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A B S T R A C T

Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand
for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the
evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to
this growing field by examining recent research on multi-modal imaging sensor calibration and proposing
future research directions. The literature review comprehensively explains the various characteristics and
conditions of different multi-modal external calibration methods, including traditional motion-based calibration
and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-
based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as
an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods
and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to
guide future research directions. Future research should focus primarily on the capability of online targetless
calibration and systematic multi-modal sensor calibration.
. Introduction

Multi-modal imaging sensor fusion refers to bringing together com-
lementary and sometimes competing sensory data into a reliable
nvironment estimate to achieve a result that is greater than the sum of
ts parts (Hackett and Shah [1]). In recent years, with sensor technology
evelopment, multi-modal learning plays an increasingly important
ole in remote sensing (Luo et al. [2]), robotics (Nagla et al. [3]), indoor
nd outdoor Simultaneous Localization and Mapping (SLAM) (Van
inh and Kim [4]), intelligent transport infrastructure (Soilán et al.
5]), Building Information Modelling (BIM) (Rashdi et al. [6]), and
utonomous driving (Trubia et al. [7]). There are three different types
f sensor fusion, which refers to three different data processing levels
f abstraction: data-level fusion, feature-level fusion, and decision-level
usion (Hall and Llinas [8]). We consider data-level fusion and feature-
evel fusion as early fusion, and decision-level fusion as late fusion.
arly fusion denotes the integration of the data from the input (Kumar
t al. [9]). In contrast, late fusion, also known as decision-level fusion,
iffers from early fusion by performing classification or recognition
ndependently by each sensor. The integration of data series is done
t the semantic level. Therefore, synchronization and calibration are
ot required in late-level fusion, but they are necessary requirements
f early level fusion. It is necessary to regularize input sources from
ifferent sensors when performing data-level and feature-level fusion.
he goal of regularization is to achieve the same goal simultaneously

∗ Corresponding author at: CINTECX, Universidade de Vigo, Applied Geotechnology Group, Vigo, 36310, Spain.
E-mail address: zhouyan.qiu@uvigo.es (Z. Qiu).

with different types of sensors appearing in the same coordinate sys-
tem. Therefore, the calibration of multi-modal sensors is an essential
component of multi-view learning and applications.

The purpose of multi-modal sensors calibration is to determine
how data from different sources can be transformed into a common
reference system that is necessary for early-level sensor fusion. There
are two types of multi-sensor calibration (Kummerle and Kuhner [10]):
intrinsic calibration and extrinsic calibration. Intrinsic calibration de-
termines the internal mapping relationship of the sensor, for example,
the focal length, eccentricity, and pixel aspect ratio of the camera
(Pollefeys et al. [11]), and the lever-arm vector and bore-sight angles of
the LiDAR (Skaloud and Lichti [12]). Extrinsic calibration defines the
sensor poses relative to the reference frame.

A majority of multi-modal sensors are supplied with intrinsic cal-
ibration parameters by the manufacturer or are calculated indepen-
dently. Therefore, the primary purpose of multi-sensor calibration is
extrinsic calibration. In extrinsic calibration, usually, the relative pose
is represented by the homogeneous transformation matrix, which trans-
forms the same point from one reference frame to another. As can be
seen in Eq. (1.1), it is possible to combine translation, rotation, scaling,
reflection, and shear in a single 4 × 4 transformation matrix in 3D
space. The 3 × 3 matrix 𝑅 is the rotation matrix, describing the sensors’
rotation or orientation (and also scales and shears in some cases). The
vailable online 12 April 2023
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3 × 1 matrix 𝑇 is the translation matrix, representing the displacement
relationship between sensors.

Recent research simultaneously calibrates the entire multi-modal
sensor system, allowing it to solve both intrinsic and extrinsic cal-
ibration parameters at the same time. This part will be discussed
in Section 5.

If we only take the rotation into consideration, then the Matrix 𝑅 is
orthonormal. According to Euler’s rotation theorem, any rotation in 3D
space is represented by rotating a unit vector 𝑢 (the Euler axis) through
a certain angle 𝜃. Quaternions (Brauner [13]) describe the axis-angle
representation in four variables. A quaternion rotation is algebraically
manipulated into a matrix rotation by Eq. (1.1) (O’Rourke [14]).

Here, 𝑠 = ‖𝑞‖−2 and if 𝑞 is a unit quaternion, 𝑠 = 1. Therefore, the
task of extrinsic calibration is simplified to find seven unknown param-
eters, including a 1 × 4 rotation quaternion vector 𝐪 =

(

𝑞𝑖, 𝑞𝑗 , 𝑞𝑘, 𝑞𝑟
)

and a 1 × 3 translation vector 𝐓. A transformation converts a 3D
point coordinates 𝐏1 =

[

𝑋1, 𝑌1, 𝑍1
]𝑇 in sensor 1 coordinate system

to coordinates 𝐏2 =
[

𝑋2, 𝑌2, 𝑍2
]𝑇 in sensor 2 coordinate system using

Eq. (1.1).
[

𝐏1
1

]

=
[

𝐑3×3 𝐓3×1
01×3 1

] [

𝐏2
1

]

, or ∶ 𝐏1 = 𝐑3×3 ⋅ 𝐏2 + 𝐓3×1 (1.1)

It is difficult to obtain all the corresponding sensor values simulta-
neously in a multi-modal sensor system because of the different sample
rates, field of views (FoVs). and resolution. As a prerequisite to multi-
view learning, robustness and accuracy are additional requirements
for sensor calibration. It is therefore not an easy task to calibrate
multi-modal sensors at the production level.

There has been no decline in the popularity of multi-modal sensor
calibration within the last 20 years, but rather it has become more
significant with the needs of research directions such as unmanned
driving and mobile mapping. We review the popular multi-sensor cali-
bration problem where no systematic reviews published in recent years.
In our review, we cited more than 250 papers, of which over 90 were
published within the last three years and almost 130 within the last
five years.

This paper aims to present a comprehensive overview of the existing
external imaging sensor calibration approaches. The structure of the
paper includes seven sections. The first section is the introduction,
which provides an overview of the paper. Section 2 discusses the funda-
mentals of external multi-modal image sensor calibration, including an
overview of multi-modal imaging sensors, prerequisites such as time
synchronization and motion compensation, and the general process
of external multi-modal sensor calibration. Sections 3 and 4 present
motion-based calibration and feature-based calibration methods, re-
spectively. Section 5 provides an overview of systematic multi-modal
sensor calibration. In Section 6, the key factors for evaluating cali-
bration methods in multi-modal sensor systems are discussed, along
with their advantages, disadvantages and related applications. Addi-
tionally, potential research directions are highlighted. Finally, Section 7
concludes the paper.

2. Fundamentals of external multi-modal image sensor calibration

The section begins by providing an overview of multi-modal imag-
ing sensors, including camera, LiDAR and Radar. It then moves on
to discuss the prerequisites of external multi-modal imaging sensor
calibration, including time synchronization and motion compensation,
which are essential for achieving accurate calibration. The final part
of the section explains the general process of external multi-modal
sensor calibration, providing an overview of the various steps involved
in the calibration process. Overall, this section provides an introduc-
tory overview of the fundamental concepts and techniques utilized in
multi-modal imaging sensor calibration.
2

2.1. Overview of multi-model imaging sensors

Over the past decades, many multi-modal sensor datasets have been
released for multiple purposes including detection, tracking, prediction
and segmentation (Caesar et al. [15]). In 2006, the Rawseeds project
published the first multi-sensor indoor and outdoor datasets (Bonarini
et al. [16]). Table 2.1 lists the open-source multi-modal sensor datasets
and the sensors they use (until 2022.08). As can be seen from Table 2.1,
GPS and IMU (inertial measurement unit) are essential for time syn-
chronization and sensor calibration part. Many datasets, such as MVSEC
(Zhu et al. [17]) and CADC (Pitropov et al. [18]), are equipped with
multiple GNSS and IMU sensors to resolve synchronization problems.
Sometimes the dataset providers have completed the multi-sensor cal-
ibration for users. For example, the calibration files of the popular
KITTI (Geiger et al. [19]) dataset is available online. However, it is
not accurate enough for specific objectives, e.g., high-precision map
positioning. Thus, there are many sensor calibration processes based
on the KITTI dataset (Feng et al. [20], Jiang et al. [21]). In addition to
LiDARs and cameras, researchers have also begun to use other sensors,
such as radars (Houston et al. [22], Caesar et al. [15], Barnes et al.
[23]), thermal (Choi et al. [24]) and fisheye cameras (Yogamani et al.
[25]).

2.1.1. Camera
Cameras are the basis of the visual image processing system and

the foundation of the multi-sensor platform. In addition to the fre-
quently chosen grey-scale cameras and color cameras, video cameras
are often utilized for 3D target tracking and positioning. Furthermore,
depending on the purpose, some specific cameras are also valuable to
multi-sensor fusion such as Stereo cameras, panoramic cameras, fisheye
cameras, ToF cameras, thermographic camera, multi-spectral cameras.
The comparisons of various popular cameras are presented in Table 2.2.

Besides the above frame cameras, line scan cameras have one or
more rows of imaging units on their sensors, which are considered as
a particular case of frame cameras. A line scan camera has a higher
scanning frequency and resolution. It is vital to maintain the relative
movement between the camera and the object when employing line
frame cameras to collect 2D images. Because it only images line objects,
calibrating a line scan camera is more difficult than calibrating a frame
camera. Static and dynamic imaging methods are now used to calibrate
line scan cameras.

• Static imaging methods: keep the camera and calibration ob-
ject motionless, and each row of data on the image surface is
consistent (Horaud et al. [69], Li et al. [70], Sun et al. [71]).

• Dynamic scanning imaging: moves the line camera at a constant
speed to create a 2D image, which is useful for extracting the pixel
coordinates of the subsequent feature points (Draréni et al. [72],
Hui et al. [73], Donné et al. [74]).

Due to the particularity of line scan cameras, the joint calibration of
line scan cameras and other sensors are out of scope in this paper.

2.1.2. LiDAR
LiDAR, short for Light Detection and Ranging, is a device that

measures the distance from the device to targets by the time-of-flight
(TOF) or phase (Stone et al. [75]). According to the scanning methods,
LiDARs are divided into three categories: Mechanical Scanning, Micro
electromechanical system (MEMS) and solid-state. Mechanical Scan-
ning LiDAR mechanically rotates a laser/receiver assembly or utilizing
a spinning mirror to direct a light beam. MEMS LiDAR is a hybrid
LiDAR that combines a MEMS with a Laser galvanometer to perform
laser scanning through galvanometer rotation. Solid-state LiDAR has
no mechanical scanning structures, and the laser scanning process is
entirely electronic. Optical Phased Array (OPA) LiDAR and Area Array
Flash LiDAR are two main types of solid-state LiDAR. Table 2.3 com-

pares the advantages and the disadvantages of these LiDARs. According
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Table 2.1
Public multi-sensor datasets for calibration (until 2022).
Dataset Year Environment RGB Other camera LIDAR IMU GNSS Radar

Bovisa [16] 2009 Outdoor Multi Yes Yes Yes No
DARPA [26] 2010 Outdoor Multi Yes Yes Yes No
KITTI [19] 2011 Outdoor 2 Yes Yes Yes No
TUMindoor [27] 2012 Indoor 8 No No No No
Málaga [28] 2013 Outdoor 1 Yes Yes Yes No
NCLT [29] 2015 Outdoor 1 Yes Yes Yes No
EUROC [30] 2016 Outdoor No No No No
LaFiDa [31] 2017 Indoor/Outdoor 3 No No No No
TUM VI [32] 2018 Indoor/Outdoor Multi event No Yes No No
HDD [33] 2018 Outdoor Multi Yes Yes Yes No
KAIST
Multi-spectral [24]

2018 Outdoor Multi IR Yes Yes Yes No

MVSEC [17] 2018 Outdoor Multi Yes Yes Yes No
Brno Urban [34] 2019 Outdoor Multi Yes Yes Yes No
UZH-FPV [35] 2019 Indoor/Outdoor 1 event No Yes No No
REAL3EXT [36] 2019 Indoor Multi IR, depth No No No No
ApolloScape [37] 2019 Outdoor 6 Yes Yes Yes No
Argoverse [38] 2019 Outdoor Multi Yes Yes Yes No
Waymo [39] 2019 Outdoor Multi Yes Yes Yes No
WoodScape [25] 2019 Outdoor Multi Yes Yes Yes No
UrbanLoco [40] 2020 Outdoor Multi Yes Yes Yes No
Pit30M [41] 2020 Outdoor 1 Yes Yes Yes No
OpenLORIS [42] 2020 Indoor 2 depth No Yes No No
A2D2 [43] 2020 Outdoor 6 Yes Yes Yes No
A*3D [44] 2020 Outdoor Multi Yes Yes Yes No
CADC [18] 2020 Outdoor Multi Yes Yes Yes No
Cityscapes [45] 2020 Outdoor 2 Yes Yes Yes No
Ford Multi-AV [45] 2020 Outdoor Multi Yes Yes Yes No
Lyft Perception;
Lyft
Prediction [46][22]

2020 Outdoor Multi Yes Yes Yes Yes

nuScenes [15] 2020 Outdoor 6 Yes Yes Yes Yes
Pandaset [47] 2020 Outdoor Multi Yes Yes Yes No
RobotCar [23] 2020 Outdoor Multi Yes Yes Yes Yes
Apolloscape
Inpainting [48]

2020 Outdoor Multi Yes No No No

USVinland [49] 2021 Outdoor Multi Yes Yes Yes Yes
JU-VNT [50] 2021 Indoor 1 IR, multi-spectral No No No No
CyborgLOC
(Team) [51]

2021 Indoor No IR No Yes Yes No

NAVER LABS
Localization
Datasets [52]

2021 Indoor 10 Yes No No No

CRUW [53] 2021 Outdoor 2 No No No Yes
RadarScenes [54] 2021 Outdoor 1 No Yes Yes Yes
Dsec [55] 2021 Outdoor Multi event Yes No Yes No
TUK Campus [56] 2021 Outdoor Multi Yes Yes Yes No
M2DGR [57] 2021 Indoor/Outdoor 7 IR, event Yes Yes Yes No
WADS(Winter) [58] 2021 Outdoor Multi IR Yes No No No
ONCE [59] 2021 Outdoor 7 Yes No No No
TUM-VIE [60] 2021 Indoor/Outdoor 2 IR, event No No Yes No
TIMo [61] 2022 Indoor No IR, depth No No No No
SELMA [62] 2022 Outdoor 7 depth, semantic Yes Yes Yes No
Rope3D [63] 2022 Outdoor 1 roadside cameras Yes Yes Yes No
Argoverse 2 [64] 2023 Outdoor 9 Yes No No No
Table 2.2
The characteristics and applications of various popular cameras.

Cameras Stereo cameras Fisheye cameras Thermographic cameras

Definition A type of camera with two or more lenses
with a separate image sensor or film frame
for each lens

have an ultra wide-angle lens that produces
strong visual distortion intended to create a
wide panoramic or hemispherical image
[65,66]

Create an image using infrared radiation

Advantages Can simulate human binocular vision, Able
to capture 3D images

Shorter focal length, wider perspective,
Accommodate more scenery information

Sensitive to particular wavelengths

Disadvantages Complex configuration and calibration, The
depth range and accuracy are limited by
the binocular baseline and resolution, very
consuming computing resources

Not applicable to the perspective projection
model, Need special distortion correction

Short measuring distance, poor contrast,
high cost

Open datasets Málaga [28], MVSEC [17], Bicocca [16],
REAL3EXT [67]

WoodScape [68] KAIST Multi-spectral [24](thermal),
JU-VNT [50](near-infrared, thermal)
3
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Table 2.3
The advantages and disadvantages of different LiDARs.
LiDAR Advantages Disadvantages

Mechanical Scanning LiDAR 360-degree field of view, relatively high accuracy The more the beams, the larger the size; expensive

MEMS LiDAR Relatively mature technology, relatively lower cost and
higher accuracy, sensors can dynamically adjust the
scanning method, for the objects that need to be identified

Complicated optical path, the vibration of the polarizer, the
area of the polarizer limits laser scanning, laser reflections
result in a low echo signal-to-noise ratio

OPA LiDAR Simple structure and small size, fast scanning speed and
high accuracy, good controllability

Small field of view, grating diffraction affects the result,
poor signal to noise ratio

Flash LiDAR No motion distortion, fast scanning speed Small field of view, small detection range
to this table, Mechanical Scanning LiDAR has a large field of view and
high accuracy, but is large and expensive. MEMS LiDAR on the other
hand, has a relatively low cost and higher accuracy, however, it is
prone to noise. Although OPA LiDAR is small and has high accuracy,
its field of view is small and its noise level is high. The Flash LiDAR is
capable of rapid scanning, but it has a small field of view and detection
range. Therefore, a LiDAR must be selected according to the specific
requirements.

2.1.3. Radar
Radar is a detection system that uses radio waves to determine the

range, angle, or velocity of objects (Smith [76]). Usually, millimeter-
wave radars are set in the multi-sensor platform. Millimeter-wave
refers to electromagnetic waves with a wavelength between 1 mm and
10 mm, which means the frequency is between 300 GHz and 30 GHz.
The millimeter-wave has a strong ability to penetrate fog, smoke, and
dust, long transmission distance, and has stable performance. However,
radar fails to recognize obstacles, so there is the potential for false
detection. For the reasons stated, many multi-sensor systems use radars
as additional sensors to improve the accuracy and accuracy of measure-
ments, such as nuScenes (Caesar et al. [15]) and RobotCar (Barnes et al.
[23]).

2.2. Prerequisites of external multi-modal imaging sensor calibration

2.2.1. Time synchronization
Sensor fusion requires time synchronization of several data streams

with potentially different frequencies and latencies, which has a direct
effect on the accuracy and performance of the system (Hu et al. [77]).
It is possible to synchronize sensor data using either hardware or
software. Hardware synchronization uses a unified clock to synchronize
the timestamps of different sensors to synchronize sensor acquisition
and measurement. Software synchronization attaches a timestamp to
each sensor measurement to correct synchronization errors caused by
inconsistent data acquisition frequencies of different sensors. In the
past few years, it has become increasingly popular to integrate time
synchronization into systematized temporal and spatial calibration,
which is described in detail in Section 5.

• Hardware synchronization. The master time is used to synchro-
nize the timestamps of different sensors since each sensor has
its own timestamp. Furthermore, there is still a delay in data
transfer between sensors due to the varied sampling frequency
of each sensor. Therefore the nearest neighbor frame is identified
by searching at neighboring timestamps. In most cases, GPS time
is used as the master time for other sensors.

• Software synchronization. Two simple methods of time syn-
chronization are the time index and time interpolation. Time
index uses frequency information from different sources within
a multi-modal system, based on a relation between the sam-
pling rate of the sensor with the lowest sampling frequency. This
method has a significant amount of inaccuracy. Time interpola-
tion is a least-squares approach which is one of the most widely
used method for synchronizing time. The observed data from
one sensor are fitted to create a time curve, and then the value
4

corresponding to the time of the other sensor is calculated (Blair
et al. [78]). Other mature solutions exist for situations in which
the frame rate does not have a multiple relationship between the
sensors, or when the frame rate is unstable. For example, an ex-
trapolation of high-precision observation data into low-precision
time stamps is possible, such as the Taylor expansion algorithm
(Huang et al. [79]), interpolation and extrapolation (Brownlee
[80]). Based on the individual application and conditions, there
are other methods of time synchronization. Olson [81] presented
a passive synchronization algorithm for estimating time offsets
when both device and sensor clocks drift, which is practical and
feasible, however, only when the sensors observe overlapping
events. Kelly et al. [82] identified the time delay calculation
as a registration issue and attempted to find correspondences
among the measurements of both sensors. Furthermore, Du et al.
[83] presented a procedure for time synchronization based on
point correspondence for the parametrization of curves. Accord-
ing to Liu et al. [84], the high update rate IMU served as a unified
calibration reference, whilst other moderate and low-frequency
target sensors were estimated in connection with the reference
unit.

2.2.2. Motion compensation
In a multi-modal system, all sensors are fixed on a rigid body in

motion, for example, a car or a train. Therefore, when the sensors
collect the data, the vehicle is at different positions before and after the
data acquisition, resulting in the misalignment of different local sensor
coordinate systems. There are two sources of motion compensation:

1. Ego Motion: Gibson [85] described ego motion based on visual
signals. Ego motion is the change in the gathered data caused
by the sensor’s own motion in a multi-modal system. Raudies
and Neumann [86] evaluated different estimating ego-motion
methods.

2. Motion from others: The change in the sensor’s relative dis-
placement caused by the target moving during the acquisition
procedure.

It is necessary to apply motion compensation methods before the
sensor fusion, especially for the sensors with low sampling rates, such as
radars, cameras and some LiDARs. GNSS and IMU provide the vehicle’s
position shifts at different times of the movement for motion compen-
sation. Based on the assumption of a constant speed of the sensor, the
sensor position is calculated by point cloud registration. Commonly
used methods include Iterative Closest Point(ICP) and related variants,
e.g. Velocity updating Iterative Closest Point Algorithm(VICP) (Hong
et al. [87]), or Approximate Nearest Neighbor Algorithms(ANN) (Liu
et al. [88]). The ICP algorithm’s drawback is that it accumulates error
over time and is prone to being incorrect in fast motion; also, it fails if
the point clouds are very sparse (Balazadegan Sarvrood et al. [89]). The
odometer and IMU information are used to solve the sensor position
problem. They are updated at a very high frequency, allowing it to
precisely reflect the motion condition.

Also, the fusion approach employs data gathered by the camera or

LiDAR to match to correct the location. Yang et al. [90] evaluated
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Fig. 2.1. A general process of external calibration in a multi-sensor platform.

the visual odometry algorithms using sophisticated achievements as
an example to investigate the design ideas of various visual odometry
methods. Many odometry and SLAM algorithms, such as ORB-SLAM
(Mur-Artal et al. [91]) for monocular cameras, LOAM (Zhang and Singh
[92]) for LiDARs, and RGBD-SLAM (Kerl et al. [93]) for RGBD sensors,
have been developed in recent years to capture 3-D ego-motion with a
specific exteroceptive sensor.

Furthermore, image blur reduction is sometimes referred to motion
compensation in the field of computer vision due to sensor motions
during exposure. This problem has a large number of well-developed
solutions (Peng et al. [94], Har-Noy et al. [95], Couzinié-Devy et al.
[96], Deshpande and Patnaik [97]). Besides, rolling shutter cameras
rather than global shutter cameras are also beneficial in motion de-
blurring, which are usually applied in SLAM (Anderson and Barfoot
[98], Patron-Perez et al. [99]). Based on simulations and real data, Huai
et al. [100] quantified the rolling shutter effect on camera extrinsic
and temporal calibration, and analyzed the effect of constant IMU bias
assumption on extrinsic calibration.

2.3. General process of external multi-modal sensor calibration

Thus far, the prerequisites for calibration are outlined. The global
calibration process is summarized in Fig. 2.1. While this process is
a commonly adopted approach, it is important to note that it is not
mandatory for all calibration methods to adhere to this scheme. In fact,
many researchers have focused exclusively on specific aspects of the
process. Some have focused exclusively on motion-based calibration
methods, while others have assumed that the initial values are given be-
fore feature-based calibration methods. Additionally, some researchers
have exclusively addressed the drift-over measurement problems for
online processing. Despite these differences, the overall approach can
be described as a coarse to fine calibration. For instance, motion-based
hand-eye calibration provides only approximate extrinsic parameters.
This allows it to contribute initial values for feature-based calibrations,
which may also be assigned manually. After that, numerous optimiza-
tion approaches are applied to increase the calibration accuracy after
replicated measurements. In the case of multi-modal sensor systems,
obtaining an accurate initial value is paramount, after which online
calibration must be continuously performed to correct the external
parameters of the sensors in motion. In the following sections, various
calibration methods will be described separately.
5

Fig. 3.1. Motion-based 2D–3D Calibration [103].

3. Motion-based calibration

Motion-based calibration techniques are based on the
well-developed hand-eye calibration problem (Horaud and Dornaika
[101]). In robotics and mathematics, the hand-eye calibration problem
takes the form of 𝐴𝑋 = 𝑍𝐵, where 𝐴 and 𝐵 are two systems, and 𝑋 and
𝑍 are unknown transformation matrices. In multi-sensor calibration, 𝐴
and 𝐵 are the motions of two sensors. Because here we require only
the relative transformation matrices from 𝐴 to 𝐵, we assume that here
𝑋 = 𝑍, taking the form of the problem 𝐴𝑋 = 𝑋𝐵.

In hand-eye calibration, the movements of different sensors are used
to calibrate external parameters (Fig. 3.1). As explained in the last
paragraph, solving the expression for 𝑋 in the equation 𝐴𝑋 = 𝑋𝐵
provides the extrinsic parameter between the two sensors. Using this
approach, researchers have been able to automatically initialize the
external parameters in the case of non-overlapping FOVs (Taylor and
Nieto [102], Ishikawa et al. [103]). In the motion-based calibration
carried out by Ishikawa et al. [103], LiDAR motion is estimated by the
ICP algorithm, while camera motion is calculated by feature matching.
The initial calibration parameters can then be evaluated separately.
Furthermore, the camera motion is recalculated by the initial external
parameters and the point clouds. Finally, the external parameters can
be achieved by hand-eye calibration.

As mentioned before, although motion-based calibration is a flexible
targetless calibration method, the accuracy is not very high. Therefore,
refinement after hand-eye calibration is necessary to improve the cal-
ibration accuracy. Generally, hand-eye calibration can provide initial
values for feature-based target-less calibration or ICP optimization
algorithms.

4. Feature-based calibration

One of the most important aspects of a multi-modal sensor calibra-
tion procedure is feature-based calibration. This process is accurate and
straightforward to perform. Fig. 4.1 provides an overview of different
features for various sensors. The most interesting aspect of this figure is
that researchers often choose diverse targets according to the sensor’s
characteristics to facilitate external calibration. The commonly chosen
targets are:

• A checkerboard or a combination of checkerboards. It is the
most popular design. A preliminary inspection of the calibration
object allows the corner position to be determined with a very
high degree of accuracy. After the checkerboard is detected, sub-
pixel refinement is possible by taking advantage of the precise
gray values of pixels around a given corner position.

• Sphere. It is also a popular and prevalent calibration target
design. A sphere is detected as a circle in the image. Since all
pixels on the periphery of the circle are applied to reduce the
influence of noise, it is possible to determine the circle with
great accuracy. Another advantage of using the sphere is that the
projection of the globe in any viewing angle is circular, so it is
well adapted to non-overlapping views, which is very significant
in practical applications.
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Fig. 4.1. Different feature-based calibration methods for different sensors according to their individual constraints.
• Trihedron. It is a commonly used non-artificial target, and it is
frequently found in indoor or outdoor corners. The trihedrons
provide not only line-based and plane-based restrictions but also
orthogonal-based constraints. So, they give sufficient conditions
for automatic calibration.

Closer inspection of Fig. 4.1 shows that in addition to target-based
calibration methods, another calibration technique known as ‘‘target
of opportunity’’ uses features from the environment to achieve calibra-
tion. There has been an increasing amount of literature on automatic
calibration in recent years, taking advantage of geometry constraints or
mutual information (MI). Without using human-made objects, effective
features like points, lines, planes, and other features from the natural
environment are extracted to achieve external parameter constraints
and estimate the optimal parameters online in real-time, with stronger
robustness and higher efficiency (Moghadam et al. [104], Levinson and
Thrun [105], Rodríguez-Garavito et al. [106]). The generalizability of
these approaches is subject to certain limitations. These methods are
more suitable for indoor calibration because there are enough line
features and surface features for self-correction. For outdoor cases, the
sensors fail to obtain sufficient line and plane conditions. Han et al.
[107] proposed an online calibration method based on traffic sign
recognition, such as stop signs. This method is fast and efficient, but
its application is limited. What is more, the complicated surrounding
environment makes the automatic calibration result unstable.

The following is a brief introduction of feature-based calibration
methods for different sensors, including multi-LiDAR, multi-camera,
LiDAR and camera and others.

4.1. Feature-based multi-LiDAR calibration

Feature based multi-LiDAR calibration extract effective features
from the scanned point cloud, such as the combined features of points,
lines, arcs, and surfaces, the normal and curvature, and other cus-
tomizable features. An example of customizable features is the field
of view (FoV) overlaps created through sensor movements (Liu and
Zhang [108]). For feature-based calibration, artificial targets (Gao and
Spletzer [109], Chen et al. [110]) are usually set to obtain the cor-
respondence, but in some papers, some specific features in the point
clouds are directly detected for the calibration. Unlike 3D LiDARs, 2D
Laser rangefinders (LRFs) do not provide height information as they
are only capable of collecting distance information from one plane.
Therefore, the calibration of multi-2D LRF systems is more difficult.
6

Table 4.1 compares the strengths and weaknesses of some feature-based
multi-LRFs calibration methods. As can be seen from Table 4.1, using
artificial targets improves accuracy and calculation speed. Existing
features, that are, geometric constraints, require a particular external
environment and a large number of observations, but they are more
flexible. Additionally, Chen et al. [111] proposed a feature extraction
methodology that generalizes points’ geometrical characteristics into
two groups (disjoint and continuous) and three types (edge, corner,
plane).

In addition, the dynamic features are used for the multi-LiDAR cal-
ibration problems. Schenk et al. [120] presented an automatic calibra-
tion methods of laser range finders by matching movement trajectories.
However, it only solves the 3-DOFs extrinsic calibration problems, and
the calibration error may be accumulated during the processing.

4.2. Feature-based multi-camera calibration

Feature-based multi-camera calibration has been very well devel-
oped since the beginning of the 21st century. Different feature-based
multi-camera calibration methods are summarized in Table 4.2. From
the table, it can be seen that most global calibration procedures in the
early research rely on matching features in all sensor FoVs, requiring a
common field of view.

Generally, the targets are categorized in terms of dimensions into 0D
targets, 1D targets, 2D targets, and 3D targets (Table 4.2). A 0D target
is a freely moving bright spot, which must be captured by at least three
cameras (Svoboda et al. [121]). It is a self-calibration method finding
the association among trajectories of a point across all views, mainly
used for virtual environments. Therefore, it is not practical for outdoor
applications.

The 1D calibration target comprises three or more collinear points
with a known distance from each other (Zhang [122], Wu et al. [123],
Wang and Wu [124]). The 1D target has two attractive features: first,
its structure is simple and easy to set up; secondly, it has no occlusion,
thus it is capable to be efficiently captured by multiple cameras. In a
multi-camera system, all cameras observe the entire calibration object
at the same time. But for 2D and 3D targets, it is impossible to realize
due to their occlusion.

One of the greatest disadvantages of 1D targets is that they do not
provide sufficient calibration constraints. One-dimensional targets are
only capable of providing accurate external calibration elements in one
direction, and for its vertical direction, the calibration result is not
accurate enough. So 2D planar targets, which are the most widely-used
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Table 4.1
Some feature-based multi-LRF calibration methods.
Targets Advantages Disadvantages

Retro-reflective targets [109] More accurate and faster Needs the initial parameters, intra-loop changes may not
be captured

In a parking lot [112] No artificial targets Needs the initial parameters, require special external
environment

Scanning perpendicular
planes [113]

More accurate Needs the initial parameters and a large number of
observations

Two orthogonal planes [114] Without any extra sensors or known motion information Linear equations may degenerate due to plane poses and
a relative pose.

A common planar surface
[115]

Accurate, easy to perform, fast, not require specific
calibration patterns

Require three LRFs

A mobile sphere [110] Automatic and accurate Have to move the sphere to get enough matching points,
needs the initial parameters

Existing Cuboid-Shaped
Corridor [116]

Require less number of observations Needs the initial parameters

A internal corner in the room
[117]

Not require specific calibration patterns Only on 3 degree of freedom(DOF) calibration, LRFs
must be set at the same plane

Trihedron [118] Flexible, not require multiple observations or initial
values of extrinsic parameters

Accuracy is not very high

A sphere [119] Accurate and robust, long baseline and large viewpoint
difference

No online calibration
calibration targets, are introduced in the calibration. Different features
on the planar targets are extracted for the calibration, such as center
of circles (Luo and Wu [125]), crosspoints (Yang et al. [126]), and
parallel lines (Wei et al. [127]). Checkerboards are common planar
targets for calibration as their corners and crossings are easily detected
accurately with high flexibility (Yang et al. [126],Rufli et al. [128],Lee
et al. [129]). Checkerboards allow to calculate intrinsic and extrinsic
parameters for multiple cameras at the same time. Circles with various
conditions are applied for calibration, including coplanar circles (Chen
et al. [130]), concentric circles (Jiang and Quan [131]), coaxial circles
(Colombo et al. [132]) and parallel circles (Wu et al. [133]). These tar-
gets provide planar restrictions, but for multiple cameras, the condition
of simultaneous visibility is still required.

The main disadvantage of planar objects is the problem of occlusion.
One of the solutions is using 3D spheres. Guan et al. [134] identify
several advantages of the spheres:

1. When observed from an arbitrary direction, spheres have a
similar appearance, allowing their centers to be used as feature
points.

2. Finding corresponding spheres in various views is relatively
easy, even in low-resolution images.

3. It is possible to calculate the distance to a specific camera if the
sphere size is known.

Nevertheless, the precision of calibration is considerably affected by
he correctness of ellipse fitting (Huang et al. [135]).

The above part has demonstrated feature-based multi-camera cali-
ration methods with overlapping views. Despite this, cameras usually
ave no overlapping views or only a small common FOV in practical
pplications, such as in an advanced sensing and perception Advanced
river-Assistance System (ADAS) system. This kind of multi-camera

ystem is common in a mobile multi-sensor system, so now the non-
verlapping problem becomes the main focus. Motion-based calibration
nd external measuring equipment are two ways to solve the non-
verlapping calibration problem. In Table 4.2, there are additional two
olutions: using large-scale targets, or using mirrors.

Large-scale targets are traditional tools for non-overlapping cali-
ration problem. The main principle is as follows. There are several
ub-targets in the large-scale target system with known positional
elationships. Each camera captures only one sub-target, and then the
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individual external parameters are estimated. Moreover, the relation-
ships between the sub-targets are known, which allows the external
parameters to be combined in the same large-scale target frame.

The classification of large-scale targets is similar to that of the
common targets which is listed in Table 4.2: 1D large-scale targets
and 2D large-scale targets. 1D targets are usually combined for global
calibration (Liu et al. [139], Sun et al. [140], Xie et al. [141]). It
is adjustable and easy to place. However, it only allows to calibrate
two cameras at one time. A planar target system is also an alternative
for non-overlapping calibration (Liu et al. [142], Strauß et al. [143],
Zhang et al. [144]). A 2D large-scale planar target system has high
adaptability and is utilized in various environments. However, the
images are generally defocused easily and calibration is not as accurate
since it is generally composed of multiple sub-targets.

Mirror-based calibration is another solution for the non-overlapping
problem. Reflections and mirror positions assist in obtaining extrinsic
parameters. Using a plane mirror to determine external parameters
requires at least three reflections of the reference object (Kumar et al.
[145], Takahashi et al. [146], Fujiyama et al. [148], Mariottini et al.
[149], Gluckman and Nayar [150], Xu et al. [151]). Amit Agrawal
[147] proposed a new method using only one spherical mirror, but the
distortion of the spherical mirror greatly affects the accuracy.

For small systems with only a few cameras, the mirror-based design
is relatively simple and easy. But for large-scale measurement systems,
this approach will encounter some practical difficulties. Using mirrors
is an easy way to convert non-overlapping problems into overlapping
calibration. However, one of the most difficult challenges is to ensure
that all cameras observe the same target from different perspectives.
Besides, the actual distance from the camera to the target in the mirror
is twice that from the camera to the mirror. It is important to consider
whether the acceptable accuracy is achievable.

4.3. Feature-based 2D LRF and camera calibration

Research has historically focused on external calibration of 2D
LRFs and cameras. Some of them are summarized in Table 4.3. As
mentioned in Section 2.1.2, a 2D LRF emits only a single laser beam,
therefore, it is essential to build the point to line constraints in the
calibration. Several studies have used V-shape target to establish the
correspondence between the image and point clouds. As shown in
Fig. 4.2, Wasielewski and Strauss [152] first investigated the calibration
using a V-shape target. This calibration method matches the image
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Table 4.2
Different feature-based multi-camera calibration methods.
Overlapping views Year Authors

0D Targets Points 2005 Svoboda et al.
[121]

1D Targets
1D objects composed of 3 collinear points moving around one of them 2004 Zhang [122]
1D calibration object rotating around a known fixed point 2005 Wu et al. [123]
1D object undergoing general rigid motions 2007 Wang and Wu

[124]

2D Target

LCD projector projects structured light patterns (checkerboard) 2008 Yang et al. [126]
Several views of the free-position planar pattern 2007 Xue et al. [136]
A circle grid 2008 Luo and Wu [125]
A planar target with several parallel lines 2014 Wei et al. [127]
Depth-weighted normalized points on checkerboards 2021 Koo et al. [137]

3D Target Spheres 2011 Wong et al. [138]
A cube with chessboard patterns on four sides 2019 Huang et al. [135]

Non-overlapping views: no external equipment Year Authors

1D Large-scale
Target

Using the co-linearity of points on 1D Target 2011 Liu et al. [139]
Two 1D targets 2011 Sun et al. [140]
A flexible target composed of two short 1D bars with equally placed light
spots and one long linking pole

2013 Xie et al. [141]

2D Large-scale
Target

A multi-target consist of several fixed planar sub-targets 2011 Liu et al. [142]
Coded checkerboard 2014 Strauß et al. [143]
A positive quadrangle, and its 5 planes are all target planes 2019 Zhang et al. [144]

Non-overlapping views: with external equipment Year Authors

Mirror
5 planar mirrors 2008 Kumar et al. [145]
3 planar mirrors 2012 Takahashi et al.

[146]
A non-planar spherical mirror 2013 Agrawal [147]
Fig. 4.2. Use V-shape target to establish the correspondence between the image and
point clouds (Wasielewski and Strauss [152]).

of the line in the 3D space with the intersection to the laser plane.
However, due to insufficient constraints of the point-to-line conditions,
the angle between the line and the laser plane at various positions
will affect the calibration result. Therefore, the point-to-line calibration
requires numerous observations to obtain reliable results. Much of the
research attempted to reduce the number of observations and improve
the accuracy of calibration (Li et al. [153], Kwak et al. [154]). Even so,
the accuracy is still insufficient.

Using point-to-plane constraints is another typical way for the ex-
ternal calibration. Qilong Zhang and Pless [155] solved the external
parameter based on observing a planar checkerboard pattern. Over the
past decade, most research in point-to-plane calibration tries to find the
minimal solution (Vasconcelos et al. [157], Gomez-Ojeda et al. [158],
Hu et al. [159], Dong and Isler [160]). It is known that two points
determine a unique straight line on the plane. Thus, one laser beam
acquired from a 2D LRF provides two practical constraints for a planar
target. Qilong Zhang and Pless [155] used a 3 × 3 matrix to describe the
8

transformation between the 2D LRF and the camera, therefore, there
are 9 unknowns which means at least 5 observations are required to
estimate the external parameter. According to Vasconcelos et al. [157],
Zhang’s extrinsic calibration is in general non-plausible as the iterative
estimation may run into local minima. They analyzed a minimal closed-
form solution from three input planes, which reduced the number
of observations to a minimum of three. Some authors used multiple
checkerboards to reduce the number of frames required for calibration
(Hu et al. [159], Dong and Isler [160]), while some other researchers
used existing geometric scene conditions to constrain the geometric
positions (Gomez-Ojeda et al. [158]). Dong and Isler [160] discussed
the current popular calibration targets for a 2D LRF and a camera.
However, all these processes need at least three observations. The
difference is only to collect the information of three planes at one time
or get the data of one plane three times.

4.4. Feature-based 3D LiDAR and camera calibration

Up to now, there are many toolboxes for LiDAR and camera cali-
bration, including Autoware (Kato et al. [161]), Apollo (Baidu [162]),
‘‘lidar and camera calibration’’ package (Dhall et al. [163]). The cal-
ibration targets of these mature solutions ordinarily based on the
checkerboard pattern design, which is one of the most popular patterns.
Compared to 2D LRFs, a 3D LiDAR emits and receives multiple laser
beams, which means 3D LiDARs obtain more information, such as
the normal vectors of points (Zhou and Deng [164]). 3D LiDAR and
camera calibration is a 6 degree of freedom (DOF) problem with six
unknowns. Similar to 2D LRF and camera calibration, each observation
of the checkerboard provides three constraints. Since the calibration of
multiple observations will affect accuracy, there has been an increasing
amount of literature on how to increase the number of constraints ac-
quired in a single shot in recent years. Various studies have assessed the
effect of different calibration targets. Table 4.4 compares the features
of some typical calibration objects. From the Table 4.4, we can see that
typical characteristic include intensities, edges, normal, gradient, and
the combination of several features.

In addition to estimating external parameters based on point con-
straints on the plane, another idea is to obtain the center of the circle
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Table 4.3
Some representative 2D LRF and camera extrinsic calibration methods.
Target Constraints Observation Year Author

V-shape target Point-to-line at least 100 1995 Wasielewski and Strauss [152]
a planar checkerboard Point to line at least 5 2004 Qilong Zhang and Pless [155]
Right-angled triangular checkerboard Point to line at least 100 2007 Li et al. [153]
2 V-shape targets Edge and centerline at least 50 2011 Kwak et al. [154]
a black line on a white sheet of paper Point to line at least 6 2011 Naroditsky et al. [156]
Freely moving a checkerboard pattern Point-to-line 3 2012 Vasconcelos et al. [157]
Orthogonal trihedrons (scene corners) Line-to-plane

Point-to-plane
2 2015 Gomez-Ojeda et al. [158]

Virtual trihedron (three shots of the chessboard pattern at
three different times)

Point-to-Point
Point-to-line

1 2016 Hu et al. [159]

2 triangular boards with a checkerboard on each triangle Point-to-plane 1 2018 Dong and Isler [160]
Table 4.4
Some representative 3D LiDAR and camera extrinsic calibration methods.

Target Features Year Author

Checkerboard

Extend from 2D to 3D LiDAR 2010 Pandey et al. [168]
Use the weight of the normal vector uncertainty to evaluate the scan quality; Applied to
both 3D and 2D LiDAR

2012 Zhou and Deng [164]

Panoramic image; refine using the Levenberg–Marquardt method 2017 Wang et al. [169]
educes the minimal number of observations to one by combining 3D line and plane
correspondences

2018 Zhou et al. [170]

Gaussian Mixture Model(GMM)-based intensity cluster approach 2022 Lai et al. [171]

Polygonal Planar Board Use a low-resolution 3D LIDAR 2014 Park et al. [172]

Designed Planar Board Two reflective crossing stripes, with an AprilTag marker placed at the intersection 2022 Grammatikopoulos
et al. [173]

Nearly orthogonal
multiplanar chessboard

Spatiotemporal Calibration, using Nonlinear Angular Constraints 2022 Yoon et al. [174]

Arbitrary Trihedron Often present in structured environments, e.g., corners 2013 Gong et al. [175]

Planar targets with holes Plane with triangular hole; 3D-3D point constraints 2012 Ha [165]
Detect the depth difference between adjacent points under the same line to achieve
edge detection; at least one observation

2014 Velas et al. [166]

Spherical Suitable for low-resolution LiDAR data; detected from different angles 2018 Kümmerle et al. [167]

A rigid plane with a
printed black ring

Simultaneous calculation of internal and external elements 2008 Fremont and
Bonnifait [176]

Ordinary Box Requires only a simple cardboard box; calibrate an arbitrary number of cameras and
LiDARs; perspective-n-Point (PnP) problem

2017 Pusztai and Hajder
[177], Pusztai et al.
[178]

ArUco Markers
Highly reliable fiducial markers under occlusion; translation is quite accurate 2017 Dhall et al. [163]
Using corner points of polygons as correspondence points 2021 Povendhan et al.

[179]
Calibration from multiple static scenes 2022 Zamanakos et al.

[180]

Panoramic Infrastructure Calibration of multiple cameras and 3D LiDARs from single frame. 2021 Fang et al. [181]
e
t
i
c
t
t

through edge detection using planar targets with holes (Ha [165],Velas
et al. [166]) or a spherical (Kümmerle et al. [167]).

Having discussed the different calibration targets for 2D and 3D
LiDARs, we will now move on to discuss the process of target-based
calibration, which can be seen from Fig. 4.3. The minimal required
observations for different calibration targets and applications are ana-
lyzed above. However, minimal solutions are usually unable to provide
sufficiently accurate external parameters. For example, the method
proposed by Li et al. [153] needs at least 100 repeated measurements
to meet the accuracy specifications. Joint optimization of multiple
observations may be utilized to obtain the optimal estimation, thus
improving the accuracy of the measurement. There is a large volume of
published studies describing fine calibration methods, including linear
and non-linear least squares problems. The Levenberg–Marquardt algo-
rithm is one of the most popular methods chosen to solve non-linear
optimization problems (Wang et al. [169]).

In the early twentieth century, people manually built the constraints
9

by selecting the 2D image features and corresponding 3D points (Zhao t
Fig. 4.3. A basic coarse to fine calibration process.

t al. [182],Scaramuzza et al. [183]). It is non-automatic and incredibly
ime-consuming. MI (Mutual Information)-based targetless calibration
s able to solve the 3D–2D PnP (Perspective-n-Point) problem without
onsidering functional relationships. Mutual Information (MI) measures
he joint probability and evaluate the relationship between two datasets
hat are sampled simultaneously. Multi-modal image sensor data regis-

ration based on MI has been first presented in medical imaging (Hill
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Table 4.5
Some typical features for targetless MI-based automatic calibration.
Features Characteristics Year Author

Intensities Maximizing the mutual information obtained between the sensor-measured surface intensities 2012 Pandey et al.
[187]

Edges
Points with depth discontinuities correspond to edges in the image 2013 Levinson and

Thrun [105]
Edge extraction based on point cloud voxel cutting and plane fitting 2021 Yuan et al.

[188]
An adaptive voxelization technique 2022 Liu et al. [189]

Normal The intensity of the pixels defined by the angle of the normals in the LiDAR scan 2012 Taylor and Nieto
[190]

Gradient Data registration by minimizing the misalignment of the gradients 2015 Taylor et al.
[191]

Multiple features Incorporates more features, including reflectivity, discontinuity, and surface normal 2016 Irie et al. [192]
Normalized
information
distance

With a view-based hidden points removal algorithm 2023 Koide et al.
[193]
et al. [184]). Nowadays, MI-based calibration is becoming a common
trend in computer vision and remote sensing. Table 4.5 illustrates some
of the representative MI used for calibration.

Furthermore, MI has emerged as a powerful tool in airborne multi-
sensor calibration and registration (Mastin et al. [185],Parmehr et al.
[186]).

After obtaining the constraints from the corresponding features, the
next step is to solve the PnP problem. There are many ways to solve the
PnP problem, such as P3P (using three pairs of points to estimate the
pose) (Gao et al. [194]), DLT (direct linear transformation), and Bundle
Adjustment.

MI-based methods are automatic and accurate. However, a signifi-
cant problem with these methods is the limitation of local optimization.
Therefore, the initial value is necessary. Hand-eye calibration provides
initial values to improve the efficiency of the algorithm, which have
been discussed in Section 3.

4.5. Other feature-based multi-modal image sensor calibration

In addition to the imaging sensors discussed above, there are several
other types of perceptual sensors employed in multi-modal systems.
The subsequent section focuses on joint extrinsic calibration of mul-
tiple sensors and identifies two distinct types of calibration methods:
the one-step target-based calibration approach and the two-step ap-
proach. Also, in this section we will discuss the calibration of airborne
multi-modal sensor systems.

4.5.1. One-step target-based extrinsic calibration
Various constraints based on geometry or mutual information are

applied as the conditions for multi-sensor calibration. For complicated
sensor extrinsic calibration, it is crucial to design a specific target
that meets the requirements of various sensors at the same time to
calibrate the multi-sensor system. As shown in Fig. 4.4, Zhao et al.
[195] employed a calibration board which is made of a rectangular
flat board and an ArUco marker for LiDAR-ToF-Binocular calibration
(Fig. 4.4(a)). Domhof et al. [196] proposed an object that is detectable
by LiDAR, camera, and Radar (Fig. 4.4(b)). Besides, Peršić et al. [197]
constructed another target for the LiDAR, camera and Radar joint
calibration(Fig. 4.4(c)).

4.5.2. Two-step extrinsic calibration
There are extensive studies that have been conducted on the cal-

ibration of LiDAR and cameras. Hence, cameras or LiDARs are useful
intermediaries for solving some complex calibration issues. Zhang et al.
[198] used a monocular visual camera to assist the extrinsic calibration
between a Sparse 3D LiDAR and a thermal Camera. The sensor frame
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diagram and two-step calibration method process are set out in Fig. 4.5.
4.5.3. Feature-based airborne multi-modal sensor calibration
Airborne platforms, such as unmanned aerial vehicles (UAVs) and

manned aircraft, require precise sensor calibration for remote sensing,
mapping, and defense applications. However, the calibration process
for airborne platforms face unique challenges due to high-speed mo-
tion, vibration, and varying environmental conditions. Thus, feature-
based calibration methods are highly desired, which offer high accu-
racy, robustness, and efficiency to address the challenges. Traditional
calibration methods rely on using control points. In recent years, signif-
icant research efforts have been focused on calibration and localization
methods that without control points (Cai et al. [199]). Active position-
ing algorithms based on Laser scanner (Bai et al. [200]) and Radar
(Song et al. [201]) are often utilized as positioning techniques in
georegistration to directly provide distance information of targets. For
these methods, overlapping fields of view are a necessary condition.

5. Systematic multi-modal sensor calibration

As discussed so far, most calibration methods are based on specific
pairwise combinations of sensor modes. Some recent research has
focused on establishing a general calibration framework for improving
the accuracy of sensor calibration across a variety of modes. Oliveira
et al. [202] presented a general calibration methodology (ATOM),
which is a complete framework for a calibration pipeline containing
all the stages involved in the calibration process. Another calibration
framework was presented by Rato et al. [203], which enables the ac-
curate calibration of a collaborative cell containing three RGB cameras,
a depth camera, and three 3D LiDARs. These frameworks, however, are
not really general frameworks; the majority of frameworks provided by
the research are only suitable for a limited range of applications. This
area of research still requires further investigation.

The framework introduce above only explored external calibration,
which specifies how the sensor has to be positioned in relation to
the reference frame. Several studies have looked into combining posi-
tioning and modeling to determine the transformation matrix between
the sensors as well as locate the multi-sensor system in the global
coordinate system. Systematic calibration eliminates the need for a
separate calibration process for each subsystem by estimating the cal-
ibration parameters simultaneously (Elseberg et al. [204]). Cucci and
Matteucci [205], for example, used GPS, inertial sensors, and visual
odometry to self-calibrate sensors. Cucci et al. [206] also suggested
a dynamic network using bundle adjustment for the integration of
image, raw inertial measurement, and GNSS observations in a tightly
connected way. Multi Sensor-Fusion Extended Kalman Filter (MSF-EKF)
processes delayed, relative, and absolute observations from a theoreti-
cally infinite number of distinct sensors and sensor types while allowing
online sensor-suite self-calibration (Lynen et al. [207]). To integrate
IMU, camera, GPS, 2D LiDAR, pressure altimeter, and magnetome-
ter, Shen et al. [208] used a loosely coupled, derivative-free Unscented
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Fig. 4.4. Some examples of calibration target set-ups.
Fig. 4.5. The diagram of the sensor frames and the two-step calibration method (Zhang
et al. [198]).

Kalman Filter (UKF) architecture. Recently, Lee et al. [209] developed
a multi-sensor aided inertial navigation system (MINS) that uses plane
patches to efficiently integrate multi-modal measurements from the
IMU, camera, wheel encoder, GPS, and 3D LiDAR. Besides, based on a
LiDAR/GNSS/INS-assisted structure from motion (SfM) strategy, Zhou
et al. [210] generated an image-based point cloud and subsequently
identified the feature correspondences between the image-based and
LiDAR point clouds. A multi-sensor calibration procedure is then per-
formed using the ICP method. Another issue that needs to be addressed
for systematic online calibration is real-time performance due to exces-
sive data volumes. A solution is to use sparse LiDAR point clouds to
update and calibrate the system (Lee et al. [211]).

The necessity of time synchronization is highlighted in
Section 2.2.1. Many previous research assumed that time synchro-
nization was complete, yet time synchronization is still an important
element to address in practice. Rehder et al. [212] established a
general framework for the simultaneous calibration of temporal off-
sets and spatial transformations between numerous sensors utilizing
a continuous-time state model. The temporal and spatial calibration
between the IMU and camera proposed by Mair et al. [213] uses
phase consistency to estimate the time offset. Using Gaussian Processes
(GPs) as a means of determining moving target trajectories, Peršić
et al. [214] obtained spatiotemporal calibration of moving targets.
Also, some visual-inertial real-time motion estimation methods use time
offset as an additional state of estimation. Accordingly, Qiu et al. [215]
regards the time offset as a constant unknown value throughout the
observation period and employs motion correlation analysis to calibrate
heterogeneous sensors in real time.

Systematic calibration of multiple sensors is also especially critical
for UAV platforms. The accuracy of registration for point clouds derived
from LiDAR data and images as well as their relationship with ground
truth will be greatly enhanced by estimating the external calibration
parameters of LiDARs and cameras and calculating their relationship
with the on-board GNSS/INS (inertial navigation system) unit simul-
taneously. The main procedures are mainly based on linear or planar
features as discussed previously, but the data comes from different
flight paths. For instance, Ravi et al. [216] used specifically designed
calibration boards with highly reflective surfaces as the targets.

Finally, it should be noted that in a multi-sensor network, the
calibration process can be performed through centralized or distributed
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approaches. Centralized approaches (Lian et al. [217], Gao et al. [218],
Li et al. [219]) refer to methods that use a central processing unit to
perform the calibration process, where all the sensors are connected
to this unit. The unit then receives the data from all sensors, performs
the calibration, and distributes the corrected data back to the sensors.
On the other hand, distributed approaches (Üney et al. [220], Gao
et al. [221], Gao et al. [222]) refer to methods that distribute the
calibration process among the sensors themselves. Each sensor performs
its own calibration, and then communicates the corrected data to the
other sensors in the network. This approach reduces the need for
a central processing unit, and can lead to faster and more efficient
calibration. However, it also requires more coordination between the
sensors to ensure that all of them are calibrated correctly. Centralized
approaches are best for high-data volume, high-accuracy, and systems
where sensors cannot perform calibration on their own. Distributed
approaches are best for decentralized, fault-tolerant systems, and where
sensors can perform calibration on their own, with limited communi-
cation bandwidth or power constraints. The choice depends on specific
application and system requirements.

6. Discussion

This section covers the key factors for evaluating calibration meth-
ods in multi-modal sensor systems, including the advantages and dis-
advantages of each categories. The suggested calibration methods are
also provided based on the specific requirements of the application.
Additionally, potential research directions are highlighted based on
the evaluation factors, pointing towards promising areas for future
development.

6.1. Key factors for evaluation

Turning our attention to the evaluation of various calibration meth-
ods, it is important to note that accuracy alone is not the only factor
that needs to be considered in the evaluation of multi-modal imag-
ing sensor calibration. Other factors, such as efficiency, should also
be evaluated in order to develop a comprehensive understanding of
the strengths and limitations of each approach. Table 6.1 shows an
overview of evaluations of different external calibration methods.

6.1.1. Accuracy
Accurate calibration of multi-modal sensors is critical for achiev-

ing reliable and precise measurements. However, obtaining accurate
6 degrees of freedom (DOF) parameters that define the relationship
between sensors remains a challenging task. Evaluating the accuracy
of calibration methods is also difficult due to the lack of standard
evaluation criteria. Lack of standard evaluation criteria has led to the
use of custom solutions (Guindel et al. [223]). Many of these are
founded on inaccurate manual annotations (Geiger et al. [224],Nagy
et al. [225]). Levinson and Thrun [105] proposed a method to detect
misalignment according to the change of the objective function cal-
culated based on the discontinuities in the scene. Kwak et al. [154]
used the real LiDAR scan line on the calibration target as ground truth
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Table 6.1
Evaluation of different external calibration methods.

Methods Accuracy Observation Non-overlapping
FoVs

Automaticity Initial value Robustness

Artificial
feature

Checkerboards High Multiple Not suitable No Require Low
Sphere High Several Suitable No Require Medium
Others High Depends Depends Depends Depends Depends

Non-artificial
feature

Trihedron High/Medium Several Not suitable Depends Require Medium
Lines and
planes

Medium Multiple Not suitable Yes Require High

MI High/Medium Several Not suitable Yes Require Medium

Motion-based hand-eye
calibration

Low Multiple Suitable Yes Not require High

Deep learning Medium/Low Multiple Suitable Yes Not require High
and then calculated the line alignment error and the point correspon-
dence error. They also manually evaluated the performance through
colorizing of calibrated LiDAR points. Guindel et al. [223] defined nine
different calibration setups to analyze the ability of generalization of
the proposed approach.

In general, there are three main factors that can impact the accuracy
of multi-sensor calibration.

• Number of observations: multiple measurements are typically
required to achieve acceptable accuracy.

• Overlapping fields of view: non-overlapping FoVs can make cali-
bration more challenging.

• Robustness: calibration methods should be robust to noise and
other uncertainties.

A detailed discussion of the aforementioned factors, as well as other
mportant considerations, is presented in the following parts.

.1.2. Observations
As discussed in Section 4.3, various studies have assessed the num-

er of required observations in the calibration. While repeated observa-
ions are undoubtedly valuable for enhancing measurement accuracy,
t is also essential to consider the minimum number of measurements
equired to attain an acceptable level of accuracy. This is particularly
elevant when assessing the performance of various calibration meth-
ds, as some methods may require a larger number of measurements
o achieve the desired level of accuracy. For example, the calibra-
ion method presented by Wasielewski and Strauss [152] depends on
nsufficient point-to-line constraints. Therefore, a large number of ob-
ervations is required to achieve sufficient accuracy. Some researchers
ork on getting the calibration results in one shoot. Qilong Zhang and
less [155] defined a 9-parameter 3 × 3 transformation matrix. Vascon-
elos et al. [157] reduced the 9-parameter to 6-parameter to solve the
DOF problem. General measurement only gets 2 (2D LRF) or 3 (3D

iDAR) conditions, so for ordinary planar targets, one observation is
ot enough. Particular objects are designed for external calibration to
chieve external parameters in one measurement, such as planar targets
ith holes (Velas et al. [166]), V-shape target with checkerboards
attern (Dong and Isler [160]), and Panoramic Infrastructure (Fang
t al. [181]).

.1.3. Non-overlapping FoVs
Various sensors have diverse fields of view (FoV) angles, which

an lead to overlapping or non-overlapping FoVs in a multi-sensor
ystem. The degree of FoV overlap affects the accuracy of feature
orrespondences and ultimately impacts the calibration accuracy. Cali-
ration methods must take into account the FoV overlap when assessing
he calibration accuracy. For calibration targets, plane targets like
heckerboards have occlusion problems, requiring sensors to have a
ommon FoV. On the other hand, 3D objects such as a sphere can
e used for non-overlapping calibration because they offer consistent
bservation from all aspects. Moreover, both motion-based and deep
earning-based calibration methods are suitable for non-overlapping
12

alibration scenarios.
6.1.4. Robustness
In the context of calibration, robustness has two dimensions: the

ability of the method to be applied in various environments, as well
as its capacity to minimize calibration errors while the system is in
motion. As previously discussed, target-based calibration is known for
its poor robustness. The robustness of feature-based calibration without
targets, on the other hand, relies heavily on the choice of features.
Motion-based calibration is considered to be more robust. In cases
where the environment remains stable, deep learning has proven to
be an effective calibration method. However, it may not be feasible in
situations where the background differs significantly.

6.1.5. Automaticity
Automated calibration refers to the absence of manual intervention

in the calibration process. Target-based calibration methods do not
require initial values in an automated calibration process. Thus, special-
designed targets are typically required to achieve this objective. On
the other hand, for targetless calibration, feature-based calibration
typically employs hand-eye calibration for initial estimations, which is
also classified as an automated method. Notably, deep learning-based
calibration is usually considered an automated method.

6.1.6. Initial value
For feature-based calibration, providing initial values can enhance

the efficiency of feature matching. However, it is possible to eliminate
the need for initial parameters by employing specially designed targets
or optimization methods (Owens et al. [226]). For example, circles can
be detected based on their geometric features, and their centers can
then be determined. In addition, many researchers utilize the results of
motion-based calibration as initial values.

6.2. Applications

In the previous section, we presented several key factors for eval-
uating calibration methods. Table 6.2 describes the advantages and
disadvantages of various calibration methods, as well as their poten-
tial application scenarios, based on the evaluation factors we have
discussed.

This section further explores the significance of multi-sensor appli-
cation scenarios in selecting appropriate calibration methods. Table 6.3
highlights the various fields in which multi-sensors are commonly used
and includes new reviews in those respective fields, along with recom-
mended calibration methods. The table demonstrates the widespread
use of multi-modal sensor systems across various fields. As can be
seen from Table 6.2 and Table 6.3, due to varying objectives, sen-
sor types, and accuracy requirements, calibration methods employed
may differ accordingly. An example of a field that requires highly
accurate measurements is structural health monitoring. In such scenar-
ios, motion-based calibration methods may not achieve the required
level of precision, necessitating the use of feature-based calibration

methods. In the field of autonomous driving and mapping, both high
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Table 6.2
The advantage and disadvantage of different external calibration methods.

Methods Advantages Disadvantages Scenarios

Artificial
feature

Checkerboards High accuracy Require initial value, cannot be
automated, not support online
calibration, require overlapping FoVs

High-accuracy measurement, factory
configuration of some multi-modal
sensor systems.

Sphere High accuracy, not require
overlapping FoVs

Require initial value, cannot be
automated, not support online
calibration

High-accuracy measurement, factory
configuration of some multi-modal
sensor systems.

Other special-designed
targets

High accuracy Cannot be automated, not support
online calibration

Depends on the target design, factory
configuration of some multi-modal
sensor systems.

Non-artificial
feature

Trihedron High/Medium accuracy Require initial value, not fully
automated, require overlapping FoVs

In structured environments

Lines and planes Medium accuracy, can be automated Require initial value, require
overlapping FoVs

Online calibration

MI Can be automated Low accuracy, require initial value,
require overlapping FoVs

Online calibration

Motion-
based

hand-eye calibration Can be automated, not require initial
value, not require overlapping FoVs

Low accuracy Online calibration, provide initial
values for feature-based calibration

Deep learning Can be automated, not require initial
value, not require overlapping FoVs

Low accuracy, environment
consistency required

Online calibration
Table 6.3
Applications of multi-modal sensor systems and the related suggested calibration
methods.
Category Applications Suggested methods

Industrial Automation
Robotics [227] depends

Manufacturing
[228]

feature-based

Structural health
monitoring
[229,230]

feature-based

Agriculture Precision
agriculture [231]

feature-based

Poultry
production [232]

feature-based

Transportation
Autonomous
driving [233]

motion-
based/targetless

Mapping and
surveying [234]

feature-based

Smart city [235] depends

Defense and Security Defense [236] depends

Healthcare Medical imaging
[237]

feature-based

Patient
monitoring
[238,239]

motion-
based/targetless
initial calibration accuracy and drift reduction during operation are
crucial for ensuring system stability. Therefore, the use of motion-based
or environment-based targetless methods for online calibration is of
paramount importance.

6.3. Future research directions

Section 6.1 discusses the critical factors for evaluating these meth-
ods and Section 6.2 provides some typical applications. Drawing from
these aspects, there are several insights for future research.

6.3.1. Accuracy and related factors
Most research on multi-sensor calibration has been carried out in

improving accuracy. However, there is still lack of research on how to
evaluate the performance of the methods because the environment of
each multi-sensor system is not the same. Recently, Mishra et al. [240]
evaluated three different target-based 3D LiDAR and camera calibration
algorithms through error metrics such as Mean Line Re-projection Error
13
(MLRE) and Factory Stereo Calibration Error. They also discussed their
robustness to random initialization and the influence of noisy sensors.
Also, some researchers are trying to improve the accuracy of calibration
by developing optimization models. Kang and Doh [241] calculated
the analytical gradient of the proposed cost function to enhance the
accuracy of optimization. What is more, the issue of drift errors has
grown in importance in light of the development of autonomous driving
systems. For example, Nedevschi et al. [242] adjusted the value of six
parameters automatically by online cross-calibration.

As mentioned before, a planar target will face the problem of block-
ing view angle in multi-sensor calibration. Therefore, some unique tar-
gets with both 3D and 2D information are designed for calibration. Bu
et al. [243] invented a triangular pyramid target with checkerboard
patterns on its three planes. Li et al. [244] proposes an initialization
theory where cameras share a limited field of view by matching across
different cameras and between two key frames using cost functions that

contain inaccurate calibration parameters.
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Robustness is another key factor in a multi-sensor system, especially
for an online driving system. Usually, information from other sensors
such as GPS or IMU (Wang et al. [245]) or from the time series
increases the robustness of the system. Levinson and Thrun [105]
presented that multiple frames in the time order can be utilized for
the optimization. Targets of opportunity are a crucial approach for
online calibration that utilizes features in the environment. Future
research directions in this area include investigating the effectiveness
of using multiple opportunity targets to enhance calibration reliability,
studying the impact of various environmental factors (such as lighting
conditions and weather) on the efficacy of targets of opportunity-based
calibration methods, and exploring the potential of integrating targets
of opportunity-based calibration methods with other techniques (such
as feature-based methods) to improve overall accuracy and robustness.

6.3.2. Other possible research directions
Environment. Research on automatic calibration has been mostly

estricted to environments with a large amount of point, line, and plane
onstraints, such as indoors, highways, or urban roads. Muñoz-Bañón
t al. [246] presented a co-registration approach and used a Kalman
ilter to improve robustness against noisy observations. To date, there
as been no reliable approach for online calibration in unstructured
nvironment, for example, country lanes or undergrounds (Ebadi et al.
247]).
Other sensors. Although there are multiple ways to calibrate a

ulti-sensor system that contains dense 3D LiDAR, sparse 3D LiDAR
s still a popular research direction because of the relatively low price.
here have been many studies on sparse 3D LiDAR calibration (Xiao
t al. [248], Zhang et al. [249], An et al. [250]), but because sparse
iDAR only generates sparse point clouds, there is yet no perfect
olution. In addition, there are also some studies on external calibration
ther than LiDAR and cameras, such as IMU-camera (Bender et al.
251]) and radar-camera (Wise et al. [252]), which is similar to LiDAR
nd camera calibration. Finally, several unresolved issues remain about
he calibration of multiple sensors rather than two sensors.
Deep learning. Deep learning has a wide-spread popularity in

various applications, including multi-sensor calibration. It is a powerful
method but requires many training data and is not suitable for environ-
ments with significant feature differences. Further research is necessary
to make better use of deep learning.

Simultaneous temporal and spatial calibration. Recently, an
increasing number of research have begun to utilize online calibration
to simultaneously calculate the parameters of spatial and temporal
calibration (Li and Mourikis [253], Qin and Shen [254], Qiu et al.
[215]). This is also critical in order to improve the accuracy of a
multi-sensor system.

7. Conclusion

In conclusion, this paper has provided a comprehensive overview of
the different external multi-modal imaging sensor calibration methods,
which are widely used in various applications. This review evaluates
various calibration techniques for external imaging sensors, includ-
ing traditional motion-based calibration and feature-based calibration.
Feature-based calibration covers target-based calibration as well as
targetless approaches such as the use of features from the environment,
known as target of opportunity methods. Moreover, the manuscript
emphasizes the emerging research direction of systematic calibration,
which is a promising area for future research. The discussion in Sec-
tion 6 on the evaluation factors indicates that no approach is uni-
versally applicable, and the choice of calibration method will depend
on the specific requirements of the application. Furthermore, we have
highlighted some potential research directions, such as improving the
capability of targetless calibration and systematic multi-modal sensor
calibration. This review provides valuable insights for researchers and
practitioners working in the field of multi-modal sensor systems, and
that it contributes to the advancement of these systems.
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