1,448 research outputs found

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Nonparametric image registration of airborne LiDAR, hyperspectral and photographic imagery of wooded landscapes

    Get PDF
    There is much current interest in using multisensor airborne remote sensing to monitor the structure and biodiversity of woodlands. This paper addresses the application of nonparametric (NP) image-registration techniques to precisely align images obtained from multisensor imaging, which is critical for the successful identification of individual trees using object recognition approaches. NP image registration, in particular, the technique of optimizing an objective function, containing similarity and regularization terms, provides a flexible approach for image registration. Here, we develop a NP registration approach, in which a normalized gradient field is used to quantify similarity, and curvature is used for regularization (NGF-Curv method). Using a survey of woodlands in southern Spain as an example, we show that NGF-Curv can be successful at fusing data sets when there is little prior knowledge about how the data sets are interrelated (i.e., in the absence of ground control points). The validity of NGF-Curv in airborne remote sensing is demonstrated by a series of experiments. We show that NGF-Curv is capable of aligning images precisely, making it a valuable component of algorithms designed to identify objects, such as trees, within multisensor data sets.This work was supported by the Airborne Research and Survey Facility of the U.K.’s Natural Environment Research Council (NERC) for collecting and preprocessing the data used in this research project [EU11/03/100], and by the grants supported from King Abdullah University of Science Technology and Wellcome Trust (BBSRC). D. Coomes was supported by a grant from NERC (NE/K016377/1) and funding from DEFRA and the BBSRC to develop methods for monitoring ash dieback from aircraft.This is the final version. It was first published by IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7116541&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A36%29%26pageNumber%3D5

    From Sensors to Knowledge: The Challenge of Training the Next Generation of Data Analysts

    Get PDF
    With the advent of commercial-off-the-shelf sensors for use in a variety of applications, integration with analytical software tools, and expansion of available archived datasets, there is a critical need to address the problem of transforming resultant data into comprehensible, actionable information for decision-makers through rigorous analysis. In previous research the participating authors have emphasized that users are often faced with the situation in which they are “drowning in a sea of data” but still “thirsting for knowledge”. The availability of analysis software, tools, and techniques provide opportunities for information collection of ever increasing complexity, but the need for the training of analysts to employ appropriate tools and processes to ensure accurate and applicable results has not been addressed. The purpose of this paper is to discuss the challenges and opportunities facing the training of effective analysts capable of handling a wide-range of data types in this era of dynamic tools and techniques

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, InnovaciĂłn y Universidades | Ref. PID2019-108816RB-I0

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Research and technology annual report, FY 1990

    Get PDF
    Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program
    • …
    corecore