some drawbacks as it relies on the choice of the pre-training
sets and, in general, it has a higher computational cost than ECPF. We feel that this
experiment has not been the right test-bed for GroCH since we are not aware of the
ground truth regarding changes in the generative process of the data streams used.
While Chapter 5 demonstrates that GroCH can beat its competitors during changes
in the ground truth, we believe that this novel approach is still a work in progress due
to the high degree of noise in these streams.

Different methods may need to be used to clean the streams. For instance, a
model to recognise a higher degree of noise could be a valuable future line of work since
different actions could be triggered based on this. Also, GroCH is a valuable technique
for other types of data streams exhibiting recurring patterns, and its application to
other domains is future research. In any case, different approaches that we consider
out of the scope intended for this thesis will need to be revisited to reduce the cost of
the model over time as covered in Chapter 5.
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Chapter 7

Conclusion and Future Work

In the last years, many experts have tried to attack the problem of stock market
price prediction using different AI methods [179]. In this thesis, we wanted to focus
on predictions under structural changes in the financial domain. The most recent
literature [347], introduced from Chapter 1, suggests the use of conventional machine
learning and statistical approaches to analyse structural breaks and RCs. As covered
in Chapters 2 and 3, financial time series are a type of data stream. Albeit the data
stream mining literature has not been widely covered for forecasting in this field. In
this thesis, we have introduced techniques from the literature of data stream mining
that can be used for stocks market classification in the financial domain. We have
proposed to use these techniques to deal with the intrinsic changes of this type of non-
stationary streams and approached some extra challenges in these, such as scalability
bottlenecks in continuous machine learning scenarios.

In this regard, Chapter 4 performed the first two experiments, which served as
preliminary work to our main proposal. The first experiment, in Section 4.1, focused
on improving scalability in data stream mining scenarios. We compared the accuracy
and runtime performance of incremental against batch machine learning techniques.
An adaptive learning framework named iGNGSVM using prototype generation tech-
niques was proposed. Two different versions of this algorithm were presented to suit
different speeds of change in non-stationary data. The results obtained reported a
significant computational performance improvement in iGNGSVM against static algo-
rithms for comparable classification accuracies. The second experiment of Chapter 4
was focused on a real-world financial application for adaptive learning algorithms. Sec-
tion 4.2 proposed RCARF, a version of the random forest classifier to handle recurring
concepts explicitly. Ensembles like RF are known in the literature for their excellent

219



220
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

results predicting during cyclic and non-stationary scenarios as stock market prices (see
Chapter 3). RCARF overperformed most of the data stream mining literature algo-
rithms classifying price movement direction in the SPDR S&P 500 Trust ETF (SPY),
proving that the recurring concepts mechanism introduced is helpful in this domain.

Since the use of data stream mining approaches is not common in computational
finance, the lack of resources, available benchmarks and datasets where the ground
truth regarding drifts were available made us design our framework to generate syn-
thetic data in Chapter 5. In Chapter 5, a meta-algorithm algorithm called GroCH was
proposed to handle different types of concept drifts in data streams. The main goal of
this algorithm was to improve classification accuracy during times of change in time
series of various natures, such as ETF price trends changing over time. Chapter 5 ac-
complished the third experiment of this thesis that consisted of applying the algorithm
mentioned above to predict changes in market states and assigning different adaptive
classifiers to predict ups and stable/down movements during each market state. In the
synthetic sets produced, GroCH outperformed its main competitors in terms of kappa
statistics during RCs. An in-depth analysis of the misdetection of drifts was performed
at the market state level. Part of this error was attributed to the lack of signal on the
market states selected.

In Chapter 6, we validated GroCH for stock trend classification using real-world
financial data. For this purpose, we used intraday data from the SPY at different
frequencies. GroCH obtained comparable results to its main competitors in the state
of the art of data stream mining and overperformed them at an individual test for a
continuous data stream of 10 years of market prices at the 10-minutes level.

The main focus of this thesis has been stock trend prediction with adaptation
to concept drift. As mentioned above, our research focused on data stream mining
algorithms and was not intended to derive any trading system. Implementing such
a system may need reframing the classification problem to consider extra variables
to discriminate the direction of price changes and their magnitude. The different
algorithms proposed in this thesis have been designed to predict short-term market
trends to a certain point. How to profitably exploit market regularities is yet to be
determined, and we consider it out of the scope in this thesis. While it is clear that
the results are compatible with arguments against the EMH, we cannot claim that we
can beat consistently buy and hold and, therefore, we cannot reject it.

As a result of the experiments in this thesis, our main proposal, GroCH, has proven
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to improve classification accuracy under times of change and obtain comparable results
to other algorithms from the literature in terms of overall predictive performance. We
believe that GroCH opens good research prospects for financial forecasting during
times of market instability and structural breaks. We consider to have validated initial
working hypotheses and achieved the main research goals of this thesis. These will
be summarised in Sections 7.1 and 7.2 respectively. After these, Section 7.3 discusses
future work in the research line opened in this thesis.

7.1 Validation of Working Hypotheses

This research work was carried out under a set of working hypotheses described in
Section 1.3. The following ones have been validated during our experiments.

(1) Traditional static machine learning techniques do not scale and thus are
not suitable for high frequency and non-stationary data that needs models
to be up to date with the latest trends.

In Chapters 2 and 3 we covered the principles and related research claiming that
static machine learning models need adaption mechanisms to scale for continuous learn-
ing scenarios. In the first experiment of this thesis, in Section 4.1, we have demon-
strated how an adaptive framework such as iGNGSVM can help to scale a compu-
tationally costly static machine learning algorithm. On the one hand, the usage of
adaptive mechanisms does not guarantee that the model will be stable over time. This
depends on the sharpness of the changes of the underlying data stream. It also depends
on the forgetting or reuse mechanisms developed in the model. On the other hand,
improving the scalability of a model does not imply that this will perform at any fre-
quency level; higher frequencies will need more rapid responses and model updates. In
any case, for these reasons, the online incremental machine learning paradigm appears
as a good defacto choice to build continual learning models.

(2) Adaptive and incremental machine learning algorithms allow learning
in near-real-time. Thus, predictions can be made with a model trained with
the most recent data, avoiding extra computational costs or bottlenecks.
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We validated this hypothesis in the second experiment by proposing a system
that dealt with concept drifts both actively and passively in Section 4.2. The proposed
system ensembled many base classifiers to deal with the complex behaviour of financial
time series, being still able to perform in near real-time. We also proved that the
mechanism to detect recurrences is helpful for classifying price movement direction at
minute level resolutions in the SPY Exchange-Traded Fund.

(3) It is possible to measure and typify market states (regimes) in intraday
financial data. It is also possible to model these states and simulate a
scenario where the ground truth is known.

We validated this hypothesis in the third experiment, in this thesis’s main pro-
posal. GroCH was suggested as a meta-learner with a history of previous classifiers
that are grouped in a non-supervised fashion. The underlying idea was to create groups
representing market states. To validate this, we proposed a framework in Chapter 5
where different ARMA-GARCH processes were fit to different market behaviours from
different ETFs. This was based on underlying research claiming that market regimes
can be differentiated from each other by the volatility of the price returns [347]. The
results obtained by GroCH in Chapter 5 proved that it was possible to cluster market
states and recognise them in a simulated setting.

(4) The use of adaptive techniques will improve prediction accuracy, es-
pecially during concept drifts or changes in the underlying high-frequency
data.

This hypothesis was validated in the third experiment, with a semi-synthetic
dataset that simulated the priority of high-frequency data from four ETFs. We
benchmarked GroCH to the state of the art using different metrics such as kappa
statistics and classification accuracy during times of change in the ground truth. The
was empirical evidence about GroCH being able to improve classification accuracy
during concept drifts and obtain comparable results to other algorithms from the
literature in terms of overall predictive performance. GroCH was also tested with
real-world high-frequency data in the fourth experiment of this thesis. The use of
adaptive approaches obtained higher overall accuracies (during times of stability)
with statistic significance compared to other non-adaptive incremental methods (e.g.
incremental naive Bayes) in a wide battery of tests.
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7.2 Validation of Objectives

After the completion of this thesis, we consider achieved the following set of initial
research goals:

(1) Development of new machine learning algorithms to improve the state
of the art regarding forecasting of price trend in financial markets. This
development should be driven by the combination of the study of the state
of the art and the experimental work performed in this thesis.

As mentioned at the start of this section, in this thesis, we have created two
different algorithms that have been applied to the aforementioned domain. RCARF
and GroCH were proposed in Section 4.2 and Chapter 5 respectively. Both algorithms
obtained competitive results with state-of-the-art data stream mining approaches and
overperformed many of their competitors in individual tests. Thus, we consider this
research goal accomplished.

(2) Modification of techniques from the relevant literature to predict struc-
tural change in high-frequency data. Different techniques based on online
incremental machine learning for data streams are reviewed for this pur-
pose.

In Chapters 4 and 5, we proposed RCARF and GroCH as online incremental
learning algorithms with explicit concept drift handling mechanisms. As a novelty in
our research, these drift detection methods were applied to predict structural change
in the financial domain at high frequencies in synthetic and real-world data.

(2.1) Detection of RCs through concept drift detection techniques.

As mentioned above, this objective was achieved in both Chapters 4 and 5.

(2.2) Once these structural breaks are detected, our next objective is to find
the structural patterns in the market state dynamics to detect recurrences.
Our research’s primer objective is generating specialised models for scenar-
ios, such as more volatile markets, or for up or downtrends may be more
effective.
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This was achieved in our main proposal, GroCH (see Chapter 5). After the detec-
tion of structural breaks caused by RCs, market states are summarised using a non-
supervised approach and receive the name of groups. Groups are stored by GroCH for
future reference at the concept history.

(2.3) Our final goal in this regard is to reuse effectively previously trained
models when a recurring market state is detected.

This was also achieved in GroCH in Chapter 5. When a concept drift is recognised,
the closest market state is recognised as a recurrence, and a classifier is retrieved from
its group at the concept history.

(3) Adaption of algorithms and creation of methodologies for the identifi-
cation of market states, which involves modelling and simulation of these
high-frequency time series to adapt and react to structural changes.

The algorithms mentioned above, RCARF and GroCH, were proposed for this
purpose. This was achieved by presenting an approach to model and simulate high-
frequency time series with structural changes and recurrences in Chapter 5 using
ARMA-GARCH models and sigmoidal transitions between market states inspired by
the work by Shaker and Hüllermeier [312].

(4) Application of the techniques proposed to the financial domain in the
intraday market and prediction using high-frequency price series.

This objective was also achieved. During this thesis, we applied different ap-
proaches from the state of the art in computational finance. For instance, the methods
used to represent the datasets used for machine learning tasks, the time series tech-
niques used to simulate synthetic series of price returns, or even techniques to visualise
the differences between market states in Section 5.2.4.

7.3 Future Work

Data stream mining is an emerging research field, and its application to computational
finance and, more specifically, the detection of RCs leaving behind the time series
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literature is a novel approach. For this reason, below, we present future research lines
in different directions.

First of all, data stream mining algorithms must be scalable to deal with continual
learning tasks avoiding performance bottlenecks. In this regard, in Chapter 4 we have
shown how online incremental learning methods can help to reduce computational
costs. While the results obtained are promising, future work parallelising training
tasks in approaches such as iGNGSVM in Section 4.1 can bring significant gains in
terms of execution time when learning in near real-time. Section 4.1.6 covered some
of the most relevant future lines of work for iGNGSVM; the first approach presented.
Scaling the algorithms presented in this thesis further will allow us to use them at
higher frequencies beyond the second level.

A disadvantage of the techniques presented in this thesis is their level of com-
plexity, reflected in a large number of input parameters or the need for pre-training
(e.g. previous market states in GroCH). Hence, the use of adaptive thresholds and
parameters for the different methods proposed could be another future line of work.
These would help: first, optimise the balance between classification performance and
computational cost in methods such as GNG, used in iGNGSVM and in GroCH to
summarise market states; second, adapt the distance thresholds used to identify what
is a relevant market state to be retrieved. A different approach in this regard could
be a change detection based approach to swap parameter values, thresholds or other
inner components when a concept drift is detected.

Another area that we have not tackled in this thesis is the like-hood of class
unbalance at different points in time since these models aim to run for an infinite data
stream. The usage of auto-adaptive filtering as part of our approaches to perform
sampling when handling unbalanced datasets might be worthwhile.

In this thesis, we have applied different algorithms from the state of the art in data
stream mining and adapted our own methods to predict price trend direction at high
frequencies. RCARF and GroCH were proposed with this in mind in Chapters 4 and 5
respectively. These techniques were able to compete with other algorithms from the
state of the art of data stream mining and to improve their classification performance
in individual scenarios like during changes in the ground truth, and obtaining more
robust results (less deviation across tests or lower kappa errors than their competitors).
Specific future lines of work were proposed for these approaches in Sections 4.2.6 and 6.4
respectively. In any case, none of the algorithms proposed are domain-specific. A future
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line of work could be their application to online learning scenarios in dynamic systems
exhibiting non-stationary behaviours or continuous evolution of the data stream with
recurrences over time such as IoT sensor-based systems or cybersecurity.

Another line of work is the simulation of synthetic datasets exhibiting RCs in the
financial domain. We were not aware of any other approach in the literature aiming the
same during this thesis. Thus, we have presented a novel approach inspired by related
research from the data stream mining and computational finance literature. While we
are satisfied with the outcomes of our framework to simulate RCs, this can be improved
in future work in various ways. For instance, other models from the literature of RCs
such as regime-switching autoregressive models.

We believe that the application of data stream mining techniques is still a work
in progress. There is a high degree of noise in these streams, and different denoising
methods may need to be explored. As covered in the previous chapters, clustering
financial data streams is a subject that presents numerous challenges. Improving the
unsupervised learning of market states depends on the signal to noise ratio displayed
by the different technical indicators selected and their evolution over time. While
this thesis used a common approach in the literature to produce technical indicators
and predict price direction in the next time-step, other methods could be used in this
regard. For example, techniques such as PCA, factor analysis, or autoencoders could
be used to summarise an initial larger set of technical indicators.

Another major challenge in this regard is the continuous learning setting. Apart
from challenges adapting incremental online models, a must is to provide feature sets
reflecting signal and changes along concept drifts. Different approaches may also need
to be studied for the detection of drifts in the financial domain. A significant piece
of research would be to propose a formal definition of concept drift in the financial
field, allowing us a degree of confidence about the ground truth to rate the detection
of changes and recurrences in real-world data. But this should be solely the focus of
a future research piece. Approaches using price returns could perform better in the
presence of recurrences at stocks that experiment with significant price scale changes
over time.

We are aware that a large amount of work is pending in this new research line and
that new challenges will arise as this develops. However, we believe this initial work
will contribute to the study of data stream mining methods and their application to
price trend prediction and detection of structural breaks in the financial domain.
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Our Proposal in Detail

This appendix describes the parameters of our proposal, GroCH, and an explanation
of the work performed during parameter tuning and experiments.

A.1 Parameters of the Developed Version

In this section, the complete list of parameters of our main proposal, namely GroCH.
GroCH has many base learners, detectors and different components with thresholds
that can be specified in advance as described in Chapter 5. Some of them, as the four
parameters listed below, are common parameters of many meta-learners in MOA and
thus, we have kept the same names and their command line abbreviations (between
brackets) listed in other algorithms.

1. Base learner (-l): classifier to train. Vanilla setup of the base classifier by default.

2. Evaluator (-f): classification performance evaluation method in each base clas-
sifier for voting. BasicClassificationPerformanceEvaluator by default; this is an
evaluator that takes into account the mean error since the initialisation of the
current algorithm.

3. Drift detection method (-x): change detector for drifts and its parameters. By
default, ADWINChangeDetector -a 1.0E-5 (as in ARF[F] in Section 4.2).

4. Warning detection method (-p): change detector for warnings (start training
bkg. learner). By default ADWINChangeDetector -a 1.0E-4 (as in ARF[F]).
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Parameter Abbr. Description

saveClassifiersOnFalseAlarm m Should the algorithm save the classifiers in
the concept history in the case of false alarms?

windowResizePolicy W −1 (default) to consider all examples during the
warning window (window always growing).

eventsLogFile e File path to export events as warnings and drifts.

disableEventsLogFile g Export event logs. If disabled, then events such as warnings
or drifts detected are not logged (default: enabled).

eventsLogFileLevel h 0 only logs drifts, 1 (default) logs drifts and warnings,
2 logs every data example.

warningWindowSizeThreshold i Threshold for warning window size that disables a warning (default: 500).

minInsertionThreshold I An active classifier should have been trained with
at least this number of examples to be inserted in the CH (default: 0).

maxGroupSize M Max number of classifiers allowed in a group of the history (default: 1).
periodBetweenDrifts O Maximum duration of a concept. (default: inf).

insertionPeriod N Max size of the environments in CH (default: inf).

alwaysInsertClassifiers A Should the classifiers be inserted in a group even
if the retrieval is from the same group and the retrieved performs better?

groupReplacementPolicy P Policy to replace a classifier from the concept history group
when this reaches its maximum size (LUFO or FIFO) (default: FIFO).

priorityOfRecurringClassifiers G Policy to replace a classifier from the concept history group
when this reaches its maximum size (New or Old) (default: Old).

topologyRadius t Max distance allowed between topologies to be
considered part of the same group (default: 1).

distanceMetric s Distance metric for concept similarity.
This can be Mahalanobis or Euclidean (default: Euclidean).

numberOfMatrices v Should we have a (Mahalanobis) matrix per concept or
a single matrix (single) to scale distances?

minTopologySizeForDrift a Minimum number of prototypes created before allowing a drift (default: 1).

minWSizeForDrift w Minimum number of instances in warning window W before allowing a drift
(default: same as minimum window size).

updateGroupTopologies j Should the topologies of groups be updated when inserting a new
classifier into them?
If disabled (default), these will not be updated.

topologyAttributeSubset k Subset of features selected to represent group concepts in the CH.
as a comma-separated list (default: -1).

disableTopologyLearner q Should the learner for topology summaries be disabled?
trainOnlineFlag H Should the topology be trained on the go or only when a drift is detected?

topologyLearner c Prototype generation algorithm.
(default: GNG.class -l 50 -m 200 -a 0.5 -d 0.995 -e 0.2 -n 0.006 -c inf -b).

multiPassTopologyTraining y Should the topology training be one-pass, or to have training epochs
until a stopping criterion is met? (instances only feed once)

multiCluster Y If selected, all groups with a topology inside the distance threshold
are considered for concept similarity in a retrieval.

insertExamplesOnly Q If selected, groups will have a single classifier only
and will send their training instances to it.

initialiseConceptHistory n The concept history is initialised with pre-defined sets.
arrfsToinitialiseCH o ARFF files with an identical feature set to main dataset (pre-training set)

trainAfterDriftEvaluation B If enabled, it evaluates drifts as a predictive performance decrease
(examples will not be fed to learner before drift detection).

testWithBKGOnWarn K If enabled, background learners will be used for testing rather than active
ones during warnings (suitable for very sharp drifts).

insertOnEarlyDrift J If enabled, the active classifier will be inserted in case of early drift.

weightedTestsOnWarn L If enabled (default), both active and background learners
will be tested (using a weighting mechanism).

beta C Punishing factor for misclassification at each
classifier competing during the warning window (default: 0.5).

trainActiveOnWarn T If enabled, the active classifier is trained during warning too
(this was enabled in the initial version of GroCH)

forceEarlyDrifts F If enabled, it forces background drifts at early (sharpest) drifts
(type 1 only: when the warning window is too small).

Table A.1: Parameters in the implementation and design of GroCH.
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Besides these, GroCH has several parameters that serve different functions and
reproduce different experiments that we will mention later in this appendix. These
parameters are listed in Table A.1, which also shows relevant default parameter values.
In Chapters 5 and 6, and in this appendix, any parameter not mentioned explicitly has
used its default values.

A.2 Parameter Tuning in GroCH

In this section, a discussion about parameter tuning in GroCH. This parameter tuning
process refers to Stages I and II of the analysis performed in Chapter 5, and during
the validation of GroCH at the development stage. The optimisation performed in
different algorithms in Chapter 5 was conducted over the ranges specified in Table A.2.

Algorithm Parameters to optimise:
GroCH Lambda and maximum age GNG (-l): [1-300] and [50-500]

Topology radius: [0.25-6]
Drift detector: All applicable (see Stage I in Chapter 5)
Group maximum size: [1-15]
Base classifier: NB, HT

CPF Base classifier (same as GroCH)
Drift detector: All applicable (see Stage I in Chapter 5)
Fading: yes/no
Pool size (f): 4, 15
Similarity (m): 0.85,0.9,0.925,0.95,0.975, 0.99
Minimum buffer size: 30,60, 120, 180, 240

ECPF Same as CPF except from min buffer size (not existent in ECPF).

HT Default in MOA.

HAT Default in MOA.

RCD Base classifier (s): same as GroCH
Significance value (s) - similarity threshold as a p-value: [0.01, 0.05]
Max. instances to represent each distribution (b): [100 - 500]
Frequency of tests (t): [b, 500] instances.
N. Nearest neighbours (k): 1, 3, 5, 7
Drift detection method (d): All applicable

DWM Base classifier (s): Same as GroCH.
Period (p): 1, 25, 50, 75, 100
Drift confidence (b): 0.25, 0.5, 0.75
Punishing factor (theta): 0.005, 0.01, 0.025, 0.05

ARF Single ADWIN confidences as in Section 4.2
No bagging of any kind, and only one base classifier

Table A.2: Ranges of values used in parameter tuning during this thesis.
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Besides the algorithms and ranges shown in Table A.2, during the validation of
GroCH, many other parameters were considered, and algorithms that had not been
considered for the experimental section of this thesis, such as RCD and DWM, were
also benchmarked. Regarding drift detection methods, all drift detectors listed in
Table 3.1 in Chapter 3 were evaluated during the development of different pieces of the
algorithm. For instance, HDDMA was the version of HDDM obtaining better results
detecting drifts when compared to the ground truth changes of the semi-synthetic
dataset used in Stage I. Hence, this was the version of HDDM used in the rest of the
thesis.

In order to rerun the experiments or parameter tuning performed in this thesis,
a set of scripts can be found in the following GitHub repository: https://github.com/
cetrulin/groch-moa/tree/main/experiments. The file README.md in the root of the
repository outlines the detailed setup process and usage of the algorithms.

A.2.1 Parameters for Concept Similarity

Three key parameters of GroCH that impacted the detection of recurring concepts
during our studies were: a) lambda λ (frequency of generation of prototypes); b) the
topology radius (distance threshold); and c) the drift detectors with its respective
sub-parameters.

Figure 5.16 in Chapter 5 illustrated the decrease of quantisation error with greater
number of prototypes in GNG. This inspired the selection of lower values of λ to create
more prototypes between drifts and achieve a better representation of the ground truth
states. There is an increase in the computational cost of GroCH when decreasing this
value, as this generates a prototype interpolating the region with the greatest error
residual every λ iteration, which has a complexity of O(n2). We finally selected values
of λ on the range of [5, 30]. While a λ = 1 offered the best concept representation,
especially during short warning windows, the computational cost of this was unbearable
for a data streaming scenario.

The topology radius value depended on different parameters, like the above men-
tioned λ, or the maximum age of the connections in GNG. Common values explored
during parameter tuning for the maximum age of the connections were listed in Ta-
ble A.2. Another of these parameters is a flag to prepopulate or not the concept

https://github.com/cetrulin/groch-moa/tree/main/experiments
https://github.com/cetrulin/groch-moa/tree/main/experiments
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history (initialiseConceptHistory in Table A.1). During the validation of the algo-
rithm, we noted that the creation of groups with the ground truth states helps during
parameter tuning to find the right topology radius to optimise the separation between
ground truth states. Hence, the best parameters set was found, and the detection of
drifts was more accurate when pre-training GroCH. The most accurate range of values
for the topology radius in our studies was [1, 2].

We noticed that, if prepopulating the concept history, we could assign a topology
radius closer to 1 and obtain greater accuracies detecting drifts. Conversely (not pre-
training), this would penalise the creation of new groups and not all of the ground
truth states would be ever created as groups otherwise. In any case, the result of this
last part would need a more profound study for each application domain and dataset
used. In our case, it was known that one of the states was not completely separable
from the other three, as shown in Section 5.2.4.

A last critical parameter impacting the topology radius was the feature set (or sub-
set) used for the unsupervised representation of concepts. As covered in Section 5.3.3.1,
two different subsets of technical indicators were selected. The best results in the sub-
set with the broadest number of indicators (9 ) were achieved using a topology radius in
the range [1.5, 2.5]. The best results in the shortest subset (6 indicators) were achieved
using a topology radius between [1, 1.75]. We believe that the root cause of this is that
few indicators in the subset with the broadest number of indicators had extreme val-
ues closer to 0 or 100. Thus, topologies could be farther away than compared to the
shortest subset.

A.2.2 Design of Concept Representations

During the design of GroCH, three different methods to measure the similarity of
groups were compared; Euclidean distance distances, a single Mahalanobis distance
matrix to scale distances between a group and the data points received during the
warning, and an approach to produce correlation matrices during the warning window
and compare these matrices to a correlation matrix produced for each group. This last
approach has a higher computational cost due to Mahalanobis distance matrices since
a new matrix would need to be computed for every comparison. The approach with
the single Mahalanobis distance matrix obtained lower errors classifying drifts than
the approach with Euclidean distance , especially in cases where the stock price was
very variable in the data stream.
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Another approach evaluated during the design of GroCH was the training method-
ology of concept history groups. In this regard, we initially considered many variants
for GroCH that are supported as parameters in the implementation listed in Table A.1:

• Update of group topologies: one of these was a method that we designed to replace
the set of prototypes in a group at the time of insertion. In some scenarios, this
jeopardised prepopulated CH groups when not recognising a drift or a recurrence
properly. In any case, this could have been an artefact of the ground truth states
used in our semi-synthetic sets (as covered in Section 5.2.4) and may deserve a
more in-depth analysis in future work.

• Multi-pass training of GNG: another was a multi-pass instead of a single-pass
training for GNG. Multiple passes (epochs) could help GNG to have a more
accurate concept representation during a warning window. However, this design
added extra challenges like selecting the stopping criterion of GNG. As covered
in Subsection 5.1.2.2, we used the detection of a drift to stop in the single-
pass approach. When exploring the multi-pass approach, we used two different
stopping criteria.

1. Number of prototypes: halt training when generating a number of proto-
types equal to a percentage (threshold) of the examples received during the
warning window

2. Quantisation error: stop training when the quantisation error stops decreas-
ing across iterations (beyond a threshold).

The multi-pass approach was discarded as it increased the computational cost of
GNG, not being able to be trained online like with the single-pass approach.

A.2.3 Definition of the Default Parameter Values

To test and validate the parameter space covered in this subsection, we have run
different experiments with the synthetic set presented in Section 5.2.2.2.

Here the reader must note that each individual set of data representing a market
state in our experiments has been extracted from their first appearance in the
semi-synthetic time-series simulated.
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As stated in Subsection 5.2.4, the use of raw prices would cause issues in the algo-
rithm. One of these reasons could be the different scale of the close prices between the
raw and reconstructed synthetic-series. The appearance of states 2, 3 and 4 come fol-
lowing a recovery phase due to their ground truth changes. We removed instances from
that recovery phase to allow a clean generative process for each state. We produced a
feature set of technical indicators as explained in Chapter 5.

At this point, we performed an analysis on the correlation between metrics such
as global classification accuracy and percentage of true positives in drifts detected,
groups accurately recognised in retrievals and insertions and the final number of
groups created in the concept history. Figure A.1 shows a positive correlation
between the true positives detecting drifts and the global classification of GroCH.
While this correlation is not as strong for retrievals and insertions, we believe
that it could be due to cascade effects in the generation process of the concept
history groups. For instance, a retrieval of the right group may not improve the accu-
racy of GroCH if the classifier retrieved was inserted incorrectly before into that group.

Figure A.1: Correlation of metrics across experiments in GroCH during Stage I.

Another analysis on the recognition of drift-related events was performed over the
development set during Stages I and II of the experiments, as presented in Section 5.3.5.
Different parameter values were selected to maximise two metrics: a) the true positives
detecting drift and b) the classification accuracy during periods of change.
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Different drift detectors from the literature were used for this purpose. However,
EDDM, HDDMA and RDDM were the methods detecting most of the ground truth
changes with a reasonable delay from their start point (1,500 data instances), followed
by very sensitive parametrisations of ADDM (e.g. greater confidence values than AD-
WIN in ARF[F] in Chapter 4.2). To set a value for maximum allowed delay (d) in
GroCH, different values were explored [500, 2, 500] instances.

Another detector used in the experiments was EDDM, a drift detector targeted
to gradual drifts (as explained in Chapter 2) that measures the distance of two mis-
classifications in terms of classification accuracy. However, during our experiments, we
experienced that once the base classifier of any meta-learner had been trained with
enough data instances, its classification accuracy stabilised. Thus, EDDM barely de-
tected drifts after this point. This was the case especially using HT as base classifier
during the final experiments of Chapter 5.

The selection of values in Stage I of the experiments was shown in Table 5.4.
We observed that the choice of policies for the management of groups using the age
of a classifier (number of instances received since its creation) helped to achieve a
good trade-off between classifiers keeping previous relevant knowledge and novelty.
The primary metric to remove a classifier from the concept history is its classification
accuracy. However, we observed that the majority of the warning windows tend to
last less than 100 data instances. Classifiers inside the same group are more likely to
forecast similarly under a concise sample of data and, therefore, there was a need for
a second method to prioritise classifiers in case of a tie.

The length of a warning window depends on the duration of a change and the
delay of the detector. The latter is based on the robustness of the classifier and the
sharpness of the change (how different both generative processes).

A.2.4 Other Experiments

Other experiments that may be worth a mention were: a) the use of a more compre-
hensive set of technical indicators; b) the use of different drift detectors and internal
window sizes for the internal evaluator in the preliminary study in Section 4.2.

The first approach was explored while reviewing the literature for a standard set
of technical indicators. In this regard, we used data for 2017 in the SPY at the one-
minute resolution. We looked at the mutual information between different indicators
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to extract a set of uncorrelated features from the complete list of indicators in TA-
Lib. Although promising, this approach did not improve the predictive accuracy of the
approach later used for data pre-processing, based on the work from Kara et al. [195].

The second approach was evaluated to improve the selection of recurring classifiers
in RCARF. An initial evaluation was performed over a variant of adaptive random
forest using different confidence intervals in ADWIN. We called this ARFHeterogeneous,
visible in Figure A.2. The first drift detected is represented with a grey dotted
vertical line. Figure A.2 shows the deviation of the error over time in ARF in these
variants (lines black and red) using default parameters (orange and blue lines). This
figure reports the error averaging time windows instances as seen previously in this
thesis. The red line represents a version of ARF where the detectors of all base
classifiers have different confidence intervals. In contrast, the black line represents a
version of ARF where there are two different settings for ADWIN across base classifiers.
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Figure A.2: Evaluation of several versions of ARF varying drift detection settings in the
internal evaluator.

The new variants of ARF reduced the classification error marginally. Regarding
different window sizes in RCARF across base classifiers, the improvements in classifi-
cation accuracy were not significant. In any case, this future line was finally discarded
since the dynamic internal evaluator was finally replaced in GroCH to simplify the
solution. The usage of all the data instances during the warning window in GroCH did
not negatively impact the detection of recurrences during the initial validation phase
and helped streamline the logic of insertions and retrievals.
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A.3 Detailed Results for GroCH

In this section, we provide the full tables of results from the experiments in Chapter 5.
The detailed experimentation process can be found in Section 5.3.

A.3.1 Drift and Group Recognition

Summary results regarding the recognition of concept drifts at the right time in the
ground truth and retrieving and inserting the right state in the concept history. To
reduce the headers of the tables and fit these on a page, we have abbreviated them. A
summary of all the abbreviations is present in Table A.3.

Metric Abbreviation

Number of ground truth transitions GTT

Number of ground truth transitions correctly recognised GTC

Number of ground truth transitions incorrectly recognised GTI

Number of ground truth transitions recognised with insertions or retrievals GTR

Recognition accuracy of a drift-related event Acc.
Ground truth state State

Number of retrievals detected RT

Number of retrievals to the right state RC

Number of retrievals to an incorrect state RI

Number of insertions detected IT

Number of insertions to the right state IC

Number of insertions to an incorrect state II

Table A.3: Full form of headers from Tables A.4 to A.7.

As mentioned in Chapter 5, due to the prepopulation of groups the value of some
performance measures for drift-related events is equal to zero. These metrics have
not been reported in Tables A.10 and A.11. Tables A.4 to A.7 summarise the results
recognising concept changes across the 30 synthetic streams.

To state GTC GTI GTT Acc.

1 541 239 780 69.359
2 656 94 750 87.467
3 562 188 750 74.933
4 565 155 720 78.472

Table A.4: Transitions recognised by GroCH using NB (mean of all streams).
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Retrieve State RC RI RT GTR GTT Acc.

1 281 662 943 223 780 29.799
2 595 599 1194 417 750 49.832
3 524 364 888 333 750 59.009
4 390 578 968 290 720 40.289

Table A.5: Retrievals by GroCH using NB (mean of all streams).

Insert State IC II IT GTR GTT Acc.

1 216 464 680 188 750 31.765
2 317 296 613 258 750 51.713
3 827 303 1130 566 780 73.186
4 345 539 884 324 720 39.027

Table A.6: Insertions by GroCH using NB (mean of all streams).

To state GTC GTI GTT Acc.

1 487 293 780 62.436
2 506 244 750 67.467
3 575 175 750 76.667
4 585 135 720 81.250

Table A.7: Transitions recognised by GroCH using HT (mean of all streams).

Retrieve State RC RI RT GTR GTT Acc.

1 240 494 734 203 780 32.698
2 373 414 787 303 750 47.395
3 570 196 766 390 750 74.413
4 436 429 865 362 720 50.405

Table A.8: Retrievals by GroCH using HT (mean of all streams).

Insert State IC II IT GTR GTT Acc.

1 138 321 459 130 750 30.065
2 268 202 470 254 750 57.021
3 811 220 1031 583 780 78.661
4 327 371 698 317 720 46.848

Table A.9: Insertions by GroCH using HT (mean of all streams).
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Table A.10: Drift detection metrics for the 30 synthetic streams in GroCH using NB. See
metrics in Subsection 5.2.1.3. S: Stream; v1dd: v1 delay std, v1md: v1 delay
mean; a: accuracy for vn; vT : total number of events recognised (TPD+FPD).
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Table A.11: Drift detection metrics for the 30 synthetic streams in GroCH using HT. See
metrics in Subsection 5.2.1.3. S: Stream; v1dd: v1 delay std, v1md: v1 delay
mean; a: accuracy for vn; vT : total number of events recognised (TPD+FPD).
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A.3.2 Benchmark

In this subsection, a summary of results corresponding to the 500,000 data stream
instances from the benchmark of our main proposal (Subsection 5.3.5.2).

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 61.1349 1.004547 58.76333 60.62685 61.25149 61.8775 62.64982
ECPF 61.85033 0.49993 59.54511 61.71605 61.90026 62.11478 62.3718
GroCH 61.67791 0.327411 60.9491 61.44508 61.69359 61.87466 62.32655
Base 62.63565 0.337457 61.57368 62.43086 62.72465 62.86994 63.10358

NB CPF 57.85928 0.32818 57.0121 57.67509 57.90297 58.0419 58.629
ECPF 59.9815 0.392469 59.30492 59.65941 60.02097 60.24684 60.63879
GroCH 59.03512 0.307967 58.10907 58.86976 58.99713 59.24424 59.51724
Base 58.36426 0.266608 57.43728 58.26331 58.39579 58.52195 58.75565

Table A.12: Summary of classifications correct (percent) in 30 synthetic streams of 500k
instances.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 17.29972 2.813694 13.59709 14.28973 17.83613 19.70067 21.55121
ECPF 16.6986 0.724736 15.2446 16.23714 16.67991 17.27597 18.20634
GroCH 16.91344 0.930013 15.5831 16.34927 16.67228 17.35622 20.05844
Base 21.29493 0.757599 19.24287 20.75327 21.37709 21.81796 22.60449

NB CPF 14.4864 0.515804 13.27975 14.18814 14.51176 14.83104 15.70606
ECPF 15.24563 0.54277 13.73823 15.10961 15.38777 15.54797 16.1134
GroCH 15.18826 0.614319 13.61423 14.79227 15.13843 15.66901 16.35334
Base 15.89019 0.424558 14.66105 15.76512 15.9485 16.08041 16.70657

Table A.13: Summary of kappa statistic (percent) in 30 synthetic streams of 500k instances.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 26.48001 2.18253 21.44015 25.42281 26.77329 28.12576 29.67345
ECPF 28.11835 1.081054 23.18845 27.83209 28.31853 28.70408 29.32968
GroCH 27.75184 0.616322 26.50944 27.3788 27.72746 28.02408 28.92478
Base 29.88821 0.746867 27.63401 29.55821 30.00158 30.51334 30.93085

NB CPF 19.93903 0.694363 18.3298 19.58103 19.95889 20.35005 21.63672
ECPF 24.16178 0.758738 22.82757 23.63076 24.22071 24.7872 25.68581
GroCH 22.45009 0.579084 20.83175 22.14982 22.38784 22.902 23.45185
Base 20.98263 0.610954 18.89239 20.6708 20.98397 21.35233 21.95983

Table A.14: Summary of kappa temporal statistic (percent) in 30 synthetic streams of 500k
instances.
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Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 65.32533 0.97268 62.29016 64.97591 65.62045 65.87695 66.76241
ECPF 66.46007 0.66097 63.3076 66.36693 66.59745 66.77737 67.10042
GroCH 66.83105 0.267869 66.3576 66.63998 66.75936 67.08623 67.32013
Base 66.79092 0.402847 65.69726 66.5883 66.73923 67.09791 67.52553

NB CPF 60.66812 0.58723 59.18958 60.34835 60.68651 61.09239 61.76687
ECPF 63.77527 0.615368 62.3843 63.29322 63.91858 64.21544 65.01337
GroCH 63.24164 0.500201 61.77339 63.04694 63.25861 63.5215 64.11524
Base 61.16945 0.452656 59.99057 60.88282 61.07377 61.55579 61.92891

Table A.15: Summary of classifications correct under switch (percent) in 30 synthetic
streams of 500k instances.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 26.60035 2.27166 19.66886 25.64289 27.29232 27.74393 29.81834
ECPF 29.3733 1.511392 22.03342 29.16041 29.65348 30.08372 30.80671
GroCH 30.16795 0.649967 29.16677 29.7281 30.05301 30.61406 31.46461
Base 30.05798 1.029353 27.48536 29.48472 29.90909 30.78117 32.19102

NB CPF 16.31081 1.351973 13.00246 15.69095 16.2862 17.30899 19.11456
ECPF 23.15143 1.435907 19.93479 21.79007 23.44614 24.2933 25.93638
GroCH 22.08055 1.085793 19.16965 21.68654 22.17428 22.54105 23.96935
Base 17.23127 1.055965 14.5344 16.52097 17.13206 17.91567 19.38494

Table A.16: Summary of kappa temporal statistic under switch (percent) in 30 synthetic
streams of 500k instances.

Base Algorithm Mean Std. Dev. Min. 25% Median (50%) 75% Max.

HT CPF 22032.3 45640.32 1208.338 1547.941 2235.265 16007.06 203157.5
ECPF 12848.87 61677.4 686.7325 1131.8 1638.861 2008.94 339396
GroCH 50175.88 36305.98 27087.66 31836.39 40797.17 53424.89 220578.3
Base 930.2354 118.4019 761.7896 830.3386 902.3249 977.6034 1247.464

NB CPF 662.361 626.0211 139.4424 395.558 472.3134 682.6097 3734.519
ECPF 426.6354 143.4488 237.7504 306.7374 403.3177 496.2689 841.9483
GroCH 54582.99 45210.96 16805.97 30763.15 43949.7 56869.68 262528.7
Base 18.89028 2.460772 16.21461 16.96542 18.30425 19.72032 24.73088

Table A.17: Summary of evaluation time (CPU seconds) in 30 synthetic streams of 500k
instances.
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Appendix B

Description of the Datasets Used

In this appendix, we explain in more detail the semi-synthetic datasets generated as
part of the experiments in Chapter 5. We explain the ground truth transitions and
illustrate each of the artificial datasets created in Stage I and II in Sections B.1 and B.2.

B.1 Summary of Ground Truth Changes in the Synthetic Sets

The generation of the semi-synthetic datasets used in Chapter 5 was explained in
Section 5.2.2. All datasets have been created using the same process. Four different
ARMA-GARCH models were fit to one time series of price returns each. We generated
a dataset of price returns, later reconstructed to prices and technical indicators, by
changing the actual generative process over time.

In order to create a controlled testing scenario for GroCH, transitions between
generative processes were manually selected. This map of transitions, shared across
all synthetic sets, is summarised in Table B.1. It details the transitions between the
generative processes (1-4) during the simulation. Changes can have different duration
({100, 1, 000} instances) and occur every 5, 000 instances.

The transition map from Table B.1 was initially created for 6 million instances,
and the order of the changes between generative processes and their duration was ran-
domised. Table B.1 shows the distribution of changes for the first 1.5 million instances
since we have used only these as part of our experiments. The first 500k instances were
used for pre-training, computation of Mahalanobis distance matrices and parameter
tuning, and the last 1 million instances for the prequential evaluation.
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From To Duration Starting in instance # (k represents thousands)

1

2 100 5k, 245k, 485k, 725k, 965k, 1205k, 1445k, 905k, 185k, 425k, 665k, 1145k, 1385k,
605k, 125k, 365k, 845k, 1085k, 1325k, 65k, 305k, 545k, 1025k, 785k, 1265k

3 100 1355k, 755k, 155k, 1475k, 875k, 275k, 995k, 395k, 1115k, 515k, 35k, 1235k, 635k
1k 1055k, 455k, 1175k, 575k, 1295k, 695k, 1415k, 815k, 215k, 95k, 935k, 335k

4 100 1245k, 45k, 405k, 285k, 165k, 525k, 645k, 765k, 885k, 1005k, 1125k, 1365k, 1485k
1k 105k, 585k, 465k, 225k, 345k, 705k, 825k, 945k, 1065k, 1185k, 1305k, 1425k

2

1 100 1290k, 1410k, 90k, 330k, 210k, 570k, 450k, 690k, 810k, 930k, 1050k, 1170k
1k 1470k, 30k, 510k, 150k, 390k, 270k, 630k, 750k, 870k, 990k, 1110k, 1230k, 1350k

3 100 70k, 190k, 550k, 430k, 310k, 670k, 790k, 910k, 1030k, 1150k, 1270k, 1390k
1k 1210k, 1330k, 10k, 490k, 370k, 250k, 130k, 610k, 730k, 850k, 970k, 1090k, 1450k

4 1k 1435k, 235k, 415k, 1135k, 655k, 175k, 895k, 1375k, 115k, 835k, 355k, 1075k,
595k, 1195k, 1315k, 475k, 535k, 775k, 55k, 295k, 1015k, 1255k, 1495k, 955k, 715k

3

1 100 100k, 460k, 340k, 220k, 580k, 700k, 820k, 940k, 1060k, 1180k, 1300k, 1420k
1k 40k, 160k, 520k, 400k, 280k, 640k, 760k, 880k, 1000k, 1120k, 1360k, 1480k, 1240k

2 100 25k, 265k, 145k, 385k, 505k, 625k, 745k, 865k, 985k, 1105k, 1225k, 1345k, 1465k
1k 1285k, 85k, 565k, 445k, 325k, 205k, 685k, 805k, 925k, 1045k, 1165k, 1405k

4 100 1095k, 495k, 1215k, 615k, 1335k, 735k, 135k, 1455k, 855k, 15k, 255k, 975k, 375k
1k 1395k, 795k, 195k, 915k, 315k, 1035k, 435k, 555k, 1155k, 75k, 1275k, 675k

4

1 100 120k, 480k, 360k, 240k, 600k, 720k, 840k, 960k, 1080k, 1200k, 1320k, 1440k
1k 60k, 180k, 540k, 300k, 420k, 660k, 780k, 900k, 1020k, 1140k, 1260k, 1380k, 1500k

2 100 1430k, 110k, 350k, 470k, 230k, 590k, 710k, 830k, 950k, 1070k, 1190k, 1310k
1k 1250k, 1370k, 50k, 170k, 530k, 410k, 290k, 650k, 770k, 890k, 1010k, 1130k, 1490k

3 100 80k, 320k, 200k, 560k, 440k, 680k, 800k, 920k, 1040k, 1160k, 1280k, 1400k
1k 20k, 140k, 500k, 380k, 260k, 620k, 740k, 860k, 980k, 1100k, 1220k, 1340k, 1460k

Table B.1: Ground truth changes in synthetic sets for 1.5 million examples (300 changes).

B.2 Synthetic Sets Generated

In order to create a feature set of technical indicators, the series of price returns gen-
erated were first reconstructed. The initial price for the reconstruction was chosen
using the last price value of the raw series used to fit the first generative process in
Section 5.2.2.

A total of 30 series of prices were reconstructed to be pre-processed and used
in Stage II of the study in Chapter 5. All of these are in Figures B.1 to B.4. For
Stage I, only the first series, present in Subfigure B.1a, was used. In all figures of this
section, the first 500k examples represent instances used for pre-training, computation
of Mahalanobis distance matrices and parameter tuning. The last 1 million instances
(after a black vertical line) were for test and train in the experiments of Chapter 5.
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Figure B.1: Reconstructed close price from synthetic sets 1-8 generated in Chapter 5.
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Figure B.2: Reconstructed close price from synthetic sets 9-16 generated in Chapter 5.
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Figure B.3: Reconstructed close price from synthetic sets 17-24 generated in Chapter 5.
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Figure B.4: Reconstructed close price from synthetic sets 25-30 generated in Chapter 5.



Appendix C

Evaluation Environments

In this appendix, the environments used to train and evaluate the machine learning
methods proposed along with this thesis.

C.1 Hardware in Preliminary Studies

During the initial stage of this thesis, experiments were run in a Macbook Pro 2011
13-inch Early 2011. This laptop had a 2nd generation 2.3GHz dual-core Intel Core i5
CPU and 4GBs of RAM. This machine was used for the first time in the preliminary
studies in Section 4.1.

Since the second part of the preliminary studies needed more computational power,
the experimental setup was migrated to a virtual machine in Microsoft Azure. Thus,
in Section 4.2, the experiments were run in a D3 v2/DS3 v2 instance, with ≈14 GBs
of RAM and four vCPUs.

C.2 Hardware Configuration in the Main Proposal

There were two upgrades to the servers used for our main proposal.

First, some of the experiments mentioned in Appendix A, the development and
validation phase of the algorithm (GroCH), were performed in a Dell XPS 7590 with
32 GB of RAM, a six-core Intel Core i7 9750H CPU and an NMVe SSD drive.
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Second, Stages I and II of the experiments in Chapter 5, and all experiments in
Chapter 6, were run in the Sonic HPC cluster1 owned by University College Dublin.
This is a SLURM cluster with 53 Intel Xeon and Intel E5 nodes (1,468 cores) with
128 GBs to 1.5TB of RAM per node.

Having access to this cluster allowed us to conduct an exhaustive parameter opti-
misation (grid search) using different computing nodes in parallel for each combination
of parameters.

Master node

ssh sbatch

Job

Job

Job

Parallel job Waiting

Waiting

Running

Running

Queue

Figure C.1: Example workflow of a job in SLURM.

SLURM stands for Simple Linux Utility for Resource Management. As illustrated
in Figure C.1, jobs are triggered from a head node (sbatch command) and distributed
to the slaves (queue). In our experiments, machine learning tasks ran sequentially, and
parallel threads were run when using different parameters, algorithms, or datasets.

1 https://www.ucd.ie/itservices/ourservices/researchit/researchcomputing/sonichpc/
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Accuracy Under Switch

Evaluation measure used in this thesis that computes the classification accuracy
only over instances received during a ground truth switch. 143, 263

Adaptive Learning

Subset of incremental learning methods also designed with forgetting mechanisms
to avoid overfitting over time. 7, 48, 49, 56, 61–63, 71, 77, 85, 90, 93, 103, 105–
107, 111, 123, 126

Adaptive market hypothesis

Hypothesis maintaining that the efficiency of a market evolves as market partici-
pants adapt to an environment that changes continuously. In this regard, initially
adaptive heuristics explaining the market may become static in certain market
situations, being financial markets predictable in specific periods [228]. 58, 263

Artificial Intelligence

Subfield of computer science about developing methods that would typically re-
quire human intelligence. 1, 2, 5, 39

Autoencoder

Type of unsupervised neural network. 226

AutoML

Subfield of AI about automated selection and tuning of models. 47

Bagging

Ensemble learning subsampling method to reduce variance in a dataset and in-
crease diversity across base learners. 28, 29, 49, 108, 109, 124, 255

251
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Bear Trend

Downward trend in financial markets. A bear market is a period of a market
where the price tends to decrease. 14, 150, 191, 204

Bull Trend

Upward trend in financial markets. A bull market is a period of a market where
the price tends to increase. 14, 150, 191, 204

Catastrophic Forgetting

Problem in AI where an algorithm might tend to forget knowledge learned pre-
viously and still relevant when learning new information. 61, 74, 93

Centroid

Center of a cluster or area with the greatest density (depending on the algorithm)
in non-supervised learning. 24, 25, 50, 51, 163

Cluster

A group of instances computed by a non-supervised learning algorithm. It rep-
resents a segment of the data distribution in a certain period. 23–25, 39, 40, 47,
50, 51, 80, 82, 83, 85, 163, 192, 217, 252

Computational Finance

This is an application area of computer science which deals with problems of the
financial domain. 1, 3, 4, 58, 88, 124, 220, 224, 226

Concept

A state in the regime dynamics of the data stream for which a machine learning
model is stable. See concept drift. 2, 5, 6, 9, 39, 41, 45–47, 50, 54, 60–62, 64, 68,
69, 74–83, 85, 88, 92, 98, 104–106, 111, 113, 114, 119, 120, 123–125, 127, 128,
131, 136–138, 141, 142, 144, 151, 153, 163, 165, 169, 190, 193, 194, 219, 220, 228,
230–232, 236, 252, 260

Concept cluster

Cluster representing a concept in a data stream. 47, 80, 81
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Concept Drift

Change in the probability distribution or mapping between the independent and
dependent features in a data stream. xiii, xxv, xxvi, 2–7, 9, 11, 16, 36, 39, 40,
42–46, 48–50, 56, 57, 59–71, 77, 79, 80, 82, 86, 88, 89, 94, 98, 104–109, 111,
112, 114, 119, 120, 122–128, 130, 132, 133, 135–139, 142–145, 149–154, 157, 161,
171–173, 175, 179, 183, 193, 195, 205, 213, 216, 217, 220, 222–226, 236, 252, 260

Concept History

Also known as concept list in the literature. A pool of previous learners which
is used for model reuse in case of recurring concept drifts. In GroCH, a concept
history is made of a set of groups. 46, 74, 78–80, 106–114, 116, 118–130, 132–
136, 138–142, 146–149, 164, 165, 169, 171, 173, 175, 176, 181, 190, 192, 193, 195,
202–204, 224, 230–234, 236

Concept History Group

In GroCH, a group defines a concept in the pool of historical models. Each group
is represented by a topology and contains many idle classifiers. xxvii, 125–136,
139–141, 144–149, 163–165, 167, 171–174, 176, 177, 179, 181, 190, 192, 193, 195,
196, 203, 224, 231–234, 236

Concept Similarity

This is an unsupervised metric to measure distances between concepts in the data
stream mining literature. 46, 74, 80, 81, 128, 131, 141, 170, 172, 174, 190, 194

Conceptual Equivalence

Supervised metric to measure the similarity between two models by comparing
their classification performance during a period in a data stream. 46, 47, 74, 78,
79, 132, 141, 167, 192

Continuous Learning

A subfield of machine learning that includes techniques and algorithms to learn
continuously from a data stream. 4, 5, 11, 35, 52, 56, 57, 61, 63, 103, 221, 226

Data Maturity

The ability of an organisation to extract insights and make decisions using its
data. 4
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Data Stream

Continuous data flow of information, in the form of ordered data instances or
chunks (sets of instances or batch) arriving at different speeds or time intervals.
v, ix, 1–3, 5–11, 23, 26, 30–34, 36–44, 46, 47, 49, 50, 53, 55, 56, 60–64, 66–71,
74–83, 86, 88, 90, 92, 97, 99, 104, 106–110, 113, 118–123, 125, 128–130, 133,
135–137, 142, 144, 149, 151, 152, 157, 159, 165–167, 171–173, 175, 178, 179, 181,
183–188, 192, 195–198, 212, 214, 217, 219–221, 223, 225, 226, 230, 231, 240, 252

Data Stream Mining

Also known as data stream analysis or data stream learning. It is a subfield of
machine learning that investigates learning models for continuous and infinite
data streams of information. 37, 38, 41, 46, 47, 50, 55–57, 60–63, 70, 71, 73, 74,
81, 82, 85, 86, 88, 90, 91, 93, 99, 103, 106, 109, 114, 116, 123, 124, 140, 197, 203,
209, 217, 219, 220, 223, 225, 226, 259

Deep Learning

Subfield of machine learning based on deep artificial neural networks (conven-
tionally of more than three layers). 4, 46, 55, 61, 85, 99

Deterministic Algorithm

Algorithm that produces the same output under all circumstances for a given
input. 164

Efficient market hypothesis

Hypothesis in finance maintaining that all stocks trade at their fair value because
all available information about the market is already incorporated into its prices.
13, 264

Ensemble

Machine learning method that uses a diverse set of weak learners and aggregates
their output to produce stronger predictions. 4, 27–29, 48, 49, 62, 63, 65, 70, 71,
73–75, 77–83, 86, 88, 89, 106, 107, 109–112, 117, 118, 120, 123, 124, 137, 141,
219, 222

Euclidean distance

Straight distance between two points or instances in a multivariate space. 24–26,
29, 47, 81, 133, 135, 194, 231
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Example

This is a row of data containing a set of features received by the algorithm. Also
called instance in this thesis. 22, 29, 30, 49, 84, 91–96, 99, 101, 102, 104, 114,
117, 121, 126–128, 130–139, 144, 192, 194, 205, 216, 232, 244

Explainable AI

Subfield of AI that makes model predictions interpretable and understandable. 5

F1-score

Classification performance measure that expresses the mean between precision
and recall. 31

Factor analysis

Unsupervised machine learning algorithm commonly used for dimensionality re-
duction. 226

Feature bagging

Random (feature) subspace technique based on the bagging method and used in
the random forest algorithm. 29

Gold Standard

Term used in statistics to refer to a result that is accepted as the best available
option under reasonable circumstances. This is commonly used in many subfields
of AI to refer to target or dependent features obtained by automated labelling
processes and without certainty of being a ground truth. 140

Grid Search

Exhaustive parameter search over specified values or ranges. 156, 166, 250

Ground Truth

Term used in AI to refer to the actual real values of a variable (usually the target
feature). xxvi, 6, 9, 10, 16, 31, 35, 39, 40, 50, 67, 81, 82, 114, 120, 124, 125, 128,
133, 140, 142–150, 154, 157, 163, 164, 169, 171–176, 178, 179, 181, 185, 186, 190,
191, 194, 195, 205, 212, 214, 216, 217, 220, 222, 225, 226, 230–234, 236
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Holdout

Evaluation scheme where train, validation and test splits are independent sam-
ples. 34, 35

Incremental Learning

Subset of machine learning methods designed to learn incrementally over time.
2, 9, 37, 62, 70, 103, 223, 225, 251, 257

Instance

Data example to be used in pre-training, parameter tuning, training or evaluation
tasks. 5, 22–24, 26, 28–31, 33–35, 37–39, 41–45, 47–50, 52, 53, 62, 64, 70, 73, 75,
80, 82, 83, 85, 94–97, 99, 100, 103, 108–114, 116–118, 121, 122, 134, 138, 139,
141–145, 147–150, 157, 159, 164, 165, 169, 170, 173–176, 178, 179, 181, 183, 185,
186, 189, 192, 193, 199, 233–235, 240, 243, 244

Kappa statistics

Classification performance measure that expresses agreement between observa-
tions. Initially introduced by Cohen [93], it considered the randomness of each
class for rating the strength of a classifier. xxviii, 31–33, 143, 165, 185, 186, 189,
195, 196, 209, 213–215, 220, 222

Kappa Statistics Under Switch

Evaluation measure used in this thesis that computes the kappa statistic only
over instances received during a ground truth switch. 143, 266

Lag

In the time series field, a feature value in a certain point in time receives the
name of lag. 18

Latent Space Representation

Representation of a data point in a lower dimensional space with all the relevant
information. 60

Machine Learning

Subfield of AI based on the study of computer algorithms able to learn automat-
ically using data. 1–9, 11, 22–24, 29–31, 33–38, 44, 55–57, 59–62, 70, 75, 83, 85,
86, 88–90, 99, 106, 157, 185, 217, 219, 221, 223, 224, 249, 250
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Mahalanobis distance

This method can be seen as an extension of the Euclidean distance, where features
are weights based on a covariance matrix that accounts for the variance of each
feature and the correlation among features. 24, 26, 133, 135, 159, 165, 190, 194,
202–204, 231, 243, 244

Majority voting

Aggregation technique in classification tasks where the global prediction of an
ensemble is the most voted class by all the weak learners (or the one with most
weight if using weighted majority voting). 28, 138

Mann Whitney Wilcoxon Test

Non-parametric test to be applied to independent tests. It tests the equality of
means in two independent samples. Used in post-hoc tests to check for statistical
significance and validate the results. 117, 165, 201

Meta-learning

Machine learning subfield including techniques that can decide when to train,
when and what model to replace, when to forget a learner and when to create
one. by using the evaluation performance metrics of active and historical models.
47, 74, 76–78, 81, 88, 124, 134, 189

Mini-batch Learning

Subset of incremental learning methods, adaptive or not, that receive sets of
instances (batches) of data at a time. A purely incremental algorithm would
receive instances one by one. 63, 70, 73, 74, 77, 89, 91–93, 99, 102, 104

Mutual information

In statistics, known as mutual dependence, or non-linear correlation, between
two variables. 234

Neural Network

Machine learning algorithm designed to mimic the human brain. This is tradi-
tionally used for prediction with non-linear data. xi, 4, 29, 50, 61, 64, 86, 251,
254, 259
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Normalisation

In machine learning and statistics, this term usually refers to scaling the input
data to an algorithm before training or evaluation tasks. 86, 117

One-pass Learning

Fashion to perform learning tasks seeing the data once rather than having multi-
ple passes (or epochs). This is usual in online learning settings and is also known
as single-pass learning. 38, 48, 70, 126, 134, 136, 169, 190, 194

Online Incremental Machine Learning

Subfield of machine learning aimed to deal with infinite data streams. These are
single-pass and always up to date. 7, 8, 11, 13, 17, 32, 33, 36, 55, 57, 60, 70, 89,
91, 221, 223, 258

Online Machine Learning

See online incremental machine learning methods. v, 1, 2, 8, 11, 27, 33, 36, 47,
55, 56, 123

Out of Sample

In statistics, term used to refer to data unseen by the model. It can be used to
refer to a test set or future time points in a time series. 34

Precision

This classification performance measure represents the percentage of positive
classifications being correct. 31, 255

Prequential

Interleaved test-then-train evaluation, a convention in the field of data stream
mining. 31, 35, 38, 73, 99, 116, 140, 143, 165, 166, 201, 243

Principal Components Analysis

Principal components analysis, known as PCA, is a dimensionality reduction
algorithm that aggregates features into a smaller set of attributes. 226
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Prototypes

Set of instances generated or selected by an algorithm. Term used to refer to
the output of a prototype reduction algorithm. 31, 50, 52–54, 83–85, 88, 91–94,
96–98, 100, 103, 104, 125, 130, 169, 174, 190, 194, 230, 232

Quantisation Error

In this thesis, it refers to the difference (error) between the initial ground truth
distribution and a summarised topology. 92, 169, 230, 232

RAM-Hours

Computational performance evaluation measure reporting megabytes of RAM
used per hour. xxx, 31, 33, 69, 149, 188, 206, 210, 214

Recall

This classification performance measure represents the percentage of true posi-
tives classified correctly. 31, 255

Recovery Analysis

Recovery analysis [312] is another research topic that has arisen from the survival
analysis research topic. While the former represents how long will it be until an
event occurs, recovery analysis refers to, after that event, when will the system
be able to recover. 68, 69, 157

Recurring Neural Network

Type of neural network with a design that allows learning sequentially, keeping a
memory in temporal data, but also in other domains where the context is crucial.
This technique is not part of the state of the art in data stream mining and had
not been used in conjunction to drift detection techniques in the literature to the
best of our knowledge at the time of writing this thesis. 267

Regime Change

In this thesis, this term refers to a change in the behaviour of a time series over
time due to external changes. 1, 5, 12–16, 57–59, 106, 175, 196

Regime Switch

Used interchangeably with regimechange to express a change in the time-series
dynamics. In the relevant literature, these are usually attributed to changes in



260
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

geopolitical variables, which are then reflected but not explicitly captured by a
financial time series. 164, 172, 173, 181, 185, 204

Reinforcement Learning

Subfield of machine learning based on reward functions and policies. 55, 61

Skewness

In statistics. it refers to the level of asymmetry in the data distribution. 5, 34,
104

Stability-plasticity Dilemma

Balance between the retention of previously learned knowledge (stability) while
adapting to new concepts (plasticity). 5, 39, 60

Structural Break

Sudden change of the behaviour of a time series in a given point in time. In this
thesis, we relate this to the problem of concept drift. 3, 7, 13, 16, 39, 41, 42,
56–58, 60, 88, 106, 142, 153, 176, 183, 189, 212, 214, 219, 221, 223, 224, 226

Stylised Facts

Term used in economics to refer to consistent empirical findings accepted as truth.
61

Subtopology

In this thesis, we call subtopology a topology that uses a feature subset of all the
attributes used to evaluate and train a model. Different feature subsets used in
this regard will constitute different subtopologies. 168, 169, 174

Survival Analysis

Statistical method that studies the time left for an event to happen. 68, 259

Time Series

Sequence of numerical observations gathered sequentially in time. Traditionally
used for forecasting and simulation. 3, 5, 7, 9, 16, 18–20, 22, 36–38, 56, 59, 61–63,
87, 89, 125, 135, 136, 140, 142, 150–154, 157, 160, 164, 171, 195, 197, 219, 220,
222, 224, 243
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Topology

Term used in the research paper that introduced growing neural gas [136] to refer
to the unsupervised relationships between instances in the data set, which should
be preserved when performing a summary of the data generating prototypes.
In this thesis, we use this term to refer to the set of prototypes or instances
representing a concept. 29, 51, 53, 54, 85, 89, 91, 92, 94, 98, 100, 103, 104, 125,
128–136, 138–140, 148, 165, 169, 172, 174, 189–194

Transfer learning

Subfield of machine learning that reuses knowledge previously learned by a model.
Typically, pre-trained models would be retrieved to transfer previous learning and
then fine tuned to be adapted to a new problem. In this thesis, we mainly relate
this term to the task of model reuse in meta-learning. 46, 61, 268

Warning window

Period of time between the detection of a warning and a drift. xxvi, 45, 75, 81,
108–114, 118, 120, 124, 126–139, 141, 142, 170, 172, 173, 178, 192, 232
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ADWIN2

Drift detector based on the ADaptive WINdowing algorithm. 45, 49, 64

AHOEFT

Adaptive Hoeffding tree (same as HAT). 116

AI

Artificial intelligence. vi, 1–4, 11, 12, 22, 55, 59, 85, 88, 219, 251, 252

AMH

Adaptive market hypothesis. 58

ARF

Adaptive random forest. 72–74, 79–81, 107, 108, 111, 116, 118–120, 122, 123,
141, 142

ARMA

Autoregressive–moving-average model. 19, 20, 155, 156

AUS

Accuracy under switch performance measure. 143, 165, 166, 183, 185, 189, 195

BWX

International bonds - SPDR Barclays International Treasury Bond ETF. 154,
161
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CH

Concept history. 111–114, 120, 121, 131, 138, 140, 144, 147, 148, 164, 165, 228,
232

CPF

Concept profiling framework. 75, 79, 80, 141, 142, 167, 168, 172, 174, 176, 182,
183, 185, 192, 193, 212, 215

DC

Directional change. 161

DDM

Drift detection method. 45, 65, 73, 171

ECPF

Enhanced concept profiling framework. 80, 81, 141, 142, 167, 168, 172, 174, 176,
183, 185, 186, 188, 189, 212, 213, 215, 217

EDDM

Early drift detection method. 45

EMH

Efficient market hypothesis. 13, 14, 16, 22, 58, 220

ENN

Wilson’s edited nearest neighbours 29, 30, 93–96, 98, 100, 102–104

ETF

Exchange traded fund. 114, 123, 154, 155, 160, 161, 163, 196, 198, 220, 222

FIFO

First in first out policy. 132

FN

False negative in a classification task. 31, 145, 147, 148
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FP

False positive in a classification task. 31, 145, 147, 148

GARCH

Generalized autoregressive conditional heteroskedasticity model. 18–21, 155, 156

GNG

Growing neural gas. 31, 52–54, 85, 91–95, 97, 98, 100, 102–105, 134, 135, 169,
170, 174, 189, 190, 194, 225, 230, 232, 265

GroCH

Growing concept history of recurring classifiers. 10, 125–128, 130, 131, 133–142,
144–148, 150, 155, 163–167, 169–174, 176–183, 185–190, 192–196, 201–204, 209,
212–217, 220–225, 227–233, 235, 243, 249

GT

Ground truth. 142, 147–150, 159, 164, 165, 173, 178, 179, 183, 186, 189

HAT

Hoeffding adaptive tree. 48, 49, 64, 116, 263

HDDMA

Drift detection method based on Hoeffding’s bounds using simple moving aver-
ages. 46, 65, 171, 230, 234

HFT

High frequency trading. 1–3, 6

HPC

High-performance cluster. 250

HT

Hoeffding tree. 48, 49, 66, 70, 73, 167, 168, 170, 172, 175, 176, 179, 183, 185,
186, 201, 213, 229, 234

iGNGSVM

Online incremental GNG-SVM. 9, 92–105, 124, 219, 221, 225



266
ADAPTIVE ALGORITHMS FOR CLASSIFICATION AND PREDICTION ON

HIGH-FREQUENCY DATA STREAMS

IoT

Internet of things. 226

KUS

Kappa statistics under switch performance measure. 143, 185, 186, 195

LIFO

Last in first out policy. 132

LUFO

Least used last out policy. 130, 193

ML

Machine learning. 57, 58

MOA

Massive online analysis framework for data stream mining. 27, 32, 55, 99, 116,
141, 143, 152, 165, 171, 172, 195, 227, 229

NB

Naive Bayes. 26–28, 66, 70, 167, 170, 172, 179, 180, 183, 185–187, 189, 201, 212,
214–216, 229

OHLC

Open-high-low-close financial prices. 157, 159

PFF

Securities/Fixed-income preferred - iShares Preferred and Income Securities ETF.
154, 161

PG

Prototype generation. 30, 31, 84, 91, 92, 194

PS

Prototype reduction. 30, 31
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RC

Regime change. 1–3, 7, 9, 14–16, 59, 106, 219, 220, 223, 224, 226

RCARF

Recurring concepts adaptive random forest. xxix, 9, 107, 109–114, 116–124, 126,
141, 142, 220, 223–225

RCD

Recurring concept drifts framework. 73, 75, 77, 79, 116, 118, 120, 141, 142

RDDM

Reactive drift detection method. 45, 65

RF

Random forest. 29, 71, 116, 219

RNN

Recurring neural network. 61

ROC

Receiver operating characteristic. 32

S&P 500

Standard and Poor’s 500. xiii, 59, 64, 89, 106, 114, 123, 154, 198, 220

SOTA

State of the art. 141, 170

SPDR

Standard & poor’s depository receipts. xiii, 89, 106, 154, 198, 220

SPY

Equities - SPDR S&P 500 ETF. 114, 115, 154, 161, 198, 199, 203, 209, 220, 222

SVM

Support vector machines. 30, 70, 83, 85, 86, 88, 90–96, 99, 100, 102–104, 124,
265
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TA-Lib

Technical analysis library: https://www.ta-lib.org/. 115, 235

TL

Transfer learning. 46, 61

TN

True negative in a classification task. 31, 144, 145, 147, 148

TP

True positive in a classification task. 31, 144–148, 179

UCD

University College Dublin. vi

VFDT

Very fast decision tree algorithm. Original version of the Hoeffding tree. 48, 175

VNQ

Real-estate - Vanguard Real Estate ETF. 154, 161
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