68 research outputs found

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 207)

    Get PDF
    This bibliography lists 484 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1986

    Aeronautical engineering: A continuing bibliography with indexes (supplement 203)

    Get PDF
    This bibliography lists 449 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1986

    Collected Papers in Structural Mechanics Honoring Dr. James H. Starnes, Jr.

    Get PDF
    This special publication contains a collection of structural mechanics papers honoring Dr. James H. Starnes, Jr. presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Austin, Texas, April 18-21, 2005. Contributors to this publication represent a small number of those influenced by Dr. Starnes' technical leadership, his technical prowess and diversity, and his technical breath and depth in engineering mechanics. These papers cover some of the research areas Dr. Starnes investigated, which included buckling, postbuckling, and collapse of structures; composite structural mechanics, residual strength and damage tolerance of metallic and composite structures; and aircraft structural design, certification and verification. He actively pursued technical understanding and clarity, championed technical excellence, and modeled humility and perseverance

    A new mixed model based on the enhanced-Refined Zigzag Theory for the analysis of thick multilayered composite plates

    Get PDF
    The Refined Zigzag Theory (RZT) has been widely used in the numerical analysis of multilayered and sandwich plates in the last decay. It has been demonstrated its high accuracy in predicting global quantities, such as maximum displacement, frequencies and buckling loads, and local quantities such as through-the-thickness distribution of displacements and in-plane stresses [1,2]. Moreover, the C0 continuity conditions make this theory appealing to finite element formulations [3]. The standard RZT, due to the derivation of the zigzag functions, cannot be used to investigate the structural behaviour of angle-ply laminated plates. This drawback has been recently solved by introducing a new set of generalized zigzag functions that allow the coupling effect between the local contribution of the zigzag displacements [4]. The newly developed theory has been named enhanced Refined Zigzag Theory (en- RZT) and has been demonstrated to be very accurate in the prediction of displacements, frequencies, buckling loads and stresses. The predictive capabilities of standard RZT for transverse shear stress distributions can be improved using the Reissner’s Mixed Variational Theorem (RMVT). In the mixed RZT, named RZT(m) [5], the assumed transverse shear stresses are derived from the integration of local three-dimensional equilibrium equations. Following the variational statement described by Auricchio and Sacco [6], the purpose of this work is to implement a mixed variational formulation for the en-RZT, in order to improve the accuracy of the predicted transverse stress distributions. The assumed kinematic field is cubic for the in-plane displacements and parabolic for the transverse one. Using an appropriate procedure enforcing the transverse shear stresses null on both the top and bottom surface, a new set of enhanced piecewise cubic zigzag functions are obtained. The transverse normal stress is assumed as a smeared cubic function along the laminate thickness. The assumed transverse shear stresses profile is derived from the integration of local three-dimensional equilibrium equations. The variational functional is the sum of three contributions: (1) one related to the membrane-bending deformation with a full displacement formulation, (2) the Hellinger-Reissner functional for the transverse normal and shear terms and (3) a penalty functional adopted to enforce the compatibility between the strains coming from the displacement field and new “strain” independent variables. The entire formulation is developed and the governing equations are derived for cases with existing analytical solutions. Finally, to assess the proposed model’s predictive capabilities, results are compared with an exact three-dimensional solution, when available, or high-fidelity finite elements 3D models. References: [1] Tessler A, Di Sciuva M, Gherlone M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA/TP- 2009-215561 2009:1–53. [2] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories. Composite Structures 2013;106:777–92. https://doi.org/10.1016/j.compstruct.2013.07.019. [3] Di Sciuva M, Gherlone M, Iurlaro L, Tessler A. A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory. Composite Structures 2015;132:784–803. https://doi.org/10.1016/j.compstruct.2015.06.071. [4] Sorrenti M, Di Sciuva M. An enhancement of the warping shear functions of Refined Zigzag Theory. Journal of Applied Mechanics 2021;88:7. https://doi.org/10.1115/1.4050908. [5] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses, Ibiza, Spain: 2013. [6] Auricchio F, Sacco E. Refined First-Order Shear Deformation Theory Models for Composite Laminates. J Appl Mech 2003;70:381–90. https://doi.org/10.1115/1.1572901

    Adaptiver Suchansatz zur multidisziplinären Optimierung von Leichtbaustrukturen unter Verwendung hybrider Metaheuristik

    Get PDF
    Within the last few years environmental regulations, safety requirements and market competitions forced the automotive industry to open up a wide range of new technologies. Lightweight design is considered as one of the most innovative concepts to fulfil environmental, safety and many other objectives at competitive prices. Choosing the best design and production process in the development period is the most significant link in the automobile production chain. A wide range of design and process parameters needs to be evaluated to achieve numerous goals of production. These goals often stand in conflict with each other. In addition to the variation of the concepts and following the objectives, some limitations such as manufacturing restrictions, financial limits, and deadlines influence the choice of the best combination of variables. This study introduces a structural optimization tool for assemblies made of sheet metal, e.g. the automobile body, based on parametrization and evaluation of concepts in CAD and CAE. This methodology focuses on those concepts, which leads to the use of the right amount of light and strong material in the right place, instead of substituting the whole structure with the new material. An adaptive hybrid metaheuristic algorithm is designed to eliminate all factors that would lead to a local minimum instead of global optimum. Finding the global optimum is granted by using some explorative and exploitative search heuristics, which are intelligently organized by a central controller. Reliability, accuracy and the speed of the proposed algorithm are validated via a comparative study with similar algorithms for an academic optimization problem, which shows valuable results. Since structures might be subject to a wide range of load cases, e.g. static, cyclic, dynamic, temperature-dependent etc., these requirements need to be addressed by a multidisciplinary optimization algorithm. To handle the nonlinear response of objectives and to tackle the time-consuming FEM analyses in crash situations, a surrogate model is implemented in the optimization tool. The ability of such tool to present the optimum results in multi-objective problems is improved by using some user-selected fitness functions. Finally, an exemplary sub-assembly made of sheet metal parts from a car body is optimized to enhance both, static load case and crashworthiness.Die Automobilindustrie hat in den letzten Jahren unter dem Druck von Umweltvorschriften, Sicherheitsanforderungen und wettbewerbsfähigem Markt neue Wege auf dem Gebiet der Technologien eröffnet. Leichtbau gilt als eine der innovativsten und offenkundigsten Lösungen, um Umwelt- und Sicherheitsziele zu wettbewerbsfähigen Preisen zu erreichen. Die Wahl des besten Designs und Verfahrens für Produktionen in der Entwicklungsphase ist der wichtigste Ring der Automobilproduktionskette. Um unzählige Produktionsziele zu erreichen, müssen zahlreiche Design- und Prozessparameter bewertet werden. Die Anzahl und Variation der Lösungen und Ziele sowie einige Einschränkungen wie Fertigungsbeschränkungen, finanzielle Grenzen und Fristen beeinflussen die Auswahl einer guten Kombination von Variablen. In dieser Studie werden strukturelle Optimierungswerkzeuge für aus Blech gefertigte Baugruppen, z. Karosserie, basierend auf Parametrisierung und Bewertung von Lösungen in CAD bzw. CAE. Diese Methodik konzentriert sich auf die Lösungen, die dazu führen, dass die richtige Menge an leichtem / festem Material an der richtigen Stelle der Struktur verwendet wird, anstatt vollständig ersetzt zu werden. Eine adaptive Hybrid-Metaheuristik soll verhindern, dass alle Faktoren, die Bedrohungsoptimierungstools in einem lokalen Minimum konvergieren, anstelle eines globalen Optimums. Das Auffinden des globalen Optimums wird durch einige explorative und ausbeuterische Such Heuristiken gewährleistet. Die Zuverlässigkeit, Genauigkeit und Geschwindigkeit des vorgeschlagenen Algorithmus wird mit ähnlichen Algorithmen in akademischen Optimierungsproblemen validiert und führt zu respektablen Ergebnissen. Da Strukturen möglicherweise einem weiten Bereich von Lastfällen unterliegen, z. statische, zyklische, dynamische, Temperatur usw. Möglichkeit der multidisziplinären Optimierung wurde in Optimierungswerkzeugen bereitgestellt. Um die nichtlineare Reaktion von Zielen zu überwinden und um den hohen Zeitverbrauch von FEM-Analysen in Absturzereignissen zu bewältigen, könnte ein Ersatzmodell vom Benutzer verwendet werden. Die Fähigkeit von Optimierungswerkzeugen, optimale Ergebnisse bei Problemen mit mehreren Zielsetzungen zu präsentieren, wird durch die Verwendung einiger vom Benutzer ausgewählten Fitnessfunktionen verbessert. Eine Unterbaugruppe aus Blechteilen, die zur Automobilkarosserie gehören, ist optimiert, um beide zu verbessern; statischer Lastfall und Crashsicherheit

    Development of a multi-objective optimization algorithm based on lichtenberg figures

    Get PDF
    This doctoral dissertation presents the most important concepts of multi-objective optimization and a systematic review of the most cited articles in the last years of this subject in mechanical engineering. The State of the Art shows a trend towards the use of metaheuristics and the use of a posteriori decision-making techniques to solve engineering problems. This fact increases the demand for algorithms, which compete to deliver the most accurate answers at the lowest possible computational cost. In this context, a new hybrid multi-objective metaheuristic inspired by lightning and Linchtenberg Figures is proposed. The Multi-objective Lichtenberg Algorithm (MOLA) is tested using complex test functions and explicit contrainted engineering problems and compared with other metaheuristics. MOLA outperformed the most used algorithms in the literature: NSGA-II, MOPSO, MOEA/D, MOGWO, and MOGOA. After initial validation, it was applied to two complex and impossible to be analytically evaluated problems. The first was a design case: the multi-objective optimization of CFRP isogrid tubes using the finite element method. The optimizations were made considering two methodologies: i) using a metamodel, and ii) the finite element updating. The last proved to be the best methodology, finding solutions that reduced at least 45.69% of the mass, 18.4% of the instability coefficient, 61.76% of the Tsai-Wu failure index and increased by at least 52.57% the natural frequency. In the second application, MOLA was internally modified and associated with feature selection techniques to become the Multi-objective Sensor Selection and Placement Optimization based on the Lichtenberg Algorithm (MOSSPOLA), an unprecedented Sensor Placement Optimization (SPO) algorithm that maximizes the acquired modal response and minimizes the number of sensors for any structure. Although this is a structural health monitoring principle, it has never been done before. MOSSPOLA was applied to a real helicopter’s main rotor blade using the 7 best-known metrics in SPO. Pareto fronts and sensor configurations were unprecedentedly generated and compared. Better sensor distributions were associated with higher hypervolume and the algorithm found a sensor configuration for each sensor number and metric, including one with 100% accuracy in identifying delamination considering triaxial modal displacements, minimum number of sensors, and noise for all blade sections.Esta tese de doutorado traz os conceitos mais importantes de otimização multi-objetivo e uma revisão sistemática dos artigos mais citados nos últimos anos deste tema em engenharia mecânica. O estado da arte mostra uma tendência no uso de meta-heurísticas e de técnicas de tomada de decisão a posteriori para resolver problemas de engenharia. Este fato aumenta a demanda sobre os algoritmos, que competem para entregar respostas mais precisas com o menor custo computacional possível. Nesse contexto, é proposta uma nova meta-heurística híbrida multi-objetivo inspirada em raios e Figuras de Lichtenberg. O Algoritmo de Lichtenberg Multi-objetivo (MOLA) é testado e comparado com outras metaheurísticas usando funções de teste complexas e problemas restritos e explícitos de engenharia. Ele superou os algoritmos mais utilizados na literatura: NSGA-II, MOPSO, MOEA/D, MOGWO e MOGOA. Após validação, foi aplicado em dois problemas complexos e impossíveis de serem analiticamente otimizados. O primeiro foi um caso de projeto: otimização multi-objetivo de tubos isogrid CFRP usando o método dos elementos finitos. As otimizações foram feitas considerando duas metodologias: i) usando um meta-modelo, e ii) atualização por elementos finitos. A última provou ser a melhor metodologia, encontrando soluções que reduziram pelo menos 45,69% da massa, 18,4% do coeficiente de instabilidade, 61,76% do TW e aumentaram em pelo menos 52,57% a frequência natural. Na segunda aplicação, MOLA foi modificado internamente e associado a técnicas de feature selection para se tornar o Seleção e Alocação ótima de Sensores Multi-objetivo baseado no Algoritmo de Lichtenberg (MOSSPOLA), um algoritmo inédito de Otimização de Posicionamento de Sensores (SPO) que maximiza a resposta modal adquirida e minimiza o número de sensores para qualquer estrutura. Embora isto seja um princípio de Monitoramento da Saúde Estrutural, nunca foi feito antes. O MOSSPOLA foi aplicado na pá do rotor principal de um helicóptero real usando as 7 métricas mais conhecidas em SPO. Frentes de Pareto e configurações de sensores foram ineditamente geradas e comparadas. Melhores distribuições de sensores foram associadas a um alto hipervolume e o algoritmo encontrou uma configuração de sensor para cada número de sensores e métrica, incluindo uma com 100% de precisão na identificação de delaminação considerando deslocamentos modais triaxiais, número mínimo de sensores e ruído para todas as seções da lâmina

    The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    Get PDF
    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies

    Crashworthiness analysis and design optimization of hybrid energy absorption devices: application to aircraft structures

    Get PDF
    Programa Oficial de Doutoramento en Enxeñaría Civil . 5011V01[Abstract]Amid the main research lines for the enhancement of aircraft and automotive designs, structural optimization and crashworthiness studies are at their pinnacle. Means of transport need to be robust and safe, albeit efficiency and lightness cannot be neglected. While active safety systems have avoided innumerable accidents, passive crashworthiness systems need to protect passengers when they do occur. In the event of a crash, modern structures are designed to collapse progressively, dissipating high amounts of kinetic energy and protecting the passengers against abrupt decelerations. Within this broad field of study, the aim of this thesis is that of bettering traditional crash structures by designing and optimizing thin-walled hybrid energy absorbers, and ultimately proving reduced occupant injury levels during representative impact scenarios. The collapsible energy absorbers studied throughout this research originated by combining square metallic tubes with inner cores made from glass-fiber reinforced polymer (GFRP) and foam structures. Honeycombs are studied in depth, showing their outstanding behavior as load bearing structures and identifying the effects of modifying their cell’s shape. Another composite structure investigated was that of an intertwined four-plate star core, slightly less stiff than honeycombs but promising crushing behavior. Foam extrusions are also used as standalone reinforcements and as filling of the inner core’s voids, always enhancing the energy absorption capabilities of specimens. Specimens are characterized according to different crashworthiness metrics, including their energy absorption value, peak force undergone during its collapse and the mass of the components. Moreover, each initial design is subjected to optimization techniques to achieve the utmost from the aforementioned metrics. For that, finite element simulations of axial dynamic loading are parametrized as to obtain variable core heights, material thicknesses and modifiable honeycomb’s cell size and shape. These are later coupled with sampling and metamodeling algorithms, constructing a surrogate model which performs accordingly with the simulation during any fluctuation in the design variables. Later on, the metamodels are single- and multi-objectively optimized with genetic algorithms, yielding various sets of designs that excel in one or more of the selected responses. As a second goals of this work, the previous energy absorber design and the methodology used are to be applied in a significant impact scenario of a passenger vehicle. A drop-test numerical simulation from a Boeing 737-200 fuselage section is developed and correlated with extensive experimental data, later analyzing the crushing behavior of isolated components and their energy absorption trends. The effect of adding hollow thin-walled tubes as vertical struts is studied, expecting a great enhancement of the conventional design response. Surrogate-based optimization methodologies are also applied to this simulation, monitoring various crashworthiness biometrics and the specimen’s mass. Results show that on a coupon basis, the usage of inner reinforcements can modify the tube’s collapse patterns and increase its specific energy absorption values by up to 30 %, mainly caused by the interaction between the core and the confining structure. Moreover, reducing the core’s height has also shown improved responses, offsetting the triggering loads of each component and yielding peak force values 33 % lower. Topographic optimization of honeycomb cells has revealed that the highest specific energy absorption values for dynamic loads are not achieved with a regular cell but with a pseudo-rectangular one. The usage of foam as cell-filling has also proved superb, increasing energy absorption by another 28 % with minor hindering on the specimen’s mass. As for the validation of the full size aircraft drop-test simulation, numerical and graphical results closely match those of the experimental procedure. It was found that removing the auxiliary fuel tank from the original section increased occupant injury levels due to high structural deformation and low energy absorption by the main structures. In a later phase, hybrid energy absorbers are added to the fuselage section with an empty cargo area, and a new surrogate model is built with 600 full-scale drop test simulation. The surrogate is then single- and multi-objectively optimized, reducing acceleration peak values by 50 % and injury levels from severe to moderate at different occupant locations
    • …
    corecore