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Abstract

The design of composite structures for the aerospace industry is a multidisciplinary task, invol-
ving several coupled domains, which increases significantly the development time. Besides that,
the necessity to comply with too many requirements in order to establish the system’s performance
makes that design even more complicated. The aerospace industry has strict rules regarding the
design of those structures, mainly because they are high-responsibility applications. Therefore,
each individual design must be validated by suitable tests, which are, normally, time-consuming.
Multidisciplinary optimization procedures became an alternative over time, because they are ca-
pable of considering several domains simultaneously and the interaction between them as well,
satisfying design constraints taking into account one or more objectives.

In this report, an airplane wing representative structure provided by the Cardiff School of
Engineering is scrutinized. An evolutionary-based algorithm, genetic one, is applied in order
to maximise the fundamental natural frequency and the critical buckling load of the represen-
tative structure, under several prescribed constraints and altering only the plies’ orientations or
thicknesses. An artificial neural network is used to predict the output values necessary for the
application and development of the genetic algorithm, reducing the number of FEM simulations
needed, using Abaqus® software. The genetic procedure is used both for optimising the ANN’s
configuration and to achieve the desired maximised ω1 or Pcrit value.

Firstly, the structure is optimised regarding its fundamental natural frequency, ω1, by chan-
ging the plies’ orientations and afterwards adding the thicknesses as design variables. The struc-
ture’s vibration amplitude may excessively increase if the excitation frequencies are close to the
important ones in the excitation spectrum, particularly for lower-damping structures, which may
damage other components or even cause human casualties. The maximisation of the first natural
frequency of vibration is a means of avoiding this issue when the first mode of vibration domi-
nates the response. For each individual optimization procedure, the relative importance of each
design variable on the variance of the output response is calculated based on the first order Sobol
indices. Moreover, an analytical approach based on the Rayleigh-Ritz method is provided in order
to predict the natural frequencies of the composite stiffened panel.

Due to the unpredictability of a certain structure pos-buckling, the airplane wing representative
structure is also optimised with regard to its critical buckling load. Therefore, the structure’s
loading spectrum can be enlarged without compromising its performance and safety. The plies’
angles and thicknesses of the composite panel are conveniently modified. Furthermore, the linear
aggregation method is used to consider the minimisation of the structure’s weight as an additional
objective. The Lévy’s method is applied to formulate an approach capable of determining the
buckling loads of a composite panel, owing to its ease of implementation.

Keywords: Composite laminate, Artificial neural network, Uniform design method, Genetic al-
gorithm, Fundamental natural frequency, Critical buckling load.
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Resumo

O projeto de estruturas compósitas para a indústria aeroespacial é uma tarefa multidisciplinar,
envolvendo vários domínios acoplados, o que aumenta significativamente o tempo de desenvolvi-
mento. Além disso, a necessidade de cumprir com muitos requisitos para estabelecer o desem-
penho do sistema torna esse projeto ainda mais complicado. A indústria aeroespacial possui re-
gras rígidas no que diz respeito ao projeto dessas estruturas, principamente por se tratarem de
aplicações de alta responsabilidade. Consequentemente, cada projeto individual deve ser validado
por testes adequados, que são, normalmente, demorados. Procedimentos de otimização multidis-
ciplinar tornaram-se uma alternativa ao longo do tempo, por serem capazes de considerar vários
domínios simultaneamente assim como a interação entre eles, satisfazendo diversas restrições de
projeto tendo em consideração um ou mais objetivos.

Neste documento analisa-se uma estrutura representativa de uma asa de um avião fornecida
pela Cardiff School of Engineering. Um algoritmo baseado na evolução, algoritmo genético, é
aplicado com o objetivo de maximizar a frequência natural fundamental e a carga crítica de en-
curvadura da estrutura representativa, sob várias restrições pré-estabelecidas e alterando apenas as
orientações e espessuras das camadas de material compósito. Uma rede neuronal artificial é usada
para obter os valores de saída necessários à aplicação e desenvolvimento do algoritmo genético,
reduzindo o número de simulações de elementos finitos através do software Abaqus®. O procedi-
mento baseado na genética é usado quer para otimizar a estrutura da rede neuronal quer para obter
o valor maximizado desejado, ω1 ou Pcrit , conforme o problema.

Primeiramente, a estrutura é otimizada no que diz respeito à sua frequência natural fundamen-
tal, ω1, através da mudança das orientações das camadas e, de seguida, acrescentando as espes-
suras como variáveis de projeto. A amplitude de vibração da estrutura pode aumentar considera-
velmente se as frequências de excitação forem próximas de frequências importantes no espetro
de excitação, particularmente para estruturas de baixo amortecimento, o que pode danificar outras
estruturas adjacentes ou até causar falhas humanas. A importância relativa de cada variável de
projeto na variância da variável de saída é expressa através dos indíces de Sobol de primeira or-
dem para cada procedimento de otimização realizado. Adicionalmente, um procedimento analítico
baseado no método de Rayleigh-Ritz foi desenvolvido com o objetivo de obter as frequências na-
turais do painel compósito com reforços longitudinais de alumínio.

O comportamento de uma certa estrutura pós-encurvadura é completamente imprevisível,
sendo acompanhada por mudanças de rigidez, logo a sua otimização em relação à carga crítica
de encurvadura é também de extrema importância. Assim, o espetro de cargas admissível para
a estrutura pode ser alargado sem comprometer o seu desempenho e segurança. As orientações
e espessuras das camadas do painel compósito são convenientemente modificadas. O método da
agregação linear é usado a fim de considerar a minimização do peso da estrutura como um objetivo
adicional. O método de Lévy é aplicado com o objetivo de formular um procedimento analítico
capaz de determinar as cargas de encurvadura de um painél compósito, devido à sua facilidade de
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implementação.

Keywords: Laminado compósito, Rede neuronal artificial, Uniform Design Method, Algoritmo
genético, Frequência natural fundamental, Carga crítica de encurvadura.
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Chapter 1

Introduction

1.1 Background and motivation

Over time, the need to develop lighter and more mechanically efficient aircraft structures led to an

evolution in the structural materials used from the metals, such as steel, aluminium and titanium to

composite and hybrid materials. Advanced composites have high-performance reinforcements of

a thin diameter embedded in a matrix material such as epoxy or ceramic [1]. Even though the costs

of composite materials may be higher, the fact that there are fewer components in an assembly and

the cost savings from fuel make them more economical than monolithic metals. Over traditional

materials, composites have a number of additional benefits, such as a better specific strength and

stiffness, fatigue resistance, impact resistance, thermal conductivity or corrosion resistance, which

make them suitable for those demanding applications [1–3].

The main disadvantages of composite materials for aircraft structures are their high cost of

fabrication, taking into account the raw material, its processing and certification; their complex

mechanical characterization in comparison with the monolithic materials, their relatively low resis-

tance to mechanical impact and through-thickness strength due to low failure strains if the matrix

is thermosetting, compared to the metal structures; they do not have neither a high combination of

strength and fracture toughness nor a high strength in the out-of-plane direction. Furthermore, the

shear stresses produced between the layers, particularly at the edges of the laminate, may cause

delamination and the repair procedures are much more complex in comparison with the metals

[1–3].

Besides that, in order to make that evolution affordable and amortisable, there is an initial

investment to pay for the manufacturing processes change, the automation of the assembling lines

and the development of the inspection departments, since the type of defects expected are now

different and, sometimes, more difficult to detect. Repair of composites is not a simple task and

critical flaws and cracks may go undetected [1, 2].

1
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The majority of polymer matrices used in aerospace applications are epoxy-based due to their

high strength, good wetting of fibres during processing and adhesion, low viscosity and low flow

rates, low volatility during cure, low shrink rates, and availability in more than 20 grades to meet

specific property and processing requirements [2, 3]. Limited operating temperatures, high co-

efficients of thermal and moisture expansion and low elastic properties in certain directions are

the main limitations of polymer matrix composites. Minor epoxies are often added to the main

compound in order to surpass some of those obstacles [2, 3].

Regarding the joining of composite structures, they evolved from the mechanical fastening,

such as bolts and rivets, welding or soldering to more advanced technology denominated adhesive

joints [4]. The adhesives are preferred to avoid the stress concentrations zones resulted from

drilling operations. However, these drills are also utilised for interior access or the electronic

components implementation. Their design is a very complex task, since these are often the weakest

spots and there is the necessity for the connections to be reliable, distribute the load uniformly

and, at the same time, be lighter [1, 4, 5]. Although the adhesive joints have better fatigue

properties and less stress concentration, there are still some concerns to take into account, such

as the inspection difficulties, the need for complex tools and the susceptibility to environmental

degradation, due to the inevitable contact with chemical agents [1, 4, 5].

Flaws occur inevitably at composite structures, particularly between the layers and at the ad-

hesive interfaces. They can arise either from the manufacturing process, during the ply collation,

curing, adhesive bonding or machining and assembly procedures or throughout their service life.

The most common are debonds, porosities, matrix cracks as manufacturing defects, and delami-

nations, corrosion, impact damage and fatigue during their service life [3, 6, 7] . Delamination,

separation of layers resulted from loading conditions, and debond, inadvertent separation between

adherends in a adhesively bonded joint during the fabrication process, are the most commonly

observed failure modes among the several failure mechanisms [3, 6, 7].

There are several and strict regulations to the types and amount of damage allowed in struc-

tured materials without replacement or repair of the damaged component. Furthermore, the inho-

mogeneity and inherent anisotropy of composite structures make their design even further com-

plicated, particularly for damage tolerance requirements. In order to achieve the large variety

of possible defects, the aerospace industry relies on the non-destructive inspection (NDI), which

is used to determine the type, size and location of damage. The main procedures range from a

simple visual inspection for macroscopic flaws detection to more advanced technologies, such as

ultrasonics, radiography, thermography, among others [3, 6, 8].

Nevertheless, these inspection methodologies take a lot of time, which increases substantially

the total cost. Therefore, structural health monitoring techniques (SHM) are increasingly used over

the time to detect defects and damage. SHM uses in situ sensor networks and intelligent data pro-

cessing for continuous inspection with little or no human intervention. These sensors ought to be

fairly priced, lightweight, and unobtrusive so as not to increase the structure’s cost or weight or in-

terfere with its airworthiness [6, 9]. Some examples are the conventional resistance strain gauges,

which consists in the conversion between a strain change into a resistance change measured with a
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precise instrument; the fiber optic sensors whose functionality is based on their optical properties

or the piezoelectric-based sensors coupling the electric and mechanical variables, denominated by

PWAS (piezoelectric wafer active sensor) [6, 9].

In today’s engineering and, in particular, in the aerospace industry, designers have to challenge

themselves in order to comply with the endless requirements, which range from the system’s

specifications and constrained development time to the need to establish the system’s performance

accurately in the first design stages.

In the aerospace industry, manufacturers create a wide range of composite structures exhibi-

ting complex and different material behaviours as well as several designs, leading to the need

of testing each one of them for validation, which is time consuming and expensive. Optimization

procedures could constitute a solution, because they consider several domains and their own goals,

as well as the interaction between them, that is, the goal is to find practical optimal solutions sa-

tisfying a given set of design constraints and requirements [10]. The design of aerospace systems

is a multidisciplinary and complex process, which makes those procedures even more fundamen-

tal. Furthermore, composite materials offer more design variables than do metals, therefore they

allow for more refined tailoring and more extensive optimization [10].

Regarding the aircraft structures, they are usually thin shell structures, whose outer surface

or skin may be reinforced with longitudinal stiffening members and transverse frames to resist

from bending, compressive and torsional loads without buckling. These ones are known as semi-

monocoque structures. Otherwise, the monocoque structures rely exclusively in the load carrying

capacity of their skin. Therefore and regardless of their construction or complexity, an aircraft

structure is used to transmit and resist external loads, to provide an aerodynamic shape and to

protect passengers and so forth from the environmental conditions encountered during a flight

[11].

Wing structures are composed of thin skins and stiffening elements, such as stringers, spar

webs and caps, and ribs. The overall structure is comprised by many cells closely spaced, which

enables to assume a constant shear flow in the skin between adjacent stringers. Bending moments

at any section of a wing typically result in shear loads at other sections of the wing. The ribs are

transverse components which increase the column buckling stress of the longitudinal stiffeners

(stringers), due to an end constraint on their column length, and the plate buckling stress of the

skin panels. Ribs act as formers for the aerofoil shape at the outer zones of the wing, owing to low

load levels. On the other hand, they have a robust construction closer to the wing root due to the

necessity to absorb and transmit high concentrated loads derived from the undercarriage, engine

thrust or fuselage attachment points reactions. In turn, the impermeable wing skin supports the

aerodynamic pressure distribution capable of generating the lift necessary during a flight. Those

forces are then absorbed by the ribs and stringers. Despite its high performance in resisting shear

and tensile loads, wing skin generally buckles under low compressive loads, being the stiffening

elements fundamental in avoiding or delaying that issue, as referred above. Regarding the spar

webs, their main function is to develop shear stresses capable of resisting shear and torsional

loads, performing a stabilizing function in the overall structure [11, 12].
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Due to their flexibility, aircraft structures are extremely susceptible to distortion under load,

which influences the aerodynamic forces and, consequently, further structural distortion is deve-

loped. Aircraft vibration may be generated by aerodynamics, mechanical issues or outside sources

such as atmospheric turbulence. Every airplane has a characteristic normal vibration signature.

This is a result of vibration modes at particular frequencies triggered by mass distribution and

structural stiffness. Very low-level vibrations occur when the airplane is subjected to typical air-

flow over its surfaces. However, the airplane’s response to turbulent air is more evident and the

vibration’s magnitude may be greater and audibly detectable [13, 14].

Therefore, the main objectives of this work are to implement and develop an optimization

framework, particularly embedded in a genetic algorithm, in an airplane wing representative struc-

ture composed of aluminium and composite materials assembled with hybrid joints, in order to

achieve optimal configurations regarding the fundamental natural frequency of the structure, with

the aim of avoiding an undesirable amplitude of vibration, and the maximum critical buckling

load, aiming to assure the structure’s safety, varying the stacking sequence, fibres’ orientations

and layers’ thicknesses.

1.2 Optimising design for inspection

The European Cooperation in Science and Technology (COST) develops several actions, named

COST actions, whose main goal is to create research networks between european scientists and,

therefore, to contribute to research development and advancement. The present thesis is developed

within the EU COST action CA18203, “Optimising Design for Inspection”. The goal is to support

the development of an integrated framework for optimised self-sensing structures capable of di-

agnosis and prognosis, together with demonstrators and educational activities, including training

programs, which ultimately lead to cleaner and safer skies [15].

This work integrates the group responsible for establishing the design criteria based on in-

dustry needs and to analyse the requirements for integrating structural health monitoring systems

(SHM) at the beginning of the design. The structure that represents the airplane wing was made

available by the Cardiff School of Engineering in cooperation with the company Airbus and it is

represented below, Figure 1.1.

The airplane wing representative structure is composed by two composite plates reinforced

by aluminium longitudinal and transverse stiffeners. For assembling the several components, me-

chanical fasteners and adhesive joints are used.
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Figure 1.1 – Airplane wing representative structure. Adapted from [15].

1.3 Objectives

The main objective of this work is to implement and develop an optimization framework based on a

genetic algorithm capable of predicting fibres’ orientations and layers’ thicknesses that maximise

the fundamental natural frequency of vibration, as well as the critical buckling load due to in-

plane loads. The mechanical responses are obtained using an artificial neural network (ANN)

arrangement in order to reduce the computational time. Abaqus® software is used to provide the

necessary data to train and validate the ANN.

The work plan is constituted by the following tasks:

• Understand the finite element model already implemented for the wing representative struc-

ture;

• Decompose the original optimization problem into smaller problems (substructures);

• Carry out analysis in order to maximise the first natural frequency of vibration;

• Carry out analyses in order to maximise the critical buckling load due to in-plane loads;

• Carry out a multi-objective optimization regarding the critical buckling load and weight of

the structure due to in-plane loads;

• Development of an analytical first approach to validate the FEM model used to obtain the

fundamental natural frequency of a stiffened composite panel;

• Compare the diverse optimum designs.
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1.4 Thesis layout

The work developed is divided into the following chapters:

• Chapter 1: "Introduction", in which the main motivations for the realization of this disserta-

tion are presented coupled with its applicability on the aerospace industry nowadays;

• Chapter 2: "State of the art", wherein the principal optimization procedures are reviewed and

assessed upon their possible application in this concrete problem. The genetic algorithm ca-

pable of optimising the ANN arrangement and the mechanical variables under consideration

is deeply analysed;

• Chapter 3: "Mathematical model". In this section, the main equations regarding the compo-

site laminates behaviour are formulated, particularly their performance under free conditions

and in-plane loads;

• Chapter 4: "Wing representative structure’s description", in which the complete description

of the structure under analysis is performed, including its main parts and the respective

mechanical properties. Besides that, the peculiarities of the implemented FEM models are

discussed (e.g. type of elements);

• Chapter 5: "Optimization of the airplane wing representative structure for vibration". In this

chapter, the simplified structure is optimised regarding its fundamental natural frequency,

under certain prescribed constraints and altering only the layers’ orientations and/or thick-

nesses. The thorough description of the optimization algorithm is provided;

• Chapter 6: "Optimization of the airplane wing representative structure for buckling". The

same procedure described in the previous chapter is implemented to maximise the structure’s

critical buckling load due to in-plane loads, considering the plies’ orientations and layers’

thicknesses as design variables. The aggregation method is used to take into account the

minimisation of the structure’s weight as an additional goal;

• Chapter 7: "Conclusions and future work", wherein the main conclusions about the deve-

loped work are synthesised and a perspective of future work regarding possible improve-

ments on the optimization procedure are drawn.



Chapter 2

State of the art

2.1 Introduction

In this chapter, an overview of the optimization algorithms applied to the aerospace industry is per-

formed, particularly the genetic algorithms embedded in an artificial neural network arrangement.

The goal is to list and differentiate the already implemented ones, mainly those related with the

fundamental natural frequency and critical buckling load optimization, highlighting their advan-

tages and drawbacks and, at the same time, to do a study upon the possibility of implementation

in this concrete problem. It is intended to give a future perspective of their evolution in order to

understand how optimization can help engineering work and growth even more, reducing testing

and development time drastically, therefore allowing costs reduction. Moreover, the main types

of optimization algorithms will be distinguished regarding their nature, namely the gradient-based

and the evolutionary-based methods.

2.2 Optimization algorithms and machine learning

ML (Machine learning) is described as a computer science branch, wherein a certain machine is

trained in order to perform a specific task with minimal human intervention [16]. It belongs to

the area of AI (artificial intelligence) and its scope is based on computational learning and pattern

recognition [16–18]. The algorithm is obtained by a learning process, in which the machine is

trained on some data sets. Then, the model is capable of doing predictions according to the model

itself and a given input [16–18].

Machine learning can be categorised in the following classes which differ upon the necessity

of labelled data [16, 18–21]:

• supervised learning, in which a certain machine is trained by using labelled datasets and

the label itself is the outcome that we are focused in predicting by using a suitable model.

There are two main types of supervised learning models, such as the Regression ones which

are capable of predicting characteristics represented by numbers, and the Classification ones

7
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that are suitable to forecast states. Examples: Simple linear regression algorithm, Multivari-

ate regression algorithm, Decision tree algorithm (Regression); Support Vector Machine

(SVM), Naive Bayes, Logistic regression algorithm, Decision tree algorithm (Classifica-

tion);

• unsupervised learning, in which the model is created based on raw data, without a label as-

signed to each feature, being particularly interesting to understand patterns and trends within

unlabelled data through some techniques such as clustering, wherein the data is grouped

based on similarity and according to several classes, or dimensionality reduction, which

consists in reducing the number of features necessary to describe the data without losing

generality. The two strategies above are combined in a procedure known as matrix factoriza-

tion. Examples: K-Means Clustering, Principal Component Analysis (PCA), Independent

Component Analysis (ICA);

• semi-supervised learning, which gathers some characteristics of the two mentioned above,

attempting to overcome their individual drawbacks;

• reinforcement learning, reward or punishment-based learning, in which the network vari-

ables are continuously updated through qualitative and quantitative information acquired

through the contact with the environment with no input data associated.

Deep learning (DL) is a component of the main machine learning architectures that attempt to

incrementally extract higher-level properties from data while implicitly extracting features [16, 22,

23]. However, there are many more definitions and perspectives of what really means this complex

subject, such as the transformation of lower-level information into higher level-information, using

multiple layers of representation and abstraction or regarding the high number of hidden layers

belonging to the artificial neural networks that the input data has to overpass in order to acquire

implicit information [16, 22, 23]. The increase on the number of layers outperform this complex

procedure by increasing the level of abstraction. In comparison with the conventional machine

learning techniques, both use optimization methods and the main difference is that the last one

does not need the selection of data features beforehand, this procedure is accomplished during the

training phase [23].

The machine learning applications are extensive, ranging from particular and simple tasks such

as image or handwriting recognition to more demanding and responsible ones, like self driving cars

or aerospace structures design [16, 18]. Therefore, machine learning is fundamental to make daily

life easier for people by enabling them to comply with several tasks simultaneously and to reduce

development, testing and production timelines drastically when applied to the several businesses.

DMTs (data mining technologies) have, recently, been employed in SHM area due to their

powerful computational ability to detect damage in structural systems, where the main components

of any structural damage detection approach consist of a set of accelerometers or others types of

sensors and a DM (data mining) procedure [24]. In the monitoring process, the network of

accelerometers is utilised to create a database using response data collection. The DM approach is
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used to extract information on the structural health condition from the database and to obtain the

relationship between data in the form of patterns [24]. This ability is particularly useful for the

aerospace industry.

Optimization algorithms are essential for selecting the best solution out of a set of all possible

solutions for analysing and improving a certain system or data. They involve at least one objective

function which must be maximised or minimised under certain constraints. Therefore, they are a

tool with a widespread application in many areas, such as engineering, medicine, business, among

others [17]. The ability to quickly obtain a problem’s global minimum value with a minimal

number of control parameters and low computational cost, as well as robustness and flexibility

of application to diverse problem models, are desirable properties for optimization algorithms

[17, 25–27].

Optimization problems can be classified into the following categories and according to several

criteria [17, 26, 28, 29]:

• deterministic optimization, wherein the algorithms pass through the same states repeatedly,

producing the same outputs for a given input, exhibiting no randomness; or stochastic-

based optimization based on probabilistic rules, which make it suitable to deal with noisy,

unknown and nonlinear systems;

• classification based on the nature of the design variables: parametric problems (static opti-

mization) or path/trajectory problems (dynamic optimization);

• according to the physical structure of the problem: optimal or non-optimal control problems;

• linear, non-linear, geometric or quadratic programming problems;

• classification based on the separability of the functions, describing the objectives or con-

straints functions, into several ones of only one dependent variable;

• according to the nature of the optimal project: topology optimization or internal optimiza-

tion of the material’s parameters;

• continuous, integer, mixed-integer or discrete optimization;

• constrained or unconstrained optimization problem;

• unimodal or multimodal optimization problem;

• one-objective or multi-objective optimization problem.

Stochastic and deterministic algorithms are the two main categories of optimization algo-

rithms. Deterministic algorithms, such as linear programming, integer programming, nonlinear

programming, convex optimization or gradient-based, carry out specific steps in a predefined se-

quence. The objective function and design variables consistently have the same values. On the
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other hand, stochastic-based algorithms, such as the heuristic or meta-heuristic ones, usually in-

corporate unpredictability. Metaheuristic algorithms are higher-level heuristics that use memory,

solution history, and other forms of learning strategies instead of the trial-and-error method used

by heuristic algorithms to generate new solutions [26, 30]. Nowadays, the majority of metaheuris-

tic algorithms are nature-inspired [26].

The optimization techniques can also be classified according to the underlying principle of a

biological or physical-based algorithm. In the first category are included, for example, the genetic

algorithm (GA), wherein a sequence of genetic operators is used to generate better solutions; the

harmony search algorithm (HSA), which is driven by the understanding that harmony perfection

is what music aims for, establishing an analogy to the optimality in a process of optimization;

modelling equations of the swarming behaviour of fish and birds are used in the particle swarm

optimization (PSO); the bacterial foraging optimization (BFO) inspired by the social foraging be-

haviour of Escherichia coli, in which bacterias look for nutrients in a way that corresponds to

the maximization of the amount of energy per unit time, communicating between each other by

sending signals; the cuckoo search algorithm (CSA) based on the remarkable brood parasitism

of some species of cuckoos and their co-evolution with host bird species like warblers; the bee

colony algorithm (BCA) mimicking the honey bee swarm’s foraging behavior; the ant colony op-

timization (ACO) which tries to replicate how social ants forage in a colony; the firefly algorithm

(FA) derived from the swarming and light-flashing behaviour of tropical fireflies; the backtrack-

ing search algorithm (BSA) which is an iterative population-based evolutionary algorithm meant

to be a global minimizer divided into five sequential processes: initialization, selection-I, muta-

tion, crossover, and selection-II; the lightning search algorithm (LSA) based on the concept of

quick particles known as projectiles and the step leader propagation mechanism used in the natu-

ral phenomena of lightning; among others [17, 26, 27, 31–36]. On the other hand, the simulated

annealing (SA) based on the annealing process of metals, tending to settle at local minima as its

agents loose energy; the gravitational search algorithm (GSA) which is based on the law of gra-

vity and mass interactions, in which objects attract each other by the gravity force, resulting in a

global movement of all agents towards the objects with heavier masses correspondent to the better

solutions and slow movement ensuring the exploitation ability of the algorithm; the Big Bang-Big

Crunch (BB-BC) algorithm inspired by the expansion phenomenon of Big Bang and shrinking

phenomenon of Big Crunch; the Galaxy-based search algorithm (GbSA) encouraged to explore its

surroundings by the spiral arm of galaxies in order to effectively search the domain; the Central

Force Optimizer (CFO) based on the theory of particle kinematics in gravitational field; or the

Charged System Search (CSS) which is based on Coulomb and Gauss’s laws relative to electro-

statics are some examples of physics-inspired algorithms [17, 26, 27, 31–36]. Moreover, there are

the conventional ones which are gradient-based, that is, their operation involves the calculation of

the objective function derivatives of first order or even a higher order [17, 26]. This procedure

is extremely time-consuming, which leads to the development of distinct techniques like the ones

referred above, whose foundation is completely opposite.
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2.3 Optimization algorithms: ANN’s

The neural networks are included in the deep learning and machine learning techniques, being the

ANNs the most recognized due to their peculiar architecture with several interconnected layers

[17]. Their main characteristics which make them the most suitable method to model and interpret

complex data is their ability to scale through optimization and parallelization and the capability to

learn from their own environment [17, 37].

The most well-known neural networks are ANN, CNN (convolutional neural network) and

RNN (recurrent neural network) which differ mainly in their architecture [17]. The convolutional

neural networks have convolutional layers, pooling ones aiming to reduce the number of para-

meters and complexity of the model and fully-connected ones behaving like a simple connection

to produce an output. These ones integrate the hidden layers, in which each one of them defines

the number of filters used to identify the patterns of shapes in specific object shapes, being then

extremely useful for image analysis. Their neurons are organised into three dimensions, the spatial

dimensionality of the input (height and the width) and the depth. On the other hand, the recurrent

neural networks are the ones whose neurons send signals between each other. They have looping

constraints at each hidden layer, which are back-propagated to guarantee that the subsequent data

is looped into the input data from the last step in each neuron’s first step [17, 38–41].

2.3.1 Description

ANNs are self-organising computational techniques that can solve many functions through pat-

tern recognition. They were first proposed in the 1980s and can be used to reconstruct nonlinear

relationship learning from training [20, 24, 42, 43].

The artificial neural networks structures are based on the biological nervous systems and the

human brain. The computational processing units are simplified models of the biological neurons

and are denominated by artificial neurons/perceptrons [19, 20, 43, 44].

The feedforward neural network is used when the input data is sorted in the forward direction.

The basic structure of an ANN consists of three layers: the input layer, hidden layer and output

one (see Figure 2.1). The input layer receives the input data, whereas the hidden one computes

it and the output layer provides outcomes. The number of required hidden layers rises when the

complexity increases. The activation functions provide nonlinear properties to the ANN, which

can suit the mapping of complex relationships, known as an universal approximation [17, 20, 42,

43] .

2.3.2 How ANN’s work

Backpropagation is the learning algorithm used most frequently in artificial neural networks.

Backpropagation attempts to minimise the least mean square difference over the entire training

set. The training set is made up of a large number of cases for which the outcome is already known.

When the network is set up, the connections between the neurons in the input and hidden layers
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Figure 2.1 – Simple ANN’s configuration.

are assigned with random weights and the network then produces an output. The ANN output is

compared with the true one, and the error is back-propagated through the network, altering the

weights of the connections to reduce the least mean square error. This is repeated until the error is

minimised, that is, a certain prescribed convergence criteria is attained. Then, the ANN must be

validated through some design points apart from those which were used to construct the network.

Regarding the number of hidden layers and the number of nodes in each one of them, they are

set through experimentation. Genetic algorithms are recently used to achieve the optimal ANN’s

architecture. The sequence of training, replication, crossover and mutation is repeated until the

optimum net architecture is produced [24, 43, 45] .

2.3.3 Composition

The main elements of these networks are the synaptic weights and biases, and the activation func-

tions between the several layers, as represented in Figure 2.2 and mathematically expressed in

equation 2.1,

yi = gi

(
n

∑
j=1

wi j · xi +bi

)
, (2.1)

where xi indicates the input values, wi j the value of the weight between input, hidden or output

layers, bi is the bias, n represents the number of nodes, gi shows the transfer/activation function

and yi the value of the output node [20, 24, 43].
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Figure 2.2 – ANN’s main architecture.

The ANN is composed by the following elements [19, 20]:

(a) Input signals (x1, x2, (. . . ), xn): represent the values assumed by the variables of a parti-

cular application. The input signals are usually normalised in order to enhance the computational

efficiency of the learning algorithms;

(b) Synaptic weights (w1, w2, (. . . ), wn): are the values used to weight each one of the input

variables, representing their importance in relation to a certain neuron;

(c) Linear aggregator (R): gathers all input signals weighted by the synaptic weights for each

neuron belonging to a certain layer;

(d) Activation threshold or bias: corresponds to the threshold characteristic of each individual

neuron that the linear aggregator value must, at least, equalize in order to generate a trigger in the

neuron output;

(e) Activation potential (u): result produced by the difference between the linear aggregator

and the activation threshold;

(f) Activation function (g): limits the neuron output within a reasonable range of values. They

could be: partially differentiable, such as the step function (Heaviside), the bipolar step function

and the symmetric ramp function or fully differentiable, that is, with non-zero first derivative for

all points of the domain, such as:

• logistic/sigmoidal function, in which the outputs assume a value between 0 and 1 and the

parameter βsig represents the slope of the curve at its inflection point;

g(u) =
1

1+ e−βsig·u
(2.2)

• hyperbolic tangent function, in which the outputs assume a value between -1 and 1;

g(u) =
1− e−βh·u

1+ e−βh·u
(2.3)

• gaussian function;

g(u) = e−
(u−c)2

2·κ2 (2.4)
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Figure 2.3 – Gaussian function. Adapted from [19].

• linear function;

• rectified linear activation function or ReLU.

(g) Output signal (y): results from the activation function computation on their input vector.

2.3.4 Applications

Due to their ability to model complex nonlinear functions, ANNs are suitable for a wide range

of applications, such as constraint satisfaction and optimization; data compression; forecasting

and risk assessment (stock selection, foreign exchange trading and portfolio management); precise

control (parameters optimization); pattern recognition; diagnosis in almost all fields of engineering

and medicine, including anomaly identification on medical images; analysis of images acquired

from artificial satellites; speech and writing pattern classification; face recognition with computer

vision; control of high-speed trains; control of electronic devices and appliances, such as washing

machines, microwave ovens, freezers, coffee machines, frying machines, video cameras, and so

on [19, 24].

2.3.5 Advantages and disadvantages

Artificial neural networks are heavily used and studied due to the following main reasons: the

number of inputs and outputs are not constrained, which makes them suitable for all the datasets’

dimensions; the ability to learn and to model complex relationships, even nonlinear ones; the possi-

bility to operate with incomplete information, however with an eventual performance compromise;

they do not need enforcement constraints on the input data, that is, a required pre-distribution of

the input data; the high numerical efficiency inherent to their multi-processing capability; the abi-

lity to tolerate faults and to generalise, being therefore able to predict unknown data; they can be

developed using several training algorithms [17, 46, 47].
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Although those benefits, ANNs are a very stochastic problem, remaining several challenges

that the user may face and improve with his experience, such as the difficulty to tune them and

to achieve their best configuration; the best network design must be achieved by a trial and error

procedure which is extremely time consuming; they are equipment-dependent to achieve the best

results in the lowest time possible; the possibility to occur gradual corruption which slows down

the process over time and promotes degradation; and the troubles associated to the identification

of their problems due to their numerical-essence [17, 46, 47] .

The ANN’s network configuration can be improved by the application of an optimization

algorithm in order to fine tune their parameters, including the best number of neurons, hidden

layers, weights, bias, self-shaping architecture and multi-stage objective functions. This problem

is known as an hyper-optimization procedure.

2.3.6 Training process

The training process of a given network aims to tune the synaptic weights and thresholds of its

neurons in order to minimise the mean square error between the network’s outputs and the ones

provided by training data. The learning algorithm is divided into two different steps: training

subset and test subset. In the last one, the network arrangement is validated by a set of input data

apart from those associated with the training phase [17, 20].

It is important to ensure, particularly in the backpropagation algorithms, that the training pat-

terns cover the entire design space, that is, they have a high representativeness in the domain under

analysis [42, 45].

There are several statistical-based approaches whose main goal is to appropriately select the

design samples, such as [28, 42, 48–50]:

• Full Factorial design (FFD), wherein combinations of the design variables are established,

taking into account the number of levels that each one may assume. For two-level experi-

ments, the dimension of the dataset must be equal to 2s, where s corresponds to the number

of factors;

• Box-Behnken design (BBD): class of rotatable or nearly rotatable second-order designs

based on three-level incomplete factorial design. The number of experiments (nexp) required

for the development of BBD is defined as nexp = 2s · (s - 1) + Co, where Co is the number

of central points. Compared to the three-level full factorial design, it is more effective and

does not contain combinations for which all factors are simultaneously at their maximum or

lowest values. Therefore, these designs are helpful in avoiding experiments undertaken in

extreme conditions, which could lead to unpleasant results;

• Plackett-Burman design, in which the designers aimed to create a set of experimental points

for investigating the dependence of some measured quantity upon the independent variables
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(factors), each taking q levels, in order to minimize the values of those dependencies using

a limited number of experiments;

• Fractional factorial design: the number of experiments turns to 2s−pn , where pn is a natu-

ral number which takes into account the constrained number of experiments that are per-

formable;

• Orthogonal array design (OAD): imposes representative samples and orthogonal relation-

ships between sub-columns of the table of the experimental points;

• Central composite design (CCD): appropriate for fitting second-order models with neither

representative nor uniformly scattered samples. The number of experiments for a central

composite design is nexp = 2s + 2s + Co. This method allows an initial study with a 2s−pn

design to be extended to a second order model exploration with only star points (2s) and

more center points added (Co);

The main drawback of those methods is that the majority of them are based on a specific sta-

tistical distribution, which requires pre-assumptions about the model. The nature of the ANN is to

always assume the model to design as unknown. In addition, if the number of factors (random/de-

sign variables) rises, a significant number of experiments are needed, which takes a lot of time.

OAD can reduce it to q2 instead of qs, however that procedure is restricted to 2-level experiments,

being expensive for a higher number of levels [42].

An alternative was proposed by Wang and Fang, denominated by Uniform Design Method

(UDM), according to theoretic achievements in the number-theoretic method (NTM). The kernel

problem of NTM is to find a set of points called the number-theoretic net (NT-net), which are

uniformly scattered in the s-dimensional unit cube Cs. The main application of NTM is numerical

integration, being extrapolated to the numerical resolution of integral and differential equations.

The discrepancy is used as a measure of uniformity of points scattered [42, 51].

Notation: Unexp(q
tc), in which U is the abbreviation for Uniform Design, nexp represents the

number of experiments (experimental points), q the number of levels of each factor and tc the

maximum number of columns of the table. There are tables which allow the selection/creation

of the datasets according to the established number of experiments and the number of design

variables. It is important to highlight that just one experiment is needed for each level of each

factor and there is an accessory table associated with the main one, describing the columns to

consider taking into account the number of design variables. That correct selection results in the

lowest discrepancy value. The points in UD are more uniform than those in OAD. For the same

number of experiments and factors, the discrepancy of OAD is much larger than that of UD [42].

The Taguchi method uses an engineering approach to plan and design optimum neural net-

works systematically. It makes use of the orthogonal arrays and signal-to-noise ratios to design

high quality and robust neural networks. Neural network’s robustness is defined as its sensitivity

measure of the performance quality to noise. Some guidelines [51]:
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• creating a neural network which is robust against initial weights condition during learning

phase, thereby reducing the chance of settling at a local minima;

• ensuring that the performance of neural network is insensitive to the architectural variation,

thus allowing for the selection of the right number of hidden layers and neurons;

• making the neural network design insensitive to input data variation by using a suitable

method to select the training dataset which covers the maximum portion of the design space,

thereby improving the reliability and accuracy of the network.

The trial and error method is the most common method to achieve the micro and macro pa-

rameters of an artificial neural network. However, that method is expensive and may lead to a

premature convergence and, consequently, to a non-optimal solution [51].

The main architectures of the artificial neural networks differ from the neuron disposition and

interconnections to the layers composition [17, 19, 47]:

• single-layer feedforward network, which is composed by one input layer and a single neural

layer that corresponds to the output one;

• multilayer feedforward network, composed by one or more hidden layers, being suitable for

a wide range of applications due to their universality;

• mesh networks, in which the spatial localization of the neurons is directly related to the

process of adjusting their synaptic weights and thresholds, influencing pattern extraction

processes. They must have continuous connections and reconfigure itself if a path is broken,

using self-healing algorithms.

There are some concerns to take into account when a certain system is modelled by a multilayer

perceptron network. Increasing indiscriminately the number of nodes and hidden layers does

not guarantee the best generalisation of the data under analysis. The method to achieve the best

artificial neural network configuration is a balance between overcoming underfitting and avoiding

overfitting. Overfitting often occurs when the model performs well on the training dataset but fails

on the testing dataset. This could arise either from an unbalanced model or due to a low number of

samples. On the other hand, the model is underfitted whether it performs badly on both datasets.

The model itself or an insufficient characterization of the algorithm per si may be some of the

starting problems [17, 23].

A network with a small number of hidden nodes is unable to distinguish between complicated

patterns, providing only a linear estimation of the true tendency. On the other hand, if the network

has too many hidden nodes, the trend will become noisy due to overparameterization, which leads

to a poor generalisation for the testing dataset. According to Papadrakakis et al. (1998), the

number of nodes in the hidden layer(s) may be selected as the mean value of the number of input

and output nodes plus the input nodes. It is certainly a good rule to begin the best network’s

configuration achievement through an iterative procedure. On the other hand, Kolmogorov and

Lipmann (1995) say that the lower bound of neurons in the first hidden layer is equal to 2 · INP+1,
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whereas the upper bound is OUT ·(INP+1), in which INP represents the number of input neurons

and OUT the number of output nodes. Moreover, they say that if more than one hidden layer is

required, the number of neurons in the second hidden layer has a ratio of 1:3 to that of the first

layer. There are several others empirical relationships to obtain the optimal starting number for the

hidden nodes, such as the ones supplied by Jadid and Fairbairn (1996), Lachtermacher and Fuller

(1995) or Widrow and Lehr (1990) [45, 47, 51–54].

Figure 2.4 – Different ways of data generalisation [55].

In composite laminate design, the precise calculation or even approximation of objective func-

tion derivatives (gradient-based algorithms) is often computationally costly or, in some cases, even

impossible due to discontinuities. One of the advantages of direct search algorithms (or zero-order

optimization algorithms, e.g. GAs) is that they require only objective function values. However,

these algorithms request that calculation to be repeated thousands of times. ANNs are applied to

reduce that demand [56, 57].

2.4 Gradient-based optimization algorithms

In the gradient-based optimization algorithms, the synapses weights and biases of the backpropa-

gation algorithm are updated by the calculation of the error function gradient. In order to minimise

the error, the adjustment must be made in the opposite direction of the gradient [19, 28].

There are two main categories which differ in the dimension of the dataset required for compu-

ting the error measure. Batch or offline training methods compute the error measure and gradient

taking into account the whole dataset, whereas the incremental or online training methods only

consider a small set out of the entire dataset. The last ones can be unstable and do not provide a

criteria for the ending of training [45].

In these procedures, the synapses weights are initialised randomly several times in order to

prevent entrapment at local minima [19, 20].
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2.4.1 Mathematical model

Figure 2.5 – Multilayer perceptron network. Adapted from [19].

Notation:

• W (L)
ji : weight matrices whose elements denote the value of the synaptic weight that connects

the jth neuron of layer (L) to the ith neuron of layer (L - 1);

• i (L)
j : vectors whose elements denote the weighted inputs related to the jth neuron of layer

(L), being defined by:

i(L)j =
ni

∑
i=0

W(L)
ji ·xi (2.5)

• yyy (L)
j : vectors whose elements denote the output of the jth neuron of layer (L), being defined

by:

yyy(L)j = g
(

iii(L)j

)
(2.6)

• d: desired output vector

The backpropagation algorithm consists in the following steps [19, 20]:

Initial steps:

• randomise the synapses weights and biases according to a pre-defined statistical distribution

or any other method;

• calculation of the output vector through the network propagation;

• defining a function that represents the error measure between the obtained values and the

target ones, for example the squared error function

E(k) =
1
2

n3

∑
j=1

(
d j(k)− y(3)j (k)

)2
, (2.7)
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in which n3 represents the number of output nodes.

Backpropagation steps:

• adjusting the synaptic weights of the output layer by the direct application of the gradient

definition and the chain rule:

∇E(3) =
∂E

∂W (3)
ji

=
∂E

∂y(3)j

·
∂y(3)j

∂ i(3)j

·
∂ i(3)j

∂W (3)
ji

(2.8)

∂E

∂W (3)
ji

=−
(

d j − y(3)j

)
·g′
(

i(3)j

)
· y(2)i (2.9)

The adjustment is performed in the opposite direction of the gradient,

∆W (3)
ji =−η · ∂E

∂W (3)
ji

, (2.10)

wherein η represents the learning rate of the backpropagation algorithm.

• adjusting the synaptic weights of the intermediate layers, until the first one. The neurons

of the intermediate layers do not have direct access to the outputs, therefore, the synaptic

weights update is performed through estimations of the output errors produced by those

neurons, that is, their adjustment is based on the output layers’ synaptic weights already

adjusted. Thus, the error is back-propagated. The main equations regarding the updating of

the synaptic weights between the second and first hidden layers are presented below, as an

example:

∇E(2) =
∂E

∂W (2)
ji

=
∂E

∂y(2)j

·
∂y(2)j

∂ i(2)j

·
∂ i(2)j

∂W (2)
ji

, (2.11)

∂E

∂y(2)j

=
n3

∑
k=1

∂E

∂ i(3)k

·
∂ i(3)k

∂y(2)j

=
n3

∑
k=1

∂E

∂ i(3)k

·
∂

(
∑

n3
k=1W (3)

k j · y(2)j

)
∂y(2)j

(2.12)

∂E

∂y(2)j

=
n3

∑
k=1

∂E

∂ i(3)k

·W (3)
k j =

n3

∑
k=1

−
(

dk − y(3)k

)
·g′
(

i(3)k

)
·W (3)

k j (2.13)

Thus:

∇E(2) =
∂E

∂W (2)
ji

=
n3

∑
k=1

(
−
(

dk − y(3)k

)
·g′
(

i(3)k

)
·W (3)

k j

)
·g′(i(2)j ) · y(1)i , (2.14)

∆W (2)
ji =−η · ∂E

∂W (2)
ji

(2.15)
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2.4.2 Optimised versions of the backpropagation algorithm

The backpropagation algorithm is continuously improved, aiming to boost its convergence rate.

Therefore, some variations have been introduced over time [19, 20, 25]:

• Momentum parameter: α is defined as momentum rate and it performs a weighting upon

how much the synaptic matrices are changed between two successive iterations. When the

current solution is far from the real one, the contribution of the momentum term is bigger

than the learning term and the opposite occurs near the real solution. Values between the

range of (0.05 ≤ η ≤ 0.75) and (0 ≤ α ≤ 0.9) are usually recommended for the training of

MLP networks;

W (L)
ji (t +1) =W (L)

ji (t)+α ·
(

W (L)
ji (t)−W (L)

ji (t −1)
)
+η · ∂E

∂W (L)
ji

(2.16)

• Resilient-propagation method: it is observed that small variations in the gradient of the

error function combined with the saturation intervals of the activation functions makes the

convergence process slower. Thus, the objective of the resilient-propagation method is to

consider only the signal variations of the gradient of the error function, instead of conside-

ring the variations in its magnitude. When the signals of the gradient are the same between

two successive iterations, the learning rate increases, since the convergence is distant from

a minimum point (null gradient) of the error function. On the other hand, if the gradient

signals are different, it means that the process passed through a point in which the gradient

is null (minimum point), therefore, the convergence must be smooth in order to acquire

precise results;

• Levenberg-Marquardt Method: it was introduced in order to reduce the convergence time.

This method is a second-order gradient method, based on the least squares method for non-

linear models. It involves the calculation of the Jacobian and Hessian matrices, being si-

milar to Newton’s method. If the eigenvalues of the function’s Hessian matrix at the zero-

gradient position are all positive, there is a local minimum for the function; whereas if they

are all negative there is a local maximum for the function and a saddle point is positioned at

that particular point whether they are both positive and negative.

The effect of each specific parameter on the performance of the gradient-based backpropa-

gation method is summarized in the following table, Table 2.1.

2.4.3 Optimization of composite structures using gradient-based methods

Several investigators have performed optimization procedures using the gradient-based methods.

Honda et al. (2008) maximised both the fundamental natural frequency and the difference between

two selected adjacent frequencies. A new method was introduced by them to convert four lam-

ination parameters optimised at the first stage using a gradient method into the optimal stacking
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Table 2.1 – Performance of the gradient-based backpropagation algorithm. Adapted from [19, 20, 25].

Design parameter Too high Too low

No. training cycles • good memorization of data • incapability of representing
the data

Training dataset • ANN with good recalling • limited or bad generalisation
and generalisation

Testing dataset • confirmation of ANN’s • inability to confirm ANN’s
generalization capabilities generalisation capabilities

No. hidden nodes • overfitting • underfitting

η • oscillation about the optimal • slow training
solution (instability)

α • reduces the risk of local minima • potential entrapment on
• speeds up training local minima
• risk of overshooting • slow training
the iterative solutions

sequence. The corresponding layup is obtained by minimising the errors between the optimum

parameters and the parameters for all possible discrete stacking sequence designs. The optimiza-

tion procedure was done sequentially from outer domains, because the bending stiffness is more

controlled by outer layers than by the inner ones according to the laminate theory and physical

evidences [58].

The optimization regarding the lamination parameters is, without any simplifications, a convex

problem whose search space is a 16th dimension hypercube and they are limited by the interval

[-1,1], 4 for extensional stiffness, 4 for extensional-bending (coupling) stiffness, 4 for bending

stiffness and another 4 for transverse shear stiffness [28].

Moreover, Herencia et al. (2007) applied a two-level optimization procedure of a composite

stiffened panel. In the first step, a gradient-based method was applied to achieve the optimal six

lamination parameters, membrane and bending ones, in order to minimise the mass of the struc-

ture. The design was restricted concerning the lamination parameters bounds, strength, buckling

and practical design constraints. On the other hand, several stiffener designs were considered. In

the second step, an evolutionary-based algorithm was applied to reach the optimal stacking se-

quence, in which the constraints were approximated by the development of a Taylor series about

the step-1 optimal design [59].

Liu et al. (2007) also applied a bi-level optimization procedure to a composite stiffened panel

under compressive loads and lateral pressure. Their goal was to minimise the panel weight, satisfy-

ing strength, buckling and design constraints. VICONOPT gradient-based optimization technique

was implemented to achieve the optimal panel and stiffeners dimensions aiming to minimise the

overall weight. This particular gradient-based technique allowed lateral pressure consideration.
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Besides that, it considers the coupling between the skin and stiffeners and the interaction between

local and overall buckling [60].

On the other hand, the optimal stacking sequence correspondent to the maximum values for the

first natural frequency and critical buckling load was achieved by Abouhamze and Shakeri (2007),

using the weighted summation method. The optimization process speed was improved through

the implementation of an artificial neural network to reproduce the behaviour of the structure both

in free vibration and buckling conditions. The neural network was a multilayer perceptron and the

learning was performed by the Levenberg-Marquardt backpropagation method in order to reduce

the computational time [61].

Reddy et al. (2012) applied an artificial neural network arrangement (multilayer perceptron) to

predict the fundamental natural frequency of laminated composite plates under clamped boundary

conditions. The experiments to train and test the network were chosen according to D-optimal

design. The gradient descent method was chosen by them to achieve the best ANN’s configuration

regarding the weights of the synapses and the biases [62].

The same strategy, in terms of the ANN’s optimization technique, was used by Mallela and

Upadhyay (2016) to forecast the critical buckling load of laminated composite stiffened plates

under in-plane shear [63].

Bacarreza et al. (2015) studied the post-buckling phenomena of a composite plate because

they considered that the post buckling strength capacity has an important role for weight savings,

which is undoubtedly prevalent in the aerospace industry. A genetic algorithm was applied to

the described multi-objective problem in order to obtain the front of Pareto. A more robust so-

lution was obtained by a gradient-based optimization procedure together with the Monte Carlo

Simulation (MCS), which provides a statistical viewpoint to the problem under analysis [64].

Automated Fibre Placement (AFP) developments led to an increase in the use of grid-stiffened

composite structures which are high damage tolerance and lightweight structures. Moreover, the

manufacturing cost has been reduced by the use of less mechanical fasteners and it is easier to tailor

the required stiffness and strength to a desired direction. For this type of structures, ply angles and

stiffeners sizing and spacing are, normally, the design variables. A gradient-based optimization

procedure was implemented by Wang et al. (2017) in the unstiffened structure with similar spatial

properties compared with the stiffened one, in order to reduce the computational cost and to make

the implementation of a finite element model easier. Then, the sensitivities related to the structural

responses were calculated by the finite difference method [65].

Ma et al. (2021) performed the same equivalence method, denominated by homogenization,

regarding the grid-stiffened plate stiffness. They maximised the stiffness of a rectangle stiffener

plate and they tried to optimise the buckling load of a square stiffened panel. The results demon-

strated that there is an increase in those variables in relation to the unstiffened plate. Firstly, a

genetic algorithm was implemented and then a gradient-based sequential quadratic programming

method was used to find the global optimal solution, in which the result obtained from the first

phase was set as the initial solution. The evolutionary algorithm’s early convergence led to the

employment of the gradient-based approach [66].
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Nowadays, multidisciplinary optimization (MDO) is crucial for the development of compo-

site structures. Particularly in the aerospace industry, the structure and aerodynamic departments

must be always in touch because their works are highly interconnected. The aerodynamic loads

are used for structural design, whereas the deformed shape of the structure is fundamental to

accurately assess the aerodynamic performance. Dähne and Werthen (2018) selected the gradient-

based techniques to perform optimization procedures due to their capacity to deal with a large

number of variables which are assigned to the composite materials. Moreover, the concept of la-

mination parameter is used to simplify the algorithm and the optimization is based on the stiffness

matrix terms of the individual substructures [67].

2.5 Evolutionary-based optimization algorithms

The evolutionary-based optimization algorithms are, as the name suggests, biology-based proce-

dures whose utilisation has increased over time particularly because they are zero-order algorithms

which allows to considerably reduce the computational time and, at the same time, to obtain pre-

cise results. Besides this, they are, in general, easier to implement and they are capable of deal-

ing with complex problems. Some of them were already explained in Section 2.2. The genetic

algorithm will be presented and deeply discussed later on. Some characteristics about several

nature-inspired algorithms are summarised in Table 2.2 and Table 2.3 [17, 68].

A combination of PSO and neural networks is the most common one among the optimization

algorithms and AI (artificial intelligence) and is widely used in many application software and

controllers [17, 56]. Many researchers consider BCA for boosting neural network performance

either by optimising the hyperparameters or somehow merging with some other method to enhance

the neural network configuration or the correspondent applications [69]. The genetic algorithms

were firstly introduced by Holland in his book “Adaptation in Natural and Artificial Systems”

(1975) and they are a stochastic search and optimization method inspired by the evolutionary

process that occurs in nature. The idea of a GA is based on the theory of natural selection, where

a group of possible solutions, each possible solution is called a chromosome, a whole group of

them is called a population, of an optimization problem competes to transfer their features to the

population in the next iteration step, which is called a generation [29].
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Table 2.2 – Biology-inspired algorithms: advantages and disadvantages. Adapted from [17, 26, 27, 31–35].

Biology-inspired algorithms

Technique Advantages Disadvantages

GA • zero-order algorithm • could get trapped in local minima
• suitable for a large number of variables • hard to fine-tune all parameters
• no explicit equations to generate new • long time for convergence
solutions
• high search space exploration

PSO • fast convergence • easily get trapped in local minima
• ability to handle complex problems • strict selection of control parameters

• too high velocities could lead to a
slower convergence

BCA • strong robustness • accuracy problems
• no explicit crossover • easily get trapped in local minima
• fewer control parameters when solving multimodal problems
• good for exploration phase due to • poor at exploitation phase
mutation and fitness-related selection due to lack of crossover

ACO • no explicit crossover operator • complex mutation depending on the
• fewer control parameters pheromone concentration (indicator
• good for exploration phase of quality) and route distance

• poor at exploitation phase

FA • suitable for multimodal optimization • easily get trapped in local minima
problems due to swarm division • only local searches
• scaling control
• easy to implement

BSA • single control parameter • time-consuming
• ability to handle multimodality
• suitable for exploration phase due to their
memory capability
• low computational cost

BFO • high stability about the optimal solution • potential premature convergence
• associations with GA and PSO to in local minima
enhance local and global search capabilities

CSA • introduce nonlinearity • slower convergence
• combination of both local and global search
capabilities, controlled by a switching probability
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Table 2.3 – Physics-inspired algorithms: advantages and disadvantages. Adapted from [17, 26, 70, 71].

Physics-inspired algorithms

Technique Advantages Disadvantages

CFO • effective search of the search space due to • no explicit mechanism to enhance
probes interactions exploitation capability

• highly dependent on initial
probes distribution

GSA • variable gravitational constant controls • easily get trapped in local minima
the convergence speed • exploration and exploitation capabilities
• fast convergence highly dependent on random parameters

correctly tuned

BB-BC • Big Bang phase ensures exploration of • potential early entrapment at local
solution space minima if the initial population is not
• exploitation and convergence assured by well distributed
Big Crunch phenomena

GbSA • Local Search ensures exploitation • the global optima achievement is strongly
of the search space dependent on Spiral Chaotic Move
• Spiral Chaotic Move provides powerful performance
exploration mechanism

CSS • good exploration and exploitation capabilities • easily get trapped in local
resulting from handling attractiveness and minima whether the initial charge particles
repulsiveness of resulting electric force are not well distributed

SA • high search space capabilities • regularity control
due to the use of multiple bouncing balls • time-consuming
• diversification via randomization

HSA • usage of harmony memory, pitch adjusting • poor search capabilities
and randomization as selection, mutation • possible performance disturbance
and diversity mechanisms, respectively in final iterations

2.6 Genetic algorithms

The genetic algorithms are based on this fundamental principle: “the variability between indivi-

duals in a population of individuals which reproduces sexually is produced by mutation and genetic

recombination” [29].

Holland’s genetic algorithm consists in the transformation of a population of chromosomes,

which serve to encode possible solutions, into a new population through a natural selection process

and using several genetic-inspired operators such as selection, crossover and mutation until pre-

defined criteria is met regarding a certain fitness value or a maximum pre-established number of

generations. Each chromosome, representing a possible solution, is composed of genes and the

latter ones assume a particular value known as allele [17, 29, 56, 69, 72].
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The selection operator chooses the chromosomes that are able to reproduce, based on a fitness

function representative of the problem under analysis. The crossover operator mimics the genetic

recombination between two different individuals, in which they share a part of their chromosomes

in order to create another individual. The mutation operator changes randomly an allele(s) of the

chromosome and the inversion operator, an additional one only possible for certain applications,

reverses the order of a small part of the chromosome, rearranging the position of its genes. In

the genetic algorithms, each chromosome/possible solution is coded by a sequence of bits, re-

presenting each of them an allele and assuming a binary value (0/1). The majority of the genetic

algorithms use haploid individuals (one chromosome individuals). The genotype of an individual

is merely the configuration of bits and the phenotype is the representation of the individual’s

characteristics in its own environment. In general, the genetic algorithms do not work directly

with the real representation of the solutions in the search space, instead they work with a suitable

codification, such as binary coding, real coding, e.g, which makes the genetic operations much

easier. That codification is frequently denominated by representation. The reverse process, known

as decoding, occurs at the end of the process [29, 56, 69].

The complete description of the used genetic algorithm is performed later on, in Section 5.2.

The main goal of these kinds of evolutionary algorithms is to use simple representations to

encode complex structures and simple operations to improve them during the evolution process.

They are able to handle problems with very difficult objective functions, such as discontinuous or

non-differentiable, nonconvex, multimodal or noisy. Their main characteristic which makes them

suitable for a wide range of applications is that they work with a population of solutions instead of

a single point in the search space, therefore the probability of finding local minima is lower since

they climb many peaks in parallel. Apart from that unequivocal advantage, they are clearly easy

to implement, are capable of solving multimodal minimization problems and, as referred in others

subsections in order to compare them with the gradient-based optimization algorithms, they do

not need any objective function derivatives to be calculated. Due to their probabilistic nature, new

points in the design space are explored, improving and preventing convergence in sub-optimal

designs, which is prone to occur in the gradient-based procedures, owing to their deterministic

rules [17, 56, 73].

Their main disadvantages are the long time to achieve a certain level of convergence, the dif-

ficulty to apply to decision-making problems, scalability troubles and the difficulty to tune all

parameters (mutation rate, crossover rate, crossover parameters, population’s dimension, informa-

tion coding mechanism, among others) in order for the algorithm to represent the system under

analysis with more faithfulness/ fidelity. That process is usually a trial and error procedure, unless

a mechanism is established that updates their values throughout the evolutive process. The po-

pulation’s dimension is chosen according to a balance between efficiency and computational cost.

A small population can lead to an insufficient exploration of the search domain, whereas a large

population increases substantially the computational time [17, 56, 73].

The application of genetic algorithms in the optimization of laminated structures started in

the 1990’s. Optimization procedures for laminated composite structures, anisotropic materials,
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are much more complex than those associated with isotropic material structures, due to the large

number of variables involved and the independent behaviour of an individual layer [56, 74].

The two main design variables in laminate design of the prepreg layup are the fibre’s angles and

layer stacking sequence. The fibre’s angles are normally constrained to some orientations due to

manufacturing issues, which results in an integer programming problem regarding the stacking

sequence. Other variables can be considered like the layer’s thickness, fibre volume fraction or

some variables related to the manufacturing process, such as the mold filling time or the mold

clamping force. The fibre volume fraction is one of the most important parameters in the design of

laminated composites, because it increases the specific stiffness and strength and, at the same time,

the laminate’s density ρ . On the other hand, it has usually a limited value owing to manufacturing

troubles and assumes a constant value in prepreg techniques [74].

Table 2.4 – Properties of prepreg composite materials. Adapted from [74].

Layer combination dependent criteria Layer sequence dependent criteria

• in-plane properties (e.g., planar stiffness) • out-of-plane (flexural) stiffness/strength

• mold filling time • interlaminar shear strength

• mold clamping force • buckling

• vibration (natural frequencies)

• aeroelastic efficiencies

The layer combination is related to the number of layers of each angle, whereas the layer

sequence dependent criteria is associated to the stacking sequence. The planar stiffness depends

on the extensional stiffness coefficients which are not a function of the position of a certain layer

along the laminate. Moreover, the average composite’s permeability is practically the same for two

different laminates consisting of the same number of similar layers positioned differently. There-

fore, the mold filling time and clamping force are integrated in the layer combination dependent

criteria. Otherwise, all parameters included in the layer sequence dependent criteria depend upon

the bending-extensional stiffness coefficients and these ones change whenever a certain layer is

placed at another position in the same laminate [74].

2.6.1 Fitness function definition

In order to have a good performance, the fitness functions cannot have many local optima or an iso-

lated global optima, because the search process may concentrate at some sub-regions of the search

space, hindering the achievement of the global optima whether some randomness mechanisms are

not properly introduced. It is necessary to create a fitness function where the fitness of an invalid

chromosome, corresponding to a non-admissible solution, is seen as a measure of the capacity to

guide us in the direction of the admissible solutions space. They are created based on the objective
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function and on the constraints used for the mathematical formulation of the problem. Norma-

lisation procedures are also applied with the aim of keeping the amplitude of the fitness function

values within a desired gap in order to do not have premature convergence or slow ending of the

evolutionary mechanism resulted from the successive proximity between well-fitness individuals

as long as the evolutionary process occurs [29, 74].

2.6.2 Methods to include the problem constraints based on genetic algorithms

There are several distinct techniques to include and enforce the constraints amongst the evolutionary-

based algorithms [29, 75, 76]:

• methods based on the preservation of the admissibility of the constraints: creation of a set

of operators which transform inadmissible solutions into admissible ones. They are only

applicable to linear restrictions;

• penalty functions-based methods: this method is widely used within the evolutionary al-

gorithms. They are basically based on the penalization of the fitness function when any

constraint is violated. The more the violation, the larger the penalization. The penalty fac-

tors are tuned in order to be relevant for the fitness function penalization and, at the same

time, not locking the algorithm. The violation parameters could be adaptive and dynamic,

which means that they may change with the evolutionary process:

Static penalty: the penalty factors remain constant during the evolution process and through-

out the generations. Despite that uniformity, they increase with the level of violation.

Dynamic penalty: the penalty parameters increase with the generation and level of violation.

These parameters must be called adaptive penalty functions when they are updated whenever

the solution is locked near a local optimal, since they learn from the search process.

• methods based on the search for admissible solutions: use several search operators in order

to handle feasible and infeasible solutions;

• methods based on decoders: use decoding schemes to construct a feasible solution;

• hybrid methods: some hybrid methods use the objective function and penalty function va-

lues as vector components and apply multi-objective optimization techniques in order to

minimise all of the vector components. In the algorithm, the population is splitted into

several subpopulations and each one of them optimises a different part of the vector.

2.6.3 Selection operator

There are several mechanisms whose main goal is to carefully select the individuals for mating.

Proportional selection: the individuals are selected based on their fitness values, having the

best ones a bigger probability of reproduction and surviving. This process suffers from scaling

problems [29, 77, 78]:
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• roulette wheel method: the individuals with higher fitness values are selected more fre-

quently because they take a bigger roulette wheel’s space. It has the inconvenient of making

the loss of diversity premature;

• stochastic universal sampling: only one shot selects all individuals for reproduction through

several pointers, reducing the bias of the method.

Ordination-based selection: the individuals are selected based on their classification in the

ordered population [29, 77, 78]:

• tournament selection, in which it is done a copy of the best element present in a two element-

tournament;

• the population is sorted by fitness and the individuals with the lower value according to a

certain truncation probability are disregarded in the truncation selection;

• linear ranking method, in which the individuals are sorted according to their fitness value

and a certain probability of selection is assigned to each one of them as a function of their

classification in the ordered population;

• those referred probabilities are weighted exponentially in the exponential ranking selection;

• the elitist method, the one that is used here, consists in the automatic transfer of the best

individuals to the next generation without being modified by the genetic operators. It is used

to assure a faster convergence, however, it could lead to a premature convergence whether

the algorithm is not properly accomplished by a population diversity control.

2.6.4 Crossover operator

The crossover operator is the most important one regarding evolutionary algorithms, being respon-

sible for the genetic information interchanging between chromosomes. It generates new individu-

als through a combination of genetic material of two parents previously selected. It must produce

valid solutions, which is not always possible for constrained problems. The crossover probability

is chosen taking into account a balance between the hypothesis of losing high-fitness individuals

and the convergence rate [29, 77].

Some of the main operators are described in the table below, Table 2.5, both for real and binary

coding mechanisms.

2.6.5 Mutation operator

The mutation operators are unary operators which act in one individual. They affect the chromo-

some’s genes, being defined by a happening probability. The mutation probability is their main

parameter and must be controllable in order to achieve the optimal diversity level without compro-

mising the loss of high-fitness individuals. For binary representation, the flip-bit mutation is the
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Table 2.5 – Crossover operators. Adapted from [29].

Crossover operators (binary coding) Crossover operators (real coding)

• single-point crossover (single cut point on the • mena-centric recombination

chromosome

• multipoint crossover (several cut points) • parent-centric recombination

• uniform crossover (each position can be a cut point) • single-point or multi-point crossover

• segmented crossover (multipoint crossover variation) • uniform crossover

main one. It consists in changing one or more chromosome’s genes. Uniform and creep mutation

are some methods which are applied to real-coded individuals, consisting in the replacement of

one or more bits values by a random value between an upper and lower level [29, 77, 79].

2.6.6 Convergence and stopping criteria

There are genotype and phenotype-based stopping criteria. In the genotype ones, the search stops

when the population reaches a certain level of convergence regarding the decoded value of its

chromosomes. On the other hand, in the phenotype-based criteria the achieved progress in the last

pre-defined number of generations regarding the fitness function value, parameter defined by the

designer, is measured and assessed. For complex optimization problems, the designer may define

a maximum number of generations for the evolution process [29, 80].

2.6.7 Guidelines to achieve a good performance

The diversity of a population is a measure of the different solutions that are presented in a popu-

lation. The bigger the chromosome’s variability, the larger is its entropy and the better its quality.

The elitism is frequently used with stochastic schemes of reposition based on fitness, in order to

avoid the loss of the better-fitness individuals. The limiting factor in the genetic algorithm’s search

is, in the majority of cases, the number of assessments of the fitness function. The key for an effi-

cient search is the balance between exploration and exploitation. Exploration is more prevalent in

the beginning of the search with its participation grade decreasing with the number of generations,

whereas the opposite happens with the exploitation. The exploration process allows to efficiently

explore the search domain and generates diverse solutions, making the global optimization more

plausible. Randomization in terms of some predefined probability distributions are frequently used

for exploration. Although that, the convergence is slower. The exploitation process uses any infor-

mation which allows itself to generate better solutions and, therefore, substantially increases the

convergence rate. However, that information is, in general, local, which could lead to a local opti-

mum. Achieving that balance trivially remains unknown, because essentially it is the optimization

of the optimization process, that is, an hyper-optimization problem [29, 33].
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2.6.8 Optimization of composite structures using evolutionary-based algorithms

Genetic algorithms are usually used for the ANN’s architecture optimization (e.g synaptic weights,

biases) due to their inherent specifications and particularly their advantages. There are several

works regarding this theme, the optimization of composite structures for vibration and buckling,

using an evolutionary-based algorithm, particularly the genetic one, associated with an ANN ar-

rangement to compute efficiently the required mechanical or geometrical parameters.

Due to manufacturing constraints and design verification and assessment, the angles of the

composite plies were normally restricted to 0, 45 and 90◦. Liu et al. (1998) applied a two level

optimization for wing design under strength and buckling constraints. At the first level, the design

variables were the number of plies of those prescribed angles and the main goal was the weight

minimisation. Then, knowing the number of plies of each orientation and the in-plane loads as

well, a genetic algorithm was applied to optimise the stacking sequence so as to maximise the

buckling load. Because the thickness of the skin is small compared to the wing depth, stresses and

strains are calculated by neglecting the bending stiffness of the skin. Therefore they depend only

on the number of plies and not on the stacking sequence [81].

The LOA (layerwise optimization approach) consists in N repetitions of the optimization

procedure in an one-dimensional space instead of the search for the optimum solution in a N-

dimensional space. This idea is based on the physical consideration of bending plates, during

which the outer layer has a greater influence on the structure stiffness than the inner one and it is

more important in the determination of the natural frequency [57].

Thus, Narita and Robinson (2006) optimised sequentially the layer’s orientation from the ou-

termost to the innermost layer, using the layerwise optimization approach in laminated cylindrical

panels with small curvature in one direction [82].

Despite the success of GA’s in a wide range of applications, solving constrained optimiza-

tion problems is not an easy task. The most common technique is to apply penalty functions,

converting the problem into an unconstrained optimization one. The major drawback of these

penalty functions is the tuning of their parameters, in order to obtain the required final values.

Chehouri et al. (2016) implemented a constraint-handling technique which does not use penalty

functions and is free of additional parameters. That technique, denominated as VCH (violation

constraint-handling), uses a violation factor and is based on the genetic algorithms, since the ob-

jective function is preserved during the evolution process and not affected by a modification in the

penalty parameters [75].

On the other hand, Todoroki and Haftka (1998) introduced a new repair strategy similar to the

way recessive genes operate in biology in order to handle the difficulty to enforce constraints in

genetic algorithms. That new strategy changes the decoding rules used to transform the gene’s

information into the stacking sequence, not altering the genes per si. The genetic algorithm was

applied to obtain the stacking sequence corresponding to a set of lamination parameters closer to

the target ones. An elitist strategy is used in order to ensure that the best individual is transferred

to the next generation, whereas a roulette wheel method is applied for the selection of two par-
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ents for crossover. They clamied that the angles of the plies must be balanced in order to avoid

stiffness coupling effects. Besides that, the number of successive plies with the same orientation

are limited to four due to the risk of delamination resulting from large-scale matrix cracking. The

new repair strategy is used to enforce those constraints. In this article, a permutation operator was

implemented and it improved the performance of the genetic search [72].

Nagendra et al. (1994) studied the effect of the introduction of several genetic operators on

the genetic algorithm whose target was the design of a stiffened panel for minimum weight under

stability and strain constraints. His main goals were to improve the algorithm’s reliability and

reduce its computational cost [83].

Chung et al. (2008) presented some new approaches whose main goal was to reduce the

number of fitness function assessments in genetic algorithms applied to the multidisciplinary op-

timization of composite structures. That improvement results from the needlessness of assessing

some individuals already evaluated in previous generations. They validated their procedures by

a weight minimization problem of a composite laminated plate under several design constraints.

In order to decrease the computational cost, a combination of local improvement with global

combinatorial search is performed, which results in an hybrid genetic algorithm. In the design

of composite wings, if the standard crossover operator leads to inadmissible solutions regarding

some constraints, “gene repair” or ”fixing-up” operations are intensively utilised, particularly to

handle the number-of-ply constraints, which limit the number of layers of each angle. Besides

that, a new permutation crossover was developed designated by gene-rank GA [74].

In order to overcome the premature convergence, Jia-qing Zhao and Wang (2011) developed

a kind of centre based genetic algorithm (CBGA). Central chaotic mutation and space shrinking

strategies were designed with the information of the population centre, aiming to guide the evolu-

tionary search. The rank value based roulette selection and a new Cauchy preferential crossover

operator are used with the mutation operators in the CBGA. The elitist strategy is employed to

avoid the loss of the best solution. The premature convergence of the genetic algorithms can be

regarded as that the population stops evolving towards better solutions, thus the algorithm can-

not obtain the global optimum. Population size, selection pressure, mutation rate, fitness function

property and population initialization are the main factors to affect premature convergence. To

enhance the ability of escaping from local minima, two mutation operators are designed in the

CBGA based on the information of the centre, that is, central chaotic mutation and population

recombination strategy [84].

Miller et al. (2020) upgraded the standard genetic algorithm, combining it with a deep neural

network along with Curriculum learning loop for the optimization of either the fundamental natural

frequency or the gap between two successive frequencies of a laminated cylinder through stacking

sequence optimization, aiming to avoid the structure’s resonance taking into account the excitation

frequencies and their approximation to the natural ones. The Curriculum learning Loop is applied

after a first stage optimization procedure, being accomplished by a narrowing in the bounds of the

variables resulting from the first stage [56].

The optimization with regard to the lowest natural frequency is also largely applied to rotating
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machines, whose dynamic forces generated by their moving parts induce large vibration ampli-

tudes. The development of fault diagnosis systems for the vibration detection and isolation of

these equipments can be based on artificial intelligence using artificial neural networks [85].

Cicek and Ozturk (2021) developed a hybrid algorithm for time series forecasting based on

a biassed random key genetic algorithm in order to optimise an artificial neural network, which

is a very time-consuming procedure, since it involves the correct tuning of several parameters

together. That algorithm, denominated BRKGA-NN, assists the determination of the number of

hidden neurons, their biases and the synaptic weights. They concluded that the BRKGA-NN-

based genetic algorithm predicts better results compared to the standard one. However, the main

drawback is the running time, which extremely increases with the enlargement of the training

set. The motivation for this development is the difficulty inherent to the definition of the ANN’s

architecture by some method besides trial and error. Moreover, that procedure depends strongly

on the type of problem and dataset and, on the other hand, gradient-based algorithms frequently

stay trapped to local minima [69].

As referred above, to be able to obtain reliable results regarding the obtained artificial neural

network, the train and test data must be representative of the search space. Dey et al. (2016)

trained the artificial neural network using Latin hypercube sampling. The multilayer perceptron

network that was used had gradient descent as its feedback mechanism. Latin hypercube sampling

is employed for generating sample points to ensure the representation of all portions of the vector

space [86].

For multiconstraint problems (e.g. fundamental natural frequency together with the critical

buckling load), the best objective usually does not imply that the other(s) objective(s) is (are)

simultaneously optimised. Thus, the concept of Pareto optimality is often used in multiconstraint

problems to help to determine the best way to simultaneously satisfy all objectives to the greatest

extent possible [87].

The developed algorithms must be verified regarding their reliability in order for the user to

believe in their results. “A measure is said to have a high reliability if it produces similar results

under consistent conditions”. António and Hoffbauer (2013) performed a design optimization of

a composite structure in order to achieve a target reliability level. An artificial neural network

was developed and a MCS procedure was implemented to assess the variability of the structural

response based on global sensitivity analysis (GSA). The variables under control were the mecha-

nical properties of the composite materials, because they are a considerable source of uncertainties.

The uncertainty propagation was performed using the first order Sobol indices and relative sensi-

tivities. The composite’s stacking sequence was optimised, taking into account the less sensitive

performance properties regarding the uncertainties in the input parameters [88].

Moreover, António et al. (2010) studied the propagation of uncertainties of the composite’s

mechanical properties on the composite laminate structure response in order to achieve a desired

reliability level. First order (FORM) and second order (SORM) reliability methods use the most

probable failure point (MPP) to estimate the failure probability. The limit state function and its

derivatives, if necessary, are approximated by the implementation of an artificial neural network
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(ANN). Cheng (2007) proposed a hybrid technique which consists of its combination with genetic

algorithms for structural reliability analysis. The ANN-GA arrangement searches for the most

probable failure point and its corresponding reliability index [89].

2.7 Multi-objective optimization

The first studies regarding the multi-objective optimization came out in the XIX century by Edge-

worth and Pareto and were based on successive one-objective problems, using the lexicographic

ordination (ordination of the objectives by their importance) and linear aggregation functions, as-

signing to each one of them a certain weight representative of their individual importance. For

multi-objective problems, the optimal solution is a set of solutions designated by Pareto’s optimal

solutions. A certain solution is one of those if it is not possible to improve an objective without

deteriorating at least one of the others. The number of Pareto’s optimal solutions increases with

the size of the problem and, mainly, with the number of considered goals [29, 90, 91].

A multi-objective optimization problem for a minimisation problem can be defined as

Min f(x) = ( f1(x), f2(x), . . . , fn(x)) (2.17)

under the constraint x∈ S and where n≥ 2 corresponds to the number of objectives, x= (x1, . . . ,xk)

is the vector of the design variables and S represents the space of admissible solutions associated

with the considered constraints and the bounds of the input variables [29, 90, 91].

Pareto dominance: An objective vector u dominates v (u<v) if and only if there is not a v
component lower than the u’s correspondent and at least one component of u is strictly lower, that

is [29, 90, 91]:

∀i ∈ {1, . . . ,n} : ui ≤ vi ∧∃i ∈ {1, . . . ,n} : ui < vi (2.18)

Pareto optimality: A certain solution x∗ ∈ S is a Pareto optimal if for each x ∈ S, f(x) does

not dominate f(x∗), that is, f(x) ≮ f(x∗).

Set of Pareto’s optimals: The set of Pareto’s optimals is given by:

P∗ =
{

x ∈ S | ∄x′ ∈ S, f
(
x′
)
< f(x)

}
(2.19)

Pareto’s front: The front of Pareto is defined as:

Pf∗ = {f(x),x ∈ P∗} (2.20)

The number of Pareto’s optimal solutions can be different depending on the considered space,

the decision or the objective spaces. In the objective space, the solutions with the same objective

vector are considered the same, whereas that does not happen in the decision space [29].
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Some Pareto’s optimal solutions can be obtained by the resolution of the following mathema-

tical programming problem,

MOPµ = Min f(x) =
n

∑
i=1

µi fi(x), (2.21)

subjected to x ∈ S and in which those solutions are designated by supported solutions. The sup-

ported solutions are obtained by the multi-objective problem resolution for several values of the

weights. On the other hand, some problems cannot be solved by that method, because their so-

lutions are dominated by convex combinations of supported solutions, being denominated by un-

supported solutions [29, 90, 91].

2.7.1 Multi-objective optimization methods

The procedures for solving multi-objective optimization problems can be splitted into exact me-

thods, involving certain algorithms, or approximate solutions which take into account the defini-

tion of front of Pareto. The branch and bound, dynamic programming and constrained progra-

mming are some examples of exact algorithms. The main approaches to deal with these kind of

problems are described in subsection 2.7.2.

Figure 2.6 – Multi-objective optimization methods. Adapted from [29, 90, 92].

2.7.2 Multi-objective optimization classification

The multi-objective optimization problems can be categorised according to the fitness function

definition:

• Scalar approaches: They are based on the transformation of the multi-objective problem

into an one-objective one. These approximations require the user to have a good knowledge

about the problem under analysis. They have a strong sensibility in relation to the selected

weights, constraints or reference points, which leads to a high computational effort resulting

from the repetitive procedures aiming to obtain different Pareto’s optimal solutions [28, 29,

90].
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Aggregation method: it uses a linear aggregation function combining all objective functions.

The aggregation method is one of the most used to generate Pareto’s optimal solutions:

F(x) =
n

∑
i=1

µi · fi(x),x ∈ S (2.22)

For multi-objective problems with a concave Pareto’s front, the decider will have an erro-

neous idea of the Pareto’s front came from the sequential weight vector’s changing. If the

objectives are not at the same scale, they must be normalised in the aggregation function.

The obtained results depend strongly on the considered weight vector. It can be an unique

weight vector previously defined according to the designer preferences, a simple hypothesis

only possible for linear utility functions; multiple weight vectors previously defined, being

the problem solved for each one of them in parallel; dynamic definition of multiple weights,

in which the weights are changed in order to approximate the Pareto’s front; adaptive defini-

tion of multiple weights, in which are accordingly defined sub-regions of the Pareto’s front

to refine the search space [28, 29, 90].

Ponderate metrics: the designer must define the reference point z to be achieved and the

parameter used to quantify the distance between z and the admissible region of the search

space, pdist . Therefore, that referred distance is minimised [29]:

MOP(µ,z) = Min

(
n

∑
j=1

µ j | f j(x)− z j |pdist

) 1
pdist

(2.23)

Goal programming: the designer defines aspiration levels, Ti, for each objective which esta-

blishes goals to achieve:

min
n

∑
i=1

| fi(x∗)−Ti| , subject to x∗ ∈ Pf∗ (2.24)

This method is computationally effective as long as the solution x∗ is chosen within the

feasible domain. However, it is strongly dependent on the correct selection of the target

vector [29, 90].

Achievement functions: an arbitrary reference point can be defined, because this method

uses normalisation factors [29].

Goal Attainment method: this method is again based on the designer preferences. The

weight and goal vectors must be defined by the designer for all objectives. Relatively to

the ponderate metrics method, the function is now differentiable, which makes plausible

the use of gradient-based optimization algorithms. The main disadvantage is the absence

of pressure selection for the generated solutions, that is, if there are two candidate solutions

which are the same in one objective function value but different in the other, they will still
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have the same goal-attainment value for their two objectives. Despite that, this method is

simple and easy to implement [29, 90].

ε-constrained method: the objectives, apart from only one, are transformed into additional

constraints and a limit value is assigned for each one of them. The variation of those limit

values enables to reach the front of Pareto. Although its simplicity, this method is time-

consuming and may originate unsupported solutions, that is, solutions at a concave region

of the search space [29, 90] .

• Criteria-based approaches: They separate the objectives according to a certain criteria and

then treat each set separately. The lexicographic optimization and the evolutionary-based

algorithms are examples of them.

Parallel approach: the generation of new solutions is performed independently according

to the objective’s nature. The population of individuals is splitted into ksub subpopulations,

in which ksub represents the number of objectives. The individuals with the better fitness

value regarding each one of the objective functions individually are integrated in those

subpopulations, then they are mixed and the conventional crossover and mutation opera-

tors are implemented. The main disadvantage of this approach is the inability to produce

Pareto-optimal solutions for non-convex search spaces due to the linear combination of the

objectives [29, 90].

Lexicographic or sequential approach: the objectives are ordered according to the respective

importance assigned by the designer. The optimal solution is achieved by the sequential

optimization procedure, in which the number of constraints is incremented as a result of

a search space narrowing. Despite its simplicity, it may favour a particular set of similar

objectives, driving the evolution process to a specific part of the front of Pareto instead of

precisely defining it [29, 90].

• Dominance-based approaches: These methods use the dominance concept in the fitness

function definition. The main idea is to find a set of individuals in the population which

are Pareto solutions and are not dominated by the remaining population. This concept was

introduced by Goldberg, particularly in the genetic algorithms. A niching technique was,

posteriorly, suggested, aiming to avoid the convergence for only one point in the Front of

Pareto, allowing to keep individuals along the non-dominated border. The main advantage

is that these methods do not need the problem to be transformed into a mono-objective one.

With only one execution, they are capable of generating a diverse set of Pareto’s optimal

solutions and Pareto solutions at the concave zones of the convex border of the admissi-

ble search space. Moreover, in dominance-based approaches, the quality of a solution is

assessed in relation to all population and no absolute value is assigned to them. These

procedures are the best to explore the front of Pareto regardless of its shape or continuity.

However, it is challenging to test for non-dominance in a set of feasible solutions [29, 90].
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MOGA (multi-objective genetic algorithm): the ordenated classification of a certain indi-

vidual corresponds to the number of chromosomes of the current population that dominates

it. The main reported disadvantage of this algorithm is that the fitness distribution is per-

formed in the space of the objective function values, which implies that two solutions with

the same objective function value cannot be simultaneously in the population. Therefore,

the designer does not know which design variables combinations result in the same desired

fitness value. On the other hand, this algorithm is extremely efficient and easy to implement

[29, 90].

NSGA (Non-dominated Sorting Genetic algorithm): this algorithm was proposed by N.Srini-

vas and Kalyanmoy Deb and is based on a sorted selection method aiming to emphasise

non-dominated current solutions and in a niching generation procedure whose main goal is

to keep the population’s diversity. They differ from the standard genetic algorithm only in

the selection operator [29, 90].

NSGA-II: the NSGA variation was proposed by Deb et al., an improved elitist version. This

algorithm creates niches at a prescribed crowding distance by using the selection operator

in order to keep the population’s diversity at the Pareto’s front [29, 90].

• Indicator-based approaches: The performance of dominance-based algorithms rapidly be-

comes worse when the number of objective functions increases (above 4) due to the loss of

selection pressure. The indicator-based algorithms use quality indicators which are func-

tions that assess the approximation sets. These algorithms claim the following advantages:

the designer preferences can be easily incorporated into the optimization algorithm; the di-

versity is implicitly taken into account in the performance indicator definition; less sensibi-

lity regarding discontinuities and non-convexity at the front of Pareto and less parameters to

define and tune. There are several types of performance indicators, including the cardinality

indicators, which measure the number of non-dominated points provided by an algorithm;

the convergence indicators quantifying how close a set of non-dominated points is from the

Pareto front in the objective space; the distribution and spread indicators, wherein the dis-

tribution of Pareto front approximations is assessed, being particularly useful when there

are multiple solutions in the Pareto set that correspond to different objective vectors; and

the convergence and distribution indicators mixing both properties of convergence and dis-

tribution ones. Their main applications range from a straightforward comparison between

algorithms for multi-objective optimization to the definition of stopping criteria or the as-

sessment of the diversity present in a given approximation set [29, 93].

2.7.3 Constraint multi-objective evolutionary algorithms

The constraint multi-objective optimization algorithms can be divided into the following cate-

gories [29]:
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• in this first method, the one-optimization techniques for constrained problems are applied.

The algorithm preserves non-admissible elitist solutions to connect disconnected admis-

sible regions and the stochastic ranking is performed in order to balance objectives and

constraints;

• the second one manipulates the constraints, treating them as additional goals;

• this method is based on sorting of priorities for the admissible and non-admissible solutions;

• the fourth method uses a genetic reparation scheme in order to reproduce admissible solu-

tions or solutions less violated than the original ones;

• the last one creates mechanisms aiming to guide the admissible solutions to the front of

Pareto and the non-admissible ones to the admissible solutions space.

The multi-objective evolutionary algorithms assessment must be done by more than one per-

formance indicator. Diversity preservation strategies must be incorporated in those algorithms.

The main idea under each one of them is to penalise closed solutions in the design space and even

in the objective functions space, because the target is to obtain solutions well distributed at the

Pareto’s front. The most important techniques are the kernel method, nearest neighbour procedure

and histogram or grids [29, 93].

2.7.4 Multi-objective optimization applied to composite structures

Due to the complex loading cases and required reliability, multi-objective optimization procedures

are paramount for the design of complex stiffened composite structures, such as the one that is

studied here. Therefore, over the years several studies had been carried out regarding this theme.

Irisarri et al. (2009) performed a multi-objective evolutionary-based optimization procedure

in a composite panel subjected to compression and shear loads, in order to obtain the stacking se-

quence that corresponds to the maximum of the buckling margins under several loading conditions

and, at the same time, to the minimum of weight. The algorithm was run for 300 different loading

scenarios, resulting for each one of them a particular front of Pareto. Then, the optimization was

guided in order to comply with pre-established constraints and preferred guidelines [94].

The same goals were sought by Ehsani and Dalir (2019) in the optimization of a grid stiffened

plate. They used the ε-constraint method together with a genetic algorithm embedded in an arti-

ficial neural network arrangement in order to accurately predict the variables under analysis. The

buckling load was considered as the main goal, whereas the weight of the structure was incorpo-

rated as an additional constraint, wherein the ε value was increased gradually in order to obtain the

Pareto-frontier curve. The data to train and test the ANN was obtained by them using the Mindlin

plate theory and the Ritz method. The design variables were the number, width, thickness and

angle of each one of the two sets of ribs [95].

Seyyedrahmani et al. (2022) performed several combinations of natural frequencies, buck-

ling load and cost as objective functions for the optimization of a composite sandwich panel and
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utilised a genetic algorithm to achieve the optimal lamination parameters and thicknesses. The

Chebyshev polynomials associated with Hamilton’s principle were used to determine the mecha-

nical responses, which had a significant effect on the reduction of the computational time due to

their meshless nature. The optimal results are presented in the form of 2D and 3D (three objec-

tives) Pareto-frontier curves. The individuals were sorted according to their ranking and crowding

distance and an elitist strategy combined with the crowding distance were used to select the best

individuals for the successive generations [96].

Composite sandwich plates were also optimised by Kheirikhah (2020) regarding their weight

and deflection under a transverse load or their weight and buckling load subjected to in-plane

loads. Additionally, a third-order shear deformation theory together with the Hamilton’s principle

and Navier’s equations were used to predict the variables under analysis, due to the necessity to

ensure the displacement and transverse shear stresses continuity at the core/face sheets interfaces,

to have zero transverse shear stresses at the top and bottom surfaces of the plate and to account for

the transverse flexibility and transverse normal strain and stress of the core. The multi-objective

optimization was performed using a genetic algorithm and Pareto’s fronts were achieved according

to the dominance concept [97].

Kalita et al. (2019) worked with skew composite plates, aiming to maximise both the funda-

mental natural frequency and the difference between the first two natural frequencies by changing

the plies angles. Three different evolutionary-based algorithms were used, the genetic algorithm

(GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant as well. The

weight summation method was applied in the genetic-based algorithm in order to transform the

multi-objective problem into several mono-objective problems. It was verified that the use of the

CS variant led to better results regarding the absolute maxima achievement. Moreover, that opti-

mization procedure has less tuning parameters than the other two, which led to a reduction in the

development time [98].

Ganesh et al. (2021) implemented, as well, the multi-objective optimization of the fundamen-

tal natural frequency and the difference between the first two natural frequencies, using NSGA-III

(non-dominated sorting genetic algorithm) and RPSOLC (repulsive particle swarm optimization

with local search and chaotic perturbation), a memetic version of the conventional PSO, to obtain

the Pareto-frontier curves. It was observed a more uniform and less spread front of Pareto for the

genetic-based algorithm results [99].

H. An et al. (2018) aimed to maximise the fundamental natural frequency of a composite

stiffened panel, seeking to minimise its mass as well. The design variables were the stacking

sequences and plies thicknesses for the panel skin and stiffeners and the stiffeners number and

respective positions along the panel. A genetic-based algorithm was developed and the weight

summation method was employed to consider the two objectives simultaneously [100].

A multi-objective optimization procedure was performed by Murugesan et al. (2015) in order

to efficiently design a composite stiffened panel subjective to a compressive load, maximising its

critical buckling load and, at the same time, minimising its interlaminar shear stress and structural

mass. The failure of a stiffened composite plate generally starts at the interface between the panel



42 State of the art

skin and stiffeners due to the stress concentrations. These investigators tried to improve the stress

distribution in those areas by using cover-skin layups around them to increase the bending stiffness

and decrease the risk of delamination [101].

With the thicknesses, orientations, and dimensions of the stiffeners as design variables, Con-

ceição António (2013) carried out an optimization procedure with regard to the minimization of

both the weight and strain energy of an hybrid composite structure subject to constraints related

to its structural integrity (stress, buckling and displacement). The constraints are imposed on the

critical load factor, λcrit , and on the critical displacement, dcrit . MOHGA (multi-objective hierar-

chical genetic algorithm), a self-adaptive genetic search technique that incorporates Pareto domi-

nance and an elitist approach based on individual age control and the survival of non-dominated

solutions, is employed with co-evolution of multi-populations. In age-structured populations, the

quantity and longevity of non-dominated individuals are crucial for building the global Pareto

front [102].

Conceição António and Hoffbauer (2016) and António and Neves Carneiro (2018) imple-

mented a bi-objective optimization procedure, aiming to minimise the structure’s weight and the

variability of structural response with feasibility robustness of design constraints, which is as-

sessed by the determinant of the variance-covariance matrix representing the joint effects of the

propagation of uncertainties. Optimality is defined as the minimization of the structural weight

and robustness as the minimization of the determinant of the variance-covariance matrix of the

structural responses, being acknowledged by the tolerance to the input uncertainties. The Pareto

front is built using an hierarchical genetic algorithm with co-evolution of populations, denoted

by MOGA-2D, wherein the evolution is based on the exchange data between two populations us-

ing the crossover operator, a small population (SP) using local dominance as fitness measure and

elitism and an enlarged population (EP) to store the non-dominated solutions. The presence of

two parallel populations is essential for the method to successfully converge because it enables

the reduction of the number of non-dominated solutions stored in the SP while preserving that

information in the EP, allowing the evolutionary search to progress while attempting to main-

tain diversity and the best Pareto-optimal front [103, 104]. The same procedure was adopted by

Conceição António (2015), using the Co-Dominance-based genetic algorithm with two levels of

dominance concepts and two exchanging-populations connected by the crossover operator with

selective mating selection of parents taking into account the dominance at the enlarged population

[105].

2.8 Design of composite structures

Even though they have high specific stiffness and strength, structures in composite materials are

usually thin, then susceptible to buckle and, regardless of their thickness, to enter into resonance

conditions when the excitation frequencies are similar to the natural ones and, therefore, there is an

amplification of the amplitude of vibration, particularly for lightly damped structures. Optimiza-

tion of composite plates to maximise buckling loads is essential nowadays with the increasing use
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of composite materials in the most varied industries. Due to the existence of design flexibility,

the design of composite laminates frequently integrates the plies thicknesses and orientations as

design variables. For buckling design, it is often suggested that the outer plies have +/-45◦ orien-

tation, which enhances the composite laminate behaviour under in-plane compressive loads and

for damage tolerance requirements [11, 83, 106–108]. The ability of a structure to withstand the

design load and continuing to fulfill its intended purpose in the presence of cracks and other types

of damage is known as damage tolerance. Damage reduces particularly the compression strength.

Four different approaches were identified by Boeing to reduce the negative impact of damage:

develop damage tolerant structure; improve quality control to reduce fabrication damage; improve

non-destructive evaluation methods for detecting damage during manufacturing; and implement

in-service inspection methods that ensure the detection of critical service damage. Composite

panels are usually reinforced with stiffeners in order to increase their out-of-plane stiffness and

improve their buckling behaviour. The optimization of their shape, size and location is very im-

portant on global buckling of the wing panel, because local buckling of the wing skin may occur

for low load levels even before the wing panel reaches its own critical buckling load, whether they

are not properly arranged. Panels with skins consisting ultimately of 45◦ plies are more damage

tolerant due to the low load level in the skin, which retards the skin-stiffener separation due to the

absence of buckling at design ultimate loads. Moreover, in order to prevent early disbonding or

delamination resulting from transverse strain differentials, the skin-stiffener interface should have

a reduced Poisson’s ratio mismatch [83, 106–108]. The benefit that results from the fibre angles

optimization is the changing of the structure’s stiffness which, consequently, has an influence on

the modes of vibration [56–58, 61, 62, 83].

2.9 Summary

In this chapter, the state of the art regarding the optimization techniques suitable for applica-

tion in the aerospace industry, particularly in the composite laminates design, was presented and

discussed. Emphasis was given to the genetic algorithms embedded in an ANN arrangement.

Firstly, the main characteristics associated to the artificial neural networks were deeply discussed,

highlighting their advantages and drawbacks and describing why their use could improve the al-

gorithm’s performance. It was concluded that accurate results may be achieved in the predictions

of the fundamental natural frequency and critical buckling load, physical variables under analysis,

saving significantly the computational time required by FEM simulations. Afterwards, the main

ANN’s training processes were analysed, the gradient-based and the evolutionary-based optimiza-

tion algorithms. The genetic algorithms are zero-order optimization procedures, that is, they do

not need derivatives of the objective functions to be calculated, which reduces considerably the

time necessary to obtain notable results. However, the tuning of their parameters are an extremely

time-consuming task based on a trial and error procedure. On the other hand, the derivatives are

necessary for the implementation of the gradient-based procedures, what increases the develop-

ment time despite being algorithms with a good performance. Finally, particular attention was
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given to the multi-objective optimization algorithms, which are procedures extremely relevant for

the optimization of structures like the one studied here, wherein the optimization of several vari-

ables simultaneously, such as the maximisation of the critical buckling load and, at the same time,

the minimisation of the mass, is a key aspect in order to obtain the best structure as possible for

those high-responsibility applications. The main methods were presented and compared in relation

to their inherent complexity, computational time and performance.



Chapter 3

Mathematical model

3.1 Introduction

In this chapter, the constitutive relations and equilibrium equations regarding the behaviour of a

composite laminated plate are presented. Besides that, the fundamental equations to determine the

natural frequencies and buckling loads of the considered structure are deduced, according to the

Lévy and Rayleigh-Ritz methods.

Lastly, it was tried to derive the differential equations of motion for a stiffened composite

plate in order to predict its fundamental natural frequency and, therefore, to verify the FEM model

created for that effect.

3.2 Composite materials

The composite panel under analysis is a thin plate composed of several CFRP plies stacked to-

gether. Each layer has unidirectional fibres supported by a polymeric matrix. The matrix assem-

bles all the fibres, keeping them together, acting as a load-transfer and protecting them from the

environment.

Firstly, the constitutive relations are described in the material principal directions for each

lamina k (see Figure 3.1). The material referential is oriented of an angle θ in relation to the main

referential Oxyz. Only the macromechanical behaviour of a lamina is considered and it is assumed

that the generalised Hooke’s law remains valid. Moreover, the material is taken as orthotropic,

that is, there are three mutually orthogonal planes of symmetry. Therefore, the number of inde-

pendent material parameters is reduced to 9 (E1, E2, E3, G12, G13, G23, ν12, ν13 and ν23). In this

formulation, the thickness of each layer is constant, the strains and displacements are small and,

according to the thin plate theory, the transverse shear stresses are neglected [109, 110].

45
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Figure 3.1 – Material principal directions.

The number 1 refers to the fibre direction, therefore the maximum stiffness direction, whereas

the number 2 indicates, obviously, the direction perpendicular to the fibres’ direction, so it points

out the direction with the lowest Young modulus.

Assuming that the material is homogeneous, their layers are perfectly bonded together and

either orthotropic or transversely isotropic, the relations between the stresses and deformations for

each lamina k are given by


σ11

σ22

σ12


(k)

=
1

1− v12 · v21

 E1 v12 ·E2 0

v21 ·E1 E2 0

0 0 G12 · (1− v12 · v21)




ε11

ε22

γ12


(k)

, (3.1)

{
σ13

σ23

}(k)

=

[
G13 0

0 G23

]{
γ13

γ23

}(k)

, (3.2)

wherein E1 corresponds to the Young modulus at the fibre direction, E2 to the same elastic property

in the direction perpendicular to the fibres, the Poisson’s coefficient νi j =− ε j
εi

regards the strains’

ratio when a load is applied through the i direction and G corresponds to the shear modulus.

Usually, the laminate is considered transversely isotropic if the fibres are randomly disposed at

each ply.

For thin plates, the segments normal to the medium non-deformed plane remain approximately

straight and perpendicular to that deformed surface, therefore γ13=γ23=0 and, consequently, the

shear stresses are also null according to equations 3.2. Moreover, those segments do not stretch,

which leads to ε33 = 0. The normal stress regarding the transverse direction is also considered

null, because it takes a value significantly lower in comparison with the in-plane normal stresses

[109, 110].

Using the matrix which allows the transformation of the stresses from the principal/local refe-

rential to the referential Oxyz, the following equations regarding the relationships between stresses

and deformations are achieved for each lamina k:
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σxx

σyy

σxy


(k)

=

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

εxx

εyy

γxy


(k)

; (3.3)

{
σyz

σxz

}(k)

=

[
Q̄44 Q̄45

Q̄45 Q̄55

](k){
γyz

γxz

}(k)

.

All stress, deformation and displacement variables depend, in general, on their spatial coor-

dinates (x,y,z) and time t, except the midplane ones which do not depend upon the transverse

coordinate. By simplification, these dependencies are omitted. The reduced stiffness coefficients

Q̄i j are obtained according to the following equations:

Q̄11 = Q11 ·m4 +2 · (Q12 +2 ·Q66) ·m2 ·n2 +Q22 ·n4;

Q̄12 = (Q11 +Q22 −4 ·Q66) ·m2 ·n2 +Q12 ·
(
m4 +n4) ;

Q̄16 =−m ·n3 ·Q22 +m3 ·n ·Q11 −m ·n
(
m2 −n2) · (Q12 +2 ·Q66) ;

Q̄22 = Q11 ·n4 +2 · (Q12 +2Q66) ·m2 ·n2 +Q22 ·m4;

Q̄26 =−m3 ·n ·Q22 +m ·n3 ·Q11 +m ·n ·
(
m2 −n2) · (Q12 +2Q66) ;

Q̄44 = Q44 ·m2 +Q55 ·n2;

Q̄45 = (Q55 −Q44)mn;

Q̄55 = Q55 ·m2 +Q44 ·n2;

Q̄66 = (Q11 +Q22 −2Q12) ·m2 ·n2 +Q66 ·
(
m2 −n2)2

;

(3.4)

m = cosθ ; n = sinθ .

The coefficients Qi j are denominated by stiffness coefficients and depend only upon the elastic

properties:

Q11 =
E1

1− v12 · v21
; Q22 =

E2

1− v12 · v21
; Q12 =

v12 ·E2

1− v12 · v21
=

v21 ·E1

1− v12 · v21
; (3.5)

Q66 = G12 ; Q44 = G23 ; Q55 = G13.

The relations between the deformations and displacements, neglecting some higher order

terms (Von-Kármán’s equations), are described below:
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εxx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

; εxy =
1
2

(
∂u
∂y

+
∂v
∂x

+
∂w
∂x

∂w
∂y

)
;

εxz =
1
2

(
∂u
∂ z

+
∂w
∂x

)
; εyy =

∂v
∂y

+
1
2

(
∂w
∂y

)2

;

εyz =
1
2

(
∂v
∂ z

+
∂w
∂y

)
; εzz =

∂w
∂ z

;

εxy =
1
2

γxy ; εxz =
1
2

γxz ; εyz =
1
2

γyz.

(3.6)

For a thin plate according to the classical laminated plate theory, the in-plane and transverse

displacements can be calculated according to the expressions below as a function of the midplane

displacements u0, v0 and w0:

u = u0 − z · ∂w0

∂x
;

v = v0 − z · ∂w0

∂y
;

w = w0.

(3.7)

The membrane forces per unit length and the bending and twisting moments can be written as

{
N
M

}
=

[
A B
B D

]{
εεεm

o

εεεb
o

}
; (3.8)

(Ai j,Bi j,Di j) =
nL

∑
k=1

∫ hk

hk−1

(
1,z,z2) Q̄(k)

i j dz i, j = 1,2 or 6;

εεε =

{
εεεm

o

εεεb
o

}
=



ε0
x

ε0
y

γ0
xy

χxx

χyy

χxy


; N =


Nx(x,y, t)

Ny(x,y, t)

Nxy(x,y, t)

 ; M =


Mx(x,y, t)

My(x,y, t)

Mxy(x,y, t)

 ;


εxx(x,y,z, t)

εyy(x,y,z, t)

γxy(x,y,z, t)

=

 1 0 0 −z 0 0

0 1 0 0 −z 0

0 0 1 0 0 −z

{ εεεm
o (x,y, t)

εεεb
o(x,y, t)

}
,

wherein Ai j is an extensional stiffness coefficient, Bi j a bending-extensional stiffness coefficient

and Di j the bending stiffness coefficient. The matrix B is null if the laminate is symmetric about its

midplane. Moreover, nL represents the number of layers whose height is equal to h(k) - h(k−1). εεεm
o

corresponds to the membrane strains at the middle surface, whereas εεεb
o represents the curvatures.
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The composite panel under analysis is arranged symmetrically from both a geometric and

material property standpoint. The constitutive relations can be written as:
Nxx

Nyy

Nxy

=

 A11 A12 0

A12 A11 0

0 0 A66




ε0
x

ε0
y

γ0
xy

 ;


Mxx

Myy

Mxy

=

 D11 D12 D16

D12 D11 D26

D16 D26 D66




χxx

χyy

χxy

 .

(3.9)

For this particular laminate, the bending-stretching coupling coefficients Bi j and extensional

stiffness coefficients A16 and A26 are zero, due to symmetry conditions and the interchange be-

tween +θ /-θ plies. This means that bending–stretching coupling are not present in such laminates,

Bi j=0. Therefore, in-plane loads does not generate bending and twisting curvatures which cause

out-of-plane warping, and bending moments does not produce an extension of the middle surface.

This characteristic is particular desirable for structures subjected to hygrothermal forces due to

changes in environmental conditions, wherein those forces could lead to undesirable warping in

nonsymmetric laminates. On the other hand, there is no coupling between direct stresses and shear

strains, that is, A16=A26=0, because the layup is balanced, for every layer with a +θ orientation

there is a similar one with -θ orientation. The bending-twisting coefficients D16 and D26 tend to

zero as the number of layers increases for multilayered symmetric and balanced laminates. Thus,

for a large number of layers, they can be neglected because their magnitude is significantly lower

in comparison with the other bending-twisting coefficients [2, 111–113].

The equilibrium equations deduced for the isotropic materials are also valid for non-isotropic

ones. By equilibrium of forces and moments:

∂

∂x

(
∂Mxx

∂x
+

∂Myx

∂y

)
+

∂

∂y

(
∂Myy

∂y
+

∂Mxy

∂x

)
=−p;

∂Nx

∂x
+

∂Nyx

∂y
= 0;

∂Ny

∂y
+

∂Nxy

∂x
= 0.

(3.10)

In the next figure, Figure 3.2, the membrane forces per unit length and the torsional and ben-

ding moments are represented along x and y.

3.3 Equations of motion for an unstiffened composite plate

3.3.1 Hamilton’s variational principle

The equations of motion of the composite plate can be achieved by using the Hamilton’s variational

principle. According to this principle, the sum of the variations of the kinetic and strain energies

plus the work done by the non-conservative forces during any time interval [t1, t2] is null:
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Figure 3.2 – Representation of the membrane forces and moments acting on the composite panel.

δ

∫ t2

t1
[T − (F +U)]dt = 0 (3.11)

The variable T and U are, respectively, the kinetic and strain energies and F is here related to

the external forces acting on the panel, being δF the virtual work of those forces. These variables

are calculated according to the following expressions,

T =
∫

V

ρ

2
∂u
∂ t

· ∂u
∂ t

dV, U =
∫

V
U0dV

δF =−
(∫

V
f ·δudV +

∫
A

t̂ ·δudA
)
,

(3.12)

wherein δu represents the virtual displacement vector, dV and dA the infinitesimal volume and

surface elements, f the body forces vector and t̂ the tractions acting on the panel’s surface.

3.3.2 Equations of motion

Taking into account all simplifications performed in section 3.2, the physical quantities involved

in the variational principle described above are written as:

δU =
∫

S

∫ h
2

− h
2

(σxxδεxx +σyyδεyy +2σxyδεxy)dzdxdy;

δF =−
∫

S

[
qt(x,y, t)δw

(
x,y,

h
2

)
+qb(x,y, t)δw

(
x,y,−h

2

)]
dxdy

(3.13)
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−
∫

Γσ

∫ h
2

− h
2

[σ̂nnδun + σ̂nsδus + σ̂nzδw]dzds;

δT =
∫

S

∫ h
2

− h
2

ρ

[(
u̇0 − z

∂ ẇ
∂x

)(
δ u̇0 − z

∂δ ẇ
∂x

)]
dzdxdy

+
∫

S

∫ h
2

− h
2

ρ

[(
v̇0 − z

∂ ẇ
∂y

)(
δ v̇0 − z

∂δ ẇ
∂y

)
+ ẇδ ẇ

]
dzdxdy.

Regarding equations 3.13, qt is the distributed force per unit area at the top (z = h/2) of the

laminate, qb is the distributed force per unit area at the bottom (z = −h/2), (σnn,σns,σnz) are the

stress components on the portion Γσ of the boundary Γ and (δun,δus) are the virtual displacements

along the normal and tangential directions, respectively, of the boundary Γ.

Substituting equations 3.13 into Hamilton’s principle, expression 3.11, considering expres-

sions 3.6, 3.7 and 3.8, the non-existence of forces acting on the boundary Γ and that q(x,y, t) =

qt(x,y, t) + qb(x,y, t), because δw
(
x,y, h

2

)
= δw

(
x,y,−h

2

)
= δw(x,y) and then applying an in-

tegration by parts to relieve the virtual displacements (δu0,δv0,δw0) in S of any differentiation

results an expression which depends upon all components of the virtual displacement vector. The

Euler-Lagrange equations,

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= I0

∂ 2u0

∂ t2 − I1
∂ 2

∂ t2

(
∂w
∂x

)
,

δv0 :
∂Nxy

∂x
+

∂Nyy

∂y
= I0

∂ 2v0

∂ t2 − I1
∂ 2

∂ t2

(
∂w
∂y

)
,

δw0 :
∂ 2Mxx

∂x2 +2
∂ 2Mxy

∂y∂x
+

∂ 2Myy

∂y2 +N (w)+q = I0
∂ 2w
∂ t2

−I2
∂ 2

∂ t2

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
+ I1

∂ 2

∂ t2

(
∂u0

∂x
+

∂v0

∂y

)
,

(3.14)

result from equalizing the coefficients of each individual virtual displacement to zero due to their

complete independence, wherein:

N (w) =
∂

∂x

(
Nxx

∂w
∂x

+Nxy
∂w
∂y

)
+

∂

∂y

(
Nxy

∂w
∂x

+Nyy
∂w
∂y

)
;

I0

I1

I2

=
∫ h

2

− h
2

ρ ·


1

z

z2

dz.
(3.15)

The variables I0, I1 and I2 are the terms relative to the mass moments of inertia. Then, taking

into account the relationship between forces and moments per unit length and membrane strains

and curvatures at the middle surface given by the systems of equations 3.9 and the relation of the

last ones with the in-plane and transverse displacements, the replacement of those relationships in

the Euler-Lagrange equation relative to w0 = w results in:
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−D11
∂ 4w
∂x4 −D12

∂ 4w
∂x2∂y2 −4D66

∂ 4w
∂x2∂y2 −D12

∂ 4w
∂x2∂y2 −D22

∂ 4w
∂y4 +N (w)+q

−
(

∂ 2Mxx

∂x2 +2
∂ 2Mxy

∂y∂x
+

∂ 2Myy

∂y2

)
= I0

∂ 2w
∂ t2 − I2

∂ 2

∂ t2

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
+ I1

∂ 2

∂ t2

(
∂u0

∂x
+

∂v0

∂y

)
(3.16)

3.4 Calculation of the mechanical responses

Here, the eigenvalue problems that allow the calculation of the natural frequencies in a completely

free panel; and the buckling loads under in-plane loads in a simply supported unstiffened compo-

site plate at the edges x = 0 and x = L, are presented.

3.4.1 Natural frequencies

The Rayleigh-Ritz energy approach is employed to obtain the approximate natural frequencies of

the rectangular laminate with all free edges as boundary conditions. The vibration analysis leads

to a generalised eigenvalue problem [114]. Moreover, the fundamental natural frequency can be

obtained according to the principle of Rayleigh: "if the vibrating system is conservative (no energy

is added or lost), then the maximum kinetic energy, Tmax, must be equal to the maximum potential

(strain) energy, Umax" [115].

As results from equation 3.12, when the mass is symmetrically distributed with respect to the

middle plane, the kinetic energy is calculated in accordance with the following expression,

T =
1
2
·h ·

∫
A

[
ρ ·
(
u̇0

2 + v̇0
2 + ẇ2)]dA, (3.17)

wherein u0, v0 and w correspond to the in-plane and transverse displacements, respectively. The

inertia relative to the rotations of perpendicular lines to the middle plane is disregarded from

here on. Considering that the plate is subjected to harmonic oscillations with frequency ω , the

displacements are expressed as

u0(x,y, t) =U(x,y)sin(ωt),

v0(x,y, t) =V (x,y)sin(ωt),

w(x,y, t) =W (x,y)sin(ωt),

(3.18)

and then the replacement of them into equation 3.17 results in:

T =
1
2
·ω2 ·h · cos2(ωt) ·

∫
A

[
ρ ·
(
U2 +V 2 +W 2)]dA. (3.19)

From the equation above, clearly the maximum kinetic energy is represented as

Tmax =
1
2
·ω2 ·h ·

∫
A
(ρ ·W 2)dA, (3.20)
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considering that the contribution of the in-plane displacements is much lower than the transverse

displacement one.

Regarding the strain energy, it assumes the largest value when the deflection of the plate is

maximum. That occurs for sin(ωt)=1 and for a certain point (x,y). Taking into account the

simplifications already performed with regard to the stiffness coefficients:

Us =
1
2

∫
A

[
A11 · (ε0

x )
2 +A22 · (ε0

y )
2 +A66 · (ε0

xy)
2 +2 ·A12 · ε0

x · ε0
y
]

dA

+
1
2

∫
A

[
D11 ·χ

2
x +D22 ·χ

2
y +D66 ·χ

2
xy +2 ·D12 ·χx ·χy

]
dA;

(3.21)

Us,max =
1
2

∫∫ {
A11 ·

(
∂U
∂x

)2

+A22 ·
(

∂V
∂y

)2

+A66 ·

((
∂U
∂y

)2

+2 ·
(

∂U
∂x

· ∂V
∂y

)
+

(
∂V
∂x

)2
)}

dx dy

+
1
2

∫∫ {
2 ·A12 ·

(
∂U
∂x

· ∂V
∂y

)
+D11 ·

(
∂ 2W
∂x2

)2

+D22 ·
(

∂ 2W
∂y2

)2
}

dx dy

+
1
2

∫∫ {
2 ·D12 ·

(
∂ 2W
∂x2

)(
∂ 2W
∂y2

)
+D66 ·

(
∂ 2W
∂x∂y

)2
}

dx dy.

(3.22)

Applying the Rayleigh’s principle, the fundamental natural frequency, ω1, can be achieved:

Us,max = Tmax (3.23)

ω
2
1 =

2Us,max

ρ ·h ·
∫

AW 2(x,y)dA
(3.24)

Since we arbitrarily stiffened the plate by assuming a modal shape, increasing its frequency,

the approximate lowest or fundamental natural frequency determined from Rayleigh’s principle

is always higher than the "exact" values. The spatial displacements are written in the form of a

series,

U(x,y) =
n

∑
i=1

AiUi(x,y),

V (x,y) =
n

∑
i=1

BiVi(x,y),

W (x,y) =
n

∑
i=1

CiWi(x,y),

(3.25)

and the unknown coefficients are determined according to the minimum total energy principle.

The application of the following equation for each unknown coefficient,

∂ (Us,max −Tmax)

∂ki
= 0 (i = 1,2,3, . . . ,n), (3.26)
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results in a system of homogeneous linear algebraic equations in ki (general unknown variable),

wherein in order for at least one coefficient be different from zero, the determinant of the coeffi-

cients’ matrix must be null (
[
K−ω2M

]
)=0. The resultant equation is denominated by frequency

or characteristic equation, which enables to obtain the natural frequencies of a given plate.

Regarding the approximation functions, they may be assumed as a sum of power series func-

tions, which were approved by many researchers for isotropic and laminated plates having only

free edges,

U(ζ ,η) =
i

∑
0

j

∑
0

ai j ·ζ i ·η j,

V (ζ ,η) =
k

∑
0

l

∑
0

bkI ·ζ k ·η l,

W (ζ ,η) =
m

∑
0

n

∑
0

cmn ·ζ m ·ηn,

(3.27)

where ζ = x
L −ζ0, η = y

b −η0 and L, b and h corresponds to the length, width and total thickness

of the composite laminate, respectively. For ζ = L
2 and η = b

2 , the referential is centered at point

A (see Figure 3.2). The coefficients i, j, k, l, m and n are selected according to the desired number

of mode shapes, because the number of used shape functions is directly related to the number of

natural frequencies, and degree of accuracy [114, 116, 117]. On the other hand, a good alternative,

even though with a harder mathematical treatment, consists in using the mode shapes relative to

the transversal vibration of beams with the same boundary conditions.

3.4.2 Buckling loads

Under compressive loads, the plate’s behaviour is stable until a certain load is reached. The lowest

value of this load is designated by critical buckling load. From this point on, the plate seeks an

alternative equilibrium configuration while a stiffness variation occurs. That phenomena is de-

nominated by bifurcation. Buckling of laminates is an instability that is characterised by excessive

transverse deflections under in-plane compressive or shear forces [110, 111].

Lévy’s method can be used to determine the buckling loads of a rectangular laminate with two

parallel edges simply supported and the two remaining ones with arbitrary boundary conditions.

For plates with any boundary conditions, the Ritz method is the preferred choice as long as suitable

approximation functions are found for the problem [110].

The equation of motion governing buckling under in-plane normal forces per unit length Nxx

(Nyy=Nxy=Mxx=Myy=Mxy=q=0) is given by further simplification of expression 3.16:

D11 ·
∂ 4w
∂x4 +2 · (D12 +2D66) ·

∂ 4w
∂x2∂y2 +D22 ·

∂ 4w
∂y4 (3.28)

−Nxx ·
∂ 2w
∂x2 + I0 ·

∂ 2w
∂ t2 − I2

∂ 2

∂ t2

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
+ I1

∂ 2

∂ t2

(
∂u0

∂x
+

∂v0

∂y

)
= 0.
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According to the Lévy method, the partial differential equation 3.28 is reduced to an ordinary

differential equation in y by assuming a solution in the form of a single Fourier series,

w(x,y) =
∞

∑
n=1

Wn(y) · sin(βx), β =
nπ

L
, (3.29)

which satisfies the boundary conditions of a simply supported plate along the edges x = 0 and

x = L (equation 3.30). The boundary and loading conditions regarding the buckling problem

studied here are illustrated later on, in Figure 6.2.

w = 0 ; Mxx = D11 ·χxx +D12 ·χyy = 0. (3.30)

Considering only the first term of the Fourier series present in 3.29 and replacing it and its

derivatives into equation 3.28, considering Nxx =−Nx, not accounting for the inertia terms and for

any x (sin(βx) ̸= 0):

β
4 ·D11 ·Wn −2 ·β 2 · (D12 +2D66) ·

d2Wn

dy2 +D22 ·
d4Wn

dy4 −Nx ·Wn ·β 2 = 0. (3.31)

Assuming the general solution ( [110])

Wn(y) = An · cosh(λ1 · y)+Bn · sinh(λ1 · y)+Cn · cos(λ2 · y)+Dn · sin(λ2 · y), (3.32)

where λi are the roots of the following characteristic function

β
4 ·D11 −2 ·β 2 · (D12 +2D66) ·λ 2 +D22 ·λ 4 −Nx ·β 2 = 0 (3.33)

and are given by:

λ
2
1 =

β 2

D22
·

(
(D12 +2 ·D66)+

√
(D12 +2 ·D66)2 −D22 ·D11 +D22 ·

Nx

β 2

)
; (3.34)

λ
2
2 =

β 2

D22
·

(
(D12 +2 ·D66)−

√
(D12 +2 ·D66)2 −D22 ·D11 +D22 ·

Nx

β 2

)
The constants An, Bn, Cn and Dn must be determined according to the boundary conditions at

the edges y = 0 and y = b. Those edges are free, therefore the bending moment and the transverse

force are null at each one. A system of equations which depends also on λi results from those

conditions. In order for the system to have nontrivial solutions (An ̸= 0 ∨ Bn ̸= 0 ∨ Cn ̸= 0 ∨
Dn ̸= 0), the determinant of the matrix of coefficients must be null, which leads to an equation

which establishes a relationship between λ1 and λ2. From this one and equations 3.34, the critical

buckling load Nxx can be determined, even though with a complex manipulation of the expressions.
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3.4.3 Derivation of the differential equations of motion for a stiffened composite
plate

The laminated plates and shells with stiffeners or stringers have an unquestionable importance

in the aerospace industry and other modern engineering fields. Therefore, theoretical, numerical

and experimental analysis of these structures became even more fundamental for their static and

dynamic understanding.

Here, the objective is to derive the differential equations of motion and to obtain the eigenvalue

problem capable of determining the natural frequencies of a stiffened composite plate. The longi-

tudinal stiffeners are made of aluminium, which is an isotropic material. The mass and stiffness of

the aluminium stiffeners must be added to the overall mass and stiffness matrices of the structure,

taking into consideration a suitable referential.

Qing et al. considered separately the plate and stiffeners contribution. The created model

takes into account the compatibility of displacements and stresses at the interfaces between the

composite and the aluminium longitudinal stiffeners, not neglecting neither the transverse shear

deformation nor the rotary inertia [118]. Moreover, Xue and Wang modelled the panel and stiff-

eners according to the classical theories of the plate and beam’s behaviour, calculating and adding

their kinetic and strain energies, and joining them afterwards using the equations of displacements’

compatibility. They claimed that there are two approaches to consider the stiffeners contribution.

One consists in the transformation of the stiffened plate into and equivalent orthotropic one and

the other considers the stiffeners as a grid attached to the plate [119].

Regarding the shape functions used to approximate the displacements and rotations, they are

often power series, as referred above, such as the Jacobi polynomials, a type of orthogonal func-

tions in the interval [-1,1]. It is worth to mention that only the linear displacements are con-

sidered here, because the plate is thin. These functions are of easier mathematical treatment in

comparison with the more complicated trigonometrical functions. Besides that, when the Ritz

method is used, they do not promote ill-conditioning issues when the number of terms increases.

Other well-known polynomials can be obtained by the adjustment of their parameters, such as the

Gegenbauer, Legendre or Chebychev polynomials. In order to make their treatment easier, it is

performed a transformation from the global (x,y) to a local referential (ξ ,η), pointing out their

orthogonal properties [120] .

Based on the classical theory of plates, the maximum strain and kinetic energies of the compo-

site panel can be obtained by expressions 3.22 and 3.20, respectively, considering also the coupling

between bending and stretching effects due to the presence of stiffeners, that is, Bi j ̸= 0, and taking

into account that the maximum strain energy occurs for the instant whose deflection is highest:
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Us =
1
2

∫
A

[
A11 · ε2

xx +A22 · ε2
yy +A66 · ε2

xy +2 ·A12 · εxx · εyy
]

dA

+
1
2

∫
A

[
D11 ·χ

2
x +D22 ·χ

2
y +D66 ·χ

2
xy +2 ·D12 ·χx ·χy

]
dA

+
1
2

∫
A
[B11 · εxx ·χx +B22 · εyy ·χy +B66 · εxy ·χxy +2 ·B12 · (εxx ·χy + εyy ·χx)] dA;

(3.35)

Umax,p =
1
2

∫∫ A11 ·
(

∂U
∂x

)2

+A22 ·
(

∂V
∂y

)2

+A66 ·

((
∂U
∂y

)2

+2 ·
(

∂U
∂x

· ∂V
∂y

)
+

(
∂V
∂x

)2
)2
dx dy

+
1
2

∫∫ {
2 ·A12 ·

(
∂U
∂x

· ∂V
∂y

)
+D11 ·

(
∂ 2W
∂x2

)2

+D22 ·
(

∂ 2W
∂y2

)2
}

dx dy

+
1
2

∫∫ {
2 ·D12 ·

(
∂ 2W
∂x2

)(
∂ 2W
∂y2

)
+D66 ·

(
∂ 2W
∂x∂y

)2

+B11 ·
(

∂U
∂x

· ∂ 2W
∂x2

)}
dx dy

+
1
2

∫∫ B22 ·
(

∂V
∂y

· ∂ 2W
∂y2

)
+B66 ·

((∂U
∂y

)2

+2 ·
(

∂U
∂x

· ∂V
∂y

)
+

(
∂V
∂x

)2
)2

· ∂ 2W
∂x∂y

dx dy

+
1
2

∫∫ {
2 ·B12 ·

(
∂U
∂x

· ∂ 2W
∂y2 +

∂V
∂y

· ∂ 2W
∂x2

)}
dx dy;

(3.36)

Tmax,p =
1
2
·ω2 ·h ·

∫
A
(ρ ·W 2)dA. (3.37)

The cross-sectional dimensions of the stiffeners are considerably lower than their length, thus

the longitudinal stiffeners are modelled as a beam firmly attached to the plate’s midplane. More-

over, the transverse strain is negligible taking into account the classical beam’s theory.

Using the equations of compatibility of displacements, the plate and a certain stiffener are

incorporated together. The transverse stiffener’s displacement is expressed as a function of the

plate’s displacement w = w(x,y = ys, t), where ys represents the spatial localization of the stiff-

ener along the Oy axis. Therefore, the expressions of the stiffener’s maximum strain and kinetic

energies, when the composite stiffened plate oscillate in one of its modes of vibration, can be

obtained:

Umax,s =
1
2
·E · I

∫ L

0

[
∂ 2

∂x2W (x,ys)

]2

dx; (3.38)

Tmax,s =
1
2
·ω2 ·ρ ·L ·

∫
A

W 2dA. (3.39)

The total energy of the stiffened plate is given by



58 Mathematical model

Π =Up +Tp +
Nsti f f

∑
i=1

(Ui,s +Ti,s), (3.40)

where Nsti f f represents the number of stiffeners and the subscripts p and s represent plate and

stiffener, respectively.

A prediction of the fundamental natural frequency can be obtained according to the Rayleigh’s

principle, equation 3.24.

On the other hand, the in-plane and transverse displacements are represented as a series of

complete, orthogonal polynomials according to the Ritz method in order to obtain the eigen-

value problem which allows to obtain the structure’s natural frequencies in accordance with the

Rayleigh-Ritz procedure described at the end of subsection 3.4.1. The shape functions must com-

ply with the geometric boundary conditions, be linearly independent, continuous and with a con-

tinuous derivative until at least the order of derivatives necessary to obtain the total potential en-

ergy, and form a complete series [109].

The in-plane and transverse displacements may be then represented as a sum of adequately

weighted Jacobi polynomials [120], wherein W can be replaced by U or V without loss of gene-

rality,

W (ξ ,η) =
i

∑
i=0

j

∑
j=0

ci j ·ψi(ξ ) ·ψ j(η), (3.41)

ψn(l) = A(l) ·P(α,β )
n (l)

A(l) = (1− l)α · (1+ l)β

l = ξ ,η ,

(3.42)

for α,β > −1. These coefficients are assigned to the weighting function A(l), which is used to

enforce the boundary conditions at each edge.

The Jacobi polynomials form a complete orthogonal system in the interval [−1,1] with respect

to the weighting function A(l). The three-term recursive formula for the Jacobi polynomials is

given by

2 ·n · cn · c2n−2 ·P(α,β )
n (l) = c2n−1 ·

(
c2n−2 · c2n · l +α

2 −β
2) ·P(α,β )

n−1 (l)

−2 · (n−1+α)(n−1+β ) · c2n ·P(α,β )
n−2 (l),

(3.43)

where

cn = n+α +β ,

P(α,β )
0 (l) = 1,

P(α,β )
1 (l) =

α −β

2
+

(
1+

α −β

2

)
· l.

(3.44)
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3.5 Finite Element Method

In this section, the mathematical formulation associated to the discretisation of the domain inherent

to a finite element model is undertaken.

In order to apply the h-version FEM, the continuum domain Ω0 must be splitted into ne smaller

domains Ωe
0, where ne represents the number of elements.

Ω
0 ≈ Ω

0
h =

ne⋃
e=1

Ω
0
e (3.45)

The subscript h regards to the FE approximation of some physical quantity. The displacement

solution wwwe, at each instant, is obtained by the consideration of each node displacement through

shape functions Nk, as expressed in the following equation,

wwwe
(
xxx0, t

)
≈ wwwe,h

(
xxx0, t

)
=

nnod

∑
k=1

Nk
(
xxx0)dddk(t), (3.46)

where nnod is the number of nodes of a particular finite element e, xxx0 the reference position vector

and dddk represents the nodal displacement vector. At each node, only one shape function, the one

assigned to that specific node, has unitary value and it has a non-null value at only one determined

node. If isoparametric elements are used, the same shape functions are used to interpolate any

physical quantity, such as the displacement, and the Cartesian’s coordinates:

wwwe,h(ξ ,η , t) =
m

∑
k=1

Nk(ξ ,η) ·dddk(t);

xxxe,h(ξ ,η , t) =
m

∑
k=1

Nk(ξ ,η) · xxxk(t).
(3.47)

3.6 Final remarks

In this chapter, the main goal is to clarify the reader about the main equations regarding the phy-

sical behaviour of a composite plate. Firstly, the constitutive relations and equilibrium equations

were derived and presented for a simple composite plate. Then, applying the Hamilton’s vari-

ational principle, the differential equation of motion relative to the transverse displacement was

established. The Rayleigh-Ritz procedure was proposed to obtain the plate’s natural frequencies.

In turn, in order to predict the buckling loads for the same simpler structure, the Lévy’s method

was implemented. Lastly, the Rayleigh-Ritz approach was presented as a clear hypothesis to ob-

tain the natural frequencies of the stiffened composite plate. The transverse displacement was

approximated by using Jacobi polynomials.
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Chapter 4

Wing representative structure’s
description

4.1 Introduction

In this chapter, the airplane wing representative structure under analysis is deeply described, inclu-

ding its geometry and all materials and respective involved mechanical properties. Furthermore,

the discretisation of the structure for the finite element models is presented, highlighting the type

of elements used to discretise each individual part.

4.2 Wing representative structure’s geometry

The main structure components are illustrated in the figure below, Figure 4.1. The connections

between the majority of the individual parts are assured by bolts except the connection between

the stiffeners and the panels. Araldite® 420 A/B is used between them.

Figure 4.1 – Airplane wing representative structure and its components. Provided by Cardiff School of Engineering.
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The number of items of each part as well as its material are specified in the table below.

Table 4.1 – List of items and their materials.

Item Quantity Material

Composite panel 2
USN150B: 18 plies

By default: [-45/0/45/0/90/0/-45/0/45]s

Long stiffener 10 Aluminium 6063AT6
Short stiffener 15 Aluminium 6063AT6

Rib panel 3 Aluminium 6082AT6
Rib to panel joint 24 Aluminium 6082AT6

Rib to panel joint left 6 Aluminium 6082AT6
Rib to panel joint right 6 Aluminium 6082AT6

Due to the scope of this thesis, only the elastic behaviour of the described materials is consi-

dered.

4.3 Elastic materials

The mechanical properties and density of the adhesive and aluminium alloys necessary for the

development of the finite element models are presented in Table 4.2 [5].

Table 4.2 – Elastic properties of the adhesive and aluminium alloys.

Material σy /MPa E /MPa ν ρ /g · cm−3

Aluminium 6063AT6 170
70000 0.33 2.70

Aluminium 6082AT6 260

Araldite ® 420 A/B 27 1850 0.3 1.2

Regarding the composite panel, it is a symmetric plate made up by 18 plies stacked together

of USN150B, which is a transversely isotropic carbon fibre-epoxy material. It is composed by

SKYFLEX K51 matrix and TR50S15L fibres. Henriques (2021) performed a micromechanics-

based model in order to predict the elastic properties of that composite, because they are not avai-

lable in the literature. Using the elastic properties of a similar material, which differs only in the

fibre content, the USN150B elastic properties were achieved. The missing elastic properties were

calculated according to the Voigt model of the Rule of Mixtures, which assumes that the fibre’s

and matrix’s strain is equal under longitudinal loading conditions, and the model for transverse

modulus based on the unit cell [5].

The following assumptions were made to predict the unknown elastic properties according to

the referred models: the composite is only composed by its fibres and matrix, which are bonded

perfectly (no voids); the fibres are disposed in an uniform and unidirectional way; the polymeric
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matrix is isotropic; composite material is transversely isotropic, that is, the properties are constant

in the plane perpendicular to the fibre direction, assuming that the fibres are randomly disposed;

and the resulted properties are calculated in relation to the material’s principal axes [5].

Therefore, taking into account that the resin content is about 33% and the remainder is com-

posed by carbon fibres, the elastic properties of the transversely isotropic material were calculated

using the models already explained (see Table 4.3):

Table 4.3 – Elastic properties of USN150B.

E11 [GPa] 131 X t [MPa] 2000

E22 = E33 [GPa] 8 Y t = Zt [MPa] 61

G12 = G13 [GPa] 4.5 Xc [MPa] 2000

G23 [GPa] 3.5 Y c = Zc [MPa] 200

ν12 = ν13 0.29 S12 = S13 [MPa] 70

ν23 0.47 S23 [MPa] 40

ρ [g · cm−3] 1.544 tply [mm] 0.194444

The coordinate system 123 refers to the material’s principal axes; X , Y , Z are the normal

strengths in those directions; S is the shear strength and the subscripts t and c refers to tensile and

compressive, respectively.

4.4 Finite element method

As it will be explained and demonstrated later on, all FEM simulations are carried out only in a

substructure of the stiffened composite panel. Therefore, here only the discretisation processes

associated with the composite panel and the longitudinal stiffeners are presented and discussed.

Moreover, no bolts or holes are considered in order to make the mesh construction easier and to

simplify the analysis of the results.

The discretisation process consists in the transformation of the continuous structure into an

assembly of discrete finite elements accurately interconnected.

Each finite element is characterised by the following classes according to Abaqus® software

[121]:

• family: continuum (solid), shell, beam, rigid, membrane, infinite, springs and dashpots or

truss elements;

• number of degrees of freedom;

• number of nodes: the number of nodes at each edge is related to the order of interpolation

used to interpolate the desired variables in other points;
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• formulation: is related to the mathematical theory used to characterise the element’s be-

haviour;

• integration: numerical techniques used to calculate several quantities over the volume of

the element, replacing the expensive direct integration (e.g. Gauss quadrature). The ele-

ments may use full or reduced integration, being the last one identified by the letter R at the

end of the element’s description.

The continuum elements are suitable for a wide range of structure’s shapes subjected to any

loading, due to their simple nature. Their names begin with the letter C ("Continuum"), followed

by two letters which indicate the dimensionality (3D indicate a three-dimensional element, AX an

axisymmetric element, for example), next the number of active degrees of freedom is appointed

and the last one, if necessary, a letter indicates whether it is used an incompatible mode formu-

lation (I) or an hybrid element formulation (H). The incompatible mode elements are used to

surpass the shear locking phenomena in fully integrated, first-order ones, with high accuracy and

low computational cost. Additional degrees of freedom are introduced to improve the deforma-

tion gradient of the element. The stiffeners were modelled with 8-node hexahedral continuum

solid elements with incompatible nodes, C3D8I. The elimination of the shear locking problem, by

using reduced integration, and the volumetric locking alleviation are some of the advantages of

those elements. Furthermore, they assure a faster and better convergence in comparison with the

tetrahedral elements and their geometry is suitable for rectangle structures, like this one [121].

The thickness of the composite panel is significantly lower than their in-plane dimensions,

therefore this structure is modelled as a shell. The standard 3D shell elements may be general-

purpose, thin-only or thick-only. The thick shell problems assume the effects of the transverse

shear deformation, whereas the others neglect that. A general-purpose element with hourglass

control denominated by reduced integrated 8-node continuum shell element, SC8R, is used. These

elements are similar to the C3D8I continuum solid, differing in their constitutive and kinematic

behaviours. They are first-order interpolation elements which have lighter computational effort,

no aspect ratio issues and allow the stress assessment through the material thickness by attaching

one element per layer [5, 121–123].

Both types of elements considered for the panel and stiffeners have only displacement degrees

of freedom, so they can be interconnected without any kinematical transition. The connection

between the meshes, the mesh developed for the panel and for each stiffener, is established by

a tie constraint, which connects two surfaces avoiding the relative motion between them. It is

worth to mention that the meshes between parts could be non-conformal, that is, there are nodes

belonging to a certain mesh that are placed along the edges of the other mesh, without a per-

fect bonding/matching between the nodes. This phenomena is not relevant for the simulations to

perform, because the contact between the several parts is not a critical point within this work.
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Figure 4.2 – SC8R and C3D8I elements: linear degrees of freedom.

In the next figure, the meshes of the composite panel under analysis as well as their connections

are presented.

Figure 4.3 – Stiffened composite plate’s mesh.

For the elaboration of this work, the adhesive’s behaviour which connects the composite panel

and the longitudinal stiffeners is not accounted for. This decision is based on the main objectives

pre-established for this dissertation which do not include the study of the delamination at the

interfaces or the cohesive failure in those areas. Therefore, it was possible to simplify the created

Abaqus® model, reducing considerably the computational time.

4.5 Final remarks

Due to the essence of the simulations to perform, only a substructure of the overall one is con-

sidered. Moreover, no bolts or holes are considered and only the elastic behaviour is taken into

account in the prediction of the fundamental natural frequency and the critical buckling load for

the several configurations. The aluminum stiffener is a rectangle-like shape structure, therefore it

is modelled by a continuum element, C3D8I. The thickness of the composite panel is considerably

lower in comparison to their in-plane dimensions, so a shell element is employed. In order to

reduce shear locking effects and improve the model’s performance, the shell element chosen was

the SC8R.
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Chapter 5

Optimization of the airplane wing
representative structure for vibration

5.1 Introduction

In this chapter, an assessment of the wing representative structure’s behaviour is performed, Figure

1.1, under free conditions, that is, without any loading and with null forces and moments at all

extremities. Therefore, the structure’s fundamental natural frequency for a set of experiences

which differ only in the values of the considered design variables is obtained, aiming to achieve

the best structure’s configuration regarding the maximisation of that output value. As referred

above, this optimization problem is extremely relevant in order to keep the amplitude of vibration

within a desired gap.

The airplane wing representative’s structure is composed by two similar composite panels

and by transversal and longitudinal aluminium stiffeners. In a first instance, the main goal is

to achieve the composite fibres orientations which result in the highest value for the fundamental

natural frequency. Then, a similar procedure is performed, adding the layers’ thicknesses as design

variables. Therefore, the analysed structure is simplified into a simple composite panel, because

all design variables are related to them and, as referred, the two panels are identical concerning the

number of plies, stacking sequence and plies thicknesses and orientations. Moreover, no bolts or

holes are considered with the aim of simplifying the creation of the model, particularly its mesh,

and posterior analysis.

Figure 5.1 – Analysed substructure of the airplane wing representative structure.
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The CAD Model, provided by the School of Engineering at Cardiff University, was simpli-

fied accordingly and then imported to Abaqus® software, version 6.20-1. The simulations were

performed in a computer with the following characteristics: 8 CPUS AMD Ryzen 7 5700G with

Radeon Graphics 3.80 GHz; 16 GB of RAM, 475 GB hard drive. The required mechanical pro-

perties to create the models are provided in the previous chapter.

The optimization code was developed in the Visual Basic environment and then the FOR-

TRAN language was used to compile it. The developed code is based on a genetic algorithm,

an evolutionary-based approach, and an artificial neural network was built to predict the natural

frequencies values for a particular set of design variables, avoiding the use of more finite element

simulations, significantly reducing the computational time.

In Section 5.2, a complete description of the developed genetic-based code and the artificial

neural network arrangement is done, presenting all steps relative to each one of the procedures, as

well as all the involved parameters.

In Sections 5.3 and 5.4, the optimization results related to each one of them are presented

and deeply analysed. A study regarding the evolution of the absolute and relative errors and the

influence of the several code parameters on the output results is performed. Moreover, the results

obtained by FEM simulations, that is, the structure’s main modes of vibration, are exhibited and

compared.

Lastly, in Section 5.5, some final conclusions are drawn related to the work developed through-

out the chapter.

5.2 Description of the optimization algorithm

In this section, the model capable of optimising the substructure’s fundamental natural frequency

and critical buckling load, altering the composite fibres orientations and layers’ thicknesses, is

presented.

The procedure is divided into three stages: firstly several FEM simulations to train and test

the developed network are carried out; thereafter a learning algorithm is applied to the ANN

which is then validated; finally a genetic algorithm is employed with the aim of achieving the

best configuration regarding the design variables, the fibres orientations and layers’ thicknesses,

depending on the considered problem.

In order to reduce the number of required FEM simulations, the relationship between the

design variables and the mechanical output response was achieved by the development of an ANN.

The set of experiments necessary to train the network, that is, achieve its best configuration regar-

ding the synaptic weights and biases, were planned according to the Uniform Design Method due

to its high representativeness of the domain under analysis. The UDM’s experimental points are

taken out from specific tables. An accessory table is always provided in order to consult the right

columns, being that right choice related to a minimum discrepancy value in the representation.

Moreover, considering the design points and their corresponding output values obtained by FEM

simulations, the best ANN’s architecture was achieved by the implementation of a genetic-based
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algorithm. Lastly, all experiments were feedforwarded in the optimal ANN and the outcomes were

compared with those from FEM simulations, aiming to validate the developed network.

In a second phase, using the developed neural network to predict the output values and ap-

plying again a genetic algorithm, it was possible to achieve the best design variables and cor-

respondent optimised mechanical variable, under several constraints. It is worth to mention that

the genetic parameters used to achieve the best ANN’s configuration and to optimise the mecha-

nical responses are completely independent.

Lastly, the Sobol indices for global sensitivity analysis are calculated to establish the impor-

tance of each particular design variable on the structural response, implementing an ANN-based

Monte Carlo Simulation. In this approach, the Sobol indices are calculated using the conditional

variance and the total system variance. The MCS is used to calculate those statistical values,

whereas the output mechanical values are predicted by the artificial neural network. Statistically,

an individual Sobol index could be defined as the contribution of the variance of a certain de-

sign variable for the total variability of the fundamental natural frequency or critical buckling load

response. The different development stages referred above are schematised in the figure below, Fi-

gure 5.2. The achievement of the best ANN’s architecture is referred as learning process, whereas

the optimization of the mechanical variables is denoted as optimization process and the sensitivity

measurement as global sensitivity analysis.

Figure 5.2 – Flow diagram of the optimization framework. Adapted from [124–126].
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5.2.1 Uniform Design Method

The sets of design variables were planned according to the UDM. This procedure involves reducing

the variation in a process through a robust design of experiments. In this work, the design of

experiments was implemented using the table L27(313). These tables are presented later on, when

a particular optimization problem is introduced and deeply analysed. Therefore, 27 experiments

are necessary for each optimization procedure.

5.2.2 ANN model development

The optimal configuration of the artificial neural network is achieved by minimising the error

between the simulated network outputs and the outputs resulted from FEM simulations, for the set

of 27 experimental points provided by UDM. In this stage, the design variables are the synaptic

weights, W(L)
ji and biases, r(L). The errors are back-propagated using a genetic algorithm, deno-

minated GA(1), with appropriated genetic parameters (see Figure 5.3). A population of binary-

coded solutions for ANN configuration, denominated by P(t), is considered for each t-generation.

If pre-established criteria regarding the obtained errors is not attained, a new generation is created

by the crossover operation of the genetic algorithm and the feedforward process is repeated until

the best ANN configuration is achieved.

In order to completely define this first optimization procedure, the following parameters must

be specified and characterized:

• ANN architecture: number of hidden layers and the number of nodes in each layer: input

layer, hidden layer(s) and output layer;

• experimental points (UDM);

• normalisation range for the input and output variables;

• genetic operators: dimension of the population, mutation and elite percentages, maximum

number of generations, crossover operator, similarity control method;

• range of values and number of bits for the synaptic weights and biases at each connection;

• activation functions and respective parameters.

The data used to build the ANN needs to be normalised in order to avoid numerical error

propagation during the learning process. The data normalisation is done according to the following

equation,

dk = (dk −dmin) ·
dmax

N −dmin
N

dmax −dmin
+dmin

N , (5.1)

in which dk represents the real value of a certain variable before normalisation, dmin and dmax their

minimum and maximum values, respectively, and dmax
N and dmin

N the range of normalisation, which



5.2 Description of the optimization algorithm 71

is particular for each set of similar variables. The vector containing all signals at the input of each

p-layer is calculated as follows,

i(p) = W(p)y(p−1)+ r(p), (5.2)

wherein i(p) represents the input vector of the p-layer and y(p−1) represents the output of the layer

p−1.

Regarding the activation functions, whose main function is to introduce non-linearity to the

network, the ones related to each one of the optimization procedures are presented in the opportune

sections. It is worth to mention that if a linear function is used, no bias must be considered. In

order to achieve the best ANN configuration, the errors between the network outputs and FEM

simulations must be compared and back-propagated, aiming to minimise those values during the

learning procedure. Therefore, several error measures are presented and combined in a fitness

function:

• root-mean-square error,

RMSE =
1

nexp ·OUT

√√√√nexp

∑
i=1

OUT

∑
j=1

(
Osim

i j −OANN
i j

)2
, (5.3)

where O represents the values of the output variables provided both by the FEM model and

ANN.

• relative error

RE =
1

nexp ·OUT

√√√√nexp

∑
i=1

OUT

∑
j=1

(
Osim

i j −OANN
i j

Osim
i j

)2

. (5.4)

• error component which takes into account the influence of the biases, Γerror,

Γerror =
1

nexp

nexp

∑
i=1

[
1

Nhid

Nhid

∑
k=1

(
r(1)k

)2
+

1
OUT

OUT

∑
j=1

(
r(2)j

)2
]
, (5.5)

where Nhid represents the number of hidden nodes.

Then, the errors are aggregated into

F1 = c1 ·RMSE + c2 ·RE + c3 ·Γerror, (5.6)

in which c1, c2, c3 are user-defined values, aiming to stabilize the numerical procedure due to the

difference in the magnitude of each parcel. A fitness function is defined straight away in order to

implement a genetic algorithm, whose main goal is to minimise F1,

Maximise FIT 1 = K1 −F1, (5.7)



72 Optimization of the airplane wing representative structure for vibration

where K1 is a user-defined constant large enough to keep that expression positive. The evolutionary-

based approach is considered for the ANN architecture optimization, because the probability of

reaching local optima is lower compared to the gradient-based algorithms. As referred above, the

design variables are initially binary-coded to simplify the computer calculations. Then, a decoding

process is executed, aiming to obtain the fitness value of each particular individual belonging to

the pre-established population.

5.2.3 Optimal design procedure

During this last stage, the fundamental natural frequency or the critical buckling load are ma-

ximised under certain pre-specified constraints. The design variables are, now, the fibres orien-

tations and/or layers thicknesses and the fitness assessment is performed using the optimal ANN

architecture developed earlier in the process. The optimal design procedure is carried out using an

evolutionary-based algorithm, genetic one, denoted by GA(2) in the scheme, see Figure 5.3, with

independent genetic parameters from those related with the first one. A population of binary-coded

solutions, denominated by X(t), is considered for each t-generation. The optimization process is

repeated until pre-established convergence criteria is met. In this case, a maximum number of

generations is prescribed.

The fitness function results from the combination of the objective value and the penalties,

which could be graded, due to constraint(s) violation. Moreover, constant values are associated to

each parcel, with the aim of stabilizing the numerical procedure through magnitude equality. Note

that the size constraints are imposed directly on the design space in the binary coding.

Figure 5.3 – ANN learning and optimization procedure. Adapted from [124–126].
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5.2.4 Genetic algorithm description

In this subsection, a deeper understanding of the implemented genetic algorithm is provided. The

structure of the two algorithms, GA(1) and GA(2) is identical, differing only on the values of their

genetic parameters. The basic genetic algorithm’s performance consists on the binary coding of

the design variables, the assessment of the individuals based on a suitable fitness function and in

applying successively genetic operators, such as selection, crossover, similarity control elimina-

tion/replacement and mutation, to generate new individuals. The complete steps are schematised

in Figure 5.4 and summarised below:

• Step 1: The initial population, PK , is randomly created according to a certain statistical

distribution. The individuals are binary-coded.

• Step 2: The individuals are ranked in the original population based on their fitness values.

Selection. Two individuals are selected for crossover: one belonging to the highly fitted

group, elite group, and another from the least fitted set.

• Step 3: Crossover. The individuals that resulted from the crossover operator make part of the

offspring group, B. The crossover operator acts on the descendent chromosome, assigning

to each one of the genes a value equal to the one presented in the same bit of a certain

parent. That distribution is performed according to a certain criteria characteristic of each

crossover operator (see subsection 2.6.4). Moreover, a certain probability can be assigned

to this genetic operator. Lastly, the offspring group joins the initial population, forming the

enlarged population, PK ∪B.

• Step 4: The enlarged population is ranked according to their fitness values. Elimination/Re-

placement control. A certain similarity control mechanism is applied, phenotype-based (by

variable) or genotype-based (by gene), and the similar individuals are taken out from the

population in order to preserve its diversity and are replaced by new random ones.

• Step 5: Due to the introduction of new individuals, a ranking procedure is performed. Now,

the dimension of the population can be lower than the pre-specified value. Therefore, a

mutation operator is used to reestablish the population’s dimension. Moreover, this operator

is fundamental to induce population’s diversity, avoiding premature convergence resulting

from the anchorage at local optimum. After this operator, the new population, PK+1 is

created and the process is repeated until the pre-specified convergence criteria is followed.

• Step 6: Convergence criteria. The adopted convergence criteria is a maximum number of

generations. However, there are many more, including a certain fitness value achievement,

the difference between those values between a prescribed number of generations or the

perception of a evolution stagnation. The main ones can be revisited in subsection 2.6.6.

The next figure exemplifies the sequential procedure described above, Figure 5.4.



74 Optimization of the airplane wing representative structure for vibration

Figure 5.4 – Genetic algorithm’s description. Adapted from [124–126] .

5.2.5 Global sensitivity analysis

The relative importance of each design variable is calculated by a global sensitivity analysis ac-

cording to variance-based methods. The GSA is based on the first order Sobol indices and relative

sensitivities. The output response uncertainty is accordingly divided among the input variables.

In comparison with the local sensitivity analysis, this technique does not require strong model

assumptions, which is relevant for unknown systems. Thus, assuming that the variables are inde-

pendent, the variance of the conditional expectation, var(E⟨O | xi⟩), is a measure of each design

variable relative importance on the output variable (denoted by O) response. Then, the Sobol

indices are calculated:

SO
i =

var(E⟨O | xi⟩)
var(O)

. (5.8)

In order for the computational requirements to become less expensive, the Monte Carlo Si-

mulation together with the optimal artificial neural network arrangement are utilised to predict the

Sobol indices. The conditional and system variances are calculated according to the following

procedure [88, 124]:

• Step 1: generation of a vector of the design variables, x, according to the uniform probability

distribution function U ∼(0,1);

• Step 2: a set of random numbers, λ j ( j = 1, . . . , N f ), following a uniform probability

distribution function, are used as fixed values for the design variable xi;

• Step 3: a sample matrix, Jα , is generated for each design variable (apart from itself), by

collecting samples of INP−1 random numbers following a uniform probability distribution

function, where Nr represents the size of the sample;
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JJJα =



α1,1 . . . α1,INP−1
...

. . .
...

αk,1 . . . αk,INP−1
...

. . .
...

αNr,1 · · · αNr,INP−1


• Step 4: for each design and fixed variable, Nr combinations of each fixed value and a Jα

value are defined, placing each one of them along the respective domain. The output values

are obtained for that defined input vectors, ooouuutttANN , using the optimised ANN. This proce-

dure is repeated for each design variable. Then, the conditional expectation is estimated and

their mean values calculated:

E ⟨O | xi⟩ ≈ Ō j =
1
Nr

Nr

∑
k=1

outANN,k; (5.9)

Ō =
1

N f

N f

∑
j=1

Ō j. (5.10)

Fixing each design variable xi, the variance of the conditional expectation is obtained. This

process is repeated for each design variable;

var(E ⟨O | xi⟩)≈
1

N f −1

N f

∑
j=1

(
Ō j − Ō

)2
. (5.11)

• Step 5: The total system variance, var(O) is estimated and then the Sobol indices are ob-

tained using equation 5.8:

E ⟨O⟩= 1
INP ·N f ·Nr

INP

∑
i=1

N f

∑
j=1

Nr

∑
k=1

outANN(i, j,k); (5.12)

var(O) =
1

INP ·N f ·Nr −1

INP

∑
i=1

N f

∑
j=1

Nr

∑
k=1

(outANN(i, j,k)−E ⟨O⟩)2 . (5.13)

In the next sections, the procedures and results belonging to each one of the performed opti-

mizations are presented.
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5.3 Fundamental natural frequency: ply angles

In this section, the stiffened laminated composite panel is optimised regarding its fundamental

natural frequency. The main goal is to maximise ω1 by altering the orientation of the plies belon-

ging to the composite panel. For now, the thicknesses remain constant. The stacking sequence and

the design variables can be observed in the next figure in accordance with the panel provided by

the COST action.

Figure 5.5 – Stacking sequence and design variables for the optimization of ω1.

By the observation of the figure above, it is possible to verify that there are three design vari-

ables for this optimization problem, θ1, θ2 and θ3. Moreover, the composite laminate is symmetric.

In order to remain faithful to Cardiff School of Engineering design, it was chosen to preserve some

layers with 0◦ of fibre’s orientation. Aiming to obtain the composite laminate natural frequencies,

a FEM model was constructed. The composite panel was built using the Abaqus® intrinsic tool

designated by Composite Layup, in which are specified the orientation angle, thickness, material

and the number of integration points for each individual layer. There are no prescribed boundary

conditions besides null forces and moments at all extremities, or loading cases in this calcula-

tion. Ten natural vibration modes were requested, using the Lanczos eigensolver, being the first 6

corespondent to the rigid body modes, therefore of reduced importance.

5.3.1 Design of experiments

The design of experiments was implemented, as referred in subsection 5.2.1, using the table

L27(310), where 27 represents the number of experiments used for the ANN learning procedure,

3 corresponds to the number of levels of each factor and 10 the maximum number of columns,
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that is, the maximum number of design variables (see Table 5.1). The right columns are selected

according to Table 5.2.

Table 5.1 – Uniform design table, L27(310).

No. of training datasets 1 2 3 4 5 6 7 8 9 10

1 1 5 9 11 13 15 17 19 25 27
2 2 10 18 22 26 2 6 10 22 26
3 3 15 27 5 11 17 23 1 19 25
4 4 20 8 16 24 4 12 20 16 24
5 5 25 17 27 9 19 1 11 13 23
6 6 2 26 10 22 6 18 2 10 22
7 7 7 7 21 7 21 7 21 7 21
8 8 12 16 4 20 8 24 12 4 20
9 9 17 25 15 5 23 13 3 1 19
10 10 22 6 26 18 10 2 22 26 18
11 11 27 15 9 3 25 19 13 23 17
12 12 4 24 20 16 12 8 4 20 16
13 13 9 5 3 1 27 25 23 17 15
14 14 14 14 14 14 14 14 14 14 14
15 15 19 23 25 27 1 3 5 11 13
16 16 24 4 8 12 16 20 24 8 12
17 17 1 13 19 25 3 9 15 5 11
18 18 6 22 2 10 18 26 6 2 10
19 19 11 3 13 23 5 15 25 27 9
20 20 16 12 24 8 20 4 16 24 8
21 21 21 21 7 21 7 21 7 21 7
22 22 26 2 18 6 22 10 26 18 6
23 23 3 11 1 19 9 27 17 15 5
24 24 8 20 12 4 24 16 8 12 4
25 25 13 1 23 17 11 5 27 9 3
26 26 18 10 6 2 26 22 18 6 2
27 27 23 19 17 15 13 11 9 1 1

Table 5.2 – Accessory table, L27(310).

No. of design variables No. of columns Discrepancy, D

2 1,4 0.0600
3 1,3,6 0.1009
4 1,4,6,9 0.1189
5 2,5,7,8,10 0.1378

In order to obtain the minimum discrepancy value and taking into account that there are 3

design variables, the columns 1, 3 and 6 are chosen for the design of the experimental points



78 Optimization of the airplane wing representative structure for vibration

(see Table 5.2). Thus, the domain of the design variables, θi ∈ [0, π

2 ] rad is divided into 26 equal

subdomains, being assigned to each one of them, by order, a number from 1 to 27. The first two

natural frequencies are used to train the artificial neural network. The experimental points and

respective FEM values are presented in Table 5.3.

Table 5.3 – Experimental points for the optimization of ω1, having the plies orientations as design variables.

Experimental point θ1 /rad θ2 /rad θ3 /rad ω1 /rad · s−1 ω2 /rad · s−1

1 0 0.48332 0.84581 44.96185 47.55177
2 0.06042 1.02706 0.06042 41.10711 56.76481
3 0.12083 1.57080 0.96664 45.02216 67.95265
4 0.18125 0.42291 0.18125 42.30343 44.69732
5 0.24166 0.96664 1.08747 47.17918 59.84043
6 0.30208 1.51038 0.30208 45.48649 66.08026
7 0.36249 0.36249 1.20831 47.13583 53.15575
8 0.42291 0.90623 0.42291 49.52407 57.63126
9 0.48332 1.44997 1.32914 49.14142 74.73221
10 0.54374 0.30208 0.54374 50.48602 55.37748
11 0.60415 0.84581 1.44997 52.31003 70.07637
12 0.66457 1.38955 0.66457 53.82742 78.83513
13 0.72498 0.24166 1.57080 51.27896 73.47557
14 0.78540 0.78540 0.78540 55.91532 78.06858
15 0.84581 1.32914 0 52.16740 90.30822
16 0.90622 0.18125 0.90623 53.77590 85.86601
17 0.96664 0.72498 0.12083 53.27890 91.64654
18 1.02706 1.26872 1.02706 53.59997 106.3052
19 1.08747 0.12083 0.24166 49.86713 99.55707
20 1.14789 0.66457 1.14789 52.58021 108.7305
21 1.20831 1.20831 0.36249 50.02295 116.2892
22 1.26872 0.06042 1.26872 47.02147 115.4221
23 1.32914 0.60415 0.48332 50.00159 116.5719
24 1.38955 1.14789 1.38955 45.94956 127.5172
25 1.44997 0 0.60415 46.77706 119.9837
26 1.51038 0.54374 1.51038 44.90593 124.9600
27 1.57080 1.08747 0.72498 48.56274 127.4544

The main goal of UDM is to ensure a high representativeness of the domain under conside-

ration with minimum discrepancy, through a robust design of experiments. The representation of

the training dataset shown in Figure 5.6 (3D representation) and Figure 5.7 (2D representations)

helps to validate its intention. The entire design space is covered by experimental points, which

can improve the genetic algorithm’s performance in the extent that the possibility of reaching the

global optima is higher.
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Figure 5.6 – 3D representation of the experimental points.

(a) Plane 0θ1θ2
(b) Plane 0θ2θ3 (c) Plane 0θ3θ1

Figure 5.7 – Representation of the experimental points in the three mutually orthogonal planes.

The representation of ω1 for each experimental point is performed in the next figure, Fig-

ure 5.8, aiming to have an insight about its distribution along the domain under analysis and,

ultimately, to draw some conclusions about possible activation functions to implement at the ou-

termost layer of the ANN.
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Figure 5.8 – Scatter plot of ω1, having the plies orientations as design variables.

5.3.2 Modes of vibration

Here, the composite laminated plate modes of vibration are compared for 3 different design points,

coinciding with a lower (see Figure 5.9), intermediate (see Figure 5.10) and higher (see Figure

5.11) value of the fundamental natural frequency, with the aim of comparing their configurations

and ratios between their maximum and minimum displacements. It is worth to mention that the

7th, 8th, 9th and 10th modes of vibration here mentioned correspond, respectively, to the 1st , 2nd ,

3rd and 4th non-rigid body modes.

Table 5.4 – Ratios between the extreme transverse displacements values of the natural vibration shapes.

Mode of vibration Lower ω1 value Interm. ω1 value Higher ω1 value

7th 2621 5590 5875
8th 259 170 178
9th 4775 4509 2954
10th 664 560 442
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By the observation of the figures below, there are no differences between the vibration confi-

gurations for the 7th, 8th and 9th modes of vibration. The 8th, 9th and 10th modes of vibration

are flexional ones, whereas the 7th is a torsional one. The only visible difference between them

belongs to the 10th mode of vibration. For the lower value of the fundamental natural frequency,

the spatial displacement is at the plane Oyz, whereas for the remaining ones the same occurs at the

plane Oxz.

Moreover, it is possible to observe that in the 7th mode of vibration (torsional one), the com-

posite panel extremities vibrate in phase opposition and there is a nodal line next to its centre; in

the 8th mode of vibration (flexional one), the composite panel extremities vibrate in phase and in

phase opposition with its centre. Besides that, there are two nodal lines in the Oxz plane next to the

aluminium stiffeners; in the 9th mode of vibration (flexional one), the composite panel extremities

vibrate in phase and in phase opposition with its centre (plane Oyz). In the plane Oxz, the panel

extremities vibrate in phase opposition; lastly, in the 10thmode of vibration (flexional one), for

the configurations belonging to the panel with the intermediate and higher fundamental natural

frequency value, the spatial displacement is, as referred above, at the plane Oxz and the composite

panel extremities vibrate in phase and in phase opposition with its centre. There are, again, two

nodal lines. The spatial displacement occurs at the plane Oyz for the lower ω1 value configura-

tion. There are four different parts which vibrate in phase opposition with the segments next to

them. So, 3 nodal lines are observed in Figure 5.9d next to the three aluminium stiffeners. From

the analysis of Table 5.4, the ratios between the extreme transverse displacements are similar for

the 7th, 8th and 10th modes of vibration correspondent to the intermediate and higher ω1 values

configurations. The same is verified between the lower and intermediate ω1 values configurations

for the 9th mode of vibration.

Apart from the direct and difficult graphical comparison or using theoretic models, mode

shapes might be compared using numerical correlations between an experimentally-measured

mode shape, {ψX}, and a theoretically-predicted one, {ψA} [127]. The Modal Assurance Cri-

terion (MAC) is one of those parameters which quantifies the least-squares deviation of the points

from the correlation along a straight line and it can be obtained according to the following expres-

sion:

MAC(A,X) =

∣∣∣{ψX}T {ψA}
∣∣∣2(

{ψX}T {ψX}
)(

{ψA}T {ψA}
) . (5.14)

In experimental modal analysis, the MAC value may be less than the expected one due to

possible non-linearities in the test structure, noise on the measured data, poor modal analysis or

even an inappropriate choice of the degrees of freedom to include in the correlation [127].
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(a) 7th mode shape of the composite panel for ω = 41.1071 rad · s−1

(b) 8th mode shape of the composite panel for ω = 56.7648 rad · s−1

(c) 9th mode shape of the composite panel for ω = 102.8243 rad · s−1

(d) 10th mode shape of the composite panel for ω = 159.6557 rad · s−1

Figure 5.9 – Vibration mode shapes of the composite panel for the lower fundamental natural frequency value.
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(a) 7th mode shape of the composite panel for ω = 48.5627 rad · s−1

(b) 8th mode shape of the composite panel for ω = 127.4544 rad · s−1

(c) 9th mode shape of the composite panel for ω = 162.0873 rad · s−1

(d) 10th mode shape of the composite panel for ω = 200.5341 rad · s−1

Figure 5.10 – Vibration mode shapes of the composite panel for the intermediate fundamental natural frequency value.
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(a) 7th mode shape of the composite panel for ω = 55.9153 rad · s−1

(b) 8th mode shape of the composite panel for ω = 78.0686 rad · s−1

(c) 9th mode shape of the composite panel for ω = 139.7569 rad · s−1

(d) 10th mode shape of the composite panel for ω = 200.4085 rad · s−1

Figure 5.11 – Vibration mode shapes of the composite panel for the higher fundamental natural frequency value.
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Hereafter, the work done regarding the optimization procedures is presented. The diverse

involved parameters and obtained results are clearly demonstrated.

5.3.3 ANN learning procedure

Firstly, with the values of Table 5.3 as inputs and outputs of the artificial neural network, wherein

27 experiences for minimum discrepancy and high representativeness of the domain under analysis

are described, its learning procedure is carried out. In order to have a better sensitivity about the

model obtained by the ANN to fit the required data, two natural frequencies were used to train the

network.

After modifying consecutively and repeatedly several parameters concerning the genetic al-

gorithm implementation and the ANN main configuration, such as the number of hidden layers,

the similarity control mechanism, the range of the synaptic weights and biases, the parameteriza-

tion ranges or the activation functions and respective parameters, the best ANN’s architecture was

achieved with regard to the synaptic weights and biases, design variables in this stage. Then, all

design points were feedforwarded down the optimal ANN, with the aim of comparing the obtained

results with those from FEM simulations. This first stage consists in the following optimization

problem,

Maximise FIT 1 = K1 − (c1 ·RMSE + c2 ·RE + c3 ·Γerror), (5.15)

where RMSE is given by equation 5.3 and RE can be calculated according to equation 5.4.

After an iterative procedure, the following fitness function parameters were adopted:

• K1= 5000;

• c1= 50;

• c2= 2500;

• c3= 0.

Regarding the ANN architecture, the number of hidden neurons was set to 5 (only one hidden

layer was considered), whereas the number of input and output neurons are constrained by the

number of orientation angles to optimise and by the number of outputs chosen to train the ne-

twork, respectively. As referred above, the employed genetic-based algorithm, GA(1), is based on

the maximisation of the expression 5.15. It was decided to normalise the input data between 0.01

and 0.99 and the output ones between 0 and 1. The synaptic weights and biases, design variables

of the ANN-configuration optimization, are binary-coded with 4 digits at both interconnections

(represents the number of genes belonging to each variable), input-hidden and hidden-output lay-

ers connections. Moreover, the chosen activation function was the sigmoidal one (see equation

2.2), with βsig=1.5. Taking into account the activation function and the range of expected values

for the output variables, the allowed range of values for the weights at the connection between the
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input and hidden layers was set to [-3,3], whereas the interval [30,130] was chosen for the other

interconnection. With the adopted ANN configuration, the number of variables at this first stage is

(INP+1) · INT +(INT +1) ·OUT = (3+1) ·5+(5+1) ·2 = 32, (5.16)

where INP, INT and OUT represent the number of input, hidden and output nodes, respectively.

The ANN learning process was performed by GA(1) using a population with 21 individuals.

The elite and mutation percentages were set to 0.333 and 0.1, respectively. Therefore, 7 individu-

als belong to the elite group, whereas 2 individuals make part of the mutation one. A mechanism

of diversity control was used to avoid premature convergence due to the anchorage at local minima

triggered by the loss of diversity. Each individual codifies the total number of variables and if there

are at least 18 equal variables out of 32 between two selected individuals, one of them is taken

out from the population and a new one is randomly created. The 18 value was set iteratively. An-

other procedure could be alternatively implemented, a genotype-based similarity control, wherein

the control is performed gene by gene. The ANN learning procedure ends when the number of

generations reaches 30000.

All these parameters were defined aiming to minimise the absolute and relative errors between

the ANN simulated outputs and the results provided by FEM simulations and, at the same time,

to assure a good performance of the second genetic algorithm. With all those referred parameters,

an absolute error of 0.6015 rad · s−1 and a relative error of 1.012 % were achieved. The graphical

representation of the evolution of these errors throughout the generations can be visualised in

Figures 5.12 and 5.13.

(a) Range: 6.33365 - 0.60147 /rad · s−1 (b) Amplification

Figure 5.12 – Evolution of the ANN’s absolute error over the generations, created to predict ω1, having the plies
orientations as design variables.

Regarding the absolute error, it ranges from 6.33365 to 0.60147 rad · s−1 and it is observed that

it is lower than 0.85 for a population generation next to 5000. Therefore, the number of required

generations for this particular problem is significantly lower than the selected one, so this value

might be reduced in order to reduce the computational time. On the other hand, the relative error
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(a) Range: 11.96072 - 1.01151 % (b) Amplification

Figure 5.13 – Evolution of the ANN’s relative error over the generations, created to predict ω1, having the plies orien-
tations as design variables.

value ranges from 11.96072 to 1.01151 % and 1.4 % is achieved for the 5000-generation. Thus,

the same conclusion could be drawn for this error measure.

Training dataset
The results from the ANN’s feedforward propagation are summarised in Table 5.5 for the

fundamental natural frequency and in Table 5.6 for the second one, in order to compare them

with the ones obtained from the finite element model and, consequently, validate the optimization

procedure:

Table 5.5 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω1,
having the plies orientations as design variables.

Experimental
point

ω1,ANN

/rad · s−1
ω1,FEM

/rad · s−1
Experimental

point
ω1,ANN

/rad · s−1
ω1,FEM

/rad · s−1

1 45.64452 44.96185 15 51.79937 52.16740
2 47.90133 41.10711 16 51.19009 53.77590
3 49.01579 45.02216 17 53.50983 53.27890
4 45.49247 42.30343 18 48.47966 53.59997
5 47.24915 47.17918 19 55.82395 49.86713
6 51.14879 45.48649 20 51.19974 52.58021
7 47.22847 47.13583 21 53.05606 50.02295
8 49.13863 49.52407 22 54.18602 47.02147
9 48.04862 49.14142 23 55.84095 50.00159
10 48.73653 50.48602 24 52.16061 45.94956
11 47.49203 52.31003 25 58.09557 46.77706
12 49.21503 53.82742 26 55.09857 44.90593
13 48.38178 51.27896 27 56.38224 48.56274
14 49.66955 55.91532
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Table 5.6 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω2,
having the plies orientations as design variables.

Experimental
point

ω2,ANN

/rad · s−1
ω2,FEM

/rad · s−1
Experimental

point
ω2,ANN

/rad · s−1
ω2,FEM

/rad · s−1

1 46.80422 47.55177 15 121.4140 90.30822
2 59.56270 56.76481 16 121.6518 85.86601
3 73.32385 67.95265 17 131.4480 91.64654
4 55.21610 44.69732 18 127.3755 106.3052
5 71.31625 59.84043 19 143.0398 99.55707
6 85.60586 66.08026 20 139.1420 108.7305
7 72.33492 53.15575 21 146.5099 116.2892
8 84.18888 57.63126 22 151.2297 115.4221
9 95.39920 74.73221 23 158.0376 116.5719

10 87.23812 55.37748 24 152.4278 127.5172
11 98.00761 70.07637 25 167.5123 119.9837
12 106.2943 78.83513 26 163.2419 124.9600
13 103.3084 73.47557 27 168.0319 127.4544
14 112.5139 78.06858

Similar values for ω1 were obtained, whereas for ω2 that approximation does not happen.

Despite of that distance, the relationship between two successive experimental points is practically

the same for the two sets. The developed ANN clearly overestimates the values of ω2 for all

experimental points. However, no detailed attention will be given to that, since the ω2 data was

only used with the aim of obtaining reliable results concerning the ω1 prediction.

Figure 5.14 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω1,
having the plies orientations as design variables.
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From the analysis of the figure above, Figure 5.14, good approximations were obtained be-

tween the ANN and FEM predictions, except for some experimental points at the right end of the

bar graph. It is worth to mention that these kinds of still identifiable discrepancies are expected to

be seen for data correlated by simple ANNs with an high dependency on the nature of the problem.

Hereafter, the influence of variations of the GA(1) parameters and ANN’s main architecture on

the absolute and relative errors is studied in order to validate and explain the selected configuration.

Table 5.7 – Influence of the number of hidden nodes on the absolute and relative errors of the ANN learning procedure.

No. hidden nodes Eabs /rad · s−1 Erel /%

3 0.70808 1.22870
4 0.44308 0.79978
5 0.60147 1.01151
6 0.52364 0.88697

Despite that from the observation of the table above, the number of chosen hidden nodes (5)

does not lead to the lower error values, that value was selected because that ANN architecture led

to a better balanced model, which improved the performance of GA(2).

The output range was selected according to the values observed for the two first natural fre-

quencies along the experimental points, because the activation function is linear at the output

layer.

Table 5.8 – Influence of the range of weights at the hidden-output interconnection on the absolute and relative errors of
the ANN learning procedure.

Output range Eabs /rad · s−1 Erel /%

20 to 130 0.65162 1.14083
30 to 130 0.60147 1.01151
20 to 140 0.52198 0.94944
30 to 140 0.59059 1.00083

There are no significant differences between the several studied intervals. Others activation

functions were also tested at the hidden layer, such as the hyperbolic tangent function or the

Gaussian function. No improvements were observed for the first one (they became worst), whereas

for the second one, whose representation is identical to the dispersion of the fundamental natural

frequency (see Figures 2.3 and 5.8), the results were better regarding the magnitude of the error

measures. However, problems arose in the optimization phase, GA(2), wherein the model resulted

from the first phase clearly overestimates the fundamental natural frequency value, in comparison

with the result obtained from the FEM simulations for that specific set of design variables.

From Table 5.9, a higher population diversity causes the absolute and relative errors to de-

crease as population dimension increases. However, that improvement does not compensate the

computational time enlargement, which is relevant when the number of variables and the number
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Table 5.9 – Influence of the population’s dimension on the absolute and relative errors of the ANN learning procedure.

Npop Eabs /rad · s−1 Erel /%

18 0.65779 1.16205
21 0.60147 1.01151
24 0.44508 0.79486

of necessary model runs are high. The introduction of 3 more individuals leads to an increase of

the CPU time up to 50 % of the previous value.

Table 5.10 – Influence of the mechanism of diversity control on the absolute and relative errors of the ANN learning
procedure.

LIMDIF Eabs /rad · s−1 Erel /%

14 0.53131 0.93712
16 0.68672 1.30230
18 0.60147 1.01151
20 0.67187 1.16235
22 0.63125 1.11406

In the genotype-based criteria, the parameter LIMDIF corresponds to the minimum number

of equal genes between two individuals which leads to take one out from the population, replacing

by another individual randomly created. On the other hand, the control may be done variable by

variable and, again, between two different individuals, wherein a certain one is removed from the

population if they have the same genotype regarding a minimum number of LIMDIF design vari-

ables. A lower value could lead to a loss of diversity, whereas the loss of better-fitness individuals

may occur if that value is too high, resulting then in convergence at local optimal. Therefore, an

intermediate value was selected.

Table 5.11 – Influence of the mutation percentage on the absolute and relative errors of the ANN learning procedure.

% mutation Eabs /rad · s−1 Erel /%

0.05 0.45539 0.78129
0.1 0.60147 1.01151
0.2 0.49084 0.83327

As referred in others sections, the mutation operator is used to introduce variability to the

population. An intermediate value was selected in order to create an optimised network which

improves the performance of the second genetic algorithm. Although that this genetic operator is

fundamental in introducing variability to the population, preventing early convergence, a value too

high may lead, one more time, to the loss of individuals of higher fitness values.
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5.3.4 Optimization of the ply angles

The objective of the implementation of this second genetic algorithm, GA(2), is to achieve the

best laminate configuration regarding the considered design variables, which leads to the higher

fundamental natural frequency value, under prescribed constraints.

The second stage consists in the following optimization problem,

Maximise FIT 2 = OUTANN −
N

∑
i=1

αiΦi(x), (5.17)

where OUTANN corresponds to the lower output provided by the optimised artificial neural net-

work, αi is a user-tuned constant to weight each constraint in order to stabilize numerically the

expression, Φi a particular constraint and x the vector of design variables.

The constraints related to this particular problem were directly imposed on the range of values

suitable for each design variable. Therefore, the considered fitness function was merely

Maximise FIT 2 = OUTANN , (5.18)

under the following constraints:

• balanced stacking sequence, that is, the same number of −θ and θ plies; and symmetric

laminated about the midplane, in order to avoid shear-extension coupling (A16=A26=0) and

extension-bending coupling (Bi j=0) (see Section 3.2). Those constraints are directly im-

posed by the laminate provided by the Cardiff School of Engineering (see Figure 5.5);

• contiguity constraint: in order to reduce matrix damage propagation up to a certain thick-

ness, no more than 4 plies of the same orientation must be stacked together. This constraint

was enforced by avoiding θ3 = 0;

• homogeneity constraint: each pair of +θ/−θ plies should be located as closely as possible,

aiming to minimise the bending-twisting coupling (D16, D26) and to improve the strength

behaviour. This constraint is also verified by the initial provided stacking sequence design;

• damage tolerance requirements: the outer plies of the skin should always contain at least

one set of +/- 45◦ [83, 106–108].

Considering the optimal ANN architecture came from the first optimization algorithm, the

parameters chosen for this second genetic algorithm were Npop=21; %elite=33 %; %mutation=10

%; Ngenerations=15000; θ1=±0.7854 rad; 0 ≤ θ2 ≤ 1.5708 rad; 0.1745 ≤ θ3 ≤ 1.5708 rad. A

certain individual is removed from the population if it codifies at least two variables (LIMDIF=2)

with the same genotype, comparing with another individual from the population.
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The following optimised configuration was achieved:

Table 5.12 – Optimised laminate configuration for vibration, considering the layers’ orientations as design variables.

θ1 /rad θ2 /rad θ3 /rad ω1,ANN /rad · s−1 ω1,FEM /rad · s−1

0.7854 1.5708 0.1745 50.58 51.73

The resulted laminate configuration complies with the prescribed constraints. Moreover, the

results obtained by the optimised ANN and by the FEM model, for the design variables came from

the optimization procedure, are identical and next to the higher observed value for the fundamental

natural frequency among the experimental points. The evolution of the ANN output value over the

generations is plotted in the figure below.

Figure 5.15 – Evolution of the maximised fundamental natural frequency over the generations, having the plies orien-
tations as design variables.

No significant improvements on the obtained value are observed since the 1-generation, mainly

due to the low number of design variables. The algorithm instantly achieved the optimal value

at the 9-generation and that value does not change until the end of the optimization procedure.

Moreover, the increase in the output value is reduced. It ranges only three tenths. Basically, only

two jumps are observed, at the three and eight generations.

In order to study the influence of the damage tolerance constraint on the obtained results, an

additional procedure was implemented. The allowable range for θ1 was successively enlarged

around 45◦ to perceive its influence upon the maximised obtained value for ω1.
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Table 5.13 – Influence of the allowable θ1 range on the maximised obtained value for the fundamental natural frequency.

Allowable range θ1 /rad θ2 /rad θ3 /rad ω1,ANN

/rad · s−1
ω1,FEM

/rad · s−1

0.7854 0.7854 1.5708 0.1745 50.58 51.73
0.5236 - 1.0472 1.0472 1.3614 0.1745 51.40 50.8
0.4363 - 1.3090 1.3090 0 0.1745 53.33 45.2
0.3491 - 1.2217 1.2217 0 0.1745 52.53 46.90
0.1745 - 1.3963 1.3963 0 0.1745 54.09 43.64

0 - 1.5708 1.5708 0 0.1745 55.49 42.18

From the table above, the prediction became worse as the available range increases. The ANN

overpredicts the expected value due to a low sensibility of the developed model relatively to the

orientation angle of the outermost layer.

5.3.5 Sobol indices

The Sobol indices are obtained according to the procedure described in subsection 5.2.5. For the

optimization of the structure for vibration, having only the plies orientations as design variables,

the following indices were obtained, altering the dimensions of the fixed values vector and sample

matrix:

Table 5.14 – Sobol indices regarding the optimization of the structure for vibration, having only the plies orientations
as design variables.

N f Nr SO
θ2

SO
θ3

∑i=2,3 SO
θi

S̄O
θ2

S̄O
θ3

50 100 0.6007 0.4847 1.0854 0.5534 0.4466
25 50 0.7159 0.4770 1.1929 0.6001 0.3999
25 40 0.6993 0.5208 1.2201 0.5732 0.4268
25 100 0.5990 0.4780 1.0770 0.5562 0.4438
15 100 0.5653 0.4169 0.9822 0.5755 0.4245
20 100 0.6162 0.4399 1.0561 0.5835 0.4165
22 100 0.5909 0.4249 1.0158 0.5817 0.4183
23 100 0.6053 0.4441 1.0494 0.5768 0.4232

0.5751 0.4249

The Sobol index relative to θ1 is null as expected, because this variable is prescribed to 45◦,

therefore there is no contribution for the variance of the output response. Moreover, the indices

are normalised in order for their sum to be unitary. The probable numerical error propagation

during the algorithm’s implementation led to a non-unitary value for the sum of all Sobol indices.

Besides that, there are couplings between the design variables or, in other words, the individual

effects on the variance of the output response are not summable. The dimensions of the λλλ f ix

vector and JJJα matrix were changed in order to perceive their influence upon the obtained results.
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Therefore, a simple mean calculation was performed to obtain the final indices’ values: S̄O
θ2

=0.5751

and S̄O
θ3

=0.4249. So, the variables θ2 and θ3 have similar contributions for the variance of the

fundamental natural frequency, with a slight higher value for θ2, due to its proximity to the neutral

axis of only an half of the symmetric laminate.

Figure 5.16 – Sobol indices corresponding to the ω1 maximisation, having the plies orientations as design variables

5.3.6 Conclusions

For this concrete optimization problem, taking into account the chosen ANN’s main architec-

ture and genetic parameters, the following set of design variables was achieved (θ1=0.7854 rad,

θ2=1.5708 rad and θ3=0.1745 rad) for the second genetic algorithm. This input vector was forward

propagated along the the optimised ANN, resulting ω1=50.58 rad · s−1. The predicted value was

ω1=51.73 rad · s−1 for the created finite element model, resulting a relative error of 2.22%. More-

over, that maximised value is placed around the higher values among the experimental points, as

it can be depicted from Figure 5.8. However, from the same figure there are some combinations

of the design variables which result in higher values for the fundamental natural frequency, com-

promising the assertiveness of the implemented algorithm. The network represents the training

dataset, which contemplates the first two natural frequencies, with a relative error around 1.012%,

Regarding the calculation of the Sobol indices, the θ2 variable contributes around 58% for the total

variance of the fundamental natural frequency and the remaining percentage concerns θ3.
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5.4 Fundamental natural frequency: ply angles and thicknesses

In this section, the same optimization procedure is performed, that is, the airplane wing represen-

tative structure is optimised regarding its fundamental natural frequency. Now, the thicknesses of

the undefined layers are also design variables, altering the total plate’s thickness. As demonstrated

in Section 3.2, the stiffness coefficients are dependent on the thickness of each individual layer

raised to the power of three. Therefore, in spite of the proportional increasing on the mass of

the structure with the layers thicknesses, the stiffness has a bigger influence on the fundamental

natural frequency. The stacking sequence and the unknown variables are represented in the next

figure, Figure 5.17.

Figure 5.17 – Stacking sequence and design variables for the optimization of ω1, including the plies thicknesses.

The same FEM model was used to predict the necessary data to train and build an artificial

neural network.

5.4.1 Design of experiments

The design of experiments was now accomplished according to table L27(2711), in which 27 re-

presents the number of experiments used for the ANN learning procedure, 27 corresponds to the

number of levels of each factor and 11 to the maximum number of design variables (see Table

5.15). The accessory table, Table 5.16, is used to select the right columns, the columns 1, 2, 3, 6,

7 and 8.

The design variables domains, θi ∈ [0, π

2 ] rad and hi ∈ [0.1,0.4] mm are, again, divided into

26 equal subdomains, being assigned to each one of them, by order, a number from 1 to 27. The

first two natural frequencies are used again to train the artificial neural network. The experimental

points and respective FEM values are presented in Table 5.17. The thicknesses’ allowable range

was defined taking into account recurrent values for carbon fiber reinforced polymer laminates.
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Table 5.15 – Uniform design table, L27(2711).

No. of training datasets 1 2 3 4 5 6 7 8 9 10 11

1 1 4 7 8 10 13 16 19 20 22 25
2 2 8 14 16 20 26 5 11 13 17 23
3 3 12 21 24 3 12 21 3 6 12 21
4 4 16 1 5 13 25 10 22 26 7 19
5 5 20 8 13 23 11 26 14 19 2 17
6 6 24 15 21 6 24 15 6 12 24 15
7 7 1 22 2 16 10 4 25 5 19 13
8 8 5 2 10 26 23 20 17 25 14 11
9 9 9 9 18 9 9 9 9 18 9 9

10 10 13 16 26 19 22 25 1 11 4 7
11 11 17 23 7 2 8 14 20 4 26 5
12 12 21 3 15 2 21 3 12 24 21 3
13 13 25 10 23 22 7 19 4 17 16 1
14 14 2 17 4 5 20 8 23 10 11 26
15 15 6 24 12 15 6 24 15 3 6 24
16 16 10 4 20 25 19 13 7 23 1 22
17 17 14 11 1 8 5 2 26 16 23 20
18 18 18 18 9 18 18 18 18 9 18 18
19 19 22 25 17 1 4 7 10 2 13 16
20 20 26 5 25 11 17 23 2 22 8 14
21 21 3 12 6 21 3 12 21 15 3 12
22 22 7 19 14 4 16 1 13 8 25 10
23 23 11 26 22 14 2 17 5 1 20 8
24 24 15 6 3 24 15 6 24 21 15 6
25 25 19 13 11 7 1 22 16 14 10 4
26 26 23 20 19 17 14 11 8 7 5 2
27 27 27 27 27 27 27 27 27 27 27 27

Table 5.16 – Accessory table, L27(2711).

No. of design variables No. of columns Discrepancy, D

2 1,9 0.0710
3 1,9,10 0.1205
4 1,4,9,10 0.1673
5 1,4,9,10,11 0.2115
6 1,2,3,6,7,8 0.1378
7 1,2,3,5,6,7,8 0.1378

In Figure 5.18, the scatter plot of the fundamental natural frequency along the 27 experiences

is illustrated, having the layers’ orientations and thicknesses as design variables. A similar distri-

bution is observed in comparison with the one represented in Figure 5.8.
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Table 5.17 – Experimental points for the optimization of ω1, having the plies orientations and thicknesses as design
variables.

Point θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm ω1 /rad · s−1 ω2 /rad · s−1

1 0 0.181246 0.362491 0.238462 0.273077 0.307692 41.67637 43.58834
2 0.060415 0.422907 0.785398 0.388462 0.146154 0.215385 43.62353 45.37277
3 0.120830 0.664566 1.208305 0.226923 0.330769 0.123077 44.44097 51.44169
4 0.181246 0.906229 0.181246 0.376923 0.203846 0.342308 42.59246 51.24943
5 0.241661 1.147890 0.422907 0.215385 0.388462 0.25 46.51631 70.61044
6 0.302076 1.389551 0.845813 0.365385 0.261538 0.157692 47.99034 61.64119
7 0.362491 0.181246 1.268720 0.203846 0.134615 0.376923 46.72868 63.87486
8 0.422907 0.241661 0.060415 0.353846 0.319231 0.284615 47.19992 50.01101
9 0.483322 0.483322 0.483322 0.192308 0.192308 0.192308 50.24286 52.51172

10 0.543737 0.724983 0.906229 0.342308 0.376923 0.1 54.60402 61.79261
11 0.604152 0.966644 1.329135 0.180769 0.25 0.319231 52.51298 78.64035
12 0.664568 1.208305 0.120830 0.330769 0.123077 0.226923 53.94806 73.31849
13 0.724983 1.449966 0.543737 0.169231 0.307692 0.134615 52.80389 88.22220
14 0.785398 0.060415 0.966644 0.319231 0.180769 0.353846 55.75196 79.24982
15 0.845813 0.302076 1.389551 0.157692 0.365385 0.261538 50.98491 92.77123
16 0.906229 0.543737 0.181246 0.307692 0.238461 0.169231 55.56032 92.77123
17 0.966644 0.785398 0.604152 0.146154 0.111538 0.388461 54.75231 84.64707
18 1.027059 1.027059 1.027059 0.296154 0.296154 0.296153 56.26969 109.8112
19 1.087474 1.268720 1.449966 0.134615 0.169231 0.203846 48.86496 106.9021
20 1.147890 1.510381 0.241661 0.284615 0.353846 0.111538 50.29187 124.7401
21 1.208305 0.120830 0.664568 0.123077 0.226923 0.330769 50.64875 93.09796
22 1.268720 0.362491 1.087474 0.273077 0.1 0.238461 50.23909 124.6458
23 1.329135 0.604152 1.510381 0.111538 0.284615 0.146153 48.07705 104.2506
24 1.389551 0.845813 0.302076 0.261538 0.157692 0.365385 48.23287 124.0364
25 1.449966 1.087474 0.724983 0.1 0.342308 0.273077 50.75117 111.3443
26 1.510381 1.329135 1.147890 0.25 0.215385 0.180769 45.46953 137.1117
27 1.570796 1.570796 1.570796 0.4 0.4 0.4 41.66694 148.1701

5.4.2 ANN learning procedure

The ANN learning process was undertaken using the data provided by Table 5.17 as inputs and

outputs of the artificial neural network. The best ANN architecture was achieved taking into

account the best possible generalisation of the relationship under analysis and by changing, again,

several parameters regarding the genetic algorithm and the ANN configuration, such as the number

of hidden layers, the similarity control mechanism, the range of the synaptic weights and biases,

the parameterization ranges or the activation functions and respective parameters. The fitness

function regarding this optimization phase was set to

Maximise FIT 1 = 5 ·103 − (50 ·RMSE +2500 ·RE), (5.19)
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Figure 5.18 – Scatter plot of ω1, having the plies orientations and thicknesses as design variables.

where RMSE is given by equation 5.3 and RE can be calculated according to equation 5.4. The

weights for each parcel were chosen in order for them to have a similar contribution to the fitness

assessment.

The same ANN architecture was selected to predict the output values in comparison with

the one used when only the orientations of the layers were considered as design variables. The

only difference is an addition on the number of input variables, which contemplate the layers’

thicknesses as well. The applied genetic-based algorithm, GA(1), is based on the maximisation of

the expression 5.19. In order to avoid numerical error propagation, the input data was normalised

between 0.01 and 0.99 and the output ones between 0 and 1. Here, the input data normalisation is

even more fundamental, due to their different nature. Four digits are used in the binary-coded re-

presentation of the unknowns of this first optimization stage. The sigmoidal function was selected

to introduce non-linearity at the hidden layer, with βsig=1.7. The allowable range for the values of

the weights at the connection between the input and hidden layers was set to [-3,3], whereas the

interval [0,140] was selected for the other interconnection. The number of variables at this first

stage is

(INP+1) · INT +(INT +1) ·OUT = (6+1) ·5+(5+1) ·2 = 47. (5.20)

This optimization phase was carried out using a population with 21 individuals, with 7 out of

21 belonging to the elite group and 2 to the mutation one. The similarity control is also phenotype-

based, that is, if two individual picked from the population have the same genotype concerning at

least 32 variables out of 47, then one of them is removed from the population and another one is

randomly created. The ANN learning process ends up at the 30000-generation.
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One more time, these referred parameters were set up through a trial and error procedure,

aiming to universally represent the problem under analysis and, at the same time, to obtain the

minimum values for the absolute and relative errors. Consequently, an absolute error of 0.912

rad · s−1 and a relative error of 1.204 % were achieved. The graphical representation of the evolu-

tion of these errors throughout the generations can be visualised in Figures 5.19 and 5.20.

(a) Range: 5.293 - 0.912 /rad · s−1 (b) Amplification

Figure 5.19 – Evolution of the ANN’s absolute error over the generations, created to predict ω1, having the plies
orientations and thicknesses as design variables.

(a) Range: 10.394 - 1.204 % (b) Amplification

Figure 5.20 – Evolution of the ANN’s relative error over the generations, created to predict ω1, having the plies orien-
tations and thicknesses as design variables.

During the evolution process, the absolute error fluctuates from 5.293 to 0.912 rad · s−1 and

is lower than 1 rad · s−1 for a generation next to 2000, which points out a possible reduction in

the number of generations, that is, promote the convergence criteria to happen earlier, whereas the

relative error value ranges from 10.394 to 1.204 %. For the 2000-generation, this error is almost

1.4 %, thus the number of prescribed generations can be reduced in this concrete problem.
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Training dataset

In the next two tables, the results from the ANN’s feedforward propagation are presented for

each experimental point, as well as their correspondent FEM predictions:

Table 5.18 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω1,
having the plies orientations and thicknesses as design variables.

Experimental
point

ω1,ANN

/rad · s−1
ω1,FEM

/rad · s−1
Experimental

point
ω1,ANN

/rad · s−1
ω1,FEM

/rad · s−1

1 46.15577 41.67637 15 51.42796 50.98491
2 48.57422 43.62353 16 50.77101 55.56032
3 48.27853 44.44097 17 48.51539 54.75231
4 51.84380 42.59246 18 48.43280 56.26969
5 52.54575 46.51631 19 48.17600 48.86496
6 51.76753 47.99034 20 50.76741 50.29187
7 49.37153 46.72868 21 51.52833 50.64875
8 49.54784 47.19992 22 50.16031 50.23909
9 52.41149 50.24286 23 51.30978 48.07705

10 51.61822 54.60402 24 48.52829 48.23287
11 54.10501 52.51298 25 47.18637 50.75117
12 48.85931 53.94806 26 46.84286 45.46953
13 47.83785 52.80389 27 46.74141 41.66694
14 51.85207 55.75196

Table 5.19 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω2,
having the plies orientations and thicknesses as design variables.

Experimental
point

ω2,ANN

/rad · s−1
ω2,FEM

/rad · s−1
Experimental

point
ω2,ANN

/rad · s−1
ω2,FEM

/rad · s−1

1 41.54436 43.58834 15 112.4819 92.77123
2 48.13506 45.37277 16 125.0218 92.77123
3 50.09112 51.44169 17 124.9529 84.64707
4 73.79218 51.24943 18 132.0010 109.8112
5 78.27390 70.61044 19 133.1575 106.9021
6 81.52355 61.64119 20 138.5711 124.7401
7 61.25708 63.87486 21 134.5358 93.09796
8 68.75229 50.01101 22 136.2895 124.6458
9 82.53593 52.51172 23 137.7502 104.2506

10 91.31680 61.79261 24 139.4864 124.0364
11 103.4860 78.64035 25 139.3982 111.3443
12 99.15853 73.31849 26 139.1932 137.1117
13 112.0759 88.22220 27 139.5448 148.1701
14 104.6515 79.24982
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One more time, identical values were obtained for almost all experimental points regarding

the fundamental natural frequency prediction. The same behaviour is identified for the second

natural frequency in comparison with the tendency observed when only the fibres’ orientations

were considered as design variables.

Figure 5.21 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict ω1,
having the plies orientations and thicknesses as design variables.

Apart from the design points at the left end of the bar graph (see Figure 5.21), the results for

the fundamental natural frequency prediction are in good agreement.

The influence of the individual variations of the GA(1) parameters and ANN’s main architec-

ture on the absolute and relative errors is studied from now on.

Table 5.20 – Influence of the number of hidden nodes on the absolute and relative errors of the ANN learning procedure.

No. hidden nodes Eabs /rad · s−1 Erel /%

3 1.48896 2.34089
4 1.16351 2.09052
5 0.91192 1.20385
6 0.61901 1.01525

From the table above, the number of hidden nodes which corresponds to the highest fitness

value is six. However, it was find out that 5 nodes are enough to predict accurately the output data.

The output range was set iteratively in order to obtain the most balanced model. Some results

are presented in the table below regarding its variation with no significant differences between the

several ranges.
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Table 5.21 – Influence of the range of weights at the hidden-output interconnection on the absolute and relative errors
of the ANN learning procedure.

Output range Eabs /rad · s−1 Erel /%

0 to 100 0.71521 1.14456
0 to 140 0.91192 1.20385
0 to 170 0.73818 1.11478
0 to 200 0.75395 1.02441

The same problems regarding the utilisation of others activation functions appeared in this op-

timization procedure. The hyperbolic tangent one does not introduce any improvements, whereas

the Gaussian function, although its representation is similar to the ω1 dispersion along the domain,

clearly overestimates the maximised fundamental natural frequency value.

Table 5.22 – Influence of the population’s dimension on the absolute and relative errors of the ANN learning procedure.

Npop Eabs /rad · s−1 Erel /%

18 0.90732 1.42595
21 0.91192 1.20385
24 0.74988 1.16541

An intermediate dimension of the population was chosen in order to have a balance between

the performance of both genetic algorithms and the the computational effort.

Table 5.23 – Influence of the mechanism of diversity control on the absolute and relative errors of the ANN learning
procedure.

LIMDIF Eabs /rad · s−1 Erel /%

28 0.60432 0.98904
30 0.73955 1.07686
32 0.91192 1.20385
34 0.70432 1.11582
36 0.74518 1.29772

The study upon the effect of the variation of the mechanism of diversity control was performed

and showed here in order to demonstrate that the configurations with the lowest absolute and rela-

tive errors do not correspond always to the best one regarding the algorithm’s overall performance.

It could be a possible signal of overfitting phenomena.

The increase on the number of elite individuals makes that a higher number of moderate fitness

members belongs to the elite group, therefore suitable for crossover, which leads to an improve-

ment on the population’s variability and could promote the search at others zones of the design

space and the achievement of others local/global solutions. The obtained values, see Table 5.24,

do not differ as much as expected. Then, it was chosen the one that improves the second genetic

algorithm’s performance.
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Table 5.24 – Influence of the elite percentage on the absolute and relative errors of the ANN learning procedure.

% elite Eabs /rad · s−1 Erel /%

0.1 0.63462 0.99702
0.2 0.74048 1.20697
0.33 0.91192 1.20385
0.5 0.62729 0.99113
0.6 0.85368 1.07671

5.4.3 Optimization of the layers’ orientations and thicknesses

In this second genetic algorithm, GA(2), the optimal laminate design is achieved, regarding the

layers’ thicknesses and orientations, aiming to maximise the fundamental natural frequency , ω1,

taking into account manufacturing constraints and, particularly, the ones which improve the lami-

nate’s strength behaviour and reduce the risk of delamination.

The second stage consists in the following optimization problem,

Maximise FIT 2 = OUTANN , (5.21)

wherein the constraints are again imposed directly on the allowed bounds of the design variables

and they are the same used for optimise the laminate taking into account only the orientation of

the plies as design variables:

• balanced stacking sequence;

• contiguity constraint;

• homogeneity constraint;

• damage tolerance constraint.

The second optimization phase was carried out considering Popt
ANN and the following genetic

parameters: Npop=21; %elite=33 %; %mutation=10 %; Ngenerations=15000. The similarity

control mechanism established that a certain individual is removed from the population if it has the

same genotype for at least 4 variables out of 6, comparing with another one from the population.

Regarding the admissible domains for the design variables: θ1= ±0.7854 rad; 0 ≤ θ2 ≤ 1.5708

rad; 0.1745 ≤ θ3 ≤ 1.5708 rad; 0.1 ≤ h1 ≤ 0.4 mm; 0.1 ≤ h2 ≤ 0.4 mm and 0.1 ≤ h3 ≤ 0.4 mm.

The optimised configuration is described in Table 5.25.

Table 5.25 – Optimised laminate configuration for vibration, considering the layers’ orientations and thicknesses as
design variables.

θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm ω1,ANN /rad · s−1 ω1,FEM /rad · s−1

0.7854 1.5708 0.9250 0.4 0.1 0.4 55.29 57.39
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For the laminate configuration characterised in Table 5.25, the value provided by the optimised

ANN lies in the range of the higher ω1 values which appear among the experimental points. Be-

sides that, the value provided by the developed FEM model is higher than those related with the

training dataset, which allows to draw a conclusion about the authenticity of the created optimiza-

tion procedure. Furthermore, the prescribed constraints are attained. The progression of the ANN

prediction over the generations is plotted in Figure 5.22.

Figure 5.22 – Evolution of the maximised fundamental natural frequency over the generations, having the layers orien-
tations and thicknesses as design variables.

During the evolution process, the maximised value for the fundamental natural frequency

ranges from 53.83 to 55.29 rad · s−1, thus there is just a slight variation to consider. Five jumps

were observed, that is, five improvements on the optimised value. The optimization algorithm

early reaches the final value, at the seventeen generation. Therefore, the number of required ge-

nerations might be reduced to reduce the computational cost.

Changing only the constant of the sigmoidal function from βsig = 1.7 to βsig = 1.5, another

optimised ANN network may be achieved. For this case, see Table 5.26, the value predicted by

the artificial neural network overestimates the maximum ω1 value, whereas the FEM solution is

placed around the expected value.

Table 5.26 – Optimised laminate configuration for vibration, considering the layers orientations and thicknesses as
design variables: other configuration.

θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm ω1,ANN /rad · s−1 ω1,FEM /rad · s−1

0.7854 1.5708 0.1745 0.4 0.1 0.1 60.34 55.87

Now, remembering that the thickness of each ply belonging to the panel provided by the

Cardiff School of Engineering is tply= 0.194444 mm, it is worthwhile to compare the diverse op-

timal configurations with the standard one regarding the mass of the structure, taking into account
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the total thickness of the optimised panel for each configuration.

Table 5.27 – Comparison between the total panel’s thickness for each optimised configuration for vibration, having the
plies orientations and thicknesses as design variables

Configuration Total thickness /mm

Standard 3.50
βsig = 1.7 4.96
βsig = 1.5 3.76

The total thickness of the optimised configuration correspondent to βsig = 1.7 is higher than

the one relative to βsig = 1.5 and, therefore, the fundamental natural frequency value provided by

the created finite element model is bigger for the first one due to a higher stiffness increase, as

expected (see Table 5.25 and Table 5.26).

5.4.4 Sobol indices

The contributions of the plies’ orientations and thicknesses for the variance of the ω1 response

are summarised in the table below for several sets taking into consideration the dimensions of the

random generated vector λλλ f ix and matrix JJJα . The subscripts 1 to 3 refer to the plies’ orientations,

whereas the remaining ones regard the layers’ thicknesses.

Table 5.28 – Sobol indices regarding the optimization of the structure for vibration, having the plies orientations and
thicknesses as design variables.

N f Nr SO
2 SO

3 SO
4 SO

5 SO
6 ∑

6
i=2 SO

i

5 50 0.2231 0.0017 0.0530 0.4421 0.0082 0.7281
10 50 0.2924 0.0010 0.0735 0.6905 0.1513 1.2087
15 50 0.17 0.0088 0.0793 0.7596 0.1968 1.2145
5 100 0.1984 0.0363 0.0865 0.3231 0.1286 0.7729
10 100 0.2955 0.0507 0.1294 0.3933 0.1633 1.0322
15 100 0.2164 0.0349 0.1299 0.4675 0.1941 1.0428
20 100 0.1752 0.0356 0.1112 0.4168 0.1734 0.9122
25 100 0.1502 0.0326 0.0941 0.3879 0.1651 0.8299

0.2290 0.0404 0.1235 0.4259 0.1769 0.9957

Considering only the experiences with Nr=100 and N f ={10,15,20} for the average of the

Sobol indices corresponding to each design variable, because their sum is next to the unitary

value, the following results were obtained: S̄O
2 =0.2290; S̄O

3 =0.0404; S̄O
4 =0.1235; S̄O

5 =0.4259 and

S̄O
6 =0.1769.

Due to the constraint relative to the θ1 value, it does not contribute for the variance of the ω1

response, as expected. The intermediate layers are the most important ones on the prediction of

the fundamental natural frequency, as it is possible to prove from the table above, Table 5.28, due

to the higher Sobol indices values. Furthermore, the thickness variable has a higher contribution
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Figure 5.23 – Sobol indices corresponding to the ω1 maximisation, having the plies orientations and thicknesses as
design variables.

in comparison with the orientation of the same layer, which allows to draw a conclusion about the

bigger influence that the plies’ thickness has on the structure’s stiffness and, consequently, on the

fundamental natural frequency.

5.4.5 Conclusions

Here, the developed artificial neural network represents with a relative error of 1.2% the training

data, which does not correspond exactly to the best configuration regarding the considered errors’

measures. However, as explained above, this model is the one that better fits the relationship under

analysis. Taking into account several constraints, the results from the second genetic algorithm

were (θ1=0.7854 rad, θ2=1.5708 rad and θ3=0.9250 rad; h1=0.4 mm, h2=0.1 mm and h3=0.4

mm). The relative error between the predictions obtained from the optimised ANN and FEM

simulation is 3.66%. Although the underprediction obtained from the artificial neural network,

the FEM result is higher than all values among the experimental points, which further validates

the optimization procedure.

Regarding the importance of each design variable upon the output response, it is worth to

mention that there is a higher predominance of the thickness variables in comparison with the

orientation ones.



5.5 Final remarks 107

5.5 Final remarks

The lower number of design variables allows to represent the relationship under analysis, using

an artificial neural network, with a relative error next to 1%. For the first optimization problem,

maximization of the fundamental natural frequency considering only the layers’ orientations as

design variables, the maximised ω1 value is still a bit far from the higher values observed among

the experimental points. The opposite occurred with the second one, wherein the layers’ thick-

nesses were added as unknown variables and the implemented algorithm is further validated by

the achievement of a value bigger than those obtained by FEM simulations for the training dataset.

Regarding the design variables, only the orientation angle of the innermost layer changes between

the two optimization problems, beside the thicknesses. In both optimization procedures, the inter-

mediate layer has a slight bigger influence upon the variance of the output response, as it can be

depicted from the first order Sobol indices analysis.
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Chapter 6

Optimization of the airplane wing
representative structure for buckling

In this section, the airplane wing representative structure is optimised with regard to its critical

buckling load by changing the layers’ orientations and thicknesses of the composite panels. It is

challenging to investigate the behaviour of a certain structure pos-buckling, therefore the maximi-

sation of the critical buckling load is fundamental in order for the structure to carry a bigger load

and to ensure its safety. Furthermore, the sudden stiffness change due to buckling may lead to the

immediate structure’s failure, which is extremely dangerous for this demanding application. The

stacking sequence and the design variables are illustrated below, in Figure 6.1.

Figure 6.1 – Stacking sequence and design variables for the optimization of Pcrit , including the plies thicknesses.

There are six design variables: θ1, θ2, θ3, h1, h2 and h3. A finite element model was developed

in order to predict the buckling loads for each experimental point necessary to train the artificial

neural network. The ANN was employed to reduce substantially the computational time which

109



110 Optimization of the airplane wing representative structure for buckling

could be necessary whether the FEM model was used along the genetic algorithm. The composite

panel was built using the Abaqus® intrinsic tool designated by Composite Layup, in which are

specified the orientation angle, thickness, material and the number of integration points for each

individual layer.

Figure 6.2 – FEM model for the critical buckling load prediction.

Regarding the boundary conditions, the Ox and Oz displacements are constrained at the edge

x = 0 and there is not Oz displacement for x = 2000 mm. In order for the model to give directly

the values of the critical buckling load, a unit load per unit length was assigned to those referred

edges. Moreover, two additional constraints were artificially specified to the FEM model run the

eigenvalue solver. In order to do not have rigid body motions along 0y, two points characterised

by their coordinates (0,0,0) and (2000,0,0) were restricted in their movements through the Oy

axis. Then, a buckling step was created, using the subspace eigensolver and 5 eigenvalues were

requested, that is, the first 5 buckling loads.

6.1 Design of experiments

The UDM was implemented using the tables already used in previous sections, L27(2711), Tables

5.15 and 5.16. The first two buckling loads resulted from the eigensolver are used to train the

artificial neural network. The experimental points and respective FEM values are presented in

Table 6.1.



6.1 Design of experiments 111

Table 6.1 – Experimental points for the optimization of Pcrit , having the plies orientations and thicknesses as design
variables.

Point θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm Pcrit,1
/N ·m−1

Pcrit,2
/N ·m−1

1 0 0.181246 0.362491 0.238462 0.273077 0.307692 37642 61549
2 0.060415 0.422907 0.785398 0.388462 0.146154 0.215385 38492 60920
3 0.120830 0.664566 1.208305 0.226923 0.330769 0.123077 59345 63872
4 0.181246 0.906229 0.181246 0.376923 0.203846 0.342308 47086 61437
5 0.241661 1.147890 0.422907 0.215385 0.388462 0.25 48536 60006
6 0.302076 1.389551 0.845813 0.365385 0.261538 0.157692 52915 59860
7 0.362491 0.181246 1.268720 0.203846 0.134615 0.376923 58966 68555
8 0.422907 0.241661 0.060415 0.353846 0.319231 0.284615 36941 60929
9 0.483322 0.483322 0.483322 0.192308 0.192308 0.192308 23952 59715

10 0.543737 0.724983 0.906229 0.342308 0.376923 0.1 21560 57807
11 0.604152 0.966644 1.329135 0.180769 0.25 0.319231 57083 69774
12 0.664568 1.208305 0.120830 0.330769 0.123077 0.226923 35293 59411
13 0.724983 1.449966 0.543737 0.169231 0.307692 0.134615 54082 58589
14 0.785398 0.060415 0.966644 0.319231 0.180769 0.353846 38204 57821
15 0.845813 0.302076 1.389551 0.157692 0.365385 0.261538 58243 67200
16 0.906229 0.543737 0.181246 0.307692 0.238461 0.169231 33063 58495
17 0.966644 0.785398 0.604152 0.146154 0.111538 0.388461 23847 57760
18 1.027059 1.027059 1.027059 0.296154 0.296154 0.296153 45753 54783
19 1.087474 1.268720 1.449966 0.134615 0.169231 0.203846 57150 71242
20 1.147890 1.510381 0.241661 0.284615 0.353846 0.111538 57095 64115
21 1.208305 0.120830 0.664568 0.123077 0.226923 0.330769 40000 59018
22 1.268720 0.362491 1.087474 0.273077 0.1 0.238461 56438 60642
23 1.329135 0.604152 1.510381 0.111538 0.284615 0.146153 58049 69841
24 1.389551 0.845813 0.302076 0.261538 0.157692 0.365385 53862 58805
25 1.449966 1.087474 0.724983 0.1 0.342308 0.273077 49343 57216
26 1.510381 1.329135 1.147890 0.25 0.215385 0.180769 55799 64923
27 1.570796 1.570796 1.570796 0.4 0.4 0.4 52363 62593

The distribution of Pcrit throughout the experimental points domain is illustrated below, Figure

6.3. In opposite with what happened to the other two studied problems, see Figures 5.8 and 5.18,

here the model that fits the represented data is more unpredictable.

Then, the basic steps of the ANN learning procedure and optimization phase are presented

and discussed. The effect of the several genetic-based parameters on the obtained results is also

studied.
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Figure 6.3 – Scatter plot of Pcrit .

6.2 ANN learning procedure

The first stage of the optimization procedure consists in the achievement of the best ANN’s confi-

guration to predict the output values necessary for the fitness assessment in the second phase.

The data presented in Table 6.1 was used as input and output of the artificial neural network.

Two buckling loads are used to train the network in order to obtain the most accurate model

representative of the problem under analysis. After analysing thoroughly the influence of the

several genetic-based parameters and ANN’s main architecture, the best configuration regarding

the maximisation of the following fitness function, expression 6.1, was achieved:

Maximise FIT 1 = 5 ·105 − (10 ·RMSE +350000 ·RE). (6.1)

Firstly, it was considered just one hidden layer and, after a tuning process (trial and error),

the number of neurons in that layer was set to 5. Therefore, the following ANN’s configuration

was designed: 6-5-2. In order to avoid numerical error propagation throughout the network, the

input data was again normalised between 0.01 and 0.99 and the output one between 0 and 1. A

binary coding mechanism with 4 digits was used to code the synaptic weights and biases, design

variables of the ANN-configuration optimization. The Gaussian function was established as acti-

vation function at the hidden layer (see equation 2.3), with c=50000 and κ =
√

110000000. The

range of values for the weights at the connection between the input and hidden layer was fixed

to [0,70000], whereas the interval [0,105000] was established for the other interconnection. The

number of variables at this first stage is given by

(INP+1) · INT +(INT +1) ·OUT = (6+1) ·5+(5+1) ·2 = 47. (6.2)

A population with 21 individuals was chosen by an iterative process for the implementation
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of this first optimization procedure, GA(1), with 7 individuals belonging to the elite group and

3 susceptible to mutation. The diversity control is performed variable by variable, that is, it is a

phenotype-based procedure, specifying that a certain individual is removed from the population

if it has the same genotype regarding at least 34 of the 47 variables, comparing with another

one selected from the population. The ANN learning procedure ends up when the number of

generations reaches 30000. One more time, an arrangement between the minimum values for the

absolute and relative errors and the achievement of a balanced model was taken into account in

the designing and choice of all these parameters. In the end of the evolution process, an absolute

error of 1047.77 N ·m−1 and a relative error of 3.0773 % were obtained. The plot of the evolution

of these errors throughout the generations can be visualised in Figures 6.4 and 6.5.

(a) Range: 5399.34 - 1047.77 /N ·m−1 (b) Amplification

Figure 6.4 – Evolution of the ANN’s absolute error over the generations, created to predict Pcrit , having the plies
orientations and thicknesses as design variables.

(a) Range: 9.0584 - 3.0773 % (b) Amplification

Figure 6.5 – Evolution of the ANN’s relative error over the generations, created to predict Pcrit , having the plies orien-
tations and thicknesses as design variables.
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The absolute error ranges from 5399.34 to 1047.77 N ·m−1, whereas the relative error fluc-

tuates from 9.0584 to 3.0773 %. Both error’s measures converge to a certain value around the

23000-generation.

Training dataset

Table 6.2 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict P1,
having the plies orientations and thicknesses as design variables.

Experimental
point

P1,ANN

/N ·m−1
P1,FEM

/N ·m−1
Experimental

point
P1,ANN

/N ·m−1
P1,FEM

/N ·m−1

1 61164 37642 15 53746 58243
2 45589 38492 16 47799 33063
3 54305 59345 17 34967 23847
4 40213 47086 18 51605 45753
5 41847 48536 19 55315 57150
6 49703 52915 20 58751 57095
7 53889 58966 21 40279 40000
8 42474 36941 22 49269 56438
9 34887 23952 23 55366 58049

10 51773 21560 24 30304 53862
11 54054 57083 25 46412 49343
12 39727 35293 26 53172 55799
13 42920 54082 27 47334 52363
14 50243 38204

Figure 6.6 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict P1,
having the plies orientations and thicknesses as design variables.
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Table 6.3 – Comparison between the ANN and FEM results for the training dataset of the ANN created to predict P2,
having the plies orientations and thicknesses as design variables.

Experimental
point

P2,ANN

/N ·m−1
P2,FEM

/N ·m−1
Experimental

point
P2,ANN

/N ·m−1
P2,FEM

/N ·m−1

1 69939 61549 15 77256 67200
2 68449 60920 16 45394 58495
3 80297 63872 17 51441 57760
4 60308 61437 18 75624 54783
5 65107 60006 19 82908 71242
6 75150 59860 20 60922 64115
7 80520 68555 21 60059 59018
8 52304 60929 22 72747 60642
9 49560 59715 23 82099 69841
10 76547 57807 24 45830 58805
11 79326 69774 25 71596 57216
12 36979 59411 26 79921 64923
13 65483 58589 27 61210 62593
14 76214 57821

Here, the differences between the FEM and ANN predictions are more expectable and visible

(see Figure 6.6), mainly due to the higher values correspondent to the buckling loads coupled with

a bigger variation between their limit values. Therefore, a balanced model was tried to reach, as a

compromise between underfitting and overfitting phenomena.

In relation to the following configuration which corresponds to the lowest values of the abso-

lute and relative errors:

• 6-5-2 (five hidden nodes);

• 0.01-0.99 and 0-1 (normalisation range of the input and output variables, respectively);

• 4 bits for binary coding, 0-105000 as the suitable domain for the variables at the exterior

interconnection, sigmoidal function with βsig = 1.5 as activation function at the hidden layer,

LIMDIF=34;

• Npop = 21, % elite=33 %, % mutation=10 % and Ngen=30000.

Table 6.4 – Influence of the number of hidden nodes on the absolute and relative errors of the ANN learning procedure.

No. hidden nodes Eabs /N ·m−1 Erel /%

4 936.71 2.59
5 623.48 1.59
6 679.17 1.96
7 709.61 1.97
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From Table 6.4, one more time the increase on ANN’s complexity does not mean that better

results concerning the different measures of the error are obtained due to, sometimes, oversatura-

tion.

Taking into account the range of values that the first two buckling loads take, the allowable

domain for the variables at the exterior interconnection was successively increased, Table 6.5, in

order to perceive its influence upon the obtained results.

Table 6.5 – Influence of the range of weights at the hidden-output interconnection on the absolute and relative errors of
the ANN learning procedure.

Output range Eabs /N ·m−1 Erel /%

0 to 30000 768 2.17
0 to 35000 654 1.69
0 to 40000 690 1.83
0 to 50000 691 1.87
0 to 60000 705 1.84
0 to 70000 792 1.86
0 to 80000 686 1.84
0 to 90000 794 2.15
0 to 100000 738 1.81
0 to 105000 623 1.59
0 to 110000 636 1.60
0 to 115000 660 2.05
0 to 120000 606 1.65
0 to 125000 670 1.57
0 to 130000 589 1.79
0 to 140000 767 2.30
0 to 150000 661 1.81
0 to 200000 812 2.31

The chosen interval is the one that corresponds to the lowest conjugation of the absolute and

relative errors. However, the variation of the output range is more important for the performance

of the second genetic algorithm, since it is directly related to the value provided by the optimised

network.

Table 6.6 – Influence of the population’s dimension on the absolute and relative errors of the ANN learning procedure.

Npop Eabs /N ·m−1 Erel /%

15 714 2.00
18 679 1.96
21 623 1.59
24 710 1.97
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The increase on the population’s dimension, see Table 6.6, did not correspond to the lowest

error values, which allows to establish a balance point regarding the computational effort.

Table 6.7 – Influence of the mechanism of diversity control on the absolute and relative errors of the ANN learning
procedure.

LIMDIF Eabs /N ·m−1 Erel /%

30 623 1.59
32 781 2.44
34 623 1.59
36 723 2.11
38 759 2.15

From the variation of the mechanism of diversity control, namely the parameter LIMDIF ,

see Table 6.7, none conclusions might be drawn due to the several observed fluctuations between

consecutive values of that variable.

The three ANN design improvements discussed suggest that the Gaussian function is the one

that better fits nonlinear and unknown data, despite the fact that using it results in higher absolute

and relative errors between ANN and FEM predictions. For data with a superior magnitude order,

which corresponds to this case, this activation function also performs well in the second optimiza-

tion phase, which was a problem for the optimization of the airplane wing representative structure

for vibration.

6.3 Optimization of the layers’ orientations and thicknesses

The objective of the implementation of this second genetic algorithm, GA(2), is to achieve the

best laminate configuration, taking into account the design variables, which corresponds to the

higher critical buckling load and, at the same time, minimum weight, under pre-specified con-

straints. Therefore, a multi-objective optimization procedure will be approached and developed.

Particularly, in order to simplify this strategy, the linear aggregation method is used (see equation

2.22):

The second stage consists in the following optimization problem,

Maximise FIT (2) =
n

∑
i=1

µi fi(x)−
N

∑
j=1

α jΦ j(x), (6.3)

wherein µi corresponds to each objective’s weight, fi to each particular objective function, x to

the vector of design variables to optimise, α j weights each constraint and Φ j regards a particular

constraint. Moreover, if the objectives have different orders of magnitude, they must be multiplied

by a certain parameter which ensures that each objective contributes in a equitable way for the

fitness function assessment (normalisation). The constraints related to this particular problem

were directly imposed, again, on the range of values suitable for each design variable. Therefore,
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the fitness function expression was set to

Maximise FIT (2) = 0.5 ·OUTANN +0.5 · [−100000 · (h1 +h2 +h3)]−
N

∑
j=1

α jΦ j(x). (6.4)

The two objectives were equally weighted and the one regarding the structure’s weight can be

seen as an additional constraint as well. As referred in Section 2.6, for this type of multi-objective

process, there is only one final solution and not a front of Pareto.

The following constraints were considered:

• balanced stacking sequence, that is, the same number of −θ and θ plies; and symmetric

laminate about the midplane, in order to avoid shear-extension coupling (A16=A26=0) and

extension-bending coupling (Bi j=0) (see Section 3.2). Those constraints arose from the

design provided by the Cardiff School of Engineering (see Figure 5.5);

• contiguity constraint: in order to reduce matrix damage propagation up to a certain thick-

ness, no more than 4 plies of the same orientation must be stacked together. This constraint

was enforced by avoiding θ3 = 0;

• homogeneity constraint: each pair of +θ/−θ plies should be located as closely as possible,

aiming to minimise the bending-twisting coupling (D16, D26) and to improve the strength

behaviour. This constraint is also verified by the initial provided stacking sequence design;

• the outer plies of the skin should always contain at least one set of +/- 45◦ for damage

tolerance requirements and to improve the composite laminate behaviour under in-plane

compressive loads [83, 106–108];

• strength constraint: this constraint is used to ensure that damage, either fibre breaking or

matrix rupture, does not appear before buckling, not only because damage might lead to the

structure’s failure before buckling, but also to take damage into account. It was thought to

enforce this restriction using the Tsai-Hill criteria, due to its conservative nature [2, 128–

130]. Ply rupture occurs if(
σ1

X

)2
+
(

σ2

Y

)2
−
(

1
X2 +

1
Y 2

)
σ1σ2 +

(
σ6

S

)2
≥ 1, (6.5)

wherein X , Y and S correspond to the tensile, compressive and shear strengths, respectively,

and σ1, σ2 and σ6 to the normal and shear stresses with respect to the material axis system.

The failure mechanism of composite materials is much more complex than that related to the

isotropic ones due to their intrinsic structural and material complexity. A failure of a certain

ply induces the redistribution of stresses along the remaining ones. The lamina failure modes

could be fibre dominant failure, matrix dominant failure or interface dominant failure. The

several failure criteria regards the first ply failure in order to ensure high design’s reliability.

If the stresses of the weakest lamina exceeds the allowable stress, it fails. There are several
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criteria regarding this design problem, such as the maximum stress theory, in which the

stresses acting on a lamina are transformed into normal and shear stresses in the local axes

and the failure is predicted in a certain ply if any of the normal or shear stresses in the local

axes of a lamina is equal to or exceeds the corresponding ultimate strength; the maximum

strain theory, wherein failure is predicted in a lamina, if any of the normal or shearing

strains in the local axes of a lamina is equal or exceed the corresponding ultimate strains

of the unidirectional lamina; the Hoffman’s criteria; the Tsai-Wu criteria, which is based

on the total strain energy failure theory of Beltrami and is more general than the Tsai-Hill

criteria, because it distinguishes the compressive and tensile strengths of a lamina and the

components of its failure condition may be calculated using the five strength parameters of

a unidirectional lamina except one which is obtained experimentally by knowing a biaxial

stress at which the lamina fails; or the Tsai-Hill criteria, based on the distortion energy

failure theory of Von Mises applied to anisotropic materials [2, 128–130].

The Hoffman’s, Tsai-Wu and Tsai-Hill criterias are based on the following general polynomial

and tensorial criteria

Fi ·σi +Fi j ·σi ·σ j +Fi jk ·σi ·σ j ·σk ≥ 1, (6.6)

wherein the Fi, Fi j and Fi jk (i, j, k=1, . . . , 6) are related to the lamina strengths in the principal

directions and differ according to the selected lamina failure theory [130].

It was performed a FEM simulation for the highest critical buckling load and corresponding

stacking sequence among the experimental points, aiming to perceive if the explicit inclusion of

this constraint is really necessary, because the optimised value for Pcrit is certainly placed around

that value. Taking into account the structure’s mechanical properties and the results from the

simulation:

• X= 2000 MPa, Y = 200 MPa and S= 70 MPa;

• FEM simulation: σ1= 519 MPa, σ2= 50 MPa, and σ6= 50 MPa.

Applying the Tsai-Hill criteria, there is no weakest ply failure by a large safety margin. There-

fore, it was decided to not include the strength constraint, because it would increase the compu-

tational time quite extensively due to the necessity to run the FEM model for each population’s

generation of GA(2). An alternative would be the construction of an additional artificial neural

network to predict the necessary strength values based on another 27 experimental points. How-

ever, the additional development time would not compensate. Moreover, the already constructed

ANN could be a possibility, integrating these variables as output variables as well. As a conse-

quence, the absolute and relative errors for the prediction of the buckling loads would increase,

which would not be acceptable.

The second optimization phase was performed using the ANN’s configuration obtained from

the first optimization procedure, Popt
ANN , and the following genetic parameters: Npop=21; %elite=33
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%; %mutation=10 %; Ngen=15000. During the evolution process, a certain individual is removed

from the population if it has the same genotype for at least 4 out of 6 variables, comparing with

another one from the population. The design variables can take a value from the respective inter-

vals: θ1=±0.7854 rad; 0 ≤ θ2 ≤ 1.5708 rad; 0.1745 ≤ θ3 ≤ 1.5708 rad; 0.1 ≤ h1 ≤ 0.4 mm; 0.1

≤ h2 ≤ 0.4 mm and 0.1 ≤ h3 ≤ 0.4 mm.

The optimised configuration is shown in Table 6.8:

Table 6.8 – Optimised laminate configuration for buckling, considering the layers orientations and thicknesses as design
variables.

θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm FIT(2) P1,ANN /N ·m−1 P1,FEM /N ·m−1

0.7854 0 1.5708 0.1 0.1 0.1 15332.37 60665 60002

According to expression 6.4 and to the obtained values for the plies thicknesses, the required

value, maximised critical buckling load, can be calculated from the fitness function value.

The resulted laminate configuration satisfies all constraints and the maximised value is higher

than those obtained for the experimental data. Furthermore, the ANN and FEM results are in clear

agreement (relative error of 1.1%), which validates the developed optimization framework. The

evolution of the fitness function value over the generations is plotted in the figure below, Figure

6.7.

Figure 6.7 – Evolution of the maximised critical buckling load over the generations, having the plies orientations and
thicknesses as design variables.

The fitness function value evolves from 1547 to 15332, which is a meaningful improvement.
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Due to the low number of variables involved, the algorithm stops evolving since the 28-generation.

Overall, there were seven upgrades.

From the intensive study regarding the variation of all genetic-based and ANN’s parameters,

another "optimal" configuration can be considered. Its composition is exactly the one described

above as the reference configuration, that is, the one that corresponds to the lowest values for the

absolute and relative errors (see end of Section 6.2). The result of the second optimization phase

is presented in the following table:

Table 6.9 – Optimised laminate configuration for buckling considering the other well fitted configuration.

θ1 /rad θ2 /rad θ3 /rad h1 /mm h2 /mm h3 /mm FIT2 P1,ANN

/N ·m−1
P1,FEM

/N ·m−1

0.7854 0.3146 1.5708 0.1 0.1 0.1 14349.32 58699 59857

Only the intermediate layer’s orientation angle differs between the two optimized arrange-

ments. The relative error between the ANN and FEM predictions is, for this alternative configura-

tion, 1.9%.

6.4 Sobol indices

Here, the relative importance of each design variable on the variance of the critical buckling load

response is calculated, again, following the procedure described in subsection 5.2.5, assuming

that the input variables are independent, that is, there are no couplings between them. Taking into

account the ANN’s architecture and genetic parameters which led to the laminate configuration

described in Table 6.8, the Sobol indices were accordingly obtained.

Table 6.10 – Sobol indices regarding the optimization of the structure for buckling, having the plies orientations and
thicknesses as design variables.

N f Nr SO
2 SO

3 SO
4 SO

5 SO
6 ∑

6
i=2 SO

i

5 22 0.0021 0.2545 0.0226 0.5996 0.2019 1.0807
5 23 0.0075 0.2297 0.0511 0.5981 0.1341 1.0205
5 24 0.0016 0.3397 0.0703 0.7191 0.1234 1.2541
5 25 0.0081 0.2363 0.0139 0.5876 0.1511 0.9970
5 26 0.0069 0.2567 0.0452 0.4130 0.2090 0.9308
5 27 0.0058 0.2046 0.0322 0.5904 0.2319 1.0649
5 28 0.0023 0.3679 0.0796 0.4443 0.2599 1.1541

0.0049 0.2699 0.0450 0.5646 0.1873 1.0717

The dimension of the vector λλλ f ix was set to 5 and Nr ranged from 22 to 28. These values were

selected, because they correspond to the lowest grade of coupling between the design variables, as

a result of an exhaustive study. The following average Sobol indices were obtained: S̄O
2 =0.0049;



122 Optimization of the airplane wing representative structure for buckling

S̄O
3 =0.2699; S̄O

4 =0.0450; S̄O
5 =0.5646 and S̄O

6 =0.1973. Their sum indicates the existence of a small

coupling between the input variables.

Figure 6.8 – Sobol indices corresponding to the Pcrit maximisation, having the plies orientations and thicknesses as
design variables.

The uncertainty about the impact of the position of a certain layer along the composite panel

is more evident for the critical buckling load maximisation. From Figure 6.8, the preponderance

of the design variables of the innermost layer (θ3 and h3) is similar to the contribution of only the

thickness variable of the intermediate layer. The outermost layer, with only h1 as design variable

due to the θ1 prescription, has no significant contribution for the variance of the critical buckling

load response.

6.5 Conclusions and final remarks

In this chapter, a multi-objective optimization procedure was developed, which involved the ma-

ximisation of the critical buckling load and, at the same time, the minimisation of the stiffened

composite panel weight. The implemented artificial neural network predicts the Pcrit values with

a relative error around 3.1%, for the selected configuration. An aggregation method was used in

the second genetic algorithm to consider the two objectives in the same scalar function. Moreover,

the strength constraint was not explicitly taken into account, because it does not compromise

the obtained results by a large safety margin. The following panel’s configuration was achieved

(θ1=0.7854 rad, θ2=0 rad and θ3=1.5708 rad; h1=0.1 mm, h2=0.1 mm and h3=0.1 mm). The

thickness variables assume the lowest value, which enables to conclude about the algorithm’s

assertiveness. A relative error of 1.1% was obtained between the results from the optimised ANN

and finite element model. The maximised Pcrit value is again higher than those observed among

the experimental points (Figure 6.3). The thickness variable of the intermediate layer, h2, has the

bigger influence on the variance of the output response.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, the airplane wing representative structure is subjected to an optimization pro-

cedure in order to maximise its fundamental natural frequency and critical buckling load. The

overall structure is composed by two composite panels reinforced by longitudinal and transversal

aluminium stiffeners. The connections are ensured by bolts and adhesive joints.

Due to the considered design variables, plies’ orientations and thicknesses, and taking into ac-

count that the two panels are similar, only a substructure of the representative one provided by the

Cardiff School of Engineering was considered. Then, two finite element models were created in

order to predict the natural frequencies and buckling loads necessary for the optimization frame-

work. An analytical model based on the Rayleigh-Ritz method was approached with the aim of

establishing an alternative procedure capable of obtaining the natural frequencies of the stiffened

panel. The genetic algorithm was used both for optimising the artificial neural network created

for the prediction of the output variables and to achieve the optimised values of the mechanical

variables under analysis. This type of evolutionary algorithm was chosen due to the ease of imple-

mentation and the lower probability of finding local minima in comparison with the gradient/based

optimization algorithms.

Firstly, the structure was optimised with regard to its fundamental natural frequency. Com-

posite structures are often optimised for vibration by either maximising the ω1 value or the gap

between two successive natural frequencies. Therefore, there is sufficient margin for the structure’s

excitation without being close to the natural frequencies. The amplitude of vibration is propor-

tional to the dynamic amplification factor
(

µ = 1√
(1−β 2)+(2ξ β )2

)
in a single degree of freedom

system with a damping ratio given by ξ , which increases as β = ω

ωn
→ 1, particularly for lower-

damping structures. Considering only the plies’ orientations as design variables, the maximised

value was not as accurate as the relative and absolute errors obtained for the establishment of the

relationship between the input variables and the output response. The lower number of variables

induces both ease of data fitness and premature convergence of the maximised output value. How-

ever, similar results were obtained by FEM and ANN for the same composite optimised configu-
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ration. The same procedure was accomplished adding the thicknesses as design variables, which

augmented the algorithm’s complexity and allowed to obtain good results both for the ANN’s

training and for the second optimization phase. The obtained value is even superior to the ones

observed among the experimental points which, according to the Uniform Design Method, are

uniformly scattered along the domain, representing it with minimum discrepancy. The optimiza-

tion procedure is further validated by the fundamental natural frequency resulted from the finite

element method. Obviously, the absolute and relative errors in the data representation are bigger

than those relative with the problem described above, due to the increase on the input variables,

which increases the domain to scan.

Lastly, using the linear aggregation method, the same composite structure was optimised with

respect to its critical buckling load and weight. The buckling phenomena generates unpredictable

stiffness variations, which compromises the structure’s safety and even the people around. It was

obtained, again, a higher value for the optimised configuration in comparison with the training

dataset.

This dissertation allows to acquire a general knowledge about the different optimization algo-

rithms applicable to composite structures, particularly the genetic algorithm, to understand their

main advantages and drawbacks in comparison with the more conventional ones, gradient-based

optimization methods, and to perceive their importance upon the design of complex and multidis-

ciplinary structures. Besides that, the understanding and further development of the finite element

model already created was an excellent introduction to the Abaqus® software, analysing their main

functionalities and developing new skills that enable the creation of more complex models.

7.2 Further Work

In order to farther validate the obtained results or even improve them, several additional studies

might be performed:

• Consider the effects of the bolted and adhesive connections on the obtained results, since

they are stress-concentration spots;

• Take into account the delamination effect on the modes of vibration and critical buckling

loads, because it may cause a significant reduction both in the compressive load-carrying

capacity and bending stiffness of the structure;

• Compare the obtained results with others evolutionary algorithms and gradient-based meth-

ods, highlighting the advantages and drawbacks of each one of them;

• Add more design variables to the structure, such as the dimensions, shape, number and

position of the stiffeners;

• Due to the prescription of the orientation of the outermost layer (size constraint), redo the

optimization procedures, considering one less design variable for the training process of the

ANN;
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• Consider the curvilinear fibres usage in order to better tailor the composite stiffness and

strength to the optimal direction;

• Increase the genetic algorithm’s complexity, adding more constraints to the system under

analysis with the aim of better representing the mechanical behaviour of the composite

structure;

• Use other techniques to select the training dataset and compare the obtained results;

• Multi-objective optimization using the dominance concept.
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