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Abstract

Non-stationary streaming data poses a familiar challenge in machine learning: the need to
obtain fast and accurate predictions. A data stream is a continuously generated sequence of
data, with data typically arriving rapidly. They are often characterised by a non-stationary
generative process, with concept drift occurring as the process changes. Such processes are
commonly seen in the real world, such as in advertising, shopping trends, environmental
conditions, electricity monitoring and traffic monitoring.

Typical stationary algorithms are ill-suited for use with concept drifting data, thus necessi-
tating more targeted methods. Tree-based methods are a popular approach to this problem,
traditionally focussing on the use of the Hoeffding bound in order to guarantee performance
relative to a stationary scenario. However, there are limited single learners available for
regression scenarios, and those that do exist often struggle to choose between similarly
discriminative splits, leading to longer training times and worse performance. This limited
pool of single learners in turn hampers the performance of ensemble approaches in which
they act as base learners.

In this thesis we seek to remedy this gap in the literature, developing methods which
focus on increasing randomization to both improve predictive performance and reduce the
training times of tree-based ensemble methods. In particular, we have chosen to investigate
the use of randomization as it is known to be able to improve generalization error in
ensembles, and is also expected to lead to fast training times, thus being a natural method
of handling the problems typically experienced by single learners.

We begin in a regression scenario, introducing the Adaptive Trees for Streaming with
Extreme Randomization (ATSER) algorithm; a partially randomized approach based on
the concept of Extremely Randomized (extra) trees. The ATSER algorithm incrementally
trains trees, using the Hoeffding bound to select the best of a random selection of splits.
Simultaneously, the trees also detect and adapt to changes in the data stream. Unlike many
traditional streaming algorithms ATSER trees can easily be extended to include nominal
features. We find that compared to other contemporary methods ensembles of ATSER
trees lead to improved predictive performance whilst also reducing run times.

We then demonstrate the Adaptive Categorisation Trees for Streaming with Extreme



Randomization (ACTSER) algorithm, an adaption of the ATSER algorithm to the more
traditional categorization scenario, again showing improved predictive performance and
reduced runtimes. The inclusion of nominal features is particularly novel in this setting
since typical categorization approaches struggle to handle them.

Finally we examine a completely randomized scenario, where an ensemble of trees is gen-
erated prior to having access to the data stream, while also considering multivariate splits
in addition to the traditional axis-aligned approach. We find that through the combination
of a forgetting mechanism in linear models and dynamic weighting for ensemble members,
we are able to avoid explicitly testing for concept drift. This leads to fast ensembles
with strong predictive performance, whilst also requiring fewer parameters than other
contemporary methods.

For each of the proposed methods in this thesis, we demonstrate empirically that they are
effective over a variety of different non-stationary data streams, including on multiple
types of concept drift. Furthermore, in comparison to other contemporary data streaming
algorithms, we find the biggest improvements in performance are on noisy data streams.
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Chapter 1

Introduction

One of the hallmarks of the modern era is the rapid development of machine learning.
Since the advent of computers, humanity has turned to them to perform tasks on our
behalf, leading to revolutionary improvements in the quality of our lives. Machine learning
is a particularly important area in this regard, with practitioners constantly seeking to
create algorithms that allow computers to learn and adapt to “experiences” without explicit
intervention. This “experience” is passed to computers in the form of data, with algorithms
designed to learn by recognising patterns in the data presented. In this manner machines
are able to learn to perform a wide variety of tasks, many of which we are inefficient at or
even incapable of performing ourselves, including speech and image recognition, medical
diagnoses, natural language processing, email filtering, and robotics, all of which have
become embedded in modern society as ways to improve and develop our daily lives.

1.1 Contextual Setting

Machine learning is broadly comprised of three major categories: unsupervised, supervised
and reinforcement learning. In the context of this thesis, we focus on supervised learning.
In this setting data arrives in pairs of input and target output values, which are used to
learn a mapping between the provided input and target output values. After the mapping is
learnt, a provided input can be used to predict an unknown target output in a task known as
predictive modelling.

Predictive modelling has applications across many fields. Given a sufficiently accurate
mapping, it is able to answer questions we may not have an obvious answer to, such as

“Which disease do these symptoms suggest a patient has?”, “Which consumer would be most

interested in these products?”, and “What will the traffic be like in Exeter tomorrow?”.
However, it is clear that training an accurate model for these circumstances requires a
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1. Introduction

nuanced approach. For example, consumer tendencies change over time, meaning that
any mapping learnt will only be accurate for a short period. This leads us to the next
consideration of this thesis: dataset shift.

A common assumption in supervised learning is that the data used to train a model follow
the same distribution as the data the model will be used to make predictions on: the
testing data. Intuitively, this makes sense as a model is learnt based on the training data.
Consequently, it would be reasonable to expect more accurate predictions on similar data
since the information it received when learning is more relevant to such data. However,
this assumption of the training and testing data following identical distributions is often
violated in real-world problems. While this disparity between the training and testing data
can take a number of different forms, the general case may be termed as “dataset shift”
[Quiñonero-Candela et al., 2009].

In this thesis, we focus on a specific form of dataset shift, in which the incoming data
are projected to arrive sequentially over time as a non-stationary data stream [Aggarwal,
2006]. Under this framework, the effect of dataset shift, which can occur over a number of
examples and at multiple points in the stream, is a phenomenon termed as “concept drift”
[Widmer and Kubat, 1996]. In comparison to the stationary or batch learning scenarios
in which dataset shift occurs, the streaming setting means working with concept drifting
data is considerably more challenging as the underlying generative distribution of the data
cannot be assumed to be constant over a training set or batch of data, making it harder to
identify and correct for drifts.

This sets up learning under concept drift as a specific form of online learning, in which the
incoming data are are not assumed to be stationary over time. Unlike traditional time series
forecasting, no complete training set is assumed to be available at any given time, and
older data may be related to previous concepts and thus unsuitable for learning from. On
the other hand, while data streams may be infinitely long and lead to a continual learning
process, unlike lifelong learning the data stream provides a fixed domain on which tasks
are required to be performed.

Perhaps the most well known foundational algorithm for learning in a streaming data
scenario is the Very Fast Decision Tree (VFDT), or Hoeffding Tree [Domingos and Hulten,
2000]. The VFDT provides a method of learning decision trees from a data stream, using
the Hoeffding Bound [Hoeffding, 1963] to provide a theoretical guarantee of converging
to the stationary result, providing the data stream is stationary. On the other hand, it is
widely recognised that the VFDT typically performs poorly in the presence of concept
drift. This has led to a number of approaches being introduced for use in this scenario,
with most revolving around the idea of adaption: adaptive algorithms are able to update
the mapping they learn in reaction to drifts in the data. One of the first adaptive algorithms
is a modification of the VFDT known as the Concept-Adapting Very Fast Decision Tree
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(CVFDT). Other decision tree based algorithms have also been developed around the
VFDT, often focussing on either single learners [Pfahringer et al., 2007; Bifet and Gavald,
2009; Manapragada et al., 2018], or on ensembles in which decision trees act as the base
learners [Kolter and Maloof, 2003; Bifet et al., 2012].

Most research has, however, been targeted at classification problems. Perhaps the first
major work on concept drift in a regression is the Fast Incremental Decision Tree with
Drift Detection (FIMTDD) algorithm [Ikonomovska et al., 2011b], which trains an online
regression tree that adapts in response to changes in the data stream. While following
works have developed the regression approach using ensembles [Gomes et al., 2018]
and extended it to handle other scenarios such as multi-target regression [Osojnik et al.,
2018], there has been limited attention given to alternative strategies for training single
learners. This is problematic since it has limited diversity in ensemble approaches in
which FIMT-DD acts as a base learner. An example of this can be seen in areas in which
FIMT-DD struggles, such as choosing between similarly discriminative splits, in turn being
a common problem across ensemble strategies.

One strategy which may be able to overcome difficulties in the FIMT-DD algorithm is the
use of randomization, since randomly choosing a split would remove the need to choose
between similarly discriminative ones. Furthermore, randomization has been shown to be
able to improve generalization error in ensembles trained for use with concept-drifting
data, [Minku et al., 2010; Minku and Yao, 2012] . Another benefit of randomization-
based approaches is that they typically train multiple weak learners, with each having
lower data requirements than non-randomized approaches. Consequently, we also expect
randomization to lead to to reduced training times, thus being a natural method of handling
many of the the problems experienced by models designed for concept drifting regression
streams.

This thesis contains works for training predictive models in the presence of concept drift.
It primarily looks toward a regression scenario, in which it seeks to address the limited
pool of single learners and problems caused by dependence on the FIMT-DD algorithm in
many ensembles. It does this through the development of additional tree-based approaches,
offering alternative strategies for training single learners, and presenting ensembles of them
for comparison with other contemporary algorithms. In particular, it explores the use of
randomization in the splitting process when growing decision trees, and also considers the
idea of fully randomized decision trees which can be pre-grown before observing data. It
further examines the effectiveness of applying some of the methods in the better-addressed
classification scenario.
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1.2 Research goals

The main goal of this thesis is to study decision tree based methods for predictive modelling
on data streams. As data streams are characterized by high volumes and frequencies of
examples, they necessitate a secondary goal of simultaneously minimizing the required
training and testing times. To these ends, we aim to examine the impact of randomization
in the structure of decision trees on their predictive performance. Randomization has
previously been shown to improve the generalization ability of models with concept
drifting data [Minku et al., 2010; Minku and Yao, 2012], leading to improved predictive
performance. In our setting, we further hope to take advantage of randomization to reduce
the time complexity of algorithms. Thus, throughout this thesis, we focus on the following
research questions:

- Does randomization in the structure of decision trees impact their predictive perfor-
mance on nonstationary data streams?

- If so, to what extent is randomization in the structure of decision trees helpful for
improving performance?

- Can randomization in the structure of decision trees be used to reduce their run times
whilst simultaneously maintaining similar levels of predictive performance.

1.3 Contributions

This thesis focusses on the problem of predictive modelling with non-stationary data
streams. It aims to provide rapidly training incremental algorithms for making accurate
predictions on an unknown and likely non-stationary data stream. Our main contributions
are listed as follows:

1. We have designed and implemented the Adaptive Trees for Streaming with Extreme
Randomization algorithm (ATSER) for use with regression data streams. We intro-
duce an adaptive modelling approach in the leaves, allowing them to better adapt
in the presence of localized concept drift, while the novel splitting mechanism we
suggest allows us to leverage the use of randomization during the splitting pro-
cess. Together, this method leads to shorter splitting times and improved predictive
accuracy compared to previously suggested approaches.

2. We have adapted the ATSER algorithm to a categorization scenario and implemented
it. We show that our novel splitting mechanism allows the inclusion of nominal
variables - a previously prohibitively expensive task for other streaming classification
algorithms.
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3. We have taken a Bayesian approach to design a model based on an ensemble of pre-
grown regression trees with tree weights found using importance weighting. We show
that this allows us to decouple the tree construction from the data, reducing initial
training times whilst still retaining the ability to adapt in the presence of concept
drift. We introduce a novel technique to handling concept drift in this Bayesian
framework, and show that this principled approach leads to accurate predictions,
but with slow runtimes. We further introduce a novel approximation of this method
for use in a data streaming scenario, leading to a faster algorithm while retaining a
strong predictive performance in comparison to other contemporary methods.

1.4 Layout

This introduction is designed to begin by providing the reader with a broad overview of
the topic of this thesis, highlighting the main goals motivating the work undertaken, and
the primary contributions of the thesis.

Chapter 2 gives a breakdown of concept drift classifications, as well as its stationary
counterpart, dataset shift. It offers a number of methods for classifying different types
of concept drift and dataset shift. Most of these methods can be directly applied in a
streaming scenario and include a theoretically motivated exhaustive breakdown of different
types of shift. It follows with a review of common approaches to predictive modelling
under a theoretical classification of dataset shift.

Chapter 3 gives a more detailed review of the literature pertaining to concept drift. It
provides an overview of the setting which they concept drift occurs, before then reviewing
common approaches to both detecting and predictive modelling with concept drifting data.
The review focusses in particular on methods based on both decision trees and ensembles
of decision trees. Finally, a discussion of the methodologies used to evaluate predictive
models designed for concept drifting streaming data is presented.

Chapter 4 introduces the Adaptive Trees for Streaming with Extreme Randomization
(ATSER) algorithm. It begins with a discussion of the related literature, before introducing
the ATSER algorithm and illustrating how it seeks to build on previous concept adapting
regression tree techniques. It then empirically demonstrates the performance, showing how
the approach leads to improved predictive accuracy and reduces training times relative to
other contemporary algorithms.

Chapter 5 introduces the Adaptive Classification Trees for Streaming with Extreme Ran-
domization (ACTSER) algorithm. It begins by providing an overview of the related
literature in a classification scenario, before introducing an adaption of ATSER to a classifi-
cation setting. It shows that the novel splitting mechanism provides an easy way to include
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nominal features in the tree construction process, which is prohibitively costly under other
contemporary approaches, before providing a comparison of the performance with other
contemporary algorithms.

Chapter 6 begins by introducing a principled Bayesian method to modelling on non-
stationary streaming data, based on the use of a random forest to partition data. It shows
how the trees within the model can be grown before data arrives, allowing the training time
after each example arrives to be reduced. While the approach we present is robust, it is
also slow, a common flaw among Bayesian techniques. To supplement this, Chapter 6 also
presents an approximation the model which is better suited for use in a streaming scenario
due to having a lower time complexity. Finally, empirical results from both the Bayesian
approach and the approximation are presented.

Finally, we conclude in chapter 7. We present a summary of the findings and contributions
of this thesis, providing possible directions for further work.
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Chapter 2

Characterizing Concept Drift and
Dataset Shift

Problems on concept drift have been studied for a long period, with the phrase “concept
drift” first being noted by Schlimmer et al. [1986] and Widmer and Kubat [1996] amongst
streaming literature. It has also arisen independently in a stationary and batch learning
scenario, under the term “dataset shift”. This term was first introduced in the book ‘Dataset
Shift in Machine Learning’ [Quiñonero-Candela et al., 2009]. According to the definition
given there, ‘Dataset shift is a common problem in predictive modelling that occurs when
the joint distribution of inputs and outputs differs between training and test stages’. Dataset
shift is the stationary counterpart to concept drift, although mathematically, both follow
the same definition:

ptr(y,x) 6= pte(y,x) (2.1)

where ptr(y,x) and pte(y,x) refer to the joint distributions of the examples, (y,x), in the
training and testing datasets respectively, whilst the examples are comprised of the labels,
y, and covariates, x. Consequently, the difference between concept drift and dataset shift
is based purely on the scenarios in which a drift or shift occurs. Typically, it is assumed in
dataset shift scenarios that a set or batch of training data is available, for which ptr(y,x)

is fixed. However, for concept drifting scenarios there is a temporal aspect to the data
distribution as drifts may occur as new examples arrive, meaning there is no guarantee that
ptr(y,x) is fixed for the data used for training.

From the definition of concept drift in Equation 2.1, it is obvious that it occurs to some
degree in almost all real-world problems, as both the training and testing sets, and the
distributions from which they are drawn, are seldom identical. While the magnitude of
these drifts may differ between problems, they are often non-negligible and, consequently,
concept drift is an important factor to consider when building predictive models.
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2.1 Types of Concept Drift

Over recent years, different forms of dataset shift have garnered increasing amounts of
attention. However, it is challenging to make a collective analysis as the broad relevance
of the topic means it has received attention in both stationary and streaming fields, each
with a different focus. This has led to the literature being fractured, an issue that continues
to persist despite a number of unifying attempts.

The split in the literature is especially prevalent due to a difference in terminology between
the stationary and streaming scenarios. Gama et al. [2014] formally define the term
“concept drift” in the same way as Equation 2.1, the definition [Quiñonero-Candela et al.,
2009] used for dataset shift. However, further breakdowns of types concept drift are
challenging to discuss due to the number of ways a drift can occur, leading to many ways
of classifying them, each with their own advantages.

2.1.1 A Theoretical Classification

One way of categorising concept drift is a purely theoretical decomposition, as suggested
by Moreno-Torres et al. [2012], who propose a theoretically motivated method of splitting
dataset shift into 3 main types based on the effects of the shift, namely; simple covariate
shift, prior probability shift, and concept shift. While originally presented in a dataset shift
framework, these definitions also hold for concept drift.

With features x and targets y, we denote by x→ y problems where x causes y. Then, the
types of dataset shift suggested by Moreno-Torres et al. [2012] shifts can be seen from the
definition of dataset shift given in Equation 2.1, which can be written as:

ptr(y|x)ptr(x) 6= pte(y|x)pte(x) (2.2)

in the case of x→ y problems, or as:

ptr(x|y)ptr(y) 6= pte(x|y)pte(y) (2.3)

in the case of y→ x problems. From Equation 2.2, it can then be seen that dataset shift in
the x→ y case must be due to either a difference in the covariate distribution:

ptr(x) 6= pte(x) (2.4)

or a difference in the mappings:

ptr(y|x) 6= pte(y|x) (2.5)
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or a combination of these. These two cases are known as simple covariate shift and concept
shift respectively. Furthermore, in the y→ x case given in Equation 2.3, a shift can arise
from either a difference in the prior probability:

ptr(y) 6= pte(y) (2.6)

or a difference in the mappings:

ptr(x|y) 6= pte(x|y). (2.7)

Consequently, the shift shown in Equation 2.6 is known as prior probability shift, while
Equation 2.7 details another form of concept shift. Altogether this leads to a total of 3
main types of dataset shift.

For completeness, Moreno-Torres et al. [2012] also note that it is theoretically possible
to have a different type of shift which would take the form ptr(x|y) 6= pte(x|y) in x→ y

problems or ptr(y|x) 6= pte(y|x) when y → x. However, they also point out that such
shifts are uncommon and are considered too difficult to handle, and as such they will not
be discussed in this thesis.

This breakdown is appealing since the theoretical motivation it follows is exhaustive,
although Webb et al. [2016] argue that some of the constraints in the definitions are too
strong. A similar classification to this arising in the data streaming field has been suggested
by Gama et al. [2014], who provide a similar breakdown, referring to concept shift as “real
concept drift” and using the term “virtual drift” to collectively refer to both covariate and
prior probability shift. Further works on concept drift have also adopted this theoretical
approach [Khamassi et al., 2018].

2.1.2 A Characteristic Classification

One of the earliest classifications of types of concept drift arising from streaming data
is an approach based on the properties of the drift. In most streaming literature, concept
drift has traditionally been split into four different categories: abrupt, gradual, incremental
and recurring concepts [Kuncheva, 2004; Narasimhamurthy and Kuncheva, 2007; Žliobait,
2010; Gama et al., 2014]. Furthermore, while not actually a drift, it is important to consider
that when viewing an outlier in a streaming scenario, it may appear to be a drift. This
breakdown is a qualitative breakdown, based on the perceived properties of the drift, and is
often helpful when considering algorithm design. An illustration of these types of drifts
can be seen in Figure 2.1, in which the probability of incoming data being generated under
the initial concept regime (here labelled C0) is shown to change over time.

Each type of real concept drift possesses different characteristics, as detailed in the follow-
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Figure 2.1. Illustrations of different types of concept drift. The points shown represent the
probability of each incoming example following the initial concept regime, termed C0.

ing descriptions:

Abrupt: In an abrupt drift, the concepts change over a very short time frame relative
to the frequency of incoming data, effectively instantly switching from one
concept regime to another. Consider electricity consumption for lighting at
different times of day. An abrupt drift occurs at the daylight saving time
switch-over, as the times instantly correspond to different consumption
amounts.

Incremental: In an incremental drift, the concepts change much more slowly. One man-
ner in which this may occur is with incoming data being split between
multiple concept regimes during a transition period. Electricity consump-
tion for lighting at different times of day also experiences incremental drifts
as the seasons change across the year.

Gradual: In a gradual drift, each incoming set of data at a specific time all follows
the same concept, but there is a period of time where the data switch
between two concepts. This might occur with electricity bills, where if a
competing electricity provider lowers prices to attract customers, eventually
consumers will transition towards the competitor.

Recurring: In a recurring drift, the concepts recur, with concepts that leave the data be-
ing reintroduced at later times. Again, electricity consumption for lighting
experiences this type of drift, with a recurring drift from year-to-year.

Outlier: While not actually a form of concept drift, outliers may be mistaken for one
and thus are an important consideration when working with data expected
to exhibit concept drift.
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Table 2.1. The concept drift categorization proposed by Minku et al. [2010].
Criteria Categories

Drift in Isolation

Severity
Class

Severe
Intersected

Feature
Severe

Intersected

Speed
Abrupt

Gradual
Proabilistic
Continuous

Drift in Sequences

Predictability
Predictable

Non Predictable

Frequency
Periodic

Non-Periodic

Recurrence
Recurrent

Cyclic
Unordered

Non-Recurrent

It is clear that this concept drift classification is simple, and mainly based on two main
criteria: the speed of a drift, and its recurrence. However, Minku et al. [2010] argue that
this approach is too simplistic and leads to drift with different behaviour having the same
classification. An example of this can be seen by considering two cases of an incremental
drift, both of which result in the quality of goods produced by a company (the target)
improving over time, despite having no change in the raw materials available (the features).
If the company owns two factories, this drift could be because one factory produces higher
quality goods than the other, and the proportion produced at each factory has changed. On
the other hand, it could also be that the standard of production at one factory has improved.

Minku et al. [2010] argue that because of situations where drifts of the same type occur
very differently, as illustrated in the above example, a further classification is necessary.
They propose a detailed manner of classifying drifts through a number of different criteria,
extending considerations from speed and recurrence to also include frequency, predictabil-
ity and severity, as shown in Table 2.1. This approach provides a clearer classification
of concept drift and allows a deeper study of the topic. However, it also requires more
properties about the data to be known, which can be challenging to estimate beforehand in
practice.

2.1.3 A Causal Classification

While the concept drift classifications introduced so far seek to heterogeneously classify the
type of a drift, multiple types of drift often occur simultaneously in practice. Consequently,
in a dataset shift framework, Storkey [2008] classifies based on the cause of the shift,
as opposed to a theoretically motivated classification, arguing that this is a natural way
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to classify shifts since it allows for the construction of targeted models to handle them.
However, due to the vast number of possible causes of shifts, as well as cases in which the
cause of a shift is unidentifiable, such a framework is hard to evaluate comprehensively and
challenging to develop generally applicable approaches with. As such, Storkey focuses on
six common types of shift: simple covariate shift, prior probability shift, sample selection
bias, imbalanced data, domain shift, and source component shift.

Storkey’s classification of simple covariate and prior probability shift are much the same
as the classification by Moreno-Torres et al. [2012]. Furthermore, Storkey’s use of domain
shift is to indicate a change in the meaning of the numbers, and represents a similar idea
to concept shift. On the other hand, the other shifts are notably different and have gained
more attention in other fields. Sample selection bias has long been of interest in the field
of economics [Heckman, 1979; Vella, 1998], and has only more recently gained attention
as a form of dataset shift [Zadrozny, 2004; Cortes et al., 2008]. In most situations, sample
selection bias has been considered using a binary selection variable, s, such that:

ptr(y,x) = p(y,x|s = −1) = p(y|x, s = −1)p(x|s = −1) (2.8)

pte(y,x) = p(y,x|s = 1) = p(y|x, s = 1)p(x|s = 1). (2.9)

In this way, case by case simplifications can be made using Bayes theorem and knowledge
about the type of bias introduced.

Imbalanced data is commonly introduced by design, but is known to have consequences
on classification accuracy [Latinne et al., 2001]. As noted by Storkey, it is a special case
of sample selection bias in which data are excluded in a classification problem based on
their output class. This exclusion is presumed to occur due to the primary focus of the
model being the prediction of rare events. As such, data points are often excluded with
the objective of balancing the number of points in each class. The implicit assumption
here is that the excluded data points have negative value when predicting the rare events.
The methodology for correcting for this form of dataset shift is fairly straightforward, and
simply requires re-weighting and re-normalisation of the output probabilities of being in
each class based on the bias introduced by excluding certain points. However, even under
these circumstances it can be practically challenging to implement corrections, especially
when there are few examples in the minority class, since without many examples any
re-weighting is likely to be unstable.

The final type of dataset shift identified is source component shift. As its name suggests,
source component shift can arise when a dataset is comprised of examples from different
sources. Storkey suggests three different ways this type of shift can occur and, depending
on the origin, provides a different model for each.

This approach is insightful since it provides a method of specifically targeting shifts based
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on their cause. While additional complications arise in a streaming scenario, it is often
possible to know before data arrives whether certain causes of drift will occur, allowing
this dataset shift classification to also provide a foundation for classifying concept drift.
However, practically, streaming data also frequently contains concept drift from unknown
causes. Despite this, separating corrections for some known forms of concept drift whist
simultaneously correcting for an unknown drift may lead to improvements over treating all
of the drift as unknown. While the topic has been largely unaddressed, class imbalance
has received some attention [Hoens et al., 2012; Wang et al., 2013]. In particular, Wang
et al. [2018] have recently shown that in the case of a concept drifting data stream with
class imbalance, adaptively correcting for class imbalance and an unknown concept drift
simultaneously leads to stronger predictive performance.

2.1.4 A Quantitative Classification

Both the magnitude of a drift and the time it takes are key parts of assessing its effects. In
the case of a small drift, very little effect may be felt in a predictive model, while a large
abrupt drift might lead to a sudden large drop in predictive performance. Accordingly,
one method of measuring drifts is based on their their speed and magnitude. However, in
practice, these are challenging to quantify as the speed and magnitude of a drift are based
on the distance of the joint distribution after the drift, pt(x,y), from the joint distribution
before the drift, pt−1(x,y). Both of these quantities are typically not explicitly known and
hard to estimate, especially since the times t− 1 and t at which the drift begins and ends
are often unknown. Consequently, there has been limited investigation into a quantitative
assessment of drifts.

One of the first proposals to classify a drift by its magnitude is the severity measure
suggested by Minku et al. [2010]. The authors propose two metrics for estimating the
severity of a drift based on the percentage of the input space which has its target class
changed, while stating the time taken for a drift can be determined as the number of steps
it takes for the new concept to completely replace the old concept. While this classification
is effective, it is somewhat limited in scenarios where a drift occurs in the features, i.e.
pt(x) 6= pt−1(x), since the target class may remain unaffected.

An alternative definition of magnitude suggested by Webb et al. [2016] is based on the
distance between the old and new concept regimes. The authors also suggest the use of
duration, path length, and rate, with the combined use of all four metrics providing a
comprehensive method of quantifying drifts.
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2. Characterizing Concept Drift and Dataset Shift

2.1.5 Other Classifications

The approaches to classifying concept drift laid out in the previous sections have received
a lot of attention, with both offering different insights into how to handle cases of concept
drift. The classification suggested by Moreno-Torres et al. [2012] is exhaustive, account-
ing for all possible cases of dataset shift and offering some direction in each situation.
However, although the classifications by Minku et al. [2010] and Storkey [2008] are not
similarly exhaustive, the approach of predicting with concept drifting data by identifying its
properties or cause is highly applicable. Furthermore, in many situations a data stream will
experience multiple forms of concept drift, making it a very situational task. Consequently,
having the variety of classification regimes we have discussed is very useful, creating
the option to model for drifts from multiple viewpoints, each of which can offer helpful
insights. This utility has consequently led to more detailed shift classifications [Kull and
Flach, 2014; Webb et al., 2016], which focus on developing and combining the previous
approaches. In particular, Webb et al. [2016] attempt to provide a unified approach to
concept drift, offering a detailed taxonomy of types of concept drift.

It is also worth noting that while the framework laid out by Moreno-Torres et al. [2012]
provides a natural and comprehensive outlook which can be applied to either concept drift
or dataset shift, the different environments in which they arise has led to the different
terminology. The name dataset shift arose in a static environment since a shift occurs
in the concepts between two distinct datasets; the training and testing set. On the other
hand, in a streaming scenario the training and testing sets are dynamic, with incoming data
typically belonging to the testing set before transitioning to the training set. Consequently,
changes in concept appear as a “drift” over examples, leading to the name concept drift.
Furthermore, the research focus in both dataset shift and concept drift literature is largely
distinct, with dataset shift research tending to focus on applying theoretically motivated
corrections to known shifts in the data, whilst concept drift literature tends to be around the
design of algorithms which are robust to, or can take reactive approaches to, an unknown
shift.

2.2 Corrections for Dataset Shift in a Theoretical
Framework

Having seen a number of different classifications of concept drift, we now return to the
comprehensive theoretical framework provided by Moreno-Torres et al. [2012]. We visit
corrections for dataset shift in this setting, seeing that concept drift algorithms have largely
targeted “real concept drift”, overlooking the forms corresponding to “virtual concept
drift”; covariate shift and prior probability shift. While the corrections we examine are not
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Figure 2.2. A graph of observations from 2 time points, t0 and t1, which have undergone covariate
shift. While the underlying function y = f(x) + ε has not changed, observations at t1 tend to have
a higher value for x than those at t0, leading to covariate shift.

directly applicable to scenarios exhibiting concept drift, they provide intuition about the
form of different drifts and a direction for future works in a concept drift setting.

2.2.1 Covariate Shift

Covariate shift is the simplest, and perhaps the most common, type of dataset shift, which
has led to it gathering large amounts of attention from researchers. In particular, it is often
problematic in spam email filtering where the distribution of “spammy” words, used to
identify spam emails, tends to differ between training and testing sets. When considering
covariate shift, the mapping between x and y in the training and testing domains is assumed
to remain constant while the distribution of covariates changes:

ptr(x) 6= pte(x) (2.10)

ptr(y|x) = pte(y|x). (2.11)

An illustration of this can be seen in Figure 2.2.

The term “covariate shift” was first introduced by Shimodaira [2000], who suggested a
method of accounting for covariate shift by re-weighting the training covariate distribution,
ptr(x), to that of the testing distribution, pte(x), finding the optimal weights to be w(x) =
pte(x)
ptr(x)

. An example of the desired re-weighting can be seen in Figure 2.3.

However, while the ratio pte(x)
ptr(x)

is optimal, the method proposed Shimodaira [2000] of
directly estimating the distributions ptr(x) and pte(x) is very difficult in practice. If n
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Figure 2.3. Illustrations of a potential training and testing distribution (unnormalised) in one
dimension, as well as the desired re-weighting distribution.

examples are necessary to obtain a sufficiently good estimate of the probability distribution
in one dimension, roughly nd examples are needed to obtain an equally good estimation in
d dimensions. While this may be possible for lower dimensional data, obtaining enough
data for a good estimate of the joint covariate distribution clearly becomes impractical very
quickly as d increases. This is important as small errors in the covariate distribution can
create large errors in the weights, especially in less populated parts of the training domain
where a slight underestimation of the probability can lead to highly inflated weights.

As such, a number of other methods have been proposed to either directly estimate the
ratio w(x), or to estimate it implicitly. The earliest proposed methods include Kernel Mean
Matching (KMM), Kullback-Leibler Importance Estimation Procedure (KLIEP) and an
integrated model [Huang et al., 2006b; Sugiyama et al., 2008; Bickel et al., 2007].

KMM, proposed by Huang et al. [2006b], involves choosing w(x) to minimise the distance
between the testing and the weighted training distributions in a Reproducing Kernel Hilbert
Space (RKHS) with a universal kernel:

min
w(x)

∣∣∣∣∣∣∣∣∫ Kσ(x, ·)pte(x)dx−
∫
Kσ(x, ·)w(x)ptr(x)dx

∣∣∣∣∣∣∣∣ . (2.12)

Subject to
∫
w(x)ptr(x)dx = 1 and w(x) ≥ 0, where Kσ(x, ·) represents a kernel (with

width σ) between x and any point. These constraints arise as the weighted training
covariate distribution is also a distribution so must sum to 1, and as the weights must be
non-negative.

The minimum distance solution then gives the ratio w(x) = pte(x)
ptr(x)

. A common criticism of
this method is that KMM suffers from having to define the kernel width arbitrarily, since
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2. Characterizing Concept Drift and Dataset Shift

the training data are biased and thus not suitable for optimising over as a way to estimate
σ. This is also problematic in an empirical situation when it comes to estimating an upper
bound for w(x) and a margin of error for the difference between the sum of the weights
and the number of testing points, ε.

The KLIEP method proposed by Sugiyama et al. [2008] avoids this issue. KLIEP works by
finding the weights that minimise the Kullback-Leibler (KL) divergence of the weighted
training distribution from that of the testing distribution according to:

min
w(x)

KL [pte(x)|w(x)ptr(x)] = min
w(x)

∫
pte(x) log

(
pte(x)

w(x)ptr(x)

)
dx. (2.13)

Separating the log and considering only the part dependant on the weights reduces the
problem to:

max
w(x)

∫
pte(x) log (w(x)) dx (2.14)

subject to
∫
w(x)ptr(x)dx = 1 and w(x) ≥ 0.

These constraints arise the same way as in KMM and, as previously noted, KLIEP over-
comes the difficulty of KMM since the training data is not required in the maximisation
procedure, allowing the use of importance weighted cross-validation [Sugiyama et al.,
2007] for optimising parameters.

Others have proposed integrated approaches to covariate shift [Storkey and Sugiyama,
2007; Bickel et al., 2007]. These models differ to KMM and KLIEP since instead of
estimating weights explicitly, they integrate the estimation with the training of a predictive
model. Bickel et al. [2007] consider a binary variable s denoting whether an observation is
selected into the training or testing set such that:

ptr(x) = p(x|s = −1) and pte(x) = p(x|s = 1). (2.15)

Then it can be seen from Bayes theorem that:

w(x) =
pte(x)

ptr(x)
=

p(x|s = 1)

p(x|s = −1)
=

p(s = 1|x)

p(s = −1|x)

p(s = −1)

p(s = 1)
. (2.16)

The ratio p(s=−1)
p(s=1)

can easily be estimated as the ratio of the number of examples in each
set, ntr

nte
, giving:

w(x) =
ntr
nte

p(s = 1|x)

p(s = −1|x)
. (2.17)

Consequently, it is possible to estimate the weights using a binary classifier to predict which
set an example is in based on its covariates, and then taking the ratio of the probabilities of
being in each class. However, as a two-step process, making predictions from a second
model using these weights may not provide the optimal solution. Instead, Bickel et al.
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[2007] further designed a model which integrates both steps, solving:

min
v,w

w(x,v)L(x,w) + L(x,v) + λ||v||2 + µ||w||2 (2.18)

where v and w are the parameters of the individual weights and predictive models, L(x,v)

and L(x,w) are the respective loss functions of both individual models and λ and µ are
regularisation parameters. Initially having found that this problem is only locally convex
under a log-loss for L(x,w), a later extension found the solution to be globally convex
under an exponential loss function [Bickel et al., 2009].

These initial models have provided a basis for further development of covariate shift
models and links have been drawn between them. In particular, Tsuboi et al. [2009] study
a number of extensions to KLIEP, showing a specific variant with a log-linear model for
the weights can be regarded as an extension to KMM.

On the other hand, a notable issue with all of the techniques discussed is that they are
heavily dependent on having large amounts of testing data available. While this means
they are well suited to situations where models can be trained in an offline manner, it can
be problematic in cases with little testing data. This weakness is particularly notable with
regards to time series data, in which models constantly need updating and there is often
little testing data relative to the amount of training data.

2.2.2 Prior Probability Shift

Prior probability shift occurs in y→ x problems, where the causal direction is such that
the covariates are caused by the variable of interest. In these situations it is assumed that:

ptr(y) 6= pte(y) (2.19)

ptr(x|y) = pte(x|y). (2.20)

An illustration of this prior probability shift be seen in Figure 2.4.

Cases of prior probability shift are very important, especially in situations of medical
diagnosis. An extreme example can be seen by considering outbreaks of fever symptoms
in both Sweden and Africa. If a training set is taken from Africa, where most cases are
identified as being due to typhoid, a prior probability shift will occur when using a testing
set from Sweden, as the cause there is far more likely to be a virus instead.

In cases where the shift is known, a number of methods have been proposed to correct for
prior probability shift. When specifically considering classification problems, Japkowicz
and Stephen [2002] use the term “class imbalance” to denote the same scenario termed
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Figure 2.4. A graph of observations from 2 time points, t0 and t1, which have undergone prior
probability shift. While the underlying function x = f(y) + ε has not changed, observations at t1
tend to have a higher value for y than those at t0, leading to prior probability shift.

as “imbalanced data” by Storkey [2008]. Japkowicz and Stephen [2002] then consider
three methods to model for class imbalance; over-sampling, under-sampling and cost-
modifying. The two sampling methods work similarly, by over-sampling the rare class
or under-sampling the common class respectively. The cost-sampling method works by
re-weighting the cost of misclassification so that misclassifying a common class as a rare
class incurs a higher cost. Other methods for handling class imbalance have also been
developed, such as multiple resampling [Estabrooks et al., 2004] or the use of support
vector machines [Akbani et al., 2004]. Storkey [2008] suggests a more general approach,
applicable in both the classification and regression case: correcting for prior probability
shift may be done via re-weighting the training examples according to w(y) = pte(y)

ptr(y)
,

analogous to the methods used in handling simple covariate shift.

However, in many situations no information about the shift is known and the testing data
is unlabelled, making prior probability shift much harder to identify or correct for. In
this case, as pte(y) unknown, Storkey [2008] suggests using the fact that pte(x|y) can be
estimated from the testing data and specifying a prior distribution for pte(y) based on the
modeller’s understanding of the problem. This allows the posterior distribution for pte(y)

to be estimated from the testing covariates, and the posterior can then be used to re-weight
predictions obtained from a model fitted using the training data. It should be noted that this
method also comes with a few caveats: it relies on the modeller having enough information
to estimate a prior distribution, and may fall through if it is not possible to perform the
integrals required to estimate the posterior.

Another method, suggested by Zhang et al. [2013], introduces the assumption that there is
only one possible distribution for pte(y) that together with ptr(x|y) leads to pte(x). Along
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2. Characterizing Concept Drift and Dataset Shift

with Equation 2.20, this means that a set of weights for re-weighting, w(y) = pte(y)
ptr(y)

, can
be found by minimising:

min
w(x)

∣∣∣∣∣∣∣∣D(pte(x)−
∫
ptr(y)w(y)ptr(x|y)dy

)∣∣∣∣∣∣∣∣ (2.21)

where D is a distance measure. Adapting the kernel mean matching approach given by
Gretton et al. [2006] then allows Equation 2.21 to be solved for w(y) in much the same
way as with the KMM in Section 2.2.1.

2.2.3 Concept Shift

Concept shift, or real concept drift, is usually the hardest type of drift to work with. In
both simple covariate and prior probability shift, methods focus on re-weighting examples
to account for the shift. On the other hand, in the case of real concept drift, a much more
flexible approach is needed due to the broad variety of ways a drift can occur.

As previously shown, real concept drift is defined to occur in one of the following two
situations:

ptr(y|x) 6= pte(y|x) (2.22)

ptr(x|y) 6= pte(x|y) (2.23)

in x→ y and y→ x problems respectively. In this, the term “concept” is taken to mean
the distribution of a single target and feature, p(y|x), while the entire set of concepts or
“concept regime” is taken as referring to the joint distribution p(y|x). An illustration of
concept shift can be seen in Figure 2.5.

There are two main scenarios in which real concept drift is encountered; that in which
information is known about the drift in the relationship, and that in which there is no
knowledge. In the case where the drift in the relationship is known, the problem generally
becomes much simpler and merely involves updating the mapping to account for the drift.
However, in the case where nothing is known, the new relationship must be learnt. This
situation is far more common and occurs in many modern day scenarios, such as with the
weather forecasting or in predicting consumer trends. In fact, real concept drift arises in
most settings with dynamic environments, as data is generated over time, which has led to
it attracting a lot of attention in the streaming data community.
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Figure 2.5. A graph of observations from 2 time points, t0 and t1, which have undergone concept
shift. The underlying function y = f(x) + ε has changed between the time points, leading to
concept shift.

2.3 Summary

In this section we have introduced a number of established methods for classifying types of
dataset shift and concept drift, providing a discussion on the advantages and disadvantages
of each. We have seen that the complexity of the topic makes it had to choose a uniform
classification for types of concept drift, but that the insights of each different classification
can be useful when constructing a predictive model. We have also given an overview of
methods for handling different types of dataset shift based on their theoretical classification.
We have placed the main topic of interest in this thesis, real concept drift, within this
framework and discussed its importance.
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Chapter 3

Modelling with Concept Drifting Data

In Chapter 2, we have introduced a number of different classifications of concept drift
which have arisen from either a “dataset shift” or a “concept drift” framework. For the
remainder of this thesis, we now work in a streaming scenario, focussing entirely on
concept drift. As many scenarios in which concept drift occurs are considered to be data
streams, we now provide a brief description of the streaming setting in which we will be
working.

Streaming data is considered to arrive sequentially in time, where at each time point t
a vector of input data, xt = (xt,1, ..., xt,D), arrives and must be used to predict targets
yt = (yt,1, ..., yt,M), which are observed later. The form of the input data may be numerical,
categorical, or ordinal, while the target can be either numeric or categorical, corresponding
to regression or categorization problems respectively. In this setting, concept drift can be
said to occur if we have a time-dependant joint distribution pt(y|x), since with X ∈ RD

and Y ∈ RM we will be learning a mapping X → Y on data up to time t− 1, yet aiming
to predict at time t.

In this streaming setup, it is typically assumed that nothing is known about the form of any
drift, or even if a drift is occurring. This necessitates reactive approaches to concept drift,
where algorithms must be able to first identify and secondly adapt to changes in the data
stream. This can be a complicated process and we now detail some of the major challenges
and common approaches to modelling with concept drifting data.

3.1 Concept Drift Setting and Major Challenges

Due to its broad nature, there are a number of issues which must be addressed when
creating a model in the presence of concept drift:
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• Dynamic concepts are associated with temporal data, which adds an additional
dimension for consideration.

• Detecting a drift can be challenging, especially amongst noisy data.

• Model memory means that using a model trained on data pertaining to outdated
concepts will impede the ability of a model to make predictions in the current concept
regime.

• Due to the large fast paced nature of streaming data, modelling for any drift must
also account for time and computational constraints.

Time-based data often needs careful consideration. In a concept drift setting, data is
normally assumed to be received in a consecutive and continuous stream over time, with
each example, (xt,yt), possibly following a different concept regime to the last. This
dynamic environment necessitates modelling in an online situation, and the frequency
of data arriving must be taken into consideration. Data may arrive in batches (multiple
examples at once) or incrementally (one example at a time). Furthermore, as there is a
continuous stream of incoming data, computational constraints may arise when there is
too much to hold in RAM. Consequently, many models aim to operate in a single-pass
fashion, where each example is only seen once and then discarded. In actuality, this goal
very difficult to satisfy, and examples are often kept for a certain period of time and used
for validating a model or for the training of an alternative option if a drift is detected.

The biggest challenge in concept drift is that of model memory, and has been noted for
a long time, with Maloof and Michalski observing the issue in a concept drift setting in
1995. All concept drift models must account for this issue, and most methods revolve
around finding ways to forget parts of the model trained on data generated under outdated
concept regimes, thus effectively keeping a model trained only on data from the current
concept regime. However, this can often prove troublesome since it is hard to identify
outdated aspects of a model. Furthermore, forgetting can also be detrimental in certain
circumstances, such as cases of recurring concepts, where previously redundant data can,
sometimes suddenly, become relevant again.

3.2 Learning in the Presence of Concept Drift

Due to the differing nature of the types of concept drift and the diverse challenges a
model must overcome, a number of different approaches have been developed over time.
Many methods revolve around example selection, example weighting or ensemble methods
[Tsymbal, 2004]. Other approaches have also been suggested, such as online algorithms.
Furthermore, all of the previous methods have also been combined, with online algorithms
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Figure 3.1. The modelling process used in cases of concept drift.

and windowing commonly being used for training the base classifiers in an ensemble
[Brzezinski and Stefanowski, 2014b].

In general, concepts drift algorithms follow a similar format. Initially, starting examples
are assumed to be stationary and are used to build a model. As new example(s) arrive,
they are passed to the model and a prediction for each is made, after which the example
trained on to update the model. A change detector then looks for concept drift and, upon
detection of a drift, the model is adapted accordingly. The process then continues with
the next example(s) being passed to the model. This process continues until the end of
the stream is reached. A flow chart detailing this approach can be seen in Figure 3.1. It is
worth noting that while the role of change detection has been depicted here as a distinct
step for clarity, it is often integrated with other modelling steps. Furthermore, rather than
depending on a dedicated change detection method, approaches also exist in which drifts
are handled implicitly, without explicit detection.

One statistic of particular importance throughout concept drift literature is the Hoeffding
bound [Hoeffding, 1963]. The Hoeffding bound is able to provide a probability, and thus
confidence intervals, on the deviation of the sum of independent random variables from
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the expected value. It is typically used to state that, with probability 1− δ, the confidence
interval ε for the mean of N random variables with range R, is given by:

ε =

√
R2 ln (1/δ)

2N
. (3.1)

We will see in the rest of this chapter that the Hoeffding bound has been applied in a number
of ways throughout the literature, at multiple different stages of the modelling process
we have just described. For example, it has been used in the change detection step to
detect whether the mean of incoming data has shifted, and thus whether drift has occurred;
and also in the model update step, to provide a guarantee on the splitting performance of
incrementally trained trees relative to those trained with all the data available.

One assumption made in all concept drift models, which is usually not made explicit,
is the assumption of periods of approximate stationarity in the concept regime. Almost
all algorithms for concept drift benchmark against periods of data, or models trained on
periods of data, when detecting and correcting for drifts, and the data over these period is
assumed to be effectively stationary. In practice, this is not a major constraint and makes
sense, since without this assumption there is no signal to be found in the data. This can be
seen by considering a data stream which exhibits different and new concept regimes for
each subsequent observation; the data is effectively just noise.

3.2.1 Change Detection

Many studies have focused on change detectors, which play an important role when dealing
with concept drift. While they do not directly tackle the prediction problem, they are often
components in concept drift prediction algorithms, since in order to appropriately adapt a
model it is still necessary to explicitly know whether concept drift occurs and when. This
can be a challenging task and has motivated research into change detectors, which aim to
detect whether there is any evidence of concept drift in a dataset.

A number of different styles of change detector have been developed, primarily divided
between detecting changes in the underlying data and changes relating to the learner.
However, regardless of the style, change detection typically occurs in 3 stages:

1 Initially, new data is retrieved from the stream, which may then be used to update a
model.

2 A test statistic is calculated on the new data/updated model and compared with the
same statistic calculated on older data/non-updated model.

3 If the new and old test statistic are sufficiently distinct, a change is determined to
have taken place.
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Data-Based Change Detectors

Data based change detectors attempt to detect concept drift by establishing a distance
measure to quantify the dissimilarity between new and old data. If the distance is sufficient,
the detector will flag a change as having occurred. This approach enables concept drift to
be detected in the data, directly attempting to establish if there are differences between
pt−1(y|x) and pt(y|x).

Kifer et al. [2004] pioneered work on detecting changes in the underlying data through the
use of two windows of data, termed a “reference window” and a “current window”. They
compare the distribution of the data in the windows using a distance measure, and identify
a drift if the distance exceeds a threshold which is determined based on Chernoff bounds.
This method is attractive as it allows for both detection and estimation of the magnitude of
a drift.

Other approaches have also focussed on the use of windows of data for change detection.
Both Dasu et al. [2006] and Sebastião and Gama [2007] similarly compare between two
windows of data, detecting change based on the Kullback-Leibler (KL) divergence, an
entropy based measure of distance.

Following this, further window based methods have been developed. As part of the
Adaptive Windowing Algorithm (ADWIN), Bifet et al. [2007] compute the window size
based on a change detector. Their algorithm splits the base window, W , into two sub-
windows, W0 and W1, at all possible points and compares the means of each window. If
the windows are “large enough” and the means of the data in the windows are “distinct
enough”, it is classed as a drift and the older window is discarded. Whether the windows
are large and distinct enough is decided based on an application of the Hoeffding bound.
The threshold for change, εcut, is then given by:

εcut =

√
1

2m
· ln 4n

δ
(3.2)

wherem is defined the harmonic mean of n0 and n1: 1
1/n0+1/n1

, n, n0 and n1 are the number
of examples in W , W0 and W1 respectively, and δ is a bound on the false positive rate.
ADWIN is a popular approach, and has been used in a number of subsequent algorithms
[Bifet et al., 2009b,a; Gomes et al., 2017b]. However, despite the effectiveness of these
windowing methods for tracking change, they are not suitable for every situation as they
can be computationally expensive due to the need to evaluate changes over many possible
windows.

While we are working in a supervised learning scenario, it is worth noting that a number
of data based change detectors designed for unsupervised scenarios are also available
[Spinosa et al., 2007; Faria et al., 2013; Sethi and Kantardzic, 2017]. These methods often
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rely on novelty detection and clustering the data in order to detect changes.

Learner-Error Based Change Detectors

Instead of directly testing for changes in the data, learner-error based methods test for
change by monitoring the learner error. By basing the approach on the learner, the detector
is more likely to capture nonlinear and complex drifts than data based detection methods,
which typically use straightforward distance metrics such as the data means. However,
it also assumes that a model is correct and that if the error is constant after a change, it
implies that there is no need to update a model, which may not always be the case.

Unlike data oriented detectors, most error based change detection strategies do not need a
window of examples, and focus either on sequential tests or tracking statistical quantities
in an online fashion. One of the only exceptions to this is the approach suggested by
Harel et al. [2014], who obtain statistics about the loss distribution by resampling from a
window of data. They test for change by comparing the loss of the ordered window, with
the average loss obtained from different shuffled windows, determining that there has been
a change if a hypothesis test suggests that the losses are different.

Another learner-error based change detector that is only applicable to classification prob-
lems has been suggested by Gama et al. [2004]. They proposed the Statistical Process
Control (SPC) based Drift Detection Method (DDM), which trains a learner and makes a
prediction, treating the error as a random variable from a Bernoulli trial. Consequently, the
errors should follow a binomial distribution, with the prediction for example i being false
with probability pi and standard deviation:

σi =

√
pi(1− pi)

i
. (3.3)

As the distribution should be static unless concept drift occurs, it can then be approximated
to a normal distribution with confidence bounds on the false positive rate given by pi±α ·si,
providing there are enough examples. As many algorithms expect the error to decrease
with additional examples, change is then determined to be in the case when:

pi + σi ≥ pmin + α · σi (3.4)

where pmin is the lowest value of pi observed so far. α can then be chosen based on the
desired confidence level, with the authors suggesting α = 2 and α = 3 to give 95% and
99% confidence of drift occurring.

It is important to note that the DDM requires sufficient data, as to approximate to a normal
distribution they need at least 25 to 30 examples. However, a notable failure for DDM is in
cases of gradual drift, where the changes may pass without triggering the alarm level. To
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rectify this, Bifet et al. [2006] proposed an extension of DDM: the Early Drift Detection
Method (EDDM). The EDDM is very similar to the DDM, but is based on the distance
between errors as opposed to simply a count of them. Other extensions to the DDM have
also been suggested. The Learning with Local Drift Detection (LLDD) [Gama and Castillo,
2006] is designed for partition learners and works similarly to the DDM, except errors
are monitored separately in each subspace, rather than at the learner level. This allows
for local drift detection in each subspace. On the other hand, the recently proposed Drift
Detection Method based on Hoeffding’s inequality (HDDM) [Frı́as-Blanco et al., 2015]
uses the Hoeffding bound to provide a theoretical guarantee that a drift has occurred.

The Exponentially Weighted Moving Average (EWMA) for Concept Drift Detection
(ECDD) algorithm [Ross et al., 2012] takes a similar approach. It calculates an exponen-
tially smoothed mean error Et at time t by downweighting older errors by a factor of 1−λ,
giving the error:

Et = (1− λ)Et−1 + λet (3.5)

where et is the error on the prediction at time t. This error is monitored, and a change is
flagged when a change in E occurs such that

Et > E0 + ασEt (3.6)

where α again represents the limit which Et can deviate by before a change is determined
to have occurred.

Cumulative sum (CUSUM) based algorithms [Page, 1954], are another popular error-based
approach to drift detection [Basseville and Nikiforov, 1993; Ahmed et al., 2008]. They are
lightweight and memoryless tests that continuously monitor a metric, usually the predictive
performance, and signal a change if there is a significant deviation in the mean of the metric.
A further interesting sequential test that is actually not memoryless is the Page-Hinckley
(PH) test [Mouss et al., 2004]. This test keeps track of the sum of the deviation of the
metric M from its mean at each point:

mT =
T∑
t=1

Mt − M̄t − α (3.7)

where α is an acceptably small deviation to overlook. The test then flags a change if
the sum of the deviations, mt, exceeds the minimum mean of the metric observed by a
reference amount λ:

mT > min{m1, ...,mT}+ λ. (3.8)
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Figure 3.2. An example of a simple windowing procedure. At time tn, examples from time t0 until
time tn are available, but a window of examples from time t1 to tn is used. The window is of a fixed
length l, and as new examples become available, the oldest ones are removed from the window.

3.2.2 Example Modification

One method of accounting for concept drift in the data stream is through example modifi-
cation. By selecting only the data corresponding to the current concept regime, a stationary
model trained on the selected data should be able to make accurate predictions. Among the
literature, there have been two main ways to do this explicitly: windowing and weighting.

Windowing

Perhaps the most traditional method for handling concept drift is windowing. As a form of
example selection, windowing tries to select a window of examples relevant to the current
concepts. One of the oldest algorithms to take this approach was first suggested by Widmer
and Kubat [1992], who include windowing as part of the Floating Rough Approximation
(FLORA) algorithm. In this algorithm a specific window length, l, is chosen and the most
recent l examples are used for training a model. As more examples become available, the
oldest ones are then removed from the window. An example of this windowing method
can be seen in Figure 3.2.

The idea of windowing appears to address some of the key challenges in dealing with
concept drift. Having a window allows older data relating to outdated concepts to be
removed and allows for faster modelling due to the reduced number of examples being
considered. On the other hand, this gives rise to certain issues: most apparently, there is
no obvious choice for the window length, l. In addition to this, older data may still be of
value, and in the case of recurring concepts it seems natural to want to use data from the
previous time a concept occurred, which may well fall outside the current window.

Further approaches to tackle these issues are also introduced by Widmer and Kubat in later
versions of the FLORA algorithm. FLORA2 attempts to heuristically adjust the window
length based on whether a drift is suspected, while FLORA3 tracks old concepts, allowing
the window to be extended in the case of recurring concepts. Furthermore, a FLORA4
version is also suggested to improve performance in the presence of noise. Other methods
of windowing have also been provided with the aim of better covering these issues. One
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method by Lazarescu et al. [2004] suggests the Competing Windows Algorithm (CWA),
which uses 3 different sized and adaptable windows to better account for concept drift by
examining the persistence and consistency of any drift.

All of the windowing techniques described so far have a common problem: they depend
on heuristics to set the window length. To overcome this, Klinkenberg and Joachims
[2000] suggest a method which selects a window size without parametrisation. Their
study focuses on Support Vector Machines (SVMs), training SVMs on multiple different
length windows of data, and selecting the window which minimises the generalisation
error on new examples. Furthermore, as described in Section 3.2.1, Bifet et al. [2007]
designed the ADWIN algorithm, which recomputes the window length in an online manner
based on changes in the underlying distribution of the data. However, these methods both
require models or calculations at multiple different window lengths, which can also be
quite computationally costly. As a result, later studies have designed other, less expensive,
approaches for certain scenarios, such as Kuncheva and Žliobait [2009] who proposed a
theoretically motivated window resizing method designed for handling abrupt drifts.

Weighting

An alternative approach to handling concept drift by example modification is example
weighting. It can be viewed as a more general case of windowing, where instead of weights
being either 0 or 1, as is the case with windowing, they can take on a continuous range of
values. Koychev [2000] presents a method of weighting which gradually forgets previous
examples, suggesting that partial memory, as in many windowing situations, may not be
the most effective way of reacting to concept drift. This is because under some forms of
drift, such as with recurring concepts, older information can be valuable. Consequently,
Koychev suggests using a gradual forgetting function, choosing a linear forgetting function
for tests. However, while this does retain some older information, linear forgetting still
does not effectively account for recurring concepts. Furthermore, the speed of forgetting is
defined by a parameter that must still be chosen, and the choice of forgetting function is
still arbitrary.

In early tests comparing a number of example selection and example weighting meth-
ods, Klinkenberg [2004] trialled both exponential and sigmoidal weighting functions but
eventually found example selection methods such as ADWIN to be particularly effective.
However, later research has still used example weighting methods, such as Zhang et al.
[2008]. In particular, Alippi et al. [2009] recommend a method of choosing weights based
on how similar an observation is to those expected under the most recently observed
concept regime.
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3.2.3 Online Algorithms

The use of online algorithms is another popular method of modelling in the presence of
concept drift. Unlike example modification approaches, online algorithms do not explicitly
change the set of training examples, instead typically operating in a single-pass fashion
and incrementally updating the model. This enables the algorithms to adapt to change
by either forgetting or adapting parts of the model which no longer appear to perform as
well, giving rise to the term “adaptive base learners” in the literature. These algorithms
tend to have limited memory of the data and focus on updating the model using only the
most recent example. As a consequence of this style of learning, most online algorithms
have the advantage of taking only a short time to update, allowing them to be used in
situations where predictions are needed very quickly. Furthermore, the limited memory
property allows older examples to be discarded, reducing the computational requirements
in situations with large amounts of data.

Tree-Based Learners

Decision trees are a very popular approach to online learning, and offer a number of
advantages:

• Decision trees offer a clear and intuitive method of modelling, leading to easy
algorithm design.

• Incremental training is possible, allowing trees to be constructed from a single pass
of the data stream. This in turn leads to reduced modelling times and memory
consumption, compared to example modification.

• As they partition the feature space, local drifts in the data may be able to be isolated
to a specific subtree. Subsequently, it is comparatively easy to modify or prune
subtrees affected by drift.

Perhaps the most influential algorithm in this category is the Very Fast Decision Tree
(VFDT), developed by Domingos and Hulten [2000] for use in mining data streams. The
VFDT algorithm uses Hoeffding trees as a base model, named due to their use of the
Hoeffding bound to provide a guarantee that the incrementally constructed splits in the
trees are sufficiently similar to those that would be obtained in a scenario in which all of
the data is available. Domingos and Hulten show that this application of the Hoeffding
bound allows decision trees to be grown in an online manner, with the number of examples
used to grow the tree providing a level of confidence that the Hoeffding tree will choose
the same splitting attribute as a tree grown on all the data.

Although it has the advantage of training very quickly, the original VFDT algorithm is

31



3. Modelling with Concept Drifting Data

unable to adapt to new concepts quickly as it can only forget older concepts by diluting
them out with a large number of examples from newer concepts. Consequently Hulten et al.
[2001] extended this work using the Concept-adapting Very Fast Decision Tree (CVFDT).
This framework keeps a sliding window of past examples and creates an alternative subtree
when the concepts appear to change, which is substituted for the original if it becomes more
accurate. This effectively keeps the tree as if it were VFDT trained on a moving window of
examples, but maintains a faster learning speed as the tree does not need to be completely
regrown when concepts change. Despite this, the CVFDT still faces shortcomings as the
length of the window and the number of examples between updates are both arbitrary and
must be user defined.

Bifet and Gavald [2009] suggested further extensions to the CVFDT model under the
names Hoeffding Window Tree (HWT) and Hoeffding Adaptive Tree (HAT). The HWT
is designed to remove the need for a number of arbitrary parameters in the CVFDT; the
number of examples between checks for growth of the tree or for concept drift, and the
number of examples needed to validate a new tree. This is achieved by checking each
example as it arrives and then updating trees instantly if a change is detected. Furthermore,
older trees are also replaced instantly if a new tree is proves to be more accurate than the
original.

The HAT furthers the idea of eliminating arbitrary parameters by removing the need to
specify a specific window length. It uses the ADWIN algorithm described by Bifet et al.
[2007] at each node in the Hoeffding tree. The relevant statistics are estimated at each
node, thus overcoming the need for a fixed length window. Furthermore, it has been shown
that under appropriate assumptions the HAT has a guarantee of growing the same tree
as a VFDT only exposed to the new concept regime would. However, the HAT is also
more time consuming, and tests found it to be roughly 4 times slower than its predecessor
algorithms [Bifet and Gavald, 2009].

Another stream of development involves the concept of Option trees [Kohavi and Kunz,
1997]. Unlike standard decision trees, Option trees differ due to their use of option nodes,
which act as multiple different splitting nodes, as shown in Figure 3.3. In an option tree,
there are multiple non-exclusive splitting conditions at an option node, and examples follow
every path for which they satisfy the splitting condition at the option node, resulting in
multiple predictions which are then combined through averaging. Pfahringer et al. [2007]
combined Option trees with Hoeffding trees to form Hoeffding Option Trees (HOT) which,
in the case that a new split is found to be better than an existing one, allow both splits
to kept as an option node. As the HOT structure represents multiple possible trees it can
be considered as an ensemble, and an extension from Bifet et al. [2009b] suggests the
Adaptive Hoeffding Option Tree (AHOT), which keeps an estimate of the error at each
leaf to use in weighting the split at each node.

32



3. Modelling with Concept Drifting Data

Option

Key

Split

Leaf

Figure 3.3. An example option tree structure. When an example is passed down the tree, it follows
all possible paths for which it satisfies the splitting condition at each option node, resulting in
multiple different predictions which are then combined through averaging.

While the trees suggested so far are all based on the VFDT, Manapragada et al. [2018]
revisit and adapt the original VFDT splitting mechanism. They suggest the Extremely Fast
Decision Tree (EFDT) algorithm which initially splits in a similar fashion to the VFDT, but
when the information gain of the best split is greater than that of not splitting, rather than
when it is greater than that of the second best split. The EFDT then periodically revisits
created splits, and if a different split is detected to outperform the current split, it replaces
the current split. The authors suggest that this approach leads to faster learning than the
VFDT due to less restrictive initial splitting criteria. Furthermore, they claim the EFDT is
also robust to the presence of concept drift, likely due to the replacement of splits.

While most studies focus on classification trees, more recently an effort has been made to
address regression problems. Ikonomovska et al. [2011b] pioneered the Fast Incremental
Model Trees with Drift Detection (FIMT-DD) algorithm as the first major contribution
for use in regression problems with concept drift. This method starts with a fixed number
of examples and uses them to grow a tree. With the starting examples, the best split
for each attribute is found and the splitting attributes are then ranked. If the splitting
criterion is satisfied, the highest ranked attribute is used to make a split, and the process
is repeated to create a tree. Similar to the classification case, these splitting decisions are
made based on the Hoeffding bound. As further examples come in, they are considered
incrementally and passed down the tree, with the results being used to update change
detection tests. When a change is detected, a new tree is grown simultaneously and may
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eventually replace the original tree after meeting the swapping criterion. In a comparison
on datasets without concept drift, FIMT-DD does not perform as well as other some
other data-stream algorithms [Ikonomovska et al., 2011b]. However, it is faster than any
other considered method and in the case of datasets with concept drift, it significantly
outperforms other methods [Ikonomovska et al., 2011b].

An extension of FIMT-DD, the On-line Regression Trees With Options (ORTO), has also
been proposed [Ikonomovska et al., 2011c]. ORTO trains trees similarly to FIMT-DD, but
also introduces option nodes. The tree differs from the FIMT-DD tree when other splitting
attributes that are almost equally as discriminative as those currently used at a node are
detected. In this scenario an option node is created with both sets of splitting attributes
present. As option trees lead to multiple predictions from the tree, and a number of rules for
combining the final predictions were considered, with the best being simply averaging the
predictions. This makes the option tree somewhat akin to an ensemble approach in which a
new tree is added to the ensemble whenever a new similarly discriminative split is detected.
In a comparison on multiple datasets, this method, known as ORTO-A, outperformed
FIMT-DD in every situation.

Variants for a multi-target scenario have also been presented. The Fast Incremental Trees
for Multiple Targets (FIMT-MT) algorithm [Ikonomovska et al., 2011a] and the more recent
incremental Structured Output Prediction (iSOUP) Tree [Osojnik et al., 2016] both propose
a global approach to multi-target regression. Both approaches replace the original splitting
criterion in the FIMT-DD with an inter-cluster criterion, aiming to include information
about target dependence in splitting decisions. Furthermore, the iSOUP approach also
extends the original problem setting and can be used for multi-label classification.

All of the online algorithms described here take advantage of the Hoeffding bound [Hoeffd-
ing, 1963] to guarantee the performance of splits relative to those of that would be found
in a stationary scenario. However, in a theoretical analysis, Rutkowski et al. [2013] found
that the Hoeffding bound is unsuited to the problem of concept drift and instead offer a
tree based on the McDiarmid’s bound. Although the implications of this analysis call in to
question the suitability many of the current approaches to concept drift, the authors did not
make a comparison of their method against others, meaning there is currently no empirical
evidence of this.

Other Learners

While many approaches are based on decision trees, other adaptive base learners have
also been proposed. The Adaptive Model Rules (AMRules) approach from Duarte et al.
[2016] trains a set of concept-adapting rules for a regression problem by choosing splitting
rules that minimize the variance reduction, similar to tree-based methods. However, the
modularity of rule based methods means that the result is more interpretable relative to a
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decision tree.

Another recent alternative to decision trees is the Dynamic Extreme Learning Machine
for data stream classification (DELM) algorithm proposed by Xu and Wang [2017]. The
DELM uses an Extreme Learning Machine (ELM) [Huang et al., 2006a] as a basic learner,
while training a double hidden layer structure to improve the performance of the classifier.
In the event drift is detected, further hidden layer nodes are added to the ELM. If the
effect of a drift persists and the magnitude exceeds acceptable levels, a new classifier is
trained. While the authors find this approach is able to improve classification accuracy
and swiftly react to drift, it also suffers from a loss of interpretability making it harder to
design targeted drift adaption mechanisms.

3.2.4 Ensemble Methods

Ensemble classifiers are a very popular and well-suited approach to concept drift, largely
due to their flexibility and effectiveness, which allows them to work well with many
different types of drift. They often focus on using other concept drift methods to train base
classifiers, allowing them to train quickly and without using too much memory. Typically,
ensembles are more robust to noise than single classifiers due to averaging in the voting
procedure, which leads to better predictive accuracy.

One of the first ensembles designed for concept drifting data is the Streaming Ensemble
Algorithm (SEA) proposed by Street and Kim [2001]. SEA divides the incoming data into
sequential batches and trains an individual classifier on each batch, effectively taking a
windowing approach. The classifiers are then added as members of a fixed-size ensemble.
In the event that the ensemble is already full, the worst performing classifier on the newest
batch of data is dropped. The class prediction is then obtained from a majority vote of the
individual classifiers in the ensemble. Variations such as accuracy-weighted voting were
also considered, but were not found to lead to improvements. The SEA algorithm performs
similarly to a single tree, but is useful in cases of concept drift as it recovers from drifts
faster.

A similar approach to SEA, developed by Wang et al. [2003], is the Accuracy Weighted
Ensemble (AWE). Like SEA, AWE divides incoming data into batches and trains a classifier
on each. The weight of each classifier is then found using an estimate of the expected
prediction error on test examples. The most recent batch of training data is expected to
be most similar to the testing data, so the mean squared error (MSE) of each classifier’s
predictions is evaluated on that batch and compared to the MSE of a random prediction.
Weights are then based on the improvement of the classifier over the random case, and
classifiers with no improvement are discarded. Furthermore, to prevent infinite growth of
the ensemble, a limit is placed on the maximum number of classifiers in the ensemble, and
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if it is reached the classifier with the lowest MSE is discarded.

While both SEA and AWE are designed for concept drift environments, they also require
many parameters which must be arbitrarily defined, such as the maximum number of
ensemble members and the size of each batch. Kolter and Maloof [2003] note specifically
that as SEA can only remove older concepts by gradually removing ensemble members, it
can be very slow to adapt to new concepts if many members of the ensemble were trained
on a previous concept regime. To rectify this, they propose the Dynamic Weighted Majority
algorithm (DWM). The DWM is based on the Weighted Majority algorithm suggested by
Littlestone and Warmuth [1994], and removes the need for data batches by considering
each example incrementally. It dynamically weights the predictions of individual classifiers
based on their accuracy, with weights initially set to 1 when a new classifier is introduced,
and then reduced over time if the classifier makes incorrect predictions. Furthermore, the
number of ensemble members in the DWM is flexible. If the entire ensemble makes an
incorrect prediction for an example, a new classifier is trained and added to the ensemble,
while if a classifier’s weight falls below a threshold, it is removed. The DWM was found
to perform better than SEA, and is a popular method among the literature.

The Learn++.NSE algorithm developed by Elwell and Polikar [2011] builds upon the
DWM algorithm. Learn++.NSE incrementally learns a new classifier on each incoming
batch of data and uses DWM-style voting for predictions. However, unlike the basic
DWM, the classifiers are evaluated on previous batches as well as the latest one, and the
weights then calculated according to a time-adjusted accuracy. This gives Learn++.NSE
an advantage over other ensembles as it is able to incorporate historical concept regimes,
allowing it to perform well under all types of drift, including recurring concepts which
other methods struggle with. On the other hand, the algorithm does not contain any
explicit forgetting mechanism for classifiers. Elwell and Polikar [2009] found error-based
forgetting superior to time-based forgetting for all types of drift, but also note than both
types of pruning are detrimental in cases of recurring concepts.

Brzeziński and Stefanowski [2011] proposed a hybrid method combining a batch and
an incremental approach: the Accuracy Updated Ensemble algorithm (AUE). They then
followed this with an improved version: AUE2 [Brzezinski and Stefanowski, 2014b]. The
AUE2 algorithm was developed based on AWE and processes data in batches, training a
new incremental classifier on each batch, which is presumed to be the best classifier at the
time. The MSE is then calculated and used to find a weight for each component classifier.
The classifier weights are then used to update the ensemble members in the same way as
in AWE. After updating the ensemble, the component classifiers are also updated by being
incrementally trained on the latest batch of data. In a comparison with other models, AUE2
was found to be among the most accurate. Furthermore, as the base classifiers are able to
incrementally update as new data comes in, AUE2 is able to handle all types of concept
drift.
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In subsequent work on developing batch-based ensemble algorithms towards incremental
use, Brzezinski and Stefanowski [2014a] developed the Online Accuracy Updated Ensem-
ble (OAUE), which follows a very similar approach to AUE2, but training and updating the
classifiers incrementally as data arrive, as opposed to over batches. However, to preserve
similar reactions to drift as would occur in the block based AUE2 ensemble, OAUE learns
the ensemble weights over batches of data. The authors find that this approach leads to
strong empirical performance compared ot other incremental ensemble approaches, while
retaining the ability to effectively handle all types of concept drift.

Most of the ensembles described so far have been in relation to the more commonly
studied classification problem. However, Ikonomovska et al. [2015] discuss a collection
of ensemble methods for use in regression problems. These approaches are primarily
based around two methods; online bagging of Hoeffding-based trees for regression (OBag)
and an online RandomForest for any-time regression (ORF). Both of these methods use
FIMT-DD as the base classifier and generally outperformed a single tree based on FIMT-
DD in a number of tests. Despite this, the ORTO-A algorithm discussed in Section 3.2.3
outperformed both of these methods overall and returned much more stable and accurate
predictions.

Ensemble methods involving multiple adaptive mechanisms to mitigate concept drift have
also been suggested. Soares and Araújo [2015] classify three types of learning and three
types of adaption mechanism which may be included in ensemble approaches to concept
drift, before suggesting the On-line Weighted Ensemble (OWE) for use in a regression
context. The OWE adapts to change by both updating the weights of ensemble members
according to the inverse of their predictive error, and also by modifying the set of active
ensemble members contributing to the final prediction. The authors also consider adapting
individual ensemble members in response to change, but do not do so, stating that this may
lead to redundant models.

Another ensemble designed for regression is the Adaptive Random Forest for Regression
(ARF-Reg) algorithm, a modification of the ARF algorithm which was originally designed
for classification [Gomes et al., 2017b, 2018]. Both ARF and ARF-Reg attempt to leverage
the use of random forests for streaming data, randomly selecting only a subset of features
to be considered at each split. This encourages the growth of more diverse ensembles and
in turn improved predictive performance, although the use of bagging in the ensemble
means it is slow compared to many of the other methods available.

More recently, other approaches applicable for both classification and regression have
been devised. Gouk et al. [2019] introduce the stochastic gradient trees (SGT) algorithm
which trains an ensemble of decision trees based on gradient information. While a novel
approach, the authors find the SGT approach is comparable to other contemporary methods
in terms of both predictive performance and time taken, although it generally trains a more

37



3. Modelling with Concept Drifting Data

lightweight model and thus has lower memory requirements.

3.3 Evaluation

Having seen the format in which concept drifting data streams are presented, and exploring
a number of methods for predictive modelling on a data stream, we now progress to
explaining how the performance of different predictive models can be evaluated and
compared.

3.3.1 Evaluation Metrics

Evaluating a predictive model on a concept drifting data stream requires a multifaceted
approach. Based on the criteria provided in Section 3.1, we can see there main aspects of
importance to consider:

• The predictive performance of the model.

• The time taken to update and make predictions from the model.

• The memory consumption of the model and any stored data.

Predictive Performance

The most important metric for evaluating the performance of a model is its ability to make
correct predictions. Due to differences between regression and categorization scenarios,
different methods have been used in each scenario.

For regression, predictive performance is usually measured via the Mean Absolute Er-
ror (MAE) [Abramowitz and Stegun, 1974] or the Root Mean Squared Error (RMSE)
[Armstrong and Collopy, 1992]. For a single target, they are calculated according to:

MAE =
1

T

T∑
t=1

|yt − ŷt| (3.9)

and

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2. (3.10)

Both of these measures are based on the deviation of the target predictions ŷt from the true
values yt at each time. The choice of measurement statistic between the two is indicative
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of the expected distribution of the errors. In general, we expect that the errors in the
regression models described in this thesis, particularly in Chapter 6, ought to have normally
distributed errors due to our choice of linear models in the leaves, and thus that the RMSE
is an appropriate choice of metric. However, for comparison with previous works we
choose to use the MAE, which we note is less affected by the presence of large outliers.

On the other hand, for categorization problems, the classification error, or accuracy, is
more commonly used as a measure of predictive performance, and is simply given by

Classification error = 1− Accuracy (3.11)

=
Number of incorrect predicitons

Total predictions
. (3.12)

The performance measures given so far are error based, and models with comparatively
lower values for these metrics can be said to have better predictive performance. However,
in some scenarios, it is useful to be able to benchmark the performance of an algorithm
without having to explicitly compare with an alternative. For regression problems, this
can be done using the Relative Mean Absolute Error (RMAE) or the Root Relative Mean
Squared Error (RRSE), while for classification the kappa statistic is often used.

The RMAE and RRSE are given by:

RMAE =

∑T
t=1 |yt − ŷt|∑T
t=1 |yt − ȳT |

(3.13)

and

RRSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2

(yt − ȳT )2
(3.14)

respectively, where ȳT = 1
T

∑T
t=1 yt is the mean of yt at time T . These statistics aim to

provide an evaluation of the model against a benchmark scenario. The RMAE and RRSE
benchmark the model predictions against those of a mean predictor, and lower values
indicate better performance. 0 indicates there are no errors in the model, while a value of 1

indicates the performance is equal to that of a mean predictor. Consequently, values in the
range 0 < RMAE < 1 and 0 < RRSE < 1 indicate a model’s performance is above that
of the benchmark, with values closer to 0 indicating better performing models.

On the other hand, for classification, the kappa statistic is:

κ =
p0 − prandom
1− prandom

(3.15)

where p0 is the classification accuracy of the model in question and prandom is the classifi-
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cation accuracy of a random classifier. In the case of perfect predictions κ = 1, while if the
classification accuracy is equal to that of the random classifier κ = 0. This means values
in the range 0 < κ < 1 indicate the model performance is above that of the benchmark
random classifier, with higher values representing better predictive performance.

Run Times

Although predictive performance is often the most important aspect of predictive modelling,
when working with streaming data, the run time can also be an important constraint,
especially if data in the stream arrives rapidly. To this end time is considered an important
indicator of the performance of a streaming algorithm.

The run time is typically obtained by measuring CPU time taken by the algorithm, with
faster run times being desirable. However, it can be tricky to obtain comparable statistics,
as run times are dependant on the efficiency of the implementation of an algorithm and
the hardware on which it is run. Furthermore, in practice it is possible to parallelise many
ensemble algorithms, which also makes it hard to compare the time. Some frameworks,
such as the Massive Online Analysis (MOA) project [Bifet et al., 2010a] aim to provide a
large scale implementation of many streaming algorithms which can be used to provide a
more uniform basis for comparison. However, since MOA is an aggregation of works from
many contributors, different methods are still not always comparable, with algorithms
from different contributors having different efficiencies. Furthermore, many practical
applications will opt for more bespoke implementations which will change the relative run
times of different methods.

Memory

The final aspect to consider when evaluating performance is memory. Typically, this refers
to RAM consumption. With large amounts of data available in the stream, models can
grow extremely large, such as decision trees growing becoming very deep, and windowing
algorithms may end up storing a lot of data. This in turn can be expensive, and has
traditionally led RAM consumption to being an important consideration when evaluating a
model. However, with recent advances in computing, RAM consumption is no longer such
an important constraint since the user can always buy more RAM if desired.

On the other hand, as data streams may be theoretically infinite, it is still important to
ensure that data streaming algorithms are bounded on the amount of storage required. This
is important since if aspects such as the number of parameters involved or the number of
examples stored are unbounded, and thus able to grow infinitely, algorithms will eventually
run out of memory with an infinite stream.
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3.3.2 Evaluation Methodologies

It is important to note that while the predictive performance measures given are used to
evaluate the metric, due to the nature of streaming data they can be applied in different
ways. Typically, evaluation is performed using either a holdout or a prequential method.

Holdout Evaluation

Holdout evaluation involves holding out from training the model on a set of examples
received in the stream, which are used to form a testing set for the model. Evaluating the
model on this testing set enables us to obtain an estimate of the generalization error of the
model. However, this approach assumes that the testing set entirely corresponds to the
current concept regime on which the model has been trained to obtain an accurate error.
Furthermore, it has the drawback of needing to store the testing data in memory.

Prequential Evaluation

Instead of representing the performance of the current model, prequential evaluation
[Dawid, 1984] represents the ability of the set of models existing at each time point to
make accurate predictions on the stream. The prequential error is calculated using a test-
then-train approach, effectively evaluating the performance of the model on each example
as it is received, before then using the same example to update the model.

This evaluation methodology is much more robust to concept drift than a holdout evaluation,
since the model and the example it is evaluated on are only ever a single example apart
in the stream, meaning they likely always have similar concept regimes. In a detailed
framework for evaluating stream learning methods provided by Gama et al. [2013], the
authors find that both holdout and prequential evaluation converge to the Bayes error, with
a prequential evaluation being the optimal approach for data streams.

One point worth noting is the inclusion of forgetting mechanisms when evaluating the
performance over datasets. Gama et al. [2013] find that since online models generally
improve over time, evaluating the prequential error over all time is pessimistic and leads
to an over-representation of the error in the model. Consequently, they suggest the use of
forgetting mechanisms to show the current error more accurately, either through the use of
sliding windows, or with forgetting factor.
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3.4 Summary

This chapter has given an overview of how to account for concept drift when working
with streaming data. It has explored the challenges presented by concept drift, before
giving an overview of methods for drift detection and predictive modelling in data drifts
are suspected. Finally, it has presented some of the evaluation methodologies used when
working with concept drifting data.

Methods for predictive modelling with data exhibiting concept drift have been explored
in particular detail. These approaches cover traditional methods such as windowing
and weighting, as well as more sophisticated online learning algorithms and ensemble
approaches. As regression problems have been overlooked for a long time, the majority of
these approaches have focused on classification problems, while only more recent aspects
of the literature have addressed regression problems. Due to the size of the topic, although
most areas of concept drift have been addressed, the chapter is not exhaustive in terms of
the methods available. For a deeper exploration of stream learning and concept drift, the
interested reader is directed toward the many survey papers in the field [Gama et al., 2014;
Krawczyk et al., 2017; Khamassi et al., 2018; Lu et al., 2019; Gomes et al., 2019].
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Chapter 4

Stream Forecasting with Extreme
Randomization

Non-stationary streaming data poses a familiar challenge to data scientists: the need to ob-
tain fast and accurate predictions. However, the changing characteristics of the data stream
exacerbate this challenge. Hoeffding trees are a popular method to confront this problem.
Nevertheless, they often struggle to discriminate between similarly performing attributes
when making a split decision, which can be detrimental to predictive performance.

In this chapter, we propose the Adaptive Trees for Streaming with Extreme Randomization
(ATSER) algorithm which introduces a new concept to streaming data: the idea of Ex-
tremely Randomized (Extra) trees [Geurts et al., 2006]. The ATSER algorithm is loosely
based on the principle of Extra Trees, although adapted to an online setting, and is able
to trivially overcome the problem of similarly discriminatory splits. Furthermore, while
ensembles of Extra Trees have empirically been shown to improve predictions by taking
advantage of random splitting choices, in the case of streaming data their efficient splitting
mechanism offers a second benefit by reducing the computational complexity. In addition,
the ATSER algorithm extends its coverage beyond the range of other contemporary meth-
ods by directly handling many-category nominal variables. To fully utilize the benefits of
Extra Trees for improving predictive performance, an ensemble is necessary. To this end,
we also propose three different ensemble algorithms in which ATSER trees act as base
learners. The principal contributions of this chapter are:

• The use of extreme randomisation in single decision trees for regression in streaming
environments.

• A novel splitting mechanism which leads to reduced training times and improved
performance.
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• The ATSER algorithm naturally handles nominal attributes allowing it to be applied
to a wide range of commonly encountered data.

• An improved approach to learning linear models in the leaves.

• The use of extremely randomized trees in different ensembles designed for concept
drifting streaming data.

• Extensive empirical evaluation of ATSER trees and ensembles based on ATSER trees
shows that single trees outperform state-of-the-art methods, with ATSER ensembles
offering increased prediction accuracy.

The layout of this chapter is as follows. We begin in Section 4.1 by providing a review of
adaptive learning trees and ensembles for regression streaming data, before also introducing
the principles of Extra Trees in a stationary scenario. We then detail the ATSER algorithm
in Section 4.2, following with an introduction of ensemble methods based on it in Section
4.3. After describing the evaluation methodology in Section 4.4, we then compare the
performance of the ATSER algorithm with the popular FIMT-DD and recent ORTO and
ARF algorithms in Section 4.5. We show empirically on real world datasets that, out of
the adaptive base learners considered, a single ATSER tree has the best performance in
terms of both run-time and predictive ability. We then show that a single ATSER tree is
itself outperformed by ensembles in which ATSER trees act as base learners. Finally, we
summarise the chapter in Section 4.6.

4.1 Related Work

The ATSER algorithm trains an incrementally updating regression tree. It is designed for
use with streaming data and combines the typical interwoven train and adapt approach of
many tree-based streaming algorithms with the use of the largely random splitting deci-
sions introduced in Extra Trees. Compared to other contemporary streaming algorithms,
this results in an increase in both computational efficiency and predictive performance.
Consequently, in this section we re-review the related literature on online regression which
we previously discussed in Chapter 3, and also provide an overview of Extra Trees in a
stationary setting.

4.1.1 Online Regression Trees

As large datasets become increasingly available, the biggest challenge is often how to
make use of them. In the case of streaming data, many examples can arrive over a short
period of time, raising the problem of how to train an effective predictive model within
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this inherent time constraint, especially considering that such data are rarely stationary and
therefore any predictive relations may only persist for a short period. We have seen in the
previous chapters that changing relationships in this type of data are known as ‘concept
drift’ [Schlimmer et al., 1986]. As concept-drifting data has become more prevalent,
a number of approaches to handling it have arisen, with the most prominent methods
stemming from the Very Fast Decision Tree (VFDT) algorithm developed by Domingos
and Hulten [2000]. As described in Section 3.2.3, the VFDT incrementally trains a decision
tree, using the Hoeffding bound to guarantee the performance of splits relative to those
that would be obtained in a stationary scenario.

However, for a long period most approaches were focused on classification problems,
leaving regression largely unaddressed. The first major attempt to tackle concept drift in a
regression scenario is the Fast Incremental Model Trees with Drift Detection (FIMT-DD)
algorithm from Ikonomovska et al. [2011b]. Similar to other Hoeffding-based tree methods,
the FIMT-DD algorithm has three main aspects: training a tree, testing for change, and
adapting the tree. The training is a continuous incremental process where, as examples are
observed, they are passed to the leaf nodes, and used to update a linear model and split
statistics. When the split statistics are deemed sufficient to determine the best possible split
(usually using the Hoeffding bound) a split is created and the linear model from the node
passed to the child nodes. Meanwhile, at every split node in the tree, tests for change occur,
incrementally updating and providing an alert when change is detected. Upon detection of
a change, the training of an alternative tree is triggered which, after a training period, is
then swapped for the original tree if it exhibits better performance.

While generally effective, if at least two attributes are similarly discriminative the greedy
splitting of FIMT-DD can lead to long delays when selecting a split, because a larger num-
ber of examples must be collected to determine the best split. To handle this, Ikonomovska
et al. [2011c] suggest the On-line Regression/Model Trees with Options (ORTO) algo-
rithm, which draws on ideas used to extend the original VFDT algorithm for classification
through the innovative use of option trees, as originally described by Pfahringer et al.
[2007]. ORTO overcomes the slow splitting process in the original FIMT-DD algorithm by
creating an option node instead of a binary split node if there is a tie for the best possible
split. When examples are passed to an option node, instead of only progressing to one
child node, they progress to a relevant child node for every possible split at the node. This
effectively creates an ensemble, and the predictions from the tree are able to be combined
in numerous ways. Ikonomovska et al. [2011c] find that the best approach is a simple
averaging procedure, which they term ORTO-A.

Although this approach does speed up the training process, the authors also note that option
trees have a tendency to grow large very quickly. Furthermore, creating an option tree
based on similarly performing splits may lead to a common problem with ensembles, in
which hindering diversity degrades an ensemble’s ability to generalize, leading to worse
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predictive performance [Geman et al., 1992].

Other methods for online regression have extended to the idea of applying FIMT-DD trees
in bootstrapped ensembles [Ikonomovska et al., 2015; Gomes et al., 2018] and multi-target
extensions [Ikonomovska et al., 2011a; Osojnik et al., 2018]. One particularly notable
recent approach is the Adaptive Random Forest for Regression (ARF) algorithm [Gomes
et al., 2018], which creates a random forest by combining the use of online bootstrapping
with a partially randomized choice of splitting feature.

It has also been noted that the performance of online regression tree algorithms may be
harmed by their inability to handle nominal attributes. Preliminary attempts to include
them have been made by Osojnik et al. [2016, 2017], although these appear to only consider
binary categories. While this may be an effective method, converting a many-category
variable to a set of binary ones is impractical, handling so many binary variables quickly
becomes expensive, and artificially raises the dimensionality of the problem.

Unlike previous attempts, the ATSER algorithm directly handles many-category variables,
by generating random nominal splits in an inexpensive online manner. Furthermore, the
novel splitting approach, forming splits in a similar way to Extra Trees, is a fast and simple
method which allows deeper trees to be generated quickly, and naturally lends itself to
generating diverse ensembles.

4.1.2 Extra Trees

Extremely Randomised (Extra) Trees were introduced by Geurts et al. [2006] as a natural
extension to random forests [Breiman, 2001] and are primarily designed for use in ensem-
bles. Random forests select attributes on which to split randomly, but then use greedy
splitting to determine the best split among the attributes. This is done to obtain various
uncorrelated weak learners which ideally give accurate group predictions.

However, Extra Trees go one step further, again drawing random splitting attributes, but
also drawing one random split from each attribute before finally using greedy splitting
to determine the best of those remaining. This additional randomness leads to even less
correlated individual learners, reducing the variance in predictions relative to a random
forest. Furthermore, the second randomization step when splitting drastically lowers the
number of examples necessary to form a split, thus reducing the time taken to train an
Extra Trees ensemble compared to a random forest, a point of particular importance when
working with streaming data.
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Algorithm 4.1 Overview of the ATSER Algorithm

1: T := ∅ . Initialise empty tree
2: for t := 1, 2, . . . do . Iterate over data stream
3: input: xt
4: ŷt := MakePrediction(T ,xt)
5: yield: ŷt . Return prediction
6: input: yt . Observe yt for training
7: N := GetRoot(T ) . Start at root node
8: while IsNotLeaf(N ) do . Descend to leaf
9: N , changed := UpdateNodeStatistics(N , yt)

10: . Boolean indicator changed
11: if changed = False then
12: changed, N := TestForChange(N , yt, ŷt)
13: else . Adapt if change seen
14: changed, T ,N := Adapt(T ,N ,xt, yt, ŷt)
15: end if
16: N := GetChild(N ,xt) . Descend one node
17: end while
18: N := UpdateLeaf(N ,xt, yt, ŷt)
19: if GetSeen(N ) mod nmin = 0 then . GetSeen returns count of examples

seen
20: T := AttemptToSplit(T ,N )
21: end if
22: end for

4.2 The ATSER Algorithm

The ATSER algorithm is designed for regression problems and incrementally trains a
decision tree. The nodes in the tree are trained sequentially and the bound [Hoeffding,
1963] is used to guarantee the performance of splitting decisions relative to those of a non-
incrementally trained Extra Tree. We denote by xt, t = 1, . . . the stream of features and by
yt the accompanying regression targets; the true value of the target becomes available after

the prediction ŷt has been made. As outlined in Algorithm 4.1, a target prediction is made
by the tree as each example (or batch of examples) arrives (line 4). At each split node,
predictions from any leaves in the subtree are monitored by a change detector (line 12)
and, in the event of concept drift, the affected subtree is adapted (line 14). Finally, each
example is used to update the tree (line 18), and a new split is attempted if the number of
examples seen is sufficient (line 20).

4.2.1 Training the Tree

As examples arrive, statistics are updated in the root node of the tree until there is enough
data available to form a split. The required amount is determined using the Hoeffding
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Algorithm 4.2 The UpdateLeaf function
1: input: N ,xt, yt, ŷt . Input leaf, features, target and prediction
2: N := UpdateNodeStatistics(N , yt)
3: S := GetCurrentSplits(N )
4: for xt in xt do . Loop over features
5: if GetSeen(N ) ≤ mmin then
6: N := UpdatePossibleSplits(N , xt, yt)
7: end if
8: N := UpdateSplitStatistics(N , xt, yt)
9: if GetSeen(N ) = mmin then

10: S := S ∪ {GetRandomSplit(N )}
11: end if
12: N := UpdateLinearModel(N , xt, yt, ŷt)
13: end for
14: N := KeepPossibleSplits(N ,S)
15: yield: N

bound, which can also be used to indicate the best split. After a split is selected, the
process is repeated in the child nodes. With the root node being of depth zero, and every
subsequent node in the path down the tree being of a depth 1 greater than its predecessor,
the splitting process is repeated until the desired depth is reached.

Choosing a Split

Splits are selected via a two-stage process. First, as in Algorithm 4.2, possible splits and
their relevant statistics are collected until mmin examples have been seen at a node (lines 6,
8). k splits are then randomly selected from the possible splits (line 10), with a maximum
of one split for each feature.

After possible splits have been chosen, subsequent examples are used to update their split
statistics until a total of nmin examples have been seen. As in Algorithm 4.3, the best of
the randomly selected possible splits is then chosen with the aim of reducing heterogeneity
between the targets in the child nodes, thereby allowing more accurate predictions to be
made. The variance of the targets, σ2, is used as a measure of this, leading to splits being
chosen to maximize the reduction in variance between the parent and child nodes (line 6).
That is, the split s maximizing the variance reduction

VR(s) = σ2
P −

NL

NP

σ2
L −

NR

NP

σ2
R (4.1)

is selected, where σ2
. and N. denote the variances and number of targets at the parent (P ),

left child (L) and right child (R) nodes respectively. In the interest of reducing the required
statistics we need to store and obtaining more random splits, we choose mmin = 10. On
the other hand, following previous works, we choose nmin = 200.
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Examples are received incrementally, meaning the best split may change as more examples
are received. Consequently, the Hoeffding bound is used to determine when there are
enough examples at the parent node to be confident that the current split with the best VR
will remain the same as more examples arrive.

As described in Chapter 3, the Hoeffding bound may be used to provide confidence
intervals for the mean of a random variable. It states that with probability 1 − δ, the
empirical mean of N examples of a random variable with range R is within ε of the true
mean, where:

ε =

√
R2 ln (1/δ)

2N
. (4.2)

Therefore, the Hoeffding bound can be used to choose the best split at a node by recording
the ratio of the VR of the second best split relative to the best as each new example arrives
at time t:

rt =
VRt(second best split)

VRt(best split)
. (4.3)

By treating the observed ratios r1, r2, ..., rT as a random variable which ranges from 0 to 1
and providing the desired confidence level, chosen here as δ = 10−6, a split can then be
chosen as the best when 1− ε > rt. Details on how to apply the Hoeffding bound can be
seen in Algorithm 4.3.

While this approach appear to differ from the traditional classification approach in a
number of ways, it is actually equivalent. The ratio rt is chosen, rather than a difference,
in order to guarantee the range of the series is bounded in [0, 1]. Furthermore, this
ratio is then checked to be smaller than 1 − ε since this is equivalent to checking if
VRt(best split) − VRt(second best split) > ε after normalising both ε and V Rt by the
variance of the best split.

Perhaps the most appealing property of the Hoeffding bound is that the 1/
√
N term means

that the bound invariably decreases as more examples arrive, meaning it is eventually
always possible to find a single best split. Practically, this occurs by either accepting a best
split if one is determined after seeing nmin examples or, if it is not possible to determine a
best split after nmin examples are observed, by waiting for an additional nmin examples
before again checking if a single split is determined to be the best. This process is repeated
until, eventually, a single best split is obtained.

However, if splits are similarly performing, it may be impractical to wait for enough
examples to choose the best split. ATSER solves this by treating all splits which reach a
certain threshold for the Hoeffding bound (here ε < 0.05) as equally discriminative. Thus,
when the threshold is reached, if no single best split is observed, a split if randomly chosen
from among the tied best splits.
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Algorithm 4.3 The AttemptToSplit function
1: input: T ,N . Input tree and leaf node
2: VR := ∅ . Empty set of variance reductions (VRs) from splits
3: ε := CalulateHoeffdingBound(N )
4: S := GetCurrentSplits(N )
5: for s in S do . Get VR of each split
6: VR := VR ∪ CalculateVarianceReduction(s,N ) . Equation (4.1)
7: end for
8: best := max(VR)
9: second := max(VR \ {best})

10: if (1− ε) > second
best

then . Compare using Hoeffding Bound

11: s := GetBestSplit(S) . Split with the largest VR
12: T := CreateNewSplit(T ,N , s)
13: end if
14: yield: T . Return updated tree

Numerical Attributes

With large quantities of data it is impractical to store each example in memory. Therefore,
only information necessary for generating the VR of each split is kept. As Equation
(4.1) shows, for each possible split it is only necessary to store: the number, the sum and
sum of the squares of the targets at the parent and potential child nodes. In Algorithms
4.1 and 4.2, the parent statistics are stored in the UpdateNodeStatistics function
(Algorithm 4.1 line 10, Algorithm 4.2 line 2), while the child statistics are stored in the
UpdateSplitStatistics function (Algorithm 4.2 line 8). An demonstration of
some incoming points and he splitting statistics stored can be seen in Figure 4.1.

While not as expensive as storing all the data, maintaining these statistics is still the most
costly aspect of the ATSER algorithm, as every time an example reaches a leaf all of the
possible split statistics need to be updated. Similar to [Ikonomovska et al., 2011b], we
use an extended binary search tree (eBST) to sort and maintain the possible splits and
statistics. The computational efficiency of the ATSER algorithm is also visible here, since
as soon as the potential splits have been randomly chosen, there is no need to update the
split statistics to consider new potential split points.

Nominal Attributes

As with numerical attributes, y, y2 and N for both the parent and possible child nodes
are necessary to find the VR of a split. However, for a nominal feature x with c possible
categories xj ∈ {x1, ..., xc}, there are 2(c−1) possible splits. As this number scales expo-
nentially with the number of categories, it is too expensive to be considered in a streaming
scenario, thus empirically leading to the exclusion of nominal splits in most regression
streaming algorithms [Bifet et al., 2010a].
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t X Y

1 1.38 2.1
2 2.57 3.26
3 1.2 1.56

STATISTIC 1 2 3

xs 1.2 1.38 2.57∑
yL 1.56 3.66 6.92∑
y2
L

2.43 6.86 17.46
NL 1 2 3∑
yR 5.36 3.26 0∑
y2
R

15.03 10.6 0
NR 2 1 0

Figure 4.1. Left: Three examples for data with a single feature, x and target y. Right: Accumulated
split statistics. Statistics are sorted on x and for each pre-existing split xs, new examples with
xi ≤ xs are denoted L while those with xi > xs are denoted R.

Since they cannot be handled directly, nominal variables are often incorporated though
the use of dummy variables. However, this can be problematic if the number of categories
is large, as a feature with c possible categories is encoded into c − 1 different dummy
variables, which can drastically increase the number of features and, subsequently, training
times. Additionally, splits on dummy variables result in a 1 vs c− 1 class division. This
necessitates the construction of many nodes to pick out splits between groups of categories,
and also results in weakly discriminative splits, since the majority of examples flow down
a single branch. Furthermore, practical challenges also exist, since categories may not all
be known beforehand, which in turn means new dummy variables must be incorporated
into the modelling process as new categories are observed.

On the other hand, the partially randomized split choice in the ATSER algorithm means
only 1 split needs to be considered per feature. Furthermore, the nature of nominal variables
means that splits on them can be constructed online by assigning newly observed categories
to a random branch.

Modelling in the Leaves

A linear model is gradually trained in each leaf of the tree, giving predictions according to:

ŷ = β̂0 +
D∑
j=1

β̂jxj (4.4)

where weights wf are initially set to 0. As examples arrive in the leaves, they are first
preprocessed. As in [Ikonomovska et al., 2011b], numeric feature values are standardized
according to x′t = xt−x̄

3σt
, where x̄ and σt are the mean and standard deviation of examples of

xf in the leaf. Each category of a nominal feature is treated as a one-hot encoded variable.
The weights in the linear model are then updated using RMSProp-style stochastic gradient
descent [Hinton et al., 2012]. For each individual feature, taking gt = (ŷt − yt)xt, the
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update rule for each individual weight is given by:

β̂t+1 = β̂t −
η√

E[g2]t + µ
gt, t 6= 0 (4.5)

where
E[g2]t = γ

β
E[g2]t−1 + (1− γ

β
)g2
t (4.6)

is the exponentially smoothed mean of g2. Following preliminary experiments, we choose
η = 0.01, γ

β
= 0.9, and µ = 10−8.

The use of RMSProp gradient descent enables localized predictions to be made for each
feature subspace of the tree, and the cheap regularization allows for a faster initial learning
rate to be set, giving better predictions early whilst not overtraining later. Furthermore,
as the regularization of the step size is dependant on recent gradients, it allows the linear
model to be robust to outliers and to avoid overtraining when adapting in the presence of
concept drift. The entire process for training the leaves can be found in Algorithm 4.2.

After a split is made at a leaf, the model used to make predictions is no longer updated at
the split node. However, the model is passed down to the child nodes, allowing them to
avoid having to train a new model and effectively allowing the model to be refined to suit
the specific feature subspace.

4.2.2 Detecting Change

The ATSER algorithm is designed for concept-drifting data. Consequently, it is expected
that parts or all of the tree will need updating as the relationship between the targets
and features in the data changes. The first step to adapting to this change in relationship
lies in detecting the change. Examples are tested for change as they arrive, using the
Page-Hinckley (PH) test [Mouss et al., 2004], which works by monitoring the accuracy
of the predictions made by the tree, flagging potential change if the accuracy suddenly
decreases.

The accuracy of the tree is gauged by monitoring the difference, et = |yt − ŷt| , between
the normalized target yt and its predicted value ŷt. By comparing the difference in each
period to the mean difference across every period,

ēT =
1

T

T∑
t=1

et (4.7)

the relative accuracy in a period can be obtained. With a minimum detection threshold, α,
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Algorithm 4.4 The TestForChange Function
1: input: N , yt, ŷt . Input split node, target and prediction
2: α, λ := GetParameters(N ) . Get user defined parameters
3: ēt−1,mt−1,Mt−1 := GetPastStatistics(N )
4: et := |yt − ŷt| . Find the prediction error

5: ēt :=
(t− 1)ēt−1 + et

t
. Update mean prediction error

6: mt := mt−1 + et − ēt − α . Update relative accuracy
7: Mt := Mt−1

8: changed := False
9: if mt < Mt : then

10: Mt := mt

11: else if (mt −Mt) > λ then
12: changed := True
13: end if
14: N := StoreStatistics(N , ēt,mt,Mt)
15: yield: changed, N

the relative accuracy is given by:

mT =
T∑
t=1

(et − ēt − α) . (4.8)

The PH test remembers the minimum relative accuracy seen,

MT = min
t
{m1,m2, . . . ,mT} (4.9)

and compares it to the relative accuracy in each period to generate the PH statistic,

PHt = mt −Mt. (4.10)

If the PH statistic exceeds a threshold, PHT > λ, the test determines that there has been
a change at time T . The incremental method to apply the test is shown in Algorithm 4.4.
Following [Ikonomovska et al., 2011b], we choose λ = 50, and α = 0.005.

As the PH test requires little information to be stored and can be performed quickly,
it is very suitable for use with streaming data. Furthermore, the parameters α and λ

are independent of the data, meaning that the need for manual adjustment is minimized.
However, their optimal values will still vary across datasets, likely depending on the
amount of noise and the presence of any drifts in the data. On the other hand, a common
failing of the PH test is that gradual changes may be missed because a slow increase in
dt will also increase ēt, which can keep mt below the detection level, despite the (slow)
change. To offset this, the value of the standard deviation of the targets when the change
detector is initialized is kept and used for normalizing subsequent values of dt. This
helps reduce the effect of drift in ēt by keeping the standard deviation relative to the data
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distribution when the test is initialized, rather than the higher value that would occur after
gradual drift.

Change detection is performed at each node, giving two possible ways to calculate ŷt. The
top-down way is for the prediction to be generated at each node as the example passes
down the tree, while the bottom-up way is to use the prediction made at the leaf for all
nodes in the path. While both approaches are viable, Ikonomovska et al. [2011b] argue
that the bottom-up approach is superior, having found fewer false positives are generated.
We therefore use a bottom-up approach for generating predictions here.

4.2.3 Adapting the Tree

When change is detected in the tree, a natural response would be to simply prune the
affected subtree and continue training, allowing the tree to be regrown as if the data were
still stationary. However, the detected changes may be a false alarm, and even if they are
not, the predictions from the affected subtree may still be more accurate than those of the
pruned node.

As shown in Algorithm 4.5, ATSER responds to this by training an alternative subtree, T ′,
in parallel with the original subtree, T , for a period of time, and switching to the alternative
subtree if it has better performance after seeing NQ examples. If the original subtree has
better performance, the training continues and the test is repeated every NQ examples. If
the alternative subtree appears to be getting worse after a total of 10nmin examples have
been seen, it is discarded and the original subtree retained.

As suggested by Gama et al. [2009], each tree is monitored by tracking the mean squared
error (MSE) of the predictions it makes as it sees each example. The MSEs are then used
to calculate a smoothed loss metric, Qtree

t according to

Qtree
t = γ

Q
MSEt + (1− γ

Q
)Qtree

t−1 . (4.11)

This is calculated for both trees and compared using the the relative log-loss,

Qt = log(QOrg
t /QAlt

t ) (4.12)

where Org and Alt denote the original and alternative trees respectively; Qt > 0 indicates
that the alternative tree is outperforming the original tree. The value for the fade factor, β,
as well as the growth time, NQ, will vary across datasets and should be determined based
on the rate at which changes are expected to occur. As the training and retention of an
alternative subtree is expensive, at most one alternative subtree is grown at each node of
the original subtree. Furthermore, to stop an infinitely recurring process, changes are not
considered in the alternative subtrees until they have been adopted. For comparability we

54



4. Stream Forecasting with Extreme Randomization

Algorithm 4.5 The Adapt function
1: input: T ,N ,xt, yt, ŷt . tree, split node, features, target, prediction
2: T ′ := GetAltSubtree(N ) . Alternative tree stored at node
3: changed := True
4: ŷ′t := MakePrediction(T ′,xt)
5: T ′ := TrainAltSubtree(T ′,xt, yt)
6: Qt, µQ := GetQStatistics(N )
7: Qt := UpdateQStatistic(Qt, yt, y

′
t, y
′′
t )

8: if GetSeen(T ′) mod NQ = 0 then
9: if Qt > 0 then . If Alternative tree is better

10: T ,N := UseAltSubtree(T , T ′,N )
11: changed := False . Restart change detection
12: else
13: µQ := UpdateMeanQStatistic(Qt, µQ)
14: end if
15: end if
16: if GetSeen(T ′) ≥ 10nmin and µQ < Qt then
17: T ,N := DiscardAltSubtree(T , T ′,N )
18: changed := False
19: end if
20: N := KeepStatistics(T ′,N , Qt, µQ)
21: yield: changed, T ,N

follow Ikonomovska et al. [2011b] in choosing the fade factor γ
Q

= 0.995 and growth
time NQ = 150, leading to changes being detected on a very short timescale relative to the
number of examples in most of our datasets.

4.2.4 Time Complexity

We now discuss the manner in which the mechanism for choosing splits in ATSER leads
to lower computational complexity relative to other algorithms such as FIMT-DD. While
the complexity of the entire algorithm also depends upon that of the leaf models, these
are interchangeable across algorithms and we here focus solely on the tree construction
complexity.

On average, the time taken to insert a new value into the eBST structure, which handles
the possible splits, is O(log(n)) for an eBST constructed from n examples, while the time
taken to attempt to split is O(n). The FIMT-DD algorithm requires a value to be inserted
each time a new example is seen, until a split is attempted after seeing nmin examples.
This leads to an expected time complexity of:

O

(
nmin∑
k=1

log(k)

)
+O (nmin) = O (log(nmin!) + nmin) (4.13)

≈ O (nmin log(nmin)) (4.14)
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using Stirling’s approximation. On the other hand the ATSER algorithm chooses which
splits to consider after mmin < nmin examples have been seen, before also attempting
to split after seeing nmin total examples. Similar to the FIMT-DD algorithm, this leads
to a time complexity of O(mmin log(mmin)) over the first mmin examples. After a split
has been chosen, the eBST is reduced to a single node, requiring O(1) for each of the
remaining a = nmin −mmin examples, thus having a complexity of

O(mmin log(mmin) + a). (4.15)

We then find the difference in times to be:

O(nmin log(nmin)−mmin log(mmin)− a) (4.16)

= O((a+mmin) log(nmin)−mmin log(mmin)− a) (4.17)

= O

(
a(log(nmin)− 1) +mmin

(
log

(
1 +

a

mmin

)))
. (4.18)

As all of a, nmin,mmin > 1, we can see that providing log(nmin) > 1, this difference
must be positive, suggesting that the ATSER algorithm should generally be faster than the
FIMT-DD algorithm.

4.3 Ensembles

Ensembles are often able to increase predictive performance compared to that of a base
learner [Dietterich, 2000]. They are especially effective with Extra Trees, which are
designed to reduce variance by leveraging the combination of both randomized split points
for the individual trees and the ensemble averaging procedure [Geurts et al., 2006].

Here we describe three ensemble approaches which use ATSER trees as base learners.

The ATSER-Seeds ensemble is constructed simply by using a different random seed for
each base learner, allowing us to offset the stochastic aspect of individual ATSER trees.
We randomly choose the seeds, under the constraint that no two members can have the
same seed.

ATSER-OBag is a way of replicating the results that would be obtained by training models
on data obtained by performing bootstrap sampling on a training dataset where all examples
are always available. Online bagging was introduced by Oza and Russell [2001], who
showed that as the size of the dataset tends to infinity, the number of times each individual
example appears in the bootstrap sample tends to a Poisson(1). This enables us to replicate
offline bagging with M replications by training on each member of the datastream m

times where M ≈ e−1

m!
. Furthermore, Bifet et al. [2010b] have shown that drawing from a
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Poisson(θ), with θ > 1, modifies the ensemble input space and allows a larger portion of
the data to be utilised. In light of this, we proceed using a Poisson(3) in the ATSER-OBag
ensemble.

In the ASTSER-Seeds and ATSER-OBag algorithms we choose the number of randomly
generated splits, k, for each ATSER tree such that one split is considered for each available
feature, leading to k = F which Geurts et al. [2006] find empirically to be most effective.
By choosing k =

√
F , we create the ATSER-RForest ensemble. This choice of k gives

a specific case of the original Extra Trees algorithm which acts similarly to the random
forest algorithm suggested by Breiman [2001], albeit without the bagging approach used
in random forests. As such, our third ensemble approach is to train each base learner in
the ensemble on all F features, but to randomly select a subset of

√
F features for each

splitting decision.

In the experiments described below each of the ensembles has 10 members and the
ensemble prediction is found as the arithmetic mean of the individual predictions. We use
a larger learning rate η = 0.025 for the linear models of each member, taking advantage
of the ensemble averaging to counter the effects of any overtraining (η = 0.01 for single
ATSER trees).

4.4 Evaluation

Having described the model used in the ATSER algorithm, we now detail the datasets and
methodology we have used for evaluating the ATSER algorithm.

4.4.1 Datasets

As summarised in Table 4.1, we use 11 stationary and 4 non-stationary timeseries datasets
for evaluation.

Stationary Datasets

Following Ikonomovska et al. [2011b], we use 10 well known regression datasets available
from: the UCI Machine Learning Repository, the Delve Repository and the StatLib
System’s site. They are presumed stationary and can be used to benchmark the performance
of online algorithms in stationary scenarios.

We also use the larger YEAR MSD DATASET, allowing for a comparison over a longer
time horizon. Here the task is to use audio features to predict the release year of a selection
of songs from 1922-2011.
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Table 4.1. Overview of the datasets used. N gives the number of records, µy and σy are the mean
and standard deviation of the targets, NUM and CAT list the number of numerical and categorical
variables, while NCAT gives the total number of categories in the dataset.

DATASET SYNTHETIC N µy σy NUM CAT NCAT

ABALONE NO 4.98E3 10.07 3.325 8 1 3
AILERONS NO 1.38E4 -8.7E-4 4.1E-4 41 0 0
CAL HOUSING NO 2.05E4 2.07E5 1.15E5 9 0 0
ELEVATORS NO 1.66E4 0.0216 0.0067 19 0 0
HOUSE 8L NO 2.28E4 5.01E4 5.28E4 9 0 0
HOUSE 16H NO 2.28E4 5.01E4 5.28E4 17 0 0
MV DELVE NO 4.10E4 -8.85 10.417 8 3 7
POL NO 1.56E4 29.07 41.795 49 0 0
WIND NO 6.57E3 15.60 6.698 13 2 43
WINEQUALITY NO 5.30E3 5.87 0.89 12 0 0
YEAR MSD NO 5.15E5 2.00E3 10.93 90 0 0
AIRLINE 08 NO 5.81E6 7.95 37.91 5 7 670
FRIEDMAN YES 1.00E6 14.41 4.98 10 0 0
HYPERPLANE YES 1.00E6 0.815 1.142 5 0 0
HOUSING NO 2.25E7 1.70E5 1.5E5 0 8 1785
ZURICH NO 5.47E6 53.34 201.30 7 7 1662

Timeseries Datasets

The synthetic FRIEDMAN DATASET was introduced by Friedman [1991]. We generate 1
million examples, each consisting of 10 uniformly and independently distributed features
in the range (0, 1), which are used to predict a single target, y. The target is created from a
nonlinear combination of the features and a noise term ν ∼ N(0, 1):

y(1) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ν

Following Ikonomovska et al. [2011b], three abrupt concept drifts were introduced by
permuting the features in the generative equation, resulting in y in the second and last
quarters of the dataset being given by:

y(2) = 10 sin(πx4x5) + 20(x2 − 0.5)2 + 10x1 + 5x3 + ν

One notable aspect of using a synthetic dataset is that it is possible to determine the Bayes
error. In the case of the mean absolute error, this is given by E[|ν|], which gives a Bayes
error of 0.798 for the Friedman dataset.

The synthetic HYPERPLANE DATASET, suggested by Gomes et al. [2018], is based on the
classification dataset from Hulten et al. [2001]. The task is to predict the squared distance
of points from a D − 1 dimensional hyperplane. We again generate 1 million examples,
with 5 uniformly and independently distributed features in the range (0, 1), all of which are
used to determine the target y. After generating the features, we also generate weights for

58



4. Stream Forecasting with Extreme Randomization

the hyperplane. The hyperplane passes through the centre of the unit hypercube in which
the features are located, c = (0.5, 0.5, 0.5, 0.5, 0.5), and begins with a set of uniform and
positive weights w(1) = (1, 1, 1, 1, 1). These are then used to create the target according
to:

y = 10

(
D∑
j=1

(xj − cj)wj
|w|

)2

.

We then introduce three incremental changes by rotating the hyperplane, beginning the
changes after 25%, 50% and 75% of the data have been seen respectively. Over the course
of 100000 examples, the weights are gradually linearly updated at each change to reach
w(2) = (−1, 1,−1, 1,−1), w(3) = (−1,−1,−1,−1−, 1) and w(4) = (1,−1, 1,−1, 1)

respectively. We note that due to the square in y, the weights w(1) and w(3) are actually
equivalent, as are the weights for w(2) and w(4). However, as the drift is incremental,
the direction of the rotation means that the squared distances during the change will be
different.

Finally, we add noise to the dataset, after the changes have been introduced. The noise
term, ν ∼ N(0,

σ2
y

16
), gives noise equal to a quarter of the standard deviation of the target.

As we know the form of the noise, we can again find the Bayes error, which is 0.221.

The task in the AIRLINE 08 DATASET is to predict delays to US domestic flights. The
dataset was originally provided for the 2009 Data Expo and the task is to predict flight
delays. While the original dataset used by Ikonomovska et al. [2011b] records information
about US domestic flights between 1987-2008, we use a shorter version, consisting only of
flights in 2008.

The HOUSING DATASET originates from HM Land Registry. It contains time ordered
records of individual housing transactions from 1995-2017. The goal is to predict transac-
tion values based on multiple nominal attributes, with the most diverse attribute containing
1170 distinct categories.

The ZURICH DATASET contains information for predicting public transport delays for 4
weeks in November 2016. The OpenML version was sorted chronologically before use.

4.4.2 Methodology

Due to the evolving nature of streaming data, evaluation methods designed for stationary
data will be inaccurate and do not properly capture algorithm performance. Instead, we
have discussed two main approaches for evaluating performance on streaming data in
Section 3.3.2: prequential and holdout.

We note that, in general, holdout evaluation gives a fairer assessment of the model itself,
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Table 4.2. An overview of ATSER hyperparameters

Description Symbol Value

Num examples after which splits are randomly selected mmin 10
Num examples after which the best split is chosen nmin 200
Desired significance for a split δ 10−6

Split tie threshold for the Hoeffding bound ε 0.05
Leaf learning rate η 0.01
Leaf forgetting factor γβ 0.9
Page-Hinckley test threshold λ 50
Page-Hinckley minimum detection threshold α 0.005
Alt tree MSE fade factor γQ 0.995
Alt tree comparison frequency NQ 150

assuming that the data collected for each holdout set are stationary. On the other hand,
although prequential evaluation is negatively biased due to the inclusion of mistakes made
early on in the training period, it provides a better assessment of how well predictions can
be made at each time. As the main goal of our predictive modelling task is to provide
accurate predictions rather than an informative model, we have elected to use a prequential
evaluation method, both in this chapter and for the rest of this thesis.

We evaluate the performance itself using the mean absolute error (MAE). However, the size
of the data makes it challenging to represent so many predictions coherently. We therefore
display the performance evaluated over a sliding window of prequential predictions, as
discussed in Section 3.3.2. We use windows of 104 predictions for the slightly smaller
YearMSD and Friedman datasets, and 105 for the other timeseries datasets.

Furthermore, throughout this thesis we present results averaged over 10 runs, to ensure the
results are robust to the random elements in both ATSER and the subsequent algorithms
presented in Chapters 5 and 6 . Although this is comparatively fewer than would be
chosen in many circumstances, we use 10 runs since our datasets are large, meaning each
additional run is costly in terms of time taken. However, as we will see in Section 4.5 , the
standard error of the results is small, providing a level of confidence in their validity.

The ATSER algorithm and ensembles were implemented in the MOA framework [Bifet
et al., 2010a], ensuring comparability with the already present MOA implementations of
the reference algorithms. We use the parameters specified across the previous sections
for ATSER-based algorithms, and all but one of the default parameters suggested by the
authors for comparison algorithms. The single parameter change is that we have increased
the learning rate in linear models of the ensemble algorithms used for comparison to
0.025, to match that of the ATSER ensembles. In all cases this led to an improvement
in the comparison algorithm relative to the default suggested parameters. A summary of
hyperparameters and their chosen values can be seen in Table 4.2.
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Another point worth mentioning is that different choices of hyperparameters can lead
to threats to experimental validity if ill-suiting values are chosen for some algorithms,
while well-suited values are chosen for others. To ensure the results are comparable, we
have chosen defaults for ATSER and subsequent algorithms in this thesis to match the
parameters of the comparison algorithms where common hyperparameters exist, such as
the choice of nmin = 200. Furthermore, we have evaluated over a number of datasets for
which the chosen hyperparameters have been shown to be optimal for the comparison
algorithms [Ikonomovska et al., 2011b] , ensuring that the hyperparameters are not biased
toward the proposed algorithms. We also consider the performance of the algorithms using
the same fixed hyperparameters over all of the datasets, making it unlikely that having
better-suited hyperparameters will be the source of an algorithm outperforming the others,
since the same hyperparameters are unlikely to be well suited to all of the different datasets.

No parallelization was used in our implementation, and all results were obtained on a
laptop with an Intel Core i5-6200U dual core 2.3GHz CPU, L2 cache: 513kb, L3 cache:
3Mb, 16Gb RAM @ 2133MHz.

4.5 Results

The ATSER algorithm and ensemble methods we have proposed need to be relevant in a
number of scenarios. In this section we first demonstrate their effectiveness on a number of
smaller, stationary datasets, finding that they outperform prior methods in most cases. We
then show the performance of the ATSER algorithm in a test scenario, where controlled
changes are induced in otherwise stationary data, before proceeding to test the algorithm
on multiple real-world datasets which are suspected to be non-stationary.

At all stages we compare with the FIMT-DD algorithm as the de facto benchmark for
regression methods, and also with the contemporary ORTO-A and ARF algorithms. ORTO-
A is found by Ikonomovska et al. [2015] to have strong performance relative to many other
ensemble methods, while Gomes et al. [2018] find ARF to perform well on a selection of
real world datasets. All results shown are averaged over 10 runs. Summary results for the
larger datasets can be found in Table 4.3.
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Figure 4.2. FIMT-DD, ORTO-A, ARF and ATSER ensemble performance, relative to ATSER on
smaller stationary datasets. The mean absolute error and standard error (over 10 runs) relative to
ATSER for each algorithm is shown. We have removed ≈100 and ≈500 outliers from each run
of the ARF algorithm on the elevators and ailerons datasets respectively. Retaining them leads to
MAEs of 2.92× 105 and 9.55× 106 respectively, relative to ATSER.

4.5.1 Performance on Stationary Data

Results from testing on the smaller stationary datasets are shown in Figure 4.2, which
shows the ratio of each method’s MAE relative to the ATSER result. Note the log scale.

The ATSER-based algorithms all perform better than the FIMT-DD and ORTO-A (ORTO
with averaging) approaches on every dataset, although they are still within error on the POL

and AILERONS datasets. Meanwhile, the ARF algorithm performs erratically, and while it
generally performs worse than the ATSER-based algorithms, it outperforms two of them
on the POL dataset. Notably, the ATSER-Seeds ensemble is particularly effective, either
outperforming all of the other methods or performing within error of the best algorithm on
every dataset. One surprise is that a single ATSER tree still performs well in comparison
to other algorithms, since intuitively we would expect it to perform the worst due to
the randomness hurting the performance of a single tree. This is likely due to the faster
training speed of the ATSER algorithm, which is more noticeable on smaller datasets. The
faster training arises from both rapid split construction in the ATSER tree and also from
RMSProp SGD allowing larger steps when training the linear models in the leaves.

The performance of each algorithm on the YEAR MSD dataset can be seen in Figure 4.3.
The ATSER algorithm performs better than the other single tree algorithms except for a
relatively brief period when the FIMT-DD is comparable with it. Indeed the ATSER single
tree algorithm outperforms the ensemble-based ARF method. Overall, the ATSER-Seeds
approach again performs best, although all the ATSER ensemble methods are perhaps
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Figure 4.3. Performance on YEARMSD over 10k windows. We have removed ≈70k outlying
predictions in each run of ARF-Reg for comparability. Retaining them leads to an MAE of
9.72× 104

unsurprisingly more effective than the single tree methods. It is interesting to note that all
of the ATSER-based algorithms perform more consistently than the FIMT-DD, ORTO-A
and ARF algorithms in this scenario.

4.5.2 Effectiveness in Non-stationary Scenarios

While the stationary comparisons show that the ATSER algorithms are effective on datasets
of varying sizes, the true purpose of the algorithms is for use in potentially non-stationary
timeseries scenarios. We use the FRIEDMAN data to test the performance in a mostly
stationary scenario with abrupt, controlled changes, and the other timeseries datasets to
test how well the algorithms perform in practice.

Synthetic Data

The FRIEDMAN dataset shows how the algorithms respond to abrupt changes; learning
curves can be seen in Figure 4.4. While the algorithms train rapidly at first, none of them
appears to have fully converged before the change points.

Unlike the previous datasets, the ATSER-Seeds ensemble only has the second best per-
formance, with the ARF ensemble having the best. Furthermore, contrary to the previous
datasets, FIMT-DD outperforms the ATSER algorithm. However, after each of the changes,
the peak in the ATSER curve remains shorter than that of the FIMT-DD algorithm, with
improved performance over the next few hundred thousand examples. This suggests that
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Figure 4.4. Performance on FRIEDMAN over 10k windows. A section of the ORTO-A results which
peaks at 14.5 has been omitted for visibility.

ATSER responds faster to change than FIMT-DD, although it may do worse over a long
stationary period. We recall, however, ASTER’s better performance on more realistic
stationary datasets in Section 4.5.1.

On the other hand, the HYPERPLANE dataset shows how the algorithms respond to
incremental drifts, which can be seen in Figure 4.5. Overall, the ARF-Reg ensemble has
the best performance. Interestingly, however, both FIMT-DD and ARF-Reg appear to react
somewhat differently in the face of changes to the ATSER based approaches. As the first
change occurs, compared to the ATSER approaches, both FIMT-DD and ARF-Reg face
much steeper increases in MAE, before rapidly adapting to the changes. On the other
hand, the ATSER methods all adapt more slowly, but have much smoother learning curves.
Furthermore, while the ARF-Reg ensemble performs well in the stationary sections, the
ATSER-Seeds ensemble appears to perform well in the presence of change. This suggests
that the optimal choice of algorithm may depend on the frequency of the drifts in the
dataset.
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Figure 4.5. Performance on HYPERPLANE over 10k windows.

Real World Data

Figures 4.6 and 4.7 show comparisons of the algorithms on the AIRLINE08 and ZURICH

datasets respectively. The jagged learning curves indicate the presence of concept drift as
the ability of each algorithm to predict changes over time. This is particularly noticeable
in the ZURICH dataset, where there are 4 cycles in performance corresponding to changes
across the 4 weeks in the dataset.

Across these datasets we see that ATSER outperforms the FIMT-DD, ORTO-A and ARF
methods at all times. Although the highly randomized splits in ATSER should lead to a
single ATSER tree performing worse than a single FIMT-DD tree in terms of splits, the
inclusion of nominal features and the use of RMSProp gradient descent leads to improved
performance. This occurs since including nominal features provides more training data,
while RMSProp gradient descent allows the linear models in the leaves to rapidly adapt to
concept drift.

On the other hand, all of the ATSER-based ensemble algorithms outperform the other
approaches. While the ATSER-OBag ensemble performs best on the ZURICH dataset, we
see that the ATSER-Seeds ensemble, which together with ASTER-RForest, performs best
over the AIRLINE08 datset, has the most consistent performance.

In the HOUSING dataset (Figure 4.8) only nominal features are available meaning that, as
they cannot split, ORTO-A acts as a mean predictor, while FIMT-DD learns the constant
in a linear model and ARF learns the same constant via an ensemble. Consequently, the
ATSER based algorithms again perform better here.
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Figure 4.6. Performance on AIRLINE 08 over 100k windows. Note that the performance of
ATSER-Seeds (red) is almost obscured by that of ASTER-RForest (brown), which performs very
similarly.
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Figure 4.7. Performance on ZURICH over 100k windows. We have removed ≈10k outlying
predictions in each run of FIMT-DD for comparability. Retaining them leads to an MAE of
2.75 × 103. We have discarded 2 outlying runs and removed ≈3k outlying predictions in each
remaining run of ARF-Reg for comparability. Retaining them leads to an MAE of 1.652× 105
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Figure 4.8. Performance on HOUSING over 100k windows. Note that the performance of ATSER
(green) and ATSER-Seeds (red) are almost obscured by that of ASTER-RForest (brown), which
performs very similarly.

4.5.3 Run time

The average run time for each model and dataset over 10 runs can be found in Table 4.4.
On all datasets, the fastest performing algorithm is either ATSER or ORTO-A, and ATSER
is faster than or within error of FIMT-DD on all but the HOUSING dataset.

The inconsistency in speed is due to nominal features in the datasets, as ATSER uses them
while FIMT-DD and ORTO-A cannot. The fairest time comparisons are therefore on the
FRIEDMAN and YEARMSD data, which contain no nominal features. On these, ATSER
runs significantly faster, as expected based on the discussion in Section 4.2.4.

On the other hand, the ensembles are slower. However, we expect that parallelizing the
ATSER-Seeds and ATSER-RForest ensembles would, in the limiting case, lead them to
achieving similar times to the ATSER algorithm. As the ATSER-OBag ensemble trains
an average of 3 times on each example, and the ARF ensemble 6 times, they are likely to
remain slower even after parallelization.

4.5.4 Effect of Linear Models

Learning in the tree-based algorithms tested occurs in two places: the tree itself, and the
linear models. However, this can make it challenging to disentangle how different aspects
of the algorithms are performing, especially since we have introduced a different approach
for both the splitting procedure in the trees and the method of training the linear models.
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Consequently, in this section we repeat part of the previous analysis, but without linear
models in the leaves of the trees, allowing for a better comparison of the novel splitting
mechanism in ATSER trees relative to previous approaches. The results of this approach
for the large datasets are summarised in Table 4.5 and detailed performance graphs are
given in Appendix A.1.

Somewhat surprisingly, many of these results do not differ greatly from those with linear
models in the leaves (Table 4.3), suggesting the difference in performance on most datasets
is largely due to the novel splitting process. However, the MAE of all algorithms on the
synthetic FRIEDMAN dataset is noticeably worse without the linear models in the leaves,
suggesting that the dataset behaves differently to many real-world datasets, possibly due to
the low noise it exhibits.

Another notable difference is that while the ATSER-Seeds ensemble algorithm retains the
best overall performance, removing the linear models actually improves performance of
the ATSER ensemble algorithms on the YEARMSD dataset. This suggests the inclusion
of linear models in the leaves may not always be beneficial, although it is not clear as to
why this is the case.

Furthermore, by focusing in particular on the datasets without nominal features, we are
able to ascertain the impact of ATSER’s splitting mechanism. Looking at the results
on the FRIEDMAN, HYPERPLANE and YEARMSD datasets, we see that for all three
datasets a single ATSER tree is clearly the fastest algorithm, confirming that the splitting
mechanism leads to faster run times. However, in terms of performance, it is less clear.
While the ATSER-Seeds ensemble is the best performing algorithm on the FRIEDMAN

and YEARMSD datasets, the ARF-Reg ensemble performs the best on the HYPERPLANE

data, although by a comparatively smaller amount that in the case with linear models.
Furthermore, in comparison to the results with linear models, the drop in performance of
the ATSER algorithms is lower in all cases than that of the other algorithms. Altogether,
this suggests that much of the improved performance of the ATSER algorithm can be
directly attributed to the introduction of randomness in the splitting mechanism.
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4. Stream Forecasting with Extreme Randomization

Table 4.6. Performance of different ATSER ensembles with varying ensemble sizes. Results are
averaged over 10 runs using different random seeds and the standard error is given in brackets.
Bold indicates result(s) with the best performance.

ATSER-SEEDS ATSER-RFOREST ATSER-OBAG
10

T
R

E
E

S

AIRLINE 08 14.97 (0.02) 15.07 (0.02) 16.39 (0.01)
FRIEDMAN 1.36 (0.01) 1.39 (0.01) 1.40 (0.01)
HOUSING 55857 (25) 55933 (21) 59268 (52)
HYPERPLANE 0.28 (0.0001) 0.289 (0.0002) 0.293 (0.0002)
YEAR MSD 7.52 (0.01) 7.71 (0.01) 8.44 (0.01)
ZURICH 39.90 (0.11) 45.20 (0.10) 38.78 (0.05)

AVERAGE RANK 1.17 2.17 2.67

25
T

R
E

E
S

AIRLINE 08 14.76 (0.008) 14.85 (0.008) 16.03 (0.007)
FRIEDMAN 1.32 (0.001) 1.35 (0.001) 1.33 (0.001)
HOUSING 55720 (46.3) 55764 (46.4) 58740 (46.6)
HYPERPLANE 0.272 (0.0001) 0.282 (0.0002) 0.277 (0.0001)
YEAR MSD 6.7 (0.007) 6.85 (0.007) 7.2 (0.006)
ZURICH 38.66 (0.047) 43.89 (0.048) 37.29 (0.047)

AVERAGE RANK 1.17 2.5 2.33

50
T

R
E

E
S

AIRLINE 14.69 (0.008) 14.77 (0.008) 15.91 (0.007)
FRIEDMAN 1.31 (0.001) 1.34 (0.001) 1.3 (0.001)
HOUSING 55669 (46.3) 55707 (46.4) 58525 (46.6)
HYPERPLANE 0.27 (0.0001) 0.279 (0.0001) 0.271 (0.0001)
YEAR MSD 6.39 (0.007) 6.52 (0.007) 6.72 (0.006)
ZURICH 38.25 (0.047) 43.51 (0.048) 36.78 (0.047)

AVERAGE RANK 1.33 2.5 2.17

4.5.5 Impact of Ensemble Size

Thus far, we have been chosen small ensembles of 10 trees, enabling comparison with
previous works. However, we would typically expect improved performance with a larger
ensemble size than this, especially in cases with a higher degree of randomization, such
as the ATSER ensembles. Consequently, in Table 4.6 we present the performance of the
ATSER ensembles with 10, 25 and 50 trees for comparison.

We first note that in every case, increasing the ensemble size leads to improved predictive
performance, as can be seen in Figures 4.9 to 4.11. Furthermore, the figures suggest that the
relative improvement as the ensemble size increases appears to follow a somewhat similar
pattern across the different ensemble approaches, with the largest relative improvements
occurring on the stationary YEARMSD dataset, and the smallest on the purely categorical
HOUSING dataset.

However, it is worth noting that while all of the ensemble approaches benefit from larger
ensembles, and that the ATSER-Seeds ensemble remains the overall best performing
method, it is the ATSER-OBag method that benefits the most from increasing the ensemble
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Figure 4.9. Performance of the ATSER-Seeds ensemble at different ensemble sizes. The perfor-
mance is shown relative to that of a 50 tree ensemble on each dataset.

size. Table 4.6 shows that, relative to the other ensemble methods, ATSER-OBag moves
from an average rank of 2.67 to 2.17 as the ensemble size increases from 10 to 50 trees.
This improvement relative to the other methods makes sense, since ATSER-OBag has the
highest degree of randomization out of the different ensemble approaches, which suggests
it ought to benefit the most from increasing the ensemble size.

Overall, we see that all of the ensembles approaches benefit from choosing a larger
ensemble, as expected. While ensembles of more than 50 trees may lead to further
improvements, the benefit of each additional tree diminishes as the ensemble size increases.
This suggests that while ATSER-OBag appears to improve more with ensemble size
relative to the other ensemble methods, it may take a long time, or perhaps not even reach,
the performance of ATSER-Seeds on many of the datasets, suggesting that ATSER-Seeds
is the optimal choice of ensemble method.

72



4. Stream Forecasting with Extreme Randomization

Airline08 Friedman Housing Hyperplane YearMSD Zurich
Dataset

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

M
ea

n 
Ab

so
lu

te
 E

rro
r 

 R
el

at
iv

e 
to

 5
0 

Tr
ee

s

ATSER-RForest - 10 Trees
ATSER-RForest - 25 Trees
ATSER-RForest - 50 Trees

Figure 4.10. Performance of the ATSER-RForest ensemble at different ensemble sizes. The
performance is shown relative to that of a 50 tree ensemble on each dataset.
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Figure 4.11. Performance of the ATSER-OBag ensemble at different ensemble sizes. The perfor-
mance is shown relative to that of a 50 tree ensemble on each dataset.
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Figure 4.12. Sensitivity of ATSER-Seeds to mmin and nmin on timeseries datasets.

4.5.6 Sensitivity of Hyperparameters

Although many of the hyperparameters we have chosen are based on those in other works,
some hyperparameters, most notably the minimum number of examples before attempting
to split at node, mmin, and nmin, the number of examples to wait until selecting a split,
are especially important due to their role in the novel splitting process used in the ATSER
algorithm. While we have chosen nmin = 200 for comparison with previous algorithms,
this may not be optimal. We now consider the sensitivity of the results from the best-
performing ATSER-Seeds ensemble on the timeseries datasets, as shown in Figure 4.12.

From Figure 4.12, we can see that empirically, the optimal values of mmin and nmin vary
with the dataset. While mmin appear to be stable, optimally between 2 to 10, the value of
nmin is much more sensitive, varying from 50 on the FRIEDMAN dataset (Figure 4.12b)
to 800 on the AIRLINE 08 dataset (Figure 4.12a). The surprisingly low optimal value for
mmin suggests that the performance benefits a lot from the randomness in the splitting
procedure. On the other hand, the variation in nmin may be due to differences in the level
of noise across datasets, with the relatively low-noise FRIEDMAN dataset needing fewer
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examples to detect a signal and form a meaningful split.

However, it is important to note that despite the optimal values varying across datasets,
the variation in performance across different values of mmin, and nmin, is relatively small,
suggesting the ATSER-Seeds algorithm is fairly robust to changes in these parameters. For
the chosen values of nmin = 200 and mmin = 10 used in this work, the performance is
within 10% of the optimum on each dataset.

4.6 Summary

We have introduced the concept of extreme randomisation as embodied in the Extra Trees
algorithm for modelling streaming data which, when compared to other contemporary
models, results in both improved predictive performance and computational efficiency
arising from the simpler splitting procedure. We have incorporated a framework for
handling nominal variables with large numbers of categories in streaming data, allowing
for a wider range of applications.

Taking our new model as a base learner, we have proposed several ensemble algorithms for
regression streams, allowing further improvements in performance, particularly when par-
allel hardware is available as if often the case on modern machines. While we have worked
explicitly in a regression context, we have also adapted ATSER for use in classification
scenarios, which will be described in the next chapter.

75



Chapter 5

Adaptive Categorization Trees for
Streaming with Extreme
Randomization

When seeking models with strong predictive performance, practitioners concerned with
data stream mining face an additional challenge in the volume of data available. As new
data is constantly being generated, models must be able to train rapidly, and update in
accordance with any changes in the data stream. While many models seek to do this,
the most prominent among them is the Very Fast Decision Tree (VFDT), introduced by
Domingos and Hulten [2000] which acts as the classifier used for streaming data. However,
despite being known to be ill-suited to nonstationary data, the VFDT is still commonly
used as the base learner in many ensembles designed for such scenarios. In this chapter, we
introduce an adaption of the ATSER algorithm to a categorization scenario: the Adaptive
Categorization Trees for Streaming with Extreme Randomization (ACTSER) algorithm.
ACTSER is able to act as a base learner for ensembles designed for nonstationary data and
offers a fast and effective alternative to the VFDT.

The ACTSER algorithm again applies the concept of extremely randomised (Extra) trees
to a streaming scenario, which are known for both their speed and their ability to leverage
randomness in the base learners to improve ensemble performance. We show that this
allows individual ACTSER trees to include a change adaption mechanism whilst still main-
taining similar speeds to the VFDT. Furthermore, we compare the performance of a single
ACTSER tree with the VFDT and the contemporary fast alternative EFDT [Manapragada
et al., 2018]. We also demonstrate the strong performance of ensembles of ACTSER trees
relative to the contemporary Adaptive Random Forest (ARF) ensemble algorithm [Gomes
et al., 2017a], finding that it generally has stronger predictive performance, whilst also
being faster.
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The remainder of this chapter proceeds as follows. In Section 5.1 we briefly re-review
the related works designed for data stream classification that we saw in Chapter 3, before
specifying the structure of the ACTSER algorithm in Section 5.2 and how to compose
ensembles in Section 5.3. We then describe the data used for evaluation in Section 5.4,
followed by a discussion of results in Section 5.5 and concluding remarks in Section 5.6.

5.1 Online Categorization

Due to the importance of big data streams in numerous fields, there have been many
attempts to create algorithms which can handle concept drifting data. As we have seen
in Section 3.2.3, the original VFDT algorithm, introduced by Domingos and Hulten
[2000], incrementally trains a classification tree and is a popular approach due to its fast
construction through the use of Hoeffding bounds [Hoeffding, 1963].

While the VFDT offers a fast method for constructing accurate trees, it is only applicable
to stationary data. To account for concept-drifting data, Hulten et al. [2001] suggested
an adaption known as the Concept-Adapting VFDT (CVFDT), which monitors nodes
in the tree for change and trains alternative trees if an alternative splitting attribute at a
node appears to be better. However, as it maintains trees relative to a current window of
examples, it is expensive and slow to update compared to the VFDT.

Due to the time and memory costs of maintaining the CVFDT, a number of other ap-
proaches have been suggested for handling concept drifting data. Some methods such as
Hoeffding Adaptive Trees (HAT) [Bifet and Gavald, 2009] similarly focus on keeping a
VFDT relevant to current data, while other approaches attempt to simply update the tree
faster. Hoeffding Option Trees (HOT), proposed by Pfahringer et al. [2007], achieve this
through the use option nodes, which allow the tree to be split on multiple features at the
same node, effectively turning the tree into an ensemble. A more recent adaption is the
Extremely Fast Decision Tree (EFDT) [Manapragada et al., 2018], which differs from
the VFDT by splitting when information gain is non-zero rather than when the best split
outperforms the second best split. While not the primary motivation for its design, the
authors note it has the capability to handle concept drift.

Despite the number of other learners available, VFDTs have remained popular as base
learners in ensembles since, despite their inability to handle concept drift, they are simpler
and faster than other approaches. Many concept drift ensembles use block-based ap-
proaches with VFDTs as base learners, such as the Streaming Ensemble Algorithm (SEA),
Accuracy Weighted Ensemble (AWE) and Accuracy Updated Ensemble (AUE) [Street and
Kim, 2001; Wang et al., 2003; Brzeziński and Stefanowski, 2011]. These ensembles work
by breaking the data into batches and training a VFDT on each. The classifiers are then
added to the ensemble, and the results obtained through the ensemble’s respective voting
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scheme. In these block-based approaches, concept drift is usually handled by weighting
each ensemble member’s vote based on its performance. However, the performance of such
ensembles is often disappointing due to the lack of exposure to the data in each of the base
classifiers and the inability of each base classifier to react to concept drift independently.

More recently ensembles offering solutions to both of these problems have been proposed.
The Adaptive Random Forest algorithm (ARF) [Gomes et al., 2017a] trains each tree on all
of the available data in a random forest style approach [Breiman, 2001]. Each base learner
is trained following the online bagging approach suggested by Oza and Russell [2001].

In the Adaptive Classification Trees for Streaming with Extreme Randomization (ACTSER)
algorithm, we expand on previous works by introducing further randomization through a
similar splitting mechanism to extremely randomised (Extra) trees [Geurts et al., 2006].
Extra Trees work by randomly choosing one possible split point for each feature considered,
and splitting on the best of them. By adapting this approach for the ACTSER algorithm,
we are able to increase the diversity of our ensembles and in turn improve predictive
performance. Furthermore, this approach allows the easy inclusion of nominal features in
the training process, which is particularly expensive in the traditional VFDT.

Additionally, the ACTSER algorithm includes the use of McNemar’s test [McNemar, 1947]
for deciding whether to adopt an alternative tree, exploiting the fact that the predictions of
a base classifier and an alternative tree are paired nominal data. This provides us a simple
and theoretically motivated assurance that any adaptions are appropriate.

5.2 The ACTSER Algorithm

The basic construction of the ACTSER Tree follows that of the VFDT, but with semi-
randomized splitting decisions based on Extra trees [Geurts et al., 2006]. Starting from a
single root node, the tree is constructed incrementally. Examples are assumed to arrive
successively, with each example containing a single target yt and a set of features xt.
Predictions are made in the leaves using an adaptive Naı̈ve Bayes classifier. After each
split node is constructed, a change detector begins monitoring the predictions and, in the
event that change is detected, an alternative tree is initiated alongside the original. After a
period of growth, the alternative tree either replaces the original, or is discarded, based on
how well it performs. An overview of the ACTSER algorithm can be seen in Algorithm
5.1.
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Algorithm 5.1 Overview of the ACTSER Algorithm

1: T := ∅ . Initialise empty tree
2: for t := 1, 2, . . . do . Iterate over data stream
3: input: xt
4: y′t := MakePrediction(T ,xt)
5: yield: y′t . Return prediction
6: input: yt . Observe yt for training
7: N := GetRoot(T ) . Start at root node
8: while IsNotLeaf(N ) do . Descend to leaf
9: N := UpdateNodeStatistics(N , yt)

10: if ChangeDetected(N ) = False then
11: N := TestForChange(N , yt, y′t)
12: else
13: T ,N := Adapt(T ,N ,xt, yt, y′t)
14: end if
15: N := GetChild(N ,xt) . Descend one node
16: end while
17: N := UpdateLeaf(N ,xt, yt, y

′
t)

18: if GetSeen(N ) mod nmin = 0 then
19: T := AttemptToSplit(T ,N )
20: end if
21: end for

5.2.1 Splitting

In the ACTSER algorithm, splits are created in two stages, leading to a semi-randomized
splitting process. The randomization is introduced during the first stage, which occurs
after the first mmin examples at each node arrive. At this point, one possible split point
is randomly chosen for each feature. For numeric features, candidate splits drawn from
a uniform distribution between the largest and smallest value seen, while for categorical
features, every possible binary split between the observed categories is considered with
equal probability.

Unlike other algorithms, ACTSER is able to handle many-category nominal attributes
easily, since by simply selecting the splits randomly, we eliminate the need for an exhaustive
search of all 2c−1 possible splits for an attribute with c classes.

The second stage in the splitting process occurs after nmin total examples have been seen.
The best split among those randomly chosen in the first stage is chosen as the split with the
greatest Information Gain (IG):

IG(s) = EP −
NL

NP

EL −
NR

NP

ER (5.1)
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with

Ek = −
∑
i

pik log2 (pik) (5.2)

where the subscript k indicates whether the quantity relates to a parent (P), left child (L) or
right child (R) resulting from split s, Nk and Ek are the number and entropy of examples
at node k, and pik represents the probability of each target class i occurring at node k.

After determining the apparent best split, the Hoeffding bound [Hoeffding, 1963] is used
to determine whether, under the assumption that the data stream is stationary, the split
will remain the best as more examples are seen. As explained in Chapter 3, the Hoeffding
bound is calculated according to:

ε =

√
R2 ln (1/δ)

2N

and states that the empirical mean of a random variable with range R and N examples
is, with probability 1 − δ, within ε of the true mean. We follow Domingos and Hulten
[2000] by first considering the difference in IG between the best and second best splits:
∆IG = IG(sbest) − IG(ssecond). By treating this quantity as the deviation of a random
variable from the true mean, we can determine that sbest will remain the best if ∆IG > ε.

If using the Hoeffding bound we are able to obtain assurance that there is a single best
split, the split is accepted and the splitting process begins again in the resulting child nodes.
Conversely, if we are not able to obtain this guarantee, we wait for another nmin examples
to arrive before repeating the second stage of the splitting process, until eventually a single
best split is obtained. However, it is possible to be stuck with multiple similarly performing
splits for a long time. To deal with this, if we are unable to determine a single best split
after the Hoeffding bound reaches a threshold τ , a split is randomly chosen from the best
splits since it can be assumed they are all equally discriminative.

In our experiments, we follow Domingos and Hulten [2000] in choosing τ = 0.05,
δ = 10−7 and nmin = 200 for the VFDT, EFDT and ACTSER trees. We further choose
mmin = 10 for the ACTSER trees. While we use nmin = 200 in the ACTSER trees for
comparability, we recommend smaller values such as nmin = 50. This allows the trees to
train faster by taking advantage of the first stage of our split selection process which means
that, compared to other algorithms such as the VFDT, we generally have fewer splits to
compare between and therefore need less information to form a split.

Maintaining Sufficient Statistics

In general, we want to maintain only the minimum sufficient statistics at each stage of the
splitting process. Consequently, we only retain a small amount of information from each
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example at each node, in the form of summary statistics. After the statistics are updated,
the original example is instantly discarded.

From Equations (5.1) and (5.2) we can see that to calculate the IG of a split, only the
target class frequency distributions in each of the child nodes are required. Consequently,
we maintain the information to construct them from the initial creation of a node until a
split is made. For numeric features this means we need to maintain all pairs of feature and
target values until a random split point is chosen after mmin examples have been seen, at
which point we create and maintain the target distributions for each of the two child nodes.

On the other hand, for nominal splits we can take advantage of their categorical nature by
starting to create the split and child distributions from the first example seen, by randomly
assigning categories to either the left or right child when they are first observed.

5.2.2 Modelling in the Leaves

As with many other tree based models, we follow Holmes et al. [2005] in adopting
an adaptive Naı̈ve Bayes predictor in the leaves of the tree, since they find it virtually
guarantees improved performance relative to a simple Majority Classifier. However, it is
also perhaps the most time consuming and expensive part of the algorithm. This is because
for each feature at each leaf, adaptive Naı̈ve Bayes classifiers require the feature value
distribution to be kept for each target class observed.

The adaptive Naı̈ve Bayes model works by combining of a Majority Class (MC) and a
Naı̈ve Bayes (NB) predictor. As each example is seen, both an MC and an NB prediction
are made, and the number of correct predictions tracked. The historically best performing
prediction is then returned as the adaptive Naı̈ve Bayes prediction.

While the MC prediction works by simply predicting the most frequently observed class at
the leaf, the NB prediction requires more information to be stored. Assuming a target, y,
is one of k possible classes associated with a set of n features, xj , j = 1, . . . , J each of
which takes on a value i, we can use Bayes’ theorem to find the probability of a specific
class yk according to:

p(yk|x) =
p(x | yk)p(yk)

p(x)
.

As the p(x) term is independent of y, it is effectively just a normalising factor. Therefore,
by rewriting

p(x | yk)p(yk) = p(yk,x) = p(yk)
J∏
j=1

p(xj | yk),

which uses the assumption that features are conditionally independent given yk, and
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reintroducing the normalizing factor Z =
∑

k p(x | yk)p(yk), gives

p(yk |x) =
1

Z
p(yk)

J∏
j=1

p(xj | yk).

Consequently, to construct the NB predictor the related data needs to be stored. For the
p(yk) terms, a count of each class yk is stored, while p(xj|yk) is estimated differently
depending on the feature type. If the feature, xj is nominal, p(xj|yk) can be found by
incrementing a count for each time xj takes a value i and the category and yk is seen.
On the other hand, if xj is numeric, a Gaussian estimator is used such that p(xj | yk) =

N (xj;µjk, σ
2
jk), meaning that for numeric features the observed mean and variance of xj

when y = yk, denoted µjk and σ2
jk, are stored.

5.2.3 Reacting to Changes

As with all algorithms designed for nonstationary data, it is important to be able to react
to changes in the data stream. In the ACTSER algorithm, as each split is made, a change
detector is installed at the split node and proceeds to monitor for change as new examples
are seen. If change is detected, a warning will be raised and trigger the training of a
possible alternative tree rooted at the node, in parallel with the original tree. During this
time, change detection is halted, allowing at most one alternative tree to be trained per
node. Predictions from both trees are monitored, and the best performing tree is adopted.
Should neither tree prove to be better after an allotted training period, the alternative tree is
adopted.

Change Detection

Similarly to in the ATSER algorithm (Section 4.2.2), we detect changes in the tree using
an adaption of the Page-Hinkley (PH) test [Mouss et al., 2004], as shown in Algorithm 5.2.
The test is designed for numeric data and works by tracking the difference between the
normalized prediction error, dt and its mean over time, d̄t = 1

T

∑T
t=1 dt. At each time t,

the relative error is then designated as mt =
∑T

t=1(dt − d̄t − α), where α is a user defined
threshold for the sensitivity of the detector to changes. Should the value of the relative
error exceed the minimum value seen, Mt, by more than a user defined threshold, λ, the
detector will trigger. In our experiments, we follow Ikonomovska et al. [2011b] who find
that choosing α = 0.005 and λ = 50 is effective for a variety of different datasets.

As our target, yt, is a categorical variable, to obtain the normalised prediction error we
begin by modelling each prediction error as the outcome of a Bernoulli trial, such that
the error is 0 if the prediction, y′t, is correct, and 1 otherwise. By tracking the number
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Algorithm 5.2 The TestForChange Function
1: input: N , yt, y′t . Input split node, target and prediction
2: α, λ := GetParameters(N ) . Get user defined parameters
3: q, n, σ, d̄t−1,mt−1,Mt−1 := GetPastStatistics(N )
4: n := n+ 1 . Increment count of examples seen
5: q := q + 1− δ(yt, y′t) . Update count of incorrect predictions
6: if n < γ then
7: σ :=

√
q
n
(1− q

n
)

8: end if
9: dt :==

1− δ(yt, y′t)−
q
n

σ

10: d̄t :=
(t− 1)d̄t−1 + dt

t
. Update mean prediction error

11: mt := mt−1 + (dt − d̄t)− α . Update relative accuracy
12: Mt := Mt−1

13: if mt < Mt : then
14: Mt := mt

15: end if
16: if (mt −Mt) > λ then
17: SetChangeDetected(N)
18: end if
19: N := StoreStatistics(N , q, n, σ, d̄t,mt,Mt)
20: yield: N

of correct and incorrect predictions, we can empirically determine the probability, pt, of
being correct at time t. This in turn allows the calculation of the mean, µt = (1− pt)/t
and standard deviation σt =

√
pt(1− pt) of the prediction errors, thus letting us normalise

the predictions error according to:

dt =
1− δ(yt, y′t)− µt

σt
,

where δ is the Kronecker delta symbol.

While it has the advantage of requiring very few calculations, the PH test is prone to err in
two main ways; triggering false alarms due to a small number of large outliers, and missing
changes induced by gradual drift. While the triggering of false alarms is less problematic
with categorical data than regression, since the maximum raw error is 1, it is conversely
easier to miss changes induced by gradual drift. This is primarily due to gradual drift
leading to σt slowly increasing and reducing dt and in turn mt. To counter this effect, we
use the assumption that the data is stationary to fix the standard deviation after a sufficient
number of examples, γ, have been seen at the node, such that

σt = σγ : t > γ.

In our experiments, we find γ = 250 to be sufficient.

83



5. Adaptive Categorization Trees for Streaming with Extreme Randomization

Table 5.1. The contingency table used in McNemar’s test when determining how to adapt the tree.

ORG CORRECT ORG INCORRECT

ALT CORRECT a b
ALT INORRECT c d

Change Adaption

After a change is detected, any further change detection at the node is stopped, and an
alternative (Alt) tree is grown (from the node) in parallel with the original (Org) tree for
a period of time, Tmin. In this work, we use Tmin = 150, following Ikonomovska et al.
[2011b] who use a similar alternative tree adaption approach, but in a regression scenario.

After Tmin examples have been seen, the predictive ability of the trees is compared. Should
one tree perform better than the other, the better tree is kept and the other tree discarded, at
which point change detection at the node is restarted. On the other hand, if there is not
enough evidence to suggest that one tree is performing better than the other, both trees
are kept for a further Tmin and the process repeated. If neither tree is found to be better
after a total time of 10Tmin since the growth of the Alt tree began, the Alt tree is treated
as the better performing tree and kept in place of the Org tree for two reasons. Firstly,
it may be more appropriate since we have previously suspected the presence of change
while, secondly, the alternative tree has been grown for less time and will therefore likely
be smaller, meaning adopting it will reduce time and memory usage. The adaption process
is detailed in Algorithm 5.3.

To determine whether one tree is performing better than the other, we begin by treating
the incoming examples as stationary. After Tmin/2 examples have been seen, we begin
monitoring each tree. For each example, we monitor each tree’s accuracy: whether its
predictions are correct or incorrect. As both trees are training with and making predictions
on the same sample, the results form a set of paired nominal data. Consequently, we can
test whether one tree is performing better than the other by applying McNemar’s test to the
data [McNemar, 1947].

We therefore implement McNemar’s test by monitoring the accuracy of each tree on
each example, allowing us to draw a 2x2 contingency table as shown in Table 5.1. The
following hypotheses are then constructed: H0 : pb = pc, H1 : pb 6= pc. b represents the
number of correct predictions made by the Alt tree that the Org tree predicted incorrectly,
and c number of correct predictions made by the Alt tree that the Org tree predicted
incorrectly. pi represents the probability of the quantity i in Table 5.1 being observed. The
test statistic is calculated according to χ2 = (b− c)2/(b+ c), and is distributed according
to a chi-squared distribution with 1 degree of freedom. The test is two-tailed, and in
our experiments, we test whether a tree is better at the 10% level, thus rejecting the null

84



5. Adaptive Categorization Trees for Streaming with Extreme Randomization

Algorithm 5.3 The Adapt function
1: input: T ,N ,xt, yt, y

′
t . tree, split node, features, target, pred

2: b, c := GetCounts(N ) . Get counts from node
3: T ′ := GetAltSubtree(N ) . Alternative tree stored at node
4: y′′t := MakePrediction(T ′,xt)
5: T ′ := TrainAltSubtree(T ′,xt, yt)
6: if y′t 6= y′′t and yt in {y′t, y′′t } then . If only one tree correct
7: if yt = y′′t then . If alternative tree correct
8: b := b+ 1
9: else . If original tree correct

10: c := c+ 1
11: end if
12: end if
13: χ2 = (b−c)2

b+c
. Calculate test statistic

14: if χ2 > 3.841 then . If alternative tree better
15: T ,N := UseAltSubtree(T , T ′,N )
16: UnsetChangeDetected(N)
17: b, c := 0, 0
18: end if
19: if χ2 < −3.841 then . If original tree better
20: T ,N := DiscardAltSubtree(T , T ′,N )
21: UnsetChangeDetected(N)
22: b, c := 0, 0
23: end if
24: if GetSeen(T ′) ≥ 10nmin then . If max examples seen
25: T ,N := UseAltSubtree(T , T ′,N )
26: UnsetChangeDetected(N)
27: b, c := 0, 0
28: end if
29: N := KeepStatistics(T ′,N , b, c)
30: yield: T ,N

hypothesis if χ2 > 3.841 or χ2 < −3.841.

While slower than simply pruning the tree as soon as change is detected, this adaption
strategy is beneficial since having an empirical comparison between the alternative and the
original tree corrects for false alarms in the detector. This occurs since a new tree will only
be adopted if it is not worse than the original. This strategy is also helpful even if a true
change is detected, as predictions from a pruned tree may be worse compared to those of
the original tree, so continuing to use the original for a time may be beneficial.

5.3 Ensembles

While they may be used as individual learners, ACTSER trees are primarily designed as
the base learners in an ensemble. They are intended to function similarly to Extra Trees
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Table 5.2. An overview of the datasets used. N represents the number of examples in the dataset.
yn represents the number of target classes, while ymax and ymin give the population of the most
and least populated target classes respectively. NUM and NOM give the number of numeric and
nominal features respectively.

DATASET N yn ymax ymin NUM NOM

ACTIVITY 33,741,500 7 5,580,900 4,204,346 6 0
FLIGHTDELAY 539,383 2 299,119 240,264 3 4
FOREST COVER 581,012 7 283,301 2747 54 0
GAS 928,991 3 346,580 276,967 10 0
GMSC 150,000 2 139,974 10,026 10 0
KDDCUP99 4,898,431 23 2,807,886 2 38 0
PAMAP2 2,844,868 13 923,437 47,579 53 0
POKERHAND 829,201 10 415,526 2 5 5
WISDM 1,369,349 6 655,362 2,130 44 0

[Geurts et al., 2006] by introducing randomness into each tree and leveraging the resulting
diversity to improve the ensemble prediction.

Unlike many ensembles designed for concept drift [Street and Kim, 2001; Brzeziński
and Stefanowski, 2011; Gomes et al., 2017a], we make no attempt to account for drift
in the ensemble algorithm itself, instead assuming any changes will be handled by the
base learners. Consequently we propose two different ensemble approaches which work
very similarly to stationary ensemble algorithms; the first being a seed based ensemble,
ACTSER-Seeds, and the second a random forest styled approach, termed ACTSER-
RForest.

ACTSER-Seeds is a simply constructed ensemble of multiple ACTSER trees, each started
with a different random seed. Each tree sees every example once and distinct trees are
formed as a result of different random cut points being draw when splits are formed. The
predictions from the individual learners are combined into the ensemble prediction using a
majority vote.

On the other hand, ACTSER-RForest extends the randomness within the ensemble. Every
tree is again started with a different seed and sees all the data, but, for each split, only a
subset of features are considered. For a data stream with F features available, we follow
Geurts et al. [2006] who find that randomly choosing

√
F possible splitting features is

most effective. Furthermore, in our experiments we use ensembles of 25 trees for all
ensembles considered. As the ensemble predictions should be more robust to an incorrect
split that a single learner, we also choose nmin = 25 for the base learners in the ensembles,
enabling the ensembles to train faster.
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5.4 Evaluation

In our experiments we use a collection of 9 different datasets for evaluation, a summary of
which can be found in Table 5.2. The datasets are intended to be diverse, varying in: shape,
size, task and feature composition.

The ACTIVITY [Stisen et al., 2015] and WISDM [Lockhart et al., 2011] datasets both focus
on the same task: predicting a user’s activity from collections of sensor data read from
wireless smartphones and smartwatches. The ACTIVITY dataset was collected in a scripted
environment while the WISDM data was collected during real world activity. While the
task in the PAMAP2 dataset [Reiss and Stricker, 2012] is similarly to classify a user’s
activity, the dataset is formed from the readings of 3 specialised inertial measurement unit
sensors and a heartrate monitor.

Sensor data is also a component in the GAS dataset [Huerta et al., 2016], which contains
readings from eight gas sensors and a temperature and humidity sensor. Each reading is
taken whilst the sensors are exposed to either wine, a banana or neither object. The task is
therefore to predict which object, if any, is present.

Adapted from the dataset compiled by Ikonomovska et al. [2011b], the FLIGHTDELAY

dataset contains information on US domestic flights in 2008. The original regression
task was to predict the length of delay for each flight. The task was adapted to a binary
classification problem by creating two classes: whether flights are delayed, or not.

The FOREST COVER dataset [Blackard and Dean, 1999] contains a very different problem.
The goal here is to classify which type of forest cover is present from a collection of
cartographic variables which describe each 30 × 30 metre cell. The actual cover type
information in the dataset was obtained through US Forest Service Region 2 Resource
Information System.

Provided for the Give Me Some Credit competition hosted on kaggle, the goal in the GMSC

dataset [Kaggle Competition, 2012] is a common and often challenging task for banks: to
predict whether an individual will experience financial distress in the next two years. The
prediction is based on a number of current financial indicators.

Another frequent challenge in a different area is the prediction of network intrusions:
whether a connection is a normal connection or an attack. The KDDCUP99 dataset
[OpenML, 1999] contains records of computer network traffic in which the task is to
predict such intrusions.

The final dataset, POKERHAND [OpenML, 2007], contains information on the suits and
cards contained in different poker hands. The task is to predict the ranking of the poker
hand based on the card information.
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Table 5.3. An overview of ACTSER hyperparameters

Description Symbol Value

Num examples after which splits are randomly selected mmin 10
Num examples after which the best split is chosen nmin 200
Desired significance for a split δ 10−7

Split tie threshold for the Hoeffding bound τ 0.05
Page-Hinckley test threshold λ 50
Page-Hinckley minimum detection threshold α 0.005
Num examples to estimate Page-Hinckley σγ γ 250
Alt tree comparison frequency Tmin 150
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Figure 5.1. Performance on the ACTIVITY dataset. Results are averaged over 1k windows.

Although we have already provided details of the hyperparameters and their values through-
out the main test, a summary is available in Table 5.3.

5.5 Results

We report results from a comparison of the ACTSER methods with a selection of classifi-
cation algorithms. While looking at individual learners, we use the VFDT [Domingos and
Hulten, 2000] and EFDT [Manapragada et al., 2018] for comparison, whereas we compare
the ensemble methods with the recent ARF ensemble [Gomes et al., 2017a]. To ensure a
fair comparison, the ACTSER algorithm and ensembles were implemented in the MOA
framework [Bifet et al., 2010a], which already contains implementations of the reference
algorithms. All results were obtained on a laptop with an Intel Core i5-6200U dual core
2.3GHz CPU, L2 cache: 513kb, L3 cache: 3Mb, 16Gb RAM @ 2133MHz.
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5. Adaptive Categorization Trees for Streaming with Extreme Randomization

0 1 2 3 4 5
Examples Seen (Hundred Thousands)

0

5

10

15

20

25

30

35

40

45

Er
ro

r R
at

e 
(%

)

VFDT, Error = 34.57%
EFDT, Error = 35.05%
ACTSER, Error = 34.98%

ARF, Error = 34.8%
ACTSER-RForest, Error = 31.53%
ACTSER-Seeds, Error = 33.06%

Figure 5.2. Performance on the FLIGHTDELAY dataset. Results are averaged over 1k windows.
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Figure 5.3. Performance on the FOREST COVER dataset. Results are averaged over 1k windows.

5.5.1 Performance

The performance of each method is summarised in Table 5.4, and individual results for each
dataset are shown in Figures 5.1-5.9. The errors were obtained via prequential evaluation
[Dawid, 1984], in which predictions are made and the error obtained as each example
arrives, after which the example is subsequently used to update the model. To ensure
legibility, the error rates shown in the Figures were averaged over windows of results. In
general, windows of 10,000 predictions were used, although for the smallest GMSC dataset
the window is 1,000 predictions, while for the larger KDDCUP99 and PAMAP2 datasets it
is 50,000 predictions and for the largest ACTIVITY dataset it is 500,000 predictions. As
there are drastic differences between the best and worst performers, the ACTIVITY, GAS,
KDDCUP99 and PAMAP2 results are displayed on a log scale to avoid focusing on the
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Figure 5.4. Performance on the GAS dataset. Results are averaged over 1k windows.
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Figure 5.5. Performance on the GMSC dataset. Results are averaged over 1k windows.

worst performing methods. In these cases the error is truncated at the reciprocal of the
window size, such that the lower limit shown represents exactly one incorrect prediction
per window.

When considering the single learners, although the best is different across every dataset,
the EFDT has the best performance on six of the nine. This makes sense since the VFDT
is designed for stationary scenarios so has no adaption mechanism, while the randomness
of the ACTSER tree makes it less practical outside of an ensemble. Due to its inability to
handle change, the VFDT has more variable performance compared to the other learners,
as can be seen from the spikes in error in Figures 5.1, 5.4, 5.6 and 5.7.

However, for every dataset it is an ensemble method has the best performance. In fact, all
of the ensemble methods usually outperform all of the single learners, although there is
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Figure 5.6. Performance on the KDDCUP99 dataset. Results are averaged over 1k windows.
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Figure 5.7. Performance on the PAMAP2 dataset. Results are averaged over 1k windows.

an exception on the GMSC dataset for which the VFDT outperforms the ACTSER based
ensembles. The fairly constant error rate in Figure 5.5 suggests very little, if any, concept
drift is present in this dataset. This would in turn explain the stronger performance of the
VFDT and ARF algorithms, as the primary learners in both are designed for stationary
data.

On the other hand, the ACTSER based ensembles have the best performance on most of
the other datasets, with both ACTSER-Seeds and ACTSER-RForest outperforming all
other models on the ACTIVITY, FLIGHTDELAY, FOREST COVER, GAS, PAMAP2 and
POKERHAND datasets. Furthermore, whilst ACTSER-Seeds ties for second best with ARF
on the KDDCUP99 dataset, ACTSER-RForest still has the best performance. Other than
on GMSC, the only other situation in which they are outperformed is by the ARF ensemble
on the WISDM dataset.
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Figure 5.8. Performance on the POKERHAND dataset. Results are averaged over 1k windows.
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Figure 5.9. Performance on the WISDM dataset. Results are averaged over 1k windows.

It is interesting to note that in cases where an ACTSER based ensemble performs best, it
appears to do so from the beginning and continues to do so for the majority of the dataset.
This is most prominently visible in Figures 5.2, 5.3, 5.7 and 5.8. This effect may indicate
that early performance can be used as an indicator of whether the ACTSER ensembles are
appropriate for specific datasets.
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5.5.2 Run Times

As might be expected, since none of the ensembles use parallelization, Table 5.5 shows
that the single learners all have faster run times than the ensemble approaches. However,
as training the ensemble members is an embarrassingly parallel problem, the use of
parallelization should be able to reduce the times for the ACTSER based ensembles to be
similar to those of a single ACTSER tree. On the other hand, while the ARF algorithm
will also improve after parallelization, it will likely remain slower in general, since the
online bagging process involved [Oza and Russell, 2001] means each component learner
in ARF trains an average of 6 times on each example seen [Gomes et al., 2017a].

A somewhat more surprising observation is that the amongst the single learners, although
the EFDT is slower in general, the VFDT and ACTSER algorithms have very similar
run times, with either the VFDT or ACTSER algorithm running the fastest in each sce-
nario. This is unexpected since, although not empirically observable, the simpler splitting
mechanism may lead us to expect reduced training times for the ACTSER trees as less
time is spent on maintaining the split statistics in the decision process [Krawczyk et al.,
2017]. However, this may be due to the bulk of the time taken in the algorithm being spent
updating the Naı̈ve Bayes predictors in the leaves, which Holmes et al. [2005] find to be
significant in comparison to splitting times.

5.5.3 Effect of Leaf Models

Similar to Section 4.5.4, we again examine the effect of removing the leaf models, with the
aim of discerning whether the performance of the different algorithms is derived from the
trees, or the models in the leaves. Tables 5.7 and 5.6 show the performance and runtimes of
the algorithms with majority class classifiers in the leaves instead of Naı̈ve Bayes classifiers.
We note that as the EFDT is designed only for use with Naı̈ve Bayes classifiers in the
leaves, the results shown for the EFDT still use a Naı̈ve Bayes classifier in the leaves.

As expected, we see that with majority class classifiers in the leaves, the performance of
the ACTSER and VFDT single learners worsens, as expected. This change in performance
also filters through to the ARF ensemble, which also exhibits poorer performance on every
dataset. Interestingly, however, the ACTSER-Seeds and ACTSER-RForest algorithms
show similar, and in some cases slightly better, performance with a majority class classifier
(such as on the FOREST COVER dataset). While surprising, this result is similar to that of
Section 4.5.4, in which removing the linear models from the ATSER ensemble algorithms
may sometimes be beneficial. Although these results suggests that the ACTSER ensemble
algorithms are relatively robust to the different choice of leaf model tested, it still remains
unclear as to why this is the case.
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On the other hand, in terms of run time, the use of majority class classifiers in the leaves
leads to all of the algorithms having reduced run times. However, relative to each other,
the VFDT, ACTSER and ensemble algorithms all perform similarly to the case with Naı̈ve
Bayes classifiers, with ACTSER remaining the fastest on average.

5.6 Summary

In this chapter we have introduced ACTSER, an adaption of the ATSER algorithm pre-
sented in Chapter 4 for categorization. This method incrementally trains classification trees
using extreme randomization in the splitting process, which uses a novel adaption approach
based on McNemar’s test. Taking a number of real world datasets, we have demonstrated
the comparable performance of the algorithm relative to other popular individual learners,
namely the VFDT and EFDT.

We have also provided two ensemble algorithms which use ACTSER trees as base learners:
ACTSER-Seeds and ACTSER-RForest. Using the same real world datasets, we have
shown that they both have strong predictive performance relative to the contemporary ARF
ensemble, as well being significantly faster in most cases. Although we have currently only
applied methods to handle change detection to the base learners, possible extensions to the
ensemble algorithm may also be lead to improve predictions, such as through weighting
schemes similar to those used in Brzeziński and Stefanowski [2011] or through stacked
generalization, as in Wolpert [1992].
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Chapter 6

An Approximately Bayesian Online
Randomized Forest for Regression

While traditional predictive modelling techniques only focus on the predictive performance
of a model, when working with streaming data there is also a need to consider the run time.
As discussed in Chapter 3, Domingos and Hulten [2000] introduced the Very Fast Decision
Tree (VFDT) which incrementally trains a classification decision tree on a streaming
dataset, using the Hoeffding Bound [Hoeffding, 1963] to guarantee the splits of the tree
are sufficiently similar to those of a tree trained on a stationary version of the dataset.
However, as data streams are often nonstationary, Hulten et al. [2001] introduced the
Concept Adapting Very Fast Decision Tree (CVFDT), which adapts to changes in the data
stream by replacing questionable parts of the tree.

Although techniques designed for streaming data were developed in a categorisation
setting, we have also seen from Chapter 3 that adaptions to regression scenarios have
been introduced, with the Fast Incremental Model Trees with Drift Detection (FIMT-DD)
[Ikonomovska et al., 2011b] often considered a benchmark. Similar to the CVFDT, the
FIMT-DD algorithm depends on the Hoeffding Bound to incrementally train a decision
tree with splits guaranteed relative to the performance on a stationary dataset. It also adapts
to concept drift through a mechanism to test for changes in the data stream and update
affected subtrees accordingly.

Many works for regression streaming data have been based around the FIMT-DD algorithm,
with it acting a base learner in many ensemble algorithms. Osojnik et al. [2017] use FIMT-
DD trees as base learners for a multi-target regression ensemble, while Gomes et al.
[2017a] use them as base learners and leverage the use of randomness in the Adaptive
Random Forest (ARF) algorithm to improve performance.

All of the streaming data techniques mentioned so far rely on tree based methods for
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6. An Approximately Bayesian Online Randomized Forest for Regression

handling concept drift. However, these methods are often slowed by the constant train-
ing process involved and their performance depends on the choices for many different
parameters. In this chapter, we focus on exploiting randomness to overcome these issues.
We begin by presenting a fully Bayesian concept adapting random forest algorithm for
regression, in which we pre-create the structures for trees in the ensemble, before any data
is observed. We then dynamically weight the contribution of ensemble members using
evidence based weights, demonstrating that this allows the ensemble to automatically adapt
to concept drift.

The pre-creation of tree saves time due to the removal of the traditional Hoeffding-based
splitting process, whilst also allowing for random projections as opposed to axis-aligned
splits. Additionally, the idea of data independent tree structures also means that there is no
need to update sub-trees or replace trees themselves in the ensemble, both of which are
common but complex and time-consuming features of data streaming ensemble algorithms.
This in turn leads to simpler algorithms and data structures and thus a reduced number of
model parameters, allowing for greater ease of use. Furthermore, the Bayesian approach
gives a principled evidence based method for weighting members of the ensemble.

However, as is common across many Bayesian models, this approach is relatively slow
compared to other contemporary algorithms. Consequently, we then develop an approxi-
mation of the Bayesian model which we show retains comparable predictive performance,
while having reduced run times in comparison to other contemporary approaches. Overall,
our contributions in this work can be summarised as follows:

• A Bayesian random forest approach to stream regression, capable of efficiently
updating in the presence of concept drift.

• A fully random, incrementally updating, pre-grown ensemble of trees for learning
from streaming data.

• The ability to adapt to changes in the data stream with no need for explicit change
detection and adaption.

• An approximation of our Bayesian approach with fast training times, due to our data
independent prior allowing for construction of an ensemble before data is observed.

• Comparatively few hyperparameters, allowing for effective use with little user input.

The rest of this Chapter proceeds as follows: we first address relevant literature in Section
6.1, before proceeding to detail the construction of the ensemble and the update method in
Section 6.2. We then discuss the number of parameters involved and ease of use in Section
6.3. Section 6.4 then introduces the data and methodology used for evaluation, before we
present our findings in Section 6.5. Finally, we summarise in Section 6.6.
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6. An Approximately Bayesian Online Randomized Forest for Regression

6.1 Related Work

Similar to many other works for regression streaming data, the Approximately Bayesian
Online Randomized Forest (ABORF) algorithm uses an ensemble of regression trees.
However, unlike traditional approaches it does not incrementally grow and update the trees,
instead opting to pregrow a set of regression trees before any data is observed, resulting in
each tree effectively providing a fixed partition of the data. Learning continually occurs in
linear models in the leaves, and the weight of each tree is then updated as data is observed,
allowing the ensemble to adapt to changes in the data stream.

The use of a pre-grown ensemble of trees was suggested by Quadrianto and Ghahramani
[2015], who use a Bayesian framework in which a data independent prior is used to
generate a large ensemble of decision trees for classification. After observations have been
made, the weight of each tree is updated. While this approach is naturally able to handle
data arriving in an online fashion, the large ensemble size (1000 trees) and slow Bayesian
update procedure makes it unsuitable for most streaming data. Furthermore, the original
approach is unable to adapt the individual trees in the presence of concept drift, leaving
them susceptible to change. However, the data independent prior allows for a rapid and
lightweight construction on trees, with very few parameters necessary, and we adopt this
approach in the ABORF algorithm.

Instead of a Bayesian update mechanism, fast updating ensemble approaches have been
previously suggested for use with classification problems on streaming data. As described
in Chapter 3, one of the first from Wang et al. [2003] introduces the Accuracy Weighted En-
semble (AWE) ensemble, which weights member predictions based on their past accuracy.
It divides the incoming data stream into chunks, training a new classifier on each incoming
chunk. Classifiers are then evaluated based on their performance on the current chunk,
with the normalised performance being used as their weighting for the next chunk. The
ensemble members are then updated based on the weight, with only the best performing
classifiers being used as ensemble members for predictions each chunk. More recently,
error based ensemble weighting approaches have been suggested for regression. Soares
and Araújo [2015] introduce the On-line Weighted Ensemble (OWE), which weights
ensemble members based on the logarithm of the inverse of the smoothed error of each
member. When evaluating this approach, the authors also apply the Learn++NSE algorithm
[Elwell and Polikar, 2011] described in Chapter 3 to a regression scenario. In the ABORF
algorithm, we use an evidence-based method for weighting ensemble members in the
regression space, with the functional form being akin to weighting using inverse errors
raised to an appropriate power.

One option in the ABORF ensemble is the use of oblique splits. Dasgupta and Freund
[2008] create Random Projection (RP) trees which, unlike traditional trees, form oblique
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6. An Approximately Bayesian Online Randomized Forest for Regression

splits along a random projection in the feature space, as opposed to axis-aligned splits.
Random projections are typically used to obtain a low dimensional embedding of the data,
and have been previously been used in this manner in conjunction with Hoeffding Trees for
online classification [Pham et al., 2017]. However, our approach uses random projections
to ensure there is no alignment dependence of the ensemble members, allowing us to
capture oblique feature dependence with shallower trees.

Overall, the ABORF algorithm has a number of advantages over traditional approaches.
By using pre-grown trees we are able to easily reduce the data dependence of the ensemble
members, meaning there is: less parameter dependence, faster training times, and no need
to update members of the ensemble. Furthermore, creating random projections to split on,
rather than axis-aligned splits, allows us to capture some of the benefits of multivariate
decision trees [Brodley and Utgoff, 1995], but without the traditional overhead of taking
time to choose optimal splits. Finally, the Bayesian approach allows us to obtain evidence
based weights for ensemble members, as opposed to taking a more arbitrary approach.

6.2 A Concept-Adapting Approximately Bayesian Regres-
sion Forest

Here we describe the model for a Concept-Adapting Approximately Bayesian Regression
Forest. We first outline a fully Bayesian approach for the model, before approximating it
to our final ABORF approach. While aspects of the fully Bayesian model are similar to
the approach described by Quadrianto and Ghahramani [2015], we outline the model in
full for clarity.

6.2.1 The Bayesian Model

We begin by assuming a stream of input features (x1, ...,xT ) and matching targets
(y1, ..., yT ), where each pair (xt, yt) arrives sequentially. We assume the input features
to be D dimensional and all data to be real, such that xn = (xt,1, ..., xt,D) ∈ RD and
yt ∈ R. The model trains an ensemble of decision trees with the goal of learning a
mapping F : X → Y , where X = RD and Y = R. Each tree contains linear models in
the leaves and is generated using randomised split points and split features. As a result,
the individual trees in the ensemble can be viewed as a method of partitioning the feature
space into randomised blocks, each of which contains a local linear model.

The construction of the model consists of two main stages. Firstly, an ensemble of
regression trees is grown before any of the examples are observed, and untrained linear
models are created in each of the leaves. The model then updates as each new example is
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(a) UNIVARIATE SPLITS (b) MULTIVARIATE SPLITS

Figure 6.1. Example partition of a 2d unit hypercube from a) an axis-aligned tree and b) a random
projection tree. Both trees are of depth 5. Leaf node centres are marked with an “×”.

observed, incrementally updating both the tree weights and the linear models.

The Tree Prior

We now describe how to generate the ensemble members using a data independent prior for
each tree. The trees are balanced and of depth Q, with randomised splitting hyperplanes
at each node. An example of the multivariate tree partition we employ can be seen in
comparison to the partition obtained by an axis-aligned (also known as univariate), tree in
Figure 6.1.

Initially, before any data is observed, K balanced binary trees of depth Q are created. At
each split node, the splitting condition is provided by a D − 1 dimensional hyperplane.
The partitioning hyperplanes for each tree are then generated randomly. At each split node
ν in the tree, the centre of the parent partition element covered by ν, cν , is found, and a
vector of cut points τ ν is chosen for each feature d:

cν = (cν,1, ..., cν,D) (6.1)

τ ν = (τν,1, ..., τν,D), τν,d ∼ U [−1, 1]. (6.2)

The cut points are then normalised such that

τ̄ ν =
τ ν
||τ ν ||

. (6.3)

The cut points and the centre of the parent node are then used to assign incoming examples
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to either the left child node if

xn · τ̄ ν ≤ cν · τ̄ ν (6.4)

or the right child node if

xn · τ̄ ν > cν · τ̄ ν . (6.5)

When creating the partitions, we want to be able to obtain the centre of each partition
element before seeing any data. To achieve this, we bound the space by assuming all
observations lie in the range [0, 1], enabling us to estimate the node centres, cν . This is
done by creating a number of points, each drawn randomly from a uniform distribution
U [0, 1]D. The points are then passed down the tree and used to estimate cν to be the centre
of mass of the points falling in node ν, effectively performing a Monte Carlo estimation of
the integral that gives the centre of mass of the node.

Using cν , we can then generate the splitting hyperplane and pass the points to their
respective child nodes, before repeating this process until the trees are generated. While
there are a multiple ways to estimate the centre of the points (for example, the mean or
median of the points falling within a node), in practice, we find 3 × 2D−1 points to be
sufficient for using mean centres.

To ensure the assumption that all values lie in the range [0, 1] is valid, when we finally
observe the data, we apply min-max feature scaling to values of xd. By tracking xmax,d and
xmin,d, the maximum and minimum observations for feature d up to time t, we normalise
each feature observation according to

xt,d − xmin,d
xmax,d − xmin,d

. (6.6)

It is worth noting that both xmin,d and xmax,d are dependant on the currently observed data
and will, consequently, change over time. This may become problematic in the case of
concept drift since if the underlying distribution for a feature drifts away from its original
range, xmax,d and xmin,d will span a larger range relative to the current spread of observed
feature values, thus causing incoming examples to become clustered into subrange of the
original [0, 1]. While we do not empirically find this to be prohibitive, this failing suggests
that alternative normalization approaches which are more robust to concept drift may be
necessary.

Finally, we note that in the Bayesian model we have made the assumption that all of the
features are real. However, many datasets also include nominal features, and we include the
potential to assign a binary splits based on a nominal feature in the ABORF approximation
by randomly assigning categories to each side of the split when they are first observed.
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Although this ensemble generation process is similar to that of Quadrianto and Ghahramani
[2015], we have made a couple of key changes. Unlike the univariate splits chosen by
Quadrianto and Ghahramani, we have opted for multivariate splits to easily capture effects
based on feature interactions. Additionally, we have elected to use balanced trees of
depth Q in the ensemble, unlike the probability based tree structure of Quadrianto and
Ghahramani, in which imbalanced trees are grown with each node having a fixed chance
of being a split node. We choose balanced trees since up to the maximum depth, Q, they
are able to capture any possible splits that would occur in imbalanced trees. Furthermore,
this approach leads to more uniform distribution of the areas of each leaf, meaning each
leaf will see similar amounts of data. This is advantageous since, as we will see in Section
6.2.1, the evidence of the tree is a multiplicative contribution of the evidence of each
linear model, meaning that a if a few linear models see very little data, they have a high
dependence on the prior which can have a magnified impact of the weight of the tree in the
ensemble.

Tree Likelihood

Unlike the categorization approach taken in Quadrianto and Ghahramani [2015], we work
in a regression situation, and thus arrive at a different form for the tree likelihood. In our
case, to obtain the tree likelihood we begin by considering a single arbitrary leaf node in
tree k, and Xν,n and yν,n the set of examples reaching leaf node ν after n examples have
been observed in the leaf. These examples are used to train a Bayesian linear regression
model at each leaf, with the mean of the conditional distribution for yν,n modelled as

yν,n = xTν,nβ̂ν,n + εν,n, (6.7)

where β̂ν,n is a D dimensional weight vector, and εν,n ∼ N(0, σ̂2
ν,n) is an i.i.d. random

variable. For simplicity, in the following we drop the dependence on ν and n in the notation.
Then, the examples arriving at the leaf have the min-max feature scaling removed and are
instead standardised according to

xd − µxd

σxd
, (6.8)

where µxd and σxd are the mean and standard deviation of xd respectively.

We now note that for a variable σ2 ∼ IG(a, b), the form of an inverse-gamma distribution
is

IG(a, b) ∝ (σ2)−a−1 exp{−b
σ2 }, (6.9)
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with the mean µIG and variance VIG given by

µIG =
b

a− 1
for an > 1 (6.10)

VIG =
b2

(a− 1)2(a− 2)
for a > 2. (6.11)

By choosing a normal-inverse-gamma conjugate prior, we end up with an analytical
posterior for the coefficients (see, for example, [Bernardo and Smith, 2000, Appendix A]):

p(β, σ2 |y,X) ∝ p(β |σ2,y,X)p(σ2 |y,X) (6.12)

= N (β̂, σ̂2Λ−1)IG(a, b) (6.13)

where we have defined (with a subscript 0 denoting priors):

Λ = XTX + Λ0 (6.14)

β̂ = Λ−1(Λ0β̂0 + XTy) (6.15)

a = a0 +
n

2
(6.16)

b = b0 +
1

2
(yTy + β̂

T

0 Λ0β̂0 − β̂
T
Λβ̂). (6.17)

The marginal likelihood, or evidence, for the leaf model, is now given by

p(y |X) =

∫
p(y |X,β, σ)p(β, σ) dβ dσ. (6.18)

This integral can be performed analytically (for example [Bishop, 2006, Exercise 3.23]),
and leads to

p(y |X) =
1

(2π)n/2

√
|Λ0|
|Λ|
· b

a0
0

ba
· Γ(a)

Γ(a0)
. (6.19)

Now we have the evidence for the model in each leaf, we can find the evidence for the
entire tree, T . Given the partitioning model for the tree, we assume that the targets y are
independent across leaf nodes, and i.i.d. within each leaf. Reintroducing the subscript ν,
we are now able to obtain the tree likelihood:

p(yt |Xt, T ) =

∫ ∏
ν∈ΩT

p(yν |Xν ,βν , σν)p(βν , σν) dβν , dσν (6.20)

=
∏
ν∈ΩT

1

(2π)n/2

√
|Λν,0|
|Λν |

·
b
aν,0
ν,0

baνν
· Γ(aν)

Γ(aν,0)
(6.21)

where Xt and yt denote the set of examples seen by the tree and ΩT represents the set of
all leaf nodes in the tree. As we typically don’t expect prior information to be available in

105



6. An Approximately Bayesian Online Randomized Forest for Regression

a streaming scenario, a simple and uninformative choice of prior is Λ0 = cI, β̂0 = 0, and
a0 = b0 = 0.001. This form of the prior effectively leads to a Bayesian ridge regression,
with a ridge penalty of magnitude c on the weights.

Tree Posterior

Using Bayes rule, we can find the tree posterior to be

p(T |X,y) ∝ p(y|X, T )× p(T ). (6.22)

While we have previously obtained p(y|X, T ) and p(T ), it is clear that, like other Bayesian
tree models, the posterior calculation is not possible analytically. Instead, estimating the
posterior requires the use of other approaches, which have traditionally focussed on Markov
Chain Monte Carlo based methods. While Metropolis-Hastings methods are a popular
choice [Chipman et al., 1998, 2006; Schetinin et al., 2007], other approaches are also
possible, such as that of Lakshminarayanan et al. [2013], who follow a Sequential Monte
Carlo approach. We follow Quadrianto and Ghahramani [2015] in using importance
sampling, a fast and simple method of estimating the posterior.

The predictive distribution

As suggested by Quadrianto and Ghahramani [2015], we use importance weights to obtain
the predictive distribution of the ensemble. For a previously unseen test point x′, the
predictive distribution of the ensemble is given by:

p(y′ |x′,Xt,yt) =

∫
p(y′ | T ,x′,Xt,yt)p(T |x′,Xt,yt)dT (6.23)

=

∫
p(y′ | T ,x′,Xt,yt)

p(T |Xt,yt)

p(T )
p(T )dT (6.24)

≈
∑
k

p(y′ | Tk,x′,Xt,yt)
p(Tk |Xt,yt)

p(Tk)
(6.25)

≈
∑
k

p(y′ | Tk,x′,Xt,yt)p(yt |Xt, Tk) (6.26)

where the importance weight wk = p(yt |Xt, Tk), and p(y′ | Tk,x′,Xt,yt) =

p(y′ | Tk,x′,Xn,yn) = N (XT
n β̂n, σ̂

2). We note that Xn and β̂n correspond to the particu-
lar node in each tree, Tk, into which x′ falls.

While, as noted by Quadrianto and Ghahramani [2015], a linear combination of these
weights will lead to Bayesian model averaging, we follow their choice of using a power
likelihood to prevent all the mass from being placed in a single decision tree. However,
unlike Quadrianto and Ghahramani [2015] who study a range of power likelihoods, we
instead opt to use 1/|ΩT |, effectively treating the likelihood of each tree as the geometric
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mean of the likelihood of the leaves. We are then able to obtain a point estimate for the
ensemble prediction ŷ′ according to

ŷ′ =
1

Z

K∑
k=1

(wk)
1
|ΩT | (x′)T β̂n , (6.27)

where Z =
∑K

k=1(wk)
1
|ΩT | .

Overall, we now have a fully Bayesian model which can be incrementally trained and used
to make predictions in a stationary regression context. As each example is seen, it falls
into exactly one leaf in each tree, which then makes a prediction. The evidence for the
predicting leaf is updated, and used to update the tree weight. Finally, the predictions from
each tree are combined into the ensemble prediction using the corresponding tree weights.
This methodology results in every prediction by the model being a weighted ensemble of
local Bayesian linear model predictions, where each linear model is trained on slightly
different data depending on the layout of the partitions, and where the weight of each
prediction is dependant on the evidence for the tree as a whole.

6.2.2 Adapting to Concept Drift

We have now established an approach to train a fully Bayesian regression forest designed
for use in a stationary scenario. However, in a streaming scenario we cannot assume that
the mapping we are learning is stationary, and instead expect it to be dependant on time.
This results in a time-dependant mapping of the form F(t) : X → Y . Practically this
means that to account for drifts in the data stream, we want to decrease our prior belief in
older data as new examples arrive. We now adapt our model to incorporate this belief.

As examples in the data stream arrive, they reach each leaf as row vectors, xn. Under the
stationary approach we have previously described, this results in updates to the parameters
of the Bayesian linear regression models in the leaves given by:

Λn = xTnxn + Λn−1 (6.28)

β̂n = Λ−1
n (Λn−1β̂n−1 + xTnyn) (6.29)

an = an−1 +
1

2
(6.30)

bn = bn−1 +
1

2
(yTnyn + β̂

T

n−1Λn−1β̂n−1 − β̂
T

nΛnβ̂n) (6.31)

where we have again left out the ν subscripts for legibility.

To account for concept drift, we now introduce a decay term, γ < 1 which we use to
downweight the contribution of older data, resulting in precision and weight updates of the
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form:

Λn = xTnxn + γΛn−1 + (1− γ)Λ0 (6.32)

β̂n = Λ−1
n (γΛn−1β̂n−1 + xTnyn) (6.33)

and corrections to the inverse gamma parameters in the form of

a′n = 2 + γ(an − 2) (6.34)

b′n =
(a′n − 1)

(an − 1)
bn. (6.35)

The precision and weight updates effectively mean each previously seen point i has a time-
dependant contribution. For the precision matrix, points have a contribution of γixTn−ixn−i,
while the magnitude of the original prior Λ0 is constant. Similarly, each point also has a
contribution to Λnβ̂n of γixTn−iyn−i.

On the other hand, the corrections for a0 and b0 are designed to inflate the variance of the
inverse-gamma distribution whilst preserving the same mean. Therefore, to inflate the
variance by a factor 1

γ
while preserving the mean, we can see from Equations 6.10 and 6.11

that we require

b′n
a′n − 1

=
bn

an − 1
(6.36)

and

b′2n
(a′n − 1)2(a′n − 2)

=
b2
n

γ(an − 1)2(an − 2)
. (6.37)

Solving these for a′ and substituting back in for b′ leads to the corrections given in
Equations 6.34 and 6.35.

This approach allows us to adapt to concept drift within the linear model at each leaf.
However, this approach weights every leaf equally, and it is unclear whether it is entirely
correct, or whether leaves which have seen data more recently should have a higher weight.
Consequently, we introduce a second, tree-level decay, γT which decays the evidence of
the entire tree as each new example arrives according to

p(yn |Xn, T ) =
γT

1 + γT
p(yn−1 |Xn−1, T ) +

1

1 + γT
p(yn |Xn, T ). (6.38)

6.2.3 Approximating the Model

The model we have derived so far is theoretically robust and suited to adapt in the presence
of concept drift. However, in practice aspects such as β̂n are very expensive to compute,
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Algorithm 6.1 The ABORF algorithm
1: input: D, f , Q,K . Number of features, feature types, tree depth, ensemble size
2: w := (1/K, 1/K, ..., 1/K) . Ensemble members have equal weight initially
3: E := createEnsemble(f , Q,K) . Create the ensemble
4: for xt, yt in stream do
5: xt,xmin,xmax := scale(xt,xmin,xmax) . Scale the features to [0,1]
6: ŷt := predict(E ,xt) . Make a prediction for each tree
7: Ŷt = w · ŷt/||w|| . Get the ensemble prediction
8: yield: Ŷt . Return the prediction
9: for T in E do

10: T := updateLeaf(T , ŷt,xt, yt) . Update linear model in leaf
11: wT , T := updateWeight(D,wT , T , ŷt, yt) . Update member weight
12: end for
13: end for

since the Λ−1
n term in Equation 6.29 requires a full matrix inversion after each additional

observation, which is at best considered to be an O(D2.376) [Coppersmith and Winograd,
1990]. Furthermore, the determinant |Λn| is also necessary for calculating the evidence
in Equation 6.21, which has the same O(D2.376) complexity at best. While it is possible
to update a matrix inverse and determinant through the use of O(D2) rank-one updates
[Krause and Igel, 2015] in some circumstances, we note that in this case it also effectively
results in a different choice of prior, Λ0, after each update, making it unsuitable for our
model.

As a result, updating each tree in the fully Bayesian model after the observation of an
additional example has at best a time complexity of O(D2.376). Since this is considered
too slow for use in many streaming circumstances, we now approximate this to a model
with an O(D) update time complexity for each tree, with the resulting ABORF algorithm
shown in Algorithm 6.1.

With the primary goal of providing accurate predictions ŷ′, we thus need to approximate
the current terms in ŷ′ = 1

Z

∑
k(wk)

1
|ΩT | (x′)T β̂n. We begin be finding an approximation

for

β̂n = Λ−1
n (Λn−1β̂n−1 + xTnyn), (6.39)

the slowest step of the algorithm. Furthermore, we will then see that this necessitates a
new expression for the evidence used in the weight term,

wk = p(yn |Xn, Tk), (6.40)

in which we will find a faster approximation for |Λn|.
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Approximating β̂n

We begin by approximating β̂n. By recursively applying Equations 6.32 and 6.33 we can
write the terms for Λn and Λnβ̂n as summations:

Λn = Λ0 +
n∑
i=1

γn−ixTnxn = Λ0 + XT
nΓnXn (6.41)

Λnβ̂n = Λ0β̂0 +
n∑
i=1

γn−ixTnyn = Λ0β̂0 + XT
nΓnyn (6.42)

where Γ is a diagonal matrix with elements Γi,i = γn−i. Under a prior of the form Λ0 = cI

and β̂0 = 0, we can then write:

Λn = cI + XT
nΓnXn (6.43)

β̂n = Λ−1
n (XT

nΓnyn). (6.44)

Here, Γ is akin to a weight matrix, and we end up with the form of a weighted ridge
regression estimate for β̂n:

β̂n = (XT
nΓnXn + cI)−1(XT

nΓnyn). (6.45)

We now approximately solve for β̂n using a variation of stochastic gradient descent (SGD)
known as RMSProp SGD [Hinton et al., 2012]. As detailed in Section 4.2.1, RMSProp
SGD has a similar learning rule to regular SGD, but adds a gradient based regularisation
term to the learning rate, allowing the learning rate to adapt efficiently to the data. As each
example arrives, we incrementally update the linear model in the leaf, as can be seen in
Algorithm 6.2. We are able to account for the decay term by simply scaling the initial
weight by γ before each update, effectively rescaling every previously taken step by γ.
Furthermore, in the case that information about nominal features is available, they are
then one-hot encoded at the leaf, with each binary category then treated as an additional
numerical feature when learning the linear model.

Approximating wk

Approximating the tree likelihood is more challenging. As we have chosen to use a non-
Bayesian linear model to obtain β̂n, we no longer incorporate prior information into our
model, meaning the expression we have previously obtained for p(yn |Xn, Tk) in Equation
6.21 is no longer applicable. Consequently, we now obtain the weight in Equation 6.40
using a different form of the evidence expression; the general case in which no form for
the prior is specified.

The empirical Bayes, or evidence approximation (see [Bishop, 2006, Section 3.5]), assumes
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Algorithm 6.2 The updateLeaf function
1: input: T , ŷ,x, y . tree, tree prediction, features, target
2: ε = 10−8 . Ensure no divide by 0 issues
3: η, γ := getParameters(T ) . User specified learning rate and decay coefficient
4: β̂,g,E[g2] := getModelState(T ) . Get stored model stats
5: for xj in x do . Loop over each feature
6: gj := (ŷ − y)xj
7: E[g2

j ] := γE[g2
j ] + (1− γ)g2

j

8: β̂j := γβ̂j − η√
E[g2

j ]+ε
gj . Update the weights

9: end for
10: T := storeModelState(T , β̂,g,E[g2]) . Store the model stats
11: yield: T . Return the tree with the updated model

that the evidence is centred around the most probable values of the weights and that
the evidence is approximately normally distributed. Under these assumptions, we can
marginalise over the weights to approximate the evidence of a Bayesian linear regression
model in node ν (where we have again dropped the subscript ν for legibility) with an error
term of the form

E(β̂n) = ρnEresidual(β̂n) + αnEridge(β̂n) (6.46)

=
ρn
2

(yn −Xnβ̂n)TΓn(yn −Xnβ̂n) +
αn
2
β̂
T

n β̂n (6.47)

to be

p(yn |Xn, β̂n, ρn, αn) =
( ρn

2π

)n/2
(αn)D/2 |ρnΛn|−1/2 exp{−E(β̂n)} (6.48)

where ρ and α are unknown parameters to be optimised, which relate to the precision of the
target noise and the magnitude of the ridge penalty respectively, and Λn = αn

ρn
I+XT

nΓnXn.

Using this, we reintroduce the leaf node ν notation and, again making the assumption that
the leaves are independent, multiply across the leaves for the tree likelihood:

p(yn |Xn, Tk) =
∏
ν∈ΩT

(ρn,ν
2π

)nν/2
(αn,ν)

D/2 |ρnΛn,ν |−1/2 exp{−E(β̂n,ν)}. (6.49)

Recognising that |ρnΛn,ν | = ρDn |Λn,ν |, and that we may cancel out terms which are
constant across the tree weights, we can now write:

wk =
∏
ν∈ΩT

(ρn,ν)
(nν−D)/2 (αn,ν)

D/2 |Λn,ν |−1/2 exp{−E(β̂n,ν)} (6.50)

= exp{−
∑
ν∈ΩT

E(β̂n,ν)}
∏
ν∈ΩT

(ρn,ν)
(nν−D)/2 (αn,ν)

D/2 |Λn,ν |−1/2. (6.51)
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We can further simplify this expression by noting that since we want to encourage a diverse
ensemble, we are more interested in penalising the residual error, rather than the ridge
error in the term E(β̂n) = ρnEresidual(β̂n) + αnEridge(β̂n). We can achieve this by fixing
αn to the same small constant value for each leaf, reducing the tree weights to:

wk = exp{−
∑
ν∈ΩT

ρnEresidual(β̂n,ν)}
∏
ν∈ΩT

(ρn,ν)
(nν−D)/2 |Λn,ν |−1/2. (6.52)

The challenge in evaluating this expression for the weights in a streaming setting now lies in
calculating |Λn,ν |, an O(D3) operation. We now note that since we have approximated αn
to the same small constant for each term, we can write Λn,ν ≈ XT

n,νΓn,νXn,ν , a weighted
covariance matrix. By assuming the input features are independent, Λn,ν is a diagonal
matrix with diagonal entries nν =

∑n
i=1 γ

i ≈ 1
1−γ , assuming n is sufficiently large. This

means |Λn,ν | ≈
(

1
1−γ

)D
, which is independent of the leaf data and thus constant across

trees, meaning the term may be dropped from the tree weights, leading to:

wk = exp{−
∑
ν∈ΩT

ρnEresidual(β̂n,ν)}
∏
ν∈ΩT

(ρn,ν)
1−D(1−γ)

2(1−γ) . (6.53)

Finally, we need to determine ρn,ν . This parameter determines the relative strength of the
residual error term in the error function, and is typically chosen to maximise the evidence
of the model, which assuming we have sufficient examples is given by (see [Bishop, 2006,
Section 3.5]):

ρn,ν =
nν

2Eresidual(β̂n)
. (6.54)

However, as the linear models in this scenario are combined into a tree, it is unclear
whether optimizing this for the linear model at each leaf is sufficient. Consequently, we
propose three levels for setting ρn,ν :

Leaf - By optimizing using the residuals at each leaf, we maximize the evidence
of each individual linear model. However, this will result in a non-uniform penalty
function both within and across trees.

Tree - Optimizing using the tree residuals results in a value for each tree ρn,ν = ρn,k,
effectively also enforcing a uniform penalty function with each tree. However, this
will still result in a non-uniform penalty function across trees.

Ensemble - This approach maximizes the evidence over the entire ensemble, resulting
in a single value: ρn,ν = ρn,k = ρn,ensemble, with a uniform penalty function applying
both within each tree and across trees.

The full weight update process can be seen in Algorithm 6.3. The weight is updated using

112



6. An Approximately Bayesian Online Randomized Forest for Regression

Algorithm 6.3 The updateWeight function, based on a leaf level update for ρn,ν
1: input: wT , T , ŷt, yt . tree weight, tree, tree prediction, target
2: et−1,T , bt−1,T ,

∑
e2
t−1, nt−1 := getStoredStatistics(T )

3: . Get stored statistics for tree and leaf
4: et := yt − ŷt . Get Prediction Error
5: nt := γnt−1 + 1 . Decay and update instances seen
6:
∑
e2
t := γ

∑
e2
t−1 + e2

t . Decay and update sum of squared errors

7: ρt =
n∑
e2
t

. Get ρt from a leaf-level update

8: et,T := γT (et−1,T ) + 1
2
ρte

2
t . Decay and update tree error

9: bt,T := bt−1,T

(
ρt

nt−D
2

)(
ρt−1

D−nt−1
2

)
. Update the scaling term

10: wT = (exp{−et,T }bt,T )1/|ΩT | . Update the tree weight
11: T := storeStatistics(et,T , bt,T ,

∑
e2
t , nt) . Store relevant statistics

12: yield: wT , T . Return updated weight and tree with updated statistics

a leaf-level update, which can be seen since the contributions to ρt come from the error ob-
served in the leaf (Algorithm 6.3 lines 6-7). The update occurs according to the approxima-
tion result in Equation 6.53, which we break up into two terms in Algorithm 6.3: the error
term et,T =

∑
ν∈ΩT

ρnEresidual(β̂n,ν) and the scaling term, bt,T =
∏

ν∈ΩT
(ρn,ν)

1−D(1−γ)
2(1−γ) .

In this section we have introduced a fully Bayesian model for making predictions with
regression data streams, in which an ensemble of trees is pre-grown before data is observed.
We have designed adaptions to this model to account for the effects of concept drift, before
finally introducing ABORF: a lightweight approximation of the model with O(D) update
times for each ensemble member, which is better suited to the high frequency environment
of many data streams. We now proceed to discuss the advantages of this model design in
more detail, before providing an empirical evaluation in comparison to other streaming
algorithms.

6.3 Hyperparameters

Due to the complex nature of reacting to unknown drifts, many modern data streaming
techniques require a large number of user-specified parameters. While many of them may
not have a large impact on performance, the uniqueness of each data stream means that
even in cases when sensitivity to parametrization has been examined in the literature, it is
hard to generalise to other data streams. Consequently, there is a high demand on the user,
especially given there can be little time to examine parameter dependence when working
with streaming data and that the impact of changing a parameter is often unintuitive.

The ABORF algorithm we have introduced uses fewer parameters than other contemporary
methods, meaning it can be appropriately used in an off-the-shelf manner in many situations.
A comparison of the number of parameters used is shown in Table 6.1. That relatively
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No. Hyperparameters

FIMT-DD 9
ARF-Reg 13
Bayesian 6
ABORF 5

Table 6.1. The number of hyperparameters used in different data streaming algorithms. “Bayesian”
refers to the fully Bayesian model we have just described in Sections 6.2.1 and 6.2.2.

fewer parameters are used in the ABORF algorithm results from the choice to treat the tree
structures of the ensemble members as a method of partitioning the data, rather than as a
method of leaning the data structure. This in turn simplifies the algorithm in a number of
ways relative to other contemporary approaches:

No learning splits - Typically, tree based online learning requires parameters to be
set for the accuracy of splits, and the speed at which they are learnt. On the other
hand, the pre-grown trees in ABORF only require a choice of the desired depth, Q.

No change detection - In ABORF, the constant update process is naturally able to
adapt to changes in the data, and there is thus no need to explicitly detect changes,
reducing the number of parameters relating to change detection.

No explicit change adaption - Many online tree-based learners update the structure
of the trees in the presence of drift, to ensure they are able to constantly provide
meaningful partitions of the data into homogeneous regions. However, in ABORF,
the partitions do not need to be meaningful, and thus no adaption to the tree structure
is necessary in the presence of change.

6.4 Evaluation and Parameter Selection

We evaluate the performance of the ABORF algorithm on a variety of different datasets, all
of which we have previously described in Chapter 4. Along with the synthetic FRIEDMAN

dataset with abrupt changes, and the synthetic HYPERPLANE dataset with incremental
changes, we also use the real world datasets AIRLINE08, HOUSING, YEARMSD and
ZURICH. As previously indicated in Section 4.4.1, the real world datasets can be found
on the OpenML and UCI machine learning repository databases, while the FRIEDMAN

dataset with abrupt changes suggested by Ikonomovska et al. [2011b] is created from 10
independently and uniformly distributed features in the range (0,1). 5 of the features are
solely included as noise, while the other 5 are combined in a nonlinear manner and added
to a noise term to create the target. As before, there are 1 million points in the dataset,
with abrupt changes created at 3 different points: 25%, 50% and 75% of the way through.
The changes are introduced by permuting the informative features in the formula used
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Table 6.2. An overview of ABORF hyperparameters

Description Symbol Value

Tree depth Q 10
Leaf learning rate η 0.25
Leaf prior c ≈ 0
Linear model smoothing factor γ 0.96
Tree evidence smoothing factor γT 0.9996

to generate the target. The HYPERPLANE dataset is also created in the same manner as
in Chapter 4, with the target representing the squared distance of a point denoted by 5
informative features from a rotating hyperplane. There are again 1 million points in the
dataset, with incremental changes that take place over 10% of the examples, occurring
between 25% and 35%, 50% and 60%, and 75% and 85% of the way through the examples.

Predictive performance is evaluated using the prequentially computed Mean Absolute Error
(MAE) and CPU timings are also provided. Unless otherwise stated, we have use balanced
trees of depth Q = 10, a learning rate and prior of η = 0.25 and c ≈ 0 respectively for
the linear models, and smoothing factors of γ = 0.96 and γT = 0.9996 for smoothing at
the leaf and tree levels respectively. A summary of these ABORF hyperparameters can
be found in Table 6.2. While we use an ensemble of K = 10 trees for comparison with
other approaches, we also examine the impact of larger ensemble sizes. All results given
were obtained using an implementation in the MOA framework, on a laptop with Intel
Core i5-6200U dual core 2.3GHz CPU, L2 cache: 513kb, L3 cache: 3Mb, 16Gb RAM @
2133MHz.

The choice of γ = 0.96 naturally leads to rapid forgetting in the leaves of the tree, enabling
them to react quickly to drifts while maintaining a sufficiently large effective sample size
to make meaningful predictions. Choosing an overly large value for γ would lead to the
leaves being unable to react to drifts, while an overly small value would lead to insufficient
data to make effective predictions. This suggests that while the optimal value for γ will
depend on the timescale of any changes in the data, a small value which maintains a
sufficiently large effective sample size, as we have chosen, should be appropriate for any
situation. Furthermore, this choice of γ = 0.96 should be suitable for all forms of drift,
since it effectively leads to a smaller and more recent sample of data being used for the leaf
models. However, the smaller effective sample size may also lead to poorer performance
in stationary scenarios. In comparison to other approaches, the advantage of this choice of
γ being appropriate for all forms of drift is most likely to show on gradual and incremental
drifts rather than abrupt drifts. This is because the nature of the change detection in many
contemporary algorithms means they are usually worse suited to gradual and incremental
drifts.

Another aspect linked to the choice of γ is that the learning rate, η = 0.25, is very
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high compared to typical algorithms. This learning rate was determined on the basis
of preliminary experiments and is to speed up learning and compensate for the short
memory in leaves, since γ = 0.96 corresponds to an effective memory of (1− γ)−1 =

(1− 0.96)−1 = 25 examples.

Furthermore, while we have chosen ensembles of K = 10 trees for comparability with
other algorithms, in general it is desirable to use more trees in ABORF. One important
factor to consider when determining whether the number of trees is sufficient is the
dimensionality of the data, especially if there exists a low dimensional manifold which
contains most of the data. While individual trees in the ensemble do not learn from the
data, and are thus robust to any differences in the data, the performance of the ensemble
as a whole will be affected by its ability to capture any lower dimensional embedding of
the data, as is true of all algorithms. Consequently, if it is expected that the data lie in
a low dimensional manifold rather than being uniformly distributed in the feature space,
one approach may be to choose a value for K that is high enough that the ensemble
is likely to generate trees with discriminative splits along the manifold. Alternatively,
if nothing is known about the data beforehand, an option to account for the existence
of a low dimensional embedding may be to include a dimensionality reduction step for
preprocessing the data before passing it to the trees.

6.5 Results and Discussion

In this section we first examine the different approaches for determining ρn,ν and the
effectiveness of the approximation. We then compare the performance and run times of the
ABORF algorithm with other contemporary approaches. Finally, we discuss the use of
multivariate splits and the effect of ensemble size.

6.5.1 Selecting ρn,ν

It is challenging to empirically evaluate the approximation we have made from the fully
Bayesian model described in Sections 6.2.1 and 6.2.2, to the ABORF algorithm. This
is especially so because we have switched from a conjugate prior model in the linear
regression to an empirical Bayes approach in the approximation. However, two ways to
do so are by examining the weights of the model, and the shape of the mean absolute
error curves. Consequently, we compare the Bayesian result with the result of the leaf,
tree and ensemble level approaches (see page 112) for determining ρn,ν on the synthetic
FRIEDMAN and HYPERPLANE datasets.

In Table 6.3 we provide a summary of the performance of both models across all datasets
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Table 6.3. Mean Absolute Error the Bayesian model described in Sections 6.2.1 and 6.2.2, and of
the ensemble level ABORF approximation with no nominal features. Results have been averaged
over 10 runs, with the standard error given in parentheses. The best performing algorithm(s) on
each dataset is shown in bold.

Bayesian ABORF

Friedman 1.43 (0.001) 1.43 (0.001)
Hyperplane 0.281 (0.0001) 0.265 (0.0001)
Airline08 18.93 (0.02) 17.68 (0.008)
Zurich 67.3 (0.85) 56.85 (0.049)
YearMSD 8.14 (0.023) 5.69 (0.007)
Housing 92122 (49.6) 92122 (49.6)

(excluding the use of nominal features) under a fixed prior of Λ0 = 0.1I for the Bayesian
model and no regularization term in the ABORF approximation. It is worth noting that
while the full Bayesian model is slower, for the purpose of our experiments it was not
prohibitively so and we were able to perform 10 runs on each of the datasets. As can be
seen in Table 4.1, this may be because other than the YEARMSD dataset, which contains
relatively few examples, the other timeseries datasets have few numerical features, which
would be the main slowing factors in our O(D3) update complexity implementation. We
also note that, somewhat surprisingly, the ABORF approximation performs as well as, or
outperforms, the Bayesian model in all cases. As we will see in the rest of this section, this
may be due to the better adaption of the RMSProp linear models in the ABORF algorithm,
compared to the Bayesian model.

However, experiments showed that under a uniform parametrization across trees of Λ0 =

0.1I for the ridge prior term in the fully Bayesian approach, the degree of change in the
synthetic datasets is insufficient to illustrate the effectiveness of the ensemble weighting.
Consequently, for the remainder of this section, when generating the Bayesian ensembles
we have randomly drawn an integer i ∼ U [0, 5] for each tree. We have then set the strength
of the prior used in the linear models of that tree to be Λ0 = 10iI, to demonstrate the
relevance of the ensemble weighting. This methodology means that the prior is very good
for some of the trees, and very poor for others, which illustrates the effectiveness of the
evidence weighting in the ensemble by giving it the opportunity to down-weight trees with
poor priors. To ensure comparability, we have introduced fixed regularization terms for
each tree in the ABORF models, set to the same value as the priors in the Bayesian trees,
such that cI = 10iI in Equation 6.45. This means that, at least initially, the same ridge
penalty is applied to each tree in both the Bayesian model and ABORF.

Figures 6.2 and 6.3 show the weights learned by an ensemble of 25 trees on the synthetic
FRIEDMAN and HYPERPLANE datasets respectively, while the MAEs of each method and
the are given in Figures 6.4 and 6.5. Perhaps the biggest surprise is that in the FRIEDMAN

dataset, there is very little variation in the magnitude of the weights, with the scale of the
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(d) ENSEMBLE LEVEL APPROXIMATION

Figure 6.2. Example ensemble weights on the FRIEDMAN dataset. Weights have been averaged
over a window of 25000 examples. The colour scale runs from 0.0385 to 0.0415 on every graph
and the dashed horizontal lines illustrate the times at which changes occur in the dataset.

weights in Figure 6.2 only ranging from 0.0375 to 0.0475, at most a 20% deviation from
the average weight of 1/25. Furthermore, the only noticeable variation is in the weights of
the Bayesian model, in which some of the trees are persistently slightly higher-weighted.
It is also worth noting from Figure 6.2a that trees 10, 16, 18, 25 are initially slightly
higher-weighted, but become less important after the first change in the data, suggesting
that the changes have an impact on the weights.

Although there are minor differences in the weights, Figure 6.4 indicates that all of
the approximation approaches are equally effective, returning the same results as the
benchmark scenario of equal weights. Furthermore, the performance of the Bayesian
approach is also equivalent to the benchmark scenario. Despite this, the Bayesian and
ABORF approaches show very distinct learning curves. As these difference show in the
case where the weights are all effectively equal, this suggests that the approximation for
β̂n in Section 6.2.3 is responsible for the differences. The faster initial learning rate and
adaption to changes in the ABORF approach is likely due to the very large step size of
η = 0.25. However, this may also lead to overtraining and contribute to the ABORF
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(b) LEAF LEVEL APPROXIMATION
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(c) TREE LEVEL APPROXIMATION
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(d) ENSEMBLE LEVEL APPROXIMATION

Figure 6.3. Example ensemble weights on the HYPERPLANE dataset. Weights have been averaged
over a window of 25000 examples. The colour scale runs from 0.0 to 0.1 on every graph and the
dashed horizontal lines illustrate the times at which changes occur in the dataset.

approaches stopping learning at an MAE of 1.5. Alternatively, this reduced learning
may also be due to the regularization term in ABORF being fixed, unlike in the Bayesian
models in which the effect of the prior is reduced as more data is seen.

On the other hand, the results on the HYPERPLANE dataset are much more telling. Although
Figures 6.3b and 6.3c again show limited variation in the weights of the leaf and tree level
approximations, both Figures 6.3a and 6.3d exhibit a marked variation in the weights,
showing that both the Bayesian and ensemble level approximations have a consistent
preference for certain trees. Furthermore, the generally higher-weighted trees react to
changes in the dataset, with their weights increasing and decreasing after the changes
occur. We note that these changes in the weights do not happen immediately, likely due to
the incremental drift occurring over 100000 points. Another point of interest is that the
higher-weighted trees in the Bayesian model are generally lower-weighted in the ensemble
approximation, and vice versa. As these differences are consistent over the entire dataset,
this suggests that the optimal values for the priors in the Bayesian approach and for the
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Figure 6.4. Mean Absolute Error of the Bayesian method and ABORF approximations on the
FRIEDMAN dataset, compared to the benchmark of equal weights. The performance of each
“ABORF” run is almost identical, showing as the red line, while the identical “Bayesian” approaches
show as the orange line. Results have been averaged over 10 runs and smoothed over a window of
10000 points.

regularization in the approximation are likely different.

From Figure 6.5, we can see that the varied weights lead to improvements in performance
in both the Bayesian and ABORF methods, relative to the benchmark scenarios of equal
weights. While all of the ABORF approximations show improvement over the benchmark,
the Ensemble level approximation performs especially well, probably due to the greater
variation in the weights. Furthermore, the ABORF-ensemble method somewhat surpris-
ingly also outperforms the Bayesian approach. While somewhat counter-intuitive, this may
in part be due to the benefits of the extreme learning rate allowing the trees in the ABORF
approach to rapidly adapt to changes. We also note that the shape of the benchmark MAEs
are again different in both cases, suggesting that the differences in shape between the
Bayesian and ABORF learning curves are again due to the approximation for β̂n in Section
6.2.3.

Overall, setting ρn,ν at the ensemble level appears to provide the best approximation to the
original Bayesian approach. The weights vary on similar magnitudes in both cases, and
although the optimal values for the priors in the Bayesian approach and for the regulariza-
tion in the approximation appear different, both algorithms exhibit similar characteristics
on the HYPERPLANE data, suggesting that the weight approximation described in Section
6.2.3 is effective. Furthermore, the ensemble level approximation has the best performance
relative to the other approximations. Consequently, for the remainder of this chapter we
proceed using the ensemble level approximation.
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Figure 6.5. Mean Absolute Error of the Bayesian and ABORF approximations on the HYPERPLANE

dataset, compared to the benchmark of equal weights. Results have been averaged over 10 runs and
smoothed over a window of 10000 points.

Table 6.4. Mean Absolute Error of different methods. Results have been averaged over 10 runs,
with the standard error given in parentheses. The best performing algorithm on each dataset is
shown in bold.

FIMT-DD ORTO-A ARF-Reg ABORF

Friedman 1.79 (0.001) 2.14 (0.00) 1.20 (0.001) 1.43 (0.001)
Hyperplane 0.418 (0.0003) 0.722 (0.0005) 0.268 (0.0001) 0.265 (0.0001)
Airline08 19.47 (0.008) 20.21 (0.00) 20.95 (0.013) 16.22 (0.007)
Zurich 64.27 (0.025) 63.49 (0.00) 65.74 (0.031) 48.99 (0.048)
YearMSD 10.1 (0.08) 17.12 (0.00) 11.59 (0.011) 5.69 (0.007)
Housing 97724 (48.4) 92,121 (0) 102627 (48.4) 57293 (45.3)

Average Rank 2.67 3.17 3 1.17

6.5.2 Comparative Performance

Table 6.4 shows the performance of variations of the ABORF algorithm, relative to the
benchmark FIMT-DD and contemporary ORTO-A and ARF-Reg algorithms, with Figures
6.6 - 6.11 showing a more detailed comparison of the performance on each dataset. On
each of the real-world datasets, the ABORF algorithm performs well comparatively, having
the best performance in each case. However, it is outperformed by the ARF-Reg algorithm
on the synthetic FRIEDMAN dataset. This distinct difference is possibly due to the long
stationary periods with little noise in the FRIEDMAN dataset, something not typically found
in real-world datasets. This can be further seen in the HYPERPLANE dataset, where in the
stationary periods, ARF-Reg has better performance, but is not able to update as easily in
the presence of drift.
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Table 6.5. Runtime of different methods in seconds. Results have been averaged over 10 runs, with
the standard error given in parentheses. The best performing algorithm(s) on each dataset is shown
in bold.

FIMT-DD ORTO-A ARF-Reg ABORF

Friedman 33 (0.4) 32 (1) 157 (2.6) 63 (0.3)
Hyperplane 28 (0.2) 28 (0) 146 (5.6) 46 (0.2)
Airline08 106 (1.2) 94 (1) 541 (1.5) 271 (2.0)
Zurich 106 (6.2) 75 (1) 886 (227.5) 307 (3.2)
YearMSD 97 (0.7) 78 (0) 554 (10.5) 170 (0.7)
Housing 233 (4.7) 278 (2) 2078 (7.3) 1066 (7.0)

Average Rank 1.67 1.17 4 3
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Figure 6.6. Mean Absolute Error on the FRIEDMAN dataset. Results have been averaged over 10
runs and smoothed over a window of 10000 points.

It is again worth noting the performance of the algorithms on the FRIEDMAN, HYPER-
PLANE and YEARMSD datasets, which do not contain nominal features, in order to
determine whether the difference in performance is due to the inclusion of nominal features
in ABORF. However, unlike in Chapter 4 , it is inappropriate to remove the linear models
from the leaves for comparison, since they are an intrinsic part of the ABORF approach. In
terms of performance, we see that ABORF considerably outperforms the other algorithms
on the YEARMSD data, and also has the best performance on the synthetic HYPERPLANE

dataset. However, as ARF-Reg performs best on the FRIEDMAN dataset, it is difficult
to determine how much of the better performance in ABORF is due to the inclusion of
nominal features.

On the other hand, in terms of timing the ABORF algorithm is faster than the comparative
ARF-Reg ensemble algorithm in every case, as can be seen in Table 6.5. While this result is
expected due to the simplicity of updating the ABORF algorithm, these run times could be
further reduced using parallelization. In contrast, ABORF is slower than the FIMT-DD and
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Figure 6.7. Mean Absolute Error on the HYPERPLANE dataset. Results have been averaged over 10
runs and smoothed over a window of 10000 points.

ORTO-A approaches in every case. This is unsurprising since the FIMT-DD tree is a single
learner and the training approach in the ORTO-A algorithm is, by design, a faster adaption
of the FIMT-DD algorithm. This in turn means that the update time of both FIMT-DD and
ORTO-A is equivalent to that of a single tree, rather than an ensemble of trees. However,
this also means they are consequently unable to benefit from parallelization, and that a
parallel implementation of the ABORF ensemble may reduce the disparity in wall clock
times. Additional results detailing the predictive performance vs. run time tradeoff can be
found in Appendix A.2
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Figure 6.8. Mean Absolute Error on the AIRLINE08 dataset. Results have been averaged over 10
runs and smoothed over a window of 100000 points.
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Figure 6.9. Mean Absolute Error on the ZURICH dataset. Results have been averaged over 10 runs
and smoothed over a window of 10000 points.
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Figure 6.10. Mean Absolute Error on the YEARMSD dataset. Results have been averaged over 10
runs and smoothed over a window of 10000 points.
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Figure 6.11. Mean Absolute Error on the HOUSING dataset. Results have been averaged over 10
runs and smoothed over a window of 100000 points.

Table 6.6. Mean Absolute Error of the ABORF in both univariate and multivariate cases. Results
have been averaged over 10 runs, with the standard error given in parentheses. The best performing
algorithm on each dataset is shown in bold.

ABORF - Univariate ABORF - Multivariate

Friedman 1.5 (0.001) 1.43 (0.001)
Hyperplane 0.272 (0.0001) 0.265 (0.0001)
Airline08 16.19 (0.007) 16.22 (0.007)
Zurich 50.42 (0.048) 48.99 (0.048)
YearMSD 5.78 (0.006) 5.69 (0.007)
Housing 57372 (45.3) 57293 (45.3)

6.5.3 Multivariate Splits

We have opted for the use of multivariate splits over traditional univariate (or, as they are
more commonly know, axis-aligned) splits in the ABORF algorithm. This is to enable the
depth-capped trees to capture oblique feature dependence while being relatively shallow.
To verify the benefits of choosing multivariate splits, we compare the performance of both
splitting approaches in Table 6.6, while a graphical comparison can be seen in Figure 6.12.

While there is an improvement on most datasets, there appears to be little difference on a
few of them. In the case of the HOUSING dataset, the lack of difference is expected, since
multivariate splits only occur on continuous features. However, it is more surprising that
there is little difference on the AIRLINE08 dataset. This could be due to features being
largely independent, so there is little benefit to be had from performing multivariate splits,
or it could be due to large amounts of noise in the data obscuring any benefits.

Examining the performance on the synthetic FRIEDMAN and HYPERPLANE datasets in
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Figure 6.12. A comparison between multivariate and univariate splitting on each dataset. The
results for each dataset are relative to the result of the multivariate case on that dataset, such that the
multivariate result is always 1. The error bars for the AIRLINE08 and HOUSING datasets overlap.
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Figure 6.13. A comparison between multivariate and univariate splitting on the FRIEDMAN dataset.

more detail in Figures 6.13 and 6.14, we see that the performance improvement is largely
consistent across the whole dataset which suggests that, in a stationary scenario, the
multivariate splits would be expected to outperform the univariate splits. However, at both
the beginning of and after each change in the FRIEDMAN dataset, the univariate approach
is temporarily better. While this does not persist for a long period of time, it may indicate
that in a situation with rapid abrupt changes, a univariate approach may be beneficial. Full
results of the comparison on each of the other datasets can be seen in Appendix A.3
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Figure 6.14. A comparison between multivariate and univariate splitting on the HYPERPLANE

dataset.
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Figure 6.15. The effect of ensemble size on each dataset.

6.5.4 Ensemble Size

While we have used an ensemble of 10 trees for comparison with other algorithms, we
might expect that to take advantage of the randomisation in the ABORF algorithm, a larger
ensemble would be beneficial. Figure 6.15 and Table 6.7 show the results of using larger
ensemble sizes. A detailed comparison on each dataset can be found in Appendix A.4.

Increasing the ensemble size leads to an improvement in almost all cases. The only unclear
case is between 25 and 50 trees on the HOUSING dataset, on which the standard errors
overlap. This improvement suggests that a larger ensemble than 10 trees is optimal, which
we might expect, although without parallelization this comes with the trade-off of being
slower.
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Table 6.7. Mean Absolute Error of the ABORF with 10, 25, and 50 trees. Results have been
averaged over 10 runs, with the standard error given in parentheses. The best performing algorithm
on each dataset is shown in bold.

ABORF - 10 Trees ABORF - 25 Trees ABORF - 50 Trees

Friedman 1.43 (0.001) 1.36 (0.001) 1.33 (0.001)
Hyperplane 0.265 (0.0001) 0.259 (0.0001) 0.257 (0.0001)
Airline08 16.22 (0.007) 16.09 (0.007) 16.04 (0.007)
Zurich 48.99 (0.048) 48.38 (0.048) 48.12 (0.048)
YearMSD 5.69 (0.007) 5.46 (0.006) 5.35 (0.006)
Housing 57293 (45.3) 57133 (45.3) 57087 (45.3)
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Figure 6.16. A comparison between 10 tree ensembles of ATSER and ABORF on the FRIEDMAN

dataset.

The largest relative improvements occur on the FRIEDMAN and YEARMSD datasets
between 10 and 25 trees. This is not a surprising result, since we expect that these datasets
are largely stationary, which means an improvement is able to show over a larger portion of
the dataset. On the other hand, increasing the ensemble size seems to do little to improve
performance on the HOUSING dataset. This is somewhat more surprising, and may in part
be due to a large portion of the error coming from the incremental drift across the dataset
due to house prices increasing over time.

6.5.5 Comparison with ATSER

Having introduced and compared ABORF with a number of algorithms, we now also
compare the performance with the various ATSER ensembles introduced in Chapter 4. We
use the previously suggested parameters for the ATSER ensembles and report results based
on ensembles of both 10 and 50 trees, as shown in Table 6.8. Figures 6.16 to 6.21 show a
breakdown of the 10 tree results on each of the datasets, while a breakdown for ensembles
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Table 6.8. Mean Absolute Error of ABORF and ATSER with both 10 and 50 trees. Results have
been averaged over 10 runs, with the standard error given in parentheses. The best performing
algorithm on each dataset is shown in bold.

ATSER-Seeds ATSER-RForest ATSER-OBag ABORF

10
Tr

ee
s

Friedman 1.36 (0.01) 1.39 (0.01) 1.40 (0.01) 1.43 (0.001)
Hyperplane 0.28 (0.000) 0.289 (0.000) 0.293 (0.000) 0.265 (0.000)
Airline08 14.97 (0.02) 15.07 (0.02) 16.39 (0.01) 16.22 (0.007)
Zurich 39.90 (0.11) 45.20 (0.10) 38.78 (0.05) 48.99 (0.048)
YearMSD 7.52 (0.01) 7.71 (0.01) 8.44 (0.01) 5.69 (0.007)
Housing 55857 (25) 55933 (21) 59268 (52) 57293 (45.3)

Average Rank 1.5 2.5 3.33 2.67

50
Tr

ee
s

Friedman 1.31 (0.001) 1.34 (0.001) 1.3 (0.001) 1.33 (0.001)
Hyperplane 0.27 (0.000) 0.279 (0.001) 0.271 (0.000) 0.257 (0.000)
Airline 14.69 (0.008) 14.77 (0.008) 15.91 (0.007) 16.04 (0.007)
Zurich 38.25 (0.047) 43.51 (0.048) 36.78 (0.047) 48.12 (0.048)
YearMSD 6.39 (0.007) 6.52 (0.007) 6.72 (0.006) 5.35 (0.006)
Housing 55669 (46.3) 55707 (46.4) 58525 (46.6) 57087 (45.3)

Average Rank 1.67 3.0 2.67 2.67

of 50 trees in given in Appendix A.5.

As can be seen from Table 6.8, the ASTER-Seeds ensemble appears to have the strongest
performance overall, regardless of whether the ensembles are of 10 or 50 trees. However,
we note that ABORF has stronger performance on the HYPERPLANE and YEARMSD
datasets, suggesting that the optimal algorithm likely depends on the dataset.

In particular, we observe from Figure 6.16 that the MAE curve for ABORF flattens out
toward the end of each stationary section, unlike the ATSER curves, suggesting that
ABORF may be less effective for stationary scenarios, as noted previously in Section 6.5.2.
Furthermore, both ATSER and ABORF appear to react similarly to the abrupt changes.
On the other hand, Figure 6.17 suggests that ABORF is much more robust to incremental
drift, since although it exhibits mediocre performance over the initial stationary section,
after the incremental changes occur ABORF is much less affected.

6.6 Summary

In this chapter we have introduced a fully Bayesian approach for regression data stream
predictions and shown it is able to perform well in the presence of concept drift. We
have then approximated this model to develop the ABORF algorithm, which we have
empirically shown to be faster, while retaining strong performance in comparison to both
the original Bayesian model, and also in comparison to other contemporary algorithms.

129



6. An Approximately Bayesian Online Randomized Forest for Regression

0 2 4 6 8 10
Examples Seen (Hundred Thousands)

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n 
Ab

so
lu

te
 E

rro
r

ATSER-Seeds
ATSER-OBag
ATSER-RForest
ABORF

Figure 6.17. A comparison between 10 tree ensembles of ATSER and ABORF on the HYPERPLANE

dataset.

We have also investigated a number of aspects of ABORF, providing three different
approaches for the approximation, and further examining the impact of our decision to use
multivariate splits as opposed to tradition axis-aligned splits. Furthermore, we have also
tested the impact of ensemble size on the performance of the ABORF algorithm. Finally,
we have presented a comparison with the ATSER ensembles previously introduced in
Chapter 4.

Overall, we have shown that the ABORF algorithm is simple and easy to implement,
requiring fewer hyperparameters that its contemporary counterparts. We have demonstrated
that the use of multivariate splits leads to improved performance over the traditional
axis-aligned choice and we have shown that while larger ensembles lead to improved
performance, even smaller ensembles of 10 trees are able to perform comparably to other
streaming algorithms.
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Figure 6.18. A comparison between 10 tree ensembles of ATSER and ABORF on the AIRLINE08
dataset.
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Figure 6.19. A comparison between 10 tree ensembles of ATSER and ABORF on the ZURICH

dataset.
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Figure 6.20. A comparison between 10 tree ensembles of ATSER and ABORF on the YEARMSD
dataset.
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Figure 6.21. A comparison between 10 tree ensembles of ATSER and ABORF on the HOUSING

dataset.
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Chapter 7

Conclusion

In this thesis we have suggested algorithms for online learning, primarily focussing on
regression, but also including adaptions for classification. We have provided empirical
evaluations of each, investigating performance, timings, and sensitivity. The design of the
algorithms we have introduced is to incrementally train decision tree based models, with
linear models in the leaves. These trees are then combined into ensembles and used to
make predictions on a data stream. Each of the algorithms we have provided focus on the
use of randomness to improve both predictive performance and run times, compared to
traditional online algorithms.

In Chapter 4 we introduced the ATSER algorithm, designed for online predictive modelling
in regression streaming problems. It builds upon the previous FIMT-DD algorithm, offering
improvements in areas such as the splitting process and modelling in the leaves. Motivated
by the Extra Trees algorithm, it introduces the concept of extreme randomisation to an
online learning setting with a novel two stage splitting process, which at each potential
split point rapidly selects one random split per feature, before secondly choosing the best
of the randomly selected splits.

We have shown that the use of ATSER leads to improvements in predictive performance
compared to the benchmark FIMT-DD algorithm, and that a large part of this can be
attributed to the randomized splitting in the online tree generation process. Simultaneously,
we have also shown that the use of ATSER increases the training speed of the tree,
although this is partially offset by the inclusion of nominal features, which are not used in
the comparative algorithms.

Taking ATSER trees as a base learners, we have proposed several ensemble algorithms
for regression streams, allowing further improvements in performance when compared
to other contemporary ensemble algorithms on a number of real world datasets. This is
especially so when parallel hardware is available, as is often the case on modern machines.
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7. Conclusion

Adapting ATSER to a classification scenario in Chapter 5, we have introduced the ACTSER
algorithm for predictive modelling which incrementally trains classification trees using
extreme randomization in the splitting process. In a classification scenario, the ease
of including nominal splits in this process is particularly valuable, since the traditional
incorporation of nominal splits for classification trees is particularly cumbersome. Taking
a number of real world datasets, we have again demonstrated the comparable performance
of the algorithm relative to other popular individual learners, namely the VFDT and EFDT.

As with ATSER, we have again provided ensemble algorithms which use ACTSER trees
as base learners: ACTSER-Seeds and ACTSER-RForest. Using real world datasets, we
have shown that they both have strong predictive performance relative to the contemporary
ARF ensemble, as well being significantly faster in most cases.

Finally, in Chapter 6 we have developed the ABORF ensemble algorithm for use in a
regression streaming scenario, which creates a fully randomized ensemble of trees before
any data has been seen. The trees are formed with multivariate splits, enabling shallow
trees to capture non-linear relationships in the features. As the trees are not dependant on
the data, we are able to avoid the need to explicitly detect change and adapt in the trees.
Instead, learning occurs in the evidence-based ensemble weights, and in linear models in
the leaves of the trees, both of which are able to react to concept drift through the inclusion
of a decay factor for previously learnt information.

We have demonstrated that despite having completely randomized tree structures, ABORF
is well suited to data streaming scenarios. We have shown empirically that, although slower
than the single learners FIMT-DD and ORTO-A, relative to other regression streaming
ensemble algorithms it is faster while retaining strong performance. Furthermore, without
the need for explicit change detection and adaption, as is common in other contemporary
streaming algorithms, ABORF has fewer hyperparameters to choose and therefore requires
less prior knowledge about the data stream it is to be used on, making it suitable for “out
of the box” use.

7.1 Future Work

We conclude with possible directions for future research. Throughout this thesis, we
have suggested a number of alternative approaches for predictive modelling with time-
changing data streams. We have developed both the ATSER and ACTSER approaches
from existing algorithms and, consequently, they follow with common challenges across
many data streaming algorithms. In particular, as seen in Section 3.2.1, change detection is
a challenging topic. As a result, change detectors are a potential source of inefficiency in
the algorithm, with every incorrect detection leading to the unnecessary construction of an
alternative subtree, while every missed detection of an actual change can lead to poorer
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performance than might be expected if the change were detected. Furthermore, a single
change can be detected in a series of nodes in the same path down the tree, leading to an
unnecessary number of alternative subtrees being grown. To this end, there is a need to
examine the efficiency of the detectors, and whether a sparser approach is possible.

Another area linked to change detection in which both ATSER and ACTSER may benefit
is that we have currently only included mechanisms to adapt to change in the base learners.
It may be possible to extend the change adaption to the entire ensemble as a whole,
which can also improve predictions. We have done this to a certain extent in ABORF, in
which we have modified the contribution of individual learners to the ensemble prediction
based on their evidence. While this method may not be suitable for ATSER or ACTSER,
other approaches may be more appropriate, such as weighting schemes [Brzeziński and
Stefanowski, 2011] or stacked generalization [Wolpert, 1992].

Research is also needed on extending both ATSER and ACTSER to multi-target problems.
While this may be possible through similar approaches to those taken by Ikonomovska et al.
[2011a] and Osojnik et al. [2018], these methods work by choosing the best split based
on a weighted combination of the split evaluations for each target, which is not directly
compatible with the idea of randomly choosing splits. As a result, further investigation
is needed into whether combining the ATSER and ACTSER algorithms with such an
approach is feasible.

On the other hand, the ABORF algorithm behaves very differently to traditional streaming
data algorithms. Without the need for explicit change detection, the change adaption is tied
to the learning rate in the leaves and the decay of older data. However, it is not immediately
clear how to apply the decay rates and further work is necessary to determine this. In
ABORF we decay parameters in the leaves each time a new example is seen in that leaf,
effectively handing all leaves of the tree an equal weight. While this ensures that each leaf
is appropriate for current data, some leaves may be used more recently than others, and
alternative approaches may be more effective, such as decaying parameters at every leaf in
the tree each time a new example is seen.

Another consideration for ABORF is that we weight the trees in the ensemble based on the
average performance of the tree across all nodes. While this is a theoretically motivated
approach, further investigation is needed into whether other methods may be more effective.
One possible method may be to use the evidence for the predicting leaf as a proxy for the
tree weight at each time, thereby obtaining more local weights and allowing trees which
perform well in some regions and badly in others to be weighted accordingly, rather than
being moderately weighted at all times, as they would be in the current ABORF algorithm.

The feature scaling in ABORF could also be improved. Ideally, the transformation would
map incoming features to uniformly span the [0, 1] range, meaning the number of examples
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seen by each leaf in the tree would be directly proportional to its hypervolume. However,
the min-max feature scaling we are currently using is susceptible to concept drift and
outliers, since if the bounds expand relative to the spread of the data then the examples will
become clustered after being transformed. Furthermore, since the features may not initially
be uniformly distributed, a transform which maps features to be uniformly distributed is
also desirable. Therefore, while min-max feature scaling works well empirically, other
methods of normalisation may be more robust to drift and improve the distribution of data
to the leaves.

A final direction for future work is in the characterization and suitability of different
datasets for evaluating online algorithms. One common feature across both Chapters 4 and
6 is that, relative to comparative methods, both ATSER and ABORF seem much better
suited to the real-world datasets rather than the synthetic FRIEDMAN and HYPERPLANE

datasets. This is likely a result of both ATSER and ABORF involving a comparatively
high degree of randomization, which is well known to lead to stronger performance in
the noisy environments which characterize the real-world datasets. This view is further
supported by the distinctive shapes of the learning curves on the synthetic datasets which,
especially on the FRIEDMAN data, are predictable and contain little noise in comparison
to the noisy shape of the learning curves on the real-world data. Consequently, it may
be worth using the categorizations of drift in Chapter 2 (and possibly extending them to
include “noisiness”) to attempt to categorize real-world datasets or generate a larger pool
of synthetic datasets for online regression scenarios, which would allow methods to be
better evaluated in terms of their suitability to different types of data and drift.
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Additional Experimental Results

A.1 Additional Results for Section 4.5.4: MAE of Algo-
rithms without Linear Models in the Leaves
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Figure A.1. Performance with no linear models on AIRLINE 08 over 100k windows.
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Figure A.2. Performance with no linear models on FRIEDMAN over 10k windows. A section of the
ORTO-A results which peaks at 14.5 has been omitted for visibility.
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Figure A.3. Performance with no linear models on HOUSING over 100k windows. The FIMT-DD,
ORTO-A and ATSER results are identical.

139



A. Additional Experimental Results

0 2 4 6 8 10
Examples Seen (Hundred Thousands)

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
Ab

so
lu

te
 E

rro
r

FIMT-DD
ORTO-A
ATSER
ATSER-Seeds
ATSER-OBag
ATSER-RForest
ARF-Reg

Figure A.4. Performance with no linear models on HYPERPLANE over 10k windows.
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Figure A.5. Performance with no linear models on YEARMSD over 10k windows.
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Figure A.6. Performance with no linear models on ZURICH over 100k windows.
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A.2 Additional Results for Section 6.5.2: Comparison of
MAEs Between Models, with the Pareto Front Shown
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Figure A.7. The effectiveness of different models and the pareto front on the FRIEDMAN dataset.
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Figure A.8. The effectiveness of different models and the pareto front on the HYPERPLANE dataset.
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Figure A.9. The effectiveness of different models and the pareto front on the AIRLINE08 dataset.
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Figure A.10. The effectiveness of different models and the pareto front on the ZURICH dataset.
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Figure A.11. The effectiveness of different models and the pareto front on the YEARMSD dataset.
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Figure A.12. The effectiveness of different models and the pareto front on the HOUSING dataset.
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A.3 Additional Results for Section 6.5.3: MAE Compari-
son between Axis-Aligned and Multivariate Splits
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Figure A.13. A comparison between multivariate and univariate splitting on the AIRLINE08 dataset.
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Figure A.14. A comparison between multivariate and univariate splitting on the ZURICH dataset.
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Figure A.15. A comparison between multivariate and univariate splitting on the YEARMSD dataset.
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Figure A.16. A comparison between multivariate and univariate splitting on the HOUSING dataset.
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A.4 Additional Results for Section 6.5.4: Effect of En-
semble Size on MAE
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Figure A.17. The effect of ensemble size on the FRIEDMAN dataset.

0 2 4 6 8 10
Examples Seen (Hundred Thousands)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

M
ea

n 
Ab

so
lu

te
 E

rro
r

ABORF - 10 Trees
ABORF - 25 Trees
ABORF - 50 Trees

Figure A.18. The effect of ensemble size on the HYPERPLANE dataset.

147



A. Additional Experimental Results

0 1 2 3 4 5
Examples Seen (Millions)

10

12

14

16

18

20

22

M
ea

n 
Ab

so
lu

te
 E

rro
r

ABORF - 10 Trees
ABORF - 25 Trees
ABORF - 50 Trees

Figure A.19. The effect of ensemble size on the AIRLINE08 dataset.
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Figure A.20. The effect of ensemble size on the ZURICH dataset.
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Figure A.21. The effect of ensemble size on the YEARMSD dataset.
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Figure A.22. The effect of ensemble size on the HOUSING dataset.
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A.5 Additional Results for Section 6.5.5: MAEs for 50
Tree ATSER and ABORF Ensembles
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Figure A.23. A comparison between 50 tree ensembles of ATSER and ABORF on the FRIEDMAN

dataset.
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Figure A.24. A comparison between 50 tree ensembles of ATSER and ABORF on the HYPERPLANE

dataset.
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Figure A.25. A comparison between 50 tree ensembles of ATSER and ABORF on the AIRLINE08
dataset.
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Figure A.26. A comparison between 50 tree ensembles of ATSER and ABORF on the ZURICH

dataset.
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Figure A.27. A comparison between 50 tree ensembles of ATSER and ABORF on the YEARMSD
dataset.
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Figure A.28. A comparison between 50 tree ensembles of ATSER and ABORF on the HOUSING

dataset.
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