
HELSINKI UNIVERSITY OF TECHNOLOGY
Faculty of Electronics, Communications and Automation
Degree Programme of Communications Engineering

The Web as a Runtime
in Mobile Context

Master’s Thesis

Anssi Kostiainen

Department of Media Technology
Espoo 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY MASTER’S THESIS
Faculty of Electronics, Communications and Automation
Degree Programme of Communications Engineering

Author: Anssi Kostiainen
Title of thesis:
The Web as a Runtime in Mobile Context

Date: April 15, 2008 Pages: xiv + 143
Professorship: Interactive Digital Media Code: T-111
Supervisor: Professor Petri Vuorimaa
Instructor: Ph.D. Kimmo Raatikainen

Web technologies were initially designed to facilitate the creation of static
web pages. However, the ubiquity of the web browser has motivated the
use of the same technologies as a basis for desktop-style applications which
are executed within the web browser and have their characteristics such
as high interactivity.

Despite the popularity of web applications, there exists various problems
due to the fact that established web technologies were not specified with
applications in mind. In addition, the constraints introduced by mobile
devices challenge the ubiquity of such applications. On this account, new
platforms have emerged extending the capabilities of web browsers.

In this thesis, the requirements for client-side web applications in mo-
bile context are synthesized. Moreover, a taxonomy for web applications
is drawn and client-side web technologies and major software platforms
relevant to the client-side web applications are discussed. Furthermore,
an application concept implementation developed using web technologies
leveraging the capabilities of the major mobile platform is presented and
evaluated against the defined requirements.

The evaluation revealed various problems related to limited expressiveness
of web technologies, interoperability and platform functionality. Regard-
less, the implementation provided a level of functionality comparable to
that of native applications.

Keywords: Web, web browser, platform, runtime environment,
mobile devices, S60, W3C, XML, JavaScript, Ajax

Language: English

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Elektroniikan, tietoliikenteen ja automaation tiedekunta
Tietoliikennetekniikan koulutusohjelma

Tekijä: Anssi Kostiainen
Työn nimi:
Web ohjelmistoalustana mobiililaitteissa

Päiväys: 15. huhtikuuta 2008 Sivumäärä: xiv + 143
Professuuri: Vuorovaikutteinen digitaalinen media Koodi: T-111
Työn valvoja: Professori Petri Vuorimaa
Työn ohjaaja: FT Kimmo Raatikainen

Web-teknologiat kehitettiin alun perin kuvaamaan staattisten web-sivujen
sisältöä. Web-selainten suosion vuoksi samoja teknologioita hyödynnetään
nykyisin myös sovellusten toteuttamiseen käyttäen web-selainta niiden
suorittamiseen vuorovaikutteisesti.

Web-teknologioiden suosiosta huolimatta ne sisältävät useita ongelmia
ohjelmistojen toteuttamisen näkökulmasta. Lisäksi mobiililaitteiden ra-
joitukset tekevät kaikilla laitteilla toimivien sovellusten toteuttamis-
esta haasteellista. Tämän vuoksi uusia ohjelmistoalustoja on kehitetty
ratkaisemaan web-selainten asettamia rajoituksia.

Tässä diplomityössä koostetaan vaatimukset mobiililaitteissa toimiville
web-sovelluksille. Tämän lisäksi web-sovelluksille luodaan luokitusjär-
jestelmä ja tärkeimmät web-sovelluskehitykseen liittyvät web-teknologiat
ja ohjelmistoalustat esitellään. Esimerkkisovellus toteutetaan käyttäen
web-teknologioita ja hyödyntäen ohjelmistoalustan ominaisuuksia. Lisäksi
esimerkkisovellus arvioidaan määritettyä vaatimusmäärittelyä vastaan.

Arviointi paljasti lukuisia haasteita, jotka liittyivät web-teknologioiden
puutteelliseen ilmaisuvoimaan, yhteentoimivuuteen ja ohjelmistoalustan
toiminnallisuuteen. Tästä huolimatta esimerkkisovellus toteutti sille
asetetut vaatimukset työpöytäohjelmistotasoisesta toiminnallisuudesta.

Avainsanat: Web, web-selain, ohjelmistoalusta, virtuaalikone,
mobiililaitteet, S60, W3C, XML, JavaScript, Ajax

Kieli: Englanti

iii

Acknowledgements

Thinking of writing a thesis and actually starting to write one – let alone
getting one done – are obviously different things. I would like to thank Timo
Ali-Vehmas for kick-starting this project and giving me an opportunity to
write my thesis during my work at Nokia.

I want to thank Art Barstow for helping me with the W3C topics. I would
also like to thank Guido Grassel and his team for their inspiring research.
Special thanks go to Mikko Honkala for finding time for discussions and
constructive comments.

My gratitude goes to Mikko Pohja for instructing the last mile of the thesis
by finding time to comment my work with such a short notice and for ideas
which gave the last finishing touches. I would also like to thank my supervisor
Petri Vuorimaa for pointing me to the relevant research early on.

My former instructor and colleague Kimmo Raatikainen helped me formulate
the foundations and the initial structure of the thesis. Kimmo gave me
advice on scientific writing and kept me on the topic. I am deeply grateful
Kimmo chose to share some of his limited time with me during the last
year. The memory of Kimmo’s endless energy motivated me to finish this
thesis. I sincerely wish Kimmo had had the opportunity to see this thesis to
materialize.

Finally, I would like to thank my beloved Elisa, who stood by me even if the
writing process seemed like an endless journey.

Helsinki, April 15, 2008

Anssi Kostiainen

iv

Glossary

AIR Adobe Integrated Runtime, a runtime environment for RIAs
developed by Adobe.

Ajax A programming technique used in web application develop-
ment.

Android A mobile phone platform based on Linux kernel developed by
Google.

API Application Programming Interface, a convention for access-
ing functionality of a computer program.

Atom A pair of related standards for feed syndication and publish-
ing.

ARIA Accessible Rich Internet Applications Suite, a set of specifi-
cations defining how to make advanced features of dynamic
web content accessible.

CSS Cascading Style Sheets, the language used to describe the
presentation of structured documents in the Web.

Declarative
language

A programming language, which describes what some func-
tionality is like, rather than defining how to implement it.

DOM Document Object Model, an API and a data model for rep-
resenting (X)HTML and XML documents.

ECMAScript A scripting programming language, standardized by Ecma
International in the ECMA-262 specification.

GWT Google Web Toolkit, an open source Java framework that
allows creating Ajax applications in Java.

Handheld device See Mobile device.
HTML Hypertext Markup Language, the predominant markup lan-

guage for the creation of web pages.
HTTP Hypertext Transfer Protocol, the main communications pro-

tocol of the Web.
JavaFX A Suite of technologies and a runtime environment for web

application development by Sun Microsystems.
Java ME A subset of the Java platform for constrained devices.
JavaScript A scripting language often used for client-side web develop-

ment. A dialect of the ECMAScript.
JSON JavaScript Object Notation, a lightweight format for inter-

changing data.

v

Layout engine Software that takes web content (such as HTML, XML or
image files) and formatting information (such as CSS) and
displays the formatted content on the screen.

Markup language A language containing annotations which are machine-
readable and typically embody human-readable text.

Middleware Software between the application software and the operating
system.

Mobile application A generic term for a software system operating on a mobile
device.

Mobile device A pocket-sized computing device, typically utilizing a small
visual display screen for user output and a miniaturized key-
board for user input. Typical mobile devices are smart-
phones, mobile phones and PDAs.

MVC Model-View-Controller, a commonly used architecture in
GUI applications.

.NET Compact
Framework

A subset of .NET Framework for mobile and embedded de-
vices.

.NET Framework A development platform for Windows operating system.
OPML Outline Processor Markup Language, an XML-based aggre-

gate format.
PDA Personal digital assistant, an electronic device which can in-

clude some of the functionality of a computer.
Platform A set of services, technologies and APIs on which additional

software and applications are constructed.
Procedural
language

Contrary to declarative language, specifies the steps the pro-
gram has to take to reach the desired state.

REST Representational State Transfer, an architectural style for dis-
tributed systems embodied in the design of HTTP.

Rendering engine See Layout engine.
RSS A family of feed formats used to publish frequently updated

content in the Web.
RIA Rich Internet Application, a web application that has the fea-

tures and functionality of a traditional desktop application.
Runtime See runtime environment.
Runtime
environment

Software which manages the execution of application code
and provides various services to the application.

S60 A software platform for mobile phones that uses Symbian OS.
S60 Web Runtime A runtime environment part of the S60 for executing appli-

cations built on core web technologies.
S60WebKit A port of the WebKit to the S60.
Silverlight A proprietary runtime environment and a browser plugin for

running RIAs developed by Microsoft.
SMIL Synchronized Multimedia Integration Language, an XML-

based language for creating interactive multimedia presen-
tations.

vi

SVG Scalable Vector Graphics, an XML-based markup language
for defining vector graphics.

Symbian OS A proprietary operating system designed for mobile devices.
UI User interface, provides input and output facilities to the user

of a computer program.
URI Uniform Resource Identifier, a compact character string iden-

tifying or naming a resource.
User agent A program that accesses web resources for any purpose.
Virtual machine A software implementation of a computer that executes pro-

grams.
W3C World Wide Web Consortium, the main international stan-

dards organization for the World Wide Web.
Web application An application that is built on web technologies, typically

accessed via the Web over a network such as the Internet
using a web browser.

Web Browser for
S60

A web browser for the S60 based on WebKit developed by
Nokia.

WebKit An open source application framework and a rendering en-
gine.

WHATWG Web Hypertext Application Technology Working Group, a
group of browser vendors and other interested parties working
on the next generation of HTML.

WICD A Web Integration Compound Document, a specification
which ties the core presentational web technologies together.

Widget A class of client-side web applications.
WRT S60 Web Runtime, a runtime platform for S60 used to execute

applications built on standard web technologies.
XAML Extensible Application Markup Language, a proprietary

XML-based markup language for defining UI elements de-
veloped by Microsoft.

XBL XML Binding Language, a declarative language for binding
XML documents to each other.

XForms A specification defining the next generation of XHTML
forms.

XHTML Extensible Markup Language, HTML reformulated as an
XML language.

(X)HTML Un umbrella term referring to both HTML and XHTML.
XML Extensible Markup Language, a general-purpose specification

for creating custom markup languages.
XUL XML User Interface Language, an XML markup language

developed by the Mozilla for defining application layouts.
XULRunner A runtime environment for XUL applications developed by

Mozilla.

vii

Contents

Glossary v

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Background . 3

1.3 Scope of the Thesis . 5

1.4 Methodology . 5

1.5 Structure of the Thesis . 6

2 Requirements for Web Applications 7

2.1 Use Cases for Web Applications 7

2.2 User Interfaces in Computing 10

2.2.1 User Interaction Models for Web Applications 10

2.3 Common Non-functional Requirements 11

2.3.1 Usability . 12

2.3.2 Accessibility . 12

2.4 Guidelines for Developers . 13

2.4.1 Usability Guidelines 13

2.4.2 Web Accessibility Guidelines 13

2.4.3 Design Guidelines and Best Practices 14

viii

2.4.4 Web Technology Design Principles 15

2.4.5 Interaction Patterns 16

2.5 Key Requirements . 17

2.5.1 Generic Requirements 18

2.5.2 Interaction Pattern Requirements 19

2.5.3 User Interface Language Requirements 20

2.6 Summary . 21

3 Web Technologies 22

3.1 The Web Architecture . 22

3.1.1 Key Concepts . 24

3.1.2 Overview of the Web Technology Stack 25

3.2 Base Layers of the Web Architecture 27

3.2.1 Identification and Communications 27

3.2.2 Extensible Markup Language 27

3.2.3 Document Object Model 28

3.3 Core Web Technologies for Web Applications 29

3.3.1 (Extensible) Hypertext Markup Language 29

3.3.2 Cascading Style Sheets 30

3.3.3 JavaScript . 31

3.4 Mobile-specific Web Technologies 33

3.5 Evolution of the Core Web Technologies 34

3.5.1 HTML 5 . 34

3.5.2 Cascading Style Sheets Level 3 36

3.5.3 JavaScript 2 . 37

3.6 Emerging Web Technologies for Web Applications 38

3.6.1 Open Web Standards 38

3.6.2 Proprietary Application and UI Markup Languages . . 40

3.6.3 Client-side Extensions 41

3.6.4 Essential Data Interchange Formats 42

ix

3.7 Summary . 43

4 Web Applications and Platforms 45

4.1 Web Applications . 45

4.1.1 Web Application Architectures 46

4.1.2 Web Application Programming Interfaces 48

4.1.3 Classification of Web Applications 50

4.1.4 Feed Reader Applications for Mobile Devices 54

4.2 Platforms for Web Applications 55

4.2.1 Operating Systems . 57

4.2.2 Middleware . 57

4.2.3 Web Browser as a Ubiquitous Client 61

4.2.4 Web Runtime Environments 64

4.2.5 S60 Web Runtime – A Web Runtime Environment for
the S60 . 67

4.2.6 Other Platforms . 71

4.2.7 Overview of the Platforms 71

4.3 Summary . 72

5 Concept Implementation 75

5.1 The Feed Widget – An Overview 75

5.1.1 Functionality . 75

5.1.2 Use Case Description 76

5.1.3 Functional Requirements 77

5.1.4 Design Overview . 78

5.1.5 Custom Components and Interfaces 79

5.1.6 MVC Implementation 84

5.1.7 Functionality Related to Views 89

5.1.8 Event-driven Design 93

5.1.9 Models Representing the Domain Objects 95

5.2 Summary . 96

x

6 Evaluation 97

6.1 Overview of the Results . 97

6.2 Interaction Pattern Requirements 98

6.2.1 Typical Interactors . 98

6.2.2 Master-detail . 100

6.2.3 Paging and Dialogs . 100

6.2.4 Repeating and Nested Constructs 100

6.2.5 Copy-paste and Undo-redo 101

6.2.6 Drag and Drop . 101

6.2.7 Filtering . 101

6.3 User Interface Language Requirements 102

6.3.1 Graphically Rich Content 102

6.3.2 Exact Control of the Presentation 103

6.3.3 Layout and Content Adaptation 104

6.3.4 Navigation . 104

6.3.5 Interactive Graphical Menu System 105

6.3.6 Customizable Presentation 106

6.4 Summary . 106

7 Discussion 107

7.1 Functionality . 107

7.1.1 Incompatible Browser and Rendering Engine Imple-
mentations . 107

7.1.2 Role of the Declarative Markup 109

7.1.3 Core JavaScript Limitations 110

7.1.4 Data Format Incompatibilities 111

7.1.5 Styling and Layout Issues 112

7.2 Efficiency . 113

7.2.1 Core JavaScript Performance 113

7.2.2 The DOM as a Global Data Model 113

7.2.3 Limited Support for State Management 114

xi

7.2.4 Various Client-side Data Persistence Mechanisms . . . 114

7.2.5 Inefficient DOM and CSS Implementations 115

7.3 Portability . 116

7.3.1 Manifest Limitations 116

7.3.2 Accessibility . 116

7.3.3 Security Sandbox and the Same Origin Policy 117

7.3.4 Device-independence and Multimodality 118

7.3.5 Hypertext Navigation 118

7.3.6 Graceful Degradation 119

7.3.7 Modality Issues Related to the Event Model 119

7.4 Ease of Authoring . 120

7.5 Web Integration . 121

7.6 Key Findings and Recommendations 122

7.6.1 Language Issues . 122

7.6.2 Performance Issues . 122

7.6.3 Interoperability and Compatibility Issues 122

7.6.4 Usability and User Interaction Issues 123

7.6.5 Web Runtime Environment Issues 123

8 Conclusion 124

8.1 Future Work . 126

Bibliography 126

A Markup and Code Examples 144

A.1 CSS Media Types, Media Features and Implicit Transitions . . 144

A.2 S60 Web Runtime Widget Manifest 145

A.3 Feed Widget Event Handling 146

B Rendering Engines 147

B.1 Supported Web Technologies 147

xii

List of Tables

3.1 Comparison between current baseline and emerging standard
web technologies. Baseline web technologies refer to technolo-
gies supported by major browsers listed in Appendix B.1. . . . 44

4.1 S60 Web Runtime widget components [52]. 68

4.2 Comparison of client-side platforms by their web technology
interworking capabilities. 74

5.1 Feed Widget JavaScript classes defining generic custom inter-
faces. 80

5.2 Methods extending the HTMLElement interface. 83

5.3 Feed Widget JavaScript components implementing MVC. . . . 86

6.1 Evaluation of the concept implementation against the inter-
action pattern (R2n) and user interface language requirements
(R3n) with respect to the generic requirements (R1n). 99

A.1 Widget properties supported in S60 Web Runtime 1.0. 145

B.1 Support for web technologies by rendering engines. 147

xiii

List of Figures

3.1 Relationship between identifier, resource, and representation.
[115] . 25

3.2 The web technology stack. Adapted from [113]. 26

3.3 An example of the Document Object Model. 29

4.1 Thin client application (left), interactive web application (cen-
ter) and rich client web application (right) interaction models.
Adapted from [95]. 51

4.2 Platforms for web applications. The horizontal layers depicts
platforms and vertical emphasized boxes web application cat-
egories. 56

4.3 Overview of the S60 platform architecture. Adapted from [151]. 59

4.4 Web Browser for S60 architecture [50]. 63

4.5 Classification of client-side platforms. Platforms specific to
mobile devices are emphasized. 73

5.1 Architecture of the Feed Widget. 80

5.2 A diagram of the Feed Widget MVC structure. 86

5.3 Examples of the Feed Widget user interface. 90

xiv

Chapter 1

Introduction

The World Wide Web – the Web in short – is a system built on top of the
Internet which has been a phenomenal success since the late nineties. In a
short period of time, the Web has developed from its initial form used at
CERN1 [9] for managing information using simplistic web pages into a plat-
form of interactive services. For example, today the Web is used for online
shopping, games, multimedia applications and maps among others. Most
importantly, the technical evolution of the Web has happened inconspicu-
ously of a regular web user thanks to the extensible architecture of the Web.
On the other hand, the way people access information today has undergone
a revolution – URLs are printed on everything, google has become a verb
and the web browser has morphed into a window encompassing information
earlier scattered around newspapers, dictionaries and bulletin boards.

While the Web has been evolving, mobile devices have developed from sim-
ple devices used for voice communication only into pocket-sized computers
which contain enough processing performance and capacity, Internet connec-
tivity and a modern operating system to be first-class citizens of the Web.
At present there are over 3 billion mobile devices – more than web users
altogether – and within 2-3 years the amount is expected to increase by at
least a billion [178]. At the same time the use of the Web on mobile devices is
increasing rapidly. For example in Japan, there exists almost equal amount
of people using the Web on a mobile device and on a desktop in 2007 [37].

The most distinctive characteristics of web applications compared to tradi-
tional applications are that they are built on device-independent web tech-
nologies and are accessed via the Web over a network such as the Internet in
an on-demand fashion which requires no installation of software as the web

1The European Organization for Nuclear Research

1

2 CHAPTER 1. INTRODUCTION

browser acts as an ubiquitous client. Traditionally, the browser has taken
the role of a thin client in web applications and has been only used for in-
terpreting the user interface whereas the program logic has resided on the
web server. However, recent requirements for web applications, especially
higher interactivity, have shifted the interest towards client-side and the web
browser as an application runtime environment.

Client-side web technologies are by far the most known of all languages used
for developing applications [38, 84]. Today, they are in a major role in de-
livering rich user experience of today’s web applications and services to the
users. The ubiquity of web technologies has enabled web applications to
establish a firm foothold on areas previously dominated by traditional appli-
cation environments such as Windows [132]. This implies that the associated
development, deployment and delivery models are versatile and appropriate
for most use cases. Despite the success, the area of web applications has not
been adequately served by the web technologies originally designed for thin
client approach. As a consequence, alternative platforms extending the web
browser have emerged and new ones are being developed. The approaches
of these platforms vary from device dependent to theoretically device in-
dependent paradigms. Advantages of device dependent approaches are in
their better performance and deeper integration with the underlying plat-
form which enable e.g. richer graphics capabilities. Regardless, developing
device dependent applications incur a significant cost as the same applica-
tions do not typically run across multiple platforms.

Lately, improvements have been suggested to existing web technologies that
facilitate authoring of web applications. As the same building blocks of the
web applications are also supported in modern mobile devices, it is reason-
able to assess the state of web technologies as a platform of web applications
for mobile devices and identify the areas which still need further develop-
ment. If no advances in web technologies are made that facilitate building
web applications for mobile devices, it can be expected that disruptive plat-
forms will emerge, hindering the uptake of the Web as a common runtime
for applications.

1.1 Problem Statement

The objective of this thesis is to assess the feasibility of client-side web tech-
nologies in mobile devices, and especially, their applicability for implement-
ing applications that are today typically developed using device dependent
approaches. More specifically, the feasibility of a runtime platform for said

1.2. BACKGROUND 3

applications – the S60 Web Runtime [51] – is addressed from the viewpoint
of generic software quality, end-user and language requirements by imple-
menting a prototype application and evaluating it against the aforementioned
requirements.

1.2 Background

World Wide Web Consortium (W3C) is an international consortium develop-
ing standards and guidelines for the Web. Its work is organized into activities,
of which the Rich Web Clients Activity is the most relevant within the scope
of client-side web technologies and web applications. It aims to improve the
client-side experience of web technologies which are used as building blocks
for web applications. This includes formats and application programming
interfaces (APIs) used for application development. In addition to W3C,
other parties have also actively contributed to the development of the web
standards which facilitate building more interactive web applications. The
Web Hypertext Application Technology Working Group (WHATWG) ini-
tially formed by web browser vendors in 2004 has been developing the ex-
isting core web standard, the Hypertext Markup Language in a backwards
compatible manner to cater for web applications. The specification named
HTML 5 [98] was brought to W3C in 2007 and the work is still on-going.
New additions in HTML 5 include, for example, much improved graphics ca-
pabilities, standard way to embed video and audio elements into web content
and store data persistently on the client-side. Related to rich graphics ca-
pabilities, Apple has proposed new extensions to the established Cascading
Style Sheets specification which is the standard used to describe the pre-
sentation of web content. The extensions enable effects familiar from rich
graphical toolkits without proprietary extensions commonly used today to
be implemented using standard web technologies and bring the presentation
capabilities of web applications on par with their native counterparts.

The fundamental constraint of web applications, the lack of offline support,
has been also recently addressed. Google has published an extension to
the web browser which enables web applications to function offline, which
in turn, enables new use cases, such as using web applications instead of
traditional applications in places where Internet connectivity is not available.
To realize use cases where existing web standards have not provided solutions,
many big vendors such as Microsoft and Adobe have released new platforms
which promise users more seamless experience compared to web applications
implemented in standard web technologies used via standard web browser.

4 CHAPTER 1. INTRODUCTION

These web runtime environments aim to differentiate by providing better
integration with the underlying operating system, richer graphics capabilities
and less restricted methods for interacting with the application. However,
as a downside these approaches are not as ubiquitous as the web browser
and require additional extensions restricted to certain operating systems or
devices. The openness of many of these approaches is also disputable.

The above-mentioned developments have been first brought to the desktops,
but mobile devices have been following the same path. Today, most sophis-
ticated mobile devices utilize the same components in their web browsers as
popular desktop browsers, which should bring them on par with the desktop
browsers in standards compliance. Regardless, the existing web standards do
not take mobile device specifics into account. This has spawned alternative
platforms for mobile devices which leverage web technologies but extend the
web browser to provide better integration with the underlying platform for
more seamless user experience. An example of such a platform is Nokia’s S60
Web Runtime [51] which extends the web browser. Furthermore, new players
such as Google and Apple have entered into the mobile business bringing op-
erating systems closely resembling desktops from the technology compliance
point of view. This has been a notable difference compared to the tradi-
tional approach of the mobile market in which more restricted subsets of
technologies have commonly been used.

There is significant growth potential for the Web as an application platform
in mobile context. Finnish studies conducted in 2006 concluded that 60%
of the traffic in smartphones in Finnish mobile networks was generated by
Hypertext Transfer Protocol (HTTP) which is the protocol used to convey
information on the Web [121]. A notable observation was that the web
browser was the main source for this traffic. In addition, recent improvements
in network speeds and browser design together with declining cellular data
costs have catalyzed the absolute traffic volumes to three-to-four fold growth
from 2005 to 2006 according to the same studies.

Although Finland may not reflect the global state of mobile usage, it arguably
is a good indicator of the trend how people may be using their mobile devices
within two to three years on a global scale, presupposing capable mobile
devices and networks will be more universally available in the coming years.
The results from the above-mentioned study imply, that web technologies
will play a significant role in mobile context and suggest that there is an
untapped growth potential beyond traditional browsing on mobile devices.

1.3. SCOPE OF THE THESIS 5

1.3 Scope of the Thesis

The scope of this thesis is limited to web technologies related to developing
client-side web applications. The main focus is on open web standards devel-
oped by World Wide Web Consortium (W3C). Proprietary approaches are
evaluated in case there exists no open standard fulfilling the key requirements
for web applications. The main platforms utilizing web technologies are dis-
cussed with a focus on platforms for mobile devices. Based on prior literature,
the most suitable platform compliant with the requirements is selected as the
basis for concept implementation and its capabilities are evaluated in more
detail.

1.4 Methodology

The methodological approach of this thesis is characterized by the following
more detailed objectives:

1. Synthesize a list of key requirements for client-side web applications
consisting of generic quality requirements for a software product, user
requirements related to interaction patterns and requirements specific
to the interaction and multimedia capabilities of the web technologies
and related platforms. The requirements must derive from the existing
research and publications related to guidelines, use cases and require-
ments within the scope of the thesis.

2. Review the current core web technologies, their evolutionary versions
and major platforms used to create client-side web applications. In ad-
dition, examine the major emerging web technologies that address the
key requirements where existing core web technologies do not provide
feasible solutions.

3. Realize a concept implementation of a feed reader application which
leverages device and platform capabilities and is implemented in core
web technologies only.

4. Evaluate the concept implementation against the defined key require-
ments. Based on the analysis, identify gaps in the existing web tech-
nologies and provide recommendations for future developments related
to web standards, web browser extensions and web runtime environ-
ments.

6 CHAPTER 1. INTRODUCTION

1.5 Structure of the Thesis

The structure of the thesis is the following:

In Chapter 1, the research area is introduced and a problem statement for
the thesis is formulated. In addition, related work is discussed and detailed
objectives for the research are elaborated.

In Chapter 2, the existing body of knowledge is reviewed related to require-
ments for web applications in mobile context and the key requirements are
synthesized.

In Chapter 3, the web architecture is introduced, core web technologies, their
evolutionary versions and emerging web technologies relevant to the scope of
the thesis are elaborated.

In Chapter 4, major web application categories are discussed, followed by a
review of the major software platforms related to web applications and web
technologies within the scope, including operating systems and middleware.
Finally, the platforms utilizing web technologies are classified.

In Chapter 5, the concept implementation realized as the experimental part
of the thesis is discussed.

In Chapter 6, the concept implementation is validated by evaluating it
against the key requirements. In addition, alternative approaches to iden-
tified problems proposed by emerging web technologies are discussed where
applicable.

In Chapter 7, the results of the thesis are discussed and interpreted in the
light of earlier research. In addition, the key findings are summarized.

In Chapter 8, conclusions of the thesis are drawn and suggestions for further
research are given.

Chapter 2

Requirements for Web
Applications

First in this chapter, typical use cases for web applications, especially in mo-
bile context, are presented. Next, common non-functional requirements for
such applications are discussed. Furthermore, the existing body of knowl-
edge aimed at web authors is analyzed by reviewing the major guidelines,
best practices and interaction design patterns within the scope of the thesis.
Finally, a summary of key requirements for web applications built entirely
in client-side web technologies is drawn taking into account the needs of
the end-users and developers of such applications as well as implications of
constraints introduced by mobile devices themselves.

2.1 Use Cases for Web Applications

Use cases describe the interaction between the user and the system consisting
of a sequence of simple steps which together aim to capture the functional
requirements of a system. Use cases are considered an integral part of a suc-
cessful design process [137]. In the context of this thesis, a web application
is defined as an application built on standard web technologies communica-
tion over the Internet using standard protocols. Typically, a web browser
or similar software available on multiple platforms supporting standard web
technologies is used to run such web applications. Use cases have been the
starting point also while designing the latest version of core language of the
Web, the Hypertext Markup Language (HTML). When the foundations for
the latest version of this language were laid, it was stated in [77] that: "every

7

8 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

feature that goes into the Web Applications1 specifications must be justified
by a practical use case."

In this section, selected use cases related to web applications published by the
W3C are reviewed. Within the scope of W3C, there exists such documents
describing use cases and high-level requirements for declarative formats for
applications and user interfaces [193], more specific requirements for small
client-side Web applications called widgets [26, 25]. In addition, use cases
for compound documents provides an extensive list of high-level use cases for
rich multimedia content [4, section 1.2].

Furthermore, multimodal interaction, that is applications in which one can
interact using multiple modes of interaction, for instance, using speech in-
stead of key presses for input, were described in [28]. Core presentation
characteristics use cases cover aspects how to adapt content to a specific pre-
sentation capabilities [81]. Use cases for evaluating the potential benefits of
an alternative for an Extensible Markup Language (XML) in mobile devices
is discussed in [36, section 3.8].

In the context of use cases in [4, section 2.2], web applications running within
user agent or within another host application, which have some form of pro-
grammatic control on the client are covered. Examples of such use cases are
presented below:

Reservation system An interactive service allowing users to make reser-
vations by using a graphically-rich user interface. This includes, for
example, components such as calendars which aid users in selecting
proper dates. In [95] similar use case is extended to cover mobility
needs where using a multimodal capable mobile device voice is used as
both the input and the output mechanisms to interact with the appli-
cation.

Order entry system An application used on the go to process orders for
goods and services. Characteristically such tasks are repetitive and
done in a rush which emphasizes the usability and efficiency require-
ments for such application.

Resident applications are defined as applications partially residing on a device
[4, section 2.3]. Examples of such applications include:

Communication Tasks such as email, instant messaging and access to de-
vice functions to make a call, send a text message or interact with an

1The name of the HTML 5 specification at the time.

2.1. USE CASES FOR WEB APPLICATIONS 9

address book all belong to the communication category. These features
are typical of a modern mobile device with network capabilities.

Information widget A small application typically part of the device UI in
mobile devices which is dynamically updated and displays contextual
data related to e.g. user’s location and the time of the day. Examples
include weather forecasts, special offers and news tickers.

Content authoring, aggregation and deployment use cases include applica-
tions for content creation, management and distribution, such as: [4, section
2.3]

Personal content creation Refer to user created content that may be
shared with others and combined with other content. As an exam-
ple, user may want to attach a descriptive message to an image he has
shot.

Personal content management Encompasses activities such as storing
and viewing user’s personal media such as images, audio, video and
text. In addition, such a system should adapt the content for different
kind of devices and allow sharing the content with other users.

Blogs Web logs or blogs, which are personal diaries published online, are
nowadays used for a plethora of communication tasks. They mainly
consist of text but may combine other media formats such as images and
video as well. The author has an ability to write posts whereas readers
can, in addition to passively reading, comment on posts. Typically the
user has an ability to subscribe to an aggregate of latest posts, known
as web feeds.

Content aggregation A class of applications which combine content from
various sources together2. Typical examples include web portals which
provide different delivery channels with varying content. For exam-
ple, the users of more constrained mobile devices may be offered with
smaller images to reduce download times.

The wide spectrum of use cases imply that they set diverse requirements for
user interfaces. In the next section, the user interface aspects are discussed,
especially focusing on the needs related to mobile devices.

2Another term commonly used for such applications is a mashup.

10 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

2.2 User Interfaces in Computing

The focus of this thesis is on client-side web technologies. These technologies
are also used as core building blocks for user interfaces of web applications.
In human-computer interaction (HCI), user interface (UI) refers to the infor-
mation (e.g. graphics, text) the program presents to the user as a response to
the control sequences (e.g. keystrokes, mouse movements) the user employs
to control the program. Today, the most common types of user interfaces
are graphical user interfaces (GUIs) of desktop operating systems such as
Windows and web-based user interfaces which are realized within the web
browser window.

2.2.1 User Interaction Models for Web Applications

The most popular interaction model used in traditional desktop application
GUIs is WIMP (Windows, Icons, Menus and Pointing). As the name sug-
gests, it revolves around graphical UI elements such as windows, icons and
menus which can be interacted with using a pointing device such as a mouse.
However, in the Web this model is seldom used as existing web standards
have evolved around representing documents [77]. Direct manipulation is an-
other demanding interaction model that is used in e.g. drawing programs in
which visual feedback to the user has to be immediate. Similarly to WIMP,
this type of interaction is nearly impossible to realize without plugins with
existing web technologies using major web browsers as user agents. [95]

However, the needs of the above-mentioned interaction models in web appli-
cations have been identified and are being addressed by the evolution of the
Hypertext Markup Language [98] which proposes various improvements. In
addition, W3C Web Accessibility Initiative [92] aims to make more advanced
features of dynamic content and Rich Internet Applications accessible. Such
improvements in web technologies are further discussed in Sections 3.5 and
3.6.

Web applications that are build on top of the same web technologies can vary
a great deal in how the roles and workload is split across the server-side and
the client-side. As a simplification one could state that the more the client-
side is responsible for running the functional algorithms the more interactive
the application is. Honkala [95, p. 12] proposes the following taxonomy for
web applications based on their interactivity:

Information retrieval Characteristics of this category are web applica-

2.3. COMMON NON-FUNCTIONAL REQUIREMENTS 11

tions with low interactivity requirements. Typical use cases include
user browsing and searching information with simple search terms.

Information manipulation Medium interactivity such as editing prede-
fined parts of the information by the user is analogous to adding items
to or removing items from a shopping cart in an e-commerce applica-
tion.

Information authoring Highest interactivity requirements are set by the
applications requiring information authoring using specific applica-
tions. For example, word processor, spreadsheet and drawing appli-
cations fall into this category.

Out of the above-mentioned categories, existing web technologies are mainly
designed for implementation of web applications belonging to information
retrieval and information manipulation classes of user interaction. Infor-
mation authoring is feasible to be implemented in desktop browsers with
extensive use of client-side scripting and may require the use of proprietary
plugins3. Additional challenges related to mobile devices are limited input
and output methods, such as small keyboards and screens which complicate
the implementation of information manipulation and information authoring
applications.

In spite of all, the web technologies have been successfully used for imple-
menting UIs which have previously required the use of GUI toolkits built in
lower-level languages such as Java. Examples include Joost [165], which is
a highly interactive desktop client for distributing TV shows, and a phone-
book mashup application for the S60 mobile phone platform developed by
Nokia. Both of these provide integrated access to on-device functionality and
to web-based services [88].

2.3 Common Non-functional Requirements

This section discusses common non-functional requirements for web applica-
tions in mobile context, that is requirements which specify system qualities
instead of specific behavior. Such generic quality characteristics for a software
are defined in ISO 9126 standard [181]. In this section only the most relevant
non-functional requirements in the domain of the Web are elaborated.

3For example, the de facto way of embedding video to the Web is to use proprietary
Adobe Flash browser plugin. [22]

12 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

2.3.1 Usability

International Organization for Standardization (ISO) [180, part 11] defines
the usability as the "extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use". In practice this means that user can find an
element in a user interface problematic in many ways: the system may be
difficult to learn, it may be slow, cause errors or be plainly unpleasant.

Usability challenges emerged from the start when Internet services started
to migrate to mobile devices in the beginning of the millennium aiming to
make ubiquitous information access any time anywhere reality [117]. Various
usability studies have been conducted especially dealing with mobile appli-
cations [58, 130]. Another area of interest has been the web content designed
for Wireless Application Protocol (WAP) [33, 117]. There have also been
various usability studies in the area of mobile browsing [170, 171, 172]. The
prevailing view in the above-mentioned studies has been that high level of
user satisfaction is critical to the success of applications designed for mobile
devices. The poor usability of the Web and web applications in particular
has been a known issue since the emergence of web technologies [147].

2.3.2 Accessibility

There exists varying interpretations of the relationship between accessibility
and usability. International Organization for Standardization (ISO) specifies
accessibility as the usability extended at the largest possible number of users.
[182]. W3C states that the content is accessible when it "may be used by
someone with a disability" [32]. This clearly implies that something that is
accessible may not be usable and vice versa. [13]

In the context of the Web, web accessibility means that the potential audi-
ence is maximized. In a wider sense it also measures "resistance to external
or temporary handicaps, such as noisy environments or bad lighting" [16].
Various guidelines which incorporate the knowledge of how people perceive,
understand, navigate and interact with the Web have been published. Ad-
herence to guidelines will make the Web more available to users despite of
the device used. An additional benefit is that accessible content will make
information searching easier for both machines and humans [90]. Moreover,
many countries have legislation which address the accessibility issues. [32, 91]

2.4. GUIDELINES FOR DEVELOPERS 13

2.4 Guidelines for Developers

Next, major guidelines relevant to web developers of web applications are re-
viewed. This includes usability and accessibility as well as design guidelines
and best practices which partly draw from usability and accessibility guide-
lines but are more concrete. In addition, typical interaction design patterns
applied to web applications are discussed.

2.4.1 Usability Guidelines

There exists a great body of knowledge discussing the usability of Human-
Computer Interfaces (HCI) of computer-based systems. This knowledge is
commonly referred to as usability guidelines. The usability guidelines became
popular during the 1980s when computer systems were introduced to people
in the work place with no special expertise. Since, guidelines have been
developed progressively and recently there has been general interest toward
the usability of web applications due to the proliferation of the Web as a
platform for running applications.

Nielsen is one of the most renowned web usability experts. He has released
various usability guidelines related to the Web [89, 147] and identifies var-
ious usability challenges in the latest development in web applications. In
a study of 46 Flash-based4 web applications Nielsen concludes that the us-
ability requirements for web applications are far stricter than they ever were
for traditional software [148]. Nielsen criticizes the Ajax technique, which is
popular among recent web applications. It allows a web page to interact with
the web server on the background using standard web technologies for better
interactivity. He argues that the main usability problem related to the Ajax
approach is the breaking of the page-centric model of the Web, which renders
the navigation controls of the web browser useless [149]. However, solutions
to this problem have recently been developed and are being standardized in
W3C in [98].

2.4.2 Web Accessibility Guidelines

W3C Web Accessibility Initiative (WAI) is the body developing web accessi-
bility guidelines for the Web. Web Content Accessibility Guidelines (WCAG)

4Adobe Flash is a proprietary extension to web browser which is commonly used to
create web applications requiring rich interaction capabilities.

14 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

[32, 27] explain how to make web content accessible, User Agent Accessibil-
ity Guidelines (UAAG) [114] address web browsers, other user agents and
clarifies how to make them accessible. Authoring Tool Accessibility Guide-
lines (ATAG) [187] provide similar guidance for authoring tool vendors. WAI
guidelines are compatible with the core web technologies that are presented
in Chapter 3. [91]

Graceful degradation, which enhances accessibility of the Web, is an impor-
tant principle in web design. It is applied to web content which is meant to
be consumed by user agents of varying capabilities. The approach advocates
the use of best practices to avoid incompatibility issues stemming from web
browser inconsistencies enabling the web content to be fault-tolerant. For ex-
ample, in a case of a failure (e.g. a lack of support in the browser for certain
web technology) the operating quality of an application decreases instead of
a total breakdown. It includes principles such as separation of the behavior
layer from the structure and presentation layers. A reversed approach to
graceful degradation is progressive enhancement [30] which is geared toward
the lowest common denominator of browser functionality. [131]

The graceful degradation approach is fairly easy to support in web content
which requires little interaction. For example, a static web page is completely
viewable without presentational decoration. However, the heterogeneity of
the host environment, the browser, and its incompatibilities have more severe
coincidences in interactive web applications which rely heavily on scripting
which makes designing gracefully degrading interactive web applications te-
dious.

2.4.3 Design Guidelines and Best Practices

In the Human-Computer Interaction discipline, guidelines or human interface
guidelines (HIG) consist of a collection of principles and recommendations
defining the look and feel for applications to provide a level of consistency.
The need for more comprehensive guidelines also for the Web is becoming
more critical as web applications are adopting more complex user interfaces
familiar from desktops. Best practices are commonly used in the fields of
software engineering to define generally agreed way to implement something.

The line between a guideline and a best practice is ambiguous and the terms
are commonly used interchangeable. For example, in W3C Mobile Web Best
Practices [166, section 1.5] it is stated that the W3C Web Content Accessibil-
ity Guidelines "are supplementary to the [W3C] Mobile Web Best Practices,
whose scope is limited to matters that have a specific mobile relevance" [166].

2.4. GUIDELINES FOR DEVELOPERS 15

To clarify the situation, W3C has started working on specifying the similar-
ities and differences of the above-mentioned documents in [34].

GUI Guidelines target specific operating systems and give instruction how
to design consistent applications. For example Windows Vista User Experi-
ence Guidelines [40] are the official guidelines for the designers of Windows
software and S60 Platform Scalable UI Guideline [48] gives guidance how to
design for the S60 platform used in the majority of world’s smartphones.

Guidelines for designing web content for mobile devices have been covered by
the W3C, the .mobi company [55], as well as various vendors of the mobile
devices. W3C Mobile Web Initiative [97] launched in 2005 has a mission
to make "Web on the move" happen, that is to make mobile web access as
simple as web access from a desktop device. Scope of Mobile Web Best Prac-
tices describes "device and access network capabilities that need to be con-
sidered because of possible technical, ergonomic or economic implications"
[144]. These included capabilities related to device hardware (battery, input,
memory, processing power and screen), device software (capabilities, voice
and multimodality) and access network (bandwidth and connectivity). In
addition, aspects such as cost, availability, usability, partial attention, social
situation and physical environment are covered.

W3C has published Mobile Web Best Practices 1.0 [166] which specifies best
practices for delivering web content to mobile devices. Building upon this
work, a set of guidelines [55] has been released for the services in the .mobi
top-level domain. The Mobile Web Best Practices 2.0 [6] work which in its
infancy in the beginning of 2008 is scoped to focus on web applications on
mobile devices. Nokia has released guidelines which target more capable web
browsers found in recent high-end models [150]. Similarly, Apple has released
guidelines for designing web content optimized for its iPhone [108, 109].

2.4.4 Web Technology Design Principles

In understanding the approaches taken in designing web technologies, it
is beneficial to look at the design goals and principles in more detail. In
[16, 115] the general design goals for web technologies are discussed. Rele-
vant topics within the scope of this thesis include maintainability, minimum
redundancy and device independency. Maintainability refers to the ability to
make changes to the system. It is facilitated by a manageable size and a clear
structure of a specification. Minimum redundancy means that the overlap
between the specifications should be kept small. Device-independency asks
for specifications that do not depend on a specific device. For example, Hy-

16 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

pertext Markup Language (HTML) is a device independent markup language
in a sense that it can be displayed on the screen or read a loud with assistive
software. On the other hand, Cascading Style Sheets (CSS) which provides
the presentation is somewhat device-dependent; specifying fonts only makes
sense on a visual medium. [16]

HTML Design Practices Working Draft [100] published by W3C discusses set
of guiding principles used to develop the latest version of the core language of
the Web, the HTML 5. The principles fall into four main categories: compat-
ibility, utility, interoperability and universal access. Related to compatibility,
the principles highlight the significance of supporting existing content, mean-
ing user agents implementing the latest specification should also be able to
handle most existing content. In addition, graceful degradation approach dis-
cussed in Section 2.4.2 should be made good use of to provide a fallback solu-
tion for older, but still popular user agents with lesser capabilities. Principles
related to utility suggest concentrating on solving real-world problems over
defining abstract architectures and adhering to separation of concerns among
others. Interoperability highlights the significance of well-defined behavior,
also in case of a failure, over vague or implementation-specific behavior loose
in the contemporary Web. Related to universal access accessibility and me-
dia dependency – an ability of features to work across different platforms,
devices and media when possible – are emphasized. [100]

It should be noted that although specifications related to Web would be
implemented precisely according to the above-mentioned principles, user-
agents are still the weakest links as they should implement the specifications
consistently. In retrospect, this has never been the case.

2.4.5 Interaction Patterns

A design pattern is a general repeatable solution to a commonly occurring
problem in software design. Design patterns can be applied to low-level im-
plementation details as well as to interaction design. They provide a descrip-
tion on how to solve a problem independent of the programming language
used. Interaction patterns or user interface design patterns are repeatable
solutions to usability or accessibility problems in the UI design. Laakso iden-
tifies the following high-level categories for such patterns: search, data views,
storages, selecting and manipulating objects, time, hierarchies and sets and
save and undo [124]. [15, 95, 133]

Mobile devices incorporate more limited input and output mechanisms which
complicate implementing common interaction patterns elementary to appli-

2.5. KEY REQUIREMENTS 17

cations requiring rich interactivity. Furthermore, such mechanisms are more
diverse, for example, input mechanisms may vary from simple 4-way rock-
ers to touch screens. For output, screens may come in different resolutions
and aspect ratios. In addition, alternative modalities such as voice may be
employed for output. This is contrary to typical desktops which commonly
employ a standard full-size keyboard and a mouse and enough screen real
estate.

2.5 Key Requirements

The key requirements in this section are derived from the analysis of the
use cases described in Section 2.1 and from the literature discussing usabil-
ity (Section 2.3.1) and accessibility (Section 2.3.2) topics, guidelines and best
practices (Section 2.4) as well as interaction patterns related to user interfaces
(Section 2.4.5). The key requirements are categorized to generic requirements
comprising of software quality metrics, interaction pattern requirements de-
manded by the end-users and user interface language requirements which
specify requirements for languages used for the implementation of client-side
web application and thus facilitate developers’ implementation task. Before
describing the key requirements, characteristics of a typical target device are
introduced to understand the constraints of a typical target device in addi-
tion to the target audience, that is both the end-users and the developers of
client-side applications built on web technologies.

Devices Mobile devices typically encompass limited input and output meth-
ods, that is small keyboards and screens. In addition, such devices
have less computational capabilities, smaller memory and slower net-
work connectivity compared to desktop counterparts. A typical device
falling into this category is a Nokia N95 [46] representing a high-end
mobile device announced in 2006. It employs a standard numerical
keypad and a 4-way navigation controller, 2.4" diagonal screen with
320x240 pixels, 64 MB of RAM and support for third generation mo-
bile telephony network and WLAN. What is relevant from the software
point of view, it incorporates support for core web technologies.

End-users The key requirements aim to capture the needs of the end-users.
It is assumed that the end-users prefer familiar interaction patterns
from the desktop environment and that especially the higher interac-
tivity and integrated multimedia content are factors positively affecting
the user experience.

18 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

Developers To capture the needs of the developers who use web technolo-
gies to build applications with rich interactivity, aspects of languages
which ease the development are covered. In other words, it is assumed
that authors prefer languages which facilitate building applications pre-
ferred by the end-users characterized above.

The requirements associated with target devices loosely map to generic re-
quirements, end-user requirements to interaction pattern requirements and
developer requirements to user interface language requirements described in
the following sections.

2.5.1 Generic Requirements

ISO 9126 standard [181] defines a quality model and characteristics to be
used as a checklist for evaluating a software product. The main attributes
of the model are: functionality, reliability, usability, efficiency, maintainabil-
ity and portability. Such attributes relevant within the scope of the thesis
are elaborated below5 in addition to aspect related to authoring and web
integration: [181]

R11: Functionality Capability of the software product to provide functions
which meet stated and implied needs when the software is used under
specified conditions. Functional requirements for the concept imple-
mentation are defined in Chapter 5.

R12: Efficiency Optimally the perceived performance should be comparable
to that of native applications. Main components contributing to effi-
ciency are the performance of the network, hardware and the software
platform. ISO 9126 defines efficiency as the capability of the software
product to provide appropriate performance, relative to the amount of
resources used, under stated conditions.

R13: Portability The UI should make the underlying technologies transpar-
ent to the user. This requires standard interfaces to device capabilities
in a platform-agnostic way. ISO 9126 defines portability as the capa-
bility of the software product to be transferred from one environment
to another. Portability encompass adaptability, which is defined as

5In addition, usability was considered important, but conducting appropriate usabil-
ity evaluation was deemed out of the scope of this thesis. The evaluation is, however,
recommended for future work.

2.5. KEY REQUIREMENTS 19

capability to be adapted for different specified environments without
applying actions or means other than those provided for this purpose
for the software considered. The changes may relate to network connec-
tivity, variations in the available processing power, memory capacity,
alternating output or input methods.

R14: Ease of authoring Applications should be easy to author. This is
facilitated by re-usable software and tools for application development,
such as an integrated development environment. Declarative languages
do not require programming skills and are thus considered easier to
author than procedural languages [95, p. 19].

R15: Web integration Integration with the existing stack of web technolo-
gies and protocols and an ability to re-use them when possible is con-
sidered a fundamental part of any successful web technology.

2.5.2 Interaction Pattern Requirements

Supporting popular interaction patterns familiar to the users from the desk-
top applications has significant benefits. First, porting of applications is
facilitated. Secondly, the user’s mental model related to the application in-
teraction does not have to be altered leading to better user experience. Below
is a list of interaction pattern requirements derived from previous studies by
Laakso [124], Pohja et al. [157] and Honkala [95, p. 32] relevant within the
scope of the thesis:

R21: Typical interactors Typical user interface components such as labels,
input fields, lists, buttons, icons and scroll bars with dynamic behavior,
properties and events.

R22: Master-detail An UI component which displays more detailed infor-
mation of the selected item. Can be implemented in various ways, e.g.
as an accordion or as a two-column pane.

R23: Paging and dialogs Ability to display multiple views (or pages) and
dialogs while retaining their state between transitions.

R24: Repeating and nested constructs Navigating and editing of re-
peating and nested data sets. A common example of such a data set is
a table.

20 CHAPTER 2. REQUIREMENTS FOR WEB APPLICATIONS

R25: Copy-paste and undo-redo Copy an item or undo the last action.
The former provides an intuitive mechanism for modifying the dataset
whereas the latter is beneficial for moving between the states of an
application in a way somewhat analogous to the browsing history built
into web browsers.

R26: Drag and drop Move an item within the UI to another position typ-
ically using a pointer device.

R27: Filtering Allow filtering of datasets to limit the amount of data dis-
played to the user.

2.5.3 User Interface Language Requirements

W3C Working Draft Compound Document by Reference Use Cases and Re-
quirements defines requirements for rich multimedia content in [4, section
1.2]. The following requirements derived from the above-mentioned re-
quirements and research related to user interface markup languages done
in [95, 175] facilitate the development of such applications and the task of a
developer.

R31: Graphically rich content Support graphically rich content such as
basic primitives (e.g. lines, rectangles, images, text), advanced graph-
ics (2D and 3D) and advanced graphic effects transformations (e.g.
opacity, coloring, motion blur, highlights).

R32: Exact control of the presentation Content author/provider has
exact control of the presentation, including e.g. fonts, layout and color.

R33: Layout and content adaptation Layout can be based upon device
characteristics – screen size, color depth, resolution or orientation. A
compliant version of the mixed content is delivered according to user
agent capabilities (e.g. only textual contents of the interactive content).

R34: Navigation Support for navigation (forward/backwards tab, up/-
down/left/right, accesskey, pointer, voice) and graphical menus which
support interactivity and animations.

R35: Interactive graphical menu system Support for graphical menu
systems where items have an animated action when focused on.

R36: Customizable presentation Presentation can be customized and
personalized across an application.

2.6. SUMMARY 21

2.6 Summary

The assessment of common non-functional aspects of the Web – usability and
accessibility – revealed problems which are especially significant in mobile
context. Luckily, solutions which aim to tackle the identified problems are
being developed. The review of web developer guidelines for authoring web
content indicated that there exists two somewhat orthogonal approaches.
The guidelines published by W3C and .mobi target low-end mobile devices,
whereas guidelines published by the device vendors were mainly for high-end
devices which incorporate more capable web browsers. Surprisingly, little
focus was put on web applications as only one guideline was geared towards
web applications [109, p. 15] and W3C was just initiating related work
[6] as of 2008. This implies that the web applications are considered new
phenomena still in the innovation phase, especially related to mobile devices
with their unique characteristics.

The key requirements for web applications defined in this chapter are based
on the literature study. The generic requirements incorporate established
non-functional requirements for software. Usability and accessibility aspects
were discussed but not included in the key requirements as their evaluation
would have been out of the scope of this thesis. The interaction pattern
requirements aggregate the popular interaction patterns elementary to any
application irrespective of the technologies and platforms used. Finally, user
interface language requirements outline requirements for languages used for
implementing user interfaces with a specific focus on developer needs.

Chapter 3

Web Technologies

This chapter discusses the web architecture and core web technologies and
their evolutionary versions to give reader a better understanding of the build-
ing blocks of contemporary web applications and beyond. In addition, those
emerging web technologies are discussed which fulfill the key requirements
not yet addressed which the existing web technologies.

Today there exist various alternatives for developing applications for mo-
bile devices ranging from theoretically device independent paradigms such
as Extensible Hypertext Markup Language (XHTML) and Java ME to de-
vice dependent paradigms such as C++ on Symbian or Windows Mobile.
Device dependent approaches benefit from a deeper integration into the de-
vice capabilities, typically better performance and richer graphics capabilities
compared with device independent web technologies. Regardless, developing
native code for mobile platforms incur a significant cost as porting is needed
to support multiple platforms whereas web technologies are designed to be
device-independent.

3.1 The Web Architecture

Fundamentally the Web is a network of resources – documents, files or any
other entities that can be identified – interconnected by links. This informa-
tion space is shared by a number of information systems. Agents1 act on the
information by retrieving, creating, displaying and analyzing resources. The
three bases of web architecture as defined by the W3C are: [115]

1In W3C terms, agent refer to people or software. [115]

22

3.1. THE WEB ARCHITECTURE 23

Identification Distinct global Uniform Resource Identifiers (URIs) [10] are
used to identify the distinct resources on the Web.2

Interaction Communication between agents over a network about resources
involves URIs, messages and data. Agents may use a URI to retrieve
a presentation of the resource, modify the state or delete the resource.
The universal request/response protocol used in the Web to transfer
content is the Hypertext Transfer Protocol (HTTP) [69].

Data formats The use of well-known, widely available open data formats
such as XHTML [3, 154], CSS [18, 127] and XML [21] facilitate in-
formation sharing. Although such textual data formats have obvious
advantages such as portability, interoperability and human-readability,
some media such as video and audio is more sensible to be represented
in more concise binary formats.

The three bases of the W3C Web Architecture [115] described above partly
draw from the research done by Roy Fielding. He is one of the authors
of the HTTP and introduced the Representational State Transfer (REST)
architectural style for the Web in his doctoral thesis [68]. REST consists of
a collection of network architecture principles which describe how resources
are defined and addressed to ensure the scalability and growth of the Web.
An associated term RESTful is like the term object-oriented [169]. The key
constraints of REST according to Fielding are [68]:

Client-server The network is based on a client-server architecture consist-
ing of multiple clients and servers. Separation of concerns is the main
principle behind the client-server architecture. This is typically real-
ized by moving all of the user interface functionality into the client to
improve the scalability of the system and reduce the server load.

Statelessness The protocol is stateless, which as well improves scalability
and simplifies the system as the server does have to recall client states.
The statelessness constraint can be violated by using HTTP Cookies
[123] which can be used to create a stateful session between a client
and a server.

2An example URI http://www.w3.org/Consortium/ comprises of:

(i) a URI scheme (http) defining the namespace, purpose and syntax of the URI,

(ii) a domain name (www.w3c.org) and

(iii) a path (/Consortium/).

24 CHAPTER 3. WEB TECHNOLOGIES

Cacheability The communication is mostly cacheable to improve perfor-
mance and to facilitate load balancing. The trade-off is the potential
decrease in reliability if stale data is received from the cache.

Interface uniformity The interfaces between clients and servers are uni-
form, so that implementations of both the server and the client can
evolve independently. For example, HTTP [69] provides an uniform
interface consisting of URIs [10], methods (e.g. GET and POST), sta-
tus codes, headers and content defined by content types for accessing
resources.

Layered system The layered system allows each layer to operate indepen-
dently which simplifies system components and hides the overall sys-
tem complexity improving reusability. TCP/IP model3 is the most
well-known example of a layered system used in the Internet.

Code-on-demand Client functionality can be extended dynamically by
downloading executable components, such as JavaScript code. Code-
on-demand provides improved extensibility and better user-perceived
performance and efficiency as the client can interact with a user locally.
In addition, scalability is improved since work can be offloaded to the
client. Regardless, this constraint is optional, since arbitrary code can-
not be expected to work on every client in a heterogeneous network
such as the Internet.

3.1.1 Key Concepts

In REST orthogonality is one of the key concepts of the Web which facili-
tates the evolution of the Internet protocols. For instance, the content types
describing the data are defined and managed by its own entity, Internet As-
signed Number Authority (IANA) [186]. New content types can be added
independently of the underlying protocols, such as the HTTP, which in turn
is developed by Internet Engineering Task Force (IETF) [69]. Equally, the
identification mechanism utilizing URIs is independent of the interaction be-
tween agents.

Resources and representations are two fundamental concepts in the web ar-
chitecture [68, 115]. W3C defines the term resource as "whatever [that] might

3TCP/IP model refers to the description of the layered computer network protocol
design used in the Internet, in which the core protocols are the Transmission Control
Protocol (TCP) and the Internet Protocol (IP).

3.1. THE WEB ARCHITECTURE 25

be identified by a URI" [115]. An example of a resource is a web page or
an image. A representation, that is data encoding information about the
resource, consists of metadata describing the resource content type and mes-
sage payload (data). Figure 3.1 illustrates the relationship between identifier
(URI), resource (anything that can be identified by the URI), and represen-
tation (representation of the resource).

Identifies

Represents

http://www.w3.org/

The World Wide Web Consortium
home page

Content-type:

application/xhtml+xml

<!DOCTYPE html PUBLIC "...

 "http://www.w3.org/...

<html xmlns="http://www...

<head>

<title>World Wide Web

Consortium</title>

...

</html>

Data:

Metadata:

Representation Resource

URI

Figure 3.1: Relationship between identifier, resource, and representation.
[115]

Markup languages are one of the foundations of the Web. The most popular
markup language in the Web is the Hypertext Markup Language (HTML)
[167] and increasingly the general purpose Extensible Markup Language
(XML) [21] and other data formats derived from it used to share structured
data.

The most popular architectural style for network-based applications – and the
Web – is the client-server architecture which decouples clients from servers
in the Internet. Clients can send requests to one or many servers and servers
can accept these requests and return requested information back to the client.
In the context of the Web, the client is typically a web browser, but can be
any other user agent as well.

3.1.2 Overview of the Web Technology Stack

The web technology stack depicted in Figure 3.2 views the Web as an ap-
plication built on top of the Internet. The One Web encapsulates all the
building blocks above the Internet. It implies that the same information and
services should be available to users irrespective of the devices they are using4

[166, section 3.1]. The subsequent layer provides mechanisms for identifying

4Regardless, no golden rule is provided how to implement the One Web in practice,
thus many conflicting interpretations exists.

26 CHAPTER 3. WEB TECHNOLOGIES

resources using Uniform Resource Identifiers (URIs), and communication be-
tween clients and servers via Hypertext Transfer Protocol (HTTP). The next
layer, Extensible Markup Language (XML) and related technologies provide
the base for other application languages to build on. On top of these base
layers are standard web technologies such as XHTML, CSS and JavaScript5.
Emerging web technologies depicted with dashed lines in Figure 3.2 have
not yet gained widespread adoption or are still work in progress. They are
discussed further in Section 3.6.

Figure 3.2: The web technology stack. Adapted from [113].

While designing for more constrained mobile devices, subsets and profiles6 of
web technologies may also be used. However, the use of subsets incur addi-
tional burden on developers who wish to publish the same content for both
the more capable devices supporting full web technologies7 and to constrained
devices supporting subsets of web technologies only. Currently, constrained
devices are treated as second-class citizens in the Web which is mostly built
on standard web technologies. For example, JavaScript which lacks proper
support in low-end mobile devices is used in 60% of the web pages as of 2007
[84, 110].

5To be exact, JavaScript is not standardized by W3C but Ecma International, however
it has established its role as a scripting language of the Web.

6In standardization, a profile consists of an agreed-upon subset and interpretation of a
specification.

7TheWeb content built on web technologies targeted to desktops are commonly referred
to as the full web to distinguish it from the subsets targeting constrained mobile devices.

3.2. BASE LAYERS OF THE WEB ARCHITECTURE 27

3.2 Base Layers of the Web Architecture

The lowest horizontal layers depicted in Figure 3.2, from bottom to top, are
built on top of each other. These layers providing the base for all the other
web technologies to build upon are discussed next.

3.2.1 Identification and Communications

As discussed in Section 3.1, a resource on the Web is identified by a Uniform
Resource Identifier (URI). Commonly used term Uniform Resource Loca-
tor (URL) [11] is a subset of URI. In addition to identifying a resource,
URL provides means of locating the resource by describing its primary ac-
cess mechanism [10, section 1.1.3]. In practice this means that the http URI
is commonly referred to as URL8.

The information is transferred between agents using Hypertext Transfer Pro-
tocol (HTTP) [69] request/response communications protocol. The HTTP
was originally designed for publishing and retrieving simple web pages, but
soon it established its role as a universally used transfer protocol on the Web
– mostly due to its wide support and an ability to find its way through fire-
walls. For example, SOAP [19] providing the basic messaging framework for
Web Services stack9 is implemented on top of the HTTP.

The HTTP defines multiple methods to act upon a resource. One can request
its representation (GET) or metadata (HEAD), modify its state (POST),
create or replace it (PUT), delete it (DELETE) or check methods it supports
(OPTIONS). However, in practice programming libraries and user agents,
such as web browsers commonly support only a subset these methods [169,
section 2.3].

3.2.2 Extensible Markup Language

Extensible Markup Language (XML) [21] – a simplified subset of Standard
Generalized Markup Language (SGML) [83] – is designed to describe data in
a way that is human-legible, extensible and easy to implement. Therefore,

8In [10, section 1.1.3] it is recommended that "future specifications and related docu-
mentation should use the general term URI rather than the more restrictive terms URL
and URN".

9Web Services refers to a set of computer networking protocols used to define, locate,
implement, and make Web services interact with each other. Although commonly using
HTTP as a transport, the REST principles described in Section 3.1 are not adhered.

28 CHAPTER 3. WEB TECHNOLOGIES

it is being increasingly used as a basis for implementation of application
languages. For instance, applications of XML include Extensible Hypertext
Markup Language (XHTML) [154] which is an HTML [167] formulation in
XML and Scalable Vector Graphics (SVG) which describes two-dimensional
vector graphics. In addition, XML is used in the exchange of wide variety of
structured data on the Web and elsewhere.

XML namespaces provides a mechanism for deploying multiple XML-based
languages (which define their own elements and attributes) in a global envi-
ronment and reduce the risk of name collision if such XML documents are
combined. XML Schema definition language (XSD) express a set of rules for
structure and data types for XML documents to which an XML document
must conform to be considered valid. [65]

Extensible Stylesheet Language (XSL) [164] is a family of transforming lan-
guages that allow describing how XML files are formatted or transformed to
other XML formats. The most relevant languages of the family in the con-
text the thesis are XSL Transformations (XSLT) used for transforming XML
documents and XML Path language (XPath) used by XSLT for addressing
parts of an XML document.

To summarize, the XML has the following benefits. It is a cross-platform
solution that can be parsed by nearly any application. XML provides a clean
namespace mechanism allowing embedding of multiple document types in a
one document. Furthermore, it has powerful associated technologies such as
Document Object Model (DOM), discussed next.

3.2.3 Document Object Model

Document Object Model (DOM) is a platform and language independent
object model for presenting HTML documents and XML-based formats as a
collection of objects. The structure of any DOM object is a tree made up
of branches and leaves. DOM provides an API that allows the document to
be inspected and modified dynamically. Within a web browser the API is
typically exposed to JavaScript10.

An example of the DOM of an XHTML document (see Section 3.3.1) is
depicted in Figure 3.3 where nodes represent XHTML tags such as headers
(<h1>), paragraphs (<p>) or strings of text. Each node of the object tree
including their properties and methods is accessed through the DOM of the

10It should be noted though, that implementations of the DOM can be built for any
language.

3.3. CORE WEB TECHNOLOGIES FOR WEB APPLICATIONS 29

document. The DOM API enables, for example, the dynamic modification
of the structure of the document by modifying, removing or adding nodes
by which means web applications built on standard web technologies achieve
rich interaction on the client-side without need to communicate with the
server. Similarly, the presentation of the elements can be manipulated and
events can be added or removed. Effectively, the DOM is an interface, or
a shared data structure, enabling the user agent and the scripting language
such as JavaScript to communicate with each other.

W3C has established a standard for DOM and currently DOM Level 2 stan-
dard [96] is supported by major web browsers11. W3C has continued to refine
and expand the DOM standard in the DOM Level 3 modules. [70, p. 308]

Document

<html>

<head> <body>

<title>

"Page title"
<h1> <p>

"Title of the page"
<i>"Lorem ipsum" "sit amet."

"dolor"

Figure 3.3: An example of the Document Object Model.

3.3 Core Web Technologies for Web Applica-
tions

In this section the core web technologies built on top of the base layers of
the Web are discussed. These technologies are typically used for building
contemporary web applications and are supported by the widest spectrum of
web browsers, operating systems and platforms.

3.3.1 (Extensible) Hypertext Markup Language

Extensible Hypertext Markup Language (XHTML) [154] is a successor of the
Hypertext Markup Language (HTML), the predominant markup language
for web pages. HTML describes the structure of the textual information

11Internet Explorer 7 lacks support for DOM Level 2 Events [156].

30 CHAPTER 3. WEB TECHNOLOGIES

within a web page. In addition, it provides means for the user to enter
data to be submitted to the server using forms and defines mechanism for
referencing images and other non-textual objects embedded within the web
page. XHTML reformulates the syntax of HTML to an application of XML
and breaks the specification into reusable and extensible modules [2].

The main motivator behind the XHTML and its modularization was the
emergence of constrained devices which asked for simplified parsing12 for
complex HTML documents [154, section 1.3]. However, there have been some
challenges which have undermined the successful adoption of the XHTML
over HTML. Firstly, human authors tend to make errors also while writing
XHTML which has stricter rules for wellformedness13. The claim can be
easily validated by looking at the poor validity of the existing web pages
[84]. Secondly, serving XHTML with application/xhtml+xml content type
which allows using more light-weight parsers which was the main motivator,
is unsupported by the Internet Explorer, the most popular web browser [93,
179].

Despite the above-mentioned shortcomings, many authors have recently
adopted XHTML, perhaps without being aware of the gory details. XHTML
and HTML have been successful mostly because of the right balance between
the ease of learning and expressivity14 of the language adequate for most of
the needs. In a technical sense, user agents have had a major role as they
have been designed to be liberal in how to interpret the markup which has
lead to the explosive growth of the XHTML and HTML documents in the
Web. On the other hand, this liberalism has also prevented taking full advan-
tage of the XHTML. Regardless the differences of XHTML and HTML, they
are used for the same purpose and will be generally referred to as (X)HTML
in this thesis.

3.3.2 Cascading Style Sheets

The HTML was initially developed for scientific purposes where the content is
more important than its presentation. For the purpose of styling the HTML,
Cascading Style Sheets (CSS) language was developed to describe the pre-
sentation, the spatial layout, of the structured documents. The C of CSS
stands for cascading which indicates that the style rules applied to an ele-

12Parsing transforms input text into a data structure, in the XHTML’s case into a tree.
13A well-formed document conforms to XML’s syntax rules, and is required for conform-

ing parser to process it.
14Expressivity refers to how powerful a given tool or language is. [95, p. 14]

3.3. CORE WEB TECHNOLOGIES FOR WEB APPLICATIONS 31

ment can come from different sources. CSS is typically applied to documents
written in (X)HTML, but it can be applied to any other markup languages
whose sections are clearly defined as well, such as Scalable Vector Graphics
(SVG). CSS syntax is simple as it uses keywords to specify style proper-
ties such as width or background-color. Style sheets consist of selectors
which map to certain elements (i.e. DOM nodes) and associated declaration
block consisting of keyword value pairs which define styles for the matched
elements.

For adaptation of the presentation – e.g. for mobile devices with small screens
– media types of CSS provide a mechanism for accomplishing that. Each me-
dia type can include different style sheet and it is up to the user agent to
decide which one to use. The most relevant media type for mobile devices is
handheld. Unfortunately it is defined unambiguous as a device with a "typ-
ically small screen, monochrome, limited bandwidth" and thus is supported
inconsistently across browsers for mobile devices [18, section 7.3].

The most recent finalized version is the CSS Level 2 [18] from 1998. CSS 2.1 –
which is still not yet final – "consists of all CSS features that are implemented
interoperably at the date of publication of the Recommendation" [17], that
is basically a snapshot of the current state of CSS support in web browsers.

3.3.3 JavaScript

In the Web, JavaScript15 is the de facto client-side scripting language that
is supported by virtually any modern browser. JavaScript adds behavior
layer whereas (X)HTML provides the page content and structure and CSS
the presentation. Dynamic web content that uses (X)HTML, CSS, DOM
and JavaScript together to create interactive effects is sometimes referred to
Dynamic HTML or DHTML. The term Ajax is commonly used to describe
technique which extend DHTML with a client-side capability for communi-
cating asynchronously with the server using JavaScript.

Characteristics familiar from other dynamic languages such as Smalltalk, Self
or Lisp [141, p. 3] are also visible in JavaScript. JavaScript is interpreted,
i.e. it is executed command-by-command by the JavaScript interpreter16 at
runtime. This is contrary to popular languages such as Java or C/C++ which
need to be compiled prior the execution. Secondly, JavaScript is dynamically

15To be precise, JavaScript is an implementation of the ECMAScript standard stan-
dardized by Ecma International in the ECMA-262 specification [63].

16JavaScript interpreter is a software component typically part of a web browser that is
used to execute JavaScript code.

32 CHAPTER 3. WEB TECHNOLOGIES

typed, which means variables and parameters are not explicitly declared
before their use. Thirdly, interesting aspect of JavaScript is that it allows
runtime modifications of the code, that is structural and behavioral aspects
of the programs can be modified, by e.g. adding new functions and variables
to objects on the fly. [70, p. 235]

JavaScript is dependent on the host environment it is executed in. For exam-
ple, it does not have input and output constructs17 and thus it hooks up to
the Document Object Model (see Section 3.2) of the web page for this pur-
pose. Similarly, the event-driven programming model of JavaScript depends
on the web browser which generates events of the asynchronous user inputs
(e.g. click event on mouse click), system actions (e.g. load event when
the document is fully loaded) or network activity (e.g. onreadystatechange
property indicating the status of the initiated HTTP connection). These
events are associated with event handler callback functions implemented in
JavaScript, which in turn modify the DOM giving visual feedback to the
user. An example of the most recent development in the area of data for-
mats is ECMAScript for XML (E4X) [111] which adds a native XML data
type support to JavaScript. [70, p. 388]

Asynchronous JavaScript and XML

Asynchronous JavaScript and XML, or Ajax [79], is a web development tech-
nique which facilitates creation of interactive web applications. The main
component of Ajax is JavaScript and especially its XMLHttpRequest object
which provides means to asynchronously communicate with the web server
over HTTP without the need to reload the whole web page. The data re-
ceived in the background can be used to modify the DOM dynamically by
using the DOM API exposed to JavaScript. This allows the structure, style
and behavior of the web page to be modified programmatically in JavaScript,
without a need for a full page refresh. The XML part of the Ajax equation
is misleading, as the XMLHttpRequest [118] object is able to exchange data
in both plain text and XML format.

In addition to higher interactivity, another benefit of the approach is its ef-
ficiency. As only raw data coded is transferred instead of a full web page,
fewer bits are transferred. Regardless, there are certain limitation and defi-
ciencies in this approach. Due to security reasons, the HTTP communication
to other than the originating domain is not allowed which makes designing

17For example, Java uses java.io package and C stdio.h library for input and output
operations.

3.4. MOBILE-SPECIFIC WEB TECHNOLOGIES 33

client-side applications accessing multiple domains tedious18. Furthermore,
the navigation buttons of the web browser do not work as the page history
is only updated when a new URI is pushed into the history stack of the web
browser – a condition that does not occur automatically when using Ajax.
Overall, the reliance on JavaScript can also been seen as an deficiency, espe-
cially in constrained environments, because executing program logic on the
client-side may require too much computational resources.

3.4 Mobile-specific Web Technologies

Overly hyped Wireless Application Protocol (WAP) [71] was one of the first
attempts to solve the issue of using the Internet on a mobile device in the late
nineties. It did not gain traction mostly due to its approach which created
incompatible protocols and data formats that were used to build operator-
controlled closed services. The approach effectively decoupled the WAP from
the Internet and the Web [72].

Since, more standards compliant approaches have been developed. After
the release of XHTML 1.0, W3C started working on modularizing XHTML,
which split the specification into logical parts such as Hypertext Module and
Image Module. The latest version of the XHTML, XHTML 1.1, is based
on the Modularization of XHTML [2] and adds the XHTML Ruby Annota-
tion Module19 [3] to the previous version, XHTML 1.0 Strict. The motivation
behind the modularization was the view that a one monolithic XHTML spec-
ification did not fit well in all client platforms. Specifically mobile phones
were too constrained at that time in 2001 for the implementation of a web
browser supporting full XHTML. The fundamental challenge with the mod-
ularization approach taken is that the user agents complying with subsets
only are incapable of displaying the existing full XHTML content.

XHTML Basic defines the baseline on top of which other languages comply-
ing with the XHTML Modularization are built. The target devices listed in
the specification include "mobile phones, PDAs, pages, and set-top boxes"
[7]. The XHTML Basic 1.1 adds support for additional modules, most no-
table XHTML Forms and XHTML Presentation Module.

XHTML Mobile Profile [73] is a superset of XHTML Basic, which was de-
fined by WAP Forum – a consortium of mobile phone manufacturers. Its
most notable divergence with the W3C approach is not complying with the

18Typically this is circumvented using a server-side proxy.
19Ruby Annotation Module is used to express text annotation used in East Asia.

34 CHAPTER 3. WEB TECHNOLOGIES

module boundaries defined in [2]. Currently the specification is developed
by a successor of WAP Forum, Open Mobile Alliance (OMA) [129], and it is
heading towards convergence with the XHTML Basic 1.1 defined by W3C.

In addition to XHTML Mobile Profile, OMA has defined subsets of two
popular web technologies, namely Wireless CSS, which is a subset of CSS
Level 2 and ECMAScript Mobile Profile, subset of ECMAScript [129]. W3C
introduced profiles with SVG 1.1: SVG Tiny and SVG Basic. Both are
subsets of the full SVG specification and are targeted to constrained user
agents – Tiny for less capable and Basic for higher-level devices. SVG Tiny
is supported in Nokia’s S60 Platform [151, p. 8] and in Java ME JSR 226:
Scalable Vector Graphics API [160]. Other profiles include XForms Basic
which describe "a minimal level of XForms processing tailored to the needs
of constrained devices and environments" [62] and WICD Mobile 1.0 which
"addresses the special requirements of mass-market, single-handed operated
devices" [135].

The uptake of the above-mentioned subsets of the web technologies has been
modest compared to the overall growth of the Web. In the next section,
evolution of the core web technologies discussed in Section 3.3 is examined
with a special focus on their features applicable to mobile devices.

3.5 Evolution of the Core Web Technologies

In Section 3.3, web technologies supported by all major web browsers were
discussed. In this section evolutionary versions of these core web technologies
are explored. Specifically, the focus is on features which address the require-
ments of mobile devices where contemporary solutions have fallen short.

3.5.1 HTML 5

HTML 5 is a new version of HTML 4.01 and XHTML 1.0 developed by
W3C HTML working group together with the Web Hypertext Application
Technology Working Group (WHATWG). It aims to address many issues
of the prior specifications and allow (X)HTML to better support web ap-
plications by introducing new elements and APIs and codifying existing de
facto approaches. Most of the additions to the language draw inspiration
from corresponding JavaScript implementations authors have used to work
around certain limitations of prior HTML versions. The XML serialization of
the language called XHTML 5 is basically an update to XHTML 1.x, which

3.5. EVOLUTION OF THE CORE WEB TECHNOLOGIES 35

adheres to XML parsing requirements such as draconian error handling. [98]

The most notable new elements introduced in HTML 5 related to web appli-
cations and specific requirements of mobile devices are:

• Additional types for input elements that can be used by mobile de-
vices to provide platform native controls for e.g. selecting a date using
a native calendar user interface. New self-explanatory types include
datetime, datetime-local, date, month, week, time, number, range,
email and url [98, section 3.1]

• A fallback mechanism for embedded content, such as unsupported im-
age or video formats. [98, section 3.3.3.6]

• Drag and drop model which does not rely on the existence of a point-
ing device such as a mouse compatible with events mousedown and
mousemove. [98, section 5.3]

• New more semantic elements such as section, article, header,
footer and nav for giving meaning to fragments of a web page. This
can be used by constrained devices to optimize for small screens, by
for example moving the viewport automatically to the beginning of the
article element after loading a web page. [98, section 3.8]

• The menu and command elements used for building menus can be pro-
grammatically identified and integrated to the device-native menu sys-
tem. [98, section 3.18]

• The progress and meter are used to represent the completion of a
task, such as downloading resources in the background. [98, section
3.12]

• The details element represents additional information the user can
obtain on demand and can be used to implement master-detail func-
tionality. [98, 3.18.1]

In addition to new elements introduced above, HTML 5 introduces new APIs
exposed to JavaScript. The most relevant APIs that facilitate authoring web
applications compared to the XHTML 1.0 are: [99, section 4]

• 2D drawing API which can be used with the new canvas element. [98,
section 3.14.11]

36 CHAPTER 3. WEB TECHNOLOGIES

• API for playing of video and audio which can be used with the new
video and audio elements. [98, section 3.14.8]

• Client-side persistent storage which supports both simple key and value
pairs [98, section 4.10.2] as well an SQL database interface [98, section
4.11].

• An API that enables offline web applications by providing a mechanism
for storing resources identified by their URIs locally. This reduces the
network traffic and allows using web applications with no Internet con-
nection. [98, section 4.6.2]

• Editing API in combination with a new global contenteditable at-
tribute allow users to edit documents and parts of documents interac-
tively. [98, section 5]

• API for handling drag & drop operations in combination with a
draggable attribute. [98, section 5.3.3]

• Network API to enable web applications to communicate with each
other in local area networks. [98, section 6.3]

• API that exposes the history and allows pages to prevent breaking the
back button. [98, section 4.7.2]

• Cross-document messaging to allow documents to communicate with
each other regardless of their source domain securely. [98, section 6.4]

• Server-sent events to allow servers to dispatch DOM events into docu-
ments into new event-source elements. [98, section 6.2]

The main interfaces of the DOM related to HTML (see Section 4.1.2), the
HTMLDocument and HTMLElement, are extended in HTML 5. The most rel-
evant additions include method getElementsByClassName() for selecting
elements by their class name and innerHTML attribute which provides an
easy way to parse and serialize an HTML or XML document or an el-
ement. Furthermore, HTMLElement exposes convenience methods has(),
add(), remove() and toggle() for manipulating element classes.

3.5.2 Cascading Style Sheets Level 3

Working draft of Cascading Style Sheets Level 3 specification splits the CSS
specification into multiple modules. For example, Media Queries module

3.5. EVOLUTION OF THE CORE WEB TECHNOLOGIES 37

expands the media types by specifying media features which allow presenta-
tion to be "tailored to a specific range of output devices without changing
the content itself" [197]. Media features include properties such as width,
height, device-width, device-height and device-aspect-ratio. An-
other significant addition is the module is the Selectors [82], which provides
more powerful means for pattern matching which is the core functionality of
the CSS and especially important related to interactive web applications. In
addition there exist various other modules covering aspects such as fonts and
presentational aspects of the CSS.

Today, the interactivity demands for web applications are approaching those
of native applications. Developers have resorted to client-side scripting lan-
guages such as JavaScript in implementing rich effects achieved by scripting
the style of elements via the DOM API. However, this approach is both te-
dious, inefficient and error-prone compared to a native CSS implementation.
On this account rich interaction in the Web is typically implemented by us-
ing proprietary browser plugins, such as Flash. To address the shortcoming,
extensions to the CSS Level 3 have been proposed to achieve similar function-
ality with a native CSS implementation in a backward compatible manner
the following extension to the CSS have been proposed. CSS Animation [101]
introduces defined animations which specify the values that CSS properties
will take over a given time interval. CSS Transforms [102] allow elements to
be transformed, that is scaled, rotated and skewed. CSS Transitions [103]
enable implicit transitions, which describe how CSS properties can be made
to change smoothly from one value to another over a given duration.

Support for CSS Level 3 Media Queries, CSS Animation, Transforms and
Transitions has already been implemented in the recent versions of WebKit
rendering engine (see Section 4.2.3) which is gaining momentum as the core of
browsers for mobile devices. Examples of the above-mentioned CSS features
are presented in Appendix A.1. [57, 197]

3.5.3 JavaScript 2

A new version of JavaScript language is being developed, called ECMAScript
4 (ES4) [64] or JavaScript 2 (JS2). It provides backwards compatibility to
earlier versions of the JavaScript, but extends the language to support fea-
tures found in other major programming languages. For example, it adds
an ability to optionally use static typing which combined with JIT20 capa-

20Just-in-time compilation refers to a technique for improving the runtime performance
by converting the code at runtime prior to executing it.

38 CHAPTER 3. WEB TECHNOLOGIES

ble JavaScript virtual machine would increase the execution performance of
the JavaScript. Additionally, an alternative mechanism not requiring static
typing has been developed providing significant performance gains [31].

3.6 Emerging Web Technologies for Web Ap-
plications

In this section, emerging web technologies, that is technologies that are under
development or lack support in major web browsers, are explored. In Section
3.6.1 such technologies developed by W3C are discussed whereas in Section
3.6.2 somewhat similar proprietary approaches are reviewed. In addition,
main client-side extensions and essential data interchange format are briefly
discussed.

3.6.1 Open Web Standards

XForms

XForms [61] is a W3C Recommendation that aims to solve issues with the
(X)HTML forms on data collection and submission by separation the purpose
from the presentation. It is not a stand-alone document type and is intended
to be integrated into markup languages such as XHTML.

The separation of application data from the user interface facilitates building
modular software which is easier to maintain. Furthermore, most of the
user interface processing associated with HTML forms is declared on the
client-side in XForms which reduces latency and network bandwidth usage
in addition to server load. XForms allows implementing interactive forms
using its declarative markup incorporating functionality which today require
scripting if plain HTML forms are used. Additional benefits of the declarative
approach are simplified authoring and development of authoring tools. In
addition, it also enables XForms to be more device and modality independent.
XForms leverages existing web standards such as CSS, XPath and XML
and adheres to the REST architectural style discussed in Section 3.1. For
constrained devices there exists a more light-weight XForms Basic [62] which
does not include full schema support. [95, p. 21]

3.6. EMERGING WEB TECHNOLOGIES FOR WEB APPLICATIONS 39

Scalable Vector Graphics

Scalable Vector Graphics (SVG) is an application of XML for describing two
dimensional graphics comprising of vector and raster graphics and text. The
SVG can be used to implement temporal interaction defined and triggered
either via its declarative markup or via scripting, using e.g. JavaScript.
Main benefits in using vector graphics over raster graphics are adaptability to
various screen sizes, zooming capabilities, animation, searchability, efficiency
and bindings to other existing web technologies such as DOM. However,
SVG is no alternative for immediate mode rendering such as 2D drawing
API, the canvas, defined in HTML 5. It is obvious that SVG as a DOM
oriented technique has inherently bigger performance and memory overhead.
Regardless, SVG has proven to be a versatile language, for example it has
been used for implementing a complete windowing system running within a
web browser [143]. [67]

Web Integration Compound Document

AWeb Integration Compound Document (WICD) is an on-going work within
W3C which ties the core presentational web technologies together. The
WICD is targeted as a standard way to build web applications which require
rich interaction combining technologies such as (X)HTML, CSS, SVG and
JavaScript. Furthermore, the WICD specification defines separate profiles
for desktops and mobile devices. [134]

Synchronized Multimedia Integration Language

Synchronized Multimedia Integration Language, SMIL, is an XML-based lan-
guage for creating interactive multimedia presentations which may integrate
various media types including audio and video. The main use case for SMIL
is to define the temporal behavior, associate links and describe layout of
such content. A module of latest version of SMIL, the SMIL Timesheets
[190], can be seen as a temporal counterpart of CSS. Timesheets approach
keeps content and styling separate, does not break existing functionality as
it uses its own XML namespace and leverages standard selectors as hooks
to integrate timing into a wide range of XML-languages such as XHTML
and SVG. There exists a Timesheets JavaScript implementation [189] for
backward compatibility with the existing browsers. [24]

40 CHAPTER 3. WEB TECHNOLOGIES

Accessible Rich Internet Applications Suite

The most prominent solution for implementing accessible interactive web
applications is proposed by W3C Web Accessibility Initiative (WAI) in Ac-
cessible Rich Internet Applications Suite (ARIA). It defines how to make
more advanced features of dynamic content and Rich Internet Applications
accessible. The accessibility improvements are implemented by two mecha-
nisms. First, an XHTML module supporting role classification of elements
[14] is leveraged. It can be used to define information on what the object is.
Second, a syntax for adding accessible state information and author settable
properties for XML is defined in States and Properties module [174]. Such
information may contain e.g. information of the sort order of a dynamic
dataset within a table. These accessibility features specified in ARIA can
be implemented in compliance with the existing web standards supporting
XML Namespaces as they add only semantics on top of the existing markup
interpreted by the user agents supporting ARIA21.

XML Binding Language

The XML Binding Language (XBL) is a declarative language for binding an
arbitrary XML element to a binding element. This provides a mechanism
for defining the behavior or presentation of the arbitrary element separately
in the binding element. This enables better separation of concerns than it
is possible with the core web technologies discussed in Section 3.3. The
concept is similar to CSS and attaching event listeners programmatically via
JavaScript, but adds an extra layer of abstraction with intent to simplify the
development. It should be noted that XBL will not replace existing core web
technologies such as CSS and JavaScript but enhances them. Initial version of
the language was proprietary to Mozilla used as part of their Gecko rendering
engine, but the next version XBL 2.0 [199] is being standardized in the W3C.

3.6.2 Proprietary Application and UI Markup Lan-
guages

W3C Web Application Formats Working Group did have plans to publish a
specification for declarative format for applications and user interfaces [112].
However, the work on the specification was stopped main technical reason
being that the use cases and requirements [193] for such a declarative format

21Out of the major web browsers only Mozilla Firefox currently supports ARIA. [74]

3.6. EMERGING WEB TECHNOLOGIES FOR WEB APPLICATIONS 41

can be addressed by existing open standards (see Section 3.3) and by open
standards in progress (see Sections 3.5 and 3.6.1) [8]. Next, the most promi-
nent existing proprietary application and UI markup languages are reviewed,
which were meant to provide the base for the above-mentioned W3C work.

Extensible Application Markup Language

Extensible Application Markup Language (XAML) is a declarative XML-
based user interface markup language for defining UI elements developed by
Microsoft. In order for XAML to be supported in web browsers, a propri-
etary Microsoft Silverlight (see Section 4.2.4) plugin must be installed to
the browser. From developer’s perspective maintaining XAML code practi-
cally requires an IDE22 as the syntax does not separate content, structure,
style, behavior or data bindings. XAML defines its own syntax for vector
graphics in addition to styling language instead of leveraging the standard
web technologies SVG and CSS. The key strength of XAML can be con-
sidered to be its supports for some functionality that is currently missing
from established open web standards specified by W3C, such as automatic
declarative transition animations, gradients, filters and styling of form con-
trols. However, HTML 5 and upcoming CSS versions are tackling most of
the above-mentioned issues, in addition to existing SVG standard which is
only impeded by limited user agent support.

XML User Interface Language

XML User Interface Language (XUL) is an XML markup language devel-
oped by the Mozilla project that is used in its cross-platform applications
such as Firefox web browser to define the layout of the application. It de-
fines desktop-centric UI components such as windows, panels and dialogs.
XUL leverages existing web standards such as CSS, JavaScript and DOM.
Additionally, behavior of the XUL components can be described using XML
Binding Language (XBL) discussed in Section 3.6.1.

3.6.3 Client-side Extensions

This section takes a look at client-side extensions which facilitate the devel-
opment of client-side web applications.

22Integrated development environment (IDE) is an application that facilitate software
development.

42 CHAPTER 3. WEB TECHNOLOGIES

Client-side Databases

Emergence of more advanced web applications has underlined the lack of
proper mechanism for storing data on the client-side persistently. The
standard approach of HTTP Cookies [123] is insufficient for storing larger
amounts of data.

Google Gears [86] is an open source browser extension which lets developers
create web applications which can store data within the browser enabling
applications to run offline. This is implemented by running a local server
which cache and serve application resources and provides a database used to
store and access data from within the browser. Similar functionality is being
codified in the HTML 5 [98] which specifies APIs for client-side persistent
storage and a mechanism for storing resources locally as discussed in Section
3.5.1. These parts of the specification have been partially implemented by
the latest versions of Firefox and WebKit-based browsers. [98]

Client-side Cross-site Requests

W3CWorking Draft Access Control for Cross-site Requests [119] is specifying
a mechanism to enable client-side cross-site requests, main use case being
the use of XMLHttpRequest object. In practice this is implemented either
via HTTP headers [69, section 14] or via XML processing instructions [20,
section 2.6]. For example, a resource at my-domain.com is able access another
resource at example.org if the resource served at example.org is served with
given HTTP headers or contains given XML processing instructions. Some
web runtime environments such as S60 Web Runtime discussed in Section
4.2.5 allow accessing multiple domains without the need to use the above-
mentioned mechanism as they install source resources to the local filesystem.

3.6.4 Essential Data Interchange Formats

Feeds Formats

XML-based formats used to publish frequently updated content, such as blog
posts, on the Web are referred to as feeds. The feeds are used by feed reader
applications which display their content to the user. The terms feed, web
feed, RSS feed and XML feed are commonly used interchangeably although
this is not technically valid as their schemas differ from each other [155]. In-
formation embodied within feeds is more semantical compared to web pages

3.7. SUMMARY 43

containing the same information. For example, all the feed formats define el-
ementary properties such as publishing time, title and description explicitly.
This characteristic of feed formats makes them especially applicable for con-
veying information in a more conservative manner in terms of computational,
memory and network bandwidth requirements.

The most popular feed formats include various versions of RSS23 [185] and
Atom Syndication Format [152]. Despite various improvements over RSS,
the Atom Syndication Format has not yet gained as widespread adoption as
RSS.

Outline Processor Markup Language

To tackle portability issues arising from managing multiple feeds across vari-
ous devices and software, an XML-based aggregate format, Outline Processor
Markup Language (OPML) [196], has been developed. The specification de-
fines an outline as an ordered list with a hierarchy of arbitrary elements and
therefore is applicable for various use cases. OPML is commonly used to
exchange lists, or aggregates, of web feeds between reader applications. The
specification itself is fairly simple and has not yet been formally standardized
by a standardization body.

JavaScript Object Notation

The JavaScript Object Notation is a format that is typically used for inter-
changing data between the client and the server in web applications leverag-
ing Ajax technique. Although it is based on JavaScript language, the data
format itself is language-independent and serves as a light-weight alternative
to XML-based formats. [56]

3.7 Summary

This chapter introduced the web architecture and core web technologies used
as building blocks of contemporary client-side web applications. In addition,
evolutionary versions of the core web technologies were discussed as well as
emerging web technologies targeted specifically to facilitate web application
development. The chapter was concluded with a comparison between the

23Depending on the version, RSS may stand for Really Simple Syndication (RSS 2.0),
RDF Site Summary (RSS 1.0 and RSS 0.90) or Rich Site Summary (RSS 0.91).

44 CHAPTER 3. WEB TECHNOLOGIES

current baseline and the evolutionary and emerging standard web technolo-
gies depicted in Table 3.1. The results imply that the existing core web
technologies do not sufficiently fulfill the needs of modern web applications.
This claim can be validated by looking at the large number of emerging web
technologies which aim to provide more robust solutions to the identified
problems. Currently, the lack of user agent support is hindering the adop-
tion of these more appropriate technologies over widely supported baseline
in web application development.

Table 3.1: Comparison between current baseline and emerging standard web
technologies. Baseline web technologies refer to technologies supported by
major browsers listed in Appendix B.1.

Standard web technologies
Scope Current baseline Emerging

Structure HTML 4, XHTML 1.x (X)HTML 5, XBL

Layout and styling CSS Level 2 CSS Level 3, XBL

User interaction and
data model

JavaScript JavaScript 2, XForms, XBL

Timing JavaScript JavaScript 2, SMIL Timesheets

Data Interchange RSS Atom, OPML, JSON

Vector graphics - SVG

Accessibility - ARIA

Integration - WICD

Chapter 4

Web Applications and Platforms

In this chapter, web applications are discussed and classified according to
their interactivity and architectural approaches. Second, major underlying
platforms for web applications are reviewed.

4.1 Web Applications

In the context of this thesis, a web application is defined as an application
built on standard web technologies (see Section 3.3) using HTTP for com-
munication over the Internet. Typically, a web browser or similar software
available on multiple platforms supporting standard web technologies is used
to run web applications. Despite the popularity of web applications, there
are still some challenges which undermine the utility of web applications,
namely:

• lack of highly interactive rich graphics capabilities,

• no standard way to implement offline functionality when no network
connectivity is available and

• limited access to device capabilities.

Mainly on this account, new web application platforms have emerged that
extend the browser to address the above-mentioned shortcomings. In this
thesis, this class of user agents is referred to as web runtime environments
which are discussed more in Section 4.2.4. From the constrained mobile de-
vice point of view web runtime environments have potential to address many

45

46 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

limitations discussed above. Typically they integrate more deeply with the
underlying platform which provides richer graphics capabilities. In addi-
tion, the integration may open access to other platform capabilities such as
persistent storage for offline support and location information valuable for
context-aware web applications among other functionality.

4.1.1 Web Application Architectures

Multi-tier Architecture

Traditional multi-tier architecture refers to an architecture where the appli-
cation is executed by multiple distinct software agents. For example, tradi-
tionally web applications have relied on the server for executing application
logic. A common approach has been to split the application into orthogonal
parts, such as those proposed by the three-tier architecture comprising of
the presentation tier, the logic tier and the data tier. In this model the pre-
sentational tier provides the UI to the user and is implemented by serving
static HTML and CSS to the web browser. The logic tier generates web
content dynamically on the server-side using server-side languages such as
Java, PHP or Python. The data tier takes care of storing the application
data persistently to the server-side, typically into a database of some sort.
Typical of this traditional three tier model is that the functional algorithms1
reside completely on the server-side.

What is different from the traditional approach described above, contem-
porary web browsers can also execute program code, typically JavaScript,
on-demand in the browser. In addition, various client-side persistence mech-
anisms have been recently developed and platform-specific APIs are being
exposed to the browser context. The motivation for such development has
been to enhance the user-perceived performance and enable more efficient
use of the network and server resources by shifting the responsibilities of the
server, such as executing heavy computational tasks, to the client. In ad-
dition, the intent in exposing platform APIs to web applications has been
to provide similar functionality familiar from native applications – such as
access to location via GPS – also to web applications.

Taking the above-mentioned advantages into question, the trend of using the
client-side as a runtime platform is understandable. However, it poses greater

1Functional algorithms handle the information exchange between the UI and the un-
derlying layers of an application above the database – sometimes referred to as business
logic.

4.1. WEB APPLICATIONS 47

demands on the standards compliance of user agents. Secondly, it assumes
that computational resources on the client-side are available. Thirdly, there
are certain security aspects in running applications locally using web tech-
nologies that need to be understood. Overall, the coordination between the
client and the server may become more complex if the application logic is
split on both the sides as the developers need to deal with both the server-side
development as well as the client-side web technologies, which most likely are
implemented in different languages.

Model-View-Controller Architecture

The Model-View-Controller (MVC) is a commonly used architecture in GUI
applications. According to Fowler [78], the MVC can be interpreted in many
different ways. For example the interpretations vary for GUI applications
and web applications requiring client-server communications.

In traditional thin client web applications, model is the domain model stored
on the server, the view the generated content sent to the browser, and the
controller, a server side component defining the workflow of the application.
In desktop GUI applications, the components of the MVC are predominantly
implemented within the client without similar division between client and
server. Modern web applications may take hybrid approach which combines
both the approaches as clients have become capable of running program
code independent of the server. Regardless, three common components can
be identified in any application implementing MVC:

Model Model objects which hold data and define the logic used to manip-
ulate the data. Model objects are not directly displayed to the user.
Typically, they are reusable, distributed, persistent and portable across
platforms.

View View objects represent visible parts of the application, that is the UI
or parts of it.

Controller Controller is a mediator object between the model and the view
objects. It communicates data between the model objects and the view
objects. Application specific tasks such as user input processing and
loading application configuration data are also responsibilities of the
controller.

48 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

4.1.2 Web Application Programming Interfaces

Application Programming Interface (API) is a software interface that enables
one program to use facilities provided by another. In this section various APIs
related to client-side web application development are discussed.

Standard Client-side Web APIs

According to W3C, APIs related to the client-side web technologies cover
"programming interfaces for client-side development, including network re-
quests, timed events and platform interaction" [60]. Next, an overview of
well supported standard and de facto APIs used for implementing client-side
applications is given.

DOM Core and HTML DOM Level 2 comprises of modules which break
the functionality into language neutral interfaces2. The DOM Core
[125] interfaces provide extensive set of methods for creating, manipu-
lating and gathering information about elements and attributes. The
DOM HTML [183] interfaces extend the Core to add functionality spe-
cific to HTML documents. Interfaces defined in HTML module are:
an HTMLDocument, the root element in the HTML that holds the en-
tire content and HTMLElement interface which is the base for all HTML
element interfaces providing convenience methods which try to make
the API easier for web developers. However, this model which forms
the base for web applications has also been criticized for being overly
complex and inefficient [141].

DOM Events DOM Level 2 Event Model [156] specifies an event system
for registering event handlers, describing event flow through the DOM
and providing contextual information for each event. The events are
broken out by event modules to e.g. user interface, mouse and HTML
events. The API is supported by other major browsers except Internet
Explorer which implements its own more restricted model [70, p. 409].
[156, section 1.3]

Client Interface An intermediate layer between the JavaScript and the
DOM is commonly called the Browser Object Model or BOM. Its task is
to manage browser windows and enable communication between them.
The centerpiece of this functionality is the window object, a de facto

2Important modules include Core [125], Events [156], Style [195] and HTML [183].

4.1. WEB APPLICATIONS 49

standard that is being formally standardized in W3C [59]. It provides a
global object needed for JavaScript to function, represents the browser
window to the user, grants access to loaded documents and provides a
mechanism for primitive timesharing which can be used for rudimen-
tary multitasking among other miscellaneous functionality. [122]

HTTP Functionality The XMLHttpRequest object implements an inter-
face allowing scripts to perform HTTP client functionality, for example
to submit form data or load data from a server. [118]

APIs for Client-side Access to Device Capabilities

Currently, there exists no standard for exposing device or platform capabil-
ities to applications running in web browsers. Instead, various incompatible
approaches for exposing such functionality to web applications exits as it will
be discussed in Section 4.2.4. The benefits of such a tighter integration are
obvious: the approach allows authors to use the familiar web technologies to
leverage functionality provided by the underlying platform and the device.

Within W3C there is a work on-going to address the interoperability issues
specific to user-installable web application called widgets (discussed in Sec-
tion 4.1.3) by standardizing selected client-side APIs including, for example,
a mechanism for storing data persistently on the client [120, Section 5.2].
Also HTML 5 discussed in Section 3.5.1 is specifying new client-side APIs.
Furthermore, W3C Ubiquitous Web Applications Working Group is work-
ing on specification for language neutral APIs that provide web applications
access to dynamic properties representing device capabilities in [191]. In ad-
dition, a model for the device characteristics relevant for the Web is being
specified in [126]. To summarize, currently the foremost risk is the fragmen-
tation of the above-mentioned APIs which would hinder the uptake of more
advanced web applications leveraging device capabilities.

Open Service APIs

Growing trend in web applications is the use of data from multiple sources.
For example, combining point-of-interests from one source to cartographi-
cal data from another source forms a hybrid web application that is com-
monly referred to as a mashup. Fundamental building blocks of mashups
are open service APIs which implement a simple interface that transmits
domain-specific data over HTTP. Two most popular options are the REST
architectural style (see Section 3.1) without an additional messaging layer

50 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

or SOAP [19] messaging framework facilitating the exchange of XML-based
messages. Recently, many popular providers of open service APIs have been
adding support for JSON [56] as an alternative data interchange format in
addition to XML.

4.1.3 Classification of Web Applications

In this thesis, web applications are divided into the following three cate-
gories based on their interactivity and architectural approach: thin client
web applications, interactive web applications and rich client web applica-
tions. Interaction models and associated components of web applications
belonging to each of these categories are depicted in Figure 4.1. The server
component is simplified and consists of a mandatory part, the HTTP server
serving the resources to the clients. Optional components encompass the UI
and application logic.

Figure 4.1 suggests that rich client web applications depicted on the right
may execute all logic on the client-side and utilize the server only as a data
source via open service API using HTTP as the communications protocol.
The arrows in the figure depict HTTP communications where solid lines are
synchronous typically requiring user actions and dotted lines asynchronous
communications using the XMLHttpRequest object performed in the back-
ground and controlled by logic implemented in JavaScript. On the client-
side, static (X)HTML and CSS are the core components for thin client web
applications which are constructed into a static DOM tree representation
of the document. In interactive web applications JavaScript is used to im-
plement UI logic, such as changing component visibility. In rich client web
applications, client-side it is responsible for overall application and UI logic.
The database components in the figure illustrate that also client-side may
be used for storing significant amount of data persistently using mechanism
such as those discussed in Section 3.6.3. Similarly, Platform APIs may be
exposed to the rich client web applications to provide hooks to the underlying
platform.

It should be noted, that the figure is just a one interpretation of the state
of web applications and in practice associated terms and techniques are used
ambiguously. Secondly, the classes discussed below are not mutually exclu-
sive, rather they coexist on the Web today. In addition, from the viewpoint
of software engineering principles, there is a need to apply more rigorous
software engineering practices to the development of web applications [142,
p. 7]. This is especially visible in rich client and interactive web applications

4.1. WEB APPLICATIONS 51

classes where plethora of approaches exists. This makes defining a detailed
yet generalized interaction model an impractical task.

HTML+CSS

Request Response:
HTML+CSS

Request Request
Response:
raw data

Thin client web application

Server

HTML+CSS

Interactive web application

Server

Response:
HTML+CSS+JS

Time

Request
Response:
raw data

Rich client web application

HTTP server

Server

HTML+CSS

DOM API

DB

DB

DB

HTTP serverHTTP server

UI logic

Application logic

Asyncronous
HTTP

Syncronous
HTTP

DOM
API

Platform
API

Application logic

JavaScript
libraryUI logic Application

logic

UI
logic

JavaScript
library

DB

Figure 4.1: Thin client application (left), interactive web application (center)
and rich client web application (right) interaction models. Adapted from [95].

Thin Client Web Applications

Thin client web applications represent simple or classic type of web applica-
tions which use the web browser only for rendering the content to the screen
and communicating with the server over HTTP. Truly they are just web pages
in which interactions other than scrolling the page or filling in forms require
the browser to initiate an HTTP request to fetch a new web page from the
server. This implies that a lot of redundant data is transferred on each page
refresh assuming most of the page content remains unchanged. Thin client
model leads to poor interactivity and high network usage in term of trans-
ferred data. The approach typically fulfills the requirements of applications
falling into the information retrieval category.

Interactive Web Applications

The main difference with interactive and thin client web applications – or
simply put just static web pages – is that an interactive web application

52 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

thrives to be more interactive and typically is process-focused rather than
content-driven. In this thesis the term interactive web application refers to a
class of web applications which utilize the Ajax technique (see Section 3.3.3)
allowing asynchronous use of HTTP via the JavaScript XMLHttpRequest [118]
object using standard web browser with no extensions as a user agent. The
main motivator in using the Ajax technique is to enhance the interactivity
stemming from the fact that an application utilizing Ajax does not have to
do full page refreshes to change the view after the initial page load.

In practice, authors typically mix the thin client approach with some asyn-
chronous HTTP and client-side DOMmanipulations provided by some sort of
a JavaScript library (see Section 4.2.3). The libraries are referenced from the
(X)HTML and loaded similarly to any other resource implying they are also
saved to the browser’s cache as depicted in Figure 4.1. Subsequent requests
typically return only parts of the overall page payload. The cumulative data
transmitted is usually lower than in a similar application based on the thin
client interaction model as part of the interaction within the browser hap-
pens without a round-trip to the server. This reduces the perceived latency
beyond the initial page load as less data is transmitted from the server to
the client.

This approach has made it feasible to design responsive desktop style user
interfaces for web applications running in a web browser and brought the
user experience close to that of typical desktop applications. Interactive
web application model is especially suitable for applications in information
manipulation category which require higher interactivity than the thin client
approach can offer.

Rich Client Web Applications

Rich client web applications, or alternatively Rich Internet Applications
(RIAs), refer to an emerging category of applications built predominantly
using web technologies embodying close the features and functionality that
of traditional desktop applications. Compared to web applications belonging
to above-mentioned categories, RIAs tend to offer richer functionality, more
responsive UI and be more efficient in term of network usage.

From the technical point of view RIAs share one common characteristic by
introducing an intermediate component between the web browser and the
underlying platform residing on the client-side. This intermediate engine
component residing on the client-side may be downloaded once the appli-
cation is started, is provided as an additional stand-alone installation or is

4.1. WEB APPLICATIONS 53

pre-installed. The intermediate engine extending or replacing parts of the
browser is typically responsible for e.g. rendering parts of the user interface
and exposing access to selected platform capabilities. Consequently, RIAs
tend to do inherently more processing on the client and require less client-
server communications than their traditional web application counterparts.
Typical extensions to standard web technologies leveraged by RIAs include
client-side persistent storage mechanism and access to platform capabilities,
such as utilizing native UI components. The former enables handling bulk
of the data processing on the client-side and de-coupling the applications
from the server whereas the latter allows more seamless integration to the
underlying platform and its capabilities.

Currently, there exists no widely agreed definition or architecture for RIAs
and on this account various platforms incompatible with each other have
been lately introduced. The most popular such platforms are discussed in
Section 4.2.4.

Widgets

A specific type of rich client web applications is referred to as widgets3 ex-
ecuted within a widget engine. In this section, the term widget refers to "a
class of client-side web application for displaying and/or updating local or
remote data, packaged in a way to allow a single download and installation
on a client machine or device" [120]. Furthermore, within the scope are only
widgets implemented in standard web technologies. The widget engine, is
either directly built on, or provide similar functionality to, a common web
browser [26, section 1.1] but without browser chrome4.

The distribution of widgets is handled similarly to native user-installable
applications. Herein, they differ from other types of web applications which
are entirely delivered on-demand or do not require to be installed prior use.
Furthermore, widgets act more like traditional desktop applications and they
do not necessarily require network access to function. Widgets are typically
conservative in their use of network resources as the application and UI logic
can be persistently installed to the device during the initial installation. It
is also common that a platform specific APIs are provided to allow widgets
to interact with the host platform. For communications, widget engines use

3The term widget is overloaded, and it is ambiguously used to cover desktop widgets
run on desktops, web widgets embedded in web pages and mobile widgets run on a mobile
device. Widget may also refer to GUI widget which is an interface element of a UI.

4The browser chrome refers to browser UI elements such as borders of a web browser
window, window frames, menus, toolbars and scroll bars.

54 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

HTTP, typically via XMLHttpRequest object.

Currently, there exist separate widget engines for Nokia S60 Web Runtime
Widgets, Yahoo! Widgets, Google Gadgets, Microsoft Gadgets, Apple Dash-
board Widgets and Opera Widgets. Although widgets are mostly built on
standard web technologies such as (X)HTML, CSS and JavaScript, the ven-
dors have introduced proprietary extensions, such as XML formats used for
metadata and specific APIs used to access platform specific features. Conse-
quently, the main shortcoming of widgets is currently the lack of established
standards, due to which widgets do not interoperate across platforms. Re-
gardless, it has been demonstrated that it is possible to port a widget to other
platform with a little effort if the building blocks of the widgets are similar
[116]. Widget specifications such as Apple Dashboard Reference [106], Opera
Widgets Specification 1.0 [177] and Nokia Web Runtime Widgets API Refer-
ence [52] define many uniform components, which facilitates porting widgets
from a platform to another [116].

Standardization of widgets is under way in W3C and Widgets 1.0 Working
Draft [120] aims to standardize the core features of widgets. Those include
a packaging format to provide an interoperable way to encapsulate and dis-
tribute widgets, an XML-based configuration format and processing model
for widget metadata, and a model that allows a user-agent to automati-
cally start a widget. In addition an HTTP-based model for version control
and a set of ECMAScript implementable DOM APIs and events is specified.
Furthermore, a model that allows a widget to be digitally signed besides a
security model is defined. Finally, the specification defines means for web
browsers to automatically discover widgets from within an HTML document
in addition to accessibility requirements for user agents. A significant find-
ing is that the above-mentioned features do not aim to standardize access to
device capabilities. [25, 26]

4.1.4 Feed Reader Applications for Mobile Devices

Applications that consume feeds discussed in Section 3.6.4 are commonly
referred to as feed readers. Next, an example of an application belonging
to this category developed in both device-dependent and device-independent
languages is introduced.

4.2. PLATFORMS FOR WEB APPLICATIONS 55

Web Feeds

Web Feeds is the default feed reader application of the S60 platform. As a
native S60 application it is implemented in C++ and its UI adheres to S60
UI Guideline [48]. Integration with the Web Browser of S60 enables it to
discover and open feeds directly from within the web pages displayed in the
browser. Web Feeds application allows storing feeds persistently for offline
viewing but does not provide support for the OPML aggregate format.

Google Reader

Google Reader [87] is a feed reader implemented in web technologies run-
ning within a regular web browser. Based on the classification introduced
in Section 4.1.3, it falls in between the interactive web application and rich
client web application categories. For offline capability, it optionally lever-
ages Google Gears extension discussed in Section 3.6.3. Other key features
of Google Reader include ability to aggregate feeds together from multi-
ple sources, support for OPML format and powerful search functionality.
Specifically to mobile devices, there exists a more light-weight UI alternative
leveraging XHTML Mobile Profile.

4.2 Platforms for Web Applications

A platform is a set of services, technologies and application programming
interfaces (APIs) on which additional software and applications are con-
structed. Figure 4.2 depicts a simplified overview of the platforms for client-
side web applications as horizontal layers. Web applications discussed in
Chapter 4.1 and their connections with the platform layers are depicted as
emphasized vertical boxes. Native applications refer to applications imple-
mented in the language native to the operating system. The main APIs
exposed to developers are illustrated with dashes lines.

Hardware platform refers the physical components and associated features
of the mobile device including physical construction, CPU architecture and
radio interfaces for network connectivity.

Operating system layer consists of an operating system whose main function
is to manage the sharing of the resources of a mobile device and provide a
base platform for middleware and other software atop.

In the context of this thesis, middleware refers to software between the appli-

56 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

Interactive web
applications

Web
APIs

Hardware

Web browsers

Platform
APIs

Thin client web
applications

Rich client web
applications

Web runtime environments

Operating system

Native
applications

Middleware

Figure 4.2: Platforms for web applications. The horizontal layers depicts
platforms and vertical emphasized boxes web application categories.

cation software and the operating system. Characteristics of middleware are
standard programming interfaces and protocols which provide higher-level
interfaces that hide the underlying complexity and allow developers to focus
on application-specific issues.

Web runtime environments refer to runtime environments5 that can be seen
as glue between the middleware and the web browser. Applications im-
plemented on top of such platforms leverage web technologies but require
additional component which extends or replaces parts of the web browser’s
functionality. [12, 66]

Web browsers are increasingly used as ubiquitous platforms for running ap-
plications built on standard web technologies. These highly-portable web
applications provide rich interaction capabilities but suffer from mediocre
performance and tight security policies preventing them from leveraging the
underlying platform capabilities among other limitations.

Standard client-side Web APIs discussed in section 4.1.2 are the main inter-
faces utilized by web applications. Platform APIs refer to the APIs that ex-
pose operating system capabilities, such as file system access, to applications.
Figure 4.2 roughly depicts the availability of APIs available to developers in
various platforms.

5Runtime environment, or runtime, is a loosely defined term for a portable program-
ming environment and related libraries used to execute the applications typically adhering
to write once run everywhere idea. For example, Java Runtime Environment denotes
Java Virtual Machine used to execute the code combined with standard class libraries
implementing the core Java API. [140]

4.2. PLATFORMS FOR WEB APPLICATIONS 57

4.2.1 Operating Systems

The most popular operating systems for high-end mobile devices that support
software development by third parties are Symbian OS, Windows Mobile and
various offerings based on the Linux kernel.6

Symbian OS is a proprietary operating system designed for mobile devices.
It provides the base OS on top of which additional features such as GUI and
more extensive programming libraries can be build. Features of Symbian OS
such as preemptive multitasking, multithreading and memory protection are
familiar from modern desktop operating systems. Windows Mobile devel-
oped by Microsoft is also a proprietary operating system targeted at mobile
devices. However, it is not limited to smartphones as it is run also on e.g.
PDAs and media players. Different from Symbian OS, Windows Mobile in-
cludes a suite of basic applications such as e-mail client and a web browser
which come with S60 platform to Symbian OS powered devices. In addition,
there exists a plethora of Linux-based operating systems for mobile devices
with do not yet enjoy commercial success [128].

4.2.2 Middleware

In this section the most popular and remarkable emerging middleware plat-
forms for mobile devices are discussed. All of the middleware platforms
reviewed primarily focus in facilitating development in their native language,
be it C++ or Java. However, they are increasingly adding in support for pop-
ular web technologies and typically provide a mechanism for leveraging web
technologies from within the native application development environment.

S60 Platform

The S60 platform is the major software platform for Symbian-based mobile
devices. It accounted for 74% of all Symbian mobile devices shipped in the
first half of 2007 [80]. S60 comprises of libraries and standard applications
which extend Symbian OS. There exist multiple versions of S60 which provide
additional elements to the platform. Figure 4.3 represents the architecture
of S60 platform as of version 3.1. The main elements of the S60 are discussed
below [151]:

6According to Gartner, Inc. in the first quarter of the 2007 the most popular operating
systems in mobile devices were Symbian OS (71%) and Linux (16%). Microsoft Windows
Mobile market share was below 5%. [80]

58 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

Symbian OS Extensions A set of capabilities which allow S60 to interact
with device hardware functions.

Open C A subset of Portable Operating System Interface for Unix (POSIX)
[104], which is an API for software compatible with Unix variants.7

S60 Platform Services A service framework comprising of capabilities for
e.g. UI components, graphics, location, multimedia and communica-
tions and web-based services.

S60 Application Services Provides higher level services to applications
such as managing contacts, calendar, messaging and browsing.

S60 Java Technology Services The Java ME implementation of the S60.

S60 Web Runtime (WRT) WRT is a runtime environment which enables
running applications, or widgets, build on web technologies on the S60.

S60 Applications Pre-installed applications embedded within S60. The
most relevant application related to web technologies is the Web
Browser for S60.

User Interface UI libraries for developers allowing creation of custom com-
ponents derived from the standard libraries.

The most relevant components of the S60 related to web technologies are the
S60 Web Runtime discussed in section 4.2.4 and its enabling S60 application,
the Web Browser for S60 discussed in Section 4.2.3. In addition, there is a
mechanism for embedding web content within a native S60 application via
Browser Control API [47] part of S60 Application Services. Web technology
support in Java is discussed in the following section.

Java ME

Java ME is a subset of the Java platform which allows developing and run-
ning programs written in Java language in constrained devices with limited
memory, display and power capacity. Being cross-platform runtime environ-
ment, the main advantages of Java ME are its wide support and relatively
rich feature set. It is available in some form on almost any mobile device on

7Open C facilitates porting applications from desktop environment to S60 by providing
middleware C libraries.

4.2. PLATFORMS FOR WEB APPLICATIONS 59

Figure 4.3: Overview of the S60 platform architecture. Adapted from [151].

the market and it allows access to selected platform capabilities such as mul-
timedia and graphics functionality via standard APIs. However, in practice
also Java ME applications distributed as user-installable MIDlet files need to
be adapted for various subset of mobile devices available, making the devel-
opment of Java ME applications expensive and time-consuming, especially
when optional functionality is used [188]. The main architecture of Java ME
consists of: [140, 139]

System libraries and configurations The most basic set of libraries and
the virtual machine used to execute the programs.

Profiles A set of higher-level APIs to extend the configurations.

Optional packages Additional technology-specific APIs, both standard
APIs defined in Java Community Process (JCP) as well as non-standard
device vendor or operator specific APIs.

Currently, most new mobile devices that claim Java ME compatibility, sup-
port Connected Limited Device Configuration (CLDC) and Mobile Informa-
tion Device Profile (MIDP). CLDC provides low-level functionality and a
virtual machine8 whereas MIDP defines APIs related to display, local access
and network among others.

There exist optional packages defined in JCP providing integration with web
technologies. JSR 226: Scalable 2D Vector Graphics API [160] adds support
for SVG Tiny 1.1 to Java ME to facilitate creation of rich user interfaces.
Main use cases for SVG in Java ME are scalable images, animations, games
and map visualizations [45, p. 10]. JSR 287: Scalable 2D Vector Graphics

8The K virtual machine (KVM) [139] is a small memory footprint version of the full
Java Virtual Machine with reduced functionality, which runs in constrained devices.

60 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

API 2.0 [161] is a draft version of the API, which extends the JSR 226 in a
backwards compatible manner by adding support for SVG Tiny 1.2. Main
additions over JSR 226 are the ability to create and modify animations.
JSR 290: Java Language & XML User Interface Markup Integration [162] is
another draft, which aim to enable creation of Java ME applications which
combine web technologies used for creating UIs with Java code leveraging
the W3C Compound Document Format (CDF) specification. However, the
initial version is expected not to allow Java application integration in the
browser environment due to technical issues related to scope and security
model [162, section 5.2].

.NET Framework

.NET Framework [42] is positioned to be the development platform for all
new applications for Windows operating system, be it for the Web or for the
desktop. .NET Compact Framework is a subset of .NET Framework avail-
able on mobile devices based on Windows Mobile operating system [39]. In
addition, there exists a full implementation of the .NET Compact Framework
for the Symbian OS [145]. The support for any .NET compliant language
such as C# utilizing the same shared libraries is implemented using a virtual
machine9 which compiles the intermediate bytecode generated by compilers
of each language into a machine code. The .NET Framework 3.0 consists of
four major components10, out of which Windows Presentation Foundation
(WPF) forming the graphical subsystem of the .NET Framework is the most
relevant in the context of this thesis [94, section 3.6.1]. Core functions of
a web browser are supported by the .NET Compact Framework via Win-
dows Forms WebBrowser control [43] which allows embedding web browser
in .NET applications. Alternative mechanism to integrate .NET Framework
to web browser is to utilize the web-based subset of WPF called Silverlight
which is discussed in Section 4.2.4.

Android

Google Android is a full mobile phone platform based on Linux kernel, which
is expected to ship in devices in late 2008. In this section we discuss only
the most relevant bits of its middleware layer related to the thesis.

9The virtual machine component of the .NET Framework in called Common Language
Runtime (CLR).

10Windows Presentation Foundation, Windows Communication Foundation, Windows
Workflow Foundation and Windows CardSpace.

4.2. PLATFORMS FOR WEB APPLICATIONS 61

The Android includes a custom Dalvik virtual machine optimized for em-
bedded OS which compiles Java code into a specific Dalvik bytecode. From
this angle Android can be seen as a fork11 of Java ME implementation with a
better performance but with no compatibility with existing Java platforms or
profiles. Related to platform integration with web technologies, there exists
a mechanism12 for binding a Java object to JavaScript running within the
WebKit browser part of Android. It is also possible to control the DOM via
Dalvik application using its WebKit integration. However, the initial version
of the SDK does not describe the functionality related to WebKit integra-
tion to the JavaScript in detail, implying primary focus is on implementing
applications in Java.

4.2.3 Web Browser as a Ubiquitous Client

A web browser is a software application for displaying and interacting with
web pages build on web technologies. The core component of any web browser
is its rendering engine, which tasks are to interpret the content and repre-
sent it to the user. The rendering engine13 fetch and parse markup such
as (X)HTML and construct it into the DOM. In addition, it constructs the
boxes of content to render and applies style information, layouts the boxes
and renders them. Finally, it interprets the system and user events and is
responsible for the event-driven programming model by executing JavaScript
code. The JavaScript program logic may modify the DOM and communicate
over the HTTP with the server which is the core functionality of more interac-
tive web applications to achieve rich interaction on the client-side. According
to recent statistics [23], 97% of all the browsers utilize one of the four major
rendering engines: Trident (Internet Explorer), Gecko (Firefox and Mozilla-
based browsers), WebKit (Safari) or Presto (Opera). In Appendix B.1 an
overview of the web standards support by rendering engines is represented.
The browser chrome is the layer on top of the rendering engine which pro-
vides the browser UI components and additional functionality, which does
not relate to web standards. Many browsers use the same rendering engine
but differentiate by providing alternative browser chrome.

There exist various shortcomings in using the web browser as an ubiquitous
client for applications compared to more established middleware platforms
discussed in Section 4.2.2. First, there are major usability and interaction

11The core APIs and the virtual machine are not consistent with any Java platform.
12Using addJavascriptInterface() method of WebView class.
13Interchangeably, the term layout engine is used.

62 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

issues, namely poor I/O model provided by the DOM not especially ap-
plicable for desktop style applications in addition to page-centric update
model with unsuitable semantics for applications such as back, stop and for-
ward. Furthermore, security-related limitations restrict the implementation
of browser-based applications to access multiple domains on the client-side.
In addition, there is no access to local resources of the client from the web
applications. Related to standards, the disregard of official standards and
lack of standards in areas important to application such as more advanced
networking, graphics or media capabilities has made the development of web
applications tedious and error-prone. Closely related to this, performance
issues have arisen as techniques and technologies are abused to implement
functionality familiar from other platforms due to lack of better solutions.
Despite all the above-mentioned shortcomings the web browser is increasingly
used to implement applications. [143]

Contemporary Web Browsers for Mobile Devices

The most advanced browsers for mobile devices are targeted to high-end
device category which embodies modern operating systems (e.g. Symbian
OS, Windows Mobile or Linux) and capable hardware. These browsers are
increasingly utilizing the same rendering engines familiar from the major
desktop browsers and incorporate advanced layout mechanisms suitable for
small screens [172]. Currently, the major advanced browsers for mobile de-
vices include Web Browser for S60 [44], Apple iPhone Safari [105] and Opera
Mobile [176]. Both the Web Browser for S60 and the iPhone Safari are
based on open source WebKit rendering engine whereas Opera uses its own
proprietary solution.

Web Browser for S60

Web Browser for S60 is the built-in web browser of the S60 platform. It
is based on WebCore and JavaScriptCore components of the open source
project WebKit [192], which is used in Apple’s Safari browser14. Recently,
WebKit has been also ported to other mobile platforms15. WebKit in turn,
is based on the open source KHTML engine from KDE. The rationale for

14Precisely, WebKit is a system framework which is also used on Mac OS X by Safari,
Dashboard, Mail and many other application.

15For example, WebKit is used in browsers found in Apple iPhone, Windows Mobile
platform (http://www.wake3.com/), Java Micro Edition (http://www.teashark.com/)
and Android.

http://www.wake3.com/
http://www.teashark.com/

4.2. PLATFORMS FOR WEB APPLICATIONS 63

selecting WebKit as the core for the browser for constrained devices stems
from its standards compliance, performance, small memory footprint and
license which allows it to be extended with proprietary components [159].

The Web Browser for S60 architecture is depicted in Figure 4.4 where the
port of WebKit to S60 platform, S60WebKit [50] containing WebCore and
JavaScriptCore from the WebKit, is emphasized. WebCore is the layout
engine incorporating the HTML and CSS parsers, and HTML and XML
DOM implementations taking care of the rendering logic. JavaScriptCore is
the JavaScript engine responsible for interpreting and executing JavaScript
source code. Rest the components within the S60WebKit are OS and S60 spe-
cific layers enabling the use of WebKit on the S60. Other component include
the browser UI, the S60 Browser Control API for embedding the browser
within native S60 applications, the plug-in API for extending the browser
functionality and the HTTP framework for common network functionality
[159, 172].

Symbian OS Symbian HTTP Framework

Nokia
UI

features

Web
Core

JavaScript
Core

Plug-in
API

Memory ManagerOS Adaptations

S60
WebKit

Browser Control API

Reference UI S60 Browser UI

Figure 4.4: Web Browser for S60 architecture [50].

Client-side Web Application Frameworks

Client-side web application frameworks discussed in this thesis refer to
JavaScript libraries which execute within a standards compliant web browser.
The framework components consist of one or multiple JavaScript files which
are loaded similarly as any resources as a part of the web page. The frame-
works can be split roughly to the following categories based on their features:
lower-level JavaScript frameworks that provide a foundation on top of which
new functionality can be build and UI widget libraries which provide richer
user interface controls that abstract away native Web APIs and their incom-
patibilities across browsers. According to the survey done in 2008, Proto-

64 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

type16 and jQuery17 were the most popular lower-level JavaScript frameworks
whereas Ext JS18 and Script.aculo.us19 were the most popular UI widget li-
braries [1]. Google Web Toolkit (GWT) [85] takes an alternative approach
by allowing the development of web applications in Java which is translated
to JavaScript before deployment to the Web by the GWT.

To summarize, although the frameworks differ in many ways, they all share
some common architectural characteristics, namely they aim to: [136, p. 3]

• hide the complexity of developing interactive web applications which is
a tedious, difficult, and error-prone task,

• hide the incompatibilities between different web browsers and plat-
forms,

• hide the client-server communication complexities and

• achieve rich interactivity and portability and ease of development.

4.2.4 Web Runtime Environments

Rich client web applications or Rich Internet Applications (RIAs) discussed
in Section 4.1.3 are executed within web runtime environments (WREs). This
section discusses WREs which expand the functionality of the web browser.
Such WREs can be seen as glue between the underlying middleware layer
and the web technologies interpreted by the web browser.

The motivation for WREs is similar to that of shared libraries. By sharing
such an environment across applications the amount of data that needs to
be downloaded is reduced and less storage space is required on the target
device. Furthermore, in the web context such environments typically expose
additional functionality not provided by the standard web technologies such
as richer graphics capabilities and mechanism for storing data persistently
on the client.

From developers’ perspective WREs enable the use of core web technologies
to develop applications that interact with the underlying platform. This is
typically implemented by providing JavaScript bindings to the underlying
platform. Currently there exists no standard for such runtime environments

16http://www.prototypejs.org
17http://www.jquery.org
18http://www.extjs.com
19http://script.aculo.us

http://www.prototypejs.org
http://www.jquery.org
http://www.extjs.com
http://script.aculo.us

4.2. PLATFORMS FOR WEB APPLICATIONS 65

and on this account there are multiple incompatible WREs. Next, the most
promising approaches are discussed.

Microsoft Silverlight

Microsoft Silverlight is a web-based subset of Windows Presentation Foun-
dation (WPF), the graphical subsystem of the .NET Framework discussed in
Section 4.2.2. The Silverlight consists of two major parts. The core presenta-
tion framework handles the UI and user interaction and implements support
for XAML, its DOM API integration and non-standard JavaScript APIs ex-
posing Silverlight specific functionality. The subset of the .NET Framework
contains components, libraries and a virtual machine for running code written
in .NET compliant languages. The latter part providing .NET integration
is scheduled to be incorporated in the upcoming version of the Silverlight.
[138]

Silverlight applications use a web browser extended with a proprietary Sil-
verlight plugin as the runtime environment. The core presentation framework
supports rich animation, vector graphics and video capabilities. The Sil-
verlight application UI and partly the interaction are implemented in XAML.
In addition, JavaScript is supported and can be used to implement further
interaction. The upcoming version of Silverlight is expected to incorporate
a subset of the .NET Framework functionality which will bring the .NET
language integration (e.g. C#) to Silverlight applications. In other words
the developers of Silverlight applications can leverage the APIs familiar from
standalone .NET desktop applications and interact with the DOM using
such languages. The objects created in .NET compliant languages are also
exposed to JavaScript. It has been announced that the Silverlight will be
available to S60 during 2008 [53]. [194]

Mozilla XULRunner

XULRunner is a cross-platform runtime environment for XUL applications,
available for Windows, Mac OS X and Linux. It hooks up to the Mozilla
Toolkit, which is a set of APIs built on top of Gecko and supports a wide
array of web technologies, including XUL, XBL, (X)HTML, CSS, JavaScript,
DOM, SVG and XSLT. Typically XULRunner applications utilize technolo-
gies such as XUL and XBL but they may use any language supported by
XULRunner. The component-based engine architecture of XULRunner al-
lows writing cross-platform, modular software which may leverage the shared

66 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

libraries which reduces application size considerably. The bindings to shared
libraries providing functionality such as file I/O and networking support is
exposed to languages such as JavaScript using a cross-platform component
model from Mozilla called XPCOM. Examples of popular applications built
on XULRunner include Firefox web browser and Thunderbird email client.
[76]

Sun JavaFX

JavaFX refers to a suite of technologies for web application development by
Sun Microsystems. JavaFX builds around existing Java technologies such as
Java programming language and its Swing UI library. In addition, it includes
a declarative scripting language, JavaFX Script, which is aimed to facilitate
defining user interfaces for web applications. Its characteristics resemble more
Java than JavaScript. Although being a dynamic language, JavaFX Script
incorporates features such as static typing, support for classes, packages and
inheritance. In addition, JavaFX Script can leverage the Java API which is
part of the JavaFX platform.

The platform for running JavaFX application depends on Java runtime envi-
ronment (JRE) similarly to Java ME. There exists a mobile implementation
of the JavaFX called JavaFX Mobile which comprises of a full operating sys-
tem for mobile devices capable for running JavaFX applications in addition
to the JRE. [143]

Adobe Integrated Runtime

Adobe Integrated Runtime (AIR) is a cross-platform runtime required for
executing AIR applications which are build on top of Adobe’s proprietary
web technologies: Flash, ActionScript20 and the Flex Builder development
environment. The developers may use standard web technologies, (X)HTML,
CSS and JavaScript to write applications. However, AIR runtime embodying
the proprietary components is needed to execute such AIR applications. The
runtime contains open source WebKit rendering engine for HTML layouting
and Tamarin virtual machine for executing ActionScript and JavaScript. Due
to this, AIR is independent of the web browser as it incorporates correspond-
ing functionality within the runtime itself. Adobe’s intent is to extend AIR
from its current target platform, the desktop, to mobile devices in the future
[29, p. 45]. [29]

20The Scripting language of the Adobe Flash authoring tool is a variant of JavaScript.

4.2. PLATFORMS FOR WEB APPLICATIONS 67

4.2.5 S60 Web Runtime – AWeb Runtime Environment
for the S60

S60 Web Runtime is the platform used for the concept implementation dis-
cussed in Chapter 5. On this account, a more thorough review of its features
is given in this section.

Overview

The S60 Web Runtime (WRT) is a web runtime environment part of the S60
platform21. It supports building web applications called widgets using core
web technologies, (X)HTML, CSS and JavaScript. The platform integration
enables developing applications which leverage the S60 platform functionality
using web technologies instead of native language of the S60, the C++.

WRT shares common components with the Web Browser for S60 with two
notable changes. An additional layer implementing access to selected S60
platform functionality via JavaScript bindings is provided. Secondly, the
browser UI, or the chrome, has been removed allowing developers to take
total control of the UI. Consequently, there exist no mandatory UI elements
such as navigation controls incompatible with application interaction mod-
els. From the architectural perspective, these changes are reflected to the
topmost components in Figure 4.4: the Reference UI and the S60 Browser
UI are replaced with a S60 Web Runtime specific component which wraps se-
lected S60 platform functionality with JavaScript objects. To summarize, the
S60 Web Runtime specific component provides the following features which
distinguish applications, or widgets, leveraging it from web applications run
within the Web Browser for S60: [51, 116]

• whole of the UI is implementable and customizable using web technolo-
gies

• access to platform specific functionality is provided via JavaScript bind-
ings to selected platform APIs

• optional UI integration leverages native UI controls, such as built-in
menu structures

• managed similarly as native applications, e.g. supports multitasking

21Starting from the S60 3rd Edition, Feature Pack 2.

68 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

• familiar deployment and installation model from native S60 applica-
tions

Widget Components

WRT applications called widgets are distributed as ZIP compressed packages
with an extension .wgz. These user-installable packages can be deployed to
the target device via the web browser of the target device by downloading
the .wgz package from the Web or by transferring the package to the target
device from a desktop. The package comprises of the files presented in Table
4.1 out of which all the other file formats except the manifest are commonly
used resources in the Web today.

Table 4.1: S60 Web Runtime widget components [52].
File Description
info.plist Manifest file which contains metadata about the

widget. (Mandatory)
[name].html A standard HTML document containing the

structure of a widget. (Mandatory)
icon.png An icon of the widget visible in the application

grid on the device.
[name].css External style sheet files defining the presenta-

tional aspects.
[name].js External JavaScript files implementing the

logic.
*.(jpg|png|gif|bmp) Optional image resources.

Manifest

The manifest info.plist is an XML-formatted file which defines the widget
metadata properties as key and value pairs and provides a declarative boot-
strapping mechanism that enables widget engine to automatically instantiate
a widget. An example of info.plist file properties is presented in Appendix
A.2.

4.2. PLATFORMS FOR WEB APPLICATIONS 69

Supported APIs

Since the WRT extends the Web Browser for S60 and utilizes its JavaScript
interpreter and DOM implementation, all the APIs provided by the under-
lying environment are available to the WRT environment with some minor
exceptions22. In addition, the standard APIs are extended with WRT specific
JavaScript APIs. Overall, APIs exposed to WRT are:

Core JavaScript APIs The core JavaScript language. [75]

DOM API The API providing I/O model to the XML document which is
fundamental to client-side JavaScript programming. [96]

XMLHttpRequest API The API for client-side functionality for transfer-
ring data between a client and a server. [118]

S60 Web Runtime Specific APIs The specific non-standard APIs ex-
posing S60 platform-specific functionality to WRT. [52]

S60 Web Runtime Specific APIs

The special features of WRT widgets are exposed to programmers via APIs
which extend the standard DOM interfaces with widget specific functional-
ity. These APIs are accessible via the following global objects: widget, menu,
menuItem and sysinfo. widget object is a built-in module of the widget en-
gine which provides methods for e.g. using persistent storage and controlling
the navigation style. menu object provides an interface for manipulating the
options menu and softkey bindings of a widget. menuItem object provides
means to create menu items and child menu structures for options menu.
System Information Service API (sysinfo object) is a plugin module which
allows widgets to access certain subsets of system properties.

Some currently non-standard API extensions of the S60 Web Runtime [52]
are being proposed for standardization. W3C Working Draft of Widgets 1.0
[120] specification proposes some APIs of widget object to be standardized
[120, Section 5.2], namely the methods for opening new browser windows
and mechanism for storing and retrieving persistent data. The APIs to be
standardized are similar to those of Apple Dashboard Widgets [107]. Next,

22Some properties specific to browsing context have been modified, for example due to
lack of browser navigation controls in WRT, an alternative method for opening links is
provided. [52, p. 11]

70 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

most important non-standard APIs supported by the WRT in addition to
their standard-compliant alternatives – if available – are elaborated.

Data persistence For data persistence, the widget object provides meth-
ods setPreferenceForKey() and preferenceForKey() which allow
storing and retrieving strings of data. The size of stored data is limited
by the amount of free memory on the device [52]. On the Web, the
most interoperable way to implement client-side persistence is to use
HTTP Cookies [123]. However, the HTTP Cookie standard is severely
limited. It allows only 4 kB of data to be stored into a one cookie
and at most 20 cookies to be stored per domain [70, p. 460]. Google
Gears [86] discussed in Section 3.6.3 provides less restricted persistence
mechanism for major desktop browsers, but requires installation of a
non-standard browser extension.

UI integration Mobile devices do not normally support desktop-centric
concepts such as secondary mouse button. Furthermore, it cannot be
expected that a cursor-based navigation method is supported at all with
alternative input methods. For this reason most mobile device UIs uti-
lize menu structures which are accessible via physical softkeys of the
device. To be able to utilize this built-in functionality, WRT provides
a menu object that can be manipulated via JavaScript to modify the
menu structure. This functionality, however, needs to be emulated in
environments with no native support for this feature by implementing
an adaptation layer in JavaScript.

Access to device capabilities System Information Service API exposed
via sysinfo object enables widgets to react to the device state changes,
such as battery level of signal strength. The hooks are provided in a
form of additional event handlers. In addition it allows controlling cer-
tain system functions such as alarm sounds, lights of the display or
vibration. In order to use the API, a plugin module mush be loaded in
the main HTML with the embed element23. The current WRT version
1.0 has limited access to advanced device capabilities through S60 plat-
form such as GPS. However, it has been announced that the upcoming
version of the WRT will expose more platform capabilities [51].

XML data processing In addition to WRT specific APIs, non-standard
browser components DOMParser [70, p. 777] and XMLSerializer [70,

23The embed element was not included in any of the W3C (X)HTML specifications,
however HTML 5 is legitimizing its use [98, section 3.14.4].

4.2. PLATFORMS FOR WEB APPLICATIONS 71

p. 940] originating from Mozilla ported to S60WebKit are exposed
to WRT. The former is used to parse strings into DOM document
objects and the latter to serialize them back to strings. Unfortunately,
a Mozilla implementation of the XSLT Processor for manipulating XML
files, XSLTProcessor, is not properly supported by WRT.

4.2.6 Other Platforms

In addition to platforms discussed above, there are dozens of other mid-
dleware platforms and web runtime environments. However, it is unlikely
for most of them to be major commercial successes in the short term. For
example, Maemo24 and Qtopia25 are Linux-based middleware platforms for
mobile devices. OpenLaszlo26 is a web runtime environment which has a
unique capability to support different runtimes from the same codebase.

4.2.7 Overview of the Platforms

The operating systems were not particularly interesting in the scope of this
thesis, as they all provided similar functionality expected of a modern oper-
ating system such as multitasking and networking support.

The middleware layer was found to be quite relevant in the context of emerg-
ing web applications which leverage the underlying platform capabilities. S60
platform supports web technologies via its web browser, although it was also
possible to embed the browser component into a native application imple-
mented in C++ as well [47]. Java ME was able to run across multiple oper-
ating systems and it supported subsets of selected web technologies through
optional APIs. However, the application logic of Java ME applications sim-
ilarly to Android was implemented in Java language which did not address
the research question. Similarly, .NET Framework and its mobile specific
derivative did require the base language to be one of the .NET compliant
languages.

The use of a web browser as an application platform was discussed in Sec-
tion 4.2.3. It was found out that client-side web application frameworks
implemented in JavaScript are highly popular among web application devel-
opers. Such frameworks facilitate client-side application development within

24http://maemo.org/
25http://trolltech.com/products/qtopia/
26http://www.openlaszlo.org/

http://maemo.org/
http://trolltech.com/products/qtopia/
http://www.openlaszlo.org/

72 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

the web browser, but unfortunately they do not specifically take the con-
straints of mobile devices into account. On this account their use in mobile
devices despite the availability of capable browsers is hindered by their less
than optional usability and performance in mobile devices.

The major web runtime environments (WREs) discussed in Section 4.2.4
commonly incorporated the core components of the open source web browser
rendering engine, the WebKit. However, only the S60 Web Runtime was
targeting mobile devices whereas other WREs did not yet have versions for
mobile devices publicly available. Furthermore, the other WREs relied heav-
ily on proprietary languages for application development instead of utilizing
standard web technologies.

Figure 4.5 depicts an overview of the reviewed client-side platforms and clas-
sifies them based on:

(i) the runtime environment executing the application logic and,

(ii) the main programming language used for constructing the client-side
functionality of the application.

In the figure, the outermost circle, the base platforms, refers to the middle-
ware layer used. Inner circle, the web browsers, illustrates platform leveraging
a regular standards compliant web browsers. The innermost circle, the web
runtime environments, depict environments which leverage the web browser
or its rendering engine capabilities extended with the functionality of the un-
derlying base platform. In general, the platforms on the inner circles leverage
the capabilities of the platforms on the outer circle to some extend.

Table 4.2 compares the platforms discussed in this chapter based on their
properties related to web technologies. Platform features columns indicates
if the platform is targeted specifically for mobile devices, which rendering
engine is used to interpret the UI and execute the logic and whether a mech-
anism for interworking, that is exposing platform capabilities to the rendering
engine, is provided. The main languages used to implement layout and styling
and interaction are defined under main languages columns.

4.3 Summary

This chapter discussed web applications and their characteristics and drew
a taxonomy based on their interaction models. Secondly, the major software
platforms on top of which such applications can be build were discussed and

4.3. SUMMARY 73

Figure 4.5: Classification of client-side platforms. Platforms specific to mo-
bile devices are emphasized.

classified based on their features and web technology support. A specific fo-
cus was put on platforms specifically targeting mobile devices. Shortcomings
were identified in using the web browser as an application platform. Regard-
less, it is increasingly the main target for application developers. To address
the shortcomings, browser capabilities are being leveraged from other plat-
forms. Namely, web technologies are being exposed to middleware platforms
by means of embedding browser controls to native applications. On the other
hand, emerging web runtime environments are embodying rendering engines
as their core components commonly responsible for both UI and application
logic.

To summarize, the integration of web technologies with more established
platforms is still in flux, and the implementations are currently lacking many
features commonplace in lower lever platforms and operating systems, such
as file system access. This mainly stems from the lack of a standard security
model for exposing platform capabilities to the sandboxed web context in a
secure and interoperable way.

74 CHAPTER 4. WEB APPLICATIONS AND PLATFORMS

Table 4.2: Comparison of client-side platforms by their web technology in-
terworking capabilities.

Platform features Main languages

Platform M
ob

ile
pl
at
fo
rm

R
en
de
ri
ng

en
gi
ne

In
te
rw

or
ki
ng

La
yo
ut

an
d
st
yl
in
g

In
te
ra
ct
io
n

S60 yes WebKit yes C++ C++

Java ME yes - planned Java Java

.NET Compact
Framework

yes proprietary yes .NET .NET

Android yes WebKit yes Java Java

Web Browser for S60 yes WebKit no (X)HTML,
CSS

JavaScript

Google Web Toolkit no any no Java Java

Silverlight yes browser
plugin

yes XAML JavaScript,
.NET

XULRunner no Gecko yes XUL, XBL JavaScript

JavaFX yes browser
plugin

yes JavaFX
Script

Java

Adobe AIR no WebKit no (X)HTML,
CSS

JavaScript,
ActionScript

S60 Web Runtime yes WebKit yes (X)HTML,
CSS

JavaScript

Chapter 5

Concept Implementation

From this chapter onwards, the thesis discusses the feed reader application
called Feed Widget realized as the experimental part of the thesis. The
following sections discuss the concept implementation starting with the use
case description and functional requirements followed by a description of its
architecture and components.

5.1 The Feed Widget – An Overview

The platform for the Feed Widget, the S60 Web Runtime (WRT) was dis-
cussed in Section 4.2.5 in more detail to provide the foundation for under-
standing its features and limitations. First, this section gives an overview
of a concept implementation of the feed reader application which is entirely
implemented in core web technologies, XHTML, CSS and JavaScript called
Feed Widget. The main motivation for selecting the WRT as the platform
for implementation was its full support for core web technologies for appli-
cation development. The Feed Widget aims to deliver comparable level of
functionality as the Web Feeds feed reader application and enhance it with
features found in Google Reader, both of which were introduced in Section
4.1.4.

5.1.1 Functionality

The Feed Widget is an application that enables combining information from
multiple web feeds together and provides an efficient and functional UI for
displaying such information to the user. The semantical structure of the feed

75

76 CHAPTER 5. CONCEPT IMPLEMENTATION

formats makes it possible to combine feeds from different sources together
seamlessly. The Feed Widget support all major feed formats in addition to
the Outline Processor Markup Language (OPML) used for interchanging feed
aggregates discussed in Section 3.6.4. The main aim of the application is to
provide a locally run application which creates a mashup of user-selectable
web feeds. The main aggregate resides on the server which allows multi-
ple client application to share the same data. Feed Widget leverages the
native functionality of the WRT platform to provide better user experience
than similar application running within standard web browser such as the
Google Reader introduced in Section 4.1.4. This includes integration with
the native controls such as built-in menus and storage mechanism for offline
support. Regardless, the Feed Widget degrades gracefully to any standards
compliant web browser1. The main functionality of the Feed Widget can be
characterized as follows:

• Supports online feed aggregates via a RESTful interface

• Supports all major feed formats including various RSS versions (0.9x,
1.x, 2.0) and Atom

• Supports offline use by storing data persistently on the client-side

• Enables efficient filtering and sorting of information

• UI combines rich graphical capabilities which degrade gracefully to less
capable user agents

• Integrates to the device-native controls and the web browser

• Support all major standards compliant web browsers in addition to S60
Web Runtime

5.1.2 Use Case Description

To set the Feed Widget in its context, the main use case is described below.
The user stores his own feed aggregate to a web server, or uses an online
reader application such as Google Reader [87], which publishes an aggregate
of the feeds via a RESTful2 interface. The user subscribes to the aggregate
by entering the URI of the aggregate resource into the Feed Widget which

1Feed Widget has been tested with Firefox 2.0 and 3.0b2, and Safari 3.0.
2A RESTful system adheres to REST principles described in Section 3.1.

5.1. THE FEED WIDGET – AN OVERVIEW 77

stores it persistently. Alternatively, the user may subscribe to any publicly
available aggregate. This allows the user to use arbitrary software for man-
aging his feed aggregate, provided that it provides means to publishing it
in supported OPML aggregate format and that such resource is accessible
over HTTP. The aggregate consists of feeds which in turn consist of messages
which are displayed to the user as a mashup view which combines messages
from different sources together. The mashup view displays headlines, pub-
lishing times and titles of the messages to the user. The user may sort the
loaded messages by their publishing time or filter them based on whether he
has already read them. Finally, the user may expand the mashup view to
read a preview of the message, and open the full article in a new browser
window at will.

5.1.3 Functional Requirements

Below the functional requirements for the Feed Widget are stated explicitly
for the purpose of evaluation of the functionality of the concept implemen-
tation in the next chapter.

1. Must implement all of its logic on the client-side.

2. The server-side may be used for supplying static data in an XML-
format.

3. Must function with a standards compliant web browser as a user agent3.

4. Must provide a mechanism for storing resources persistently.

5. May use non-standard extensions for enhanced functionality if a fall-
back mechanism is provided.

6. Network interface must support HTTP and allow connections to arbi-
trary hosts.

7. Must support major XML-based feed (RSS, Atom) and aggregate
(OPML) data formats.

8. The UI must adapt to various screen resolutions and aspect ratios.

9. The UI must be based on standard XHTML 1.0 elements, no custom
tags permitted.

3Standards compliance is defined as a support for core web technologies, that is DOM
Level 2, XHTML 1.0, CSS Level 2 and JavaScript 1.6.

78 CHAPTER 5. CONCEPT IMPLEMENTATION

5.1.4 Design Overview

The Figure 5.1 depicts the architecture of the Feed Widget where logical
components are grouped into three tiers as introduced in Section 4.1.1 with
a notable exception that all the components reside on the client-side. The
presentation tier provides the interface to the user, the logic tier deals with
data objects and modifies them and the data tier consists of a persistence
mechanism which allows loading and storing data. The logic tier functionality
can be further divided into two categories. The service layer provides services
to the presentation tier, controls the application flow and modifies the data
objects whereas the data access layer deals with the communication to the
data tier.

The interaction model of the Feed Widget resembles that of rich client web
applications depicted in Figure 4.1. The logic of the Feed Widget is com-
pletely implemented on the client-side and the server-side is only exposed as
a open service API which provides data in a standard XML-based format to
the client, depicted as a cloud in the Figure 5.1. Furthermore, a client-side
persistence mechanism is used. The figure denotes that the Feed Widget is
server agnostic; it communicates with any server in the Internet which can
provide feeds and aggregates via HTTP using one of the supported Inter-
net media types4. There is no stateful connection between the client and the
server which makes the implementation fully REST compliant and decoupled
from the server implementation.

Presentation Tier

The presentation tier is responsible for displaying the user interface to the
user. In practice, the rendering engine of the WRT is responsible for render-
ing the UI according to the changes in the DOM. During the bootstrapping,
the XHTML file defines the main container elements for views which pro-
vide hooks to the JavaScript implementation. The CSS which defines the
presentational aspects of the Feed Widget is referenced from the XHTML
and loaded during the bootstrapping process. All the presentational aspects
of the application are defined within the static style sheets, which makes
defining additional themes for the application straightforward. In addition,
the WRT provides its own API to leverage native graphics capabilities of the
device for richer graphical effects such as fade transitions which would be
computationally heavy tasks if implemented by scripting the DOM. To fulfill

4Supported media types include text/xml, application/xml,
application/rss+xml, application/atom+xml and text/x-opml.

5.1. THE FEED WIDGET – AN OVERVIEW 79

the requirement for standards compliance, object detection is used to degrade
gracefully to standards-based alternative in user agents not supporting WRT
UI effects API.

Logic Tier

The logic tier is entirely implemented in JavaScript and is responsible for
business and UI logic. The UI logic examines and modifies the DOM ac-
cording to user and system events which is reflected automatically to the
rendering engine. The rendering engine constructs the view according to
the aforementioned changes in the DOM. In principle, the DOM interface
serves as a large shared data structure between the logic tier and the pre-
sentation tier allowing flexible inter-tier communication. Network access is
handled via a Network object which leverages XMLHttpRequest object. The
WRT exposes non-standard functionality to JavaScript, namely mechanisms
for parsing XML into a DOM Document object and serialized it back into
text. Furthermore, the WRT relaxes the same origin policy allowing locally
run web content to break out of the security sandbox to communicate with
multiple hosts. Finally, logic tier abstracts and encapsulates the access to
data tier into data access objects which enable using various storage methods
via a single Storage interface.

Data Tier

The data tier stores the data used in the application in persistent stores.
Feed Widget implements support for WRT persistent store [52, p. 12] in
addition to HTTP Cookies [123]. The use of data access objects facilitates
adding additional data sources. For example, Google Gears [86] relational
database exposed to the browser context could be integrated to the system
easily depicted with dotted lines.

5.1.5 Custom Components and Interfaces

The core components common to all WRT widgets were presented in Table
4.1 and APIs exposed to WRT were discussed in Section 4.2.5. In addition,
some additional high-level functionality was implemented to facilitate the de-
velopment. A summary of these additional classes5 encapsulating commonly

5Although JavaScript does not provide a keyword for defining classes, the prototype-
based inheritance can simulate such functionality to a sufficient degree.

80 CHAPTER 5. CONCEPT IMPLEMENTATION

Google Gears
WRT Persistent

Store

XML Serializer
DOM Parser

WRT
UI Effects

Data Tier

Logic Tier

Presentation Tier

Business LogicUI Logic

Document Object Model

Network
Access

CSS

Data
Access
Objects

XHTML

AtomRSS

OPML

RSS

Internet

Atom

Cross-
domain
access

WRT Engine
Extensions

Client

HTTP Cookies

Document Object Model

Figure 5.1: Architecture of the Feed Widget.

used functionality into reusable component in addition to extensions to the
existing DOM interfaces is represented in Table 5.1. The main reason for im-
plementing such component within the scope of this thesis and not leveraging
existing web application frameworks discussed in Section 4.2.3 was that they
did not support WRT specific functionality. Secondly, they were specifically
targeted to desktops which introduced further inconveniences especially re-
lated to unsupported input methods and performance issues. Next, a quick
overview of each custom component and DOM interface extension is given.

Table 5.1: Feed Widget JavaScript classes defining generic custom interfaces.
File Description
global.js All utility function in the global namespace.
EventDispatcher.js A class for dispatching events.
Network.js A class providing Network-related functionality.
Storage.js A class implementing persistent data storage.
HTMLElement.js Extensions to the HTMLElement interface.
String.js Extensions to the String object.

5.1. THE FEED WIDGET – AN OVERVIEW 81

Global

Global component consists of functions defined within the global namespace.
Due to the lack of a proper namespace mechanism in JavaScript, the use of
the global namespace was kept in minimum to prevent namespace collisions
which might occur if the Feed Widget would be extended with additional
libraries. The main functions defined within the global namespace relate
to DOM traversal: $() provides a convenient way to reference elements by
their ids and getElementByClass() enables similar functionality based on
elements’ className property. Querying nodes based on their className
properties was especially beneficial for interacting with a group of elements,
for example to change their presentation. The above-mentioned two functions
are highly popular among JavaScript developers and are contained within
most of the JavaScript frameworks in some form. Regardless, there exist
various different implementations. Fortunately, this may be remedied in the
future as similar native implementations are being added in the HTML 5
[98] providing noticeable performance gains [168]. Despite the lack of native
implementation, the utility of such functions override the associated perfor-
mance penalties especially as the native DOM methods providing similar
functionality do not provide any better performance.

EventDispatcher

The EventDispatcher class provides a means of dispatching events. It re-
ceives events and calls appropriate actions based on the properties of the
received events. Within the context of the concept implementation an action
is defined as a method on the controller. The EventDispatcher supports
using standard HTML element attributes id and class to declare actions
the element should trigger. For example, once a valid event occurs on <div
id="doSomethingAction"/> element it is automatically dispatched to the
doSomething() method on the controller.

Network

The Network class is responsible for all the HTTP communications. It lever-
ages XMLHttpRequest object and extends its native functionality with a sim-
ple mechanism for caching, request timeouts and callback and exception han-
dling. In addition, it supports storing and retrieving both text and DOM
Document objects via the same interface. Advantage in using DOM Document
objects is that they can be manipulated using the standard DOM API.

82 CHAPTER 5. CONCEPT IMPLEMENTATION

Storage

The Storage class implements the Data Access Object (DAO) which ab-
stracts and encapsulates the access to the data sources provided by data tier
and provides a single interface for storing and retrieving data. Rationale
for implementing such functionality was to provide a unified interface, a fa-
cade, to different data source APIs. This was especially significant due to
unavailability of WRT specific data storage mechanisms on the development
environment comprising of a Firefox web browser. The interface draws in-
spiration from the Storage interface of the HTML 5 represented in Listing
5.1.

Listing 5.1 Storage interface description [98, section 4.10.2].
interface Storage {

readonly attribute unsigned long length;
DOMString key(in unsigned long index);
DOMString getItem(in DOMString key);
void setItem(in DOMString key, in DOMString data);
void removeItem(in DOMString key);

};

HTMLElement

HTMLElement is the base interface implemented by all the DOM elements
representing HTML elements. To simulate inheritance, the prototype prop-
erty was used as a mechanism to extend the HTMLElement interface. This
allows all the HTML elements to inherit the methods applied to it. The
approach was enforced by its simplicity and efficiency, stemming from the
fact that the prototype object is only referenced by the elements imple-
menting the HTMLElement interface. Selected approach simulated inheritance
sufficiently and allowed convenient access to utility methods extending the
standard DOM. Only downside was incompatibility of the aforementioned
extension mechanism with the WRT. Luckily this was remediable with a bit
of JavaScript.

The rationale for implementing interface extension is obvious. When con-
structing a DOM tree using JavaScript, querying and modifying element
properties, such as modifying the className property of the element to
change its presentation is one of the most common tasks. Such actions may
be triggered by event handlers fired by timed events, system or user actions.
The approach, however, requires considerable amount of procedural code and
is an error prone task due to the fact that the styles may be declared within

5.1. THE FEED WIDGET – AN OVERVIEW 83

the DOM via style attribute or by using external style sheets. As a solu-
tion to this and other similar repetitive yet error-prone tasks, convenience
methods extending the HTMLElement interface were implemented.

Established JavaScript frameworks providing similar functionality were found
to be desktop focused and as such were not applicable to the concept
implementation. Due to this custom convenience methods extending the
HTMLElement interface were implemented. These methods can be accessed
via the $(elem) convenience function, for example, $(’foobar’).show()
sets the element with an id of foobar visible. The implementation is in-
spired by various client-side web application frameworks, similar interface
extensions have also been defined in HTML 5 [99, section 4.2] as well as in
XBL 2.0 [199, section 7.2]. An overview of the extensions to the HTMLElement
interface is shown in Table 5.2.

Table 5.2: Methods extending the HTMLElement interface.
Method Description
add(type, handle, instance) Adds an event handler to respond

to event of type, optionally pass
the instance within which to ex-
ecute the event handler.

remove(type, handle) Removes the event handler.
show() Sets the element as visible.
hide() Hides the element.
toggle() Toggles element visibility by using

inline style property.
setStyle({property: value}) Sets the inline style of the element.
getStyle(property) Get style of an element, both com-

puter styles and inline styles are in-
spected.

hasClass(className) Returns boolean indicating if the
element has the class queried.

addClass(className) Adds a class to the element.
removeClass(className) Removes a class from the element.
toggleClass() Toggles element visibility by using

element’s className property.

84 CHAPTER 5. CONCEPT IMPLEMENTATION

String

The native JavaScript String object used to manipulate text was extended
with methods which handle the ISO 8601 and RFC 2822 date formats com-
monly used in the feeds. It allows the dates to be converted to a consistent
human-readable date format as well as to Unix time format suitable to be
used as a key when sorting data structures. In addition, a method was im-
plemented for stripping tags from the (X)HTML content which is commonly
attached the feeds, but may cause unforeseen excessive data transfers due to
referenced objects such as images.

5.1.6 MVC Implementation

Comparison to Standard MVC Model

Any MVC architecture enforces the principle of separation of concerns, that
is a clear division between model objects that represent a model of the real
world objects and the view objects that present the GUI elements seen by the
user and the controller which ties everything together. However, implement-
ing MVC application entirely on the client-side using core web technologies
imposes some restrictions to the traditional MVC approach discussed in Sec-
tion 4.1.1.

First, interaction in such an application is event-driven, that is the controller
is responsible for both registering and acting upon DOM events. This is
different from the traditional MVC design for client-server web applications
which relies on URIs. Second, related to view, it is possible to directly
interact with the DOM instead of using template-based approach for gen-
erating views typical in aforementioned MVC approaches. Such templating
mechanism can be implemented on the client-side, but it requires leveraging
technologies which have limited support on the client-side, such as XSLT.

Third, the models follow much the same pattern, they are just data struc-
tures mapped to some resource, typically loaded from the server. Models
abstract the network interface and take care of asynchronous HTTP commu-
nication. Related to the concept implementation at hand, the fact that the
client does not commit the modifications it makes to the model to the server
makes the design simpler. However, in case such functionality would have
been implemented there exists two popular data interchange formats for the
purpose, the XML and the text-based representation for native JavaScript
data structures, the JSON. The main benefit of the latter over the former is

5.1. THE FEED WIDGET – AN OVERVIEW 85

its seamless integration with the JavaScript.

Overall, the approach taken implements all of the application logic and com-
ponents of the MVC on the client-side and uses the server as a simple open
service API discussed in Section 4.1.2. Next, the components of the client-
side MVC implementation are discussed in more detail.

Main Components

For the model part, the concept implementation comprises of simple UI com-
ponents such as buttons which have limited number of state information in
them (e.g. visibility and a single value). In addition, there exist two entities
modeling the encapsulated data, the feeds and the messages. This implies
that the payback of implementing a separate model for each UI component
as JavaScript objects is relatively small for the concept implementation and
adds unnecessary complexity over utilizing build in DOM properties such as
className and value. As an added benefit in leveraging the DOM as a
model, there is no need to notify views of UI components of changes in the
models as changes are automatically acted upon by the rendering engine.
Furthermore, this approach makes it easier to persist the application as it is
possible to simply serialize the DOM into a data structure if needed.

For the above-mentioned reasons, the DOM was considered to be a sufficient
data structure for acting as a model for the UI components. On the other
hand, for two main types of real-world object within Feed Widget, the feeds
and the messages, separate JavaScript objects representing models were cre-
ated as they did not map to any existing DOM elements with ease. Both
the models will need their own views. The views of UI components evolved
around standard XHTML elements such as <button> and <div>. A single
controller was found to be sufficient for handling both user and system events
and managing the overall program flow. The main functionality and related
components of the MVC approach used were the following:

Models Models encapsulate business logic and domain objects. Models of
feeds and messages are implemented as JavaScript objects which also
handle interfacing with the Network and Storage objects.

Views Views comprise of the DOM, whose style is defined in CSS. Tem-
poral dimension is implemented by leveraging CSS pseudo-classes and
scripting the className and style properties of the DOM elements
combined with timing functionality of the window object.

86 CHAPTER 5. CONCEPT IMPLEMENTATION

Controller Controller manages the interaction with the user interface by
handling DOM event registration and dispatching events leveraging
EventDispatcher object. Furthermore, it controls the program flow
by intermediating between the models and the views.

Table 5.3 describes the components of the MVC implementation and the
Figure 5.2 depicts the interaction between the components.

Table 5.3: Feed Widget JavaScript components implementing MVC.
File Description
FeedWidget.js Feed Widget object instance.
FeedWidgetController.js Feed Widget controller.
FeedWidgetModelFeeds.js Feed Widget feeds model.
FeedWidgetModelMessages.js Feed Widget messages model.
FeedWidgetView.js Feed Widget view superclass.
FeedWidgetViewFeeds.js Feed Widget feeds view subclass.
FeedWidgetViewMessages.js Feed Widget messages subclass.

Figure 5.2: A diagram of the Feed Widget MVC structure.

5.1. THE FEED WIDGET – AN OVERVIEW 87

Bootstrapping and Layout

When the Feed Widget is started, the info.plist manifest file is inspected
by the S60 platform to find out the capabilities granted for the application
and to locate the main [name].html component to load initially. The struc-
ture of this XHTML file evolves around container <div> elements which en-
able parts of the UI to be moved using CSS without changing the structure
of the page. A snippet of XHTML structure accomplishing that is shown
in Listing 5.2. The class attributes denote initial states of the elements,
e.g. messagescontainer element having classes slidehide and right is
initially outside the visible viewport on the right and will switch roles with
feedscontainer by sliding off the screen. By utilizing the standard class
attributes a level of flexibility is archived using declarative markup to cus-
tomize behavior implemented in JavaScript.

Listing 5.2 An example of the XHTML file bootstrapping the Feed Widget.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Feed Widget</title>
<link rel="stylesheet" type="text/css" media="all" href="feedwidget.css" />
<script type="text/javascript" src="js/util/global.js"></script>
<!-- ... -->

</head>
<body id="body">

<!-- ... -->
<div id="topcontainer">

<div id="messagescontainer" class="slidehide right"></div>
<div id="feedscontainer" class="slideshow"></div>

</div>
</body>
</html>

During the bootstrapping process the rendering engine constructs the initial
DOM from the XHTML markup and loads additional referenced resources
such as stylesheets, images and JavaScript files. Once all the referenced
resources are loaded load event attached to the window object fires. Con-
sequently, the initialize() method of the FeedWidget object is executed
which instantiates the controller, models and corresponding views. Next, the
controller executes its loadFeeds() method which populates the feeds model
and passes it to the corresponding view to be rendered to the UI.

88 CHAPTER 5. CONCEPT IMPLEMENTATION

Feed Widget Models

Feed Widget implements two model classes, FeedWidgetModelFeeds and
FeedWidgetModelMessages. Both the models are instantiated by the
initialize() method during the bootstrapping as described above. Both
model components hold model specific properties and get and set methods
for setting and returning those values. The most important method im-
plemented by all the models objects is the getModel(), which returns the
actual model objects6. The models interface with the network by leveraging
the Network class.

Feed Widget Views

Feed Widget has two views corresponding to models, defined in classes
FeedWidgetViewFeeds and FeedWidgetViewMessages. Their main func-
tionality is to render the view according to the supplied model and output
it into the container, that is construct corresponding DOM elements and
append them to the container elements in the DOM. This functionality is
encapsulated within the render() method, which takes two parameters, the
container element and the model object.

Feed Widget Controller

The last but not least of the components is implemented by the
FeedWidgetController class. It is responsible for managing the applica-
tion flow and handling events. Listing 5.3 shows the loadFeeds() method
of the controller used to load a feed aggregate which is displayed to the user
as a list of feed items.

The logic of the loadFeeds() is the following. First, a reference to active
Feed Widget instance is created as instance in addition to two nested func-
tions success() and failure() defining the actions to take depending the
success of the load operation. The fact that JavaScript allows functions to
be used as data enables passing the aforementioned functions as parameters
to the getModel() method of the model. Once the getModel() method is
called, the model takes care of communicating with the server over HTTP
leveraging Network object and constructs the model object. The passed

6To be precise the returned data type is an array which in JavaScript is an object with
a thin layer of extra functionality. [70, p. 113].

5.1. THE FEED WIDGET – AN OVERVIEW 89

functions retain their references to properties of loadFeeds()7. In case the
HTTP request was successful, the success() function is executed within
the context of the model and the render() method of the view displays the
feeds to the user by creating the DOM elements and appends them to the
feedscontainer element given as a parameter. Another parameter feeds
is created by the model and can be referenced thanks to the extended scope
chain of the nested functions in JavaScript. In case of a failure, the loading
indicator will be hidden.

Listing 5.3 A method of Feed Widget controller used for loading feeds.
/**
* Loads feeds and displays them
* @param {string} uri An URI of the OPML resource
*/

loadFeeds: function (uri) {
var instance = this.instance;
var success = function (feeds) {

instance.view.feeds.render(’feedscontainer’, feeds);
$(’loader’).hide();
$(’splashcontainer’).hide(true);

}
var failure = function () {

$(’loader’).hide();
}

$(’loader’).show();
instance.model.feeds.getModel(uri, success, failure);

}

5.1.7 Functionality Related to Views

The view part of the application is the visible page which comprises of DOM
elements that are rendered according to the XHTML markup and the style
information within CSS. According to MVC, view has to provide an interface
to the user from which to trigger events from and to update it once changes
in the model occur.

As discussed above, during the bootstrapping of the application, the XHTML
markup is loaded and a corresponding DOM is constructed. Next, style
information contained within the style sheets referenced from the XHTML
is applied to the corresponding DOM elements. The referenced style sheets
are referred to as computed styles, that is styles that are applied before the
element is displayed.

7This combination of code and scope is known as a closure. [70, p. 143]

90 CHAPTER 5. CONCEPT IMPLEMENTATION

After bootstrapping the application moves into the execution state, after
which consequent edits to the views are only achieved by modifying the
properties of the DOM via the interfaces it exposes to JavaScript. The DOM
in turn is observed by the rendering engine which updates the rendering of
the elements accordingly. This approach in which the DOM is exposed and
manipulated through side effects is the only method in achieving higher in-
teractivity in today’s web applications. However, such a use of side effects
has been discouraged for a long time in software engineering [142, p. 10].
In practice, the aforementioned approach was deemed to provide a sufficient
performance for the basic UI manipulations such as adding and removing
element or element properties. The main drawback was related to the perfor-
mance overhead associated with recurrent DOM operations which prevented
creating smooth animations by modifying the DOM.

In adherence to separation of concerns principle of the MVC, no inline event
handlers or inline CSS style information were included in the XHTML. Inter-
faces defined in the DOM Level 2 Style module [195] were used to dynamically
access and manipulate the style properties of the DOM and the DOM Level
2 Events module was used for registering the event handlers in the controller
part of the application. Some examples of the Feed Widget user interface are
presented in Figure 5.3.

(a) Menu (b) Feeds (c) Messages (d) Message details

Figure 5.3: Examples of the Feed Widget user interface.

Locating Elements

In order to modify the view after bootstrapping, an efficient method for
locating elements from the DOM was needed. To address this, each element
was given a unique id property which was used as a fragment identifier

5.1. THE FEED WIDGET – AN OVERVIEW 91

and a reference to it was extracted via $(id) function. However, as the id
property must be unique within a document [167, section 7.5.2], it was not
appropriate for identifying multiple elements of a same type (e.g. element
groups) – functionality that is needed to interact with repeating constructs.
As a solution, the className property was used as a fragment identifier and
queried with the custom global function getElementsByClass(). Re-using
className properties this way was found to be more convenient mechanism
to query elements compared to standard methods provided by DOM Core
[125, section 1.2]. In addition, standard DOM API did not provide a simple
way to add, remove and query className properties which had multiple
classes. For this purpose, HTMLElement interface was extended with custom
methods discussed in Section 5.1.5.

The main benefit in the design relying on className for querying elements
was that it allowed elements to be positioned arbitrarily in the DOM as they
were not defined in terms of their position in the tree. Furthermore, pop-
ulating className attribute with multiple classes did not cause noticeable
performance problems.

Rearranging Elements

Rearranging the DOM by adding, removing and moving elements is a core
functionality of the DOM API. The approach in the concept implementation
was to declare the base layout providing appropriate id and class selector
hooks in XHTML and further dynamically modify the DOM using its API.
For example, Listing 5.4 shows how a new div element is appended to the
element with an id container and subsequently removed from it.

Listing 5.4 Rearranging elements using standard DOM API.
// create a message element
var message = document.createElement(’div’);
// append the message element to the container element
$(’container’).appendChild(message);
// remove the message element from the container element
$(’container’).removeChild($(’message’));

Alternative to standard DOM API is to use a non-standard innerHTML prop-
erty [41] supported by major browsers. It is implemented by most of the
HTML elements and can be used to append arbitrary (X)HTML markup to
the DOM. This is typically faster and provides simpler solution in terms of
lines of code compared to the standard DOM API. However, the flexibility
of this approach is also its frailty as innerHTML allows adding malformed

92 CHAPTER 5. CONCEPT IMPLEMENTATION

markup to the element which may cause unexpected results. For this reason,
the concept implementation resorted in using the standard DOM API. Per-
sistence across views was implemented by keeping the separate views in the
same DOM while swapping their visibility or by moving them outside of the
viewport using the absolute positioning of the CSS.

Changing the Presentation

In the previous sections it was discussed how the className property of
DOM elements was re-used for querying and describing their state. How-
ever, originally the property was specified to provide a mechanism adhering
to separation of concerns principle where classes serve as hooks for separate
presentational information declared within separate style sheets. This sepa-
ration of the style and structure is a simple way to reduce the complexity of
the application. Next methods used in changing the presentation of elements
are discussed.

Modifying style sheets The cascading style sheets comprise of computed
styles that are added to the element beforehand. Typically the style
sheets are kept static, although DOM Level 2 also defines an API for
querying, traversing and manipulating style sheets themselves. How-
ever, it is not widely supported by major browsers [70, p. 383].

Switching the className property Popular mechanism used to change
the presentation of elements after the DOM has been constructed is
to use script the className property. Some problems were faces with
the standard DOM API in cases when the computed styles from the
static style sheets were overridden by those of style properties which
have the highest priority in the cascade. As a solution, utility functions
getStyle() and setStyle() were implemented which resolve this con-
flict by prioritizing presentation set via className property over other
means.

Modifying the style property To fulfill more advanced interaction re-
quirements such as animations for sliding elements smoothly from side
to side requiring unforeseen modifications, it is not feasible to use prede-
fined static classes. The main method for implementing such function-
ality was to modify the style property of an element via JavaScript
utilizing timers provided by the Browser Object Model for recurring
updates, namely setTimeout() and setInterval() methods of the

5.1. THE FEED WIDGET – AN OVERVIEW 93

window object. Similar functionality was implemented declaratively
leveraging experimental CSS Transitions module [103].

CSS pseudo-elements and -classes The pseudo-elements and pseudo-
classes of CSS Level 2 discussed in Section 3.3.2 provided accessibility
benefits, for example emphasizing actionable elements. However, they
did not provide rich enough mechanisms for implementing dynamic be-
havior needed by e.g. master-detail functionality as the pseudo-classes
allowed only modifying the CSS classes of the focused element. [18,
section 5.11.3]

5.1.8 Event-driven Design

The controller acts as an intermediary between the model and the view which
are decoupled from each other. The controller of the concept implementation
resembles desktop GUI applications in a sense, that it takes care of registering
and acting upon events attached to the elements in the view triggered by the
user or system actions. As an ability to manipulate events is integral part
of any interactive web application, the design approach taken with the event
model is discussed next in more detail.

In general, there exist three different event models: simple DOM Level 0 API
codified by the HTML 4 standard [167], the W3C DOM Level 2 event model
[96] and the non-standard event-model of the Internet Explorer [70, p. 388].
The concept implementation utilizes the more powerful DOM Level 2 event
model defined in [156] due to its following unique characteristics:

• supports event propagation, that is a mechanism which allows also
ancestors of the event target to act upon events in addition to the
source,

• allows registering multiple event handlers to a one element, in compli-
ance with the MVC [70, p. 399] and,

• works on any DOM element compared to just HTML elements of the
Level 0 API.

Event Registration and Propagation

All types of events triggered by user, system and network actions were cen-
trally managed within the controller. The registration and removal of event

94 CHAPTER 5. CONCEPT IMPLEMENTATION

listeners was handled by addEventListener() and removeEventListener()
methods defined in EventTarget interface which is part of standard DOM
API. In addition, standard event types defined in HTMLEvent module were
utilized. Thanks to event propagation mechanism, there was no need to reg-
ister new event handlers each time new elements were added to the DOM.
For example, once the keydown event was fired on a key press, the ancestors
of the event target had an ability to act upon the event prior to target itself8.

The events are first acted upon by the EventDispatcher class whose main
role is to dispatch events to actions. The actions are methods of the controller
which define simple domain logic to interact with the models and the views,
such as get the model and ask the view to render it accordingly. More
complex domain logic is contained within models in accordance with the
MVC best practices. Two significant design choices related to event handling
mechanism implemented are discussed below:

Binding events handlers declaratively To simplify the design, standard
attributes of the HTMLElement interface id and className were
reused to declare which action should be executed9. This means, that
actions may also be modified declaratively by defining attributes from
within the XHTML. In case actions will be bound to repeating or nested
construct which do not have unique actions defined, the className at-
tributes are used instead.

Listening events high up in the DOM By attaching the event listener
near the document root has multiple benefits. Instead of registering ar-
bitrary amount of event listeners to each active element, one can simply
attach a listener to one of the ancestor elements, even to the document
root, and inspect the event object which includes further details of the
event such as the reference to the element which triggered the event.
The use of the event propagation mechanism greatly simplified the de-
sign of the implementation. The most noticeable benefit in the concept
implementation was that there was no need to add event listeners to
the newly created active elements. [156]

It was deemed that the above-mentioned features, the listening of event cen-
trally and the declarative binding mechanism facilitated designing the appli-

8Precisely, the DOM Level 2 event propagation has two phases. In capturing phase the
event propagates from the root of the document to the target, and in bubbling phase the
event bubbles back up from the target to the root.

9To distinguish elements which trigger actions, the identifiers of such elements use
lowerCamelCase naming convention.

5.1. THE FEED WIDGET – AN OVERVIEW 95

cation towards the goal to centrally manage the entire event handling logic
within the controller. An example of the XHTML code used to register an
event handler declaratively and associated MyController controller object
defining the event handling code in addition to simplified EventDispatcher
class is represented in Appendix A.3.

5.1.9 Models Representing the Domain Objects

The model components represent the domain objects of feeds and messages
and implement associated business logic. As the focus of the concept imple-
mentation was more on the interaction and user interface side, the models
were kept relatively simple. Regardless, an overview of the main issues re-
lated to the models is given.

The DOM as a Multipurpose Data Structure

The DOM properties held some element level properties of the model for
UI elements, such as information of the element state declared within the
className property of the element (e.g. open or closed). Similarly, ac-
tions the element should fire on events were defined within id or className
properties of elements. This design approach was adequate for the concept
implementation which was limited in complexity. However, when dealing
with more complex UIs it may be desirable to store such information within
its own model object which references the view instead of leveraging the
DOM properties. Within the scope of this work, the performance penalty
of extensive use of the DOM was not studied, however no slowness was per-
ceived.

Native Data Structures for Model

The application models take an URI of the XML resource as a parameter and
return the resource converted to a native JavaScript object. To accomplish
this, first the model delegates network communication to the Network ob-
ject which fetches the XML resource and converts it into a DOM document
object. Next, the model’s toModel() method traverses the DOM document
object using the standard DOM API and saves relevant tuples into an array
which holds the model properties. Prior the insertion into the array each
tuple is validated and unnecessary data is removed. For example, redundant
(X)HTML markup contained within the message descriptions is converted to

96 CHAPTER 5. CONCEPT IMPLEMENTATION

plain text.

The time it took to validate the data was considerably smaller than traversing
the full DOM document object multiple times – a process which is done while
reflecting the changes in the data model back to the DOM constituting the
view part of the application. Moreover, traversing DOM is known to require
considerable amount of computational time and memory10 and it was deemed
that DOM is only used as a data structure for view. Furthermore, inherent
benefit in using an array over DOM as a data structure was that it could be
searched in constant time.

5.2 Summary

This chapter focused on the concept implementation design and its architec-
ture. In addition, selected issues were discussed in more detail. The concept
implementation was completely implemented in client-side web technologies,
mainly JavaScript, and adhered to established design practices in software
development such as MVC and separation of concerns. The implementation
presented a novel way of applying these practices into the client-side web ap-
plication development and discussed main challenges discovered. In addition,
a rudimentary JavaScript framework and supporting library was created to
facilitate client-side web application development on the target platform.

10The DOM is 2 to 5 times the size of its representation in XML [146, p. 174].

Chapter 6

Evaluation

In this chapter, the Feed Widget concept implementation is evaluated against
the key requirements defined in Section 2.5. The evaluation was conducted
by comparing each of the interaction pattern and user interface language
requirements defined in Sections 2.5.2 and 2.5.3 respectively with respect to
the generic requirements defined in Section 2.5.1. First, the results of the
evaluation are represented followed by reasoning each requirement to justify
the evaluation results. Discussion and analysis of the generic observations
categorized according to the generic requirements follows in Chapter 7.

6.1 Overview of the Results

Table 6.1 represents a summary of the evaluation incorporating all the key
requirements defined in Section 2.5. The columns represent generic require-
ments R11 through R15. The interaction pattern and the user interface lan-
guage requirements are depicted on the vertical axis and evaluated against
the generic requirements listed on the horizontal axis.

The requirement R11 Functionality is evaluated as ’no’ if the given require-
ment was impossible to fulfill, ’yes’ if the requirement was fulfilled and ’part.’
if the requirement was fulfilled only partially. The other generic requirements
R12 through R15 are not evaluated if the functionality was not implemented.

A subjective estimate represented as one to three plus signs ’+’ is given for
each requirement R21 through R27 and R31 through R36 respectively. In all
the cases, estimate ’++’ sits between the extremes. Empty refers to not
applicable.

97

98 CHAPTER 6. EVALUATION

In R12 Efficiency, ’+’ implies that the perceived performance is below and
’+++’ above that of a similar native S60 implementation.

In R13 Portability, an estimate of ’+’ is given if the porting of the functionality
to standards compliant browser requires device recognition using procedural
code or proprietary extensions. An estimate of ’+++’ is given if portability
is a built-in feature of a declarative language or if no adaptation is needed
to fulfill the requirement.

In R14 Ease of authoring, ’+’ means that mainly procedural code is used,
while ’+++’ implies that the functionality is realizable with the built-in
declarative constructs specified for the purpose.

In R15 Web integration, if proprietary technologies are predominantly utilized,
the estimate is ’+’. If only open web standards and APIs are used, ’+++’
estimate is given.

The sum of the estimates roughly represents the capability of the WRT plat-
form and web technologies it supports (see Section 4.2.5) for the implemen-
tation of the given requirements. Overall, the evaluation results estimate the
applicability of the WRT for implementing applications which incorporate
functionality common for native applications built in device-dependent lan-
guages using web technologies only. While interpreting the results, it should
be noted that the evaluation has been conducted from the viewpoint of the
concept implementation only and thus cannot be generalized.

6.2 Interaction Pattern Requirements

6.2.1 Typical Interactors

In order to expand the array of interactors available in (X)HTML, links
and form controls, the concept implementation resorted in using JavaScript.
By leveraging JavaScript virtually any (X)HTML element may be active in
a way that it triggers further system actions. This was implemented by
leveraging the DOM Level 2 Event model as discussed in Section 5.1.8 which
allows expanding the array of interactive elements to cover labels, lists and
icons among other standard elements. The CSS pseudo-classes such as hover
provide an ability to style such active elements distinctively.

Related to the interaction with such elements, support for key events was
implemented so that they could fire on any element. There existed three
keyboard event types keydown, keypress and keyup. However, the keydown

6.2. INTERACTION PATTERN REQUIREMENTS 99

Table 6.1: Evaluation of the concept implementation against the interaction
pattern (R2n) and user interface language requirements (R3n) with respect
to the generic requirements (R1n).

Generic Requirements

Requirements R
1
1
:
Fu

nc
ti
on

al
it
y

R
1
2
:
E
ffi
ci
en
cy

R
1
3
:
P
or
ta
bi
lit
y

R
1
4
:
E
as
e
of

au
th
or
in
g

R
1
5
:
W
eb

in
te
gr
at
io
n

In
te

ra
ct

io
n

P
at

te
rn R21: Typical interactors yes ++ ++ ++ +++

R22: Master-detail yes ++ ++ + +++
R23: Paging and dialogs yes ++ + + ++
R24: Repeating and nested constructs yes + ++ + +++
R25: Copy-paste and undo-redo no
R26: Drag and drop no
R27: Filtering yes + + + +++

U
I

L
an

gu
ag

e

R31: Graphically rich content part. + + ++ ++
R32: Exact control of the presentation yes ++ +++ ++ +++
R33: Layout and content adaptation part. +++ ++ +++ +++
R34: Navigation part. ++ + + ++
R35: Interactive graphical menu system yes ++ + + +
R36: Customizable presentation yes +++ ++ +++ +++

was the only event type consistently implemented across browsers. By lever-
aging event propagation, the Feed Widget provided means to centrally act on
events defined declaratively. Identifier of an event handler was attached to
either class or id attribute of an element as a string of text. Similarly, se-
mantic meaning was added to interactors using e.g. classes open and closed
to represent its states.

Although key events are not standardized in DOM Level 2 Events module,
they were supported sufficiently across browsers used for development. The
approach allowing to catch all the events independent of the target element
event registration state was deemed to be the most versatile approach as it
kept the event handling code simple and centralized. The event propagation
did not cause any problems with the performance.

Despite some issues, dealing with typical interactors was deemed relatively
effortless. Furthermore, functionality of a declarative language was used to
identify event handlers.

100 CHAPTER 6. EVALUATION

6.2.2 Master-detail

Master-detail type of interaction was used in expanding feed view to mes-
sages view and in revealing the extended view containing message descrip-
tion. There existed no declarative way for defining such interaction as the
CSS pseudo-classes did not reflect their state to any of the DOM proper-
ties. On this account JavaScript was used to realize this functionality via
scripting the DOM. Declarative approach was pursued to the greatest extend
possible by only manipulating appropriate class attributes of the elements.
Fortunately, the upcoming HTML 5 defines a details element providing a
declarative way to implement similar functionality [98, section 3.18.1].

Overall, there were no issues other than high reliance on JavaScript for im-
plementing the logic, which affected the ease of authoring.

6.2.3 Paging and Dialogs

For paging, the concept implementation used container elements which were
swapped in and out of the visible viewport. As the web technologies have not
been particularly designed for application UIs but for navigating across pages,
there exists no standard way to implement application specific navigation
mechanism comparable to the traditional web page centric model used in
web browsing.

For dialogs, it was found out that legacy JavaScript window object methods
alert() for displaying dialog box, confirm() for displaying a question and
prompt() for asking user input integrated with the device native menu seam-
lessly. Using these methods in desktop browsers is commonly considered a
bad practice as they generate disruptive popup dialog boxes. However, due
to integration with the native menu of the mobile device, this was not deemed
disruptive.

Due to the above-mentioned reasons and the lack of a proper and standard
way to implement paging and dialogs, portability and ease of authoring was
ranked lower.

6.2.4 Repeating and Nested Constructs

Web applications commonly contain repeating sections or blocks, for example
for data entry of multiple items or a view of messages in which each message
contains a title, description and date which is replicated multiple times such

6.2. INTERACTION PATTERN REQUIREMENTS 101

as in the Feed Widget. The core web technologies did not support defining
repeating or nested constructs without resorting to scripting. HTML 5 is
defining a repetition model which can be implemented with no scripting [98,
section 7]. Due to lack of support for HTML 5, the Feed Widget relied in gen-
erating such constructs from data models and programmatically appending
such elements to the DOM by means of scripting.

The efficiency of this functionality suffered from the extensive use of the
DOM operations to manipulate document structure. Furthermore, imple-
menting such functionality was deemed somewhat tedious, as no declarative
mechanism was available.

6.2.5 Copy-paste and Undo-redo

Copy-paste and undo-redo are common interaction patterns from the desktop
software. Yet there exists no standard mechanism for implementing them
using web technologies. Actually, they are typically implemented by the user
agent which leverages the built in functionality provided by the operating
system. Such functionality was not exposed to the WRT and implementing
support for these patterns would have required modifications to the WRT
and the S60 which was deemed to be outside of the scope of this thesis.

6.2.6 Drag and Drop

Drag and drop was not implementable as there was limited support for mouse
events in the WRT as discussed in Section 7.3. ARIA proposes properties
for drag and drop that describe drag sources and drop targets which could
be leveraged to implement such functionality. However, implementing this
would require modifications to the WRT which does not incorporate support
for ARIA.

6.2.7 Filtering

Filtering pattern typically refers to an action in which the user limits or
sorts a dataset consisting of multiple items of same type. To implement such
functionality with the core web technologies, JavaScript is mandatory. The
Feed Widget implementation revealed that a common use case for filtering
was not implementable in the WRT. Namely, the free-text search with auto-
completion did not function root cause being the inability to fire change

102 CHAPTER 6. EVALUATION

events on the input element text content changes. To implement sorting of
DOM elements for the purpose of ordering e.g. sibling elements of a con-
tainer element, the most straight-forward way was to implement a custom
sort function which compares the properties of elements selected as sortable
properties and appends the elements to their new location. This allows el-
ements to be live in the DOM all the time and in theory they may act on
events during the sort operation. However, it was observed that implement-
ing such custom functionality may introduce performance problems if the
sort algorithm is not optimized for the task.

The efficiency and ease of authoring findings related to the repeating and
nested constructs defined in Section 6.2.4 apply similarly to this functionality.
Furthermore, implementing sorting functionality in JavaScript affected the
efficiency negatively. In addition, the inability to support auto-completion
affected the portability of the solution.

6.3 User Interface Language Requirements

6.3.1 Graphically Rich Content

Using basic primitives such as lines, rectangles, images and text was well
supported in CSS and it was deemed that leveraging CSS for basic UI au-
thoring was effortless. On the other hand, the inherent characteristics of
the CSS box model [18, chapter 8] did constrain the design to rectangular
elements. Due to the fact that SVG was not supported by the WRT, there
was no standards compliant way to leverage vector graphics. Raster graphics
was used sparingly mainly for decorating the UI elements to minimize the
application size.

For implementing graphically rich temporal interaction, three approaches
were taken. First, the most standards compliant way was to leverage
JavaScript timers to schedule code to be executed at certain point of time or
time intervals. setTimeout() and setInterval() methods of the window
object were used for this purpose. However, their use was kept to min-
imum as the extensive use introduced performance problems and led to
unresponsiveness of the UI. Second, WRT-specific widget object methods
prepareForTransition() and performTransition() were used to provide
hardware accelerated fading effects for the UI elements. Third, an experimen-
tal CSS Transitions module discussed in Section 3.5.2 was used which enabled
similar functionality without resorting to scripting. The CSS approach was

6.3. USER INTERFACE LANGUAGE REQUIREMENTS 103

considered the most applicable due to its backwards compatibility, perfor-
mance and ease of authoring.

Efficiency and portability were causing most challenges. Efficiency was mod-
est due to the use of JavaScript to implement interactive graphical effects.
Portability was challenged due to use of proprietary functionality of the
widget object.

6.3.2 Exact Control of the Presentation

The CSS was used for defining the presentation which required both the abso-
lute positioning of selected elements and scalability from the layout. Related
to layout, it was deemed that declaring vertical placement of elements was
cumbersome. For example, placing element just above the visible viewport
was unintuitive. Furthermore, as a single element cannot have multiple back-
grounds1, one has to resort to using wrapper elements which unnecessarily
complicate the DOM degrading the performance.

The lack of a proper SVG implementation in the WRT made designing graph-
ical UI elements which scale to any screen resolution and aspect ratio more
tedious. Regardless, CSS provided sufficient support for defining scalable
layouts but it lacked a mechanism for defining other than rectangular shapes
which scale seamlessly stemming from the limitations of the CSS box model.
For example, there existed no means to use different sizes of raster images
depending on the device characteristics. The above-mentioned limitations of
the graphics sub-system, mediocre performance and the lack of 2-dimensional
vector graphics model not bound to the DOM model are being tackled by
the canvas tag and associated API defined in HTML 5 [98]. This block level
element providing a canvas to which graphics can be drawn represents an
adaptation of a typical system level library part of operating systems and
middleware to the web environment.

The lack of SVG support limited the functionality, and thus the functionality
was fulfilled only partially. Nevertheless, portability and web integration
were deemed to be the two most notable benefits of using web technologies
for defining the presentation. First, the CSS did have built-in functionality
to support either absolute or relative positioning despite some specific issues
discussed above. Secondly, no procedural code was used contributing to the
ease of authoring.

1As of CSS Level 2, this is addressed by CSS Level 3 Background and Border module.

104 CHAPTER 6. EVALUATION

6.3.3 Layout and Content Adaptation

The layout of the Feed Widget was designed to scale to any screen resolution
and aspect ratio common to modern mobile devices and desktops. This was
implementable using relative positioning and sizing and by using only CSS
for layout and styling. However, related to content adaptation, there existed
no standard mechanism for providing alternative or fallback content for e.g.
images of different sizes. SVG which was not supported by the WRT would
solve the scalability issue of vector graphics but for raster graphics, video and
audio elements there existed no solution for adaptation on the client-side.

CSS Level 2 media types discussed in Section 3.3.2 provide a trivial mecha-
nism for delivering alternative style sheets based on device type. For adapt-
ing to more specific characteristics such as screen size or aspect ratio, media
queries of CSS Level 3 discussed in Section 3.5.2 provide a robust solution.
Unfortunately, the former is defined unambiguously and the latter is not yet
supported by the WRT or most of the major browsers. Some functionality
of the media queries can be implemented using JavaScript such as adapta-
tion to various screen sizes. However, such information is courtesy of the
de facto window object and cannot be completely relied on due to varying
implementations.

Despite highlighting the limitations above, the benefits of leveraging web
technologies are obvious for adaptation. Especially designing adaptable lay-
outs is straightforward using built-in constructs of the CSS. Furthermore,
textual content such as text is easily adapted to different device characteris-
tics. However, portability of interactive content is not supported sensibly.

6.3.4 Navigation

The WRT provides two mechanisms for navigation, that is focusing and
activating elements which have events attached to them. First method called
pointer navigation, uses a pointer (i.e. a cursor) which emulates a mouse.
Another method is known as the focus navigation method and it focuses only
on focusable elements with no visible pointer. The latter model is somewhat
similar to the model proposed in WICD [134, section 6.2].

Some incompatibilities with the navigation mechanism of the WRT related
to the DOM Level 2 event model were confronted. The main problems re-
lated to the focus navigation mode. In this mode, the event propagation
functioned properly only if the event listeners were added to the document
object representing the root node of the entire HTML document. Further-

6.3. USER INTERFACE LANGUAGE REQUIREMENTS 105

more, the only event type properly supported by the focus navigation mode
was keydown. For compatibility with the pointer navigation and desktop user
agents with a mouse, another event listener was added accordingly which lis-
tened for click events. Other event types were found to be not supported
consistently across the WRT and major browsers. The coexistence of the
two parallel event listeners did not cause any problems.

Another limitation of the focus navigation was that only limited set of
(X)HTML elements gained focus automatically, namely anchor (a) and input
elements. As the event handling mechanism of the Feed Widget relied on
event propagation rather than on attaching event listeners directly to ele-
ments, a solution was to attach dummy DOM Level 0 event handlers directly
to those navigation elements not focusable by default. The above-mentioned
limitations emphasize that there is a room for improvement regarding the
event handling mechanism of the WRT, especially while using the focus nav-
igation.

Navigation scored lower in portability and ease of authoring due to the fact,
that it used proprietary focus navigation method, in addition to the above-
mentioned limitations.

6.3.5 Interactive Graphical Menu System

The concept implementation utilized the menu and menuItem objects of the
WRT which provide means to utilize the built-in native menu structures
of the S60. However, to be interoperable, such functionality must be em-
ulated in other platforms. Wireless Markup Language (WML) introduced
a somewhat similar mechanism for leveraging device resident keys for com-
mon navigation tasks. However, it has been superseded with XHTML Mo-
bile Profile for constrained devices and with (X)HTML for more capable
devices which defines an accesskey attribute that can be used somewhat
similarly. However, currently non-standardized built-in OS and windowing
system key shortcuts override accesskey settings which undermines its use-
fulness as a cross-platform solution. For similar reason, the WRT does not
support accesskey attribute which has been deprecated it in XHTML 2 in
favor of the Role Access Module [5, section 25]. Currently there exists no
markup attribute for defining key shortcuts in an interoperable manner. This
is deemed a drawback as it forces developers to implement their own custom
key event handling mechanisms at the cost of accessibility.

Out of all the requirements, interactive graphical menu system scored lowest
although the proprietary objects which provide access to built-in native menu

106 CHAPTER 6. EVALUATION

provided the same level of efficiency as the native implementation. However,
the implementation was not portable, and did not integrate well with the
existing web technologies due to its proprietary approach. Furthermore, it
was deemed that the API used to interact with the menu system was clumsy.

6.3.6 Customizable Presentation

Only externally referenced CSS resources were used for defining the presen-
tation of the Feed Widget. This allowed the presentation to be customized
simply by adding another CSS file which requires no changes to the program
logic or any other components. To reflect the style sheet changes during the
execution, disabled property of the link element which is used to load the
external CSS files provided a mechanism for switching style sheets fulfilled
the main use case for customizable presentation. It allows, for example, to
switch to alternative presentation or theme during the execution of the Feed
Widget. An alternative method for accomplishing similar functionality as-
sessed was to leverage DOM Level 2 Style API which allows manipulating
style sheets programmatically during the execution [195]. However, this API
was not yet implemented across browsers.

The customization of the presentation was well supported by the CSS. Vir-
tually any element could be styled within the expressiveness of the language.
Only the above-mentioned limitations in the support of some advanced func-
tionality related to programmatic manipulation affected the portability.

6.4 Summary

In general, most of the functionality was successfully implemented. The
efficiency of the implementation was deemed below that of native imple-
mentation mainly in cases where extensive use of JavaScript was needed to
implement rich graphical effects such as animations, otherwise the perfor-
mance was not an issue. Portability was sufficiently built-in to standard web
technologies excluding limited support for portable graphically rich content,
navigation and interactive graphical menu system. Ease of authoring was
ranked lower due to the fact that JavaScript was used to implement most of
the functionality of the concept implementation due to lack of expressiveness
in declarative languages used. Finally, web integration was ranked highest in
the evaluation as only very limited set of proprietary technologies or APIs
were used while implementing the Feed Widget.

Chapter 7

Discussion

Chapter 6 evaluated the concept implementation against the key require-
ments specified in Section 2.5. The implementation satisfied most of the
requirements. However, some requirements were found to be impractical or
merely impossible to fulfill with the given platform using core web technolo-
gies. Regardless, experimental features of the web technologies implemented
and tested in the development environment addressed many of those issues.
In this chapter, the results of the evaluation are discussed with a specific
focus on the main challenges confronted. In addition, the feasibility of alter-
native approaches suggested by the emerging web technologies which address
the requirements are discussed.

7.1 Functionality

All the functional requirements set for the concept implementation defined in
Section 5.1.3 were fulfilled. However, certain challenges were confronted dur-
ing the implementation task. This section discusses main generic challenges
and rationale for approaches taken.

7.1.1 Incompatible Browser and Rendering Engine Im-
plementations

Incompatibility with and disregard toward web standards in web browsers has
been a major issue since the emergence of multiple competing web browsers

107

108 CHAPTER 7. DISCUSSION

during the browser wars1 in the late 90s. In the most common cases this leads
to inconsistently rendered UI elements across user agents. However, while
executing program logic within the browser, such incompatibilities may have
more severe consequences which cause the application to fail completely.
The DOM standard has a particular role in web applications, yet it is one
of the most inconsistently implemented standards across browsers. Another
major cause of incompatibility are the CSS implementations across the major
browsers. Furthermore, native support for more recent web technologies such
as SVG and XForms (see Appendix B.1) is flaky or nonexistent, which forces
developers targeting widest possible audience – such as the most developers
of commercial web applications do – to use the least common denominator of
web standards. This is commonly considered to be HTML 4.01, CSS Level
2 and DOM Level 2 with various non-standard adaptations to support the
market leader, the Internet Explorer. However, using this set of standards
for implementing interactive web applications is pushing the limits of these
ten-year-old web technologies.

The rendering engine of the WRT, the S60WebKit, defines the baseline for
the Feed Widget implementation. Its main limitations were incompatibilities
in its DOM Level 2 support especially related to event types. Secondly,
the CSS implementation had inconsistencies across S60WebKit and major
desktop browsers. Regardless, interoperable implementation was realizable,
but required considerable amount of debugging and testing across different
browsers.

The currently fragmented browser market for mobile devices is converging
towards a common rendering engine which is used in major mobile platforms
as suggested by the developments discussed in Section 4.2.3. However, the
rapid development of the web standards and the lack of commitment of all
the stakeholders to work together according to the open source development
model is leading to a new type of interoperability challenge. Whereas tra-
ditionally the fragmentation has occurred between the different rendering
engines, today the same is increasingly happening within the same rendering
engine. In practice, different versions with varying level of standards com-
pliance exists as the code of the open source rendering engines is branched
at various stages of development and extended with proprietary extensions.
This implies that authors have to potentially support various incompatible
web runtime environments in addition to different rendering engines.

1Browser wars refers to the competition for dominance between the browser vendors
in the web browser marketplace.

7.1. FUNCTIONALITY 109

7.1.2 Role of the Declarative Markup

Generally, the main obstacle of the (X)HTML is its inherent thin client ar-
chitecture in which all the modifications to the user interface are done on the
server. Client-side interaction is limited to the document loaded to the client
and even the simplest request to the server requires the whole page content
to be loaded from the server. Interaction available is limited to hyperlinks
used for navigating within the page or to other pages, that is information
retrieval, and using forms used for submitting information (either text of bi-
nary data) to the web server, that is information manipulation. This leads
to an unresponsive user interface and low interactivity. Luckily (X)HTML
allows inclusion of other languages which alleviate this. Still the (X)HTML
is forming the mandatory legacy base with its restrictions.

Within the Feed Widget the XHTML had a role of bootstrapping the appli-
cation, and providing hooks for the scripts to attach to in order to interact
with the DOM. In other words, XHTML was the root language used. UI
was completely based on standard XHTML elements providing hooks to im-
plement interaction. Beyond simple layouts and declaring the initial state,
the program logic was entirely implemented in JavaScript and any modifi-
cations to the document were reflected to the DOM in runtime. The main
deficiency of this approach in constructing the view was deemed to be the
large amount of procedural JavaScript code required. Consequently, associ-
ated high reliance on DOM traversal introduced performance problems. In
addition, the extensive use of JavaScript inherently lowers the semantic level
of the implementation and makes designing for device independence more
challenging. Extending declarative markup with UI elements which are more
applicable to application scenarios similar to XUL and leveraging more effi-
cient mechanism for traversing the DOM such as XPath [35] language would
arguably limit the amount of procedural code, enhance the performance and
make web applications easier to author in general.

Client-side web application frameworks discussed in Section 4.2.3 raise the
semantic level by providing high-level JavaScript APIs for repetitive tasks in
the domain of web application development. However, they do not degrade
gracefully to less capable devices and do not interoperate with authoring tools
particularly well. In addition, all tested frameworks introduced problems
with the WRT, probably due to the fact that they were especially tailored
for each major browser to overcome their incompatibilities without a focus
on the specific needs of the S60WebKit. Other web runtime environments
discussed in Section 4.2.4 typically incorporated more expressive XML-based
declarative languages for declaring UIs, but were mostly not designed with

110 CHAPTER 7. DISCUSSION

device independence as the topmost priority as target platforms were typi-
cally fairly homogenous. However, it is expected that this will change as more
web runtime environments start migrating to mobile devices and the value
of seamless functionality of the applications without porting across desktops
and mobile devices is realized.

7.1.3 Core JavaScript Limitations

Lessons learned from Java have shown that running everywhere, securely
and interactively is hard to achieve. Judging by the fact that JavaScript
is used in over half of all the web pages it seems that it has managed to
solve some problems Java applets2 faced earlier and is truly a cross-platform
language [84, 110]. In addition, JavaScript is being increasingly used for more
serious application development and is no longer considered a toy language
applicable for fancy UI effects only. Today, a typical web browser executes
orders of magnitude more JavaScript than Java, both in code volume as well
as in dynamic instructions which demonstrates the ubiquitous availability of
JavaScript interpreters in the web browsers [31].

However there are certain deficiencies in JavaScript. First, it lacks a mech-
anism for extending the language with libraries in an interoperable manner.
This functionality is commonplace in popular server-side languages such Java,
PHP or Python whose core language capabilities are commonly extended
with libraries. Furthermore, the lack of a proper namespace mechanism
hinders combining custom libraries arbitrarily. Due to this, e.g. handling
non-native data formats in core JavaScript language required extra care and
was deemed error-prone and tedious. On this account, JavaScript built in
data formats were utilized whenever feasible. However, for dealing with XML
formats non-standard components for XML parsing and DOM serialization
were leveraged due to the absence of standard approach.

Better support for XML and associated technologies in JavaScript would
have simplified the process of dealing with XML in Feed Widget and most
probably provided better performance as well. However, currently support
for technologies which facilitate dealing with XML in JavaScript, e.g. E4X,
XSL Transformations and XPath is limited. Consequently, several some-
what incompatible implementations for browsers exists in addition to some
JavaScript library implementations which by design offer subpar performance
for most common tasks.

2Java applets provide a mechanism to execute Java bytecode in a web browser using a
user-installable Java Virtual Machine (JVM) plugin.

7.1. FUNCTIONALITY 111

Due to faint support for XML in current JavaScript implementations, some
authors have recently embraced the JavaScript Object Notation (JSON) (see
Section 3.6.4) as an XML replacement. JSON in an object-oriented data
format which is natively supported by JavaScript. However, JSON lacks
powerful querying capabilities similar to XPath and has less support in the
development tools in general. Due to the fact that the data interchange
formats consumed by the Feed Widget were all XML-based, JSON was not
considered an alternative. However, in cases where the developer is in control
of the server-side implementation, JSON provides a feasible alternative to
XML. In addition, there has been a trend in open service APIs discussed in
Section 4.1.2 toward the use of JSON over XML.

7.1.4 Data Format Incompatibilities

Related to specific data formats used in the Feed Widget some problems
were faced. Namely, it was realized that the Feed Widget would need to
support various RSS versions wild in the Web – out of which many did not
strictly adhere to any of the specifications. To be exact, there exists nine
different versions of RSS with different incompatible schemas in addition to
Atom Syndication Format [155]. The vast amount of RSS schemas limited
the feasible parser implementations to less elegant approach which does not
validate the feeds against their schemas to limit the complexity of the im-
plementation. It is also remarkable that such parsing functionality on the
client-side must be implemented in JavaScript due to lack of exposure of more
robust XML parser libraries of the S60 platform to the JavaScript such as the
libxml23. There existed no freely available parser implementation targeted
for feed parsing in JavaScript, which forced one to be implemented from the
scratch as a part of the concept implementation.

Another noteworthy compatibility problem with the feed formats, and RSS
in particular, was related to embedded HTML markup. The Userland’s RSS
reader which is generally considered as the reference implementation did no
filter the HTML markup on the feeds. Due to this, publishers polluted the
feed payload with HTML markup and the reader applications of today are
expected to cope with this unspecified behavior. The Feed Widget takes a
liberal approach and strips all the HTML tags from the message payload
in the feeds. The HTML content within feeds is commonly tag soup4 and

3libxml2 is a well-known library for parsing XML documents implemented in C.
4Tag soup refers to HTML code written for a web page without regard for the rules of

HTML structure and semantics.

112 CHAPTER 7. DISCUSSION

parsing it into a DOM representation was deemed computationally too heavy
task. Sanitizing the input also reduced the amount of data transferred as
references to other resources such as images were removed.

All in all, the above implies that incompatibilities related to feed formats
continue to exist despite more robust standards, and parsers will need to
adapt to the situation for many years to come impeding interoperability.

7.1.5 Styling and Layout Issues

The standard way to define presentation of web content is CSS. It employs
style rules which are declarative as they declare the desired style instead of
the implementation details. It is the layout engine that interprets the CSS
style rules and is completely responsible for the cascading process. Due to
this, CSS was deemed fairly easy to author. However, as the CSS lacks con-
cepts familiar from widget toolkits such as containers, windows and panes,
authoring application UIs and especially defining scalable layouts was not
straightforward. Additionally, some browser incompatibilities forced to em-
ploy unintuitive hacks to achieve desired functionality. In the worst case
scenario, different CSS needs to be served to each browser which undermines
the utility of the CSS over proprietary approaches. Recently, CSS has been
used for defining temporal interaction as well, whereas traditionally, the task
of CSS has been to interpret the declarative rules and transform them into
a static visual representation only. This trend poses further demands on the
CSS engine implementations and closes the gap between the graphics capa-
bilities of proprietary solutions such as XAML and standards-based CSS. It
was deemed that the CSS is the most potential candidate for a standards
compliant device agnostic declarative presentation technology, and making
the CSS implementations as rich and interoperable as possible was seen as
a prime importance in order to limit the use of proprietary technologies for
implementing presentational aspects of web applications.

CSS was used practically for defining all the presentation and style aspects
of the Feed Widget. WRT API provided only limited complementary func-
tionality comprising of a hardware accelerated fading transition. Since the
rendering engine of the WRT – the S60WebKit – lacks support for SVG,
no standards-based mechanism for scalable graphics was available. However
it was deemed that the lack of scalability could be compensated with CSS
features such as relative positioning to some extend. In general, the main is-
sues with respect to the styling and layout aspects relate either to the broken
CSS implementations of the rendering engines or to the limitations of the CSS

7.2. EFFICIENCY 113

specification itself. Inconsistent CSS implementations across browsers made
designing pixel precise layouts impossible whereas most language limitations
could be worked around using scripting, although this required more code
and sacrificed some performance. The most severe limitation of the CSS
Level 2 was its rather simple selector mechanism which does not support
selecting ancestors or parents of matched element5.

7.2 Efficiency

In this section the main issues related to the efficiency of the WRT and
associated web technologies are discussed. The effects of the network and
hardware on the efficiency are intentionally left out. An extensive study
covering such factors on the S60 can be found in [153].

7.2.1 Core JavaScript Performance

The lack of a threading model in JavaScript [70, p. 255] meant that the
document parsing stopped while code was loaded and executed. To alleviate
this the Feed Widget broke the execution of computationally heavy calcu-
lations to discrete subtasks. Similarly, asynchronous HTTP requests were
used to simulate multi-threading which effectively kept the application re-
sponsive while communication with the server over HTTP. A more robust
albeit non-standard solution for more proper multi-threading is provided by
the Google Gears (see Section 3.6.3) and its worker pool implementation
which runs JavaScript code by another JavaScript interpreter instance in the
background.

7.2.2 The DOM as a Global Data Model

By default, the modifications to the DOM exist only during the runtime of a
web page. On this account, it is commonplace that to maintain the transient
client-side state across views in interactive web applications, the DOM is
kept intact and only those views not visible to the user are set as hidden
but not removed. As a consequence, the DOM may grow in complexity
which severely affects the performance of all the functionality tied to it. This
behavior was also observed with the Feed Widget implementation.

5CSS Level 3 Selectors module is fixing the issue as defined in [82, chapter 8], however
the specification is still a Working Draft and thus has very limited support in browsers.

114 CHAPTER 7. DISCUSSION

DOM Level 3 Load and Save [184] defines a standard mechanism for loading
XML document content into a DOM and serializing the DOM into an XML
document which together with a client-side persistence mechanism enables
storing DOM documents to the client-side. This could be leveraged to unload
unused parts from the DOM to limit its size which should alleviate the above-
mentioned issue with the performance.

7.2.3 Limited Support for State Management

Standards-based mechanisms for implementing state management include a
data frame6 [54, p. 390], HTTP cookie and server-side storage via asyn-
chronous HTTP7. The only cross-browser cross-platform mechanism appro-
priate for persisting such data over a session is the HTTP cookie. How-
ever, cookies had severe deficiencies from the viewpoint of the Feed Widget.
Although the cookie specification did not define any size limit for cookies,
practically all current browsers limited the size and the number of cookies
[70, p. 460]. Furthermore, cookies caused overhead to the HTTP client-
server communication8. Furthermore, the API for interacting with cookies
was deemed clumsy and error-prone as it exposed low-level details not rel-
evant for most developers. The most severe flaw was that the API did not
provide information whether the storing of a data into a cookie succeeded or
not.

7.2.4 Various Client-side Data Persistence Mechanisms

Client-side persistence mechanism for resources fetched from the network
enhances efficiency especially in mobile devices which typically commu-
nicate over slower and more costly cellular networks. WRT provides
a simple API via widget object methods setPreferenceForKey() and
preferenceForKey() exposed to JavaScript for storing data persistently to
the client-side as key value pairs which was used for implementing offline
functionality of the Feed Widget. The mechanism is applicable only for stor-
ing simple datasets consisting of text. It was found out that in order to store

6Data frame approach exploits the fact that modern browsers support frameset allowing
a hidden frame to be used as a data repository.

7This can be implemented in the background using XMLHttpRequest API which allows
the web browser scripting language such as JavaScript to communicate with a web server
using HTTP asynchronously.

8The cookie data is not automatically removed from the HTTP message payload after
use.

7.2. EFFICIENCY 115

other than text-based data such as images, the data to be stored must be first
encoded using text-based encoding scheme such as Base64 which presumably
degrades the performance.

HTML 5 defines a client-side persistent storage which supports both simple
key and value pairs as well an SQL database interface. In addition a complete
caching mechanism for resources called application caches has been defined
in [98, section 4.6.2]. Google Gears provides similar mechanism as a non-
standard plugin extending the web browser with a relational database API.
Many available approaches imply that a widely supported standard method
for client-side storage is in demand and many practical use cases exists. The
HTML 5 storage mechanism is already implemented by the latest versions of
Firefox and Safari browsers which implies that offline functionality for web
applications is finally becoming a reality.

In the Feed Widget, storing of resources was implemented by the Storage
class introduced in Section 5.1.5. The data was persistently stored on the
client-side using the most appropriate persistence mechanism available on
the the given platform. The resources stored were identified by their URIs.
Implementing proper support for versioning of stored resources was deemed
a tedious, albeit not impossible task, with only a simple key value pair map-
ping.

7.2.5 Inefficient DOM and CSS Implementations

Significant components contributing to the overall performance, in addition
to pure JavaScript execution speed, are DOM and CSS implementations of
the rendering engine. As the DOM is increasingly used as a generic inter-
face and extended with proper extensions, it is also becoming one of the
main bottlenecks in the performance of the web applications developed in
JavaScript. For example, in order to animate the movement of an element,
its style property defining its position on the screen needs to be continu-
ously updated using JavaScript to simulate animation. At the same time
the layout engine of the browser reads the new position from the DOM and
updates the view accordingly. This I/O model commonly used in web appli-
cations is considered complex, inefficient and clumsy [141, p. 7]. A partial
solution to this problem exists in a form of canvas element of HTML 5 pro-
viding direct mode rendering. Alternatively, hardware accelerated graphics
rendering of the most common temporal interactions defined in CSS Level
3 Animation, Transitions and Transforms modules (see Section 3.5.2) did
introduce significant performance gains using the WebKit on the desktop.

116 CHAPTER 7. DISCUSSION

However, measuring the performance improvement was deemed out of the
scope of this thesis as there existed no hooks to which timers could have
been attached for measurement without modifying the rendering engine of
the WebKit.

Significant part of the performance equation is the consequence of the style-
related DOM manipulations, the laying out process, which takes most of the
time of the rendering engine. It includes tasks such as calculating the sizes
of the visible elements and their positions in accordance with the cascading
mechanism of the CSS. The research done by Pohja and Vuorimaa in [158]
around the X-Smiles browser [163] indicates that the time it takes to layout
the elements increases almost linearly as the size of the DOM grows, whereas
the time it takes to paint such elements happens almost in constant time.
This implies that the complexity of the DOM is the main cause for the
performance drop in the rendering of the Feed Widget UI in cases in which
multiple feeds have been loaded and their layout is modified.

7.3 Portability

7.3.1 Manifest Limitations

There are certain limitations in the existing WRT manifest format discussed
in Section 4.2.5. First, the existing collection of metadata fields is fairly lim-
ited. Secondly, these metadata properties are not exposed to the JavaScript,
they are only utilized by the S60 while the widget is installed or started.
However, due to extensible nature of the XML, it should be fairly straight-
forward task to extend the manifest format. Furthermore, there exists no
standard dialect for such manifest files due to the fact that the the specifi-
cation [120] defining such properties has not yet been finalized which limits
the interoperability.

7.3.2 Accessibility

Although the Web is increasingly used for creating interactive web content
and web applications, today’s core web technologies do not sufficiently sup-
port authoring accessible dynamic content for the Web. The main constraint
is that accessibility of established web standards relies on abstracting seman-
tics from both the content and the presentation information, typically by
extracting semantic cues from (X)HTML tag element names [173]. However,

7.3. PORTABILITY 117

this is not sufficient for contemporary web applications for two main reasons.
Firstly, they use scripting to modify the DOM for creating dynamic custom
UI components and secondly, any element – not just form controls such as
buttons – allow attaching events to them which should be accessible with
various input methods. Implications of this were most visible in the WRT
related to its navigations model in which only links and form components
gained focus in the focus navigation mode by default.

7.3.3 Security Sandbox and the Same Origin Policy

JavaScript is run in a security sandbox which prevents scripts from access-
ing multiple domains or performing other than web-related actions. This
is enforced by the same origin policy9 which is a de facto security measure
implemented in web browsers. Related to interaction with web server, the
policy prevents client-side scripts such as JavaScript loaded from one domain
to interact with other domains which makes designing client-side application
in JavaScript impossible if access to multiple domains is needed and no server-
side proxy can be used. In addition, the policy restricts the access to host
platform capabilities such as to local filesystem to read or write files. The
rationale behind the policy is to not trust content loaded from any web site.

Above rationalizes the security model in which access to local resources is
also restricted from within the browser. The above-mentioned limitations
would have made designing Feed Widget according to its functional require-
ments impossible. Luckily, the policy was not enforced by the WRT and was
possible to bypass for most browsers10 while bootstrapping the application
from the local filesystem. This relaxes the security policy by considering
applications trusted. The trust is based on the user’s decision to manually
install such application prior to its use. This mechanism delegates the re-
sponsibility of trusting the application to the user in a same way as with
any other user-installable application not running within security sandbox.
However, the security mechanism should be revised in the coming releases of
the WRT which expose more diverse set of platform APIs which may access
sensitive data stored on the device.

AW3CWorking Draft Access Control for Cross-site Requests [119] is defining
a mechanism for interactive web applications for extending the same origin

9The same origin policy dates back to Netscape Navigator 2.0. http://www.mozilla.
org/projects/security/components/same-origin.html

10Mozilla Firefox required minor alterations to its configuration to allow local resources
to access multiple domains.

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

118 CHAPTER 7. DISCUSSION

policy which allows web applications to interact with multiple domains. How-
ever, this needs support from web browsers, which may be challenged due to
the fact that the latest version of the Internet Explorer has introduced its
own incompatible model for cross-site requests11. Implication to portability
is that currently proxy-based approach is the only truly portable solution up
until the user agents have agreed on a standard way for cross-site request.

7.3.4 Device-independence and Multimodality

The device-independence principle encompasses all technologies and thus the
Feed Widget was designed with that in mind on multiple levels. The following
measures in the Feed Widget were taken. A fallback mechanism was always
provided if non-standard JavaScript APIs were used. The built-in device-
independence mechanism of the CSS allowing presentation to degrade grace-
fully if particular features were not supported was utilized. This included
the hardware accelerated animations, transitions and transforms provided
by the experimental CSS Level 3 modules. In terms of the multimodality,
three alternative navigation mechanism were supported. It should be noted
that the more advanced multimodality capabilities such as support for voice
were not yet supported in mainstream browsers. However, such functionality
can be expected to be of interest in the coming years due to the ubiquity of
the Web and popularity of mobile devices.

7.3.5 Hypertext Navigation

Hypertext navigation refers to a traditional way of navigating across web
pages using a web browser. To update page content, web applications uti-
lizing Ajax technique update page fragments instead of requesting for a new
web page identified by a new URI from the server. As a result, the state
changes are not pushed to the navigation history of the browser. Further-
more, bookmarking of such page state is not possible. These problems orig-
inate from the fact that without changes in the URI of the resource, it still
refers to the original state and neglects the subsequent changes done to the
DOM and its visual representation, the UI. To overcome this limitation, the
concept implementation builds on the default WRT navigation mechanism
which prevents the user from using the navigation controls (e.g. back and
forward navigation) and allows potentially any DOM element to be used as a

11Internet Explorer 8 introduced a proprietary Cross Domain Request object in March
2008 and it is unknown whether the mechanism will be standardized in W3C as of writing.

7.3. PORTABILITY 119

navigation control. However, this approach introduces obvious accessibility
shortcomings as moving back and forth in application views is not possible
programmatically.

7.3.6 Graceful Degradation

Various methods for implementing gracefully degrading web content was ex-
plored. As there is no formal way to deduce supported technologies based
on the browser version programmatically, authors have to test the support
for each feature prior use which is tedious and error prone. To test for DOM
conformance by DOM modules, hasFeature() method can be used [70, p.
314]. Each feature exposed to JavaScript as an object, such as the support
for XSLT, can be tested by object detection. However, as such object names
are not standardized this is both error prone and inefficient. Due to the
above-mentioned inconveniences, the concept implementation was build on
web technologies inherently compliant with graceful degradation principles
to the greatest extend. Presentation was entirely defined in CSS which ad-
heres to graceful degradation principles – it silently discards unsupported
rules such as the experimental CSS Transitions features described in Section
3.5.2.

The graceful degradation compliance was tested in practice as the develop-
ment was done on a desktop with different browser engines12 supporting more
recent set of web standards in addition to the mobile device.

7.3.7 Modality Issues Related to the Event Model

The standard event types defined by HTMLEvent module were desktop
browser and web page centric and did not particularly address the needs of
mobile device input methods or the needs of more interactive applications.
For example, the input element used to represent a text field in XHTML,
did not support listening to events of change type in the WRT. This pre-
vented implementing free-text search with auto-completion. Another issue
arose with the drag and drop functionality which is a common interaction
pattern implemented using mousedown, mousemove and mouseup event types
defined in MouseEvent module. The problem was that those event types were
not support by the WRT.

Key events are an important part of web applications which mimic the be-

12Gecko 1.8.1 and WebKit late November 2007 build.

120 CHAPTER 7. DISCUSSION

havior of desktop application. Surprisingly, key events worked in the WRT
although they are not formally standardized by the W3C [70, p. 425]. It
was deemed that a cross-platform and cross-browser compatible event han-
dling mechanism such as the one implemented by EventDispatcher of the
concept implementation facilitated development considerably by providing
an adaptation layer handling all the user generated events and hiding the
incompatibilities from the developer.

7.4 Ease of Authoring

Development tools play a significant role in the application development. For
web development, they range from modern integrated development environ-
ments to simple text editors. Regardless, there is currently no widely ac-
cepted theoretical foundation or well-established conceptual model for web
application development [142, p. 6]. This implies that there are multiple
ways to handle the development. As the development environment has a
significant impact on the ease of authoring, the development approach of the
Feed Widget is briefly discussed.

JavaScript is interpreted, that is the code is not compiled prior to its execu-
tion. Due to this inherent feature of the language, the evolutionary develop-
ment approach [141, p. 9] was taken and the code was tested incrementally
using the real platform during the development. The main development plat-
form was a Firefox browser with a Firebug debugger plugin which facilitated
the development by e.g. allowing runtime modifications to the DOM. Exper-
imental features, such as CSS animation, transitions and transforms, were
tested on a recent build of the WebKit. For testing on the actual platform,
a beta version of the S60 Platform SDK for 3rd Edition Feature Pack 2
[49] was used to emulate the hardware device. Finally, in order to test the
functionality on a real device, Nokia N95 was used.

The foremost challenge in development environment described above was
the lack of proper tools for debugging on the emulator or on the actual
device. For example, there were no facilities for defining breakpoints to
inspect the state of the application during its execution in the emulator.
Fortunately, the development and debugging of WRT applications on the
above-mentioned desktop browser was possible. TheWRT specific JavaScript
objects described in Chapter 4.2.5, allowing the use of native device menus
and persistent storage, were emulated in JavaScript [198].

The core of the WRT is the S60WebKit rendering engine, which is a port of

7.5. WEB INTEGRATION 121

WebKit to the S60. Due to the fact that the S60WebKit uses an older release
of WebKit than the latest version of Safari used for testing experimental CSS
features, replicating similar host environment without resorting to emulator
was not possible. Furthermore, there were differences in the standards sup-
port between Firefox and WebKit13, especially related to support for defined
and implicit animations, transforms and XML data processing.

7.5 Web Integration

Novel web technologies should integrate with the existing stack of technolo-
gies and protocols and re-use them when possible. This includes especially
the base web technologies such as Uniform Resource Identifier (URI), Hy-
pertext Transfer Protocol (HTTP) and Extensible Markup Language (XML)
and other languages derived from it. These technologies were embraced in
practically every platform discussed in this thesis, regardless, most of them
introduced proprietary solutions on top of these fundamental base technolo-
gies instead of leveraging standards-based alternatives which impedes the
integration opportunities.

The concept implementation did adhere to the REST principles discussed in
Chapter 3.1. The client-server constraint was fulfilled, albeit the server com-
ponent served only as a simple data provider. The statelessness principle was
not infringed, as the persistence mechanism did not require the server to re-
call client states and no such state information was transmitted to the server.
On this account, the cacheability principle was followed. Furthermore, the
interface uniformity constraint was obeyed as only standard HTTP meth-
ods were used for client-server communications. As no new communication
protocols were introduced in addition to HTTP, the constraint for layered
system was conformed. Finally, the optional code-on-demand constraint was
obeyed. Although the JavaScript was heavily used as a basis of executable
components of the application, such program code was not delivered over
HTTP.

13The late November 2007 build of WebKit was used for testing. The latest versions of
the WebKit are available at http://nightly.webkit.org/.

http://nightly.webkit.org/

122 CHAPTER 7. DISCUSSION

7.6 Key Findings and Recommendations

This section provides a summary of the issues and observations related to the
concept implementation and gives recommendations for corrective actions.

7.6.1 Language Issues

Issues stemming from the limitations of the the core markup and program-
ming languages used restrict the functionality of the applications and hinder
the development. The main factors are limited expressivity of declarative
web technologies (XHTML, CSS) and functionality of the main procedural
language, the JavaScript. Fortunately, the recent versions of the standards,
namely HTML 5 and CSS Level 3, propose significant improvements main-
taining backwards compatibility, and it is recommended that they are imple-
mented by the user agents as the specifications mature.

7.6.2 Performance Issues

The performance issues of the languages dependent on the DOM, especially
for advanced graphics effects, are common due to the fact that the core web
technologies are re-used in tasks they were not originally designed for. For
example, it is common to use the DOM as a global data model or combined
with JavaScript leverage it to generate rich graphics effects. Recent versions
of standards propose more optimal approaches. In addition, the closer in-
tegration of rendering engines with hardware-accelerated graphics engines
should be studied as applications are increasingly adding richer graphical
effects which are computationally heavy without hardware support.

7.6.3 Interoperability and Compatibility Issues

Problems with the interoperability between user agents limit the usability of
web technologies due to which lowest common denominator of standards sup-
port is used if interoperability is of utmost importance. Especially, the lack
of standard APIs for accessing device capabilities and a robust mechanism
for deducing the set of supported web technologies and device characteris-
tics impedes interoperability. To remedy this, vendors and standardization
bodies should work together to make sure that standards are not formally
finalized until relevant implementations exists. In an optimal but less re-
alistic scenario, user agents would undergo a compatibility testing prior to

7.6. KEY FINDINGS AND RECOMMENDATIONS 123

their public release. Currently, such tests exist but compliance is entirely
voluntary. Though it can be disputed, whether any formal body should be
given such a mandate.

7.6.4 Usability and User Interaction Issues

Issues which relate to usability and user interaction mainly stem from the
page-centric model of the Web which is not designed for application use cases.
These issues have generally more serious implications on mobile devices which
employ limited input and output mechanisms. The main issues observed
related to the non-standard navigation mechanism, lack of support for multi-
modality and the use of semantics not applicable for applications, especially
related to events. As a solution, new technologies such as HTML 5 addressing
the needs of applications are being developed. However, technologies can only
partially address these issues and thus there is a need for developer guidelines
targeted specifically to the problem domain.

7.6.5 Web Runtime Environment Issues

The main issues inherent to the web runtime environment, the S60 Web
Runtime (WRT), are discussed herein. All the issues described in Sections
7.6 apply also to the WRT which inherits much of its functionality from the
WebKit rendering engine. Generally, the main issue in user agents deployed
in mobile devices has been their reliance on the operating system in a way
that makes them hard or impossible to update independently of the entire
software of the device. Specifically to the WRT and the S60, a mechanism to
update the WebKit rendering engine component independent of the overall
software update is missing. Secondly, there exist interoperability issues due
to the use of non-standard platform-specific interfaces. To address this, an
adaptation library was developed as part of the concept implementation.
Alternatively, the interfaces could be aligned with those proposed in evolving
standards to the extend feasible. Regardless, no standard currently specifies
how to implement access to device capabilities using core web technologies
which is the main functionality of the WRT.

Chapter 8

Conclusion

During the last 15 years or so, we have been witnessing the evolution of the
Web usage where simple static web pages have been gradually gaining more
and more features and functionality of applications traditionally implemented
using device-dependent approaches. For most users today, the web browser
encapsulates all the functionality needed to fulfill their computing needs and
acts as an ubiquitous client to the applications and services. This blurs
the visibility to and undermines the relevance of the underlying software
layers such as operating systems both for the users as well as for most of the
developers. In mobile context, however, this development has been impeded
by the problems in using device-independent web technologies as building
blocks of such applications and due to limited openness of mobile platforms
in general. Recently, web technologies as building blocks of applications have
been gaining momentum in mobile platforms as well.

In this thesis, the feasibility of client-side web technologies in mobile devices,
and especially their applicability for implementing applications that are to-
day typically developed using device dependent approaches was assessed.
More specifically, the feasibility of a runtime platform for said applications,
the S60 Web Runtime, was investigated.

To analyze the problem domain, requirements for typical web applications
in mobile context were synthesized from the literature. Furthermore, core
web technologies as well as platforms on top of which web applications are
commonly built were discussed and compared. Furthermore, a taxonomy
for web applications was drawn to illustrate the broad range of applications
that are today commonly referred to by an umbrella term, web application.
Similarly, platforms for web applications discussed in this thesis were cate-
gorized based on their level of abstraction and support for web technologies.

124

125

Middleware platforms typically bind lower-level languages to the Web by se-
lectively leveraging key web standards, whereas web runtime environments
commonly abstract lower-level details from developers and enable them to
implement applications entirely in web technologies. Web browsers form a
more established base for web applications built in core web technologies but
they do not expose the functionality of the underlying platforms, and suffer
from interoperability problems.

In the empirical part of this thesis, the concept implementation validated
that it is feasible to develop applications which integrate to the existing web
services as well as with the device capabilities using web technologies only
in mobile devices. A rudimentary framework was developed for the S60 Web
Runtime to ease the development of the concept implementation emphasiz-
ing the benefit for adding one more level of abstraction on top of typical core
web technologies to facilitate application development. Potentially, leverag-
ing web technologies opens the S60 platform to millions of new developers
who master web technologies but are not familiar with lower-level languages.
In addition, this should also remove the need to port applications across
multiple platforms as it was found out that said application can be designed
to be device-independent. However, the device-independence still requires
considerable effort and level of expertise due to various incompatibilities of
the platforms.

Working with more abstract, declarative languages in application develop-
ment was deemed fairly convenient. Regardless, the concept implementation
built around the S60 Web Runtime still required a great majority of the func-
tionality to be implemented in procedural dynamic programming language,
the JavaScript. It remains to be seen whether mixing two completely differ-
ent language paradigms, declarative and procedural, is a feasible solution in
the long run. To compete with the lower-level platforms, there is a need for
more powerful animation capabilities, libraries, and interfaces to access de-
vice capabilities in web technologies. Emerging work in the area of client-side
web technologies showed that the issues have been acknowledged and both
standard and proprietary solutions are being worked on. The approaches
of the proprietary offerings resemble much the embrace and extend strategy
taken by major players during the browser wars in the 90s, in which a stan-
dard was adopted, but some non-standard features were added. To avoid
market fragmentation and ensure long-term growth of the Web, the industry
must agree on a set of open standards which form the base for future web
applications.

To conclude, the research done in the domain of web applications and asso-

126 CHAPTER 8. CONCLUSION

ciated open web technologies around the client-side web technologies is still
in flux. New standards are being developed, and at the same time propri-
etary solutions are targeting the same problem domain without embracing
the existing standards. The increased performance of mobile devices is fi-
nally making the use of high-level cross-platform tools and web technologies
a reality. However, the real challenge is to make web applications built on the
aforesaid technologies truly interoperable across platforms for the benefit of
the end-user. To realize this, the stakeholders have to work together instead
of creating their own technological and political walled gardens.

8.1 Future Work

The domain of web applications and related web technologies is no doubt
a hot topic. Despite the popularity of web applications, guidelines for web
application developers are virtually non-existent, especially related to more
restricted mobile devices. A more thorough study and synthesis of such
guidelines would be of great practical value to developers.

The concept implementation revealed various usability and user interaction
issues. Most of the issues stemmed from the page-centric model of the Web
and associated technologies not directly applicable for realizing application
use cases. Conducting a usability evaluation to assess the usability of ap-
plications built on various web runtime environments would give valuable
information of the problems users face today.

In this thesis, the main bottlenecks of the S60 Web Runtime were discussed.
However, a comprehensive study quantifying the results should be conducted
to identify and optimize the exact components of the overall architecture
which are critical to the performance.

There exists no standard way to access the device capabilities in an inter-
operable manner. On this account, a study comparing various approaches
available for exposing platform functionality to web applications in a secure
way provides a topical research subject.

Finally, there exists a plethora of client-side web application frameworks
which are popular among web application developers but which fail to func-
tion properly on most mobile devices. Identifying and fixing the issues in
both such frameworks as well as in user agents would considerably ease the
development of cross-platform web applications.

Bibliography

[1] Ajax Toolkit Survey, 2007. http://ajaxian.com/archives/
2007-ajax-tools-usage-survey-results.

[2] M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S. Schnitzen-
baumer, and T. Wugofski. Modularization of XHTMLTM.
W3C Recommendation, 2001. http://www.w3.org/TR/2001/
REC-xhtml-modularization-20010410/.

[3] M. Altheim and S. McCarron. XHTMLTM1.1 – Module-based
XHTML. W3C Recommendation, 2001. http://www.w3.org/TR/
2001/REC-xhtml11-20010531/.

[4] D. Appelquist, T. Mehrvarz, and A. Quint. Compound
Document by Reference Use Cases and Requirements Version
1.0. W3C Working Draft, 2005. http://www.w3.org/TR/2005/
NOTE-CDRReqs-20051219/.

[5] J. Axelsson, B. Epperson, Ishikawa M., S. McCarron, A. Navarro, and
S. Pemberton. XHTMLTM2.0. W3C Working Draft, 2003. http:
//www.w3.org/TR/2003/WD-xhtml2-20030506/.

[6] Sullivan. B. Mobile Web Best Practices 2.0. W3C Editor’s
Draft, 2008. http://www.w3.org/2005/MWI/BPWG/Group/Drafts/
BestPractices-2.0/ED-mobile-bp2-20080213.

[7] M. Baker, M. Ishikawa, S. Matsui, P. Stark, T. Wugofski, and T. Ya-
makami. XHTMLTMBasic. W3C Recommendation, 2000. http:
//www.w3.org/TR/2000/REC-xhtml-basic-20001219/.

[8] A. Barstow. Declarative Formats for Applications and User Inter-
faces. W3C Working Group Note. http://www.w3.org/TR/2007/
NOTE-dfaui-20070912/.

127

http://ajaxian.com/archives/2007-ajax-tools-usage-survey-results
http://ajaxian.com/archives/2007-ajax-tools-usage-survey-results
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2005/NOTE-CDRReqs-20051219/
http://www.w3.org/TR/2005/NOTE-CDRReqs-20051219/
http://www.w3.org/TR/2003/WD-xhtml2-20030506/
http://www.w3.org/TR/2003/WD-xhtml2-20030506/
http://www.w3.org/2005/MWI/BPWG/Group/Drafts/BestPractices-2.0/ED-mobile-bp2-20080213
http://www.w3.org/2005/MWI/BPWG/Group/Drafts/BestPractices-2.0/ED-mobile-bp2-20080213
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
http://www.w3.org/TR/2007/NOTE-dfaui-20070912/
http://www.w3.org/TR/2007/NOTE-dfaui-20070912/

128 BIBLIOGRAPHY

[9] T. Berners-Lee. Information Management: A Proposal, 1989. http:
//www.w3.org/History/1989/proposal.html.

[10] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Iden-
tifier (URI): Generic Syntax, 2005. http://tools.ietf.org/html/
rfc3986.

[11] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Lo-
cators (URL), 1994. http://tools.ietf.org/html/rfc1738.

[12] P Bernstein. Middleware: A Model for Distributed System Services.
Communications of the ACM, 39(2):86–98, 1996.

[13] E. Bertini, M. Billi, L. Burzagli, T. Catarci, F. Gabbanini, P. Graziani,
S. Kimani, E. Palchetti, and G. Santucci. Usability and Accessibility
in Mobile Computing Computing, 2004. http://www.mais-project.
it/documenti_pubblico/IIIsemester/r7.3.3.pdf.

[14] M. Birbeck, S. McCarron, S. Pemberton, T. V. Raman, and R. Schw-
erdtfeger. XHTML Role Attribute Module, 2006. http://www.w3.
org/TR/2006/WD-xhtml-role-20061113/.

[15] J.O. Borchers. A Pattern Approach to Interaction Design. AI & Soci-
ety, 15(4):359–376, 2001.

[16] B. Bos. An Essay on W3C’s Design Principles, 2003. http://www.w3.
org/People/Bos/DesignGuide/introduction.

[17] B. Bos, T. Celik, I. Hickson, and W. Hakon. Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1). W3C Candidate Recommendation, 2007.
http://www.w3.org/TR/2007/CR-CSS21-20070719/.

[18] B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets
Level 2. W3C Recommendation, 1998. http://www.w3.org/TR/1998/
REC-CSS2-19980512/.

[19] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer. Simple Object Access Proto-
col (SOAP) 1.1. W3C Note, 2000. http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/.

[20] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan. Extensible Markup Language (XML) 1.1 (Second Edi-
tion). W3C Recommendation, 2006. http://www.w3.org/TR/2006/
REC-xml11-20060816/.

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc1738
http://www.mais-project.it/documenti_pubblico/IIIsemester/r7.3.3.pdf
http://www.mais-project.it/documenti_pubblico/IIIsemester/r7.3.3.pdf
http://www.w3.org/TR/2006/WD-xhtml-role-20061113/
http://www.w3.org/TR/2006/WD-xhtml-role-20061113/
http://www.w3.org/People/Bos/DesignGuide/introduction
http://www.w3.org/People/Bos/DesignGuide/introduction
http://www.w3.org/TR/2007/CR-CSS21-20070719/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/

BIBLIOGRAPHY 129

[21] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edi-
tion). W3C Recommendation, 2006. http://www.w3.org/TR/2006/
REC-xml-20060816/.

[22] Millward Brown. Browser Plug-in Technology Study. http://www.
adobe.com/products/player_census/methodology/.

[23] Browser Statistics, November 2007. http://www.thecounter.com/
stats/2007/November/browser.php.

[24] I Bulterman, J. Jansen, S. Mullender, M. DeMeglio, J. Quint, P. Vuori-
maa, S. Cruz-Lara, H. Kawamura, D. Weck, E. Hyche, X. Paneda,
D. Melendi, T. Michel, and D. Zucker. Synchronized Multimedia In-
tegration Language (SMIL 3.0). W3C Candidate Recommendation,
2008. http://www.w3.org/TR/2008/CR-SMIL3-20080115/.

[25] M. Caceres. Client-Side Web Applications (Widgets) Require-
ments. W3C Working Draft, 2006. http://www.w3.org/TR/2006/
WD-WAPF-REQ-20061109/.

[26] M. Caceres. Widgets 1.0 Requirements. W3C Working Draft, 2007.
http://www.w3.org/TR/2007/WD-widgets-reqs-20070705/.

[27] B. Caldwell, M. Cooper, L. Guarino, and G. Vanderheiden. Web Con-
tent Accessibility Guidelines 2.0, 2007.

[28] E. Candell and D. Raggett. Multimodal Interaction Use
Cases. W3C Working Draft, 2002. http://www.w3.org/TR/2002/
NOTE-mmi-use-cases-20021204/.

[29] M. Chambers, D. Dura, and K. Hoyt. Adobe Integrated Runtime for
JavaScript Developers. O’Reilly, 2007.

[30] S. Champeon. Progressive Enhancement and the Future of Web Design,
2003. http://www.webmonkey.com/03/21/index3a.html.

[31] M. Cheng, M. Bebenita, A. Yermolovich, and A. Gal. Efficient Just-In-
Time Execution of Dynamically Typed Languages Via Code Specializa-
tion Using Precise Runtime Type Inference. Technical report, Depart-
ment of Computer Science, University of California, Irvine, 2007. http:
//www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-07-10.pdf.

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.adobe.com/products/player_census/methodology/
http://www.adobe.com/products/player_census/methodology/
http://www.thecounter.com/stats/2007/November/browser.php
http://www.thecounter.com/stats/2007/November/browser.php
http://www.w3.org/TR/2008/CR-SMIL3-20080115/
http://www.w3.org/TR/2006/WD-WAPF-REQ-20061109/
http://www.w3.org/TR/2006/WD-WAPF-REQ-20061109/
http://www.w3.org/TR/2007/WD-widgets-reqs-20070705/
http://www.w3.org/TR/2002/NOTE-mmi-use-cases-20021204/
http://www.w3.org/TR/2002/NOTE-mmi-use-cases-20021204/
http://www.webmonkey.com/03/21/index3a.html
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-07-10.pdf
http://www.ics.uci.edu/~franz/Site/pubs-pdf/ICS-TR-07-10.pdf

130 BIBLIOGRAPHY

[32] W. Chisholm, G. Vanderheiden, and I. Jacobs. Web Content Accessi-
bility Guidelines 1.0. W3C Recommendation, 1999. http://www.w3.
org/TR/1999/WAI-WEBCONTENT-19990505/.

[33] L. Chittaro and P. Dal Cin. Evaluating Interface Design Choices on
WAP Phones: Navigation and Selection. Personal and Ubiquitous
Computing, 6(4):237–244, 2002.

[34] A. Chuter. Relationship Between Mobile Web Best Practices 1.0 and
Web Content Accessibility Guidelines. W3C Working Draft, 2008.
http://www.w3.org/TR/2008/WD-mwbp-wcag-20080122/.

[35] J. Clark and S. DeRose. XML Path Language (XPath) Version
1.0. W3C Recommendation, 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[36] M. Cokus and S. Pericas-Geertsen. XML Binary Characterization Use
Cases. W3C Working Draft, 2007. http://www.w3.org/TR/2005/
WD-xbc-use-cases-20050224/.

[37] comScore Inc. Mobile Phone Web Users Nearly Equal PC Based In-
ternet Users in Japan, September 2007. http://www.comscore.com/
press/release.asp?press=1742.

[38] Evans Data Corporation. Global Developer Population and Demo-
graphics Report, 2006.

[39] Microsoft Corporation. Fundamentals of Microsoft .NET Com-
pact Framework Development for the Microsoft .NET Framework
Developer, 2003. http://msdn2.microsoft.com/en-us/library/
Aa446549.aspx.

[40] Microsoft Corporation. Windows Vista User Experience Guide-
lines, 2006. http://msdn.microsoft.com/library/?url=/library/
en-us/UxGuide/UXGuide/Home.asp.

[41] Microsoft Corporation. innerHTML Property, 2007. http://msdn2.
microsoft.com/en-us/library/ms533897.aspx.

[42] Microsoft Corporation. .NET Framework Programming, 2007. http:
//msdn2.microsoft.com/en-us/library/ms229284.aspx.

[43] Microsoft Corporation. How to: Use the WebBrowser Control in the
.NET Compact Framework, 2008. http://msdn2.microsoft.com/
en-us/library/ms229657.aspx.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/2008/WD-mwbp-wcag-20080122/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2005/WD-xbc-use-cases-20050224/
http://www.w3.org/TR/2005/WD-xbc-use-cases-20050224/
http://www.comscore.com/press/release.asp?press=1742
http://www.comscore.com/press/release.asp?press=1742
http://msdn2.microsoft.com/en-us/library/Aa446549.aspx
http://msdn2.microsoft.com/en-us/library/Aa446549.aspx
http://msdn.microsoft.com/library/?url=/library/en-us/UxGuide/UXGuide/Home.asp
http://msdn.microsoft.com/library/?url=/library/en-us/UxGuide/UXGuide/Home.asp
http://msdn2.microsoft.com/en-us/library/ms533897.aspx
http://msdn2.microsoft.com/en-us/library/ms533897.aspx
http://msdn2.microsoft.com/en-us/library/ms229284.aspx
http://msdn2.microsoft.com/en-us/library/ms229284.aspx
http://msdn2.microsoft.com/en-us/library/ms229657.aspx
http://msdn2.microsoft.com/en-us/library/ms229657.aspx

BIBLIOGRAPHY 131

[44] Nokia Corporation. Web Browser for S60. http://www.s60.com/
browser.

[45] Nokia Corporation. MIDP: Scalable 2D Vector Graphics API Devel-
oper’s Guide v1.1, 2006. http://www.forum.nokia.com/info/sw.
nokia.com/id/3d0913bf-73f0-4aba-b1c3-754de783a6d3/MIDP_
Scalable_2D_Vector_Graphics_API_Dev_Guide_v1_1_en.pdf.
html.

[46] Nokia Corporation. Nokia N95 Device Details, 2006. http://www.
forum.nokia.com/devices/N95.

[47] Nokia Corporation. Browser Control API Developer’s Guide
v2.0, 2007. http://www.forum.nokia.com/info/sw.nokia.com/
id/47d8a7fe-768c-44e5-bc26-fcba0a05e35e/S60_Platform_
Browser_Control_API_Guide_v2_0_en.pdf.html.

[48] Nokia Corporation. S60 Platform: Scalable UI Guideline,
2007. http://www.forum.nokia.com/info/sw.nokia.com/
id/4239db2a-2e0d-4592-a9c0-3936d0550d64/S60_Platform_
Scalable_UI_Guideline_v1_0_en.pdf.html.

[49] Nokia Corporation. S60 Platform SDK for 3rd Edition Feature Pack 2,
Beta, 2007. http://www.forum.nokia.com/info/sw.nokia.com/id/
4a7149a5-95a5-4726-913a-3c6f21eb65a5/S60-SDK-0616-3.0-mr.
html.

[50] Nokia Corporation. S60WebKit, 2007. http://opensource.nokia.
com/projects/S60browser/.

[51] Nokia Corporation. Web Runtime, 2007. http://www.s60.com/
webruntime.

[52] Nokia Corporation. Web Runtime API Reference 1.1,
2007. http://www.forum.nokia.com/info/sw.nokia.com/id/
b9ad2b23-07ea-46cd-badf-f0ba3df97da3/Web_Run_Time_API_
Reference_v1_1_en.pdf.html.

[53] Nokia Corporation. Press Release: Nokia to Bring Microsoft Silverlight
Powered Experiences to Millions of Mobile Users, 2008. http://www.
nokia.com/A4136001?newsid=1197788.

[54] D. Crane, B. Bibeault, and J. Sonneveld. Ajax in Practice. Manning,
2007.

http://www.s60.com/browser
http://www.s60.com/browser
http://www.forum.nokia.com/info/sw.nokia.com/id/3d0913bf-73f0-4aba-b1c3-754de783a6d3/MIDP_Scalable_2D_Vector_Graphics_API_Dev_Guide_v1_1_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/3d0913bf-73f0-4aba-b1c3-754de783a6d3/MIDP_Scalable_2D_Vector_Graphics_API_Dev_Guide_v1_1_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/3d0913bf-73f0-4aba-b1c3-754de783a6d3/MIDP_Scalable_2D_Vector_Graphics_API_Dev_Guide_v1_1_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/3d0913bf-73f0-4aba-b1c3-754de783a6d3/MIDP_Scalable_2D_Vector_Graphics_API_Dev_Guide_v1_1_en.pdf.html
http://www.forum.nokia.com/devices/N95
http://www.forum.nokia.com/devices/N95
http://www.forum.nokia.com/info/sw.nokia.com/id/47d8a7fe-768c-44e5-bc26-fcba0a05e35e/S60_Platform_Browser_Control_API_Guide_v2_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/47d8a7fe-768c-44e5-bc26-fcba0a05e35e/S60_Platform_Browser_Control_API_Guide_v2_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/47d8a7fe-768c-44e5-bc26-fcba0a05e35e/S60_Platform_Browser_Control_API_Guide_v2_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4239db2a-2e0d-4592-a9c0-3936d0550d64/S60_Platform_Scalable_UI_Guideline_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4239db2a-2e0d-4592-a9c0-3936d0550d64/S60_Platform_Scalable_UI_Guideline_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4239db2a-2e0d-4592-a9c0-3936d0550d64/S60_Platform_Scalable_UI_Guideline_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4a7149a5-95a5-4726-913a-3c6f21eb65a5/S60-SDK-0616-3.0-mr.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4a7149a5-95a5-4726-913a-3c6f21eb65a5/S60-SDK-0616-3.0-mr.html
http://www.forum.nokia.com/info/sw.nokia.com/id/4a7149a5-95a5-4726-913a-3c6f21eb65a5/S60-SDK-0616-3.0-mr.html
http://opensource.nokia.com/projects/S60browser/
http://opensource.nokia.com/projects/S60browser/
http://www.s60.com/webruntime
http://www.s60.com/webruntime
http://www.forum.nokia.com/info/sw.nokia.com/id/b9ad2b23-07ea-46cd-badf-f0ba3df97da3/Web_Run_Time_API_Reference_v1_1_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/b9ad2b23-07ea-46cd-badf-f0ba3df97da3/Web_Run_Time_API_Reference_v1_1_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/b9ad2b23-07ea-46cd-badf-f0ba3df97da3/Web_Run_Time_API_Reference_v1_1_en.pdf.html
http://www.nokia.com/A4136001?newsid=1197788
http://www.nokia.com/A4136001?newsid=1197788

132 BIBLIOGRAPHY

[55] R. Cremin and J. Rabin. dotMobi Switch On! Web Developer
Guide, 2006. http://dev.mobi/files/dotmobi_Switch_On_Web_
Developer_Guide.html.

[56] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON), 2006. http://tools.ietf.org/html/rfc4627.

[57] CSS3.info – Everything You Need to Know About CSS3, 2007. http:
//www.css3.info/.

[58] A. Danesh, K. Inkpen, F. Lau, K. Shu, and K. Booth. GeneyTM:
Designing a Collaborative Activity for the Palm Handheld Computer.
In CHI ’01: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 388–395, New York, NY, USA, 2001.
ACM Press.

[59] I. David and M. Stachowiak. Window Object 1.0, 2006. http://www.
w3.org/TR/2006/WD-Window-20060407/.

[60] J. Dean. Web API Working Group Charter, 2005. http://www.w3.
org/2006/webapi/admin/charter.

[61] M. Dubinko, L. Klotz, R. Merrick, and T. Raman. XForms
1.0. W3C Recommendation, 2003. http://www.w3.org/TR/2003/
REC-xforms-20031014/.

[62] M. Dubinko and T. Raman. XForms 1.0 Basic Profile. W3C
Candidate Recommendation, 2003. http://www.w3.org/TR/2003/
CR-xforms-basic-20031014/.

[63] ECMAScript Language Specification, Standard ECMA-262 3rd Edi-
tion, 1999. http://www.ecma-international.org/publications/
files/ecma-st/ECMA-262.pdf.

[64] Proposed ECMAScript 4th Edition Ű Language Overview, 2007. http:
//www.ecmascript.org/es4/spec/overview.pdf.

[65] D. Fallside and P. Walmsley. XML Schema Part 0: Primer Second
Edition. W3C Recommendation, 2004. http://www.w3.org/TR/2004/
REC-xmlschema-0-20041028/.

[66] M.E. Fayad, D.C. Schmidt, and R.E. Johnson. Building Application
Frameworks: Object-oriented Foundations of Framework Design. John
Wiley & Sons, Inc. New York, NY, USA, 1999.

http://dev.mobi/files/dotmobi_Switch_On_Web_Developer_Guide.html
http://dev.mobi/files/dotmobi_Switch_On_Web_Developer_Guide.html
http://tools.ietf.org/html/rfc4627
http://www.css3.info/
http://www.css3.info/
http://www.w3.org/TR/2006/WD-Window-20060407/
http://www.w3.org/TR/2006/WD-Window-20060407/
http://www.w3.org/2006/webapi/admin/charter
http://www.w3.org/2006/webapi/admin/charter
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/CR-xforms-basic-20031014/
http://www.w3.org/TR/2003/CR-xforms-basic-20031014/
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf
http://www.ecmascript.org/es4/spec/overview.pdf
http://www.ecmascript.org/es4/spec/overview.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

BIBLIOGRAPHY 133

[67] J. Ferraiolo, J. Fujisawa, and D. Jackson. Scalable Vector Graphics
(SVG) 1.1 Specification. W3C Recommendation, 2003. http://www.
w3.org/TR/2003/REC-SVG11-20030114/.

[68] R. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine,
2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm.

[69] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.
http://tools.ietf.org/html/rfc2616.

[70] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2006.

[71] The WAP Forum. WAP 1.0 Specification Suite, 1998. http://www.
wapforum.org/what/technical_1_0.htm.

[72] WAP Forum. WAP Architecture, 2001. http://
www.openmobilealliance.org/tech/affiliates/wap/
wap-210-waparch-20010712-a.pdf.

[73] WAP Forum. XHTML Mobile Profile, 2001. http:
//www.openmobilealliance.org/tech/affiliates/wap/
wap-277-xhtmlmp-20011029-a.pdf.

[74] Mozilla Foundation. ARIA: Accessible Rich Internet Applica-
tions, 2007. http://developer.mozilla.org/en/docs/Accessible_
DHTML.

[75] Mozilla Foundation. Core JavaScript 1.5 Reference, 2007.
http://developer.mozilla.org/en/docs/Core_JavaScript_1.
5_Reference.

[76] Mozilla Foundation. XULRunner, 2007. http://developer.mozilla.
org/en/docs/XULRunner.

[77] Mozilla Foundation and Opera Software. Web Applications and Com-
pound Documents. W3C Workshop Position Paper, 2004. http:
//www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html.

[78] M. Fowler. GUI Architectures, 2006. http://www.martinfowler.com/
eaaDev/uiArchs.html.

http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://tools.ietf.org/html/rfc2616
http://www.wapforum.org/what/technical_1_0.htm
http://www.wapforum.org/what/technical_1_0.htm
http://www.openmobilealliance.org/tech/affiliates/wap/wap-210-waparch-20010712-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-210-waparch-20010712-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-210-waparch-20010712-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf
http://developer.mozilla.org/en/docs/Accessible_DHTML
http://developer.mozilla.org/en/docs/Accessible_DHTML
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/XULRunner
http://developer.mozilla.org/en/docs/XULRunner
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html
http://www.martinfowler.com/eaaDev/uiArchs.html
http://www.martinfowler.com/eaaDev/uiArchs.html

134 BIBLIOGRAPHY

[79] J.J. Garrett. Ajax: A New Approach to Web Applica-
tions, 2005. http://www.adaptivepath.com/publications/essays/
archives/000385.php.

[80] Gartner, Inc., Worldwide PDA and Smartphone Shipments Grow 26%
in 1Q07, June 2007.

[81] R. Gimson, L. Suryanarayana, and M. Lauff. Core Presentation Char-
acteristics: Requirements and Use Cases. W3C Working Draft, 2003.
http://www.w3.org/TR/2003/WD-cpc-req-20030510/.

[82] D. Glazman, T. Celik, I. Hickson, P. Linss, and J. Williams. Media
Queries. W3C Working Draft, 2005. http://www.w3.org/TR/2005/
WD-css3-selectors-20051215/.

[83] C. Goldfarb. Information Processing – Text and Office Systems – Stan-
dard Generalized Markup Language (SGML), 1986.

[84] Google. Web Authoring Statistics, 2005. http://code.google.com/
webstats/.

[85] Google. Google Web Toolkit, 2006. http://code.google.com/
webtoolkit/.

[86] Google. Google Gears, 2007. http://gears.google.com/.

[87] Google. Google Reader, 2008. http://reader.google.com/.

[88] G. Grassel. Mobile Phonebook Mash-up Application Developed Using
Web Technologies. In XTech Conference, 2007. http://2007.xtech.
org/public/schedule/detail/210.

[89] Nielsen Norman Group. Nielsen Norman Group Papers and Publica-
tions, 2007. http://www.nngroup.com/reports/.

[90] A. Hagans. High Accessibility Is Effective Search Engine Optimization,
2005. http://alistapart.com/articles/accessibilityseo.

[91] S. Henry. Essential Components of Web Accessibility, 2005. http:
//www.w3.org/WAI/gettingstarted/.

[92] S. Henry. Accessible Rich Internet Applications (WAI-ARIA) Suite
Overview, 2006. http://www.w3.org/WAI/intro/aria.php.

[93] I. Hickson. Sending XHTML as text/html Considered Harmful. http:
//www.hixie.ch/advocacy/xhtml.

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.w3.org/TR/2003/WD-cpc-req-20030510/
http://www.w3.org/TR/2005/WD-css3-selectors-20051215/
http://www.w3.org/TR/2005/WD-css3-selectors-20051215/
http://code.google.com/webstats/
http://code.google.com/webstats/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://gears.google.com/
http://reader.google.com/
http://2007.xtech.org/public/schedule/detail/210
http://2007.xtech.org/public/schedule/detail/210
http://www.nngroup.com/reports/
http://alistapart.com/articles/accessibilityseo
http://www.w3.org/WAI/gettingstarted/
http://www.w3.org/WAI/gettingstarted/
http://www.w3.org/WAI/intro/aria.php
http://www.hixie.ch/advocacy/xhtml
http://www.hixie.ch/advocacy/xhtml

BIBLIOGRAPHY 135

[94] A. Holdener. Ajax: The Definitive Guide. O’Reilly, 2008.

[95] M. Honkala. Web User Interaction – a Declarative Approach Based on
XForms. PhD thesis, Helsinki University of Technology, 2006. http:
//lib.tkk.fi/Diss/2007/isbn9789512285662/.

[96] A. Hors, P. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and
S. Byrne. Document Object Model (DOM) Level 2 Core Specifica-
tion. W3C Recommendation, 2000. http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113/.

[97] P. Hoschka. Mobile Web Initiative Activity Statement, 2007. http:
//www.w3.org/2005/MWI/Activity.

[98] HTML 5. W3C Working Draft, 2008. http://www.w3.org/TR/2008/
WD-html5-20080122/.

[99] HTML 5 Differences from HTML 4. W3C Working Draft, 2008. http:
//www.w3.org/TR/2008/WD-html5-20080122/.

[100] HTML Design Principles. W3C Working Draft, 2007. http://www.
w3.org/TR/2007/WD-html-design-principles-20071126/.

[101] D. Hyatt, D. Jackson, and C. Marrin. Apple’s Proposal for CSS
Animation, 2008. http://webkit.org/specs/CSSVisualEffects/
CSSAnimation.html.

[102] D. Hyatt, D. Jackson, and C. Marrin. Apple’s Proposal for CSS
Transforms, 2008. http://webkit.org/specs/CSSVisualEffects/
CSSTransforms.html.

[103] D. Hyatt, D. Jackson, and C. Marrin. Apple’s Proposal for CSS
Transitions, 2008. http://webkit.org/specs/CSSVisualEffects/
CSSTransforms.html.

[104] IEEE. IEEE Std 1003.1-1988 Standard for Information Technology -
Portable Operating System Interface (POSIX) - Base Definitions, 1988.

[105] Apple Inc. iPhone Safari. http://www.apple.com/iphone/
internet/.

[106] Apple Inc. Dashboard Reference, 2006. http://developer.apple.
com/documentation/AppleApplications/Reference/Dashboard_
Ref/Dashboard_Ref.pdf.

http://lib.tkk.fi/Diss/2007/isbn9789512285662/
http://lib.tkk.fi/Diss/2007/isbn9789512285662/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/2005/MWI/Activity
http://www.w3.org/2005/MWI/Activity
http://www.w3.org/TR/2008/WD-html5-20080122/
http://www.w3.org/TR/2008/WD-html5-20080122/
http://www.w3.org/TR/2008/WD-html5-20080122/
http://www.w3.org/TR/2008/WD-html5-20080122/
http://www.w3.org/TR/2007/WD-html-design-principles-20071126/
http://www.w3.org/TR/2007/WD-html-design-principles-20071126/
http://webkit.org/specs/CSSVisualEffects/CSSAnimation.html
http://webkit.org/specs/CSSVisualEffects/CSSAnimation.html
http://webkit.org/specs/CSSVisualEffects/CSSTransforms.html
http://webkit.org/specs/CSSVisualEffects/CSSTransforms.html
http://webkit.org/specs/CSSVisualEffects/CSSTransforms.html
http://webkit.org/specs/CSSVisualEffects/CSSTransforms.html
http://www.apple.com/iphone/internet/
http://www.apple.com/iphone/internet/
http://developer.apple.com/documentation/AppleApplications/Reference/Dashboard_Ref/Dashboard_Ref.pdf
http://developer.apple.com/documentation/AppleApplications/Reference/Dashboard_Ref/Dashboard_Ref.pdf
http://developer.apple.com/documentation/AppleApplications/Reference/Dashboard_Ref/Dashboard_Ref.pdf

136 BIBLIOGRAPHY

[107] Apple Inc. Dashboard Programming Topics, 2007. http:
//developer.apple.com/documentation/AppleApplications/
Conceptual/Dashboard_ProgTopics/Dashboard_ProgTopics.pdf.

[108] Apple Inc. Optimizing Web Applications and Content for iPhone, 2007.
http://developer.apple.com/webapps/designingcontent.php.

[109] Apple Inc. iPhone Human Interface Guidelines for Web Applica-
tions, 2008. http://developer.apple.com/documentation/iPhone/
Conceptual/iPhoneHIG/iPhoneHIG.pdf.

[110] E-Soft Inc. SecuritySpace Technology Penetration Report, 2007.
http://www.securityspace.com/s_survey/data/man.200708/
techpen.html.

[111] Ecma International. Standard ECMA-357: ECMAScript for XML
(E4X) Specification, 2005. http://www.ecma-international.org/
publications/standards/Ecma-357.htm.

[112] D. Jackson. Web Application Formats Working Group Charter. http:
//www.w3.org/2006/appformats/admin/charter.html.

[113] I. Jacobs. The W3C Technology Stack, 2007. http://www.w3.org/
Consortium/technology.

[114] I. Jacobs, J. Gunderson, and E. Hansen. User Agent Accessibility
Guidelines 1.0. W3C Recommendation, 2002. http://www.w3.org/
TR/2002/REC-UAAG10-20021217/.

[115] I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume
One, 2004.

[116] Christian Kaas. An Introduction to Widgets with Particular Em-
phasis on Mobile Widgets. Technical report, Hagem University
of Applied Sciences, 2007. http://www.symbianresources.com/
tutorials/techreports/widgets/kaar07widgets.pdf.

[117] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, and T. Laakko. Two
Approaches to Bringing Internet Services to WAP Devices. Computer
Networks, 33(1-6):231–246, 2000.

[118] A. Kesteren. The XMLHttpRequest Object. W3C
Working Draft, 2007. http://www.w3.org/TR/2007/
WD-XMLHttpRequest-20071026/.

http://developer.apple.com/documentation/AppleApplications/Conceptual/Dashboard_ProgTopics/Dashboard_ProgTopics.pdf
http://developer.apple.com/documentation/AppleApplications/Conceptual/Dashboard_ProgTopics/Dashboard_ProgTopics.pdf
http://developer.apple.com/documentation/AppleApplications/Conceptual/Dashboard_ProgTopics/Dashboard_ProgTopics.pdf
http://developer.apple.com/webapps/designingcontent.php
http://developer.apple.com/documentation/iPhone/Conceptual/iPhoneHIG/iPhoneHIG.pdf
http://developer.apple.com/documentation/iPhone/Conceptual/iPhoneHIG/iPhoneHIG.pdf
http://www.securityspace.com/s_survey/data/man.200708/techpen.html
http://www.securityspace.com/s_survey/data/man.200708/techpen.html
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.w3.org/2006/appformats/admin/charter.html
http://www.w3.org/2006/appformats/admin/charter.html
http://www.w3.org/Consortium/technology
http://www.w3.org/Consortium/technology
http://www.w3.org/TR/2002/REC-UAAG10-20021217/
http://www.w3.org/TR/2002/REC-UAAG10-20021217/
http://www.symbianresources.com/tutorials/techreports/widgets/kaar07widgets.pdf
http://www.symbianresources.com/tutorials/techreports/widgets/kaar07widgets.pdf
http://www.w3.org/TR/2007/WD-XMLHttpRequest-20071026/
http://www.w3.org/TR/2007/WD-XMLHttpRequest-20071026/

BIBLIOGRAPHY 137

[119] A. Kesteren. Access Control for Cross-site Requests.
W3C Working Draft, 2008. http://www.w3.org/TR/2008/
WD-access-control-20080214/.

[120] A. Kesteren and M. Caceres. Widgets 1.0. W3C Working Draft, 2007.
http://www.w3.org/TR/2007/WD-widgets-20071013/.

[121] A. Kivi. Mobile Browsers. Helsinki University of Technology, 2007.

[122] P.P. Koch. PPK on JavaScript. New Riders, 2007.

[123] D. Kristol and L. Montulli. HTTP State Management Mechanism,
2000. http://tools.ietf.org/html/rfc2965.

[124] S. Laakso. User Interface Design Patterns, 2003. http://www.cs.
helsinki.fi/u/salaakso/patterns.

[125] A. Le Hors, G. Nicol, L. Wood, M. Champion, and S. Byrne.
Document Object Model (DOM) Level 2 Core Specification.
W3C Recommendation, 2000. http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113/.

[126] R. Lewis. Delivery Context Ontology. W3C Working Draft, 2007.
http://www.w3.org/TR/2007/WD-dcontology-20071221/.

[127] H. Lie and B. Bos. Cascading Style Sheets Level 1. W3C Recommen-
dation, 1996. http://www.w3.org/TR/REC-CSS1-961217.

[128] Linux to Be the Fastest-Growing Smartphone OS over the Next 5
Years, August 2007. http://www.abiresearch.com/abiprdisplay.
jsp?pressid=922.

[129] Open Mobile Alliance Ltd. OMA Browsing Enabler Releases and Spec-
ifications, 2007. http://www.openmobilealliance.org/release_
program/browsing_archive.html.

[130] K. Luchini, C. Quintana, J. Krajcik, C. Farah, N. Nandihalli, K. Reese,
A. Wieczorek, and E. Soloway. Scaffolding in the Small: Designing Ed-
ucational Supports for Concept Mapping on Handheld Computers. In
CHI ’02: CHI ’02 Extended Abstracts on Human Factors in Computing
Systems, pages 792–793, New York, NY, USA, 2002. ACM Press.

[131] Florins M. and J. Vanderdonckt. Graceful Degradation of User In-
terfaces as a Design Method for Multiplatform Systems. In IUI ’04:
Proceedings of the 9th International Conference on Intelligent User In-
terfaces, pages 140–147, New York, NY, USA, 2004. ACM Press.

http://www.w3.org/TR/2008/WD-access-control-20080214/
http://www.w3.org/TR/2008/WD-access-control-20080214/
http://www.w3.org/TR/2007/WD-widgets-20071013/
http://tools.ietf.org/html/rfc2965
http://www.cs.helsinki.fi/u/salaakso/patterns
http://www.cs.helsinki.fi/u/salaakso/patterns
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2007/WD-dcontology-20071221/
http://www.w3.org/TR/REC-CSS1-961217
http://www.abiresearch.com/abiprdisplay.jsp?pressid=922
http://www.abiresearch.com/abiprdisplay.jsp?pressid=922
http://www.openmobilealliance.org/release_program/browsing_archive.html
http://www.openmobilealliance.org/release_program/browsing_archive.html

138 BIBLIOGRAPHY

[132] M. Mace. Growth of Web Applications in the US: Rapid
Adoption, But Only When There’s a Real Benefit, 2007.
http://www.rubiconconsulting.com/thinking/whitepaper/
2007/09/growth_of_web_applications_in.html.

[133] C. Mariage, J. Vanderdonckt, and C. Pribeanu. State of the Art of
Web Usability Guidelines. The Handbook of Human Factors in Web
Design, 2004.

[134] T. Mehrvarz, L. Pajunen, J. Quint, and D. Appelquist. WICD Core
1.0. W3C Candidate Recommendation, 2007. http://www.w3.org/
TR/2007/CR-WICD-20070718/.

[135] T. Mehrvarz, L. Pajunen, J. Quint, and D. Appelquist. WICD Mobile
1.0. W3C Candidate Recommendation, 2007. http://www.w3.org/
TR/2007/CR-WICDMobile-20070718/.

[136] A. Mesbah and A. van Deursen. An Architectural Style for Ajax. WIC-
SAŠ07: 6th Working IEEE/IFIP Conference on Software Architecture,
2007.

[137] P. Metz, J. O’Brien, and W. Weber. Specifying Use Case Interaction:
Types of Alternative Courses. Journal of Object Technology, 2(2):111–
131, 2003.

[138] Microsoft. Silverlight Architecture, 2008. http://msdn2.microsoft.
com/en-us/library/bb404713.aspx.

[139] Sun Microsystems. The K Virtual Machine (KVM), 2000. http://
java.sun.com/products/cldc/wp/.

[140] Sun Microsystems. Java ME Technology, 2007. http://java.sun.
com/javame/technology/.

[141] T. Mikkonen and A. Taivalsaari. Using JavaScript as a Real Pro-
gramming Language. Technical report, Sun Microsystems Lab-
oratories, 2007. http://research.sun.com/techrep/2007/smli_
tr-2007-168.pdf.

[142] T. Mikkonen and A. Taivalsaari. Web Applications - Spaghetti
Code for the 21th Century. Technical report, Sun Microsystems
Laboratories, 2007. http://research.sun.com/techrep/2007/smli_
tr-2007-166.pdf.

http://www.rubiconconsulting.com/thinking/whitepaper/2007/09/growth_of_web_applications_in.html
http://www.rubiconconsulting.com/thinking/whitepaper/2007/09/growth_of_web_applications_in.html
http://www.w3.org/TR/2007/CR-WICD-20070718/
http://www.w3.org/TR/2007/CR-WICD-20070718/
http://www.w3.org/TR/2007/CR-WICDMobile-20070718/
http://www.w3.org/TR/2007/CR-WICDMobile-20070718/
http://msdn2.microsoft.com/en-us/library/bb404713.aspx
http://msdn2.microsoft.com/en-us/library/bb404713.aspx
http://java.sun.com/products/cldc/wp/
http://java.sun.com/products/cldc/wp/
http://java.sun.com/javame/technology/
http://java.sun.com/javame/technology/
http://research.sun.com/techrep/2007/smli_tr-2007-168.pdf
http://research.sun.com/techrep/2007/smli_tr-2007-168.pdf
http://research.sun.com/techrep/2007/smli_tr-2007-166.pdf
http://research.sun.com/techrep/2007/smli_tr-2007-166.pdf

BIBLIOGRAPHY 139

[143] T. Mikkonen, A. Taivalsaari, D. Ingalls, and K. Palacz. Web Browser
as an Application Platform: The Lively Kernel Experience. Technical
report, Sun Microsystems Laboratories, 2008. http://research.sun.
com/techrep/2008/smli_tr-2008-175.pdf.

[144] E. Mitukiewicz and F. Telecom. Scope of Mobile Web Best Prac-
tices. W3C Working Group Note, 2005. http://www.w3.org/TR/
2005/NOTE-mobile-bp-scope-20051220/.

[145] .NET Compact Framework for Symbian OS, 2007. http://www.
redfivelabs.com/.

[146] M. Nicola and J. John. XML Parsing: A Threat to Database Perfor-
mance. In CIKM ’03: Proceedings of the Twelfth International Con-
ference on Information and Knowledge Management, pages 175–178,
New York, NY, USA, 2003. ACM.

[147] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing Thousand Oaks, CA, USA, 1999.

[148] J. Nielsen. Ephemeral Web-Based Applications, 2002. http://www.
useit.com/alertbox/20021125.html.

[149] J. Nielsen. Why Ajax Sucks (Most of the Time), 2005. http://www.
usabilityviews.com/ajaxsucks.html.

[150] Nokia Corporation. Nokia Web Browser Design Guide,
2007. http://www.forum.nokia.com/info/sw.nokia.com/id/
f8057b17-e5d7-43da-929f-34b33459d383/Nokia_Web_Browser_
Design_Guide_v1_0_en.pdf.html.

[151] Nokia Corporation. S60 Platform: Introductory Guide,
2008. http://www.forum.nokia.com/info/sw.nokia.com/
id/fc17242f-9bb2-4509-b12c-1e6b8206085b/S60_Platform_
Introductory_Guide_v1_6_en.pdf.html.

[152] M. Nottingham and R. Sayre. The Atom Syndication Format, 2005.
http://tools.ietf.org/html/rfc4287.

[153] O. Ojala. Service Oriented Architecture in Mobile Devices: Protocols
and Tools. Master’s thesis, Helsinki University of Technology, 2006.

[154] S. Pemberton et al. XHTMLTM1.0: The Extensible HyperText Markup
Language. W3C Recommendation, 2000. http://www.w3.org/TR/
2000/REC-xhtml1-20000126/.

http://research.sun.com/techrep/2008/smli_tr-2008-175.pdf
http://research.sun.com/techrep/2008/smli_tr-2008-175.pdf
http://www.w3.org/TR/2005/NOTE-mobile-bp-scope-20051220/
http://www.w3.org/TR/2005/NOTE-mobile-bp-scope-20051220/
http://www.redfivelabs.com/
http://www.redfivelabs.com/
http://www.useit.com/alertbox/20021125.html
http://www.useit.com/alertbox/20021125.html
http://www.usabilityviews.com/ajaxsucks.html
http://www.usabilityviews.com/ajaxsucks.html
http://www.forum.nokia.com/info/sw.nokia.com/id/f8057b17-e5d7-43da-929f-34b33459d383/Nokia_Web_Browser_Design_Guide_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/f8057b17-e5d7-43da-929f-34b33459d383/Nokia_Web_Browser_Design_Guide_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/f8057b17-e5d7-43da-929f-34b33459d383/Nokia_Web_Browser_Design_Guide_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/fc17242f-9bb2-4509-b12c-1e6b8206085b/S60_Platform_Introductory_Guide_v1_6_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/fc17242f-9bb2-4509-b12c-1e6b8206085b/S60_Platform_Introductory_Guide_v1_6_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/fc17242f-9bb2-4509-b12c-1e6b8206085b/S60_Platform_Introductory_Guide_v1_6_en.pdf.html
http://tools.ietf.org/html/rfc4287
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/

140 BIBLIOGRAPHY

[155] M. Pilgrim. The Myth of RSS Compatibility, 2004. http://
diveintomark.org/archives/2004/02/04/incompatible-rss.

[156] T. Pixley. Document Object Model (DOM) Level 2 Events Specifi-
cation. W3C Recommendation, 2000. http://www.w3.org/TR/2000/
REC-DOM-Level-2-Events-20001113/.

[157] M. Pohja, M. Honkala, M. Penttinen, P. Vuorimaa, and P. Ervamaa.
Web User Interaction – Comparison of Declarative Approaches. In
Proceedings of the 2nd International Conference on Web Information
Systems and Technologies (WEBIST 2006), pages 295–302, April 2006.

[158] M. Pohja and P. Vuorimaa. CSS Layout Engine for Compound Doc-
uments. Third Latin American Web Congress (LA-WEB’2005), pages
148–156, 2005.

[159] A. Popescu, R. Geisler, E. Vartiainen, and G. Grassel. Mini Map - A
Web Page Visualization Method for Mobile Phones. In XTech Confer-
ence, 2006. http://xtech06.usefulinc.com/schedule/paper/91.

[160] Java Community Process. JSR 226: Scalable 2D Vector Graphics API
for J2ME, 2006. http://jcp.org/en/jsr/detail?id=226.

[161] Java Community Process. JSR 287: Scalable 2D Vector Graphics API
2.0 for Java ME, 2007. http://jcp.org/en/jsr/detail?id=287.

[162] Java Community Process. JSR 290: Java Language & XML User In-
terface Markup Integration, 2007. http://jcp.org/en/jsr/detail?
id=290.

[163] X-Smiles Project. X-Smiles – An Open XML-browser for Exotic De-
vices, 2007. http://www.xsmiles.org/.

[164] L. Quin. The Extensible Stylesheet Language Family (XSL). W3C
Recommendation, 2007. http://www.w3.org/Style/XSL/.

[165] A. Quint. Putting SVG and CDF to Use in an Internet Desktop Appli-
cation. In XTech Conference, 2007. http://2007.xtech.org/public/
schedule/detail/53.

[166] J. Rabin and C. McCathieNevile. Mobile Web Best Practices
1.0. W3C Recommendation, 2006. http://www.w3.org/TR/2006/
PR-mobile-bp-20061102/.

http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/
http://xtech06.usefulinc.com/schedule/paper/91
http://jcp.org/en/jsr/detail?id=226
http://jcp.org/en/jsr/detail?id=287
http://jcp.org/en/jsr/detail?id=290
http://jcp.org/en/jsr/detail?id=290
http://www.xsmiles.org/
http://www.w3.org/Style/XSL/
http://2007.xtech.org/public/schedule/detail/53
http://2007.xtech.org/public/schedule/detail/53
http://www.w3.org/TR/2006/PR-mobile-bp-20061102/
http://www.w3.org/TR/2006/PR-mobile-bp-20061102/

BIBLIOGRAPHY 141

[167] D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specifica-
tion. W3C Recommendation, 1999. http://www.w3.org/TR/1999/
REC-html401-19991224/.

[168] J. Resig. getElementsByClassName Speed Comparison, 2007. http:
//ejohn.org/blog/getelementsbyclassname-speed-comparison/.

[169] L. Richardson, S. Ruby, and D. Heinemeier. RESTful Web Services.
O’Reilly, 2007.

[170] V. Roto. Browsing on Mobile Phones. Nokia Research Center, 2005.

[171] V. Roto. Web Browsing on Mobile Phones – Characteristics of User
Experience. PhD thesis, Helsinki University of Technology, 2006. http:
//research.nokia.com/people/virpi_roto/dissertation.html.

[172] V. Roto, A. Popescu, A. Koivisto, and E. Vartiainen. Minimap: A
Web Page Visualization Method for Mobile Phones. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
35–44, 2006.

[173] R. Schwerdtfeger. Roadmap for Accessible Rich Internet Applications
(WAI-ARIA Roadmap). W3C Working Draft, 2007. http://www.w3.
org/TR/2007/WD-aria-roadmap-20071019/.

[174] L. Seeman and M. Cooper. States and Properties Module for Ac-
cessible Rich Internet Applications (WAI-ARIA States and Proper-
ties). W3C Working Draft, 2007. http://www.w3.org/TR/2007/
WD-aria-state-20070601/.

[175] R. Simon, M. Kapsch, and F. Wegscheider. A Generic UIML Vo-
cabulary for Device- and Modality Independent User Interfaces. In
WWW Alt. ’04: Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & Posters, pages 434–435,
New York, NY, USA, 2004. ACM Press.

[176] Opera Software. Opera Mobile. http://www.opera.com/products/
mobile/.

[177] Opera Software. Opera Widgets Specification 1.0, 2007. http://dev.
opera.com/articles/view/opera-widgets-specification-1-0/.

[178] C. Sorrel. Half the World Will Own Mobile Phones This Year, 2007.
http://blog.wired.com/gadgets/2007/06/half-the-world-.
html.

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://ejohn.org/blog/getelementsbyclassname-speed-comparison/
http://ejohn.org/blog/getelementsbyclassname-speed-comparison/
http://research.nokia.com/people/virpi_roto/dissertation.html
http://research.nokia.com/people/virpi_roto/dissertation.html
http://www.w3.org/TR/2007/WD-aria-roadmap-20071019/
http://www.w3.org/TR/2007/WD-aria-roadmap-20071019/
http://www.w3.org/TR/2007/WD-aria-state-20070601/
http://www.w3.org/TR/2007/WD-aria-state-20070601/
http://www.opera.com/products/mobile/
http://www.opera.com/products/mobile/
http://dev.opera.com/articles/view/opera-widgets-specification-1-0/
http://dev.opera.com/articles/view/opera-widgets-specification-1-0/
http://blog.wired.com/gadgets/2007/06/half-the-world-.html
http://blog.wired.com/gadgets/2007/06/half-the-world-.html

142 BIBLIOGRAPHY

[179] M. Stachowiak. Understanding HTML, XML and XHTML, 2006.
http://webkit.org/blog/?p=68.

[180] ISO Standard. TS 9241: Ergonomic Requirements for Office Work with
Visual Display Terminals. International Organization for Standardiza-
tion, Geneva, Switzerland, 1999.

[181] ISO Standard. TS 9126: Software Product Quality - Part 1: Qual-
ity Model. International Organization for Standardization, Geneva,
Switzerland, 2001.

[182] ISO Standard. TS 16071: Ergonomics of Human-system Interaction
– Guidance on Accessibility for Human-computer Interfaces. Interna-
tional Organization for Standardization, Geneva, Switzerland, 2003.

[183] J. Stenback, P. Hegaret, and A. Hors. Document Object Model (DOM)
Level 2 Events Specification. W3C Recommendation, 2003. http:
//www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/.

[184] J. Stenback and A. Heninger. Document Object Model (DOM) Level
3 Load and Save Specification, 2004. http://www.w3.org/TR/2004/
REC-DOM-Level-3-LS-20040407/.

[185] A. Swartz. RDF Site Summary (RSS) 1.0, 2000. http://web.
resource.org/rss/1.0/.

[186] The Internet Corporation for Assigned Names and Numbers. MIME
Media Types. http://www.iana.org/assignments/media-types/.

[187] J. Treviranus, C. McCathieNevile, I. Jacobs, and J. Richards. Author-
ing Tool Accessibility Guidelines 1.0. W3C Recommendation, 2000.
http://www.w3.org/TR/2000/REC-ATAG10-20000203/.

[188] D. Van de Walle, N. Goeminne, F. Gielen, and R. Van de Walle. Chal-
lenges for Mobile Gaming based on AJAX, 2007. http://www.w3.org/
2007/06/mobile-ajax/papers/mobix.vandewalle.pdf.

[189] P. Vuorimaa. Timesheets JavaScript Engine, 2007. http://www.tml.
tkk.fi/~pv/timesheets/.

[190] P. Vuorimaa, D. Bulterman, and P. Cesar. SMIL Timesheets 1.0, 2007.
http://www.w3.org/TR/2008/WD-timesheets-20080110/.

http://webkit.org/blog/?p=68
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/
http://www.w3.org/TR/2003/REC-DOM-Level-2-HTML-20030109/
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/
http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://www.iana.org/assignments/media-types/
http://www.w3.org/TR/2000/REC-ATAG10-20000203/
http://www.w3.org/2007/06/mobile-ajax/papers/mobix.vandewalle.pdf
http://www.w3.org/2007/06/mobile-ajax/papers/mobix.vandewalle.pdf
http://www.tml.tkk.fi/~pv/timesheets/
http://www.tml.tkk.fi/~pv/timesheets/
http://www.w3.org/TR/2008/WD-timesheets-20080110/

BIBLIOGRAPHY 143

[191] K. Waters, R. Hosn, D. Raggett, S. Sathish, M. Womer, M. Frou-
mentin, L. Rhys, and K. Rosenblatt. Delivery Context: Client Inter-
faces (DCCI) 1.0. W3C Working Draft, 2007. http://www.w3.org/
TR/2007/CR-DPF-20071221/.

[192] The WebKit Open Source Project, 2007. http://webkit.org.

[193] C. Wei and J. Foncesa. Declarative Format for Applications and User
Interfaces Use Cases and Requirements Version 1.0. W3C Editor’s
Working Draft (document never published by the W3C), 2006. http:
//dev.w3.org/2006/waf/DFAUI/DFAUI-UCs-and-Reqs.html.

[194] C. Wenz. Essential Silverlight. O’Reilly, 2008.

[195] C. Wilson, P. Le Hegaret, and V. Apparao. Document Object Model
(DOM) Level 2 Style Specification. W3C Recommendation, 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/.

[196] D. Winer. OPML 2.0, 2007. http://www.opml.org/spec2.

[197] H. Wium Lie, T. Celik, and D. Glazman. Media Queries. W3C
Candidate Recommendation, 2007. http://www.w3.org/TR/2007/
CR-css3-mediaqueries-20070606/.

[198] Web Runtime (WRT) Desktop Development, 2007. http://blogs.
forum.nokia.com/blog/jari-otranens-forum-nokia-blog/
browsing/.

[199] XML Binding Language (XBL) 2.0. W3C Candidate Recommendation,
2007. http://www.w3.org/TR/2007/CR-xbl-20070316/.

All online references checked on April 15, 2008.

http://www.w3.org/TR/2007/CR-DPF-20071221/
http://www.w3.org/TR/2007/CR-DPF-20071221/
http://webkit.org
http://dev.w3.org/2006/waf/DFAUI/DFAUI-UCs-and-Reqs.html
http://dev.w3.org/2006/waf/DFAUI/DFAUI-UCs-and-Reqs.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.opml.org/spec2
http://www.w3.org/TR/2007/CR-css3-mediaqueries-20070606/
http://www.w3.org/TR/2007/CR-css3-mediaqueries-20070606/
http://blogs.forum.nokia.com/blog/jari-otranens-forum-nokia-blog/browsing/
http://blogs.forum.nokia.com/blog/jari-otranens-forum-nokia-blog/browsing/
http://blogs.forum.nokia.com/blog/jari-otranens-forum-nokia-blog/browsing/
http://www.w3.org/TR/2007/CR-xbl-20070316/

Appendix A

Markup and Code Examples

A.1 CSS Media Types, Media Features and
Implicit Transitions

In Listing A.1, media queries [197] are leveraged to serve mobile.css style
sheet to user agents accepting media type screen or handheld and whose
viewport width is 480 pixels or below. In Listing A.2, implicit transitions
[103] are used to animate the enlargement of elements having a class enlarge
while the pointer is hovered on top of them.

Listing A.1 CSS media queries example.
<link media="handheld and (max-device-width: 480px),

screen and (max-device-width: 480px)"
href="mobile.css" type="text/css" rel="stylesheet" />

Listing A.2 CSS implicit transitions.
.enlarge {

width: 320px;
height: 240px;
-webkit-transition-property: all;
-webkit-transition-duration: 2s;
-webkit-transition-timing-function: ease-in-out;

}

.enlarge:hover {
width: 640px;
height: 480px;

}

144

A.2. S60 WEB RUNTIME WIDGET MANIFEST 145

A.2 S60 Web Runtime Widget Manifest

Widget properties supported in S60 Web Runtime 1.0 are listed in Table A.1
[52, p. 8]. An example of S60 Web Runtime info.plist manifest file is
presented in Listing A.3.

Table A.1: Widget properties supported in S60 Web Runtime 1.0.
Name Type Status Example Description
DisplayName String Required Example Widget Widget name, to be

shown on the applica-
tions menu.

Identifier String Required com.company.example A unique string identify-
ing the widget.

MainHTML String Required example.html Name of the HTML
page to be loaded when
the widget is initialized.

AllowNetwork
Access

Boolean Optional true | false Defines is network ac-
cess allowed.

Version String 1.0 Optional Widget’s version.

Listing A.3 S60 Web Runtime manifest file example.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Nokia//DTD PLIST 1.0//EN"

"http://www.nokia.com/NOKIA_COM_1/DTDs/plist-1.0.dtd">
<plist version="1.0">
<dict>

<key>DisplayName</key>
<string>Example Widget</string>
<key>Identifier</key>
<string>com.company.example</string>
<key>MainHTML</key>
<string>example.html</string>
<key>Version</key>
<string>1.0</string>
<key>AllowNetworkAccess</key>
<true/>

</dict>
</plist>

146 APPENDIX A. MARKUP AND CODE EXAMPLES

A.3 Feed Widget Event Handling

Listing A.4 A simplified example of the event handling mechanism of the
Feed Widget.
<!-- index.html -->

<button id="doSomethingAction">Do Something</button>

/* MyController.js */

function MyController() {
var this.self = this;
}

MyController.prototype = {
initialize: function () {

var ed = new EventDispatcher(this.self);
document.addEventListener(’keydown’,

function(event) { ed.dispatch(event); },
true);

},

doSomething: function () {
// do something

}
};

/* EventDispatcher.js */

function EventDispatcher(instance) {
this.instance = instance;

};

EventDispatcher.prototype = {
dispatch: function (event) {

function execute(action) {
instance[action](event.target);

}
function getActionName(element) {
// returns the action name based on the id or className of the element

}

execute(getActionName(event.target));
}

};

Appendix B

Rendering Engines

B.1 Supported Web Technologies

Table B.1: Support for web technologies by rendering engines.
Rendering
engine

Trident Gecko WebKit Presto

Browser
version

Internet Ex-
plorer 7

Firefox 2 Web Browser
for S60, Safari 2

Opera 9

XHTML 1 partial 1.1 1.1 1.1

CSS 2.1 partial 2.1, 3 partial 2.1, 3 partial 2.1, 3 partial

JavaScript 1.5 1.6 1.5 1.5

DOM 1, 2 partial 1, 2, 3 partial 1, 2, 3 partial 1, 2, 3 partial

XForms plugin plugin JS engine JS engine

WICD no no no no

SVG no 1.1 partial no 1.1 partial

XSLT yes yes no yes

XPath no yes no yes

E4X no yes no no

147

	Glossary
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Background
	Scope of the Thesis
	Methodology
	Structure of the Thesis

	Requirements for Web Applications
	Use Cases for Web Applications
	User Interfaces in Computing
	User Interaction Models for Web Applications

	Common Non-functional Requirements
	Usability
	Accessibility

	Guidelines for Developers
	Usability Guidelines
	Web Accessibility Guidelines
	Design Guidelines and Best Practices
	Web Technology Design Principles
	Interaction Patterns

	Key Requirements
	Generic Requirements
	Interaction Pattern Requirements
	User Interface Language Requirements

	Summary

	Web Technologies
	The Web Architecture
	Key Concepts
	Overview of the Web Technology Stack

	Base Layers of the Web Architecture
	Identification and Communications
	Extensible Markup Language
	Document Object Model

	Core Web Technologies for Web Applications
	(Extensible) Hypertext Markup Language
	Cascading Style Sheets
	JavaScript

	Mobile-specific Web Technologies
	Evolution of the Core Web Technologies
	HTML 5
	Cascading Style Sheets Level 3
	JavaScript 2

	Emerging Web Technologies for Web Applications
	Open Web Standards
	Proprietary Application and UI Markup Languages
	Client-side Extensions
	Essential Data Interchange Formats

	Summary

	Web Applications and Platforms
	Web Applications
	Web Application Architectures
	Web Application Programming Interfaces
	Classification of Web Applications
	Feed Reader Applications for Mobile Devices

	Platforms for Web Applications
	Operating Systems
	Middleware
	Web Browser as a Ubiquitous Client
	Web Runtime Environments
	S60 Web Runtime -- A Web Runtime Environment for the S60
	Other Platforms
	Overview of the Platforms

	Summary

	Concept Implementation
	The Feed Widget -- An Overview
	Functionality
	Use Case Description
	Functional Requirements
	Design Overview
	Custom Components and Interfaces
	MVC Implementation
	Functionality Related to Views
	Event-driven Design
	Models Representing the Domain Objects

	Summary

	Evaluation
	Overview of the Results
	Interaction Pattern Requirements
	Typical Interactors
	Master-detail
	Paging and Dialogs
	Repeating and Nested Constructs
	Copy-paste and Undo-redo
	Drag and Drop
	Filtering

	User Interface Language Requirements
	Graphically Rich Content
	Exact Control of the Presentation
	Layout and Content Adaptation
	Navigation
	Interactive Graphical Menu System
	Customizable Presentation

	Summary

	Discussion
	Functionality
	Incompatible Browser and Rendering Engine Implementations
	Role of the Declarative Markup
	Core JavaScript Limitations
	Data Format Incompatibilities
	Styling and Layout Issues

	Efficiency
	Core JavaScript Performance
	The DOM as a Global Data Model
	Limited Support for State Management
	Various Client-side Data Persistence Mechanisms
	Inefficient DOM and CSS Implementations

	Portability
	Manifest Limitations
	Accessibility
	Security Sandbox and the Same Origin Policy
	Device-independence and Multimodality
	Hypertext Navigation
	Graceful Degradation
	Modality Issues Related to the Event Model

	Ease of Authoring
	Web Integration
	Key Findings and Recommendations
	Language Issues
	Performance Issues
	Interoperability and Compatibility Issues
	Usability and User Interaction Issues
	Web Runtime Environment Issues

	Conclusion
	Future Work

	Bibliography
	Markup and Code Examples
	CSS Media Types, Media Features and Implicit Transitions
	S60 Web Runtime Widget Manifest
	Feed Widget Event Handling

	Rendering Engines
	Supported Web Technologies

