47 research outputs found

    User driven modelling: Visualisation and systematic interaction for end-user programming with tree-based structures

    Get PDF
    This thesis addresses certain problems encountered by teams of engineers when modelling complex structures and processes subject to cost and other resource constraints. The cost of a structure or process may be ‘read off’ its specifying model, but the language in which the model is expressed (e.g. CAD) and the language in which resources may be modelled (e.g. spreadsheets) are not naturally compatible. This thesis demonstrates that a number of intermediate steps may be introduced which enable both meaningful translation from one conceptual view to another as well as meaningful collaboration between team members. The work adopts a diagrammatic modelling approach as a natural one in an engineering context when seeking to establish a shared understanding of problems.Thus, the research question to be answered in this thesis is: ‘To what extent is it possible to improve user-driven software development through interaction with diagrams and without requiring users to learn particular computer languages?’ The goal of the research is to improve collaborative software development through interaction with diagrams, thereby minimising the need for end-users to code directly. To achieve this aim a combination of the paradigms of End-User Programming, Process and Product Modelling and Decision Support, and Semantic Web are exploited and a methodology of User Driven Modelling and Programming (UDM/P) is developed, implemented, and tested as a means of demonstrating the efficacy of diagrammatic modelling.In greater detail, the research seeks to show that diagrammatic modelling eases problems of maintenance, extensibility, ease of use, and sharing of information. The methodology presented here to achieve this involves a three step translation from a visualised ontology, through a modelling tool, to output to interactive visualisations. An analysis of users groups them into categories of system creator, model builder, and model user. This categorisation corresponds well with the three-step translation process where users develop the ontology, modelling tool, and visualisations for their problem.This research establishes and exemplifies a novel paradigm of collaborative end-user programming by domain experts. The end-user programmers can use a visual interface where the visualisation of the software exactly matches the structure of the software itself, making translation between user and computer, and vice versa, much more direct and practical. The visualisation is based on an ontology that provides a representation of the software as a tree. The solution is based on translation from a source tree to a result tree, and visualisation of both. The result tree shows a structured representation of the model with a full visualisation of all parts that leads to the computed result.In conclusion, it is claimed that this direct representation of the structure enables an understanding of the program as an ontology and model that is then visualised, resulting in a more transparent shared understanding by all users. It is further argued that our diagrammatic modelling paradigm consequently eases problems of maintenance, extensibility, ease of use, and sharing of information. This method is applicable to any problem that lends itself to representation as a tree. This is considered a limitation of the method to be addressed in a future project

    Dynamically generated multi-modal application interfaces

    Get PDF
    This work introduces a new UIMS (User Interface Management System), which aims to solve numerous problems in the field of user-interface development arising from hard-coded use of user interface toolkits. The presented solution is a concrete system architecture based on the abstract ARCH model consisting of an interface abstraction-layer, a dialog definition language called GIML (Generalized Interface Markup Language) and pluggable interface rendering modules. These components form an interface toolkit called GITK (Generalized Interface ToolKit). With the aid of GITK (Generalized Interface ToolKit) one can build an application, without explicitly creating a concrete end-user interface. At runtime GITK can create these interfaces as needed from the abstract specification and run them. Thereby GITK is equipping one application with many interfaces, even kinds of interfaces that did not exist when the application was written. It should be noted that this work will concentrate on providing the base infrastructure for adaptive/adaptable system, and does not aim to deliver a complete solution. This work shows that the proposed solution is a fundamental concept needed to create interfaces for everyone, which can be used everywhere and at any time. This text further discusses the impact of such technology for users and on the various aspects of software systems and their development. The targeted main audience of this work are software developers or people with strong interest in software development

    User driven modelling : visualisation and systematic interaction for end-user programming with tree-based structures

    Get PDF
    This thesis addresses certain problems encountered by teams of engineers when modelling complex structures and processes subject to cost and other resource constraints. The cost of a structure or process may be ‘read off’ its specifying model, but the language in which the model is expressed (e.g. CAD) and the language in which resources may be modelled (e.g. spreadsheets) are not naturally compatible. This thesis demonstrates that a number of intermediate steps may be introduced which enable both meaningful translation from one conceptual view to another as well as meaningful collaboration between team members. The work adopts a diagrammatic modelling approach as a natural one in an engineering context when seeking to establish a shared understanding of problems. Thus, the research question to be answered in this thesis is: ‘To what extent is it possible to improve user-driven software development through interaction with diagrams and without requiring users to learn particular computer languages?’ The goal of the research is to improve collaborative software development through interaction with diagrams, thereby minimising the need for end-users to code directly. To achieve this aim a combination of the paradigms of End-User Programming, Process and Product Modelling and Decision Support, and Semantic Web are exploited and a methodology of User Driven Modelling and Programming (UDM/P) is developed, implemented, and tested as a means of demonstrating the efficacy of diagrammatic modelling. In greater detail, the research seeks to show that diagrammatic modelling eases problems of maintenance, extensibility, ease of use, and sharing of information. The methodology presented here to achieve this involves a three step translation from a visualised ontology, through a modelling tool, to output to interactive visualisations. An analysis of users groups them into categories of system creator, model builder, and model user. This categorisation corresponds well with the three-step translation process where users develop the ontology, modelling tool, and visualisations for their problem. This research establishes and exemplifies a novel paradigm of collaborative end-user programming by domain experts. The end-user programmers can use a visual interface where the visualisation of the software exactly matches the structure of the software itself, making translation between user and computer, and vice versa, much more direct and practical. The visualisation is based on an ontology that provides a representation of the software as a tree. The solution is based on translation from a source tree to a result tree, and visualisation of both. The result tree shows a structured representation of the model with a full visualisation of all parts that leads to the computed result. In conclusion, it is claimed that this direct representation of the structure enables an understanding of the program as an ontology and model that is then visualised, resulting in a more transparent shared understanding by all users. It is further argued that our diagrammatic modelling paradigm consequently eases problems of maintenance, extensibility, ease of use, and sharing of information. This method is applicable to any problem that lends itself to representation as a tree. This is considered a limitation of the method to be addressed in a future project.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Authoring XML all the Time, Everywhere and by Everyone

    Get PDF
    International audienceThis article presents a framework for editing, publishing and sharing XML content directly from within the browser. It comes in two parts: XTiger XML and AXEL. XTiger XML is a document template specification language for creating document models. AXEL is a client-side Javascript library that turns the document template into a document editing application running in the browser. This framework is targeted at non XML speaking end users, since it preserves end users from XML syntax during editing. Its current implementation proposes a pseudo-WYSIWYG user interface where the document template provides a document-oriented editing metaphor, or a more form-oriented metaphor, depending on the template

    Interactive Digital Terrestrial Television: The Interoperability Challenge in Brazil

    Get PDF
    This paper introduces different standards implemented in existing Digital Terrestrial Television Broadcasting systems to allow the fruition of interactive services and applications through digital Set Top Boxes. It focuses on the interoperability issue between the Brazilian and the European architectures. In fact, despite in Brazil the GEM specification has been designed to foster wide content compatibility across a range of interactive platforms, it has never come to a final implementation and deployment. As a result the interoperability issue has been deeply explored in the BEACON project and an innovative system architecture has been developed to deploy t-learning services across Europe and Brazil, providing integration of those systems that were not able to interoperate until nowadays. This work is an important step in the direction of standards' interoperability. As a result, MHP and Ginga NCL-Lua implementation appeared to be the very best choice to deliver interactive services in an interoperable mode between European and Brazilian digital television

    Interoperability of Mobile Devices for Crisis Management: Outcomes of the 1st JRC ECML Crisis Technology Workshop

    Get PDF
    The 1st JRC ECML Crisis Technology Workshop on Mobile Interoperability for International Field Deployment took place in the European Crisis Management Laboratory (ECML) of the Joint Research Centre in Ispra, Italy, from 12 to 13 March 2012. 37 participants attended the workshop. They were coming from: 11 EU countries and Norway, Brazil and US, 3 UN agencies, and 2 NGOs. The workshop's purpose was to measure the added value of mobile assessment technology for rapid situation assessment in international emergency operations. Seven mobile assessment systems were deployed among the participants and needed to provide, in an interoperable way, real-time data to a single electronic On-Site Operations Coordination Centre (eOSOCC). The performance of the systems was benchmarked against a traditional paper-based assessment that was conducted simultaneously (pOSOCC). In the workshop experiment both paper and electronic On-Site Operations Coordination Centres (OSOCCs) reached a similar situation awareness in the same time, but only the eOSOCC had products available as sharable electronic maps and documents. The final map with all incoming feeds in the eOSOCC was very cluttered and there was considerable information overload. Therefore sophisticated editing, filtering, and visualization functionalities have to be available for eOSOCC staff. Mobile technology is mature and can be deployed in an interoperable way. However, then the information of each system leaves the proprietary applications for processing and analyzing the data. The main impression from the eOSOCC team was that there is a lot of potential. Having access in real-time to field information was felt to be extremely useful. Still missing are tools and procedures for exploiting this benefit. Most important are tools to curate, filter, manipulate, edit, and delete assessment information of all teams. A dedicated eOSOCC software suite is needed that gives full control over the data to the eOSOCC staff.JRC.G.2-Global security and crisis managemen

    A service-oriented approach to implementing an adaptive user interface

    Get PDF
    Service-oriented architectures (SOA) are being adopted by organisations in order to integrate disparate computational assets. A major hurdle they face is the decision on how to integrate the UI in an SOA. In addition, technological advances have allowed complex applications and complex user interfaces (UIs) to be realised and the increase in accessibility to computers enables a diverse population of users with different characteristics, preferences and needs to use these complex computer applications. Adaptive user interfaces (AUIs) have been proposed as a solution to cater for the differences in user traits by adapting the UI to meet the diverse needs of users. AUIs have, however, traditionally been developed using client/server architectures This research, therefore, set out to investigate how to develop an AUI using a service-oriented architecture (SOA). In order to successfully achieve the goal of this research, literature concerning SOAs was investigated to gain an understanding of SOAs. A literature review of AUIs was also undertaken to gain an understanding of AUIs. A model-based approach was used to develop a model for UI adaptation using knowledge gained in the literature reviews. The model generates different UIs depending on various users‘ inferred level of expertise. The model describes the interaction between AUI services that use design-time documents and run-time user-interaction to adapt the UI. A prototype of the model was implemented and evaluated using an evolution strategy devised to assess different aspects of the research. The evaluation strategy proved the following: The service components of the prototype adhere to SOA design principles; The implementation was effective based on software engineering metrics; and, The implementation was usable and did not negatively affect the performance of users. The successful implementation of the prototype provides evidence that the design of AUIs using SOA is feasible. This dissertation therefore makes a contribution to the development of AUIs using SOAs. The model could be used to provide UI adaptation for business software applications

    The web as a runtime in mobile context

    Get PDF
    Web-teknologiat kehitettiin alun perin kuvaamaan staattisten web-sivujen sisältöä. Web-selainten suosion vuoksi samoja teknologioita hyödynnetään nykyisin myös sovellusten toteuttamiseen käyttäen web-selainta niiden suorittamiseen vuorovaikutteisesti. Web-teknologioiden suosiosta huolimatta ne sisältävät useita ongelmia ohjelmistojen toteuttamisen näkökulmasta. Lisäksi mobiililaitteiden rajoitukset tekevät kaikilla laitteilla toimivien sovellusten toteuttamisesta haasteellista. Tämän vuoksi uusia ohjelmistoalustoja on kehitetty ratkaisemaan web-selainten asettamia rajoituksia. Tässä diplomityössä koostetaan vaatimukset mobiililaitteissa toimiville web-sovelluksille. Tämän lisäksi web-sovelluksille luodaan luokitusjärjestelmä ja tärkeimmät web-sovelluskehitykseen liittyvät web-teknologiat ja ohjelmistoalustat esitellään. Esimerkkisovellus toteutetaan käyttäen web-teknologioita ja hyödyntäen ohjelmistoalustan ominaisuuksia. Lisäksi esimerkkisovellus arvioidaan määritettyä vaatimusmäärittelyä vastaan. Arviointi paljasti lukuisia haasteita, jotka liittyivät web-teknologioiden puutteelliseen ilmaisuvoimaan, yhteentoimivuuteen ja ohjelmistoalustan toiminnallisuuteen. Tästä huolimatta esimerkkisovellus toteutti sille asetetut vaatimukset työpöytäohjelmistotasoisesta toiminnallisuudesta.Web technologies were initially designed to facilitate the creation of static web pages. However, the ubiquity of the web browser has motivated the use of the same technologies as a basis for desktop-style applications which are executed within the web browser and have their characteristics such as high interactivity. Despite the popularity of web applications, there exists various problems due to the fact that established web technologies were not specified with applications in mind. In addition, the constraints introduced by mobile devices challenge the ubiquity of such applications. On this account, new platforms have emerged extending the capabilities of web browsers. In this thesis, the requirements for client-side web applications in mobile context are synthesized. Moreover, a taxonomy for web applications is drawn and client-side web technologies and major software platforms relevant to the client-side web applications are discussed. Furthermore, an application concept implementation developed using web technologies leveraging the capabilities of the major mobile platform is presented and evaluated against the defined requirements. The evaluation revealed various problems related to limited expressiveness of web technologies, interoperability and platform functionality. Regardless, the implementation provided a level of functionality comparable to that of native applications
    corecore