
1

Abstract

This thesis addresses certain problems encountered by teams of engineers when modelling complex

structures and processes subject to cost and other resource constraints. The cost of a structure or process may

be ‘read off’ its specifying model, but the language in which the model is expressed (e.g. CAD) and the

language in which resources may be modelled (e.g. spreadsheets) are not naturally compatible. This thesis

demonstrates that a number of intermediate steps may be introduced which enable both meaningful

translation from one conceptual view to another as well as meaningful collaboration between team members.

The work adopts a diagrammatic modelling approach as a natural one in an engineering context when

seeking to establish a shared understanding of problems.

Thus, the research question to be answered in this thesis is: ‘To what extent is it possible to improve user-

driven software development through interaction with diagrams and without requiring users to learn

particular computer languages?’ The goal of the research is to improve collaborative software development

through interaction with diagrams, thereby minimising the need for end-users to code directly. To achieve

this aim a combination of the paradigms of End-User Programming, Process and Product Modelling and

Decision Support, and Semantic Web are exploited and a methodology of User Driven Modelling and

Programming (UDM/P) is developed, implemented, and tested as a means of demonstrating the efficacy of

diagrammatic modelling.

In greater detail, the research seeks to show that diagrammatic modelling eases problems of maintenance,

extensibility, ease of use, and sharing of information. The methodology presented here to achieve this

involves a three step translation from a visualised ontology, through a modelling tool, to output to interactive

visualisations. An analysis of users groups them into categories of system creator, model builder, and model

user. This categorisation corresponds well with the three-step translation process where users develop the

ontology, modelling tool, and visualisations for their problem.

This research establishes and exemplifies a novel paradigm of collaborative end-user programming by

domain experts. The end-user programmers can use a visual interface where the visualisation of the software

exactly matches the structure of the software itself, making translation between user and computer, and vice

versa, much more direct and practical. The visualisation is based on an ontology that provides a

representation of the software as a tree. The solution is based on translation from a source tree to a result tree,

and visualisation of both. The result tree shows a structured representation of the model with a full

visualisation of all parts that leads to the computed result.

In conclusion, it is claimed that this direct representation of the structure enables an understanding of the

program as an ontology and model that is then visualised, resulting in a more transparent shared

understanding by all users. It is further argued that our diagrammatic modelling paradigm consequently

eases problems of maintenance, extensibility, ease of use, and sharing of information. This method is

applicable to any problem that lends itself to representation as a tree. This is considered a limitation of the

method to be addressed in a future project.

2

Contents

Ch 1 - Introduction

1.1 Explanation of the Problem

1.2 Research Hypothesis

1.3 Research Aims

1.4 Objectives

1.4.1 Enabling Better and more Adaptable Modelling

1.4.2 Methodology for Achievement of Objectives

1.5 Target Users

1.5.1 System Creator

1.5.2 Model Builders

1.5.3 Model Users

1.6 Thesis Structure

Ch 2 - Literature Review

2.1 Introduction

2.2 Past Research of others and how this affects present modelling problems

2.3 Structure and Implicit Knowledge

2.3.1 Ontologies for Modelling and Simulation

2.3.2 Semantic Web and Ontologies

2.4 Interaction for Modelling with Ontologies

2.5 Visualisation and Interaction

2.6 Model-Driven Programming for Better Model Production

2.7 Accessibility of Models

2.7.1 Translation Steps

2.7.2 Better Models

2.8 Conclusions - Focus for Developing a Theory and Apparatus

Ch 3 - User Driven Programming/Modelling Theory

3.1 Building a Theoretical Apparatus

3.2 Information Structuring and Navigation

3.3 Visualisation and Interaction for Modelling

3.3.1 Users and De-abstraction for Translation

3.3.2 Translation Process

3.4 Ontology Based Modelling Solutions

3.5 Ontologies for Interoperability and Reuse of Models

3.5.1 Engineering Domain Specific Standards

3

3.5.2 Web and Interoperability Standards

3.6 Ontologies and Semantic Web technology and their role in Modelling

3.6.1 Semantic Web and Web 2.0 Collaboration

3.6.2 Central Ontology Management

3.7 Meta-Programming as a Model Creation Technique

3.7.1 Model-Driven Programming

3.8 Conclusions

Ch 4 - Research Design: Methodology

4.1 Creation of a modelling system

4.2 Modelling Tools

4.2.1 Improving and Building On End-User Interaction and Ease of Use

4.3 Spreadsheets

4.3.1 Improving and Building On Information Structuring and Visualisation

4.4 Ontology Tools

4.4.1 Improving and Building on Modelling Capability and End-User Interaction

4.5 Semantic Web/Web 2.0

4.5.1 Improving and Building on Modelling Capability and End-User Interaction

4.6 System to be Developed

4.7 Building a System for Ontology and Semantic Web based Modelling

4.8 Enabling User Driven Modelling/Programming

4.9 Conclusions

Ch 5 - Development: Early Prototypes

5.1 Illustration of the problems to be addressed

5.1.1 Spreadsheet Modelling

5.1.2 ACCS Example

5.1.2.1 Project Aim

5.1.2.2 ACCS Implementation

5.2 Macros and Programming by Example

5.3 Visualisation and Interactivity for Translation

5.4 Web Spreadsheet and Semantic Modelling Examples

5.5 Necessary Improvements

5.5.1 Better Visualisation

5.5.2 Better Representation and Structure

5.5.3 Better Interactivity

5.6 Discussion

5.7 Recommendations

4

Ch 6 - Development: Final Prototype Implementation

6.1 Background to Projects and Implementation

6.2 Wing Spar Explanation

6.3 Implementation Techniques and Examples

6.3.1 Implementation Simple Example

6.3.1.1 Step 1

6.3.1.2 Step 2

6.3.1.3 Step 3

6.4 Implementation Results and Benefits

6.4.1 Modelling Tools

6.4.2 Spreadsheets

6.4.3 Ontology Tools

6.4.4 Semantic Web/Web 2.0

6.4.4.1 Semantic Search

6.5 Examples

6.5.1 Step 1 - Ontology

6.5.2 Step 2 - Modelling Tool

6.5.3 Step 3 - Interactive Visualisation

6.5.3.1 Step 3 - CAD Style Interactive Visualisation

6.5.3.2 Translation to Program/Meta-Program Code

6.6 Wider Engineering Translation

6.7 End-user Programming/Modelling Evaluation

6.7.1 End-user Survey

6.7.2 Usability Evaluation

6.8 Analysis and Reflection

Ch 7 - Discussion

7.1 Enabling Visual Semantic Web programming

7.2 Widening user programming participation: Generic Modelling

7.3 Widening Participation: Online Editable Systems

7.4 User Driven Modelling Solutions

7.4.1 Method

7.5 Business Benefits

7.5.1 Visualising Reports

7.6 User Driven Modelling - Intermediate Benefits

Ch 8 - Conclusion and Further Research

8.1 Summary and Evaluation

8.1.1 Maintenance

5

8.1.2 Extensibility

8.1.3 Ease of Use

8.1.4 Sharing of Information

8.2 Conclusion

8.3 Further Research

8.3.1 Ontology Development

8.3.2 Ontology Visualisation and Interaction

8.3.3 Modelling and Simulation

8.3.4 Meta-Programming and Rule Based Programming

8.3.5 Visualisation and Taxonomy Management

8.3.6 Research Connectivity

8.3.7 User Management

8.4 Final Statement

Ch 9 - Appendix

9.1 Process Modelling

9.1.1 DATUM Process Modelling Example

9.2 Process Specification Language - PSL

9.3 STEPml

9.4 XMI (XML Metadata Interchange)

9.5 Yahoo Pipes

9.6 Online Examples

6

Figures
Figure 1. Research Area ... 10
Figure 2. How Objectives and Methodology will aid better modelling ... 15
Figure 3. Layered Architecture, sourced from Berners-Lee (2000) and McGuinness (2003) 32
Figure 4. Java Graph Layout example, possible user interface for user driven program 57
Figure 5. Early End-user Modelling Example .. 58
Figure 6. Early End-user Modelling Example 2 ... 58
Figure 7. Translation Process ... 64
Figure 8. Translation for Interaction and Visualisation .. 65
Figure 9. Translation Process Design ... 66
Figure 10. Recursive Translation - Automated Copying from ontology to modelling system 68
Figure 11. Translation Process for User Driven Modelling/Programming (UDM/P) 70
Figure 12. Visualising and Interacting with database/ontology information .. 86
Figure 13. Methodology Diagram - Enabling User Driven Modelling/Programming 93
Figure 14. Translation Process Chain ... 98
Figure 15. Research Development Iterations ... 101
Figure 16. User Driven Modelling/Programming System .. 106
Figure 17. ACCS spreadsheet model navigation .. 110
Figure 18. Distributed Spreadsheet Spar Definition ... 111
Figure 19. DAML+Oil Web Program linking to ontology information ... 113
Figure 20. Ontology of Engine Components and related information ... 114
Figure 21. Selection of Material for components ... 115
Figure 22. XML Based Software for capturing information .. 116
Figure 23. Automated Generation of Web Forms .. 117
Figure 24. Wing Spar Diagram .. 120
Figure 25. Stepped Translation and Visualisation .. 121
Figure 26. Rectangle Definition in Ontology ... 123
Figure 27. Rectangle Area Attribute .. 124
Figure 28. Step 2 - Translation and Calculation ... 124
Figure 29. Results Output as Tree (XML based) ... 125
Figure 30. CAD type interface and User Interaction and Calculation .. 126
Figure 31. Cube model example - illustrates choice of process etc. ... 127
Figure 32. Translation to SVG Visualisation ... 128
Figure 33. Ontology to Model Conversion... 129
Figure 34. Translation Process Implementation ... 131
Figure 35. Semantic Search interface ... 133
Figure 36. Results from semantic search .. 133
Figure 37. Web Protégé Interface... 134
Figure 38. Bitriple Ontology Creation Screenshot ... 135
Figure 39. Translation of Equation Representation from Protégé to Vanguard System................................. 136
Figure 40. Spar branch automatically created from information source .. 138
Figure 41. Part Definition Branch .. 139
Figure 42. Pre Preg Mass Calculation .. 140
Figure 43. Hand Layup Calculation ... 140
Figure 44. Using the tree view for cost drill down ... 141
Figure 45. Spar Volume calculation model running on the web .. 142
Figure 46. Web page showing translated XML displayed as interactive web application 143
Figure 47. Flash interface for navigating exported XML tree .. 144
Figure 48. Flash viewing of Spar Part Definition node .. 145
Figure 49. Interactive Spar Diagram (SVG) ... 146
Figure 50. Translation from decision tree into Java ... 147
Figure 51. Translation from decision tree into Java web Applet .. 147
Figure 52. Translation from decision tree to Cost Estimator.. 148
Figure 53. Parametric Cost Estimation ... 149
Figure 54. End-user programming survey .. 150
Figure 55. Research Direction Spiral ... 153
Figure 56. User Generated Change .. 155
Figure 57. User Generated Change, Alternative Interfaces .. 156
Figure 58. Model Generated Change ... 157

7

Figure 59. Generic Modelling .. 157
Figure 60. End-User Programming, Modelling and Meta-Programming with Semantic Web 159
Figure 61. Solution for User Driven Programming .. 161
Figure 62. Two Way Translation between users and computers .. 171
Figure 63. E-Learning, End-User Programming, and the Semantic Web .. 173
Figure 64. Representation of Engine Ring Manufacturing Sequence .. 187
Figure 65. Section from PSL Process Taxonomy and sequence rendered with stylesheet - PSL Class

Definition ... 189
Figure 66. PSL Instance Creation... 190
Figure 67. PSL Time Point Creation .. 190
Figure 68. PSL Activity Specifications .. 191
Figure 69. Activity Occurrence Times ... 192
Figure 70. STEPml example rendered with stylesheet ... 193
Figure 71. XMI Taxonomy - Product Data Structure - Visualised with Stylesheet 194
Figure 72. Example Yahoo Pipe .. 195

Tables

Table 1. Users and De-abstraction for Translation ... 62
Table 2. Language and Tool Mapping ... 81
Table 3. Roles, Skills, and Translation ... 165
Table 4. Stepped Translation and Modelling ... 165
Table 5. Online Examples by Categories ... 196

8

Chapter 1 Introduction

1.1 Explanation of the Problem

Diagrammatic modelling plays a major role in current practice in the design of software, and in the design of

engineering components. Diagrams also play a role in Business Modelling, and Scientific Modelling and

Visualisation. The problem to be investigated is how to use such tools within engineering to create or enable

a shared understanding, and what is common in the use of these tools for engineering modelling to other

types of modelling.

This research involves enabling computer literate people who are not programmers to create software. The

means for this is construction of visual diagrams that represent the task, in a similar way to how family trees

and taxonomies can be represented as diagrams. The research involves translating from an ontology to

modelling system code and meta-code, and also to a visual interface produced by automated translation, and

demonstrated on a website (Hale, 2011). The aim is to enable programming without requiring people to learn

computer languages. Of particular interest is making it possible for a wider range of people to collaborate on

development of computer models. The main objective of this research is to create a modelling system that

can be edited by computer literate non-programmers, and so demonstrate an application of end-user

programming that could be used in a generic way. The methodology for this is automation by translation

from a human level of abstraction to software. This is explained in chapter 3.

The aspiration behind this thesis is that it is possible to create a systematic diagrammatic representation of

logical thought to enable representation of user's wishes to a computer. C.S. Peirce (1906) proclaimed in

'Prolegomena to an Apology for Pragmaticism', "Come on, my Reader, and let us construct a diagram to

illustrate the general course of thought; I mean a system of diagrammatization by means of which any course

of thought can be represented with exactitude". Perhaps use of new technologies can solve this old problem.

That is the purpose of this research, but to limit the scope and so make application of this theory testable, the

research is restricted mainly to engineers (because they often think in terms of diagrams) and to the domain

of modelling (which often requires diagrams). Others can expand it for different domains and users. So the

aim is to apply the research first where it can have the most immediate use and encourage others to expand it

for other domains and other users. This research is intended to simplify computing for computer literate non-

programmers, this includes many engineers. The main research area is enabling users such as engineers to

model the problems they encounter in manufacturing and design. However, the wider aim is to prototype

research for enabling a larger range of software users to model their problems. The intention is to create

collaborative tools that allow users to develop software in a way they will be familiar with from their use of

spreadsheets.

The type of problem modelled by engineers using spreadsheets is usually dependent on a product data

structure (bill of materials), component structure, and a structure of processes. These can all be represented as

a linked structure of taxonomy trees. Such a structure is relatively simple to represent diagrammatically, and

9

also programmatically as it is recursive; so this is the application for the research. A further advantage is that

taxonomy representations are common for fields outside engineering. The example problem examined in this

thesis is that of allowing domain experts to create decision support software. This is a way of testing the

assumption that these domain expert's thoughts can be represented in a systematic diagrammatic way, and

then translated to computer code, which will simplify the tasks of engineers, who experience problems in

creating and sharing their software. The main emphasis is on engineers who need to develop and share

models and information. The alternatives they have for creation of software are spreadsheets, which do not

have collaboration and information modelling abilities sufficiently built in, or complex software that needs

considerable expertise to use, and often still has insufficient collaboration or information modelling

capabilities. The research is aimed towards the early stage of design where tree-based diagrams are most

advantages, rather than the later stages where complex models such as CAD and Finite Element Analysis, are

used. Crapo et al. (2002) assert the need for a methodology for creation of systems to enable more

collaborative approaches to modelling by domain expert end-users, and that this combined with visualisation

would allow engineers to model problems accurately.

1.2 Research Hypothesis

End-User Programming, and Modelling are both related to construction of this hypothesis. End-User

Programming involves representing the program to enable end-users to interact with it. The way chosen as

most relevant to this thesis is representation by visualisation of the problem. This visualisation effectively

shows a model of the program, this model can be represented and interacted with diagrammatically. The

target for testing this hypothesis is modelling, such as for engineering problems. So the terms User Driven

Programming and User Driven Modelling are used in combination.

Therefore the research question to be answered in this thesis is - ‘To what extent is it possible to improve

user-driven software development through interaction with diagrams and without requiring users to learn

particular computer languages?’

To investigate this question, it is also necessary to investigate collaborative knowledge management in order

to enable creation of a shared understanding of diagrammatic modelling and programming, and of the domain

the diagrams/models/programs represent.

The hypothesis is that it is possible to create an End-User Programming environment, usable by non-

programmers, which can have a wide variety of uses especially for modelling. This involves a technique

termed throughout the thesis as User Driven Modelling (UDM) and/or User Driven Programming (UDP),

which are both aspects of the same problem of enabling production of better and more accessible

models/programs. The possibilities for a generic User Driven Programming (UDP) environment will be

explained. It is possible to create an end-user visual programming environment using Semantic Web

technologies, especially for modelling of information, where this approach is well suited. To achieve this it is

necessary to link the information visually via equations, perform calculations, and store results for reuse and

collaboration. This can make translation from humans to computers easier and more reliable than current

software systems and languages. The use of Semantic Web languages as information representation and even

10

as programming languages would assist greatly with interoperability as these modelling languages are

standardised for use in a wide range of computer systems. The main focus is creation of modelling systems

for decision support.

This hypothesis needs to be tested with a practical application via creation of a modelling/programming

system for a real and common problem, supported by diagrams. The problem chosen is design for

manufacture as this is a common problem in engineering that needs the use of product and process tree

structures. Design for manufacture can also be aided by translation of early stage product design parameters

into CAD style diagrams to aid later stage design. Further the problem is collaborative and this requires

navigation of a graph/web structure, Semantic Web technologies can be used for this. These structures are

also common to problems other than engineering.

1.3 Research Aims

The main aim is to improve collaborative software development through the interaction with diagrams and

minimise the need for end-users to learn code. The thesis explains research into modelling problems using

software. It advocates an approach to software that enables users to create models, and share them online.

This can assist modellers to become end-user programmers and be in control of the model creation process.

This research arises out of projects to create systems to facilitate management of design and cost related

knowledge within aerospace organisations, with the aim of using this knowledge to reduce the costs of

designing and manufacturing products. This thesis identifies ways that problems arising from the model

development process can be addressed, by a new way of providing for the creation of software. With

experience from projects, which have used a combination of proprietary software solutions and bespoke

software, it is possible to identify the approach of User Driven Programming (UDP) as an effective software

development technique. This research brings together approaches of object orientation, the Semantic Web,

relational databases, and Model-Driven and Event-Driven programming. Frankel et al. (2004) explain the

opportunities for, and importance of this kind of research, and Uschold and Gruninger (2004) discuss such an

approach. The approach encourages much greater user involvement in software development. The advantages

of increasing user involvement in software development are explained by (Olsson, 2004). The intention of

this research is to allow users to create the model/program they develop without the need for writing code.

This research brings together End-User Programming, Modelling and the Semantic Web approaches, so the

shaded area is examined. Figure 1 shows this :-

Figure 1. Research Area

11

Visualisation is important to all three of these research areas. The representation of program structure also

needs to be visualised to End-User Programmers so they can create and edit content. Semantic Web research

is not an end in itself as without the combination with End-User Programming/Modelling in order that people

can create programs; there is insufficient incentive for creation and use of information and knowledge to be

represented using Semantic Web technologies. The reverse of this combination is that end-user

modelling/programming is not practical without creation and use of structured knowledge/information

representation available through an accessible interface, such as representations using the Semantic Web.

This fusion of research and technologies is illustrated by the relationships between the research shown by

Lieberman (2000), and McGuinness (2003), which contain explanations and links between End-user

Programming and Semantic Web research areas. In order to increase the use of Semantic Web technologies it

is necessary to create applications that make use of the Semantic Web for practical applications. Enabling

modelling with Semantic Web technologies could encourage domain experts to fill ontologies with useful

information, so generating more benefit from their use.

Within this thesis the terms 'user', and 'domain expert' are used interchangeably. The user or domain expert

may be an end-user, or an end-user programmer/modeller depending on their circumstances and purposes.

The user is a domain expert who wants a problem represented and modelled using software. The domain is

engineering, but this research could be applied to other domains.

This thesis involves automatically producing modelling software from ontologies. The methodology for this

is creation of an ontology of items that hold equations and values, and then converting this automatically to a

visual model. This allows non programmers to create and share models. An important area of research is a

technique for end-user programming, that of allowing visual modelling of information. This corresponds to

the type of work normally undertaken using spreadsheets. This research involves using Semantic Web

technologies to enable end-user programming. The technology is applicable to any problem that involves

user interaction, calculation, and modeling so it can be applied to a wide range of tasks and subject areas.

1.4 Objectives

This thesis outlines techniques used, in order to enable decision support during product development, whilst

minimising dependence on specialist software and detailed programming effort. The User Driven

Modelling/Programming (UDM/P) approach and its application to the systems modelling research explained

above, is developed using examples ranging from visualisation and calculation of the area of a rectangle, to

the modelling and costing of complex processes, and the visualisation of component design.

This research will examine creation of models and modelling systems, and how this can be eased so that a

wider range of the population can achieve this. It will also identify ways that creation of models and

modelling systems is similar to other types of programming, and how the research can be applied more

generally. The main users of the system will be engineers; possibilities for wider usage will be explored.

The purpose of User Driven Modelling/Programming is to enable non programmers to create and adjust

models in order to maximise the maintenance, extensibility, ease of use, and sharing of information in models

12

and modelling systems. This is in order to develop a systematic methodology for creation of models that are

adaptable and applicable to a range of situations, and so to enable end-users to produce better models of their

domain problems. Section 1.41 explains the main objectives, section 1.42, and Figure 2 explain how these

objectives are to be achieved. The research will investigate the following areas in order to ease the process of

model creation.

1.4.1 Enabling Better and more Adaptable Modelling

Maintenance

Maintenance of models and modelling systems will be improved by :-

 A stepped translation process consisting of Step 1 - Ontology/Taxonomy creation, Step 2

Translation and Modelling, Step 3 - Translation and Visualisation (there is some overlap e.g.

modelling is possible at all stages).

 Use of open standards to represent information in a format available to the maximum range of

maintainers without being dependent on the computer system or software they use.

 Ensuring that the structure of the modelling/programming system and all its related information is

visualised clearly.

 Minimising the amount of code necessary to create a model, and structuring the model so that all

connections can be seen.

Extensibility

Extensibility will also be improved by the above means; this enables understanding of a model and so allows

for easier re-use. Enoksson (2006) explains the advantages for extensibility of an open standard language, he

used RDF for Conceptual Browsing on the Semantic Web. A clear structure and visualisation can be edited

with fewer worries about unintended consequences (side effects). This is to be achieved by enabling model

builders and users to modify the ontology, and to provide and use translation/modelling capability, and

visualisation. This is the three-step translation process developed for User Driven Programming/Modelling.

A person could make changes to whichever step is most appropriate depending on the task they are

performing and their interests and preferences. McGuinness (2003) observes the importance of extensibility,

“Extensibility. It will be impossible to anticipate all of the needs an application will have. Thus, it is

important to use an environment that can adapt along with the needs of the users and the projects.”

Ease of Use

 Maximising accessibility is important to ease of use and vice versa, use of open standards helps

achieve this, together with enabling models to run on software and systems that people are widely

familiar with. Ease of use should be facilitated by improving model structure.

13

 Ease of use enables interaction with models that is essential for understanding and trust of the

models, which in turn enables sharing of information.

Clear structuring and visualisation of information also assists in making a modelling system easier to use.

Sharing of Information

Maintenance, extensibility and ease of use are the key drivers for sharing of information. Achievement of the

objectives in these areas would enable collaboration. Ontologies are used as a way of representing explicit

and implicit knowledge. This is visualised as a taxonomy type view of the ontology information. Lack of

sharing of information and of the collaboration that this makes possible increases cost. For engineering and

many other types of modelling, sharing of information is necessary for enabling of jointly accepted

accountable models that demonstrate the cost and value, verification, and validation of processes.

1.4.2 Methodology for Achievement of Objectives

Achievement of the above objectives can make possible creation of manageable, maintainable, and flexible

models. To enable these objectives, a diagrammatic representation of models will be used as well as the

taxonomy based visualisation. This will make it possible for engineers to use an interface that many of them

are familiar with.

Translation

Translation capabilities will be provided to enable better communication between computer systems, and

between humans and computer systems. This will allow visualisation of chains of equations, which are

common in cost modelling. This visualisation will make it easier for people to add and manage information

in large models, and identify cost information. A cost modelling example will be used throughout the thesis,

but this work is relevant to modelling in general. To model complex problems a structured approach is

needed for representing explicit and implicit knowledge. A translation will be provided in 3 steps :-

 Step 1 - Ontology

 Step 2 - Modelling Tool

 Step 3 - Interactive Visualisation

Step 3 visualises the results and allows interaction with the information to establish the meaning of the

results. The translation is based on Semantic Web standards to enable widespread applicability and help

ensure this is a generic solution. The visualisation and interactions can be tree/graph based, spreadsheet type,

and CAD style as necessary. A further alternative is translation to programming or Meta-programming

languages so the information can be re-used by developers who are creating systems with these languages.

Information management and Interaction

This work will be based on information created and held in an Ontology, and accessed using Semantic Web

technology. Cost models will be constructed from information chosen by users through an interface that

14

interacts with the user to establish what information is required, how it should be processed, what

calculations should be made, and how it should be displayed, e.g. as a diagram or taxonomy. A methodology

that involves structuring of information through Ontology and Semantic Web techniques and enabling end-

user programming through visualisation and interaction aims to achieve effective production of generic

models. The research has been applied mainly to aerospace cost modelling.

The diagram below (Figure 2) illustrates how production of better and more adaptable and applicable models

is to be enabled by meeting the objectives of enabling better Maintenance, Extensibility, Ease of Use, and

Sharing of Information. These objectives will be enabled by better structuring and better visualisation; this

requires work on structuring knowledge using Semantic Web and Ontologies, and enabling better

visualisation through end-user programming techniques. This structuring and visualisation makes the models

more accessible, and so easier to edit, reuse, adapt and maintain.

15

Figure 2. How Objectives and Methodology will aid better modelling

Semantic Web and Ontologies, and End-User Programming are realisation of the Knowledge Management

enabled and supported by Visualisation and Interaction. Visualisation, Modelling, Translation and

Management via an umbrella process/system and activities is a means for achieving the enabling process for

the objective of enabling production of better, accessible, adaptable models.

Chapter 2 ‘Literature Review’ explains the research of others in aspects of knowledge structure and

representation, Semantic Web and Ontologies, Visualisation and Interaction and End-user

16

Programming/Modelling to achieve better and more accessible models. The thesis examines how a system

for model creation could be developed and by whom, and assumes the system developer and user categories

outlined below. A more detailed explanation of this methodology is provided in chapter 4.

1.5 Target Users

The methodology to achieve the objectives of Maintenance, Extensibility, Ease of Use, and Sharing of

Information needs to be adapted to the way people work, with steps matched to people, skills, and roles.

Ideally and as a long term aim it would be good to enable all users to interact with all parts of the program.

However, organisations have hierarchies, employees have specialisms and for engineering the main argument

to support this research is that of importance of this research for management of complex engineering

projects rather than as better modelling, and user involvement being an end in itself.

Although a simplification of reality separating out the types of users into three basic types allows enough

differentiation to provide a way forward for research and implementation of the methodology. Separating out

the three main categories of user assists with matching the users to the tools and technologies they use, and

supporting the overall knowledge transfer with a three step translation process. This would provide an

infrastructure to enable collaboration. The actual follow up of analysing the collaboration then made possible

is not covered in this thesis, which concentrates on the supporting structures and process.

1.5.1 System Creator

The system developer role is represented by people who would use the system advocated in this research in

order to develop a domain specific system to create models. For the implementation in this thesis the author

takes on the roles of a researcher who develops the capability for the ‘System Creator’, then represents the

‘System Creator’ who creates a modelling capability for a specific modelling problem. Then the author takes

on the second role of a ‘Model Builder’ who uses the implementation to solve an aircraft wing related

modelling problem. Also, some parts of the implementation were used by Airbus and Rolls-Royce employees

both as System Creators, and Model Builders and Users.

This research is mainly aimed towards engineers who develop using spreadsheets, and for spreadsheets there

are two main types of users. These types are :-

1.5.2 Model Builders

Model Builders are those who build and adjust equations (formulae) in spreadsheets and tend to protect their

spreadsheet against unintended overwriting of cell values.

1.5.2 Model Users

Model Users are those who edit values in a spreadsheet and do not intend to overwrite formulae (though this

can happen accidently).

17

Although there are grey areas between these three categories, it is intended that the thesis uses only these

categories in order to simplify the problem of access control and model protection, and engineers would be

familiar with this division. A more complex strategy for user rights and management will be left for future

work, and in any case such strategies have been applied to work implemented in relation to this thesis by

Airbus and Rolls-Royce.

Model Builders - Characteristics

Model builders will create or edit the semantic representation of the model in an ontology editor in order to

create models. Model builders do not need knowledge of a programming language, but do need training in

how to use the ontology interface to create a model. Also research will be undertaken into making ontology

editing easier and more accessible. The system to be created needs to cater for different types of modellers.

Expert modellers aim to build models, whereas novice modellers are more inclined to search for a specific

numerical answer (Willemain and Powell, 2006). A problem mentioned by Willemain and Powell is that

novice modellers often have little or no training in modelling. “Little is known about how they go about their

tasks and whether they succeed.” So it is important to make technologies accessible for modellers, and to

enable models to be shared and navigated, so that expert modellers can assist novices to create better models.

Model Users - Characteristics

Model users use the models created by model builders to make decisions based on their domain knowledge.

This type of user manipulates the tree/graph representation to obtain a result based on the input values they

know, or otherwise based on default values. They will use a model to evaluate a problem in order to help in

decision making. Ernst et al. (2003) use a similar categorisation, they call model builders ‘modelers’, and

models users ‘end-users’. Leaver (2008) uses categories of ‘Application Definer’, ‘RDF Querier’ and

‘Information Editor’ that are equivalent to categories of System developer, Model Builder, and Model User

respectively.

1.6 Thesis Structure

In this introduction the aims and objectives were discussed and the theory and methodology introduced.

Chapter 2 - ‘Literature Review’ examines the research that was the main influence on this thesis. The areas

investigated are 'Structure and Implicit Knowledge', 'Ontologies for Modelling and Simulation', 'Semantic

Web and Ontologies', 'Interaction for Modelling with Ontologies', 'Visualisation and Interaction', 'Model-

Driven Programming for Better Model Production', 'Accessibility of Models', 'Translation Steps', 'Better

Models'. The main influences on the research are Ontology and Semantic Web research, End-User

Programming, Modelling, and Model-Driven Programming. These areas were heavily investigated, as in

order to enable the User Driven Programming/Modelling (UDM/P) approach it is necessary to improve

accessibility of modelling to enable better model production in order to aid translation from implicit human

knowledge into computer models. The means for this is improved user interaction, via visualisation of the

structured representation of all relevant information. This is an adaptation of end-user programming towards

modelling, and of model-driven programming by provision of improved end-user interaction to enable users

to drive the process. This research is adapted in chapter 3 where a structured approach to the adaptation of

18

this research is adapted to enable use and development of software tools to provide the structuring and

translation of information in a way appropriate for visualisation to and interaction with users, collaboration,

and modelling.

Chapter 3 - ‘User Driven Programming/Modelling (UDM/P) Theory’ examines the theory behind bringing

together the research areas explained in chapter 2. Chapter 3 also examines the problem to be solved to

enable UDM/P, and explains how Ontology and Semantic Web research can provide the infrastructure for a

system to enable Modelling using End-User Programming techniques and translation influenced by Model-

Driven Programming. Without Visualisation and Interaction research the UDM/P approach would not be

practical, as the approach depends on user interaction and collaboration with the Ontology and Modelling

system. Therefore the Ontologies, Modelling, and Visualisation and Interaction research examined in chapter

2 ‘Literature Review’ is necessary for UDM/P combined with research into Human to Computer translation

to aid end-user programming. Empowering end-users to model and program, combined with the translation

process then enables collaboration via improved Human to Human, and Human to Computer translation. The

Position of software tools investigated, within a table, is analysed, to develop a way of combining tools for

the User Driven Modelling/Programming (UDM/P) approach. This is examined in Table 2. Language and

Tool Mapping and developed further in Table 3. Language and Tool Mapping - Further Development. The

layered architecture achieved by a planned use and matching of software tools from Table 3 then aids in the

research design and methodology to be outlined in chapter 4, by aiding interoperability to aid translation via

open standards. Interoperability makes possible Computer to Computer translation, and translation from

human to computer and vice versa through translation between layered open standard software tools. Those

software tools nearer the human level of representation act as part of the translation process between humans

and the lower layer computer systems/software. Thus structure of representations to enable translation,

collaboration and improved interaction to increase end-user involvement in ontology and model

development, and so to provide a human to computer interface, is all researched ready for planning of the

research design and methodology outlined in Chapter 4.

Chapter 4 - ‘Research Design: Methodology’ examines the design and methodology for a mechanism to

apply this combined research explained in chapters 2 and 3. The research design and methodology involves

creation of a system to demonstrate implementation prototypes that follow the theory, design and

methodology so far explained. This is the means for improving Maintenance, Extensibility, Ease of Use,

Sharing of Information, by combining the best aspects of existing research and applying it to improve these

factors and so enable User Driven Modelling/Programming (UDM/P). This combination is illustrated by the

development of tools created from such research in the areas of Modelling, Spreadsheets, Ontology, and

Semantic Web/Web 2.0. This is illustrated with a diagram that shows UDM/P in the middle as a way of

combining the advantages of each technology. This is the important area of overlap explored through chapter

4. This overlapping of this research design and methodology leads directly from the research overlap between

End-User Programming, Modelling, and Semantic Web. Each of the areas of technology - Modelling,

Spreadsheets, Ontology, and Semantic Web/Web 2.0 are examined in detail. This is applied to diagrammatic

modelling, and for this diagrammatic modelling (mainly tree based diagrams) to be translated from human

computer and back, a translation process needs to be developed. This development is illustrated by diagrams

19

of the translation process, which is aligned to a 3 step process of Step 1 Ontology, Step 2 Modelling, and

Step 3 Visualisation. This 3 step process translates the source tree created as a diagram into a result tree

and/or CAD style diagram according to what is most suitable to the user. This research design and

methodology enables the implementation and prototyping outlined in Chapters 5 and 6.

The prototypes were created in two stages and stage each has a chapter to explain them. Chapter 5 -

‘Development: Early Prototypes’ examines the first stage of early prototyping to test ideas developed from

the literature review and research design and methodology. This examination is in order to understand how to

bring the research strands together, and implement them. In this chapter, the work conducted for the ACCS

Aerospace Composite Costing System that is relevant to this thesis is examined. For the ACCS project an

approach is taken of adapting and extending spreadsheet capabilities towards in depth cost modelling. This

approach is not sufficiently generic for this thesis, so within chapter 5 more collaborative spreadsheet type

tools are created and implemented as prototypes. This is still not sufficient for the requirement of enabling

end-user modelling as it is necessary to provide user interaction direct with the ontology and model, by

visualising the tree structure. This issue is examined in section 5.5. Section 5.6 outlines outstanding issues

where further work is needed towards an improved implementation. Section 5.7 makes recommendations that

need to be followed for the chapter 6 improved implementations. These recommendations are for tools and

techniques that improve structuring, user interaction with and visualisation of the model structure.

The final prototype is developed later and is explained in chapter 6 - ‘Development: Final Prototype

Implementation’. This brings together the various elements of Ontology and Semantic Web infrastructure,

translation, modelling and End-User Programming into a single system. Chapter 6 also demonstrates

prototype examples of increasing complexity, of representing a rectangle, cost modelling of a manufactured

cube, and cost modelling of an aircraft wing spar. These implementations are demonstrated in the context of

the 3 step translation process, of Step 1 Ontology, Step 2 Modelling, and Step 3 Visualisation; and the

overlapping areas of technology - Modelling, Spreadsheets, Ontology, and Semantic Web/Web 2.0. Survey

results are then displayed and an analysis and reflection undertaken to prepare for the Chapter 7 Discussion

and Chapter 8 Conclusions.

The way in which the final prototype examined the research question explained in the introduction is

discussed in Chapter 7 - ‘Discussion’. Chapter 7 examines how the prototype tested the design and

implementation that was to meet the research question of ‘To what extent is it possible to improve user-

driven collaborative software development through interaction with diagrams and without requiring users to

learn particular computer languages?’ Chapter 7 examines how bringing together the research areas and

combining them in a single implementation simplifies the problem analysed and makes it solvable. This

examination prepares for the Chapter 8 Conclusion on the extent to which the research assists with the aims

of improving Maintenance, Extensibility, Ease of Use, and Sharing of Information, as the step towards

making diagrammatic User Driven Modelling/Programming (UDM/P) practical.

Chapter 8 - ‘Conclusion and Further Research’ examines the extent to which this research met aims of

improving Maintenance, Extensibility, Ease of Use, and Sharing of Information. Meeting of these objectives

is judged against the requirements for each objective and how these assist with meeting the overall aim of

20

enabling diagrammatic programming. Different options are examined for enabling this diagrammatic

programming, based on the research undertaken, and uses to which the research can be developed. Modelling

areas and types and the use of the 3 step process are analysed in partnership with examination of the roles of

users of the modelling tools to show who could model in what way. The analysis is made of how this assists

with Maintenance, Extensibility, Ease of Use, and Sharing of Information. The conclusion is reached that for

the research hypothesis of ‘to what extent was it possible to improve user-driven collaborative software

development through interaction with diagrams and without requiring users to learn particular computer

languages?’, this is possible for tree based modelling (common for engineering cost and process modelling)

given the right tools and techniques as evaluated in this thesis. This concluding chapter also includes future

work needed in order to fully meet the aim of improving collaborative software development through

interaction with diagrams without requiring people to learn computer languages.

21

Chapter 2 Literature Review

2.1 Introduction

The main areas researched were ‘Structure and Implicit Knowledge’, ‘Interaction for Modelling with

Ontologies’, ‘Visualisation and Interaction’, ‘Model-Driven Programming for Better Model Production’, and

‘Accessibility of Models’. These research areas were investigated in order to provide the knowledge needed

for researching and development of the User Driven Modelling/Programming system explained in chapter 1.

2.2 Past Research of others and how this affects present modelling

problems

The main areas researched were ‘Structure and Implicit Knowledge’ targeted towards ‘Semantic Web and

Ontologies’, ‘Interaction for Modelling with Ontologies’, ‘Visualisation and Interaction’, ‘Model-Driven

Programming for Better Model Production’, and ‘Accessibility of Models’. Tthe method for choosing these

research areas was examination of the history of end-user programming, and relevant references were tracked

down for the period since typing of code became possible to the present day, to establish where the gap was

that needed to be researched to make diagrammatic end-user programming practical.These research areas

were chosen as they were all necessary for the translation process from human based diagrammatic

representations to computer models and code. These research areas were investigated in order to provide the

knowledge needed for researching and development of the User Driven Modelling/Programming system

explained in chapter 1.

Investigation of ‘Model-Driven Programming for Better Model Production, and ‘Accessibility of Models’

was the beginning of the design process for a system based on the research included in this chapter, in order

to improve translation between person and software. This translation is to assist with providing better models.

Within each of the above subject areas the problems of enabling people to interact with models of their

domain problems were researched. This was in order to provide the knowledge needed for research and

development of the system explained in subsequent chapters. The literature review made it possible to

investigate how to combine different research and technologies to create a modelling system for end-users.

2.3 Structure and Implicit Knowledge

2.3.1 Ontologies for Modelling and Simulation

The infrastructure of the research for this thesis is an ontology that can be visualised and edited in structured

form. This ontology development is step 1 of a translation process that generates a modelling system and

visualisation.

22

The literature review supported research for this thesis that will look to investigate a range of ontology

representations as necessary in order to know when a simple representation will be sufficient and when it is

necessary to move towards a more formal and machine readable representation, to ensure the modelling

approach works. From the literature review it was found that the degree of formality employed in capturing

ontology information can be quite variable, ranging from natural language to logical formalisms to facilitate

machine understanding. This ontology research links with research into the Semantic Web for interoperable

representation of information within each stage of translation.

23

Author(s) Title Comments

Gruber, T.

R., 1993b

Toward Principles for the Design

of Ontologies Used for Knowledge

Sharing

 Introduction Context and Audience

Formal Ontology in conceptual Analysis and Knowledge Representation. Kluwer Academic Publishers.

 Issues

Definition and explanation of Ontologies, and explanation of how they can be used, and case study. Gruber (1993b, 1)

defines an ontology, “An ontology is an explicit specification of a conceptualization. The term is borrowed from

philosophy, where an Ontology is a systematic account of existence. For AI systems, what ‘exists’ is that which can be

represented.” Gruber goes on to explain design criteria for ontologies. Gruber explains software agents which can be a

way of accessing and using ontology knowledge.

 Methods

Gruber defines ontologies and explains their design and use. Gruber examines how agreement could be achieved for

ontology terms, and using an engineering case study examines how useful an ontology would be to engineers, and

others who often make use of equations and values with standard units.

 Outcomes

This is a useful definition and explanation of ontologies and how to apply them to engineering, the explanation of how

to use equations in an ontology is important as equations defined in an ontology can make possible an ontology based

modelling system. This system would be generic if agreement could be reached on how to define equations.

24

Uschold,

M., 2003

Uschold,

M., 2006

Where are the semantics in the

semantic web?

Ontologies Ontologies Everywhere

- but Who Knows What to Think?

 Introduction Context and Audience

9th Intl. Protégé Conference - July 23-26, 2006.

This paper is especially relevant to those who manage information and modelling systems in industry.

 Issues

Uschold (2003) and (2006) outline a knowledge representation continuum of :-

“Implicit - Informal (explicit) - Formal (for humans) - Formal (for machines)”

Uschold (2003) and (2006) show a diagram of this continuum and include on it various things ranging from informal

such as glossary, thesauri, through such things as schemas and UML to formal logic. Uschold (2003) explains that

though the word Semantics actually means ‘meaning’ there is no clear definition of the term “Semantic Web”, instead

Uschold defines Semantic Web related technologies and ideas using examples. Uschold (2003) concludes that there is

“consensus that the key defining feature is machine usable Web content.”

 Methods

Uschold (2006) states that “there is nothing inherently good about being further along the semantic continuum. In

some cases there will be advantages; in other cases there will not. What is good is what works.” Though Uschold

(2003) argues that evolution along this continuum will happen over time, as the relevant technology advances; (section

3.6 - ‘Ontologies and Semantic Web and their role in Modelling’). His main point in both papers is to have in mind

what the Semantics are to be used for and how they are to be used. More machine readability, and a reduction in

ambiguity can be worth the extra effort if the project is sufficiently important and long term, because the advantages

are “more robust, correctly functioning and easy to maintain” applications, Uschold (2003).

25

 Outcomes

This research explains and demonstrates the ideas behind an ontology based translation between humans and

computers to aid modelling/programming.

Horrocks,

I., 2002

DAML+OIL: a Reason-able Web

Ontology Language.

 Introduction Context and Audience

Proceedings of the Eighth Conference on Extending Database Technology (EDBT 2002).

This is a more theoretical paper than that of Uschold above.

 Issues

Horrocks explains, “An ontology typically consists of a hierarchical description of important concepts in a domain,

along with descriptions of the properties of each concept.” He also discusses ontology languages and their role in

assisting with interoperability.

 Methods

Horrocks argues the advantages of moving towards a more formal ontology. This is in contrast to Uschold’s argument

of only moving to more formal ontologies as necessary, however, this is merely a difference of emphasis as Horrocks

argues for their theoretical importance, while Uschold is examining practical difficulties of finding and managing

information for formal ontologies. Horrocks examines ontology languages such as RDF, RDF(S) (RDF Schema), and

DAML+OIL, which provide languages for the layers ‘RDF + rdfschema’, and ‘Ontology vocabulary’ in Berners-Lees’

diagram shown in section 2.3.2 Figure 3 of this thesis. Horrocks et al. (2003) and Miller and Baramidze (2005) explain

other ontology languages OWL (Web Ontology Language) and SWRL (Semantic Web Rule Language).

 Outcomes

Horrocks explains Semantic Web technologies and the use of agents and ontologies, and ontology representation

26

languages. This illustrates the linked nature of Ontology and Semantic Web research. Horrocks also examines the use

of meta-data annotations and how they can make resources accessible to agents. Agents are another important aspect of

Ontologies and the Semantic Web. Such research is the basis for provision of an ontology infrastructure for a visual

rule and equation editor for modelling/programming. For this thesis RDF, RDF(S), DAML+OIL and OWL have all

been used as structured ways to represent information.

Huber, G.

P., 2001

Transfer of knowledge in

knowledge management systems:

unexplored issues and suggested

studies

 Introduction Context and Audience

Written for ‘European Journal of Information Systems’.

 Issues

Huber examines the issues in ensuring people transfer their knowledge and suggests the organisation’s culture is

important in peoples’ resistance to this.

 Methods

Analysis and Surveys.

 Outcomes

This resistance can be a further reason why employees often prefer putting their knowledge into spreadsheets under

their own control, rather than into a shared knowledge base.

27

2.3.2 Semantic Web and Ontologies

Author(s) Title Comments

Berners-Lee,

T., Fischetti,

M., 1999

Weaving the Web Introduction Context and Audience

The book covers early years of Semantic Web creation - Harper San Francisco; Paperback.

 Issues

Berners-Lee and Fischetti sum up the advantage of a Semantic Web program over programs in other

languages. They write, “The advantage of putting the rules in RDF is that in doing so, all the reasoning is

exposed, whereas a program is a black box: you don’t see what happens inside it.” The Semantic Web makes

use of tree and graph relationships to relate information and people. This relating of information is explained

as a ‘web’, and Berners-Lee and Fischetti, 1999 explain that the term ‘web’ is used by mathematics to denote a

collection of nodes and links in which any node can be linked to any other node.

 Methods

Berners-Lee and Fischetti also argue for collaborative interactivity, which they call ‘Intercreativity’. They

explain, “the world can be seen as only connections, nothing else. We think of a dictionary as the repository of

meaning, but it defines words only in terms of other words. A piece of information is really defined only by

what it’s related to and how it’s related.” … “There is really little else to meaning. The structure is

everything.” Berners-Lee and Fischetti make the point that it is not the power of the language that is

important in providing this intercreativity. The simplicity of a language such as RDF makes it easier to

provide interconnected solutions to complex problems, without becoming bogged down with the complexity

28

of the language itself, and interoperability problems.

 Outcomes

So connectivity and structure are the crucial factors, enabling users to create and follow the information

connections that are required for solving a problem and specify this to the computer. Berners-Lee and Fischetti

also discuss the use of Semantic Web languages as programming languages and explain the benefits, declaring

“The Semantic Web, like the Web already, will make many things previously impossible just obvious. Visual

Semantic Web programming is one of those obvious things.”

An illustration of collaborative interactivity, connectivity and structure, and use of information connections for

visual Semantic Web programming is Yahoo Pipes. This is discussed in section 3.3.

McGuinness, D.

L., 2003.

Berners-Lee,

T., 2000.

Chapter - Ontologies Come of Age.

Semantic Web on XML.

 Introduction Context and Audience

McGuinness - In the book Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential.

MIT Press.

Berners-Lee W3C talk http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html

 Issues

McGuinness (2003) provides a useful guide on how ontologies can assist in linking distributed data. This

linking and connectivity is also explained by Uschold and Gruninger (2004). McGuinness cites a diagram by

Berners-Lee (2000); this diagram is reproduced for this thesis in Figure 3 in this section. The concept

illustrated, linked with that of ontologies contains representations of the place of each language in a stacked

representation alongside the purpose of the language.

 Methods

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html

29

This layered architecture enables an approach to interoperable and collaborative programming using Semantic

Web languages for the middle layers including the ontology. McGuinness considers the role of markup

languages in defining content to be machine readable. McGuinness encourages creation of web-based visual

representations of information to allow people to examine and agree on information structures. McGuinness

outlines 7 ways simple ontologies may be used in practice. These are :-

1 controlled vocabulary.

2 site organization and navigation support.

3 expectation setting.

4 “umbrella” structures from which to extend content.

5 browsing support.

6 search support.

7 sense disambiguation support.

For this thesis ontologies were created for all of these purposes except 1 and 4, where ontologies of others

were investigated.

McGuinness also explains that ontologies can assist with resolving the meaning and consistency of terms. This

increased understanding can aid interoperability. For a simple ontology this assists the human reader, and

more structured ontologies can also assist automated systems to resolve terms. This subject is explored in

sections 3.6 - ‘Ontologies and Semantic Web and their role in Modelling’, and 4.7 - ‘Building a System for

30

Ontology and Semantic Web based Modelling’.

 Outcomes

McGuinness (2003) also explains with the aid of a diagram the level of definition in ontologies, from purely

human readable to machine readable (Figure 2 in McGuinness’ chapter ‘Ontologies Come of Age’). This is

also explained by Uschold (2003), Uschold (2006) (discussed in 2.31) and Uschold and Gruninger (2004).

McGuinness writes about how ease of use via conceptual modelling support and graphical browsing tools is

essential if systems are to be usable in the mainstream. So this is an area to be investigated for this thesis. This

argument is expanded on in 3.6 - ‘Ontologies and Semantic Web and their role in Modelling’ and 4.21 -

‘Improving and Building On End-User Interaction and Ease of Use’. McGuinness explains the need to

examine and agree on information structures, using taxonomies/ontologies.

Berners-Lee et

al., 2001

The Semantic Web Introduction Context and Audience

Scientific American article.

 Issues

The Semantic Web was defined by Berners-Lee (2001) as “a web of data that can be processed directly or

indirectly by machines”.

 Methods

Berners-Lee et al. advocate an interdisciplinary open standard approach; this was later expanded to envisage a

“Science of the Web”.

 Outcomes

Berners-Lee and colleagues have envisaged the Semantic Web as a global database with the information held

31

in a structured form where content is separated from formatting.

5 Berners-Lee

et al., 2006

Creating a Science of the Web Introduction Context and Audience

This was published in Science - 11 August 2006.

 Issues

Berners-Lee et al. also explain, “The Web is an engineered space created through formally specified languages

and protocols. However, because humans are the creators of Web pages and links between them, their

interactions form emergent patterns in the Web at a macroscopic scale.” Berners-Lee et al. argue the

importance of visualisation for navigation of information :-

“Despite excitement about the Semantic Web, most of the world’s data are locked in large data stores and are

not published as an open Web of inter-referring resources. As a result, the reuse of information has been

limited. Substantial research challenges arise in changing this situation: how to effectively query an

unbounded Web of linked information repositories, how to align and map between different data models, and

how to visualise and navigate the huge connected graph of information that results.”

This is discussed in relation to engineering modelling in section 3.5 - ‘Ontologies for Interoperability and

Reuse of Models’.

 Methods

This article advocates an interdisciplinary collaboration and systematic approach. Visualisation, navigation

and interactivity can enable this.

 Outcomes

32

The above are key questions for this thesis, where information has to be held and managed to enable

modelling. The Semantic Web provides the infrastructure for distributed collaborative modelling, interaction

and visualisation.

Figure 3. Layered Architecture, sourced from Berners-Lee (2000) and McGuinness (2003)

33

A diagram of Berners-Lee’s, and McGuinness’ layered architecture is shown above
1
 in Figure 3.

Corcho et al. (2003, 55) show a similar stacked diagram of the middle layers of the above architecture

focussing on ontology development. Carroll explained in a talk based on this technical report (Carroll

and Turner, 2008) that for OWL, RDF(S) and RDF “Each layer does not break the previous layer”.

This shows that for at least the middle layers of the above diagram translation is possible. This thesis

mainly uses light ontologies as they can be represented in several layers whereas for a more structured

ontology, information could be lost as it was translated down the layers. A more ambitious translation

to and from all the layers, not just the middle ones would be future research, discussed in section 8.21.

For the hypothesis, investigation of Structure and Implicit Knowledge and breaking this down into

Ontologies for Modelling and Simulation, and Interaction for Modelling with Ontologies, was

necessary to find ways of providing structure. Then this structure was needed for enabling end-users to

diagrammatically enter the information needed by the ontologies for collaboration and for the models,

via representation/translation of diagrams created by the end-users.

1
 Semantic Web "Layer Cake" (2004) [online]. Available from: http://www.w3.org/2004/Talks/0412-

RDF-functions/slide4-0.html [Accessed 25 July 2011], diagram now slightly different.

http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html
http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

34

2.4 Interaction for Modelling with Ontologies

Ontologies can be made editable for maintenance and extension, and modelling tools based on

ontologies can provide a structured system for building and editing of models. An ontology can store

related information and calculations, any required calculations would then be made and translated to

provide a model that can be interpreted by users. The research for this thesis is intended to solve the

problems of translation from human to computer and vice versa. This is to be achieved by giving users

more involvement in the translation process by letting them interactively model the problem

themselves until they are satisfied with the solution. This allows the user to establish “common ground”

with the computer, an expression used by Johnson (2004). As well as translating between the user and

computer systems it is important to provide translations between different computer systems. An

objective of this thesis is to make progress towards providing a modelling and simulation environment

over the web as a product of translation from an ontology.

35

Author(s) Title Comments

Miller and

Baramidze

, 2005

Simulation and the Semantic Web Introduction Context and Audience

Proceedings of the 2005 Winter Simulation Conference.

This paper describes the process of building ontology based simulation, and analyses how to achieve this.

 Issues

Miller and Baramidze (2005) establish that for a “simulation study that includes model building, scenario

creation, model execution, output analysis and saving/interpreting results. Ontologies can be useful during all of

these phases.”

 Methods

However, they also explain that building generic ontologies for modelling and simulation is hard, as this is not

domain specific and there is need for rigorous definitions of mathematical concepts.

 Outcomes

Miller and Baramidze advocate the use of interrelated ontologies rather than one monolithic ontology. For this

thesis many related ontologies were used, divided based on commonly used engineering definitions and

relationships.

36

Kim et al.,

2002

A Two Stage Modeling and Simulation

Process for Web-Based Modeling and

Simulation.

 Introduction Context and Audience

ACM Transactions on Modeling and Computer Simulation.

 Issues

Kim et al. describe their approach to modelling and simulation and how a Web-based solution can be applied to

distributed process planning.

 Methods

They explain how techniques of generating executable code from documents specified in standardised XML

(eXtensible Markup Language) can be used to create simulations.

 Outcomes

This standards and web-based modelling/simulation approach is an important area of research for this thesis, as it

combines modelling with use of XML, other Semantic Web and domain specific standards, and the web to

provide accessible models. Section 3.5 - ‘Ontologies for Interoperability and Reuse of Models’ builds on such

research.

Cheung et

al., 2005

Ontological Approach for Organisational

Knowledge Re-use in Product Developing

Environments.

 Introduction Context and Audience

This paper discusses user friendly ontology tools in an engineering context.

It was published for the 11th International Conference on Concurrent Enterprising - ICE 2005.

Cheung et al. (2005) provide an ontology editor for knowledge sharing in manufacturing.

37

 Issues

Cheung et al. explain that until recently ontologies have been predominately applied in the medical informatics

field. Cheung et al. argue that “With the development of user-friendly ontology editing software and automatic

data exchange functions, the application of ontological approaches to exchange information across the WWW is

most likely to be an essential aspect of the next generation of global knowledge management tools.”

 Methods

Cheung et al. demonstrate the importance of XML for interoperability and knowledge re-use.

 Outcomes

This is a useful guide to visualising and editing ontologies for use by engineers, and this combined with

interoperability via open standards languages helps to make modelling practical. Linking ontologies with

modelling tools will also make ontologies useful in engineering and science, and mathematics, whenever

calculations are required.

The research into Interaction for Modelling with Ontologies was necessary in order to find ways to ensure it would be possible for computer literate end users to

diagrammatically interact with the ontologies/models in order to provide meaningful information for translation to programs/models that could make and feedback

calculations.

38

2.5 Visualisation and Interaction

Dynamic software systems such as outlined by Huhns (2001) and Paternò (2005) have been examined

for this thesis. Huhns (2001) and Paternò, (2005) both explain that alternatives to the current approach

to software development are required. Huhns argues that current programming techniques are

inadequate, and outlines a technique called ‘Interaction-Oriented Software Development’, concluding

that there should be a direct association between users and software, so that they can create programs,

in the same way as web pages are currently created. Translation between ontologies, models, and

visualisation enables translation between levels of abstraction, and therefore from human to computer

and back. This thesis concentrates on visualising the entire program code to end-users as a model. This

is how it could be possible to allow engineers and eventually others to program modelling solutions at

the level of abstraction with which they are most comfortable. To achieve this, the User Driven

Modelling/Programming (UDM/P) approach used in this thesis builds on Model-Driven Programming.

The use of functional language within nodes of a tree, web, or graph gives all the advantages of

spreadsheet use in enabling programming by use of expressions, and allowing users to ignore problems

of ordering calculations, and of memory use, so simplifying program statements and allowing

something closer to natural expression. An additional advantage is displaying of expressions in the

appropriate context, this is essential in order to allow collaborative end-user modelling and

programming.

39

Author(s) Title Comments

Crapo et al., 2002 Visualization and

Modelling for Intelligent

Systems

 Introduction Context and Audience

Visualization and Modelling for Intelligent Systems. In: C. T. Leondes, ed. Intelligent Systems: Technology and

Applications, Volume I Implementation Techniques.

 Issues

Crapo et al. argue that spreadsheet users are considered as potential modellers. They state that “Every one of the perhaps

30 million users of spreadsheet software can be considered a potential modeller”. Crapo et al. explain that in spreadsheets

there is little support for the process of conceiving, building, validating, and communicating models, and that significant

advances in modelling tools can be achieved using visualisation. Crapo et al. also state that “the modeler’s task is to

explore the data, understand the relationships relevant to the problem at hand, and capture those relationships in a

computational model that will meet a specific need”.

 Methods

Crapo et al. also explain that visualisation helps the modeller to maintain a hierarchy of sub models at different stages of

development and to navigate effectively between them. This is the reason for breaking down the models into a tree or

graph structure for the thesis. This also makes it easier to divide model to computer code and vice versa translation into

manageable steps. Crapo et al. explain :-

40

“Models are artefacts used to understand our world. As such they are embedded in intelligent systems as representations

of knowledge. In the context of mining data to create knowledge, the modeler is often faced with discovering and

understanding relationships in data that have no apparent analog in the laws of physical science. Sketches and diagrams as

aids in problem solving and as a means of communication are as old as recorded history. The question now is: Can

visualisation help us not only to discover the patterns and relationships in these data but also to use newly discovered

knowledge to build computational models.”

 Outcomes

Crapo et al. observe that “representations suitable for a computer algorithm are often impenetrable to humans and vice

versa, and that experts in modeling and optimization may prefer different representations than do experts in the problems

domain.” The research of Crapo et al. has helped in understanding how structured visualisation can be related to

structured modelling in order to enable modelling for people, e.g. those who are currently using spreadsheets.

41

Jackiw and

Finzer, 1993

Guibert et al.,

2004

The Geometer’s

Sketchpad:Programming

by Geometry

Example-based

Programming: a pertinent

visual approach for

learning to program

 Introduction Context and Audience

The Geometer’s Sketchpad:Programming by Geometry. In: A. Cypher, ed. Watch What I Do: Programming by Demonstration. MIT

Press, Chapter 1.

Guibert, N., Girard, P., Guittet, L., 2004. Example-based Programming: a pertinent visual approach for learning to program. In:

Proceedings of the working conference on Advanced visual interfaces. pp 358-361

 Issues

Jackiw and Finzer (1993) and Guibert et al. (2004) demonstrate how a view of the problem that is more visual and nearer to the

person’s way of thinking can assist with the modeller’s tasks. Jackiw and Finzer and Guibert et al. illustrate programming by

demonstration, where the user visualises a problem by drawing a diagram of it. Guibert et al. (2004) explain and expand on Smith’s

(1977) work with an example demonstrating how numbers fail to reveal the concept behind them. The example is a numerical

representation of a triangle. This representation is ‘fregean’ because it does not show the concept of a triangle. Next to this is a diagram

of the triangle that does show the concept, this is referred to as ‘analogical’ representation because it includes the context of the

information.

 Methods

Jackiw and Finzer describe programming by drawing diagrams that are converted to graphical representations. They also describe an

example where a diagram is translated to a graphical representation; the authors explain this as ‘spatial programming’. Jackiw and

Finzer explain that this type of programming removes the distinction between programmers and users, and helps people to “understand

how a geometric construction can be defined by a system of dependencies”.

 Outcomes

Jackiw and Finzer and Guibert et al.’s research could enable end-users to customise software to model problems before and while they

are trying to solve them, instead of having to request the software provider to add features, at great cost in terms of time, money, and

added complexity of software. Investigation of such translation from different visualisations and representations is an important aim of

this thesis, and is discussed in section 3.3 - ‘Visualisation and Interaction for Modelling’. The translation process from the visualisation

is explained in section 3.3.1 - ‘Users and De-abstraction for Translation’, and illustrated with an example Figure 49 in section 6.5.3.1.

42

Huhns, M., 2001 Interaction-Oriented

Software Development

 Introduction Context and Audience

International Journal of Software Engineering and Knowledge Engineering.

Huhns explains that current techniques are inadequate for widening programming participation.

 Issues

Huhns outlines the technique of Interaction-Oriented Software Development in order to provide a direct association

between users and software, necessary for end-user programming. This is a kind of visual diagrammatic programming.

 Methods

This direct user software association enables end-users to create programs via visual interactive diagrams, and also in the

same way as web pages are created at present. This is illustrated by the use of Yahoo Pipes, explained in section 3.3.

 Outcomes

Huhns’ research influenced this thesis by arguing and demonstrating interactive visual end-user programming. This can

enable translation from models to software.

43

Fischer, G., 2007 Meta-Design: A

Conceptual Framework for

End-User Software

Engineering

 Introduction Context and Audience

End-User Software Engineering Dagstuhl Seminar.

 Issues

Fischer observes that it is the mismatches between end-users needs and software support that enables new understandings.

Fischer argues that software development can never be completely delegated to software professionals, because domain

experts are the only people that fully understand the domain specific tasks that must be performed. Fischer also argues for

an approach to enabling end-user programming that makes it interesting to end-users.

 Methods

Fischer explains the concept of meta-design as aimed at creating infrastructures for collaborative design assuming future

uses and problems cannot be completely anticipated during development of a system.

 Outcomes

This influenced the design and implementation for this thesis. Because it is so difficult to anticipate future uses and

problems with software, an approach of meta-design to build systems for building systems is used. This approach

(illustrated in section 3.3.2) assists with maintenance, extensibility and re-use.

44

Paternò, F., 2005
Model-based tools for

pervasive usability

 Introduction Context and Audience

Interacting with Computers 17. This paper investigates model-based tools for design of interactive systems.

 Issues

Paternò outlines research that identifies abstraction levels for a software system. These levels are ‘task and object model’,

‘abstract user interface’, ‘concrete user interface’, and ‘final user interface’. This is important in enabling end-user

programming, such as for engineers to model problems and create programs at a high level of abstraction. Stages take

development through to a user interface that consists of interaction objects.

 Methods

This approach can be used for automating the design of the user interface and the production of the underlying software.

Paternò states that “One fundamental challenge for the coming years is to develop environments that allow people

without a particular background in programming to develop their own applications”.

 Outcomes

Paternò goes on to explain that “Natural development implies that people should be able to work through familiar and

immediately understandable representations that allow them to easily express relevant concepts”. Visualisation and

Interaction for provision of a system for enabling end-user development such as this is discussed in section 3.3 -

‘Visualisation and Interaction for Modelling’.

For the hypothesis, investigation of Visualisation and Interaction was important in order to determine what kind of interface was needed in order to enable the interaction

necessary by end-users in order to enter the information needed by the ontologies for the models.

45

2.6 Model-Driven Programming for Better Model Production

Model-Driven Programming involves creation of a high level interface for editing models to represent

users’ ideas, which can be translated to program code and alternative visualisations. Visualisation and

interaction research is important for enabling model creation and editing by end-user programmers;

Elenius (2005) illustrates tools for achieving this. The approach of Model-Driven Programming can

assist with empowerment of users to customise software at a high level of abstraction, and so minimize

the need for delegation of problems to IT professionals.

Model-Driven Programming involves two transformation techniques; these are Model Transformation

and Program Transformation. Model Transformation can be used to translate a model with a

representation of the problem that users would be familiar with, into a model with a representation that

can be more directly translated into program code. Model Transformation can be applied to problems

involving design models e.g. UML (Unified Modeling Language) diagrams, architectural descriptions,

and requirements specifications, and to mathematical, engineering, and scientific modelling tools.

Program Transformation is the act of changing one program into another. The languages in which the

program being transformed and the resulting program are written are called the ‘source’ and ‘target’

languages, respectively.

46

Author(s) Title Comments

Erwig et al., 2006 Automatic Generation and

Maintenance of Correct Spreadsheets?

 Introduction Context and Audience

Proceedings of the 27th international conference on Software Engineering.

 Issues

Erwig et al. explain worries about the error rate in spreadsheets, “Given the billions of spreadsheets in

use, this leaves the worlds of business and finance horribly vulnerable to programming mistakes”.

 Methods

Erwig et al. demonstrate a system for automatically generating and maintaining correct spreadsheets.

 Outcomes

Improved spreadsheets can be part of a User Driven Modelling/Programming approach; this is

expanded on in section 4.1 - ‘Creation of Modelling System’. This argument is developed further in

sections 4.2, 4.3, and 5.1.1, and solutions prototyped in 6.4.2. Erwig et al. have produced a spreadsheet

add-on that can be used to improve spreadsheet accuracy. Erwig et al.’s research has influenced this

thesis towards examining an aspect of end-user programming/modelling, investigating both

improvements to and alternatives to spreadsheet modelling for this kind of computer literate end-user

programmer/modeller.

47

Johnson, P., 2004 Interactions, collaborations and

breakdowns

 Introduction Context and Audience

ACM International Conference Proceeding Series; Proceedings of the 3rd annual conference on Task

models and diagrams. This paper is about modelling human tasks.

 Issues

Johnson makes the point that UML (Unified Modeling Language) tools need to be extended to better

enable modelling of collaborative tasks. Johnson explains that successful interaction requires mapping

between levels of abstractions and that translation between the levels of abstraction required by users

and computers is difficult. He explains that this problem often means systems are created that make the

user cope with the problems of this mis-translation.

 Methods

Johnsons’ research allows the user to establish “common ground” with the computer, by the use of

translation layers to convert from a user level abstraction to a computer level abstraction.

 Outcomes

Johnsons’ research influences the approach used in this thesis of translations between a domain expert

level of abstraction and software. Also in this thesis translations are made between different views to

give flexibility for representing information appropriately to different users.

48

Begel, A., 2007 End-user Programming for Scientists:

Modeling Complex Systems

 Introduction Context and Audience

End-User Software Engineering Dagstuhl Seminar.

 Issues

Begel emphasizes that if programming is left only to programmers rather than allowing domain experts

to be involved, the program becomes a ‘black box’ and the domain expert cannot trust or verify the

results.

 Methods

Begel argues that end-users may lack a mindset to form mental models of how to make the computer do

what they want. Begel also explains that text based computer languages are often too obscure for end-

user programmers.

 Outcomes

These problems of software languages being a black box and the obscurity of some text based

programming language semantics were mentioned repeatedly by engineers during this thesis. So these

became important issues for the thesis, and it was judged necessary to visualise software language

semantics and translate these into appropriate representations. It is necessary to research and develop a

visualisation and modelling environment that helps translate engineers’ ideas into computer models.

49

For the hypothesis, investigation of Model-Driven Programming for Better Model Production was

necessary for analysing what was needed for the translation that provides the link between modelling

and programming, and acts as the translator for stepped de-abstraction of diagram into code.

Design of a translation system to enable domain experts to create models/programs is illustrated in

sections 3.3.1 and 3.3.2.

Research was also undertaken into how end-user programming has been developed over past decades.

2 main conclusions resulted from examining the history of end-user computing :-

 Research that created prototype systems for specialist users, school children, and other

researchers and programmers, but had limited acceptance and use in the mass market can be

reused with more up to date technology to assist development.

 More pragmatic research that involved creation of tools for the mass market, but which

avoided more long term research issues can now be extended.

2.7 Accessibility of Models

2.7.1 Translation Steps

The translation steps are intended to ensure that users who are computer literate, but have little time to

program, or knowledge of programming languages, can create software to represent a problem they

want solved. Users would not have to write computer code. Instead diagrams, natural language

(Mihalcea et al., 2006), and formulae would be used to define the source model. Mihalcea et al.

challenge the assumption that formal programming languages are the only way to communicate with

computers, and offer an alternative of mapping human language to program structures; they call this

approach ‘Programming Semantics’. The aim is to convert natural language into program code.

This thesis concentrates mainly on diagrammatic and formulae based representations, and translation

tools to convert this to code. As far as possible the tools and techniques used should be open standard

for ease of use, re-use, and/or transformation for other hardware or software systems. The main

advantage of open standard representation of information provided with the Semantic Web is that

information can be transferred from one application to another. Additionally it provides a layered

architecture that allows for a stepped translation from users to computer and back for conveying results

of a modelling run. This approach to modelling is explained in more detail in chapters 3 and 4, and the

implementation is explained in chapters 5 and 6.

2.7.2 Better Models

This section investigates ways collaborative model/program building can be supported and improved.

50

Author(s) Title Comments

51

Lieberman, H., 2007 End-User Software Engineering Position

Paper

 Introduction Context and Audience

End-User Software Engineering Dagstuhl Seminar.

 Issues

Lieberman asks “Why is it so much harder to program a computer than simply to use a computer

application? I can’t think of any good reason why this is so; we just happen to have a tradition of arcane

programming languages and mystically complex software development techniques. We can do much

better.”

 Methods

Lieberman argues that researchers should use program transformation, and visualisation to make the end-

user programming process as automatic as possible. In order that people can become ‘End-User Software

Engineers’ without even realizing it. Lieberman also argues that HCI experts have concentrated on ease of

use and should examine ease of programming.

 Outcomes

To achieve Lieberman’s aims of enabling end-user programming it is necessary to undertake

interdisciplinary research to combine different research approaches. Interdisciplinary research to enable

automated program transformation is advocated in this thesis, to enable better modelling/programming, and

wider access to this technology. The program transformation approach argued for by Lieberman is used in

this thesis to translate between a domain expert End-User Programmer abstraction from/to models

represented by Semantic Web languages, ontologies and code.

52

Bishop, J., 2006 Multi-platform user interface

construction: a challenge for software

engineering-in-the-small

 Introduction Context and Audience

International Conference on Software Engineering, Proceedings of the 28th international conference on Software

engineering.

 Issues

Bishop explains current problems:

The current practice is for GUIs to be specified by creating objects, calling methods to place them in the correct places in

a window, and then linking them to code that will process any actions required. If hand-coded, such a process is tedious

and error-prone; if a builder or designer program is used, hundreds of lines of code are generated and incorporated into

one’s program, often labeled ‘do not touch’. Either approach violates the software engineering principles of efficiency

and maintainability.

Bishop explains the importance of platform independence and re-use of GUIs.

 Methods

Bishop investigates, evaluates and advocates the use of platform independent programming languages, including the use

of meta and declarative languages. Bishop ascertains that XML (eXtensible Markup Language) has become the base for

many Meta-languages. Applying this to GUIs Bishop states, “Our premise is that it should be a software engineering

tenet that a GUI can be specified as a separate component in a system, and then linked in a coherent way to the rest of the

computational logic of the program.”

 Outcomes

Use of platform independent and meta and declarative languages is an important part of the research for this thesis, in

order to ease the programming problems explained above by Bishop. Current practice leads to the problems of

Maintenance, Extensibility, Ease of Use, and Sharing of Information explained in this research, especially for large and

collaborative complex systems, so an alternative approach is required. For calculation based modelling the

model/program structure can be reflected in the GUI and they both have the same logical structure. This means it is

possible to enable the model to generate a user interface, or the user interface to generate a model. For this thesis model

builders and users should be enabled to construct information/model based systems and manage them. Section 5.5.2 -

‘Better Representation and Structure’ examines how XML can be used to create platform independent interfaces, reduce

coding required and improve re-use.

53

Resnick, M., 1996 Distributed Constructionism Introduction Context and Audience

Proceedings of the International Conference on the Learning Sciences Association for the Advancement of

Computing in Education.

 Issues

Resnick develops and expounds the theory of constructionism, “the idea that people construct new

knowledge with particular effectiveness when they are engaged in constructing personally-meaningful

products”. Resnick goes on to say, “This vision puts construction (not information) at the center of the

analysis. It views computer networks not as a channel for information distribution, but primarily as a new

medium for construction, providing new ways for students to learn through construction activities by

embedding the activities within a community.”

 Methods

This can also be applied to model creation for engineering, science and business. Resnick explains a theory

that influences this thesis, known as ‘Distributed Constructionism’. This involves gaining an understanding

of a problem by interacting with a knowledge building community, the problem to be modelled, and tools

to model the problem, and build a solution. An example that Resnick cites is that of economic market

simulation where participants became part of the simulation they constructed in order to understand

economic models.

 Outcomes

Distributed constructionism theory can be applied with end-user programming and ontology modelling and

building, which are explained in this thesis, and prototyped.

54

2.8 Conclusions - Focus for Developing a Theory and Apparatus

For the hypothesis, investigation of Accessibility of Models was necessary for enabling end-users to

become end-user programmers by providing usable tools that translate diagrammatic representations

into models/programs. This investigation is broken down into Translation Steps and ways to provide

Better Models in order to focus on the need and way of translating, so as to focus on the main aim that

is enabling end-users to provide better models than currently possible.

From the literature review (which covered End-User Programming, Semantic Web, and Modelling) a

major conclusion was that this research should concentrate on where these research areas overlap.

Investigating all these fields fully is not possible, and the nature of interdisciplinary research is that it is

most necessary to investigate these overlaps where two or more fields need to be investigated

simultaneously for a particular purpose. So this thesis aims to bring these fields together, investigate

the overlap and implement solutions for this, rather than to investigate the full extent of all these fields.

These research fields are :-

 Structure and Implicit Knowledge

 Interaction for Modelling with Ontologies

 Visualisation and Interaction

 Model-Driven Programming for Better Model Production

 Accessibility of Models

A methodology for amalgamating this research for creation of a tool to fill the gap in the area of

research where all these overlap is shown in 4.1 Creation of Modelling System - Figure 13.

The literature review indicated that the hypothesis needed revising to - it is possible to create an End-

User Programming environment, usable by computer literate non-programmers, which can have a wide

variety of uses especially for tree/graph/network based modelling.

Chapter 3 examines the theory behind bringing together the research fields covered in the literature

investigated and explained in chapter 2. The overlapping fields investigated for the theory in Chapter 3

relate to and develop/extend the overlapping fields examined in the Chapter 2 literature review.

Chapter 4 describes the methodology used for building on the research.

55

Chapter 3 User Driven Programming/Modelling Theory

3.1 Building a Theoretical Apparatus

The first stage of this research is to develop a theoretical apparatus based on and developing from

selection of the approaches from Chapter 2. Following this, the next stage is based on developing of

tools and methodologies for the practical application of research. Developing from the list of fields

investigated and illustrated in the conclusion to Chapter 2, (Section 2.8), enables development of a

theory and apparatus particularly for this thesis, and especially in order to build the diagrammatic

modelling environment required. Applying the Chapter 2 list to this specific problem enables

generation of a more specific list of areas to be researched, these are listed below, and each are covered

by an individual section.

3.2 - Information Structuring and Navigation

3.3 - Visualisation and Interaction for Modelling

3.4 - Ontology Based Modelling Solutions

3.5 - Ontologies for Interoperability and Reuse of Models

3.6 - Ontologies and Semantic Web and their role in Modelling

3.7 - Meta-Programming as a Model Creation Technique

This is the infrastructure for examining construction of a system for modelling based collaboration.

This research examines a sociotechnical problem of peoples’ interaction with computers for modelling

problems (especially with tree/web-based structures). A sociotechnical approach involves putting

people at the centre of technology as implied by the order of wording social/people issues are the

greatest priority and the technology is to meet peoples’ needs. As Berners-Lee and Fischetti (1999)

explained (discussed in 2.32 - ‘Semantic Web and Ontologies’), connectivity and structure are the

crucial factors, enabling users to create and follow the information connections that are required for

solving a problem, and to specify this problem to the computer. These matters of interaction,

connectivity, and structure are the main factors in this research and in enabling end-user programming.

These factors can be applied to connecting research and connecting information sources, furthering of

this work is important, and can be achieved by enabling connectivity between the open source

ontology, modelling, and visualisation tools investigated, with those tools and applications commonly

used in industry and organisations. These applications already hold large amounts of information,

sometimes they are legacy applications that have been filled with information, and have been used to

solve modelling problems for many years. The following sections illustrate how technologies can be

developed and applied to link, navigate, model, and visualise information held in different formats and

56

technologies and so connect the people using this heterogeneous information. More detailed

implementations are demonstrated in chapter 6.

For this thesis, prototypes are created at an early stage; this is in order to iterate through a process of

reflection and refinement of the methodology. The software design cycle is speeded by adapting a

Rapid Application Development approach of creating examples for the process of developing the

research ideas, and the methodology and testing concurrently. As the relevant software technologies

were/are developing at a fast pace, it is necessary to interact with these technologies to establish how

the objectives of the thesis can be realised. This approach to the thesis is developed further in chapter 4

and illustrated in Figure 15 Section 4.6. As prototypes are created, research ideas are developed, and

this development is co-ordinated with ongoing examination of related research of others, the theory and

methodology is tested, refined, rectified, and proved in stages. The iterative approach leads to recursive

revisiting of issues, moving from theory through methodology and implementation and improving

each. The iterative research approach is adopted early and used in order to begin to develop the

methodology that will be examined and further developed in chapter 4.

3.2 Information Structuring and Navigation

The theory behind this thesis is that it can be made possible for users to drive a model/program by

specifying what they want and allowing the program to respond dynamically. For this thesis

translations were performed. An example translation was created for and with Cost Indicating and

Estimator (COINER)
2
 (Figure 52), this translation was provided for Airbus. Such techniques were also

tested by Marsh et al. (2001) and (2002).

Another diagrammatic approach is that of Lee et al. (2000). They present a distributed visual reasoning

system for intelligent information retrieval on the Web. For that research, the user can design a query

by linking active icons, and then inputting the required parameters. Users can then see the structure of

the query and obtain results from the information database. An approach is used in this thesis of linking

nodes that represent items, values, and equation parameters, in order to visualise the whole

model/program.

Tree/Graph View

Figure 4 illustrates experimentation with a Web-based interface. This is a modification of the Graph

Layout demonstration that came with Java jdk1.1.4 (software development tool). This type of user

interface allows a user to create a program using structures and visual queries and is similar to the

COINER visual interface.

2
 Koonce, D., Judd, R., Keyser, T., Maisel, D. T., 2003. A hierarchical cost estimation tool. Computers

in Industry,Vol 50 pp 293–302, [online]. Available from:

http://engineeringmastersonline.ohio.edu/docs/CII_Better_Systems.pdf [Accessed 11 July 2011].

.

http://engineeringmastersonline.ohio.edu/docs/CII_Better_Systems.pdf

57

Figure 4. Java Graph Layout example, possible user interface for user driven program

Such an interface can be used to create or edit taxonomies/ontologies or to send information to a web-

based decision support program. As well as inheritance relationships, such diagrams could model a

manufacturing process flow. Enoksson (2006) models things a similar way for his concept maps that

break an overall ontology down into concept sub-ontologies/taxonomies. It is important to alter the

view as appropriate for users and situations, e.g. horizontal, vertical, or maybe circular layout, or a 3

dimensional look, as well as allowing variation in positioning of nodes, to assist with navigation.

Modelling of processes is examined in section 3.5.1, and illustrated with examples in the appendix.

Diagrammatic View

This prototype demonstrates how wing design could be aided by modelling visually and interactively

with feedback provided immediately. As the inputs change, calculations and the diagrammatic

visualisation change in response. This was provided as a Visual Basic executable for testing, whereas

the aim is to incorporate this functionality into a web-based open standard tool to be produced

automatically from an ontology. Figure 5 and Figure 6 show the prototype.

58

Figure 5. Early End-user Modelling Example

Figure 6. Early End-user Modelling Example 2

Later (Figure 49) an automated construction system is provided for representing such interactive

diagrams using open standards and represented on the web. The theory behind this section is that of

showing examples using whatever method most puts across the information in an understandable way.

This illustrates the concept that the visualisation and interaction represents and allows users to

59

manipulate the information and get feedback on what has changed. This approach was used by Cypher

(1993).

3.3 Visualisation and Interaction for Modelling

Visualisation and interaction with the model is more important than the result calculation. A visualised

model can be edited when there are changes to the problem modelled. Visualisation shows the working

of the model and calculation, the calculation can be constructed from the model, whereas the model

cannot be constructed from a result figure. Eng and Salustri (2006) outline the role of computers in

aiding decision making, and explain that the human mind is the best tool for making decisions. They

explain that visualisation systems must help people use the information access capabilities of

computers. Section 3.6 examines how such information access capabilities can assist people to model

problems. So the research for this thesis aims to use the layered Semantic architecture described in

section 2.3.1 Figure 3, and translate between the layers to enable human/computer translation. This

approach is intended to improve interaction rather than enable computing decision making through

artificial intelligence; the emphasis is on decision support for design and manufacture. The detail of this

approach and the methodology for automating translation for users is explained further in sections 3.7

and 4.1. Such techniques as genetic algorithms are outside the scope of this thesis. Instead the emphasis

is on clear visualisation, interaction and translation, of structured information.

A visual Graphical User Interface (GUI) can provide a high-level abstracted view of a model that could

then be translated through a layered architecture, into a machine understandable format. This layered

translation is demonstrated in chapter 6. Hudak et al. (2007) explain the history of Haskell (a language

based on functions/expressions), its support for XML and Web scripting languages, and Haskell GUI

research. A GUI is necessary for end-users to program/model using such a language in order to

visualise the expressions. So some form of diagrammatic modelling environment is needed as an

interface for whatever language is used. Functions have the advantage of being similar to what

engineers use in spreadsheets, and can be easily visualised in tree form.

Naeve (2005) argues that “combining the human semantics of UML with the machine semantics of

RDF enables more efficient and user-friendly forms of human-computer interaction.” Repenning

(2007) explains the need for enhancements to UML to aid end-user programming. Repenning also

argues that “Visual programming languages using drag and drop mechanisms as the programming

approach makes it virtually impossible to create syntactic errors.” So, “With the syntactic challenge

being - more or less - out of the way we can focus on the semantic level of End-User Programming.”

Ways such research could be prototyped are examined in section 4.2.1 - ‘Improving and Building On

End-User Interaction and Ease of Use’. This use of models that are visualised to users and enable

interaction could make a high level model driven approach to production of better models possible.

It is then necessary to establish ways to combine the application of research for diagrammatic

programming that emerged from the fields of End-User Programming, Semantic Web, and Modelling.

This needs to be applied using technologies now available including new visualisation, modelling, and

60

interaction tools, some available over the web. User Driven Programming is the application of the

interface between End-User Programming, Semantic Web, and Modelling. Ways that research is

pursued in this thesis in order to make User Driven Programming possible are :-

1. Semantic Web and Web 2.0 approach to enabling User Generated Content.

2. User Centric Extensions to UML (Unified Modelling Language) e.g. (Vernazza, 2007) this

approach also ventures into 1 and 3, as it needs an interactive interface e.g. via the web that is

clearly visualised, showing the structure.

3. Visual Programming extensions to spreadsheet type formulae based modelling, this is

explained in section 3.3.1, and enabled using approach 1.

Approach 1 of Semantic Web and Web 2.0 interaction combined with approach 2 of diagrammatic

modelling is illustrated by Yahoo Pipes
3
, which provides for drag and drop editing of visual

components that can combine, sort, and filter RSS data sources in order to automate web application

development. This enables modelling of information, and using such diagrammatic programming

combined with enabling of calculations would combine these three ways of producing applications.

Yahoo Pipes enables creation of modelling applications with Semantic Web information, so this could

assist in providing more incentive for provision of Semantic Web information and applications to use

it. Yahoo Pipes is like a simplified version of UML (Unified Modeling Language). This kind of

technology could open the possibility of such technology being used to read and eventually produce

ontologies. Using UML for production of ontologies is as advocated by Baclawski et al. (2001),

discussed in section 3.7.1, Kogut et al. (2002), and Enoksson (2006). Also such visual creation

illustrates visual diagrammatic programming advocated by Huhns (2001) and Paternò (2005)

(examined in section 2.5). Section 2.3.2 - ‘Semantic Web and Ontologies’ examines Berners-Lee and

Fischetti’s (1999) argument that connections are all important for collaborative modelling of

information and that these connections can be modelled diagrammatically. An example of an XMI

(XML Metadata Interchange) representation of a node in a UML diagram is shown in Figure 71 in the

Appendix, and an example using Yahoo Pipes is shown (Figure 72).

Use of options 1 (Semantic Web and Web 2.0), 2 (diagrammatic modelling), and 3 (Visualisation of

modelling) illustrate that there is considerable overlap between these three approaches and they must be

integrated within interdisciplinary research to enable User Driven Modelling/Programming. One

approach to this is a Semantic User Interface; this is explained by Vernazza (2007). This interface can

enable Drag and Drop programming that combines the benefits of all three research approaches. An

important factor is to connect the user interface with the underlying code, so the two share the same

structure and users can properly see how their actions can change the actual code. This enables

collaborative user-driven programming.

3
 Yahoo Pipes (2011) [online]. Available from: http://pipes.yahoo.com/pipes/ [Accessed 26 May 2011].

http://pipes.yahoo.com/pipes/

61

Results can be visualised using stylesheets and interactive software, and translated into trees, graphs

and other kinds of representations e.g. SVG (Scalable Vector Graphics) CAD style diagrams. Section

3.3.2 describes this translation process. Gross (2007) argues the need for end-user programming by

designers using diagrams and scratchpads. Tufte (1990) explains how diagrams can be more effective

than words for representing geometry. This links with the theme through the thesis of translating from

an abstract to a concrete representation; Green et al. (2007) explain this distinction between abstract

and concrete models. This distinction is more gradual than the distinction between classes and objects

for object-oriented programming. Naeve (2005) examines this strong separation between types

(classes), and instances (objects) and considers this to be a weakness, which he rectifies for ULM

(Unified Language Modeling) developed from UML. The use and importance of translation from

ontologies and Semantic Web data to interactive SVG is explained by a JISC report (Anderson, 2007,

52) that quotes Berners-Lee. Anderson’s report explains the importance of SVG, and states that “At the

WWW2006 conference in Edinburgh, when asked by TechWatch
4
 about the likely characteristics of

‘Web 3.0’, Berners-Lee stated that he believes that the next steps are likely to involve the integration of

high-powered graphics (Scalable Vector Graphics, or SVG) and that underlying these graphics will be

semantic data, obtained from the RDF Web, that ‘huge data space’.”

Tools (further discussed in section 3.4), and techniques for building on the research of 2.4 - ‘Interaction

for Modelling with Ontologies’ can enable ontology based modelling and visualisation. An extensive

literature review and the summary of this identified that this area was under-researched. Further

research helps build research and implementation in this field. This can then be applied to solve

engineering problems as explained in section 3.5.1 with techniques investigated further in section 3.6,

and demonstrated in chapter 6. Protégé
5
 has OWL plug-ins available that provide extra capabilities for

representing and visualising information, and also reasoning tools for maintaining and analysing the

logical constructs (Storey et al., 2004) and (Elenius, 2005). The University of Victoria Computer-

Human Interaction and Software Engineering lab (CHISEL)
6
 has developed Jambalaya (Ernst et al.,

2003) for visualisation of knowledge and relationships. Researchers at the University of Queensland

Australia have developed a hyperbolic browser to display RDF files; this is explained in Eklund et al.

(2002). Ernst et al. (2003) explain that the “larger ontologies that are being developed quickly exhaust

human capacity for conceptualizing them in their entirety”, so visualisation tools must assist users to

view the information they need. McGuinness (2003) recommends using different presentational styles

according to users and their needs:

4
 Techwatch (2011) TechWatch (Technology and Standards Watch) [online]. Available from:

http://www.jisc.ac.uk/techwatch [Accessed 26 May 2011].

5
 Protégé (2011) Welcome to Protégé [online]. Available from: http://protege.stanford.edu/ [Accessed

26 May 2011].

6
 University of Victoria (2011) Model Driven Visualization (MDV) [online]. Available from:

http://www.thechiselgroup.org/?q=mdv [Accessed 26 May 2011].

http://www.jisc.ac.uk/techwatch
http://protege.stanford.edu/

62

 Presentation Style :- Possibly closely related to user type is presentation style. Some users need to see

extensive detail, some need pruned information, and some need abstractions. Presentation of

information may be textual, graphical, or other. While no one environment needs to support all

presentation styles, it is important that the environment is at least extensible enough to have new

presentation methods added when needed.

Fluit et al. (2003) establish the importance of enabling different views according to peoples’ questions

and purposes. Ernst et al. (2003) also discuss mapping between users’ mental model of a system, and

the system model. They suggest multiple views of the problem to help a user understand the problem.

This subject is explored by Crapo et al. (2002), and is the basis of the visualisation techniques used in

this thesis, to enable the user to create and understand models that are subsequently translated into

software representations.

3.3.1 Users and De-abstraction for Translation

Scanlan et al. (2002) and Hale et al. (2003) explain about levels of abstraction in cost modelling, the

intention here is to apply this to more general modelling problems relevant to this thesis. The

translation from a high-level abstraction to code involves visualisation of chains of equations, which

are common in cost modelling. This visualisation enables people to add and manage information in

large models, and identify cost information. A cost modelling example is used, but this work is relevant

to modelling in general. To model complex problems a structured approach is needed, for representing

explicit and implicit knowledge. A translation will be provided in 3 steps, and the roles and skills of

people who would make use of this translation are shown :-

Table 1. Users and De-abstraction for Translation

Step Person Role Skills Tool Type

Step 1 System Creator Programmer Ontology and System

Translator

Step 2 Model Builder End-User Programmer Modelling Tool and

System Translator

Step 3 Model User End-User Interactive

Visualisation

Step 3 visualises results and enables interaction with the information to establish the meaning of the

results. The translation uses Semantic Web standards to enable widespread applicability and ensure this

is a generic solution. The visualisation and interactions can be tree/graph based, spreadsheet type, and

CAD style as necessary. Another option is translation to programming or Meta-programming

languages so the information can be re-used by developers who are creating systems with these

languages.

McGuinness (2003) considers the importance of supporting different types of user, “Diverse user

support. Some environments are made for power users, some for naïve users, and some have settings

63

that allow users to customize environments as appropriate to the type of user. It is important to

determine if the environment can support all of the types of users anticipated.”

Though this research aims to make visual diagrammatic programming possible the emphasis is not just

on visual programming. End-user programmers might prefer a visual interface and could use this but

this is likely to have a speed and performance penalty. Therefore the translation must ensure that any

code produced is accessible in text form as well as being visualised. This translation approach ensures

that code can be produced in multiple languages, so this makes text based code editing more accessible.

Use of open standards assists in this translation process.

The research is applied mainly to aerospace process and cost modelling. Cost models have been

constructed from information chosen by users through an interface that interacts with people to

establish what information is required, how it should be processed, what calculations should be made,

and how it should be displayed, e.g. as a diagram or taxonomy. Structuring of information through

Ontology and Semantic Web techniques, and enabling End-User Programming through visualisation

and interaction can achieve effective production of generic models, and is demonstrated in later

chapters.

3.3.2 Translation Process

The intention is to examine tools and technologies that can translate from a domain representation

and/or abstract representation of a problem into program code, and examine a systematic way to make

this possible. The translation process is shown in Figure 7; this process makes use of open standards

languages, hence the interest in structured representation and open standards.

64

Figure 7. Translation Process

Figure 8 illustrates how visualisation is to be incorporated into the translation process :-

Step 1

Step 2

Step 3

65

Figure 8. Translation for Interaction and Visualisation

To find alternative ways of representing models that do not require the user to write code it has to be

easier to interact with and change the models, and to share and develop information with colleagues.

The information used in the models resides in an ontology, and models can be automatically produced

from this ontology via a recursive translation tool. Ontologies can also enable communication between

computer systems, and between computer systems and users; Garcia-Castro and Gomez-Perez (2006)

evaluate mechanisms for this, and section 3.5 examines ontologies for interoperability of

models/modelling. In this thesis a technique is used of interpreting information in order to create

decision support programs automatically, in response to user choices. This technique is then extended

for use in the automatic creation of programs in various computer languages and systems. This is

achieved by automated translation of the ontology and Vanguard System
7
 information into other

7
 Vanguard System (2011) [online]. Available from:

http://www.vanguardsw.com/solutions/application/modeling-and-simulation/

 [Accessed 21 April 2011].

http://www.vanguardsw.com/solutions/application/modeling-and-simulation/

66

languages. Vanguard System acts as a reasoning agent on the translated ontology information to derive

new information, as recommended by Uschold and Gruninger (2004). The basis of this process is that

elaborators are nodes in the tree/graph, which are automatically created and dynamically write objects.

Bechhofer and Carroll (2004) examine “how well the triple oriented RDF abstract syntax can encode

the more conventional tree structured syntax for description logics.” The translation process allows the

wingbox (main wing structure) definition to be translated to the decision support system for costing,

and then to other software such as web pages/applications for further processing and visualisation. An

open standard semantic editor (Protégé) is used to structure the ontology information into related

taxonomies. This ontology holds the definitions of nodes representing information, and calculations to

be performed. Taxonomies/sub ontologies are created in Protégé for ‘Parts’, ‘Materials’,

‘Consumables’, ‘Processes’, ‘Rates’, and ‘Tooling’ for a prototype costing system. ‘Parts’ is the core

taxonomy. New categories can be produced as required. Domain experts would edit the taxonomies;

these experts could specify the relationships of classes and the equations to be used via a visual user

interface in Protégé. These relationships are evaluated and translated to produce computer code.

Uschold and Gruninger (2004) describe an approach of ‘Ontology as Specification’. This involves

building the ontology for the required domain, producing software consistent with the ontology, and

translating between these. The translation process consists of :-

 Step 1 - Ontology

 Step 2 - Modelling Tool

 Step 3 - Interactive Visualisation

Figure 9 illustrates how code is produced from the semantic relationships.

Figure 9. Translation Process Design

Uschold and Gruninger (2004, 61) describe the benefits of such an approach as “documentation,

maintenance, reliability, and knowledge re-use”. This translation process is also used for purposes that

Step 1

Step 2

Step 3

67

Uschold and Gruninger describe as ‘Neutral Authoring’, and ‘Ontology-Based Search’ demonstrated in

section 6.4.4.1. Uschold and Gruninger (2004, 61) describe neutral authoring as providing an “artifact

authored in single language, based on ontology - converted to multiple target formats”. Code written

for this thesis within Vanguard System provides multiple translations to different languages and

formats from the Protégé ontology. Uschold and Gruninger describe the benefits of Neutral Authoring

as “knowledge reuse, maintainability, long term knowledge retention.”

The model created (resulting from the translation) can be used as it is, or be a template for the

generation of further models. An example interface, a section from a model produced automatically is

demonstrated in chapter 6. This information is saved using a generic structure based on keys that define

all relationships, into a relational database. This enables storage of hierarchical data in a relational

database and also allows for separation of information into tables according to category, and the use of

SQL (Structured Query Language) to automatically query and structure the information as required.

This approach assists with the problem of mismatch between object and relational structures (further

examination of this issue is in section 4.7). An advantage of using a stack of open standard

representations is that this allows for choice in which search language(s) to use, for example XQuery

(examined in section 5.5.3) can be used for XML, and SPARQL (6.4.4) for RDF and OWL. The main

disadvantage is that either the structure must be simple enough to be represented at the lowest level of

Semantics, or loss of Semantics through the downward translation must be allowed for and managed.

This disadvantage is the reason for concentrating on use of light ontologies, as explained in section

2.3.2. Vanguard’s tree based decision support tool (Vanguard System) reads this information, by means

of translation code added for this thesis, and represents it as colour-coded nodes. The translation code

written for this thesis automatically queries the taxonomies/sub ontologies that make up the overall

ontology, and links the information as required for the model. The translation code builds in all the

links required for the equations and thus links information from different taxonomies/sub ontologies;

the information is colour coded according to which taxonomy it is from. This same kind of translation

code can be reused for any tree-based modelling problem, it builds the equations and follows the links

to build each equation tree, and attach this to the rest of the tree.

The ontology represents the relationships between nodes in a machine independent way, so this makes

it possible to translate the information into Meta languages via recursive querying. For Step 2

translation, SQL (Structured Query Language) is then used to access the underlying database

representation of the ontology. These SQL calls cycle recursively through all the relationships and

write out result code for each node, and each relationship automatically. The translation code reads

node names and node types (e.g. class, attribute) so it can make an appropriate SQL call for each node,

and make a copy in another language or system, then look for children or attributes. This allows any

tree to be represented in computer languages. Then recursive routines write the programming language

to be output.

Now this has been achieved, the problem that remains is that of needing to individually write a

recursive routine for each programming language to be output. However, the recursive routines for

each language are almost identical, as the syntax varies, not the semantics, so automated code writing

68

produces models/programs. This assists with the problem of needing to individually write a recursive

routine for each programming language to be output. This methodology opens up the possibilities for

providing generic modelling capabilities that program with semantics and create meta-code syntax.

Then it is possible to take the burden of learning multiple programming languages from the model

builders and perform translations for them. Once this translation is achieved for a particular language

the solution can be used indefinitely by different model builders for different problems. A future

possibility could be providing the translation itself as a single meta-code solution that could itself be

translated to multiple language systems; this is discussed in section 8.2.4 - ‘Meta-Programming and

Rule Based Programming’. As well as outputting programs, the translation system can produce Meta

languages and/or Semantic web languages, and these research areas are likely to provide a way of

translating the output meta-program into generic software. This makes possible future research into

generating Meta programs based on the semantics defined in the visual diagrams, and so makes the

solution more generic and independent of syntax.

This translation code reproduces a taxonomy/ontology and makes it available for

modelling/programming systems. This taxonomy/ontology is a copied subset of the main ontology

produced as an instance of the main ontology according to model builder choices and for the

modelling/programming purposes of that model builder. So automated code writing produces

models/programs. This is illustrated in Figure 10, which shows copying/translating from ontology to

modelling system.

Figure 10. Recursive Translation - Automated Copying from ontology to modelling system

69

Also the translation can link different ontologies/taxonomies together when they are required in order

to solve a problem. So the approach is to gather information from ontologies/taxonomies as required

for solving a problem as specified by the model builder.

It is possible to create an interactive CAD type representation of a component for Step 3 of the

translation if information is given in Step 1 and/or 2 to define how attributes of an engineering

component or physical object should be drawn. This translation is similar to the kind used for CAD

systems, such as CSG (Constructive Solid Geometry) and/or boundary representation BREP. The

engineering component could then be represented as a tree, in STEP (Standard for the Exchange of

Product Model Data), (shown in appendix), and as an interactive CAD type diagram, as appropriate.

An example is given in 6.5.3.1 Figure 49 with sufficient detail to demonstrate this. So in a full system

STEPml (XML-based STEP) could be used in this translation. SVG (Scalable Vector Graphics) is used

for the visualisation of this Web demonstration
8
. Zhao and Liu (2008) examine mapping of STEP

representations to ontology languages OWL and SWRL and how this benefits interoperability.

Application of techniques to improve interoperability for this research is discussed in section 3.5. Zhao

and Liu also show a diagram (similar to Berners-Lee’s - Figure 3, page 32) of the position of OWL and

SWRL in a stack of standards from XML in the Syntax layer up to OWL/SWRL in the Logic/Rule

layer of ‘Semantics’.

Figure 11 examines many of the ways translation could be used for User Driven

Modelling/Programming. An example of the repeatable process of this design is that the ‘System

Translator Program’ created in Step 1 produces a new ‘System/Translator Program’ in Step 2 which

creates a Visualisation. This technique is used to translate an ontology to a CAD style diagram using a

second stage of translation. The second ‘System Translator Program’ could also have created a

‘Model/Program’, ‘Meta Program’ or translate to an External Application. So, this is not an exhaustive

diagram, as many types of translation not shown on this diagram would be possible. Another option is

that Step 1 could be repeated to translate between ontologies.

8
 Hale, P. (2009) Interactive SVG Examples [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm [Accessed 25 July 2009].

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm

70

Figure 11. Translation Process for User Driven Modelling/Programming (UDM/P)

3.4 Ontology Based Modelling Solutions

Cheung et al. (2007) assert the necessity for collaboration tools to support early stage product

development within networked enterprises. They explain how greater use of collaboration tools can be

achieved. Cheung et al. make the point that any collaborative system to support the early stages of

product development can also be used for the later stages, providing there is an open standard basis for

information representation. Linking of models with each other and with ontologies is essential in order

to deal with the increased complexity of products and collaborative engineering that Cheung et al.

explain. This linking will be enabled by techniques advocated in section 3.5 - ‘Interoperability and

Reuse of Models’, and an ontology based infrastructure as described in section 3.6.2 - ‘Central

Ontology Management’. Fensel et al. (2001) explain that organizations are often geographically

dispersed and act as virtual teams, so virtual collaboration is essential. Corcho et al. (2003) examine the

issue of ontology based collaboration and argue that:

“The future work in this field should be driven towards the creation of a common integrated workbench

for ontology developers to facilitate ontology development, exchange, evaluation, evolution and

management, to provide methodological support for these tasks, and translations to and from different

ontology languages. This workbench should not be created from scratch, but instead integrating the

technology components that are currently available”.

This integration can provide the infrastructure for ontology based modelling. Corcho et al. compare,

contrast and describe ontology development tools, making use of a helpful tabular format. Naeve

Or

For each Step there are alternatives

for what to translate to

Or

71

(2005) gives an example of the need for “semantic mapping” between different words with the same

meaning such as ‘author’ in one ontology and ‘creator’ in another ontology in order to establish

interoperability and machine readability. McGuinness (2003) also investigates ontology tools/systems,

and advocates their use for supporting collaboration for distributed teams. Uschold and Gruninger

(2004, 59) show, with the aid of a diagram, the continuum from informal to formal

taxonomies/ontologies, and the kind of tools that are used in each part of this continuum. Uschold and

Gruninger (2004, 62) describe ‘Ontology-based Specification:’, stating:

“There is a growing interest in the idea of ‘Ontology-Driven Software Engineering’ in which an

ontology of a given domain is created and used as a basis for specification and development of some

software. The idea is to create an ontology that characterizes and specifies the things that the software

system must address, and then use this ontology as a (partial) set of requirements for building the

software… In the case of ontology-based specification, the ontology is used as the basis for software

development. For example, the development of an entire suite of product design software (including

viewing and presentation tools, data bases, and even marketing and accounting tools that are used to

track product sales) could be driven from the same ontology. This would ensure easier interoperability

among software systems whose relationships are typically only implicit. The benefits of ontology-

based specification are best seen when there is a formal link between the ontology and the software.

This is the approach of the so called ‘Model-Driven Architecture’ created and promoted by the OMG

(Object Management Group), as well as ontology software which automatically creates Java classes

and Java Documents from an ontology. When the ontology changes, the code is automatically updated.

A large variety of applications may use the accessor functions from the ontology. Not only does this

ensure greater interoperation, but it also offers significant cost reduction for software evolution and

maintenance.”

Modelling systems investigated for this thesis must provide interaction with an ontology. This is an

essential requirement because of the objective of improving Sharing of Information outlined in 1.4.1,

and developed in section 3.5. Ontologies provide the infrastructure for Step 1 of the translation process.

The systems investigated below also provide a mechanism for Step 2 translation of domain level

modelling into open standard representation and vice versa. Ontology based systems provide a

mechanism for translation/communication with external applications (Step 3). Vanguard System was

used for this step 2 and 3 translation within a prototype system, but other tools/systems such as below

would also be needed for a full scale implementation.

The following systems are not an exclusive list but they all use open standards for information

representation and translation, so this ensures there should be a development path, whatever changes

there may be in the software market. This use of open standards also ensures that a system can link

with most environments used by others. This enables a translation and visualisation approach to ensure

that new models can be added using the existing ontology/ies, and that design changes in the ontology

and translation can enable modelling of different problems. So if there is a new problem to be modelled

there are two ways to achieve this, adapt the ontology and/or adapt the translation and modelling

approach.

72

Some ontology/modelling tools investigated are :-

 ACUITy (Adaptive Work-Centered User Interface Technology) is an ontology-based system and

approach to modelling and implementing user interfaces built on top of Jena. ACUITy has been

developed by General Electric, and its aim is to be used in decision support systems (Aragones et al.,

2006).

 KAON is explained by Volz et al. (2003) as “an open-source ontology management infrastructure

targeted for business applications. It allows for creation and management of ontologies, and provides a

framework for building ontology-based applications.” Volz also discusses issues in the development of

an ontology based software environment, and explains why such an environment is required.

 The Metatomix Semantic Toolkit M3t4
9
 is a set of standards-based plug-ins for the open-source Java

Eclipse
10

 development framework, which allows software engineers to create and modify semantic

applications. Metatomix M3t4 provides for creation and editing of Resource Description Framework

(RDF), and Web Ontology Language (OWL) resources.

 TopBraid Composer
11

 is a visual modelling environment for creating and managing domain models and

ontologies with the Semantic Web standards RDF Schema and OWL. The design and implementation

of TopBraid Composer is lead by Holger Knublauch who was formerly the designer and developer of

Protégé. This tool includes a diagrammatic editor for integrating applications and data sources, so is a

useful tool for diagrammatic programming, and for assisting with interoperability (discussed in the next

section - 3.5), and therefore for collaboration.

Protégé, Eclipse
12

 and Jena
13

 are used as construction tools to provide a development environment for

creation and customisation of modelling systems. These systems are also built on open standard

information formats; this means the systems can be interoperable, and enables people or organisations

to make use of any of these systems without worrying about being locked in to that particular system.

Protégé is used throughout this research but other tools have been investigated, and also would be used

for future work (section 8.2.1 - ‘Ontology Development’).

The modelling tool Vanguard System was chosen because it handles Units and uncertainty well

something that was necessary for the DATUM engineering modelling project with Rolls-Royce as

partners (Scanlan et al., 2006). The same advantage was the case for the PhD because of the need for

extensibility such as risk and uncertainty modelling. Other advantages of Vanguard System were ease

9
 Metatomix (2011) m3t4 Dashboard [online]. Available from: http://wiki.m3t4.com/homepage.action

[Accessed 21 April 2011].

10

 Eclipse (2011) Eclipse - an open development platform [online]. Available from:

http://www.eclipse.org/ [Accessed 21 April 2011].

11

 TopBraid Composer (2011) The Complete Semantic Modeling Toolset [online]. Available from:

http://www.topquadrant.com/products/TB_Composer.html [Accessed 21 April 2011].

http://www.topquadrant.com/products/TB_Composer.html

73

of installation and use, ease of linking to spreadsheets and databases, facilities for web enabling of

models, and the ease with which formulae can be entered and linked with a high level programming

language where necessary (similar to spreadsheets but with a tree based user interface).

Experimentation with Protégé showed it was possible to translate the Protégé tree into a Vanguard

System tree. This fits in well with the stepped translation to be developed. The open standard nature of

Protégé made it possible to use this software without being locked in to it. Tools such as TopBraid

Composer can provide additional higher level functionality such as an improved user interface and

more tools for user interaction and modelling by end-users so is future work.

There was a need for the DATUM project and for the PhD to minimise programming, so Jena was not

used, but Leaver’s (2008) MSc project used this effectively, and there was regular contact with the

developers of ACUITy (Aragones et al., 2006), to examine how that more software centred approach

was used. Given more time that approach could have been used. Metatomix M3t4 was also used

effectively as a high level tool to interact with Jena. So results of research with Jena and/or ACUITy

and Metatomix M3t4 would have shown similar results to the approach of using Protégé and Vanguard

System.

These types of tools improve with research and development each year so reproducing this research is

becoming easier. New ways of modelling at high level with involvement of end-users is thus practical.

Table 2 illustrates the layered architecture on which these systems are built. This thesis uses this

layered architecture approach to implement the translation for User Driven Modelling/Programming,

which was illustrated in Figure 11. So the main benefit of researching these tools was the inspiration

they provided for translation process design and implementation, from a domain level of representation

to a code level. Table 2 in section 3.6 shows tools, technologies, and languages that can assist in this,

and where they are based in a hierarchy from low level information centred interaction to high level

user centred interaction (bottom to top), and computing focused to human focused representation (left

to right). Table 2 also shows how each tool fits in with Naeve’s (2005) analysis based on

“characteristics of the three different semantic stages” of “Semantic Isolation, Semantic Coexistence,

and Semantic Collaboration”.

13

 Jena (2011). Jena - A Semantic Web Framework for Java [online]. Available from:

http://jena.sourceforge.net/ [Accessed 21 April 2011].

74

An interactive version of this table with links to information and examples for these tools and

technologies is available here
14

; this also explains all the acronyms.

Naeve (2005) describes Semantic Isolation where databases are available but hidden behind web

portals, though the portals advertise their address. Semantic Coexistence is achieved by databases being

structured in such a way that it is possible to search them without having to know their location. Naeve

gives the example of RDF Schema - RDF(S), this standardises the structuring of the information across

RDF(S) databases. RDF(S) provides standardised elements for the description of ontologies, so

assisting to enable Semantic mapping. Semantic mapping enables Semantic Coexistence, and Semantic

Collaboration due to Semantic mapping enabling agreement on terms. For the table above the argument

presented is that high level user centred interaction (bottom to top), and computing focused to human

focused representation (right to left), enable Semantic Coexistence. The tools in the top left are built

from those below and to the right of them so the Semantic Coexistence is built from Berners Lee’s

(2000) Layered Architecture shown in Figure 3. Naeve (2005) argues the need for semantics that are

understandable to humans as well as machines. That is an important objective of the research outlined

in this thesis as without semantics that are understandable to humans, it is not possible for non

programmer domain experts to undertake collaborative modelling.

3.5 Ontologies for Interoperability and Reuse of Models

This section builds on the research covered in section 2.3 - ‘Structure and Implicit Knowledge’, and

section 2.3.2 - ‘Semantic Web and Ontologies’ where Berners-Lee et al. (2006) argued the need for

agreeing open representations and visualising and searching them to aid collaboration. This is tested

and applied to engineering modelling.

Many large companies, such as Rolls-Royce and Airbus (collaborative partners during this research),

have outsourced the management and support of their IT systems to third parties. Strict management

processes and procedures for the acquisition and implementation of new systems have been introduced.

“A side-effect of this policy is a tendency for employees to make extensive use of spreadsheets and

macro programming languages for information storage, analysis, and manipulation” (Scanlan et al.,

2006). This paper goes on to explain, “These applications establish themselves as a legitimate part of

the business processes of the organization despite the uncontrolled nature of their development.” This

is a problem as the spreadsheets have much functionality without visualising all relationships between

variables clearly. The spreadsheets are also developed in an unplanned ad hoc way, so limiting

interoperability, re-use, and collaboration. This problem and possible solutions are examined in more

detail in section 5.1.1 - ‘Spreadsheet Modelling’.

14

 Hale, P. (2011) Language and Tool Mapping [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/#LanguageToolMapping [Accessed 14 June 2011].

http://www.cems.uwe.ac.uk/~phale/#LanguageToolMapping

75

Most large organisations have key operational knowledge and information dispersed across different

types of information systems. Ciocoiu et al. (2000) emphasize that as it becomes necessary to translate

between more systems, the number of paths for translation increases exponentially. To improve

interoperability, it is therefore necessary to provide either a translator or multiple translators, and the

translators can be based on taxonomies/ontologies. Ciocoiu et al. (2000) write, “One of the major

problems facing enterprises today is the lack of interoperability among the various software

applications that the enterprise uses.” They also mention that ontology tools could assist with

concurrent engineering and design. Ciocoiu et al. explain how an engineering ontology can be made

more rigorous in order to facilitate interoperability. This allows representation of, say, a product

structure and its manufacturing processes together. A single node then is the only representation of that

node within the model, with all its relationships depicted as arcs emanating/terminating at the node.

Uschold and Gruninger (2004, 58) argue that lack of semantics in data communicated between systems

leads to “brittle systems that are limited in flexibility and expensive to maintain.” Gruber (1993b),

Berners-Lee and Fischetti (1999), and McGuinness (2003) all agree on the usefulness of ontologies for

assisting with understanding and agreement on terminology, thus assisting with interoperability and

collaboration. This interoperability is necessary for Semantic Coexistence and Semantic Collaboration.

This use of ontologies for interoperability and knowledge exchange was discussed in sections 2.3.1 and

2.3.2. Even without agreement on ontology terminology, the use of open standards, and translation and

mapping capabilities can assist with providing some interoperability through what McGuinness (2003)

terms ‘platform interconnectivity’. Uschold and Gruninger (2004, 61) also argue the usefulness of

ontologies, describing an approach to ‘common access to information’:

Problem:

“information required by multiple agents, expressed in wrong format”

Solution:

 “ontology used as agreed standard basis for converting/mapping”

Benefits:

“interoperability, more effective use/re-use of knowledge”.

The ontology management techniques above assist people to argue and agree terminology, to assist

with interoperability based on collaboration. Uschold (2003) argues “The more agreement there is”,

(between humans), “the less it is necessary to have machine processable semantics.” Or this can also

be seen in reverse as the less machine processable the semantics is the more need there is for human

agreement on terms.

Cheung et al. (2007) argue that open source development can avoid vendor lock-in, eliminate

unnecessary complexity, give freedom to modify applications, and provide platform and application

independence. The reason for preferring open-source interoperable systems over proprietary

76

applications is given by Cheung (2005) as “there is no single management tool or data exchange format

that can satisfy all requirements and overcome all the obstacles involved within a collaborative product

development environment”. So it is important to be able to see and alter source code to assist with

interoperability and collaboration. This open source approach can be combined with use of open

standards ontologies as advocated by Cheung (2005) as discussed in section 2.4 - ‘Interaction for

Modelling with Ontologies’.

3.5.1 Engineering Domain Specific Standards

Upper ontologies that use agreed terminology and ways of representing models/programs can aid

interoperability, Uschold and Gruninger (2004) discuss this. Investigation of agreed semantics is

important to 2 of McGuinness’ (2003) 7 uses of simple ontologies; 1 ‘controlled vocabulary’, and 4

‘"umbrella" structures from which to extend content’. Uschold and Gruninger (2004, 62) examine

STEP (STandard for the Exchange of Product model data) for interoperability of systems such as CAD,

and process planning software; and Process Specification Language (PSL) for exchange of

process/workflow/production planning, scheduling, and simulation information.

In addition to the use of open standard ontology languages, a further layer of agreed semantics can be

used for the domain of manufacturing modelling. The Process Specification Language (PSL)
15

of the

National Institute of Standards and Technology (NIST) is appropriate for agreed representation of

manufacturing process semantics. This makes PSL appropriate for this thesis as a means to ensure the

storage of process models. Process models created by users with the User Driven Modelling approach

could then be made interoperable at the level of semantics. PSL defines a neutral representation for

manufacturing processes. Process data is used throughout the life cycle of a product, from early

indications of manufacturing processes indicated during design, through process planning, validation,

production scheduling and control. In addition, the notion of process also underlies the entire

manufacturing cycle, coordinating the workflow within engineering and manufacturing.

Time dependant ordering of processes is essential, in addition to the ‘type-of’ relationships represented

for other sub-ontologies for this research. In XML, order is represented by position within a file, but

higher layer ontology representation languages such as RDF Schema RDF(S), and OWL can represent

sequences explicitly, PSL adds an engineering specific way of representing the sequence/process flow.

A processing sequence can be represented in PSL; this is illustrated in the appendix with an example
16

.

This example visualises a section from an illustrative PSL process sequence, and is rendered using an

XSL (eXtensible Stylesheet Language) stylesheet. This representation illustrates that the standard,

could be expanded to a full ontology, and could allow visualisation, navigation, and interactivity. PSL

adds a layer of engineering semantics to generic semantics for communication between process

15

 National Institute of Standards and Technology NIST, (2011) A Few PSL Basics... [online].

Available from: http://www.mel.nist.gov/psl/ [Accessed 14 June 2011].

16

 Hale, P. (2011) Process Specification Language Example [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml [Accessed 14 June 2011].

http://www.mel.nist.gov/psl/
http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml

77

modelling tools. PSL ‘Items’ are declared as classes and used as instances. Process Specification

Language and the NIST project are covered in Ciocoiu et al. (2000), they describe the use of PSL as a

translator for communication between process planning and scheduler applications and their users. As

Semantic Web languages were used and produced in this thesis it is important to find a Semantic Web

representation for PSL, and to examine Semantic Web representation of design and business standards

for industry. PSL can use XML, RDF, RDF(S), and its own semantics to add a layer of engineering

meaning to these Semantic Web languages, for communication between process modelling tools, and

for use in defining ontologies. Further information on how PSL uses Semantic Web languages to

represent processes is in the appendix. PSL and other controlled vocabularies/ontologies are

investigated by McGuinness (2003). The advantage of investigating both generic and domain specific

standards is that it provides a route for the translation process for User Driven

Modelling/Programming, from generic to specific uses and applications, and vice versa.

STEPml is a library of XML specifications based on content models from the STEP (STandard for the

Exchange of Product model data) standard. STEPml XML specifications are automatically generated

from STEP schemas. It is a standard for transfer of business information concerning the design,

manufacture and support of goods. STEPml relating to XML is explained by Chan et al. (2003), who

investigate automated conversion of STEP data into XML. Further explanations and an example
17

 of

representation and visualisation of STEPml are available in the appendix. It would be possible for the

ontology used in this thesis to be integrated with product and process ontologies being developed as

part of STEP and PSL (Process Specification Language) projects. The development of web technology

and its popularity have created opportunities in the application of STEP. This makes it possible to link

to a wider range of information and make this available on the web. Visualisation and translation of

ontologies to PSL and STEPml could aid in communication between process engineers and designers.

For project management, PMXML (Project Management Extensible Markup Language) has been

developed to make it possible for project management tools to communicate. It is competing against

Microsoft MS Project data format and there is also the possibility of it being merged into UBL

(Universal Business Language)
18

 which has a wider use in e-commerce and business.

3.5.2 - Web and Interoperability Standards

Uschold (2003) states, “The assumption that there will be terms whose meaning is publicly declared

and thus sharable is critical to making the Semantic Web work.” Hence, the importance of such

standards and agreement as discussed in section 3.5, and 3.5.1. Such standards are needed both for

machine interoperability and for human communication, and both interoperability and human

communication benefit from agreements on ways to represent terms, and agreements on meaning of

17
 Hale, P. (2011) STEPml [online]. Available from:

http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/STEPml.htm [Accessed 14 June 2011].

18
 OASIS (2011) Universal Business Language (UBL) [online]. Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ubl [Accessed 14 June 2011].

http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/STEPml.htm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl

78

terms. In section 2.3.1 - ‘Ontologies for Modelling and Simulation’ research of Horrocks (2002) was

discussed on how ontology languages can assist with interoperability. This interoperability provides the

infrastructure for interoperable Semantic Web based applications. Uschold (2003) explains that

ontologies, ‘semantic mapping’, and translation provide ‘semantic integration’; this benefits

interoperability and collaboration. The use of Semantic Web languages as programming languages

would assist greatly with interoperability as these languages are standardised for use in a wide range of

computer systems (as explained by Berners-Lee and Fischetti (1999), discussed in 2.3.2 - ‘Semantic

Web and Ontologies’. Anderson’s (2007) Joint Information Systems Committee (JISC) report explains

that as an application becomes more popular, more people use it in order to communicate with others

who use it. This enables exposing information using web technology, for re-use; Section 3.6.1 -

‘Semantic Web and Web 2.0 Collaboration’ contains more explanation of mechanisms for this. Use of

interoperability standards can mitigate the problem that those using popular applications can only

communicate with each other, and not with those who use other applications. This problem was

discussed in section 3.5. The use of Semantic Web technologies and standards for collaboration is

analysed in section 3.6.1 - ‘Semantic Web and Web 2.0 collaboration’.

3.6 Ontologies and Semantic Web and their role in Modelling

This section builds on the research covered in sections 2.3 - ‘Structure and Implicit Knowledge’ and

2.4 - ‘Interaction for Modelling with Ontologies’. This section takes the general research of 3.4 -

‘Ontology Based Modelling Solutions’ for a specific engineering context, in order to describe how the

solutions explained in that section can be developed and used for modelling systems to aid decision

support, and collaboration. Shim et al. (2006) emphasize that modern decision support systems need to

support teams. This section discusses how Semantic Web/ontology based collaboration can enable

cohesive ontology and model editing. Eng and Salustri (2006) talk of cohesion in software systems, and

the ultimate aim of transparent systems that allow people to concentrate on the problem they want to

solve, with minimal need for awareness of the systems and interfaces they are using. This collaboration

using linked and interoperable systems helps people reach agreement on the meaning of terms, and

encourages end-user modelling/programming by enabling simplified development of online

applications. This end-user modelling/programming based collaboration could be an efficient way of

managing large ontologies with multiple users. There is a need for Semantic Web applications in order

to increase the amount of Semantic Web information that can be searched. This could result in a

virtuous circle of Semantic Web applications creating Semantic Web information, and so justifying the

creation of more Semantic Web applications to access it. This research advocates the use of Semantic

Web applications for modelling and end-user programming, and integration into business applications.

McGuinness (2003) recommends the Semantic Web as a platform for conceptual modelling by non-

experts linking to frame-based ontologies:

“A language should be usable with existing platforms and should be something that non-experts can

use to do their conceptual modeling. The web is clearly the most important platform with which to be

compatible today, thus any language choice should be able to leverage the web. Additionally, frame-

79

based systems have had a long history of being thought of as conceptually easy to use, thus a frame

paradigm may be worth considering.”

So this thesis answers a requirement for accessible modelling by non-experts. A modelling

environment needs to be created by software developers in order to allow users/model builders/domain

experts to create collaborative and interoperable models. This modelling environment will be created

using an open standard language such as XML (eXtensible Markup Language), and layers of semantics

built upon XML. As discussed in section 2.4 Cheung et al. (2005) put forward the importance of XML

for interoperability and knowledge re-use. This assists with the interoperability goals explained in

section 3.5. As the high (user) level translation, a Semantic Web based modelling environment depends

on tools developed in order to assist the user, provide an interface and manage the user interface. These

tools are written by developers using lower level languages, in order to enable modelling by other

developers and eventually end-user modellers.

Section 2.3.1 - ‘Ontologies for Modelling and Simulation’ discussed the definition of an ontology by

Gruber (1993b) “An ontology is an explicit specification of a conceptualization.” Fensel et al. (2001)

explain Gruber’s ontology definition. They explain that conceptualization refers to an abstract model of

a phenomenon in the real world which identifies its relevant concepts. Explicit means the types of

concepts and the constraints are explicitly defined. Formal means the ontology is machine

understandable. Uschold and Gruninger (2004, 59) also explain and expand on Gruber’s definition in a

similar way, and explain the application of ontologies. Gruber (1993a, 1) further explains the ontology

definition, “For knowledge-based systems, what ‘exists’ is exactly that which can be represented”. This

illustrates the need to state everything needed for an ontology based model in a machine

understandable way. Gruber (1993a) examines the role of formal ontologies in enabling machine

understanding of information. Gruber discusses representation in ontologies for machine

understanding, and difficulties in ensuring interoperability and collaboration due to the problems of

agreeing terminology and system representation. The representation must also be understood by

humans. Cheung et al. (2005) cite Davies et al. (2002) in explaining that ontologies “provide a shared

and common understanding of a domain that can be communicated between people and application

systems”. Conceptualization is a simplified version of reality; therefore, there is no need to represent

anything other than what is required for the model(s). The main difficulty is ensuring the ontology is

represented sufficiently to enable machine understanding but also simplified enough to enable

representation, modelling, and visualisation to humans.

Research in the use and visualisation of Semantic Web information can provide the tools that end-user

programmers have been lacking until recently, and these tools can be used for modelling; Cheung

(2005) makes this point. Horrocks et al. (2003) discuss the structure, syntax, benefits and use of

ontology languages for information representation and how this assists automated agents. Horrocks et

al. also talk of defining properties as general rules over other properties and of defining operations on

datatypes. For this thesis, research such as that of Horrocks et al. assists with provision of a visual rule

and equation editor and progress towards Semantic Web programming. An editing facility to model

these equations and constraints, so that errors could be prevented, will improve the usability of visual

80

modelling systems created. McGuinness (2003) refers to such a facility as ‘consistency checking’.

Sutton (2001) illustrates how representing and translating knowledge into a knowledge based system

for decision support is likely to be very difficult. Most people ‘just do’ a task and therefore never write

down instructions for others; Cheung et al., (2007) also make this point. Eng and Salustri (2006) refer

to a dimension from “tacit to articulatable” knowledge. Naeve (2005) argues that where knowledge is

tacit it is vital to keep track of the individuals or groups who have this tacit knowledge, and that also

the ‘Human Semantic Web’ can help elevate tacit knowledge to explicit. This problem of tacit

knowledge highlights the difficulty of getting information into a knowledge base when it may be either

only in individual’s minds, or completely unstructured. This issue and possible solutions are

investigated in section 4.4 - ‘Ontology Tools’.

The web is a useful environment for enabling people to add their knowledge in both a less structured

Web 2.0 way (development of less structured but interactive web tools/programs), and a more

structured Semantic Web way. The greater interaction in the Web 2.0 approach at least makes it more

likely that Semantic disagreements will be spotted, but it takes the structuring in the Semantic Web

approach to then show the meaning of terms more clearly and unambiguously so that agreement or

disagreement about and mapping of terms can be reached. This Semantic Web approach then makes

possible Naeve’s (2005) ‘Semantic Collaboration’ through and also defining the ‘Human Semantic

Web’ that Naeve advocates. This Semantic Collaboration then enables moving on from the Web being

an environment only for simple tasks to one where sophisticated programs and models could be run

that enable calculation and decision support.

This combination in approaches of enabling greater human interaction, and more definition of

semantics is illustrated in Table 2. Language and Tool Mapping. Table 2 outlines positioning of

software to decide where each software tool fits in the translation methodology to be devised for this

research.

81

Table 2. Language and Tool Mapping

Structured Data File Abstract Representation Modelling/Programming Domain Representation

AJAX/Web2.0

Vanguard System ACUITy

Kaon

TopBraid Composer

Metatomix M3t4

 AJAX/Web2.0 Jena

Protégé Semantic

Wikis

XML, Databases

RDF, RDF(S),

DAML+OIL, OWL,

RuleML, SWRL, MathML,

RSS, SVG, VRML, UML,

XMI

AspectXML, AJAX/Web2.0

XQuery, XForms, SPARQL

PSL, STEPml, PMXML, XML with domain

schemas

Increased Semantic Structuring and Collaboration

Increased Human Interaction

Semantic Collaboration

Semantic Coexistence

Semantic Isolation

Generic Applications Single Focus Applications

Complex Data

Tools are shown in italic

82

Thus Increased Semantic Structuring and Collaboration from left to right, combined with Increased

Human Interaction from bottom to top makes it more possible to undertake modelling and

programming because the information is then well mapped and structured, and made available for

visualisation and human interaction. AJAX/Web 2.0 technology spans more than one part of Table 2

depending on the emphasis of whether to structure it and/or enable greater interaction. This reflection

also assisted in establishing the place of Vanguard System within Table 2 for the purpose of

modelling/programming. To reach the top right of the diagram requires layered use of technology as

per the diagram shown in Figure 3 referenced from Berners-Lee (2000) and McGuinness (2003). This

layering of technology is needed in order to translate from the computer centred representations in the

bottom left to the human centred representations and modelling in the top right. Human centred

representations are too abstract for computers and computer centred representations are too abstract for

humans. Therefore the technologies in the top right are not superior to those below and to the left as

they need to be built on those technologies. Further there is more than one way to reach the top right,

e.g. along the diagonal arrow from Naeve’s (2005) Semantic Isolation through Semantic Coexistence to

Semantic Collaboration, or by moving up then right, or right then up. Following the diagonal arrow

based on Naeve’s analysis is best for planning and building such a project from the start, but the other

forms of navigation might be the best way to build on an existing project that has already been moving

in a particular direction, that is not on this diagonal arrow. This arrow indicates a path for projects

where the aim is to produce a solution that’s as generic as possible for modelling of complex variable

problems. Where problems are simpler and less generic an alternative is to develop solution(s) in the

top left of the diagram, ignoring needs to be flexible and generic and solving simple problems in a

simple way. This is the approach that is useful for mobile phone apps for example. If a new problem

arises a new app is developed.

Uschold (2003) argues that “the Web is evolving from being primarily a place to find things to being a

place to do things as well.” Uschold argues that to enable this, an evolution of the Semantic Web “will

take place by (1) moving along the semantic continuum from implicit semantics to formal semantics

for machine processing, (2) reducing the amount of Web content semantics that is hardwired, (3)

increasing the amount of agreements and standards, and (4) developing semantic mapping and

translation capabilities where differences remain.” Uschold defines the Semantic Web as being

machine usable and associated with more meaning. Uschold notes that “in order to carry out their

required tasks, intelligent agents must communicate and understand meaning”. Miller and Baramidze

(2005) explain that “Finding information in the new Semantic Web will likely become some hybrid of

information retrieval, navigation and query processing”. This is researched and implemented within

this thesis with example applications (chapters 5 and 6). Research examined in section 2.3.1 -

‘Ontologies for Modelling and Simulation’ provides an infrastructure for this; and research in 2.3.2 -

‘Semantic Web and Ontologies’ provides a mechanism. Miller et al. (2001) explain the technology

behind web-based simulations, and argue the need for demonstrating the application of web-based

simulations for major projects. Kuljis and Paul (2001) evaluate progress in the field of web simulation.

They argue the need for web-based simulations to be focussed on solving real-world problems in order

83

to be successful. This pragmatic approach allows for examination of the problems of definition of terms

and of provision of editing facilities. This thesis examines and demonstrates solutions to a ‘real world’

problem of aerospace process modelling and costing.

Uschold and Gruninger (2004, 58) emphasize that “people use terms differently and mapping and

translation must take place across different communities.” Uschold (2003) also examines this issue.

Ciocoiu et al. (2000) explain that growing complexity in manufacturing hinders the ability to share

information as the meaning is affected by its context. Engineers may have different names for the same

thing, e.g. wing skin stiffeners may be referred to as stringers, but rib stiffeners are never called

stringers. There is a relationship of stringer to stiffener, which needs to be defined, and this definition

depends on the context; Green et al. (2007) discuss these terminology problems. This problem shows

the need to achieve Naeve’s (2005) aim of ‘Semantic Collaboration’ to agree terminology where

possible or map terms to each other when they have a shared meaning. This was the direction of the

thesis from the beginning but Naeve articulates and defines what such achievement means. A

classification scheme or ontology is necessary in order to make communication precise. Such an

ontology can also be used to help non-specialists understand the terminology of a particular domain. A

methodology for use of ontologies is developed in section 4.7 - ‘Building a System for Ontology and

Semantic Web based Modelling’.

3.6.1 Semantic Web and Web 2.0 Collaboration

Section 3.5.2 - ‘Web and Interoperability Standards’ examined how an interoperable infrastructure

could be provided for web based collaboration. Anderson (2007) in a Joint Information Systems

Committee (JISC) report explains how Semantic Web and Web 2.0 are related, as Berners-Lee’s

intention in the early development of Semantic Web technologies was for pages to be interactive.

Anderson’s JISC report talks of Web 2.0 trends towards the “End of the software release cycle,

Lightweight programming models, Software above the level of a single device, and Rich user

experiences.” Sections 4.5 and 4.6 illustrate how such development techniques are used to create the

prototype system for this thesis.

This approach of using Semantic Web and Web 2.0 techniques for end-user programming/modelling is

researched by Leaver (2008), and demonstrated in a project created by Leaver, and called Bitriple.

Bitriple aims to enable end-user functionality for Semantic Web/Web 2.0 style web-based ontology

construction and search. This application added a facility to edit an ontology/ies, and instances based

on the ontology/ies, and progress towards development of applications and querying of ontologies.

Leaver’s (2008) application was also used within this thesis in order to create an online wing ontology

and demonstrate searching of this ontology. Having tested the Bitriple ontology creation capabilities it

also became obvious that the ontologies already created in Protégé and translated for Vanguard System

could also be translated to run within the Bitriple web-based application. Bitriple uses open standard

semantic representations in RDF/XML, a language already used extensively for the stepped translation

within this thesis. The Bitriple application illustrated that using Semantic Web and Web 2.0

84

technologies in combination to enable end-user modelling/programming is possible. Large amounts of

Semantic Web information could be created and stored quickly using this application. Therefore, this

indicates that an aim of enabling creation of Semantic Web information, with a limited requirement to

understand how it is stored, has been met. So to users, Bitriple is a straightforward web application and

could be used without the need to learn about Semantic Web structuring. This application enables

creation of Semantic Web information that then could be an incentive for creation or linking of other

Semantic Web applications, and generate more opportunities for end-user programming/modelling. A

screenshot from the Bitriple application, of ontology creation for an aircraft wing, is shown in Figure

38 section 6.4.4.1.

The ontology development problem should be aided by publishing the ontology and allowing tagging

of content by users; the advantages of this in creating a shared understanding of what things mean is

explained by Anderson (2007). Anderson explains that tagging by web users can generate some

understanding and agreement about terms and an improved search facility, even without a formal

ontology, or as a way to assist in the development and improvement of an ontology. Anderson’s JISC

report explains how the technologies used are enabling user-centred web applications, and the use of

the web as a development platform. The report advocates that “As a Web 2.0 concept, this idea of

opening up goes beyond the open source software idea of opening up code to developers, to opening up

content production to all users and exposing data for re-use and combination”. Anderson (2007)

establishes the need for communities to build ontologies. Software applications are needed that allow

users with little software knowledge to edit and update ontologies themselves. Anderson talks of

‘harnessing collective intelligence’ by means of interactive collaborative software, he calls this

‘distributed human intelligence’. Cayzer (2004) argues for provision of mechanisms to allow web page

creators to tag their pages easily and as a natural part of the page creation. Cayzer also argues for

Semantic Web based extensions to improve structuring of user-generated information to aid

inferencing. Al-Khalifa and Davis (2006) and Schmitz (2006) use this approach of user tagging

combined with centralised ontology development. These are the reasons for translating and uploading

models to the web for this thesis. The plan for applying this research is described in section 4.8 -

‘Enabling User Driven Modelling/Programming’.

3.6.2 Central Ontology Management

There is a need for uniting of the approaches of top down ontology definition with that of the bottom

up approach of allowing all users to define the ontology. Naeve (2005) discusses a bottom up approach

where there is a set process of deciding what can be agreed on, what cannot, and on documenting both.

Hunter (2002) explains how taxonomies can be the basis of the definitions for an ontology, and that

commercial software is available. Hunter puts forward examples of the Ministry of Defense technology

taxonomy, and the Boeing online ontology. Hunter explains the necessity of clear communication

amongst engineers, and advocates ontologies/taxonomies for this purpose. Hunter gives examples of

Airbus and Rolls-Royce need for ontologies/taxonomies, in order to solve problems from the need for

compliance with strict rules and engineering tolerances for components going into complex structures

85

such as aircraft, which have multiple suppliers. Zhao and Liu (2008) examine the need for sharing

product information between partners as a product model, and how agreement through ontologies,

Semantic Web, and standards can assist this. Ciocoiu et al. (2000) explain that taxonomies/ontologies

of manufacturing concepts and terms can assist with avoiding misunderstandings and can aid

communication. McGuinness (2003), and Uschold and Gruninger (2004) provide useful guides on how

ontologies can assist in linking distributed data. Knowledge based systems need to allow a variety of

people in different disciplines to share knowledge across functional, departmental, and interdisciplinary

boundaries. Consideration is needed of the further problem that certain knowledge should be shared

with others outside the organisation such as suppliers, and customers.

This ontology based approach has been used in the DATUM project (Scanlan et al., 2006), for

representation of the information held in a database and process-planning tool used by Rolls-Royce

aerospace, and this solution has been implemented at Rolls-Royce. This involved automatically

producing a tree/graph based representation of information requested by the user for the DATUM

project. This information was then visualised in decision support software (Vanguard System). A

program written within Vanguard System for this thesis questioned the user via dialog boxes and

produced tree based representation of the information, as selected by the user. This tree was colour

coded, to show the categories of information produced, and enable navigation of this knowledge. This

information could also be output as XML and other structured formats, and linked to stylesheets to

create a Web tree-based representation.

In Figure 12, clicking the page option of the chosen material ‘AMS4127 LAH AL6061 Forging and

Rolled or Rings’ shows the sub-tree below. This is the representation of the information relating to this

material grouped into categories to represent groups of attributes. These attributes are colour coded

according to the meaning of the attribute list with the top 2 representing the superclasses of this

material and the 3
rd

 and 4
th

 group representing the material attributes and material costs. The use of

tooltip comments provides an easy way to view the list.

86

Figure 12. Visualising and Interacting with database/ontology information

Further development of this kind of prototype is explained in section 6.5.2 - ‘Step 2 - Modelling Tool’.

Cheung et al. (2007) used a similar approach of using ontology and XML based languages to

communicate between different tools; this was described in section 2.4 - ‘Interaction for Modelling

with Ontologies’.

Each time the user makes a request or a decision this causes the production of a tree or branch to

represent this. A trigger is passed around the tree or branch as it is created. This is how the tree was

read and constructed for the Rolls-Royce database application link, and can be made to work with any

tree-based data structure. The user interface to enable this is connected to and reads from the ontology.

87

The ontology is held in a relational database. It would have been easier to construct a new faceted

ontology to classify each item under one or more headings and structure this in an open ontology.

However there was insufficient time in this project to translate the Rolls-Royce database to this

ontology; so in later prototypes Airbus wingbox (wing structure) information is used instead. The

collection of cost knowledge and creation of cost objects represents a major bottleneck. One of the

critical factors concerning the speed with which this happens is the complexity of software required to

code the knowledge. The advantage of the system outlined in this thesis is that knowledge can be

collected and interacted with visually by end-users, and without the requirement to know a

programming language. If specialist knowledge or deep software skills are required, this has a severe

impact on the rate at which cost knowledge is formalized and deployed. The use of Lisp, Java, or other

similar programming languages requires a significant level of training. Competence in such languages

typically takes years of experience (Scanlan et al., 2006). Where languages such as these were

translated to and used within this thesis, they were hidden behind a visual taxonomy layer, which

allows the user to interact with the information without writing code. Only programmers would want to

edit the code as text. A second aspect of the solution to the information gathering problem is to hold

information in open standard representations, and share this amongst interoperable systems so

information can be represented just once and translated when necessary. This was discussed in section

3.5 - ‘Ontologies for Interoperability and Reuse of Models’. Once information is visualised and can be

interacted with as above, the next stage is to make it possible to model/program with it.

3.7 Meta-Programming as a Model Creation Technique

Model-Driven Programming and Meta-Programming together with Semantic Web and End-User

Programming techniques are vital ingredients of the User Driven Programming/Modelling approach

used in this thesis. The use of Meta-Programming in the User Driven Modelling/Programming

approach is described in 4.8. This section (3.7) builds on the research covered in section 2.6 - ‘Model-

Driven Programming for Better Model Production’. Dmitriev (2006) explains the problem to be solved

in order to improve model production as “limitations of programming which force the programmer to

think like the computer rather than having the computer think more like the programmer.” Meta-

programming (Dmitriev, 2006) is a useful way of allowing for language independent software

development, and can aid in providing a high level front-end to programming languages. “Meta-

programming is the writing of programs that write or manipulate other programs (or themselves) as

their data” (Wikipedia, 2009). Fischer’s (2007) examination of the overall meta-design concept was

described in section 2.5 - ‘Visualisation and Interaction’. The idea behind use of meta-programming in

this thesis is that instead of writing programs to do a task a domain expert needs the program for, the

Meta program developer creates an environment which all domain experts, in this and similar fields can

use to create their own solutions. The developer then only needs to maintain and improve this

programming environment, and can concentrate on this task; the domain expert can concentrate on

solving the problem at hand without having to ask the developer to create the code on his or her behalf.

88

Dmitriev (2006) advocates reducing dependency on languages and environments by enabling

programmers to develop their own specific languages for solving each domain problem:

“If we are going to make creating languages easy, we need to separate the representation and storage of

the program from the program itself. We should store programs directly as a structured graph, since this

allows us to make any extensions we like to the language. Sometimes, we wouldn’t even need to

consider text storage at all. A good example of this today is an Excel spreadsheet. Ninety-nine percent

of people don’t need to deal with the stored format at all, and there are always import and export

features when the issue comes up. The only real reason we use text today is because we don’t have any

better editors than text editors. But we can change this... Text editors... don’t know how to work with

the underlying graph structure of programs. But with the right tools, the editor could work directly with

the graph structure, and give us freedom to use any visual representation we like in the editor. We

could render the program as text, tables, diagrams, trees, or anything else. We could even use different

representations for different purposes, e.g. a graphical representation for viewing, and a textual

representation for editing. We could use domain specific representations for different parts of the code,

e.g. graphical math symbols for math formulas, graphic charts for charts, rows and columns for

spreadsheets, etc. We could use the most appropriate representation for the problem domain, which

might be text, but is not limited to text. The best representation depends on how we think about the

problem domain. This flexibility of representation would also enable us to make our editors more

powerful than ever, since different representations could have specialized ways to edit them.”

This visual tree/graph diagrammatic approach provides a way to create programs that create programs

so enabling the 3 step translation process used in this thesis, and this enables translations between

people, between systems, and between languages. This translation could enable those who are not

currently programmers to create models at their domain level using domain specific systems created for

them by programmers, and with visual management of formulae and versions. The mechanisms for this

are recursive translation of the tree/graph code representation to multiple models and languages, where

necessary aided by user/modeller choices, as demonstrated in chapter 6.

3.7.1 Model-Driven Programming

Spahn et al. (2007) explain that end-users are domain experts not IT professionals, and because they

cannot program their own solution, this is requiring them to communicate their needs to IT developers.

Spahn et al. argue for the empowerment of users to customise software by providing an abstraction

layer to hide technical details and allow for concentrating on business needs. Model-Driven

Programming and the Semantic Web are explained by Frankel et al. (2004), and they discuss how these

techniques can be combined (section 4.2.1). Bringing together model-driven programming with the

Semantic Web can enable diagrammatic programming, and translation to structured and searchable

Semantic Web output, this eases visualisation and interaction problems at each stage of translation.

Visualisation and interaction with ontologies was examined in section 3.3 and is important for model-

driven programming research in this thesis. Frankel et al. investigate translation of UML and entity

89

relationship diagrams that use graphical notations and store in formats such as XMI
19

20

 (Example

visualisation in appendix), and translations into OWL.

As models and ontologies in this research are to be cohesive and closely linked, visualisation and

interaction techniques can be applied to either or both. Model-Driven Programming can be an

important technique for dealing with complexity. Gray et al. (2004) explain how this technique can

assist in the development of software for a large avionics system, and also investigates program and

model transformation. Gray et al. (2004, 361) explain Program Transformation/Translation for Model-

Driven Programming:

“Research into horizontal transformation concerns modification of a software artifact at the same

abstraction level. This is the typical connotation when one thinks of the term transformation, with

examples being code refactoring at the implementation level, and model transformation and aspect

weaving at a higher design level. Horizontal transformation systems often lead to invasive composition

of the software artifact. In contrast, vertical transformation is typically more appropriately called

translation (or synthesis) because a new artifact is being synthesized from a description at a different

abstraction level (e.g., model-driven software synthesis and reverse engineering). Vertical translations

often are more generative in nature.”

Gray et al. (2004, 367) also investigate “interpreters that traverse the internal representation of the

model and generate new artifacts”, e.g. XML files and source code, though their main emphasis is on

transformation of existing code. Gray et al. explain that a model/developer does not create the

transformation/translation rules. For this thesis this role is assigned to the ‘System Creator’ who creates

the translation system for the ‘model builders’ and ‘model users’, these roles were examined in section

3.3.1 - ‘Users and De-abstraction for Translation’. This thesis concentrates on vertical generative

translations for creation of new artefacts, in order to assist end-user programming/modelling.

Coutaz (2007, 2) explains how Model Driven Engineering and Service Oriented Architecture can be

combined. Coutaz also explains that “An interactive system is a graph of models related by mappings

and transformations.” This would fit in well with the structure of RDF, which is also a graph structure,

an interactive editable tree/graph of models could be produced, in order to relate models and sub

models, and ontologies, and sub ontologies all to each other. Baclawski et al. (2001) and Kogut et al.

(2002) explain how UML can be used as a tool to produce ontologies. Kogut et al. make the point that

UML was originally designed for human-human communication, but is being driven to become more

formal and ‘machine-processable’ and is now being used to generate code and schemas. Baclawski et

al. translate from UML diagrams to ontologies represented in graph based languages; thus

demonstrating the use of translation to aid diagrammatic visualisation and editing for ontology creation,

and enabling closing of gaps between UML and ontology languages and modelling. Section 4.2.1

19

 OMG (Object Management Group) (2011) MOF 2.0 / XMI Mapping Specification, v2.1.1 [online].

Available from: http://www.omg.org/spec/XMI/ [Accessed 14 June 2011].

20

 Hale P. (2011) XMI (XML Metadata Interchange) [online]. Available from:

http://www.cems.uwe.ac.uk/amrc/seeds/Modelling.htm#XMI [Accessed 14 June 2011].

http://www.omg.org/spec/XMI/
http://www.cems.uwe.ac.uk/amrc/seeds/Modelling.htm#XMI

90

examines ways UML tools could facilitate translation, interaction, and visualisation for ease of use.

UML tools are beginning now to use and translate to and from Semantic Web languages; indicating a

step towards co-operation and merging of ontologies and modelling.

3.8 Conclusions

The overlapping fields investigated for the theory are shown below :-

 Information Structuring and Navigation

 Visualisation and Interaction for Modelling

 Ontology Based Modelling Solutions

 Ontologies for Interoperability and Reuse of Models

 Ontologies and Semantic Web technology and their role in Modelling

 Meta-Programming as a Model Creation Technique

A methodology for using these different strands of theory that overlap, and for creation of a tool to fill

the gap in the area of research where all these overlap is shown in 4.1 Creation of Modelling System -

Figure 13.

In the examination of the theory for chapter 3, a conclusion was that this approach is suitable for

tree/graph based problems, and for modelling where nodes can be linked by formulae. This does not

make it suitable for all engineering modelling. For example fluid dynamics, and finite element analysis

are different types of modelling. The theory is suitable for process modelling (both engineering and

business), and for representing taxonomies. So although the research was aimed towards engineering,

the focus is not on all engineering, and can include other fields.

The examination of the theory behind User Driven Programming/Modelling indicated that the

hypothesis needed revising to - it is possible to create an End-User Programming environment, usable

by computer literate non-programmers, which can have a wide variety of uses especially for

tree/graph/network based modelling including process modelling, and representation of taxonomies.

Chapter 4 explains the research design and methodology based on this User Driven

Modelling/Programming theory. Section 4.4.1 - ‘Improving and Building on Modelling Capability and

End-User Interaction’ examines use of translation for enabling model building and use. Chapter 5

prototypes this methodology and chapter 6 implements it.

91

Chapter 4 - Research Design: Methodology

4.1 Creation of Modelling System

The methodology outlined here involves reflection and refinement, related to, and in step to match

research practice to and with the software development cycle for implementation. The methodology

needs to meet the modelling/programming objectives outlined in Chapter 1, of Maintenance,

Extensibility, Ease of Use, and Sharing of Information. The intention of the research into User Driven

Modelling (UDM), and more widely User Driven Programming (UDP), is to enable non-programmers

to create software from a user interface that allows them to model a particular problem or scenario.

This involves users entering information visually via a diagram. The research involves developing

ways of automatically translating this information into model/program code in a variety of computer

languages. To achieve this, visual editors are used to create and edit taxonomies to be translated into

code. To make this possible, it is also important to examine visualisation, to create a human computer

interface that allows non-experts to create software. This methodology is examined throughout this

thesis against the Maintenance, Extensibility, Ease of Use, and Sharing of Information criteria.

There are many computer literate people who do not have the time to learn, or access programming

tools, but nevertheless try to accomplish programming type tasks (Scaffidi, 2005); so instead, many of

them model problems using spreadsheets (Scanlan et al., 2006). This thesis research examines an

aspect of end-user programming - User Driven Modelling/Programming, addressed towards the kind of

computer literate end-user programmer/modeller just mentioned. This takes further the end-user

programming aspect of spreadsheets and similar tools. To enable easier manipulation of the kind of

complex information that is often held and managed in spreadsheets, an approach based on

diagrammatic visualisation of the model is employed to enable navigation and communication of

models. This allows navigation of the equations that represent a model by following a ‘family tree’ of

relationships between equations, and between models. This makes collaboration easier by ensuring

people can navigate and interpret models created by others. Gruber (1993b) observes that a further

advantage is that the underlying structure on which models are constructed can be represented and

stored using open standard representations, to enable its availability for collaboration. In this way

equations (formulae) can be stored in an ontology, visualised for ease of understanding, and made

available for calculation in models.

The methodology involves visualising connections between individual calculations and allowing results

from calculations to connect and link to form an overall model. Therefore, this methodology could be

generalised to any situations where calculations connect to form a model. Even where calculations are

not represented but information needs to be visualised (e.g. scientific taxonomies, engineering product

data structures); the same visualisation techniques can be applied, to ease navigation and therefore

collaboration. Complex models can be made more understandable when displayed in diagrammatic

form. Nurminen et al. (2003) evaluate a system called NICAD that uses calculation rules in this

92

manner. Nurminen et al. emphasize that what successful expert systems have in common is that they

put user needs at the centre of a fast and agile development process. The authors explain that users

prefer usability over automation, and that users should drive the more difficult tasks where they are

needed and leave routine tasks to the system. Ko (2007) explains that end-users’ goals relate to the

problem domain not to code production so they should be allowed to focus on their goals; therefore it is

important to visualise the whole program execution not just the output.

The intention is to demonstrate a way to construct diagrammatic representations of cost using the

example of an aircraft wingbox. The wingbox is the structure or skeleton of the wing. These

diagrammatic representations will be achieved by visual representation of items and equations that

make up wingbox cost. These items and equations can be represented in standardised categories used in

engineering - ‘materials’, ‘processes’, ‘cost rates’ etc. These categories are standard for engineering

and the methods for representing items and equations that relate the items can be expressed in standard

mathematical form. Therefore using the same methodology and same categories it would be possible to

represent other items and equations in the same way. So this methodology is reusable for costing other

engineering components including those outside aerospace. The costing method is also recursive

because components and sub components can be costed separately or together and top down or from

bottom up. This methodology has the potential to be applied to any calculation based modelling

problem.

The User Driven Programming approach advocated in this thesis has the advantages that it is using a

modelling approach for creating modelling solutions and involves creating systems to create systems.

This makes it possible to solve the problem by breaking it down into stages and allowing software

developers to concentrate on the most complex software problems and domain experts to be able to

concentrate on their domain problem. The standardisation possible in this approach can allow software

developers to create modelling systems for generic purposes that can be customised and developed by

domain experts to model their domain. This methodology can be facilitated by :-

 Modelling Tools - Building an end-user interface and extending the translation capabilities of

UML (Unified Modelling Language) and/or other modelling tools (Johnson, 2004).

 Spreadsheets - Improving the structuring and collaboration capabilities of spreadsheets, and

enabling customisation of spreadsheet templates for particular domains and users.

 Ontology Tools - Extending the modelling capabilities and equation calculations in ontology

tools and providing an end-user interface.

 Semantic Web/Web 2.0 - Extending the capabilities of Semantic Web and Web 2.0 style web-

based development tools to allow collaborative modelling.

These possible solutions are not mutually exclusive and their combination could be the best way of

providing usable collaborative modelling tools for computer literate end-users and domain experts. The

93

link between these alternative ways of advancing current research is translation and User Driven

Modelling/Programming.

Figure 13 shows the solutions, and how these could make User Driven Modelling/Programming

possible :-

Figure 13. Methodology Diagram - Enabling User Driven Modelling/Programming

This methodology is developed from the overlapping research examined for Chapter 2, the literature

review, and the theory based on the overlapping theoretical work developed in Chapter 3. The circle in

the middle - User Driven Modelling/Programming is the overlap, and therefore is the focus of this

thesis, and that which needs to be implemented to enable end-users to create tree/graph/network based

models for process modelling.

4.2 Modelling Tools

4.2.1 Improving and Building On End-User Interaction and Ease of Use

This section examines the way software developers could make use of conceptual modelling type

solutions to enable users to program their own modelling solutions. Examples of such solutions are

ontology/taxonomy tools, UML (Unified Modelling Language), Scientific/Engineering Modelling

tools, and Business and Process Modelling tools. It is important to develop a user interface layer to

such tools that can enable development by non-programmer domain experts, by providing to these

domain experts clear visualisation and interaction with their domain that can be translated into the most

relevant UML, process, business, and/or scientific models as appropriate. McGuinness (2003)

94

advocates conceptual modelling to provide ease of use for end-users, “conceptual modeling support,

graphical browsing tools, etc. all may be important.” In section 3.6 - ‘Ontologies and Semantic Web

and their role in Modelling’, McGuinness examined how ontology tools can assist with such end-user

conceptual modelling.

De Souza (2007) argues that the goal of human-computer interaction (HCI) will evolve from making

systems easy to use to making systems that are easy to develop. Building an end-user interface and

extending the translation capabilities of tools such as UML (Unified Modelling Language) and/or

engineering and scientific modelling tools could make them more usable by end-users. UML tools are

used mainly by software developers, and engineering/scientific modelling tools are mainly used by

domain experts who have software skills.

There are important gaps in the functionality of UML tools for user centred design. Palanque and

Bastide (2003) identify these gaps, “For the team of methodologists (Rumbaugh, Jacobson, Booch) that

shaped the UML, User Centred Design was not a central concern.” These gaps are of even greater

importance when attempting to make it possible for people who are not programmers to create

software. Johnson (2004) ascertains that UML tools need to be extended to better enable modelling of

collaborative tasks. In section 3.3 - ‘Visualisation and Interaction for Modelling’, Repenning’s (2007)

examination of how enhancements to UML could aid end-user programming was discussed. Engels

(2007) also explains that UML should be extended to allow development of user interfaces in order to

assist end-users to program. UML tools could also assist software developers in creating a modelling

environment suitable for domain experts to use to solve their problems. Achieving these aims would

require a major change in UML tools to enable modelling of user interaction as the core concern. For

example Abraham and Erwig (2007) integrate spreadsheet modelling into the UML modelling process.

Enabling users themselves to create software using UML type tools would require development of a

new type of UML tool specifically designed for users. This would be compact and simple, but provide

enough capabilities to ensure user’s designs are robust. This would also fill a gap left by engineering

and scientific modelling tools, which are powerful but do not have collaboration, communication, and

ease of use as central concerns. Frankel et al. (2004) explain this, and comment on collaboration and

technologies for co-operative systems that combine UML, ontology environments, and software

environments into an overall system or Model Driven Architecture. Vernazza (2007) demonstrates

Model Driven programming with a Semantic User Interface, as discussed in section 3.3. It should be

possible to target this research towards engineers and scientists who are well used to building models

from equations; economists and financial analysts are also used to such techniques.

Examples in chapter 6 demonstrate the use of modelling tools e.g. Vanguard System linked with an

ontology tool Protégé through User Driven Modelling/Programming translation techniques.

95

4.3 Spreadsheets

4.3.1 Improving and Building on Information Structuring and Visualisation

Improving the structuring and visualisation capabilities of spreadsheets is necessary for improving their

collaboration capabilities. This could enable better customisation of spreadsheet templates for

particular domains and users.

Users can specify a calculation in mathematical terms using a formula. The spreadsheet then calculates

the result of the formula. Users can change the formula if it is incorrect without any need to write code

or re-compile. This accounts for the popularity of spreadsheets. Ko (2007) explains the problem of

programs which were intended to be temporary and owned by a particular person becoming central to a

company; this often happens with spreadsheets. So it is necessary to create collaborative tools that

allow users to develop software in a way they will be familiar with from their use of spreadsheets.

Section 5.1.2 gives a critical evaluation of a spreadsheet created as part of an Airbus aerospace project;

this gives a practical illustration of the problems that need to be tackled. Burnett et al. (2007) state,

“end-users are using various languages and programming systems to create software in forms such as

spreadsheets, dynamic web applications, and scientific simulations. This software needs to be

sufficiently dependable, but substantial evidence suggests that it is not.” Creation of correct

spreadsheets is difficult when the structure of the relationships in the spreadsheet is not clearly visible;

this is why it is important to develop clear representations and visualisations. Crapo et al. (2002) argue

that many users of spreadsheet software can model problems accurately if they are provided with

visualisation capabilities to help them build, track, and understand the information relationships, and

therefore the problem modelled. Crapo explains that visualisation helps users maintain a hierarchy of

sub models at different stages of development and to navigate effectively between them. The way

spreadsheets are defined by formulae can aid in allowing editing and tracking of information in models,

provided that the relationships between formulae are adequately represented. Hanna (2005) explains

that a spreadsheet program is defined by formulae and has purely declarative semantics with the order

of evaluation determined purely by the dependencies between cells. However, Hanna criticises the

impoverished semantics of spreadsheets that “severely limit the ability of programmers (even expert

ones) to construct reliable, correct, maintainable programs with well known consequences”. Practical

problems resulting from these semantic representation deficiencies are explored in section 5.1.1. One

possible solution, demonstrated by Erwig et al. (2006) is automatic generation of correct spreadsheets,

and solving of errors of meaning (semantic errors); though in this thesis the main concentration is on

visualising the semantics and structure of models/programs.

This thesis concentrates on visualisation in order to make the meaning clearer to the human modellers.

Therefore, it is necessary to improve the information structuring, and visualisation capabilities of

spreadsheets in order to encourage more reliable modelling and collaboration. Spreadsheets are a useful

application of the technique of ‘Programming by Example (or Demonstration)’; this is used in the

96

‘Record Macro’ functionality (also discussed in section 5.2). Programming by Example is expanded on

by Cypher et al. (1993) and Lieberman (2000).

4.4 Ontology Tools

4.4.1 Improving and Building on Modelling Capability and End-User

Interaction

Ontology tools can be made more usable for User Driven Modelling/Programming by extending the

modelling capabilities and equation calculations, and providing an end-user interface. Ontology tools

can be linked also with modelling tools and spreadsheets through implementation of a User Driven

Modelling/Programming translator (explained in Section 4.6 - System to be Developed). Ontology

tools can be linked through this translation mechanism to client Semantic Web/Web 2.0 tools or

directly to such tools on the server to provide facilities such as improved visualisation and editing. This

was illustrated in Figure 13 section 4.1.

Information is scattered within organisations and often not held in such a structured way as to be easily

accessed by employees or software. Reasons behind this situation were discussed in section 3.6 -

‘Ontologies and Semantic Web and their role in Modelling’. This problem is examined by Lau et al.

(2005) using the example of McDonnell Douglas (now part of Boeing), that demonstrated how difficult

it is to gather unstructured knowledge. Therefore, it is important that research is undertaken into

methods of capturing, structuring, distributing, analysing, and visualising information. Even where

documents are represented using XML or other structured languages, it is important to structure the

contents and semantics using an ontology, Erdmann and Studer (1999) experiment with querying

ontologies made up of XML documents. If a usable ontology is created, or brought together, it is then

possible to automate the building of models from the ontology.

Macías and Castells (2004) use the approach of defining model based user interfaces using an ontology.

This approach was also used in this thesis, and the ontology defines both the user interface, and the

software model. Formulae (equations) are represented in the ontology and made available to modelling

systems, and examples created demonstrate how this information can be directly translated to software

or meta-language software to represent and run the models (chapter 6). Shim et al. (2002) examine

translation from a user’s model to equations and explain that “converting a decision-makers’

specification of a decision problem into an algebraic form and then into a form understandable by an

algorithm is a key step in the use of a model.”

This thesis involves automatically producing software for a Semantic website from visual

representations of the problem. The core of this modelling infrastructure is automated generation of

models created with World Wide Web Consortium (W3C) and other standards based languages, and

the visualisation of information represented in such W3C standard ways. Modelling languages such as

Alloy, explained by Jackson (2006), could be developed as an interface to the ontology from which

models are built. Transformation from a model building environment to program code has been

97

investigated by Gray et al. (2004) and was examined in section 3.7.1 - ‘Model-Driven Programming’.

Experienced programmers could build a modelling environment that could then be used by non

programmers to create models or solve other software problems. Hanna (2005) uses this approach and

makes use of a declarative functional language Haskell (Hudak et al., 2007) to build user environments,

(discussed in section 3.3). MathML and semantics built on this could assist in this process by providing

an open representation of functions as XML (eXtensible Markup Language). Functions entered by the

model developer can then be translated to this open representation and translated to programming

languages and/or read by programming languages. The representation of functions and information can

usually be illustrated diagrammatically. This is why it is important to provide translation capabilities

between different representations of modelling problems to visualise them in the context the user

expects.

4.5 Semantic Web and Web 2.0

4.5.1 Improving and Building on Modelling Capability and End-User

Interaction

Improving and building on modelling capabilities and end-user interaction can be achieved by

extending the capabilities of Semantic Web and Web 2.0 style web-based development tools to allow

collaborative modelling. Semantic Web/Web 2.0 tools can be made more usable for User Driven

Modelling/Programming by extending the modelling capabilities and equation calculations and

providing an end-user interface. Semantic Web/Web 2.0 tools can be linked also with modelling tools

and spreadsheets through implementation of a User Driven Modelling/Programming translator (as is

also the case for ontology tools). As was illustrated in Figure 13, Semantic Web/Web 2.0 tools can be

linked through this translation mechanism to Ontology tools or directly to Ontology tools on the server

to provide improved structuring of information.

In this thesis, online spreadsheet tools were developed and extended to allow better collaboration and

visualisation. During this part of the research, Google developed Google Spreadsheets
21

, and other

spreadsheet like Web 2.0 tools were also developed. While online spreadsheet type software created for

this thesis and other tools such as developed by Google are a useful extension of spreadsheets onto the

web, and they encourage collaboration, they still need further development and customisation in order

to structure and visualise information to make collaboration effective when dealing with complex

models. This would involve more implementation of other Web 2.0 ‘Mashups’ and interactive

diagrammatic modelling. An advantage of web spreadsheets over traditional spreadsheets is that they

enable easier customisation and development of their capabilities, and linking to ontology tools through

open source languages. It is also then easier to link the spreadsheet to online visualisation and

modelling tools, this is explained in chapter 5 on development of early examples and prototypes, and

chapter 6 on development of the final implementation.

98

4.6 System to be Developed

The system explained here aims to solve problems of Maintenance, Extensibility, Ease of Use, and

Sharing of Information by linking and advancing Modelling tools, Spreadsheets, Ontology tools and

Semantic Web/Web 2.0 tools and techniques. The system outlined is an attempt to help users who are

experts at their own careers and not computer professionals, to develop models that aid in their work.

This is a common situation for designers and other engineers. The research and implementation is later

demonstrated through the wingbox (wing structure) example, used in a spreadsheet in chapter 5. This

illustrates the approach of provision of a system to enable users to create and/or use and share their own

models.

Figure 14. Translation Process Chain

This research involves adapting or creating software systems to provide the visual editor for the source

model/tree, and model builders would create a model by editing this. By doing so they would create a

generic model for a particular modelling subject.

This translation process involves a stepped translation from a source tree, through visualisation,

interaction and model calculation, to a result tree. The role of the ontology and taxonomies/sub

ontologies for providing the source tree for this translation was explained in Figure 9 section 3.3.2. The

result tree can be code and/or Semantic Web output. The result tree/model is a more specific subset of

the source tree/model. This output is enabled by provision of translation software to translate the

ontology into a decision support and modelling system. The model users could then use this decision

support and modelling system to create their models. User choices specify what specific subset of the

generic model will be produced to apply for their own analyses. This thesis concentrates on provision

of a translation mechanism to convert information or models into many computer languages (primarily

21

 Google (2011) Welcome to Google Docs [online]. Available from: docs.google.com/ [Accessed 14

June 2011].

Step 1

Step 2

Step 3

Documents%20and%20Settings/Joanne/My%20Documents/Peter's%20stuff/PhD2008/docs.google.com/

99

web-based), and to visualise this information. Examples of this are shown in chapters 5 and 6 based on

wingbox cost modelling.

A model as defined by a user could be translated to a model that is more suitable for a computer to

interpret. Software could then follow any relationships defined in the model, make any calculations or

decisions, and so provide the results. Recursion can be used to enable the computer to follow a

representation of the problem without having to care about the names of objects. This is particularly

true for tree/graph representations. This process was described in section 3.3.1 and illustrated by Figure

10. Trees are defined recursively because their structure is recursive, so it is natural to traverse and

copy them recursively. This approach deals with hierarchies and relationships, but for requirements

outside this scope ‘Aspect Oriented Programming’ (Elrad et al., 2001) and (Murphy et al., 2001) could

be used to capture and translate these requirements. Aspect Oriented Programming can be used to

identify functions that can be used in calculating results without the requirement of a detailed

underlying ontology/taxonomy (Elrad et al., 2001). So Aspect Oriented Programming is best used

where software functions cannot be neatly attached to particular objects or nodes in a hierarchy. These

are known as cross-cutting concerns as they may affect several nodes. A diagrammatic representation

of the cross-cutting concerns could then be translated into a computer representation (as investigated by

Gray et al. (2004)), but further research on this topic is outside the scope of this thesis, though the

possibility was illustrated in Figure 8 section 3.3.

A further translation is necessary from the decision support program/model (step 2) to a result model

(step 3) that should be created to express the results to a user. This model would be a categorized full

description of all the results from the program. This results model should be represented using open

standard information languages such as XML or languages derived from these. This enables the widest

possible re-use of the information on different hardware and software systems, and translation up and

down ontology layers. The result model could be represented diagrammatically or as categorized and

linked web pages/applications. The full translation is as below :-

Source Model (Human Friendly Representation) Source Model (Computer Friendly

Representation) Computer Program Result Model (Human Friendly Representation)

If users can define the source model, remain largely unaware of how the result model is produced, can

understand the result model, and it meet their expectations, the translation will be successful. Decisions

a user makes can affect both the content and the presentation style of the results received.

The system created for this thesis consists of applications combined in order to represent a layered

architecture of :-

Database Ontology Engine Ontology Visualiser Calculation Engine Inputs

Visualiser Results Visualiser

The ontology created for this thesis in Protégé has formal definitions of ‘is-a’ relationships, and formal

instances. Therefore, it is much more machine readable than those at the human readable end of the

100

ontology scale such as thesauri. In fact, it is tested as machine readable by the automated conversion

process from the Protégé representation to the decision support modelling system used for calculations.

The decision support system can be made to read any of the trees from Protégé and it can split or

combine these trees or branches as needed for the model being used, and in response to decisions made

by the user, as mentioned in section 2.4. In Section 2.4, it was mentioned that Miller and Baramidze

(2005) argued for use of interrelated ontologies rather than one single ontology; this approach is used

for this thesis. Development of these interrelated ontologies was described in section 3.3.1. The

intention is to ensure models and ontologies are linked systematically and in a generic way. Logical

constraints are informal, and failures are caught by the modelling tool that will flag any illogical

expressions. It would be better to represent such logical constraints in the ontology also, as is done in

the most rigorous machine readable ontologies, this was not finished due to time constraints and

because it was not necessary for validation of the concept, so is to be future work (explained in section

8.2).

101

It is possible to create an extra layer of visualised semantics to enable users to specify commands in

structured language. This approach of adding extra layers is the way this visual programming works.

Users provide the information the program needs at the visual interface layer and program code is

created automatically. The layers provide the bridge between abstract ideas and computer code. If this

approach is taken to its logical conclusion, it would be possible to allow the user to specify what the

computer should do. Then each layer would communicate this to the layer below until the computer

performs the action required. A simple example of this approach is the use of spreadsheets. Users can

specify a calculation in mathematical terms using a formula. The spreadsheet then calculates the result

of the formula. Users can change the formula if it is incorrect without any need to write code or re-

compile. This accounts for the popularity of spreadsheets. However, spreadsheets do not provide the

centralised and structured data-store required for a distributed collaborative system. Therefore, this

research concentrates on combining the wide applicability of generic spreadsheet modelling with

structured and adaptable modelling and visualisation.

It is important to enable changes to the design of the information source and its structure as necessary,

even when it contains information. This makes possible continuous improvement of the information

and its representation together. Clear visualisation of the structure makes out of date and duplicate

information obvious, so it can be changed by the end-users of the information. This provides for

maintenance of information quality without necessitating end-users to understand relational database

design; though relational databases can still be accessed by software specialists for more in depth and

less frequent structural changes. Figure 15 shows the way iterative research development and

refinement is used both in this research method and in the implementation to ensure that changes can

be made systematically as necessary and without disrupting the projects.

Figure 15. Research Development Iterations

Each idea is implemented and tested continuously. There is reflection and refinement within the

Methodology and Implementation, within the Software Design for demonstrating the Implementation,

and between the Methodology and Implementation and the Software Design. Each iteration of

development is a consequence of application of the research and methodology so far undertaken to the

process of development. This process is described in chapters 5 and 6.

102

4.7 Building a System for Ontology and Semantic Web based Modelling

As mentioned in chapter 1, the use of the Semantic Web in this thesis is a means for open standard

representation of information, transformation into different representations as required, and for

provision of a high level interface as a tool for model creation, and translation to program code. An

‘elaborator’, is used, this is a translator that converts the diagrammatic representation of the problem

into software. Translations could be performed into any programming or meta-programming language

or open standard information representation language, the visualisation of the model created can be

displayed on the web. This translation builds on research in program and model transformation. The

translation software performs transformations as required between different programming languages

and visual model views. This is prototyped for this thesis, and it is important to further this research in

order to establish a user base, and make the translation generic.

The focus is on combining the development of dynamic software created in response to user actions,

with object oriented, rule based and Semantic Web techniques. This helps solve problems of

‘impedance mismatch’ of data structure between object oriented and relational database systems

identified by Ambler (2003). The information for the examples is highly structured and visualisation of

this structure in order to represent the relationship between things clarifies the semantics. The meaning

can be seen not just by the name of each item but also by the relationship of other items to it. For this

thesis an ontology is used that consists of several related taxonomies/sub ontologies. This ontology

provides a design costing capability, but the ontology and the techniques used to build it could be re-

used for other purposes. In fact the model demonstrated in chapters 5 and 6 needs to be restricted from

generic to wingbox costing specific, as it is constructed and used the model and tree become more

specific as information is added. Therefore the core of this solution is generic, other problems could be

modelled in just the same way, over time going from generic to specific as the model/tree is specified.

The use and visualisation of the ontology enables editing of an ontology centric model without the need

to edit code. A light-weight ontology is used for the thesis, and this is evaluated for usefulness before

deciding whether it would need to be more structured. McGuinness (2003) mentions that “building the

more complicated ontologies may be cost prohibitive for certain applications.” Issues about

visualisation of light weight ontologies are examined by Fluit et al. (2003). Fluit et al. examine

scalability of ontologies, and visualisation, they recommend visualising ontology schemas and

instances in a related coherent way. Hunter (2002) evaluates engineering ontologies and gives

examples (a more expansive discussion is in section 3.6.2). An important reason for creating an open

standard central ontology is that it can be accessed by many different applications. Research of others

in this field assists with interoperability of ontologies (Corcho and Gómez-Pérez, 2000) compare and

contrast ‘traditional’ and web-based ontology languages, and (Corcho et al., 2003) examine ontology

tools and techniques, as discussed in section 3.4. Noy and McGuinness (2004) describe ontologies by

means of examples, and outline a methodology for their systematic construction. The open standard

OWL (Web Ontology Language) is used for this thesis; the role of OWL was explained in sections 2.3,

3.3, and 3.4. Bechhofer and Carroll (2004) explain the three classes of OWL documents, and the

sublanguages that define them - Lite, DL, and Full. These languages use logic representation

103

increasingly from Lite towards full, so the benefits of simplicity need to be balanced with what is

necessary for Semantic Collaboration, and modelling.

The detail and accuracy of the information that can be provided to define engineering products varies

along the product development chain. The most important time to identify opportunities for cost

reduction are early in the product life cycle before most of the costs are committed, so it is important to

analyse the new design as soon as possible so that it can be costed by a process of analysis and

refinement. Scanlan et al. (2006) make this point. This also implies however that the costing tool must

be continuously refined as designs are refined, and/or new designs and products created. An ontology

based modelling approach can assist with this as it allows the software design to be adjusted by

redefining the ontology structures. Visualisation of these structures can ease this task and so increase

the range of people who can undertake it. Semantic Web visualisation can make the models accessible

and searchable, by a wide range of users. Chapter 5 illustrates the problems that occur when costing is

undertaken without a sufficiently structured and editable ontology, such an ontology, and a modelling

system based on it is prototyped in chapter 6.

The wingbox ontology is made up of taxonomies for each domain such as parts, processes, and

materials. Wherever possible, agreement on the terminology and method of use for each taxonomy/sub

ontology should be sought, or a published standard used e.g. Process Specification Language (PSL) of

the National Institute of Standards and Technology (NIST), covered in section 3.5.1. This

standardisation of terminology can make the translation simpler and enable interaction with other

systems. This kind of solution is referred to by Uschold and Gruninger (2004). This standardisation

makes it possible to expand the modelling capabilities to generic problems.

4.8 Enabling User Driven Modelling/Programming

This methodology is built on the combination of research in end-user programming, Semantic Web and

Web 2.0, and modelling and visualisation examined in chapter 3. The thesis approach builds on

previous work undertaken for Rolls-Royce aerospace to allow designers and manufacturers to visualise

and share cost information (Scanlan et al., 2006). This was part of the DATUM (Design Analysis Tool

for Unit-cost Modelling) project undertaken with Rolls-Royce to make costing by analysis possible

early in the design of a new product. This project involved Rolls-Royce Aerospace, University of the

West of England and Southampton University. During this project, one task undertaken in relation to

this thesis was to automatically produce tree/graph representations of information requested by users.

Information held in relational databases was visualised and exported in structured languages. The

author was part of the DATUM project until 2006 when it relocated to Southampton University. The

essence of the research methodology (developed in section 3.3.2) is that a high level visual interface is

used to create a Meta-program, which can communicate the wishes of users. This requires the

definition of taxonomies to provide the library of information to be used in the decision support

modelling. A model builder could visually and diagrammatically populate and maintain this without

needing to know programming languages. This kind of modelling would then enable the designers to

104

influence the construction of decision support models dynamically. Once this is possible the model is

responsive, instead of commissioning for software development, the domain expert model builder can

communicate with a visual interface, and this translates to controlling code, which writes code to

achieve what is required. Thus, the model builder is using a modelling system (created by a software

developer) to create modelling systems. A program/model is expressed in terms of a diagram that

represents each domain of information required, and this diagram holds structured language definitions.

Separation of content of the information from any constraints of language and format enables this.

This user driven approach is similar to the way spreadsheets allow structured formula to be entered

using a formula wizard. However, spreadsheets allow for construction of models that are hard to

maintain and adjust as the scenario which they model changes. This is because of the difficulty that

humans or computer applications have in accessing information when the information is held in cells

rather than nodes of a taxonomy or other diagrammatic representation. Schrage (1991) explains how

difficult it can be to find the underlying assumptions that are represented in a spreadsheet scenario. The

difficulty of tracking the information and assumptions in a spreadsheet make it hard to integrate the

model with other software applications. However, the large numbers of domain experts who undertake

spreadsheet development indicates their desire to be creators of software models. Improvements are

required in order to ease problems of Maintenance, Extensibility, Ease of Use, and Sharing of

Information as are recommended in section 4.3, and these improvements will be developed in section

5.1.1.

The methodology involves creation of an elaborator that can output code, in various computer

languages. This avoids the need to use loosely structured systems such as spreadsheets and allows

people to develop models themselves. The model can be translated from a high level representation to a

computer language or a Meta-programming syntax such as MetaL (Lemos, 2009) or Simkin

(Whiteside, 2009). The elaborator needs only a few pieces of information. All information other than

that dependant on user interaction, including the names of each node and its relationships to other

nodes, needs to be held in a standardised data structure, e.g. a database or structured text file(s). A

visual interface to this ontology is required so that model builders can maintain and extend it. The

interface and model linking can follow a similar structure to that used for web networks; Anderson

(2007) characterises this, “The Web is a network of interlinked nodes (HTML documents linked by

hypertext)”. The automated translation provides an infrastructure of linked nodes and equations for web

modelling. This enables Semantic Web Programming as advocated by Berners-Lee and Fischetti

(1999).

Each node (elaborator) needs to be provided with the following pieces of information :-

1) A trigger sent as a result of user action. This is a variable containing a list of value(s) dependant on

decisions or requests made by the user, last time the user took action. Each time the user makes a

request or a decision; this causes the production of a tree or branch to represent it. This trigger variable

is passed around the tree or branch as it is created. The interface to enable this is connected to and reads

from the ontology.

105

2) Knowledge of the relationship between each node and its immediate siblings e.g. parents, children,

attributes. So the elaborator knows which other elaborators to send information to, or receive from.

3) Ability to read equations. These would be mathematical descriptions of a calculation that contains

terms that are items in the ontology. The equation would be contained within an attribute of a class, e.g.

the class ‘Material Cost’ would have an attribute ‘Material Cost Calculation’ that holds an equation.

4) Basic rules of syntax for the language of the code to be output.

The way the elaborator finds the information held in 2 and 3 is dependent on the action that is taken in

1. Thus, if a suitable ontology is created, the basis of the rules of construction of the code to be created

are defined 4, and the user has made choices, the user needs to take no further action and just wait for

the necessary code to be output.

The system created will make use of Program Transformation, which allows for writing in one

representation or language, and translating to another. Lieberman (2007) advocates this to enable

automation of software production; (section 2.7.2 - ‘Better Models’). This is particularly useful for

language independent systematic information representation, and creation of models can be made more

easily accessible and editable by drag-and drop editing of nodes. Use of Semantic Web technologies is

a means for open standard representation of collaborative models, transformation into different

representations as required, and for provision of a high-level interface as a tool for model visualisation

and system creation. This enables application of the theory of distributed constructionism explained by

Resnick (1996); allowing people to learn from building and sharing models. The outputs are made

available on the web, as this is cheap and accessible to use and allows for distributed visualisation, and

co-operation to enable new insights. The methodology involves creation of a translator that converts

between representations of the problem as appropriate to different people and subject matter, and is

customisable by users. Translations will be performed into programming and meta-programming

languages and open standard information representation languages. The visualisation and models

created will be displayed and interacted with via the web.

Figure 16 shows the methodology behind the Semantic Web modelling. The diagram explains the

Semantic Web modelling process, at all stages from ontology to results visualisation. These stages will

then be prototyped.

106

Figure 16. User Driven Modelling/Programming System

1. Connections are established between the ontology system and any databases, spreadsheets, or other

systems that hold relevant information for that modelling problem.

2. The ontology is created using RDF/OWL (Section 3.3.2 discusses Bechhofer and Carrols’ (2004)

explanation of using RDF to encode tree structures, and section 4.7 includes a reference to their

explanation of the different varieties of OWL. Above this ontology an interface is built to allow domain

experts to edit the ontology.

3. Libraries are created in a partnership with domain experts.

4. Taxonomies/sub-ontologies are populated by model builders who want to use them for their

modelling problem. These are based on the libraries created in step 3. The colour coding demonstrates

the way sub-ontologies are linked into the overall ontology and each colour coded to differentiate

between each sub-ontology and to show their position clearly within the overall ontology. This colour

coding becomes especially important in a result tree as a result tree is likely to include calculations that

take input from more than one sub-ontology, thus a branch may contain nodes of various colours e.g. a

cost calculation based on Materials, Processes and Cost Rates.

5. Taxonomies are colour coded for ease of understanding. A link is created between the ontology tool

and a decision support and calculation tool, which reads information from the ontology tool.

6. There are 2 sorts of constraints that can be used in order to make it easier for users to build and adapt

models. These are constraints on the way the ontology and models are built, and user interface

constraints to reduce the scope for error.

Step 1 -

Ontology

Step 2 -

Modelling

Step 3 -

Visualisation

107

7. The colour coding makes calculation clearer because all taxonomies can be used and reflected in any

calculation, this produces a multicoloured result tree/graph that represents the entire calculation history.

User choices affect how items are related for the calculation; choices could be made manually or via a

search. Colour could also be used to represent cost, time, and/or uncertainty (Bru et al., 2004).

8. Each node can also represent uncertainty, and prototypes have included uncertainty expressions in

the calculations.

9. The result tree can be represented on the web and in other programs, this allows for further

searching, navigation, processing and evaluation of results. Visualisation techniques and the use of

searchable languages such as XML and SVG (Scalable Vector Graphics) can assist in this.

10. and 11. Experts such as designers can interact with the ontology, the model, and results, there is a

two way feedback mechanism where the expert can make changes at any stage (steps 1, 2, or 3), and

this filters into changed results. This can then support a cycle of results and rework.

Visualisation is important in allowing users to interact with the models created and see the results of

any calculations and transformation into the result model. Examples of visual interfaces are shown in

chapters 5 and 6 and also described in (Bru et al., 2002) and (Bru et al., 2004). The elaborator (de

abstractor) needs to follow a structured ontology to establish how related concepts represented visually

can be represented in equivalent code. The visualisation can be either as a colour coded tree or an

interactive SVG diagram of a component to be modelled. Letondal (2005) researches this problem in a

similar way and for graphical programming objects states:

“1. their ‘content’ may be defined by a formula,

2. their methods may be edited, modified, copied to define new methods

3. their graphical components are accessible as program objects

4. graphical attributes may be defined to implement visualization functions”

4.9 Conclusions

Development of prototypes will be undertaken in order to explore whether the research and

methodology are realisable for the development process. Thinking about and examining this

methodology at the same time as producing results via prototypes that can be refined and tested,

enables refinement and testing of the methodology and the theory. Research practice is thus improved

by the refinement of the research development and implementation. Chapter 5 prototypes and

demonstrates the development and use of the User Driven Modelling/Programming methodology using

examples.

108

Ch 5 - Development: Early Prototypes

5.1 Illustration of the Problem to be Addressed

This chapter illustrates problems that result from building a complex costing system within a

spreadsheet, and the need for development towards and provision of alternative ways to represent such

systems. Section 5.1 is based on work undertaken for Airbus to establish a way of representing

information relating to the design and production of a wingbox (wing structure). The approach of

developing decision support models for design and costing, using a spreadsheet is evaluated. It is

argued that this approach is insufficient for providing generic and reusable models. The rest of the

chapter examines ways to improve this by bringing together Ontology, Semantic Web, Modelling, and

End-User Programming approaches to meet the aims and objectives discussed in chapter 1. So a

contrasting approach will be explained of using open standards ontologies and software. The chapter

begins with an explanation of the spreadsheet approach. This chapter gives a critical evaluation of the

ACCS project spreadsheet; the project is explained in (Scanlan et al., 2002). ACCS was an Aerospace

Composite Costing System created in a project developed between University of the West of England

and Airbus Aerospace in which the author took part. Later in this chapter the first attempts are made to

build an ontology based modeling system, this is illustrated with prototypes.

5.1.1 Spreadsheet Modelling

Spreadsheet modelling for the Airbus wingbox problem involved investigation of problems of

Maintenance, Extensibility, Ease of Use, and Sharing of Information discussed in chapter 1. These

problems can lead to errors. Scanlan et al. (2006) observe, “By their nature, large spreadsheets are

difficult for a third party to comprehend as their inherent flexibility for editing allows users to generate

a complex web of cell references which are arduous to audit.” Panko (2000) and Paine (2003) also

throw light on this problem. Also, the spreadsheet may add to the problem, by hiding the detail behind

an elaborate and visually attractive interface, but which does not clearly visualise the spreadsheet

structure/content. Scanlan et al. explain that “if the author of such an application leaves the

organization, it is commonly abandoned as colleagues are reluctant to master its complexity, and take

ownership of it.” Paine ascertains that spreadsheets have almost no features for building applications

out of parts that can be developed and tested independently. Panko (2000) suggests that “Given data

from recent field audits, most large spreadsheets probably contain significant errors.” The most recent

audit he cites found errors in at least 86% of spreadsheets audited. Panko reports that 90% of the

spreadsheets audited in a study carried out by Coopers and Lybrand were found to have errors, Erwig et

al. (2006) also cite a figure of 90% from (Rajalingham, 2001). Erwig et al.’s examination of

spreadsheets was discussed in section 2.6. Scanlan et al. (2006) joins Erwig et al. (2006) in arguing the

vulnerability of spreadsheets to mistakes, brittleness of complex spreadsheets, and difficulties in

auditing and validating their contents. The studies by Paine, and Panko show that the chances of any

given spreadsheet cell containing an error are somewhere between 0.3 and 3%, so that a spreadsheet of

109

only 100 cells has about a 30% chance of having one error or more. An error in one cell can cascade to

many other cells and so cause misleading results. Aragones et al. (2006) state, “Desktop spreadsheet

users are very creative in their adaptations, but distributed spreadsheets have the problem of distributed,

inconsistent inputs and distributed results. There is no easy way to aggregate the collective wisdom of

user experience.” As discussed in section 4.3 - ‘Spreadsheets’, Hanna (2005) examined the declarative

nature of spreadsheets; this makes them suitable for end-user programming. However, he criticises the

lack of structure which makes the semantics of spreadsheet models hard to understand and interpret.

This can make it difficult to maintain, re-use, collaborate on and extend spreadsheet models.

Declarative semantics provide a means for end-user programming as long as this is within a structured

environment, and as long as a sufficiently understandable graphical front end is provided that visualises

the structure and semantics to allow interaction. Wakeling (2007) investigates creation of a spreadsheet

using Haskell (Hudak. et al., 2007) in order to introduce spreadsheet users to functional programming.

Hudak et al. explain the history of Haskell, its support for XML and Web scripting languages, and

Haskell Graphical User Interface (GUI) research.

5.1.2 ACCS Example

5.1.2.1 Project Aim

The ACCS (Aerospace Composite Costing System) spreadsheet estimation tool was created for a

project involving Airbus, to provide Airbus with a comparative cost for the manufacture of the various

wingbox parts using carbon-fibre composite. This example (Figure 17 - described in 5.1.2.2) illustrates

a design that is difficult to cost because of a change in process i.e. use of composites rather than metal

for manufacture of a wingbox. In early study of design options, parametric cost models are often used

to statistically relate cost to factors such as weight and manufacturing process. Composites have

different cost drivers than metals so this invalidates the use of parametric models based on metals in

order to cost composite structures, and products. Gutowski (2001) examines web-based costing of

composites. (Scanlan et al., 2002 and 2006) investigate parametric cost estimating, and generative cost

estimating. Brundwick (1995) and Duverlie et al. (1999) investigate issues in parametric modelling.

Parametric costing is generally not suitable for new processes, whose characteristics are significantly

different from those previously used, due to lack of historical information. So parametric models based

on processes used already cannot be re-applied for the new processes. Much of the cost of a product is

committed during the design process, so an alternative for parametric costing is needed even at an early

stage of design (Scanlan et al., 2002 and 2006). A similar project to ACCS was undertaken by

Eaglesham (1998); this costed composite manufacture in aerospace, using a database and

querying/calculation.

Because of the difficulties applying parametric costing methods to new technologies, the ACCS project

was undertaken to create software for the purpose of costing a product where parametric costing was

not viable. Airbus specified that this should be a short project to enable costing the manufacture of a

composite wingbox, and that a spreadsheet must be used for this because of availability of this package.

110

Costing of composites is an important area of research, as designers want to make use of the strength

and weight properties of composites but need to be confident that the utilisation of such components is

feasible and cost effective. Airbus used the spreadsheet frequently.

5.1.2.2 ACCS Implementation

The composite wing spreadsheet is a decision support tool for designers and manufacturers to evaluate

the options for design and manufacture of composite wingbox components. It covers four main

components - ‘Skins’, ‘Spars’, ‘Ribs’, ‘Stringers’, and possible manufacturing techniques for each. The

spreadsheet model begins by providing the user with a choice of component to cost. Diagrams of

generic wingbox components were provided to visualise the general shape and use of these

components. Help pages were also provided at all stages of the costing. On choosing a component, in

this case a spar, properties of the component are shown with default values. Colour coding is used to

indicate to the user what values are editable. The derived values are recalculated to reflect any changes

made by the user. When users are satisfied with the definition of the component, they press the ‘Define

Processes’ button to begin choosing and defining manufacturing processes. Figure 17 shows the

navigation system the user follows, although this is a simple system, sophisticated code had to be

written to keep users to this path, and return them to this path after adding input values or viewing

results.

Figure 17. ACCS spreadsheet model navigation

Code was created by recording macros that represented actions users would want to take and re-using

the code created from these actions. This is a simple way of using the Programming by Example

technique explained in section 4.3 - ‘Spreadsheets’.

111

5.2 Macros and Programming by Example

‘Programming By Example’ (PBE) is a technique where a software agent records user’s behaviour in

an interactive graphical interface, then automatically writes a program that will perform that behaviour

for the user. Spreadsheet ‘Record Macro’ functionality uses a Programming by Example approach, as

mentioned in section 4.3. Macías and Castells (2004) use a Programming by Example approach for

creation of model based user interfaces, using an ontology (section 4.4.1). This is part of their work to

build systems for end-user programming.

5.3 Visualisation and Interactivity for Translation

Jackiw and Finzer’s (1993) research on translations between visualisations was examined in chapter 2

(section 2.5). This thesis has concentrated on translating graph and tree representations to diagrammatic

visualisations, but this translation is valid in either direction so future work will involve reversing the

translation; this possibility is examined in section 8.2.2.

5.4 Web Spreadsheet and Semantic Modelling Examples

Reed et al. (2000) show how web-based modelling and simulation can be used for improving the

aircraft design process. An approach of providing collaborative spreadsheets with a central information

source was prototyped for this thesis. This was in order to link spreadsheet use with web-based

modelling and simulation and enable sharing of information, and collaboration for modelling.

Installing spreadsheets on client computers does not provide multiple user access. The example below

provides a centralised spreadsheet that makes use of a structured database to store the information,

which it relies upon. A further advantage of this is that the database can be accessed by other

applications. Figure 18 is an example page relating to wing spar manufacture
22

. Java based

spreadsheets were also investigated, but later developed into a more visualised tree-based approach as

demonstrated in section 6.5.3.2 based on the example research shown by Figure 4.

Figure 18. Distributed Spreadsheet Spar Definition

22

 This was created using ExcelWriter (2011) [online]. Available from:

http://officewriter.softartisans.com/

[Accessed 22 June 2011]. This software creates web spreadsheets or converts existing spreadsheets for

use in a distributed web environment.

http://officewriter.softartisans.com/

112

This spreadsheet enables re-use of the manufacturing information for other manufacturing problems, as

the spreadsheet can link and contribute to a manufacturing ontology.

Figure 19 shows an early attempt to design a web-based representation of an Airbus spreadsheet built

on an ontology infrastructure. This builds on the research leading up to Figure 18 by defining through

an ontology, the creation of the spreadsheet and of controls for interaction with the spreadsheet and for

defining of all the default values via the ontology. The web pages that reproduce the functionality link

to the ontology, and respond to decisions made by the user. The controls are constructed appropriately

according to data type e.g. JavaScript constructs the up/down increment buttons for increasing values

as integer or decimal steps, and enables direct editing of the box whist applying the appropriate editing

constraints for that data type. The information used to produce these spreadsheets is held in

DAML+OIL XML files (DAML+OIL was explained by Horrocks (2002) as discussed in section 2.3.1

- ‘Ontologies for Modelling and Simulation’). This approach of adding layers of structure to a basic

XML file is used in ontology editors, and in Semantic Web and other web standards. These files can be

edited to alter the information on which the spreadsheet is based. So the spreadsheet could be edited

and reconstructed purely through editing the DAML+OIL code without changing the JavaScript code

required for the interface creation. This makes it easier to manage the information and reuse it for a

different problem. It also eases development of software for modelling different problems using the

same approach. Figure 19 also demonstrates how information from the ontology can be read into the

controls and how calculations are made, using the ontology information. The entire contents of what is

shown in Figure 19 including all the labels, values and controls are defined in DAML+OIL. JavaScript

software was developed to read the DAML+OIL and construct the interactive controls, visualisation,

and interface for users to interact with and calculate from the source DAML+OIL information.

113

Figure 19. DAML+Oil Web Program linking to ontology information

The yellow text boxes show calculated values. These calculations are made using JavaScript code that

reads the equations from the DAML+OIL representation into functions. This causes a loss of flexibility

as only a programmer can create and develop use for new equations that may be needed for the

calculations. Editing the code is reasonably easy for any programmer, and does not require compiling

or any special software. However this is still too much to expect from non-programmers. Another type

of problem occurs with the control of program flow. Decisions that the user makes affect later options,

but a non-programmer cannot change the structure of this flow of decisions. The advance that the

Figure 19 implementation makes over the Figure 18 implementation is the incorporation of some the

functionality available from spreadsheet languages such as Excel (Visual) Basic into the ontology, read

by the JavaScript in a partially generic way.

Although the HTML and JavaScript interface was abandoned in exchange for a more maintainable

XForms implementation, this work demonstrated it was possible to structure information appropriately

in linked taxonomies/sub ontologies to create a structured ontology that is constructed using an open

standard language. The use of XForms also enables users to maintain the ontology, in step with the

application. The example proved the feasibility of providing a web application. Web software was also

114

used for the production of parametric models, based on common data held in a relational database or

XML on a server. This is explained with an example in section 5.5.2 - ‘Better Representation and

Structure’.

5.5 Necessary Improvements

5.5.1 Better Visualisation

Proper visualisation of the structure was missing from the previous test implementations. In Figure 20

the full program structure is visualised as a tree hierarchy. The user selects the component from an

XML based menu and queries are run which return the appropriate costing (simple parametric). If a

component is chosen, in this case ‘IP Compressor’, the information related to this component including

its parents and children is shown. This was limited to a few common attributes ‘Quantity’, ‘Cost Per lb’

(test values), and ‘Weight’ but this could have been extended to provide a more detailed list. The

example uses test quantities and costs only. The example is based on aircraft engine structure and

components; knowledge from discussions with Rolls-Royce was used to create the hierarchy.

Figure 20. Ontology of Engine Components and related information

The tree menu used in Figure 20 and Figure 21 uses a stylesheet created by De Andreis
23

; this menu is

used to link and provide navigation for all the related sub ontologies and models. This example was

23

 De Andreis, E. (2009) 2MXtree XML-based tree [online]. Available from:

http://manudea.duemetri.net/manudea/xtree/default.asp [Accessed 25 July 2011].

http://manudea.duemetri.net/manudea/xtree/default.asp

115

extended to allow for the choice of Materials for each Component from a similarly structured Materials

hierarchy The menu appears in response to the user clicking on the Material Button to choose a

material. Figure 21 shows this and also illustrates how costs can be calculated and totalled.

Figure 21. Selection of Material for components

The menu was moved to the right for clear presentation as this shows the menu reused with different

information (materials rather than components) and for the purpose of selecting a material for the

component already selected. A shopping cart metaphor was useful for summing the costs from models

for many components so that a whole engine costing could be created. This application was also the

basis for a re-implementation, using XForms for ease of maintenance and ontology development,

which is described below.

5.52 Better Representation and Structure

Highly interactive web pages that act like programs to provide a user interface can be used to provide

an interactive User Driven Modelling/Programming environment. One methodology investigated is use

of XForms
24

 web forms to capture the information required for each node in a tree. XForms enables

automated production of user-interfaces from XML information; the advantages of this were argued in

section 2.7.2 ‘Better Models’ referencing Bishop (2006). The XForms can be made to look like a web

page, spreadsheet, or whatever tool the user is most familiar with. This can be used as a way to capture

24

 Bruchez, E, 2006. XForms: an Alternative to Ajax?. In: XTech 2006: Building Web 2.0 16-19 May

2006, Amsterdam, The Netherlands.

116

information from users for an ontology. An example of this is Orbeon Forms
25

, which is open source

software that can store information in an Exist
26

 XML database. XForms can be the basis for interactive

applications that are easier to maintain than the HTML and JavaScript forms created earlier in this

research (5.5.1). XForms can be used for managing information from XML files. It is possible to add,

delete and edit any XML file, so this provides infrastructure for a user interface for end-users to create

XML documents online, which can represent models. The most important consideration in use of

XForms for end-user programming is to visualise and allow editing of the information structures, rather

than depend on the structure being understood only from its text representation. Figure 22 shows

example wing component information edited using this system (this contains test values only).

Figure 22. XML Based Software for capturing information

5.5.3 Better Interactivity

The above application enables selection of components and sub components, and calculates the total

cost. XForms was also used to manage staff information, demonstrating that it was particularly easy to

reuse XForms from one application, for a different application, by editing the XML and form. This

online editing could be expanded to enable online creation and editing of models, in a similar way that

Protégé was used in the research to perform this task offline. Future research on online editing is

explained in 7.3 - ‘Widening Participation: Online Editable Systems’.

The interactive examples shown earlier in this chapter (5.5.1) demonstrate the kind of calculation and

modelling that could now be achieved more easily using XForms. Those examples had used

combinations of XML and JavaScript that work in a similar way to XForms and enabled the same

kinds of user interaction; but XForms based solutions proved to be more maintainable. XForms can be

25

 Orbeon Forms (2011) Form-based web applications, done the right way [online]. Available from:

http://www.orbeon.com/ [Accessed 25 July 2011].

26

 Exist (2009). Open Source Native XML Database [online]. Available from:

http://exist.sourceforge.net/ [Accessed 25 July 2011].

http://www.orbeon.com/
http://exist.sourceforge.net/

117

used in combination with XQuery (McGovern et al., 2003) to allow for completely XML based

interactive applications, illustrated by Figure 22 and Figure 23
27

.

Figure 23. Automated Generation of Web Forms

Provision of an editor would mean changes made by the user are fed back to the XML, so users can

change information, and thus change the model without ever needing to see the XML code. The reason

for investigation of XForms is that ontologies translated and linked to XForms XML files, schemas and

stylesheets, can enable creation of a web-based user interface for modelling and ontology management.

This combination of Web 2.0 and XML technology behind an adaptable and extensible user interface

can enable experts who may have no knowledge of the Semantic Web or programming to create,

manage, use and edit applications. This would enable user-generated Semantic Web information to be

produced and so create an incentive for development/linking of further Semantic Web applications for

use by end-user modellers/programmers. Such arguments and examples are developed further in 6.4.4.

5.6 Discussion

These prototypes progress towards but do not fully satisfy the aims of improving collaborative software

development through the interaction with diagrams without requiring people to learn computer

languages.

27

 Hale, P. (2009) Wingbox XForms Example [online]. Available from:

http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html

- Explanation - http://www.cems.uwe.ac.uk/amrc/seeds/Ajax/ajax.htm#XForms [Accessed 25 July

2011].

http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html
http://www.cems.uwe.ac.uk/amrc/seeds/Ajax/ajax.htm#XForms

118

The prototypes address maintenance, extensibility, ease of use, and sharing of information.

Maintenance is improved by providing ontologies that models can share, but although the ontologies

are implemented using Semantic Web languages they do not yet have a sufficient visual interface. So

the systems could be improved by using a visual ontology editor. The implementations do not allow

users to edit items and equations, or structure online. While this prevents model users from accidentally

changing or overwriting equations (which can happen with spreadsheets, even if cells are protected,

users can switch off the protection) it also prevents model builders from editing and extending the

models unless they access the Semantic Web and code files and edit them. So this hampers

maintenance and extensibility by computer literate end-users, restricting this to programmers. For most

users these restrictions improve ease of use, so these examples show useful user interfaces, but

development of an ontology based production system for these interfaces would allow model builders

to create models also. This would enable more automation and end-user programming and still keep the

advantages of ease of use for model users.

5.7 Recommendations

Evidence from the implementations outlined in this chapter indicates that Maintenance, Extensibility,

Ease of Use and Sharing of Information problems can be solved by :-

1. Improving the structuring of information and model/program structure using visualised

editable ontologies implemented with open standard languages.

2. Making use of structured development tools such as intermediaries between model

builders/users and computer code. The user interface and translation capabilities of XForms

and XQuery, and Semantic Web technologies can provide interaction with the model and/or

ontology.

3. Visualising the model structure fully to engage users and ensure navigation and feedback to

users is in a way they would expect and understand.

Chapter 5 investigated the theory explained in chapter 3 and the design and methodology in chapter 4,

in order to establish how the research areas could be brought together and implemented. Some progress

was made towards developing an ontology based modelling system. Chapter 6 is developed from test

applications created to test this ontology based modelling approach, and aims to bring the research

ideas based on Semantic Web/Ontologies/End User Programming, and Modelling together into a single

working system. Chapter 6 explains this revised implementation.

119

Ch 6 - Development: Final Prototype Implementation

Chapter 6 describes the implementation of the User Driven Modelling/Programming theory outlined in

chapter 3 where Semantic Web/Ontologies/End User Programming, and Modelling overlap, then

developed in chapter 4 and prototyped in chapter 5. This is in order to ease problems of Maintenance,

Extensibility, Ease of Use, and Sharing of Information. The prototype was developed in order to

provide a system that could be used for modelling a complex system that is liable to be changed. To

develop and implement a User Driven Modelling/Programming approach an ontology was required, a

way to visualise and edit this, and a translation so the model based on the ontology could be

automatically updated in step with the ontology developed.

6.1 Background to Projects and Implementation

The prototype is based on projects with Airbus to model wingbox design and manufacture processes

and costs and the Rolls-Royce DATUM project (Scanlan et al., 2006) for process and cost modelling

applied to engine design and manufacture. Both projects involved extensive collaboration between the

UWE process/cost modelling team and teams at these companies, and frequent meetings for feedback.

Both Airbus and Rolls-Royce have deadlines based on projects such as to develop new products. This

focuses the companies on meeting the deadlines, but this can hinder long term systematic process

modelling system development. So it was necessary to focus on creation of a system that could be used

continually, and be reusable for one project after another. This also created an opportunity to make the

system reusable across different companies/organisations, and for different types of projects.

6.2 Wing Spar Explanation

The main implementation examples in this chapter are based on a representation of this Wing Spar

(wingbox component) and associated processes, though Wing Ribs, Skins, and Stringers (Stiffeners)

were also modelled. Figure 24 illustrates the Wing Spar :-

120

Figure 24. Wing Spar Diagram

To assist with making the spar example and the process for its creation understandable, simpler

examples based on a rectangle and a square are demonstrated first.

6.3 Implementation Techniques and Examples

Figure 25 illustrates the implementation of the translation stages. Step 1 is creation of the ontology,

which is then translated to the decision support and modelling tool (Vanguard System) for Step 2. Step

2 is illustrated more fully to the right, and this shows colour coding of the taxonomies (sub ontologies)

that make up the ontology e.g. parts, processes, and materials. Step 3 involves translations to

visualisations for the web (using Semantic Web formats) and alternative representations. Step 3 can

also produce program and/or meta-program code.

121

Figure 25. Stepped Translation and

Visualisation

Visualisation

Step 1

Step 2

Step 3

Ontology

Creation

Ontology to
Modelling
Translation

122

Section 6.3 explains how the translation is achieved, using a simple example illustration. Section 6.4

examines how the aim is to bring together modelling, ontologies, Semantic Web and Web 2.0

techniques to enable User Driven Modelling/Programming through the 3 step process of Step 1

Ontology, Step 2 Modelling, and Step 3 Visualisation (especially over the web); and translation

between these steps. Thus section 6.4 contains examination of the technologies required. Examples to

illustrate the 3 main steps of the User Driven Modelling/Programming approach will be illustrated in

section 6.5 in order to provide implementation and prototyping of the techniques and technologies

illustrated in 6.4.

6.3.1 Implementation Simple Example

This simple model explains all the implementation of translation steps. A movie demonstration of this

is available here
28

.

6.3.1.1 Step 1

A rectangle is defined with attributes for length and width, shown in Figure 26.

28

 Hale, P. (2009) Implementation Simple Example [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_viewlet_

swf.html - Explanation -

http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_launcher

.html [Accessed 25 July 2011].

http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_viewlet_swf.html
http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_viewlet_swf.html
http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_launcher.html
http://www.cems.uwe.ac.uk/~phale/RectangleDemo/RectangleDemo.viewlet/RectangleDemo_launcher.html

123

Figure 26. Rectangle Definition in Ontology

Width is then defined as 2m.

In Figure 27 another class is created for calculation of area.

124

Figure 27. Rectangle Area Attribute

In Figure 27 ‘Area’ was assigned a value of ‘Length’ * ‘Width’. This is a simple equation that will be

used to calculate the result. This illustrates how modelling calculations are performed. They are all

defined by equations that relate attributes of the taxonomy/sub ontology. The taxonomy can be read by

the decision support system in Step 2.

6.3.1.2 Step 2

For Step 2 the decision support/modelling system reads the ontology, performs the calculation and

deals with units giving the result for area as 8 metres squared. This is shown in Figure 28 below :-

Figure 28. Step 2 - Translation and Calculation

125

The modelling system can then output the results to web-based visualisations, or to program/meta-

program code.

6.3.1.3 Step 3

As well as showing the model itself on the web it is possible to translate the model results into other

representations and visualisations, so making it as widely accessible as practical. Figure 29 shows the

result model translated into XML and visualised as a tree view on the web. The automated menu

provides for some of McGuinness (2003) 7 uses of simple ontologies (discussed in section 2.3.2 -

‘Semantic Web and Ontologies’) :-

2. site organization and navigation support

3. expectation setting

5. browsing support

The use and visualisation of Semantic Web languages at all stages in the translation process facilitates

6. ‘Search support’, and 7. ‘sense disambiguation support’; the structure of the ontology is visualised in

order to enable users to determine the context of terms.

 Figure 29. Results Output as Tree (XML based)

126

Figure 30 shows an output SVG rectangle diagram that includes interactivity; this has been translated

from the tree/graph-based representation. The input values used for the calculation and the diagram

itself can be changed via an automatically produced user interface that is related to the taxonomy

structure. These changes cause the shape representation and the area to be recalculated.

Figure 30. CAD type interface and User Interaction and Calculation

Section 6.4 explains the benefits of this translation process and how they are achieved.

6.3.2 Implementation Cube Example

This example is provided to illustrate the structure and process for creating the ontology, model, and

visualisation/representation used for translation process from step 1 to step 3. This also helps to

demonstrate how the research provides a solution for generic and reusable engineering modelling, by

providing a real but simple demonstration of this modelling approach being used for an engineering

model.

The cube model, as for all the engineering/process models is made up of the definition, in this case of

the cube, and a colour coded representation of all the processes, materials, tooling, consumables,

resources, and rates used for the manufacture of the cube; these are read in from the ontology in

response to user choices. This makes it possible to investigate scenarios such as in this case whether to

manufacture using welding, or riveting, and different options for use of tooling, consumables,

127

resources, and rates. From investigating different options, different trees are created to represent

different paths/options, and from this the production cost tree is created with results and feedback on

exactly what made up the process/cost. Figure 31 illustrates how the different sub

ontologies/taxonomies are colour coded in order to ensure it is easier to read the meaning of the tree

and the interrelationships between the different aspects of the model.

Figure 31. Cube model example - illustrates choice of process etc.

In this example
29

, aluminium was chosen as the material, and riveting was chosen as the process. This

example also illustrates how the Vanguard System modelling tool automatically combines units

appropriately.

Figure 32 shows the cube translated and visualised using SVG (Scalable Vector Graphics).

29

Hale, P. (2009) Component Definition [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/SVGCubeExample/CubePartDefinitionwithCosts.htm [Accessed

25 July2011].

http://www.cems.uwe.ac.uk/~phale/SVGCubeExample/CubePartDefinitionwithCosts.htm

128

Figure 32. Translation to SVG Visualisation

Next the implementation of this research is illustrated with the more complex example of an aircraft

wingbox, using the same approach.

6.4 Implementation Results and Benefits

6.4.1 Modelling Tools

Improving and Building On End-User Interaction and Ease of Use

Figure 33 shows how the modelling system created for this thesis can automatically construct and

represent a branch in the tree, visualise an equation and calculate a result (into Vanguard System). The

information was translated from an ontology, as described in section 3.3.1. Red nodes represent

processes, green nodes represent the part definition and magenta nodes represent resources. This

129

illustrates how 3 taxonomies have been automatically linked because they are needed in this

calculation. In this prototype, hundreds of calculations have been related to each other. This example

illustrates that ‘Area’ was calculated, and that this becomes part of the tree for the ‘Hand Layup Tool

Cleaning Cost’, which in turn is passed into other calculations. Hundreds of calculations using

information from all the taxonomies are linked as required in this costing example.

Figure 33. Ontology to Model Conversion

Costs and times are fictitious and units were not used in Figure 33. Units can be switched on or off in

the Vanguard Studio modelling tool. In an ontology based application for multiple use, agreed

standardised representation of units would need to be defined, as discussed by Gruber (1993b) in

section 2.3.1.

For the prototype to be extended and applied for practical use, each taxonomy/sub ontology was filled

with a structured tree representation of expert’s knowledge in the form of classes, values, and

equations. A costing tree can be automatically produced from these taxonomies. Equations created by

domain experts, together with choices made by users of the decision support software, determine how

these taxonomies are linked for a particular costing. The costing tool user then determines which

costing equations are used, by choosing options on dialogue forms. These choices are made whenever

multiple solutions are available. The benefit of this approach is that the user interface and calculations

will be changed automatically to reflect any changes in the model. So if the problem to be modelled

changes, only the information that defines the model needs updating by the user, the user interface and

calculation engine will change in response.

6.4.2 Spreadsheets

Improving and Building On Information Structuring and Visualisation

It is particularly important to target modelling that is too complex for use of spreadsheets, and enable

sharing of information via an ontology. To achieve this it is necessary to tackle difficulties in

maintaining, extending, and reusing spreadsheet type models. Section 3.3 examined possibilities for

visual modelling/programming extensions to spreadsheet type formulae based modelling. Section 4.3

explained the need for improving the structuring and visualisation capabilities of spreadsheets to aid

130

collaboration. 5.1.1 detailed the problems that this could help resolve. So such extensions were tested

with examples (shown in 5.4) for web based spreadsheet collaboration. The examples in this chapter

demonstrate building of a collaborative system that visualises formula in each of the 3 translation steps.

So the modelling capabilities of spreadsheets were provided by a decision support system that reads

formulae from an ontology in order to aid interoperability and collaboration. The results from formulae

calculation are displayed in various ways to show a range of interfaces that could aid interactivity, and

a range of translations to different applications, either built for this research or already existing

applications (to demonstrate interoperability). Such variation of the interface and collaboration with

other applications could be added to web spreadsheet applications such as Google spreadsheets

(discussed in 4.5.1). Google Spreadsheets was evaluated for this purpose and online spreadsheet tools

including Softartisans and Java based spreadsheets (section 5.4). However, more customised software

enabled web modelling that allowed for many different ways of representing and interacting with

models, and that did not necessarily have the spreadsheet look and feel; this provided more scope for

development of alternative ways of interaction with end-users. This also ensured that if the ontology in

Step 1 changes, the models and visualisations in Step 2 and 3 will update automatically, so models can

be added just by adding information to the database or ontology. This represents progress towards the

goal of allowing User Driven Modelling.

6.4.3 Ontology Tools

Improving and Building On Modelling Capability and End-User Interaction

Figure 34 demonstrates the ontology creation and translation to the modelling tool made for Step1and

2. This shows an equation defined by the user and demonstrated as a relationship tree. Figure 34 is the

top half of Figure 25 in order to show Step 1 and 2. This was achieved using an ontology tool

(Protégé), and this definition is read directly by decision support software (Vanguard System) that

visualises the information and colour codes it. This is a small part of a more complex example, and

shows one part of one sub-ontology, that of Parts. For a more complex example a higher level user

interface would be required to enable users to define the problem, and a translation step to the computer

readable model. The software can translate the source model into a program and calculate results. The

result program is then translated again into open standard languages such as XML and to Java for

human friendly visualisations viewable as web pages.

131

Figure 34. Translation Process Implementation

Ontology to

Modelling

Translation

Step 1

Step 2

Ontology

Creation

132

6.4.4 Semantic Web/Web 2.0

Improving and Building On Modelling Capability and End-User Interaction

This section develops further the research illustrated in section 5.5 for using Semantic Web languages

and accessing them with applications built to enable end-users to create and interact with Semantic

Web information sources.

6.4.4.1 Semantic Search

The example below (Figure 35) illustrates how it is possible to enable refining a search by visualising

all the items present in sub-categories of the main category found in the search. McGuinness (2003)

explains how ontologies support this functionality and calls this ‘generalization/specialization’ of

information. Uschold and Gruninger (2004) describe “ontology-based search” as “Ontology used for

concept-based structuring of information in a repository”; and describe the benefit of this as “better

information access” This aids the thesis objectives of ease of use and sharing of information. The use of

open standards for representing information makes it possible to enable searches that understand the

semantics of the information and so can track all of the relationships between items. Figure 35

illustrates the interface for making a search. In this example the user wants to retrieve all the

information related to a spar.

133

Figure 35. Semantic Search interface

The result is shown as a series of trees for each item that contains the word spar. Each keyword match

is the root of a tree. Each tree shows the item found and all its children and attributes. Figure 36 shows

an image of the top part of the results, this is part of the branch for the first item returned.

Figure 36. Results from semantic search

134

The information is held in linked and related taxonomies/sub ontologies so it is not HTML that is being

searched but the taxonomy itself. Because the information is held in a structured way, it is much more

likely that searchers will find what they are looking for, because the search can follow the relationships

represented in the taxonomy. One of the key objectives of Semantic Web research and Web 2.0 is to

make this kind of search possible over the web as a whole. The Semantic Web is a longer-term vision

for managing information over the web and Web 2.0 is the shorter-term practical implementation of

techniques, which can ease current information search and management problems. A web interface has

been developed for Protégé (WebProtege
30

). An example of the use of this is Figure 37 where a search

is made for information on the cure cycle for composites manufacturing. This search is possible as

WebProtege has succeeded in providing a web based interface for displaying and searching ontologies,

so providing an additional way to enable web access to the test ontologies created for this thesis.

Figure 37. Web Protégé Interface

As discussed in section 3.6.1- ‘Semantic Web and Web 2.0 Collaboration’, a project was created called

Bitriple by Leaver (2008), to enable end-user functionality for this kind of web-based ontology

construction and search. The application provides a facility to edit an ontology/ies and instances, and

provides tree-based visualisation of the ontology (as shown in Figure 38). This example illustrates

creation of an online aircraft wing ontology. Wing component sub/ontologies created using Protégé can

be translated for the Bitriple application to be represented as RDF/XML. An application could be built

as an extension to Bitriple to perform calculations and modelling using the information stored. This

could assist in allowing domain expert end-user programmers/modellers to create models. Such web

applications provide an alternative to spreadsheets, and to single computer based programs; and if

installed on a network server, such applications can provide a collaborative model development

30

 WebProtege (2011) Wiki Page [online]. Available from:

http://protegewiki.stanford.edu/index.php/WebProtege [Accessed 22 June2011].

http://protegewiki.stanford.edu/index.php/WebProtege

135

environment. Collaboration can aid people to agree on terminology, and standardisation of calculations

used such as for cost rates and currencies. RDF information can be searched with SPARQL
31

(SPARQL Protocol And RDF Query Language), which is used to search the Bitriple application.

A screenshot from the Bitriple application, of ontology creation for an aircraft wing, is shown in Figure

38:-

Figure 38. Bitriple Ontology Creation Screenshot

6.5 Examples

Examples are based on representation of wing components. Spar and associated processes are shown;

Ribs, Skins, and Stringers were also modelled.

31

 SPARQL is the query language and protocol for RDF being recommended to the World Wide Web

Consortium - (2004) [online]. Available from: http://www.w3.org/TR/rdf-schema/ [Accessed 28

September 2009]. A tutorial has been developed by Dodds (2005) - [online]. Available from:

http://www.xml.com/lpt/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html

[Accessed 25 July 2011].

http://www.w3.org/TR/rdf-schema/
http://www.xml.com/lpt/a/2005/11/16/introducing-sparql-querying-semantic-web-tutorial.html

136

6.5.1 Step 1 - Ontology

The purpose of Step 1 is to provide a common ontology from which many models and visualisations in

Steps 2 and 3 can be created. As the ontology provides a high level view of information, an editor does

not need programming skills to edit the ontology (though easier web-based editing of the ontology

would enable wider ontology editing).

Figure 39 is a Vanguard System reproduction of the part definition taxonomy (or sub ontology) from

the Protégé ontology. The Vanguard System software adds an extra functionality, which is to calculate,

and store the results of equations captured in the Protégé taxonomy. The equation is represented as text

in the ‘Documentation’ field of the ‘Periphery’ attribute of ‘Derived Values’ as illustrated in Figure 39

below :-

Figure 39. Translation of Equation Representation from Protégé to Vanguard System

If choices need to be available to modellers this is specified in the ontology as a default choice with a

list of all the possible other choices in a standardised natural language representation, the translator

produces a button in Vanguard System in response to this, which lists choices and acts on the

Step 2 - Code written

within Vanguard System

translates from ontology

to Vanguard System.

Recursive SQL queries

build model trees from

ontology.

Formulae written to

Vanguard System, and

calculation made.

137

user/modeller’s selection. These choice/buttons can be represented anywhere in the tree/model as

needed.

6.5.2 Step 2 - Modelling Tool

Figure 40 illustrates colour coding showing Parts as green, Materials as yellow, Rates as orange, and

processes as red, and how these are combined in calculations, so the calculation branch may contain

several colours as required. This gives some idea of the size of the tree created for to test

implementation of this research but is still only a mock diagram consisting of tiny parts of the overall

tree. Figure 40 also shows how the decision support system tree view of the spar branch from the

wingbox cost model is created with information translated from the related taxonomies, colour coded,

and where necessary from users’ selections (e.g. of materials). The tree, including all the default part

definition information for the spar, is produced automatically. The buttons in the tree enable choices to

be made by the user about materials, consumables, rates, and processes. Branches are created in

response to these choices. The values in the branch nodes can then be changed as required.

138

Figure 40. Spar branch automatically created from information source

Step 2 - Recursive tree translation.

Buttons produced where user

choices needed.

139

The user makes choices, so the decision support result tree will be a subset of the information source

tree. Choices take a graph/tree and produce a sub graph/tree. Zhao and Liu (2008) are encoding STEP

rules and executable statements into OWL and SWRL. Semantic languages such as OWL can represent

if-then choices (Elenius, 2005), and some rule based systems have a visual diagrammatic editor which

could be used to enable an end-user to represent such problems. In fact if-then choices could have been

represented using diagrammatic editing in Protégé’s Visual Composer Toolbar
32

, so this will be future

work (section 8.22).

The trees created have thousands of nodes, Vanguard System visualises large trees by breaking them

into individual ‘pages’ (screens), and indicating with a right arrow where further pages can be viewed.

Clicking the ‘Part Definition’ right arrow will display the corresponding information as illustrated in

Figure 41 below. The ‘Derived Values’ branch contains parameters of the spar that are calculated from

the spar dimensions.

Figure 41. Part Definition Branch

Different types of information indicated by colour coding may be combined in a calculation. This is

illustrated in Figure 42. ‘Pre Preg Mass’ is coloured yellow as it and its attributes are categorised as

material attributes, ‘Raw Volume’ is a part attribute, and so coloured green.

32

 Scicluna, J. (2009) OWL-S Editor User Manual, [online]. Available from:

http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OWL-

S_Editor_User_Manual.pdf [Accessed 25 July 2011].

http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OWL-S_Editor_User_Manual.pdf
http://staff.um.edu.mt/cabe2/supervising/undergraduate/owlseditFYP/OWL-S_Editor_User_Manual.pdf

140

Figure 42. Pre Preg Mass Calculation

Figure 43 shows a branch produced in response to the user’s choice of the ‘Hand Lay Up’

manufacturing process, and sub choices for how this manufacturing process is carried out. This

illustrates the link of process information to part and resource rate information. The process nodes are

linked to the resource rate nodes ‘Cleaning Equipment Hourly Charge Rate’, and to the Part attribute

‘Area’ as these values are all required by process equations. Processes are represented in red, resource

rates in violet, and part definition in green. A multiple (faceted) classification structure is used in the

decision support system, so a child can have multiple parents, this means the tree is also a

graph/network representation. The child is shown fully under its first parent but the child may appear

again when it has other parents. An upward pointing arrow on the node’s right hand side designates that

information is used in many locations in the tree, and its value is used under each of its parents.

Figure 43. Hand Layup Calculation

141

When the user has finished making selections the cost break down of the spar will be displayed as a

colour coded branch. Figure 44 illustrates how different branches in the tree allow a user to drill down

to more detailed views of the cost, consumables are shown in light blue.

Figure 44. Using the tree view for cost drill down

6.5.3 Step 3 - Interactive Visualisation

Step 3 involves producing interactive visualisations that make use of different ways of visualising the

same information. This was made possible by use of the ontology in Step 1 and

interpretation/translation of the ontology in step 2. This also enabled use of colour coding to show

different types of information.

Figure 45
33

 shows the spar volume calculation uploaded to the web. This illustrates that an ontology

defined in Step 1, has had calculation and translation performed in Step 2 and can now be visualised in

Step 3.

33

 Hale, P. (2009) Spar Model [online]. Available from:

http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated

%20from%20Protege%20Taxonomy [Accessed 25 July 2011].

http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy

142

Figure 45. Spar Volume calculation model running on the web

This approach to colour coding, of illustrating type with colour, is related to this work on using colour

to indicate cost, time, and uncertainty (Bru et al., 2002), (Bru et al., 2003), (Bru et al., 2004). The need

for sophisticated visualisation, and tools such as developed in this thesis (and that of Bru) became

apparent when models such as the wingbox spreadsheet delivered volumes of information, which could

not be easily absorbed and analysed in their textual form. The research in this thesis focuses on colour

coding for indication of knowledge/information type, such as distinguishing between parts, processes,

materials cost rates etc and illustrating which of these items are used in each calculation. Brus’ work

concentrates on using colour, size, and shape to illustrate cost, time, and uncertainty. Both approaches

were used in combination within the DATUM project (Scanlan, 2006). The information visualisation

for this thesis is compatible with a wide range of standard formats, thus allowing it to accept input from

numerous tools and ontologies. The information is then further translated to various formats including

XML and SVG for web visualisation and information exchange. This is shown in Figure 46 where

XML is used to exchange information with a web page that is then able to colour code this information,

display it and let the user interact with it.

143

Figure 46. Web page showing translated XML displayed as interactive web application

Figure 47 demonstrates the ontology translated via Step 2 into XML for Step 3 visualisation in Flash
34

.

This creates a tree with a three dimensional look, colour and shading, and interactive repositioning of

nodes to make it intuitive and assist in navigation. When a node is chosen, this is moved to the centre

of the display and all the other nodes are moved or rotated to position themselves in relation to it.

34

 Rhodes, G., Macdonald, J., Jokol, K., Prudence, P., Aylward, P., Shepherd, R., Yard, T., 2002. A

Flash Family Tree, In: Flash MX Application and Interface Design Flash MX Application and

Interface Design. ISBN:1590591585. [online]. Available from:

http://www.friendsofed.com/book.html?isbn=1590591585 [Accessed 22 June 2011].

Step 3 - Code written in Vanguard

System translates from this to

Semantic Web code for

Visualisation.

Recursive translator reads model and

writes tree to other

languages/systems.

http://www.friendsofed.com/book.html?isbn=1590591585

144

Figure 47. Flash interface for navigating exported XML tree

Figure 48 shows the view resulting from choosing the ‘SparPart Definition’. This shows the parents,

children, siblings, and contents of that node. It also allows navigation to any of the related nodes.

145

Figure 48. Flash viewing of Spar Part Definition node

6.5.3.1 Step 3 - CAD Style Interactive Visualisation

If attributes are provided in Step 1 or 2 it is possible to translate the tree representation into a dynamic

CAD type representation for Step 3. This information allows the system to decide where to draw the

lines to represent the attributes of the component. These attributes can then be changed by the user in

an interactive CAD type representation that allows for visualisation of the component and its attributes.

This capability can be used for enabling better understanding of a component’s attributes/properties,

and for modelling and calculation.

Figure 49
35

 below is produced via an automated conversion from a tree representation of the spar

component. The interface demonstrates modelling of information within a browser; ‘Periphery’, ‘Area’,

‘Raw Volume’, ‘Finished Volume’, ‘Part Width’ and ‘Part Height’ are all calculated dynamically. This

calculation is in response to changes the user makes to the attributes on the left; as these changes are

made the diagram changes in response. It would also be possible to reverse the translation by taking

this interface and converting it to a tree or graph representation of the component.

35

 Hale, P. (2009) Interactive SVG Examples [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm [Accessed 25July2011].

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm

146

Figure 49. Interactive Spar Diagram (SVG)

Figure 49 was created from a tree based ‘analogical’ (Guibert et al., 2004) representation, translated to

a view that used a CAD based analogy, and could also be translated back to the tree representation, and

to a ‘fregean’ representation that is required for computer code.

6.5.3.2 Translation to Program/Meta-Program Code

This stepped translation methodology can also be used for translation from ontologies to program and

meta-program code in various languages.

Figure 50 shows the Vanguard System tree translated into Java and visualised :-

147

Figure 50. Translation from decision tree into Java

This can also be created and visualised as a Java web applet; Figure 51 shows this :-

Figure 51. Translation from decision tree into Java web Applet

148

A translation into the Java based Cost Estimator System
36

 was also created. This is an example of

translating to an external application; Figure 52 illustrates this :-

Figure 52. Translation from decision tree to Cost Estimator

Translations were also made into Meta-Programming languages, but further research is needed to

automatically create software from these Meta-Programs; this is explained in 8.2.4.

6.6 Wider Engineering Translation

This approach to modelling, translation, and visualisation can be applied to other types of engineering

problem. The example below is not of a wing component, as it was created for Rolls-Royce who

manufacture aircraft engines. Creation of web applications for Rolls-Royce (part of the DATUM

project) led to the view within the DATUM project and for this thesis that web applications could be a

popular method of delivery for information and models. The example in Figure 53 is of combined work

of the author and Bru for the DATUM project, the DATUM project is described by Scanlan et al.

(2006). The work to enable the example model shown in Figure 53 tested use of web standards to

provide a multi-user, freely accessible method for conveying information and models. The model is

included in the thesis as an example of enabling free editing by all users of a simple model at the very

earliest stages, when more complex information such as production processes and materials are not yet

known. Therefore this is a good stage to involve anyone who may have an input into the requirements

and potential costs of the components. Figure 53 shows an implementation of this simple ontology

based parametric model.

36

 Koonce, D., Judd, R., Keyser, T., Bailey, M. A., 2001. A Cost Estimation Tool Integrated into

FIPER, in: IFIP Conference Proceedings; Fourth International Conference on the Design of

Information Infrastructure, vol 191 2001 pp. 396-402.

149

Figure 53. Parametric Cost Estimation

This parametric modelling tool was provided to Rolls-Royce with a simple XML based ontology to

enable immediate implementation.

6.7 End-user Programming/Modelling Evaluation

Regular contact with the British Computer Society SocioTech group helped inform the research and

assisted with development of a way to evaluate use of the prototypes. User feedback was obtained from

regular meetings with Airbus and Rolls-Royce for their projects. These were requirements of the

projects and were useful for developing ideas, testing them, and for developing and testing the

implementation and prototypes (many of which were installed at these organisations). The planning and

organisation of these meetings was systematic and matched with project goals. Also as it became more

possible to create quite advanced demonstrations online (due to Semantic Web and Web 2.0 advances)

this made it possible to get valuable feedback from the online examples and surveys of these.

6.7.1 End-user Survey

A web based survey was conducted early in the research (Figure 54) to assess likelihood of success for

providing end-user programming, and to establish the viability for end-user programming necessary for

widening of participation. From 234 participants 53% answered that this was possible and 47% that it

was not. This indicates that research further into this problem is necessary as just over half of

respondents indicated it was possible but this was not a convincing majority. The smallness of the

majority of those who believed it was possible over those that believed it was not, was the first

indication of a need to focus on a more achievable intermediate aim of applying this to tree/graph based

modelling.

The participants can be assumed to be computer literate as they found and filled in the survey, some

may be experienced programmers, while others could be the kind of computer literate end-users who

might benefit from wider programming participation.

150

Figure 54. End-user programming survey

Survey available at http://www.toluna.com/polls/37921/Do_You_Think_End-

User_Programming_can_be_made_possible?

The above screenshot (Figure 54) from the web survey shows the results and breakdown of

participants. Guest are those who were not logged on and so the web survey could not identify their age

or gender. From this, it can be seen that responses were across the age range and both genders with

male responses probably outnumbering female.

6.7.2 Usability Evaluation

A usability evaluation of 61 people was also conducted, that was more specific and focused on the

prototype implementations. This supplemented the feedback obtained from Airbus and Rolls-Royce.

This evaluation was conducted in order to determine what kind of diagrammatic interface might be

most appropriate. Extensive consultation with engineers at Airbus and Rolls-Royce helped establish the

possible interfaces that needed evaluating, as these interfaces were useful to and understood by these

engineers. These possible interfaces were taxonomy, CAD style diagrammatic, flow chart (or activity

diagram), UML style (entity relationship). Which was preferred depended partly on the skills and type

of work of the engineers, and others surveyed, and on the type of problem to be modelled/programmed.

Which would you consider yourself to be?

answered question 87

skipped question 4

An End-User (anyone else, familiar with computers but not in categories below) - 27.6% - 24

An Experienced Developer - 28.7% - 25

A Researcher - 33.3% - 29

Other (please specify) - 10.3% - 9

http://www.toluna.com/polls/37921/Do_You_Think_End-User_Programming_can_be_made_possible
http://www.toluna.com/polls/37921/Do_You_Think_End-User_Programming_can_be_made_possible

151

What type of visualisation is best for enabling end-user programming?

answered question 72

skipped question 19

Taxonomy (tree view) - 29.2% - 21

Diagrammatic - 38.9% - 28

Flow Chart - 34.7% - 25

Unified Modeling Language (UML) - 13.9% - 10

Other (please specify) - 12.5% - 9

Which example Program have you used?

answered question 75

skipped question 16

Taxonomy viewer - http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration1.htm

- 18.7% - 14

Diagrammatic Viewer - http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration2.htm

- 18.7% - 14

Neither – 40.0% - 30

Both - 22.7% - 17

Which example interface do you prefer?

answered question 70

skipped question 21

Taxonomy (tree) viewer -

http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration1.htm - 28.6% - 20

Diagrammatic Viewer - http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration2.htm

- 18.6% - 13

Neither – 10.0% - 7

Both - 12.9% - 9

No opinion - 30.0% - 21

More detailed results are available at - http://www.surveymonkey.com/ - login details petervincenthale

– toffee, or summarised at -

http://sites.google.com/site/userdrivenmodellingprogramming/Home/usability-survey-results.

The evaluation results indicate a need also to enable users to switch easily between different

visualisations, as they require. Respondents have given extensive feedback, with detail as to the reasons

for their responses, other questions that might have been asked, and well informed opinions and advice

about this research. This provided extra qualitative results and feedback as well as the quantitative

results. Both the quantitative and qualitative results were used to guide the research.

6.8 Analysis and Reflection

The prototypes in Chapter 6 are more effective in addressing the problems of maintenance,

extensibility, ease of use, and sharing of information, than those in Chapter 5, and so represent

progress. They do satisfy the aims of improving software development through the interaction with

diagrams without requiring people to learn computer languages. However, a further aim would then be

to research how this could assist with collaboration in problem solving. To achieve that a new project

http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration1.htm
http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration2.htm
http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration1.htm
http://www.cems.uwe.ac.uk/~phale/ELearning/ELearningDemonstration2.htm
http://www.surveymonkey.com/
http://sites.google.com/site/userdrivenmodellingprogramming/Home/usability-survey-results

152

would be required, and is proposed as future work, to amalgamate and unify the different technologies

used, and develop them with others who have created high level software, Web 2.0, and Semantic Web

tools. This would enable creation of a single user interface for the ontology, modelling, and web parts

of the approach to simplify use of the system, and the maintenance, re-use, and extensibility of it, and

enable sharing of information amongst a wider user base.

153

Chapter 7 - Discussion

Chapter 7 discusses what has been achieved and what remains to be done. The discussion also

examines ways to further unify this research with others, amalgamate, unify the system to created, and

widen the user base by applying the research to fields and problems not yet addressed. This chapter

examines what has been learned from and gained from the research and implementation and so allows

moving on to examine the main uses to which the research can be applied.

Figure 55 shows the research direction this thesis moved in over time.

 End-user programming for modelling. Research began with examining programming needs of

users (mainly engineers at Airbus and later Rolls-Royce aerospace companies).

 Modelling - Next, models were created to cater for the engineers needs for prediction and

decision support; so the concentration was mainly on modelling.

 Semantic Web for modelling. Once the models became more complex and numerous, the

collaboration necessary required a more systematic infrastructure, so Semantic Web and

ontology research assisted with this.

 Semantic Web for end-user programming. Once an infrastructure was prototyped it was

possible to research how this could enable construction of programs based on the Semantic

Web/ontology infrastructure.

 Programs (also program/model creation systems) created using the Semantic Web

infrastructure and visual diagrammatic programming were tested for modelling capability.

Figure 55. Research Direction Spiral

154

By the end of this research it was perceived that this particular combination as indicated by the

midpoint of the shaded/yellow section was currently under researched by the wider community. For the

literature review in chapter 2 it was found that researchers were concentrating on at most two out of the

three subjects shown in Figure 55. Examination of literature throughout the PhD research also indicated

the need to concentrate on investigation of End-User Programming, Modelling, and Semantic Web

combined. This is why the research spiralled in on this combination in that way. For example Gruber,

and Horrocks, specialised in Ontologies. Berners-Lee, and McGuiness combined Semantic Web and

Ontology research. Miller and Baramidze combined research into Modelling and Semantic Web.

Johnson, Huhns, Paternò, Crapo, Lieberman, and Resnick examined interaction and End-User

Programming for Modelling. Only by examination of the research of all these people, and using this in

combination, learning from their developments in each research area and combination, could all three

research areas be combined and developed.

After researching the areas shown in Figure 55 it was necessary to implement this combination in a

prototype using current technology. Examination of this research and the implementation led to the

recommendation of an approach for the kind of tree based modelling/programming examined in this

thesis to be based on these options :-

Option 1 - To put all the data in Semantic Web languages e.g. XML (eXtensible Markup Language),

SVG (Scalable Vector Graphics), RDF/XML (Resource Description Framework), OWL (Web

Ontology Language), and then display them using a programming language such as Flash, or Java

(applets).

Option 2 - To use the above languages as meta languages for actual programming, including the

display interface.

Option 1 concentrates the main effort on the Semantic Web/Ontology representation, and the modelling

of this, and then adds on a user interface to match this and enable End-User Programming. This option

is easier to implement than option 2, but only involves the System Creator, (introduced in section 1.5.1

and illustrated in Table 1 and Table 3). Option 2 would concentrate at all stages of development on all

three research areas, potentially creating a more integrated solution with greater user involvement,

extending involvement of development of the modelling system to Model Builders. This would aid

knowledge transfer and collaboration within the early stages of the model system development as well

as after the modelling system is created and when it is being used.

It was also possible to use aspects of both approaches, such as to program mainly in Semantic Web

languages, and then add some extra interactive capabilities using JavaScript iteratively. It is becoming

increasingly practical to program completely in the Semantic Web languages (option 2). These

languages enable declarative programming, and a translation is performed either using languages such

as JavaScript or Java, or translating into JavaScript or Java. This is different from the AJAX

(Asynchronous JavaScript and XML) approach, which is more like option 1. At present both

approaches are used in this thesis, because though option 2 is potentially more effective there are still

155

practical technological problems to overcome. These problems result from the need to

interpret/compile Semantic Web representations into program code. This should become more practical

as research and implementations progress in this direction.

The advantage of this (option 2) form of declarative programming is that it is possible to use a language

that is at a much higher level of abstraction, closer to the way people think. It was possible to create

these programs by editing them in Protégé (ontology editor) and using a translator to convert them to

whatever code was needed. This made it possible to perform visual programming in a meta language

(OWL) (option 2), without needing to be concerned about how it was implemented. The possibilities

for this are that it becomes sufficiently intuitive, so that people can create their own software for a wide

variety of tasks, in a point and click way and using similar tools to web editors. This would enable

anyone who is computer literate to program the computer themselves to do their tasks, and if this is of

interest to others, they could release their solution over the web. Technologies such as XForms,

XQuery, and SPARQL make it possible to provide this sort of collaborative interactivity.

7.1 Enabling Visual Semantic Web programming

This implementation demonstrated 2 main types of change that need to be enabled to provide for the

editing necessary for visual modelling/programming. These are ‘User Generated’, and ‘Model

Generated’.

User Generated

Figure 56 shows a user initiating a change, which is to delete a node from the bottom left and attach a

new node to a branch in the top tight. The tree is translated to structured text, and this is further

translated to code.

Figure 56. User Generated Change

156

For the second user generated change shown in Figure 57 an object represented by a tree is visualised

as a diagram. The user can amend either the diagram or the tree; in either case the change is filtered to

the alternative representation and translated to the structured text and code.

Figure 57. User Generated Change, Alternative Interfaces

Such an interface has been provided but editing the CAD style diagram outside a CAD system is quite

an advanced undertaking, so is to be future research (section 7.3).

Model Generated

A model generated change is initiated by the model itself, which changes the code and the structured

text in response to a calculation (that may have been requested by the user). The model passes a

translated result tree (or graph or web) to the user interface to let the user know that the recalculations

have been finished, and give the user the results using a suitable visualisation. This is shown in Figure

58 :-

157

Figure 58. Model Generated Change

7.2 Widening user programming participation: Generic Modelling

Figure 59 shows the main areas of application for User Driven Modelling. This research has

concentrated mainly on the central area of Decision Support, but it could be widened to Knowledge

Management, and to Simulation.

Figure 59. Generic Modelling

For generic modelling it is necessary to deal with complexity. This complexity is as a result of the need

for representation of complex knowledge in a way that is correct and understandable to a wide range of

158

people, and then of complex calculations that may draw on many parts of the ontology representation.

For the types of modelling shown in Figure 59 pure Knowledge Management may not require any

calculation, however this representation can be complex as the aim of the Knowledge Management and

how wide ranging this needs to be is not known, as there is not the target of a Decision Support model

to be constructed from the knowledge. This thesis concentrated on using Knowledge Management for

Decision Support, which required complex and recursive calculations. For simulation the calculations

may be required in real time. Therefore complexity of calculation increases in the direction from

Knowledge Management to Decision Support to Simulation, and complexity of information

representation increases in the other direction from Simulation to Decision Support to Knowledge

Management.

Whatever is being modelled, the main issue is enabling management of complexity through appropriate

structuring, visualisation, and interaction. Naeve (2005) examines Semantic Isolation, Semantic

Coexistence, and Semantic Collaboration. In section 3.6 Ontologies and Semantic Web and their role in

Modelling’ of this thesis the implications of the need for appropriate and systematic use and

combination of tools and techniques in order to enable Semantic Collaboration were examined. When

the appropriate structure is created with these tools and techniques, modelling of things other than cost

for engineering components uses the same categories and just requires different equations, so this

methodology broadens to engineering modelling of properties other than cost e.g. design and/or

manufacture (process plan). All the information necessary for creating a CAD (Computer Aided

Design) type representation can be made available in the various categories and is indeed necessary for

the production of the most accurate cost estimates. This made it possible to translate between a

tree/graph-based representation and a CAD style representation. A further advantage of this

methodology is that it allows estimates to be made at top level in the tree in early stage design, but this

early estimate can be developed at a later stage when more is known of the design and production

processes. This makes it possible to add further detail to improve the accuracy of cost modelling and/or

other engineering modelling. Representing things other than engineering components merely requires

different categories, so this methodology could be re-used for other modelling problems such as

scientific modelling and economic modelling. This broadens to any problem that can be represented by

linked equations, which can be visualised, especially if combined with Natural Language Programming

(NLP) research, e.g. (Mihalcea, 2006). Visualisation and management of the information can aid in

constructionist understanding of problems by modelling them (Papert, 1991) (Resnick, 1996). This

methodology and constructionist approach ensures greater user involvement in model production and

management.

User involvement is important in development of software but a domain expert does not necessarily

possess expertise in software development, and a software developer cannot have expertise in every

domain to which software might apply. So it is important to make it possible for software to be created,

in ways that are as close as possible to those which the domain expert normally uses. This research

examined the need for and provision of the User Driven Modelling/Programming methodology to

enable computer literate engineers to model/program. The proportion of domain experts in a particular

159

domain (aerospace engineering for example) who can develop their own programs and have access to

such facilities is fairly low, but the proportion that are computer literate in the everyday use of

computers is much higher (Scaffidi et al., 2006). Harnessing of computer literacy to allow domain

experts to develop and share models increases productivity for software development and reduces the

proportion of misunderstandings between domain experts and developers. Domain experts can then

explore a problem they are trying to solve and produce code to solve it. The role of software developers

would then become more that of a system creator, mentor and enabler rather than someone who has to

translate all the ideas of domain experts into code themselves. Other software developers may work at

providing better translation software for the domain experts (e.g. engineers). Creation of a systematic

environment for model building can be assisted by advancing research in current tools and techniques,

and standardising the representation and navigation of information. This enables complex problems to

be represented by networks of models and modellers that share information.

As end-users are beginning to creating simulations and other software it is important to address this

need and attempt to establish a dependable way for them to do this. To achieve the above aims it was

necessary to research the interface between Meta-Programming, Modelling and Simulation, and

Semantic Web Model Creation, shaded in Figure 60. This could allow end-users to develop their own

Semantic Web based simulation and modelling tools using a graphical visual interface.

Figure 60. End-User Programming, Modelling and Meta-Programming with Semantic Web

To achieve the aim of widening user programming to involvement in more generic

programming/modelling, it would be necessary to amalgamate and combine these research areas within

an overall umbrella system of enabling End User Programming. Creation of a single user interface

160

could enable generic programming, including for modelling/programming that is not tree based, then

enabling a wider user base. This user interface can be created in a simple way even through a

spreadsheet, or database data entry forms. Chelsom et al. (2011) illustrate this approach.

7.3 Widening Participation: Online Editable Systems

During this research some work was contributed to the University of West of England’s Students

Online
37

 system, this investigated enabling staff to edit their profile using an XForms based system.

This contrasts with the approach in the Rolls-Royce CAPPe system of provision of the information by a

small group of experts. The extent to which information is defined top down or bottom up (discussed in

sections 3.6.2, and 4.1) depends on the type of information that is being entered. More technical

information such as engineering information is more likely to require the input of specialists in that

area of work, and with that particular expertise. Also the structure of the organisation is important, a

more hierarchical organisation is likely to require a more top down approach, and to use an information

architecture that supports this.

Future work should involve construction of an online user interface for model creation software that

makes use of XForms and/or other XML and RDF programming standards. Examples of online

ontology creation were developed through 5.4 and 5.5 and shown in 6.4.4, and survey test results were

discussed in 6.7. These examples used a combination of Semantic Web and Web 2.0 techniques. The

research for the Students Online project showed it was possible to represent information and actions via

declarative XML code and search and process it using declarative queries (XQuery). This provides an

infrastructure for automation of editing using visual structures such as taxonomy based editors. This

could also enable ontology tagging by users as discussed in section 3.6.

7.4 User Driven Modelling Solutions

Figure 61 illustrates the solution needed for User Driven Programming, established by the research,

now the research implementation for this solution has been prototyped. This combines the thesis

research, and that from the projects of others in end-user programming, the Semantic Web, and

modelling referenced in this thesis.

7.4.1 Method

 The Translator (Figure 62) automatically creates the Schema and Stylesheets from the Ontology, and

needs to update this only when the Ontology is changed.

 The Editor and Viewing and Tagging Interface can be created automatically from the Schema,

Information, and Stylesheets. The Stylesheets act as a visualiser of the translated information.

37

Students online (2011) [online]. Available from: http://www.cems.uwe.ac.uk/exist/index.xql

[Accessed 22 June 2011].

http://www.cems.uwe.ac.uk/exist/index.xql

161

 In Response to the Actions of Users that trigger a request for information, the Translator :-

 Makes the request to the Ontology.

 Receives information back.

 Forwards this to the information holder.

 The Editor and Viewing and Tagging interfaces are updated automatically.

 The purpose of the Viewing and Tagging is to visualise the information and allow tagging of items to

explain the meaning, and add nodes to give further understanding of the item. This additional

information could be fed back to the ontology to assist improving it.

Figure 61. Solution for User Driven Programming

For Figure 61 above Step 1 is the ontology used for creating systems/models. Step 2 involves

translating the system/models and so making them available for use and development. Step 3 is the

editor and viewing and tagging interface, for visualisation and interaction with modellers and end-users

This solution involves an ontology and a translator that communicates with the user through Semantic

Web languages that are visualised via the web, and the translator communicates with the ontology. This

translator therefore provides two way interaction between the editor and the ontology. So far research

has been undertaken and demonstrated for the thesis with Protégé and Vanguard System for this

translation purpose and linked to an XForms user interface 5.5.2 and 5.5.3, as well as illustrated using

web-based Semantic Web/Web 2.0 visualisations 6.4.4. An important point is that for these

technologies to be extended into use for end-user programming ways must be found to visualise the

information structure rather than expect users to understand this in text form. So a translator was

created to convert diagrammatic visualisations to text. This enabled programming with Semantic Web

162

languages rather than just using them for information representation. This makes the translation easier

and more reliable, and improves maintainability of the whole system. The use of Semantic Web

languages as programming languages assists greatly with interoperability as these languages are

standardised for use in a wide range of computer systems (2.3.2 - Semantic Web and Ontologies).

Although other researchers have prototyped Semantic Web language based search tools, this has not

yet been combined into a comprehensive application that is usable for end-user programming of a large

range of modelling problems. A flexible interface built with Semantic Web languages provides an

interactive programming environment for computer literate non-programmers to manipulate

information and construct their own models. Further work could enable user generated user interfaces

to be customised as required by particular users; this could be achieved by a kind of Semantic Template

based programming.

7.5 Business Benefits

Sternemann and Zelm (1999) explain that it has become necessary to research collaborative modelling

and visualisation tools, because of the business trend towards global markets and decentralised

organisation structures; Green et al. (2007) also explain this. Section 3.4 Ontology Based Modelling

Solutions’ examined the approach of Cheung et al. (2007) to this problem. This thesis demonstrated a

system that could be used to solve this problem by means of accessible, interoperable collaborative

software to enable visual modelling/programming. This can then be integrated with software already

used in industry, as was achieved for the Rolls-Royce DATUM project described in sections 3.6 and

4.8. This enabled visualisation and collaborative modelling using information formally only available

in text based reports.

With visual diagrammatic modelling it was possible to include one model within another as a software

component, and demarcate responsibility for building, maintenance, and updating of each model. This

was difficult using spreadsheets, and possible with non-visual programming though the link between

individual responsibilities and code produced was not as clearly identified, because non-programmers

cannot participate in code production, and this was not so clearly visualised. As an example of

visualisation and interaction for cost modelling of an aircraft wingbox, different experts might build

software models for wing spars, wing skins etc, and another expert might be responsible for the overall

wing cost model. The wing spar and skins model can then be inserted into the overall wingbox cost

model. Such a system makes generic modelling more achievable.

The techniques demonstrated in this thesis can aid progress towards accessing of data held using

Semantic Web standards, and also other information that might be locked into particular systems such

as databases, spreadsheets and enterprise systems. The translation and de-abstraction approach assists

with enabling high level diagrammatic visualisations to be used and translated to computer queries.

Programming using Semantic Web technologies can :-

 Assist with translating non-Semantic Web information into Semantic Web information.

163

 Assist in production of Semantic Web information by end-users.

 Assist end-users to query non-Semantic Web information.

7.5.1 Visualising Reports

Many organisations produce text based reports with their IT systems. But text based reports do not

always show information well enough for good decision making. Automated conversion of these

reports into Semantic Web languages and then visualising them could assist greatly with this. So a

translation process is required and can be implemented as part of an overall User Driven

Modelling/Programming approach. Once reports are converted to a standardised representation,

hierarchical information can be represented as clickable trees/graphs and numerical representation as

charts. This makes it possible to customise outputs from existing IT systems and so allows an

improvement in readability of information without major changes to the way it’s produced. This could

provide a large gain at little cost.

7.6 User Driven Modelling - Intermediate Benefits

Although User Driven Modelling/Programming is a difficult problem and only partially solved, there

are numerous intermediate benefits from the search for this approach. These include better modelling

and visualisation of problems, improved interaction with end-users, Semantic Web modelling search

and visualisation methods, collaboration to improve modelling, and ways to agree ontology and

Semantic Web representations. It was necessary to provide such intermediate benefits as the industrial

collaborators had shorter term goals and so required deliverables.

The techniques used helped with progress towards improved interoperability that can aid in all the

above areas. These uses and improved interoperability to support them needed to be developed together

in an iterative way.

Experienced programmers/software engineers may have many of the problems of end-user

programmers whenever they need to use a language/system they are unfamiliar with, or when the

language/system they use is updated to a new version. So this means the techniques and approach

developed can aid experienced software developers in such circumstances, as well as end-user

programmers.

164

Ch 8 - Conclusion and Further Research

8.1 Summary and Evaluation

The thesis covered the following areas :-

• Enabling people to create software visually.

• Creating design abstractions familiar to domain experts e.g. diagrams for engineers.

• Ensuring interoperability using open standards.

• Automating the user to computer translation process.

This chapter explains how the alternative approach of User Driven Modelling/Programming used for

this thesis to develop models and modelling capabilities compared to that of spreadsheet development,

used within an Airbus project (Chapter 5). The alternative approach was outlined in this thesis, of using

open standards ontologies/taxonomies and a web interface for developing decision support models for

design and costing.

The approach of developing decision support models for design and costing using a spreadsheet was

compared to the alternative approach of using open standards taxonomies and a web interface for this

purpose. The conclusion is that although use of spreadsheets allows for the creation of models

relatively quickly, they are beset by problems. These relate to Maintenance, Extensibility, Ease of Use,

and Sharing of Information. The spreadsheet example and the explanation in chapter 5 section 5.1.2

represents problems currently experienced throughout software and computer use.

The research involved enabling computer literate people to create software using a combination of

modelling via use of formulae (equations) and visualisation of the way these formulae interact. It was

possible to construct modelling software without requiring code, but there is a need to use software

technologies that are being developed now, unify and simplify the system. Crapo et al. (2002)

explained the need for this approach, and this was applied in this thesis as a User Driven

Modelling/Programming approach. This approach was applied to engineering modelling problems, and

the test implementation proved it was usable for large models. Some work has already been completed

on applying this to other problems. The approach involved a 3 step translation process, and this eased

problems of maintenance, extensibility, ease of use, and sharing of information. Each step produces a

diagrammatic representation for humans, and computer code.

The stepped translation approach designed and implemented in this thesis enabled structured

modelling, and visualisation using interactive technologies. The steps for this were as below :-

 Step 1 - Ontology

165

 Step 2 - Modelling Tool and System Translator

 Step 3 - Interactive Visualisation

Table 3 shows the roles and skills of people who would make use of this translation.

Table 3. Roles, Skills, and Translation

Step Person Role Skills Tool Type

Step 1 System Creator Programmer Ontology

Step 2 Model Builder End-User Programmer Modelling Tool and

System Translator

Step 3 Model User End-User Interactive

Visualisation

This stepped translation solved problems of the spreadsheet approach as indicated in Table 4 below,

and then in more detail in the following sections :-

Table 4. Stepped Translation and Modelling

The 3 step translation process created ensures translation of domain level modelling into open standard

representation and software and vice versa. The approach takes a representation of a problem and

breaks this down into subsets to repeatedly simplify the problem until a result subset is produced that

represents a reasonable solution to the user. This translation process was described in section 3.3.2.

Logic languages might enable getting to this subset quicker but would involve much more research and

work to design and implement a solution, so these are reserved for future work. This does lead to a

problem in that some other representations may be at a more structured level in the stack of possible

ontologies (shown in Figure 3 section 2.3.2), and others higher, so this requires translation between

levels in order to integrate with other ontology systems.

The alternative approach for this thesis of User Driven Modelling/Programming involved the

development of a system, where a model builder, via visual editing of library taxonomies can undertake

maintenance and extension of information. Dealing with this proof of concept has indicated that it is

easier to maintain, search, and share information using this approach than it was using spreadsheets.

This approach could also enable more of the maintenance task to be left to end-users, who then could

Improvement Achieved By

Maintenance Structuring and Translation

Extensibility Structuring and Visualisation

Ease of Use Visualisation, Interaction, and Translation

Sharing of Information Shared Ontology and Interoperability

166

also customise the system. Creating the infrastructure has taken more time than it did for the

spreadsheet system, but having done so it is quicker and easier to create further models. This indicates

that the extra research and development time taken, though far exceeding what would have been

required for a spreadsheet modelling project, is well worth it in the long term. Also the use of a

centralised information source makes these models more reliable than the standalone spreadsheet,

standalone decision support models created individually are prone to out of date information. In

addition, since a well constructed ontology implies that a piece of information can only belong to a

unique location, the problems arising from duplicate pieces of information can be eliminated,

especially if top level ontologies, standards, and namespaces are used. It is also easier to create models

once the infrastructure is in place; this can enable users to develop models. The ability to visualise,

search, and share information using structured languages and web applications is an advantage for

creation of dynamic structured views and decision support models over the web, to aid collaboration.

This research was a test case for an approach, of collaborative end-user programming by domain

experts. The end-user programmers could use a visual interface where the visualisation of the software

exactly matches the structure of the software itself, making translation between user and computer, and

vice versa, much more practical. For this reason, highly structured visualisations were preferred over

web spreadsheets. Semantic Web languages are ideal for representing graphs and trees in an open

standard way. The spatial, and tree/graph visualisations used both have the same underlying semantics,

and therefore can both be translated to computer languages. In fact it would be better in the long run to

use the Semantic Web languages as standardised programming languages for such problems as this

would avoid the need to further translate into other programming languages, and systems. The

advantage to this is that of using Semantic Web languages for representation of information, meta-

programming, and translation to a visual display for users. The use of Semantic Web languages as a

connectivity environment for connecting information, and for connecting users to the information held

in Semantic Web data sources could enable an environment that could be made easier to use, install and

maintain.

More generally a new approach is required to software creation. This approach should involve

developers creating software systems that enable users to perform high level programming, and model

the problem for which they are the experts, and involve collaboration to share results. This is an

alternative to the provision by developers of modelling solutions that try to provide an out of the box

solution that just needs ‘tweaking’. Such an out of the box system is not practical for complex

models/modelling considering both increases in complexity of manufactured products, and of software

systems themselves. Feedback from publishing the research examples behind this thesis and working

with industrial partners indicates that people like to work on their own solutions, providing they are

computer literate and confident they have domain knowledge that the developers do not possess. This is

true for software development in general, not just in the domain of engineering. Research cited in this

thesis from others involved in end-user programming confirms this.

167

8.1.1 Maintenance

The use of a centralised information source makes these models more reliable than the standalone

spreadsheet. This centralised structure was easier to manage than updating multiple instances of the

spreadsheets used by different people and ensuring they all contain the same information. So the first

task was to build a system for collaborative model building. As a piece of information can then only

belong to a unique location, the problems arising from duplicate pieces of information are eliminated.

In a wider implementation use of namespaces and integration with other ontologies could ease the

maintenance problem further. The models have only the functionality that is added by the model

builder so there are not other side effects to keep track of, as there are with generic functionality within

spreadsheets. Enabling people to create software visually makes it easier for model builders and model

users to keep track of any information they are responsible for. Translation from the ontology to

models and visualisations ensures one change will affect all stages, so this makes maintenance easier.

8.1.2 Extensibility

Creating the infrastructure for the collaborative model building system took more time than it did for

the spreadsheet system, but having done so it is quicker and easier to create further models, and this

makes it more practical to integrate with other Semantic Web and modelling systems. This benefit

results from the facilities provided for model builders and end-users to customise the software in any

one of the three step translation process. This means progress has been made in making it possible for

non-programmers to build models. It also indicates that the extra research and development time taken

was worth it in the long term, most of this time involved productive research and this can be used in

future projects. The use of open standards in this thesis for information and models ensures there

should be a development path, to help cope with changes there may be in external software systems.

This use of open standards also ensures that the system can link with most environments used by

others. The translation and visualisation approach ensures that new models can be added using the

existing ontology, and that design changes in the ontology and translation can enable modelling of

different problems. So if there is a new problem to be modelled there are two ways to achieve this, add

new models to the ontology, or change the ontology.

8.1.3 Ease of Use

Many people now are familiar with web pages and at least the basics of how to navigate them, and by

creating such an environment, and standardising the navigation to those ways commonly used over the

web, it is possible to ease usability. Comparison of the approach of spreadsheet modelling as tested

with the ACCS spreadsheet model (section 5.1) demonstrated the advantage of including only the

functionality needed. The use of spreadsheets which had generic functionality that was not required for

models led to users’ confusion. So an advantage of creating models using the alternative approach of

developing a system for this research outside of spreadsheets (section 5.5, and chapter 6) is that the

models contain only the functionality that is added by the system creator and model builders. New Web

168

2.0 interaction technologies have allowed production of a rich user interface for web programs in a

similar way to single computer applications. This means information held in an ontology and translated

through modelling tools can be made available as interactive applications for many users. Translation

allowed the same user interface to be provided in multiple tools and computer languages. Also this

research showed that it was possible to provide user interfaces and visualisation differently as

appropriate according to the type of user, the situation, and/or the kind of information to be shown.

8.1.4 Sharing of Information

The use of open standards languages for representing information makes it easier to represent

information in a way that makes it accessible both to people and software. Use of namespaces and

integration with standardised upper level ontologies, and standardised semantic languages such as PSL

(Process Specification Language) (covered in section 3.5.1), could ease sharing of information.

Ontology based modelling tools use these open standards and so ensure dependable translation,

interoperability, and sharing of information. Web browsers make it possible to share information with

many users at once, and so this enables collaboration. Structuring of the information using standardised

languages makes it easier to search and visualise the information. This ensuring of interoperability is

important for long term use of the overall modelling system.

8.2 Conclusion

The research question answered in this thesis is - ‘To what extent was it possible to improve user-

driven software development through interaction with diagrams and without requiring users to learn

particular computer languages?’The solution advocated and tested for this is based on representation of

software as a tree and translation from a source tree to a result tree, and visualisation of both. The result

tree shows a structured representation of the model with a full visualisation of all parts of the model

that led to the result.

It is concluded that this direct representation of the structure of the code based on an ontology that

provides a tree-based representation of the software enables an understanding of the program as an

ontology and model that is then visualised. This results in a shared understanding by all users. The

main limitation is that the research was constrained to problems/models that lend themselves to

representation as tree structures. The translation used does enable other types of visualisation, such as

methods of CAD style, provided there is an underlying tree structure to the information. The usability

evaluation in Chapter 6 tested the extent to which visualisation and navigation of the structure aided the

understanding of the structure.

The wider significance of this solution is that it applies to tree based structures, and tree based

structures are generic and common to many programs and models. The solution is based on linked

nodes that are visualised and linked by equations in a model. The advantage is that it is simpler then to

develop a structure based on standardised representation of these equations in a generic way. This

enables model builders more easily to develop a model based on mathematical representations with

169

high level syntax and semantics, thereby avoiding having to learn and use one or more ‘lower level’

programming languages. Further, such a representation is independent of programming languages so is

stable, whilst programming languages wax and wane in terms of popularity and extent of use. An

example of a use of this tree structure in order to chain equations through the tree to the result figure at

the root is process and product modelling that can be used for decision support and costing. Widening

of applicability is possible because when calculation is not necessary and instead a hierarchy is to be

represented for knowledge management, the tree can be created via a syntax and semantics for linking

nodes, which is simpler than that for linking nodes with equations. An example of wider uses of the

solution without the extra facility of chained equation calculation is phylogenetic trees for

representation of biological evolutionary histories and structures. Additionally, knowledge

management within industry, and business process modelling are other fields for which this method

could be used.

The structure and visualisation/representation of this structure diagrammatically ensures visibility for

editing, and thus brings with it advantages for ease of editing of this structure and thus improvements

for maintenance, extensibility, ease of use, and sharing of information.

The answer then to the question - ‘To what extent was it possible to improve user-driven software

development through interaction with diagrams and without requiring users to learn particular

computer languages?’ is partially, at least for this thesis. The solution used in this thesis provides for

effective diagrammatic modelling/programming for tree-based problems. This solution has wide

applicability, but other solutions need to be found for diagrammatic representation of the many

problems that do not fit in with this structure.

Thus we have demonstrated that this method of User Driven Modelling/Programming solves problems

of modelling and programming using tree based structures that can be represented to users in order that

they can perform tasks such as calculation. The solution enables representing of results back to users to

interact with, thus aiding their understanding of the model and of the problems users investigate.

8.3 Further Research

This section outlines future research on extending the areas of application for User Driven

Modelling/Programming both for other types of problem within engineering and for other types of

modelling. One possible application is the use of these techniques for scientific visualisation and

modelling based on taxonomies.

8.3.1 Ontology Development

It is important not to stay limited on one ontology development environment but instead explore how

ontologies can be developed using a range of tools and translated between each where necessary;

(Garcia-Castro and Gomez-Perez, 2006) are testing this process. This would involve using and

170

translating between tools such as those discussed in section 3.4 - ‘Ontology Based Modelling

Solutions’, and others that may yet be developed.

Ciocoiu et al. (2000) and Horrocks (2002) consider the advantages of moving towards a more formal

ontology, this was investigated in section 2.3.1 - ‘Ontologies for Modelling and Simulation’, and

section 3.6 - ‘Ontologies and Semantic Web and their role in Modelling’. This would enable translation

between all the layers in the ‘Layer Cake’ discussed at the end of section 2.3. More expressive

semantic descriptions are possible through the use of the standard OWL dialects. These more

expressive descriptions require sophisticated visualisation tools. Making use of a more formal ontology

is the next major aim for the research behind this thesis. Creation of a formal ontology, while at the

same time creating applications that model problems such as early stage design and cost, and

interactive modelling environments for students, will widen the applicability of the research. This

would enable further testing on ways ontologies can be used to solve problems, and how they are

meaningful to people as well as being searchable by computer software. The intention is to enable

online tagging of this ontology/ies and editing of it by users, in order to allow users and domain experts

to be involved in the ontology construction.

So far the ontologies/taxonomies used in this thesis include traditional object oriented relationships

such as child, parent, sibling, attribute, and instance. Though for this research instance means re-use of

a class within an application rather than its object oriented meaning. There are other types of

relationship that would need to be modelled in order to maximise the capabilities of software that

would use the ontologies/taxonomies. Key relationships used within the object oriented programming

domain between classes/objects have been modelled already. These key relationships depict families

and aggregations of classes/objects that may share attributes and methods through inheritance. When

physical items are represented, this can be translated to geometric diagrams. Semantic descriptions with

more relationship types than the ones modelled so far would allow a more expressive depiction of a

problem domain, and can aid some forms of search within a model.

8.3.2 Ontology Visualisation and Interaction

A major aspect of future work will be to develop a reversal of the 3 step process and ensure the

translation can be performed from visualisation to ontology as well as ontology to visualisation. So this

would involve Step 3 - ‘Visualisation and Interaction’ - Step 2 ‘Translation’ - Step 3 ‘Ontology’. This

reverse translation has been examined but not prototyped in so much detail as the Step 1 to 3 process. It

could be possible to provide high level facilities for end-users to edit ontologies, using this stepped

translation methodology, and thus complete the circle of iterative communication between human and

computer. Each side of the iterative diagram illustrated in Figure 15, would then have a double headed

arrow. This is illustrated in Figure 62.

171

Figure 62. Two Way Translation between users and computers

To encourage easier end-user interaction with Step 1 ontology creation it is important to make ontology

editing easier. As mentioned in section 3.3 Protégé has OWL plug-ins available that provide extra

capabilities for representing and visualising information e.g. Jambalaya (Ernst et al., 2003) for

visualisation of knowledge and relationships. Enabling of web-based editing of ontologies would make

ontology editing more accessible, and Leaver (2008) created an online ontology editor at the University

of the West of England (section 6.4.4). Richer semantics could also make the editing process simpler

by reducing complexity in the user interface.

Modelling of if-then choices formally using OWL and ontology editors should be provided. Elenius

(2005) explains how OWL can be used for process modelling including for if-then choices:

“Process Modeling A powerful feature of OWL-S is the ability to model composite processes. A

composite process is constructed from subprocesses that can in turn be composite, atomic, or simple.

The control flow of a composite process is defined using control constructs, such as If-Then-Else,

Sequence, and Repeat-Until. These constructs can be nested to an arbitrary depth.”

Elenius illustrates this with a screenshot of a composite process, its tree structure, and its graph

representation.

SWRL (Semantic Web Rule Language) combining OWL and RuleML, and its use in modelling will

also be investigated. This could be used for formally specifying the construction of equations and rules

in a model and the relationships and constraints between items represented in an equation. Miller and

Baramidze (2005) explain the SWRL language. An editing facility to model these equations and

constraints, so that errors could be prevented, would improve the usability of future visual modelling

systems created. Support for SWRL in Protégé and other ontology based systems will assist with the

construction of a modelling system with sophisticated editing of rules (Miller and Baramidze, 2005). In

addition, these rules could assist with provision of alternative interfaces such as an editable CAD type

view, and with translating between these interfaces on the fly (e.g. from CAD type to tree/graph type).

172

8.3.3 Modelling and Simulation

Future work would build further on research in Semantic Web enabled modelling and simulation

outlined in section 3.6. Miller and Baramidze (2005) examine efforts to develop mathematical semantic

representations above the syntactical representations of MathML (referred to in 4.4). SWRL also has

standardised arithmetic and comparison operators (Zhao and Liu, 2008). These languages should

enable standardisation of the representation of mathematical expressions that relate nodes, and their

values and expressions; this would seem to be a difficult problem as it needs a user interface that

enables complex mathematical structures to be conveyed by language and/or diagrammatic

visualisation. The next stage in the research after this thesis will be provision of constraints to prevent

invalid mathematical expressions. Miller and Baramidze’s DEMO system uses OWL to define a

simulation and modelling class hierarchy. The first steps were taken towards creating an example

simulation to demonstrate with a practical model how a web-based simulation can be provided based

on an ontology, and how this can enable people to use interactive simulations on the web. This could be

extended as described below.

8.3.4 Meta-Programming and Rule Based Programming

Meta-Programming and Rule-based languages (Wallace, 2003) could be used to develop an interface to

an end-user programming environment. So far the automated output of code in such languages has been

provided and automated output of machine independent code such as in XML, RDF, and SVG format.

Research is needed into combining meta-language, rule-based and web and interoperability standard

code to enable creation of modelling systems from this code automatically. This would be achieved in a

similar way to that demonstrated in chapter 6, but in a more flexible and machine independent way.

Chapter 6 demonstrated that the translation process can be used to create meta-code necessary for this,

(in Step 1 and Step 2). So it remains to make use of this meta-code within Step 3 by sending it to

appropriate visualisation and interaction tools (e.g. Simkin (Whiteside, 2008)). This could involve a

Step 4 translation from meta-code, interoperable or web standard code, and/or rule based code to an

automatically created model/program. A further possibility is to provide a meta-code version of the

translation itself, so this can be machine independent.

8.3.5 Visualisation and Taxonomy Management

Through this thesis, ontologies and taxonomies has been used to represent computing structures and

engineering information. Taxonomies have not yet been used in this research for managing biological

information, though this was the purpose for which Linnaeus developed taxonomy representation. So,

future research could provide an interactive visual taxonomy management system that uses the

translation and interaction techniques developed in this thesis. The taxonomy will be used to structure,

manage, and enable understanding of complex scientific information to enable scientists to collaborate

using a systems approach. A circular layout would make it possible to visualise and navigate large trees

more easily. The main subject would be editing and display of phylogenetic knowledge, this could

173

make possible new insights. It is intended for this to act as a resource to link the research of biologists

and environmental scientists.

8.3.6 Research Connectivity

It is intended that this research will also be applied to E-Learning and Collaboration, and to enabling

wider participation in online communities. Work is beginning on a project to link companies and

individuals mainly in the West of England aerospace/space industry and also to involve amateurs in

this industry. This is a practical application for a web-based distributed constructionist approach

(Resnick, 1996) to modelling and collaboration, and could also be used in teaching. As explained in

2.3.2 - ‘Semantic Web and Ontologies’, Berners-Lee and Fischetti (1999) also argue for collaborative

interactivity, which they call ‘Intercreativity’. Research in e-learning would involve end-user

programming enabled with Semantic Web technologies and with a visualisation and interactivity layer,

as shown in Figure 63.

Figure 63. E-Learning, End-User Programming, and the Semantic Web

8.3.7 User/System Builder Management

Future work would be required to provide more sophisticated definition, and implementation of user

types and rights. Through this thesis people were represented in 3 categories - ‘System Builders’,

‘Model Builders’, and ‘Model Users’. However, these categories would need to be further divided into

sub-categories, and these be managed visually and interactively. Management of use, based on an

ontology of people constructing or using systems would help enable management and collaboration on

larger scales.

174

8.4 Final Statement

The question examined was ‘to what extent was it possible to improve user-driven collaborative

software development through interaction with diagrams and without requiring users to learn particular

computer languages?’

Within this thesis it was argued that there is a need for software developers to create programs that

enable users to solve problems themselves. In effect this involves production of a system to create

systems. This approach can widen programming participation by including computer literate non-

programmers. This is a reaction to the increased complexity of real world problems and software

systems, which makes development of some types of software solutions impractical without greater

involvement from end-users. It is difficult for developers to foresee every need of users and use of the

software produced, so it makes sense to enable more end-user customisation, especially for modelling

of complex engineering, science, and business problems. It is also argued that the research for this

thesis has been a step towards making end-user programming possible particularly for modelling. The

research ideas cover a wide range but the core research is all about simplifying software development.

There are numerous obstacles such as current technologies and languages providing insufficient

support for User Driven Modelling/Programming systems. However, research on this can improve the

development and use of such technologies. Accessible model creation systems are needed that enable

intuitive construction and sharing of models.

For proving the hypothesis that it is possible to create an end-user programming environment, usable

by non programmers, it has been found that structuring and relating of information is all important in

this solution. To achieve this, it was only necessary to link the information visually via equations, and

store these results for reuse and collaboration. Semantic Web standardisation could enable the range of

model building/use and collaboration possible, making the solution more generic. If users can

understand and navigate relationships, and add new relationships they could model most problems. It

was important to design a visual interface that is intuitive to use, and allows for proper interpretation of

the results. Feedback has indicated that users can navigate this structure and manipulate it. This is

preferable to ‘black box’ solutions that hide information. There are no dead ends or permanent blocks

to expanding and improving this approach. To make the system easier to use it is necessary to trial

continually better interfaces, and to assist by providing guidance to the user. There was not sufficient

time and resources to expand this research much to areas outside engineering modelling, but there is

scope for researchers to improve end-user programming for engineering modelling systems, and to

expand the research into other areas. Any problem that requires structured visualisation and/or equation

based calculation would benefit from this approach.

175

References

Abraham, R., Erwig, M., 2007. Exploiting Domain-Specific Structures For End-User Programming

Support Tools. In: End-User Software Engineering Dagstuhl Seminar February 2007.

Al-Khalifa, H. S., Davis, H. C., 2006. Harnessing the Wisdom of Crowds: How To Semantically

Annotate Web Resource Using Folksonomies. In: Proceedings of IADIS Web Applications and

Research (WAR2006).

Ambler, S. W., (2003) The Object-Relational Impedance Mismatch [online]. Available from:

http://www.agiledata.org/essays/impedanceMismatch.html [Accessed 25 July 2011].

Anderson, P. Technology and Standards Watch (2007). JISC (Joint Information Systems Committee)

What is Web 2.0? Ideas, technologies and implications for education [online]. Available from:

http://www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf [Accessed 25 July 2011].

Aragones, A., Bruno, J., Crapo, A., Garbiras M., 2006. An Ontology-Based Architecture for Adaptive

Work-Centered User Interface Technology. In: Jena User Conference, 2006, Bristol, UK.

Baclawski, K., Mieczyslaw, K., Kogut, P., Hart, L., Smith, J., Holmes, W., Letkowski, J., Aronson, M.,

2001. Extending UML to Support Ontology Engineering for the Semantic Web. In: Proceedings of the

4th International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and

Tools, pp 342-360.

Bechhofer, S., Carrol, J., 2004. Parsing owl dl: trees or triples?. In: Proceedings of the 13th

international conference on World Wide Web, NY, USA, pp 266-275.

Begel, A., 2007. End-user Programming for Scientists: Modeling Complex Systems. In: End-User

Software Engineering Dagstuhl Seminar February 2007.

Berners-Lee, T., (2000) Semantic Web on XML – Slide 10 [online]. Available from:

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html [Accessed 29 April 2011].

Berners-Lee, T., Fischetti, M., 1999. Weaving the Web. Harper San Francisco; Paperback:

ISBN:006251587X

Berners-Lee, T., Hall, W., Hendler, J., Shadbolt, N., Weitzner, D. J., 2006. Creating a Science of the

Web. Science 11 August 2006:Vol. 313. no. 5788, pp. 769 - 771.

http://www.agiledata.org/essays/impedanceMismatch.html
http://www.jisc.ac.uk/media/documents/techwatch/tsw0701b.pdf
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

176

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American. May 17, 2001.

Bishop, J., 2006. Multi-platform user interface construction: a challenge for software engineering-in-

the-small. In: International Conference on Software Engineering, Proceedings of the 28th international

conference on Software engineering pp 751-760.

Bru, C., Scanlan, J., Hale, P., 2003. Generation and Cognitive Representation of Cost Information over

a Network In: Proceedings of the 9th International Conference on Concurrent Enterprising, Espoo

Finland pp 301-309

Bru, C., Scanlan, J., Hale, P., Dunkley, M., 2002. Visualisation of Cost Information. In: Proceedings of

the 9
th

 ISPE International Conference on Concurrent Engineering Advances in Concurrent

Engineering, Cranfield, UK, pp 829-838.

Bru, C., Scanlan, J., Hale, P., 2004. Visualization of Cost Information, International Journal of Agile

Manufacturing, 7(1), pp 53-59.

Burnett, M. M., Engels, G, Myers, B. A., Rothermel, G., 2007. End-User Software Engineering

Executive Summary. In: End-User Software Engineering Dagstuhl Seminar February 2007.

Carroll J., Turner, D., (2008) The Consistency of OWL Full, HP Labs Technical Report, Bristol, UK,

Computer Laboratory, Cambridge Univ [online]. Available. http://lists.w3.org/Archives/Public/www-

archive/2008May/att-0053/58.pdf [Accessed 25 July 2011].

Cayzer, S., 2004. Semantic Blogging and Decentralized knowledge Management. Communications of

the ACM. Vol. 47, No. 12, Dec 2004, pp. 47-52. ACM Press.

Chan, S. C. F., Dillon, T., Ng, V. T. Y., 2003. Exchanging STEP Data through XML-Based Mediators.

Concurrent Engineering, 111, pp 55-64.

Chelsom, J. J., Summers, R., Pande, I., Gaywood, I., 2011. Ontology-driven Development of a Clinical

Research Information System, In: CBMS 2011, The 24th International Symposium on Computer-Based

Medical Systems, June 27th-30th, University of the West of England, Bristol, UK.

Cheung, W. M., Maropoulos, P. G., Gao, J. X., Aziz, H., 2005. Ontological Approach for

Organisational Knowledge Re-use in Product Developing Environments. In: 11th International

Conference on Concurrent Enterprising - ICE 2005, University BW Munich, Germany.

http://lists.w3.org/Archives/Public/www-archive/2008May/att-0053/58.pdf
http://lists.w3.org/Archives/Public/www-archive/2008May/att-0053/58.pdf

177

Cheung, W. M., Matthews, P. C., Gao, J. X., Maropoulos, P. G., 2007. Advanced product development

integration architecture: an out-of-box solution to support distributed production networks.

International Journal of Production Research March 2007.

Ciocoiu, M., Gruninger, M., Nau, D. S., 2000. Ontologies for Integrating Engineering Applications.

Journal of Computing and Information Science in Engineering, 1(1) pp 12-22.

Corcho, O., Fernández-López, M., Gómez-Pérez, A., 2003. Methodologies, Tools and Languages For

Building Ontologies. Where is their Meeting Point?. Data and Knowledge Engineering, 46, pp 41-64.

Corcho, O., Gómez-Pérez, A., 2000. A Roadmap to Ontology Specification Languages. In:

Proceedings of the 12th International Conference on Knowledge Engineering and Knowledge

Management, Chicago, USA.

Coutaz, J., 2007. Meta-User Interfaces for Ambient Spaces: Can Model-Driven-Engineering Help?. In:

End-User Software Engineering Dagstuhl Seminar February 2007.

Crapo, A. W., Waisel, L. B., Wallace, W. A., Willemain, T. R., 2002. Visualization and Modelling for

Intelligent Systems. In: C. T. Leondes, ed. Intelligent Systems: Technology and Applications, Volume I

Implementation Techniques, 2002 Chapter 3 pp 53-85.

Cypher, A., Halbert D. C., Kurlander D., Lieberman, H., Maulsby, D., Myers, B. A., Turransky A.,

1993. Watch What I Do Programming by Demonstration. MIT Press, Chapter 1 [online]. Available

from: http://www.acypher.com/wwid/Chapters/01Pygmalion.html [Accessed 25 July 2011]

ISBN:0262032139.

Davies, J., Fensel, D., van Harmelen, F., 2002. On-To-Knowledge: Semantic Web enabled Knowledge

Management, (John Wiley and Sons Ltd, ISBN: 0470848677).

De Souza, C., 2007. Designers Need End-User Software Engineering. In: End-User Software

Engineering Dagstuhl Seminar February 2007.

Dmitriev, S., (2006) Language Oriented Programming: The Next Programming Paradigm [online].

Available from: http://www.onboard.jetbrains.com/is1/articles/04/10/lop/ [Accessed 25 July 2011].

Duverlie P., Castelain J. M., 1999, Cost Estimation During Design Step: Parametric Method versus

Case Based Reasoning Method. The International Journal of Advanced Manufacturing Technology,

Vol 15: pp 895-906.

http://www.acypher.com/wwid/Chapters/01Pygmalion.html
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/

178

Eaglesham, M., 1998. A Decision Support System for Advanced Composites Manufacturing Cost

Estimation. Ph.D. thesis, Virginia Polytechnic Institute and State University.

Eklund P, Roberts N, Green S, 2002. OntoRama: Browsing RDF Ontologies using a Hyperbolic-style

Browser, The First International Symposium on Cyber Worlds, CW02, Theory and Practices, IEEE Press.

(2002) pp 405-411.

Elenius, D., 2005. The OWL-S Editor - A Domain-Specific Extension to Protégé. In: 8th Intl. Protégé

Conference - July 18-21, 2005 - Madrid, Spain.

Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H., 2001. Discussing aspects of AOP.

Communications of the ACM, 44(10) pp 33-38.

Eng, N., Salustri, F. A., 2006. “Rugplot” Visualization for Preliminary Design. In: CDEN 2006 3rd

CDEN/RCCI International Design Conference University of Toronto, Ontario, Canada.

Engels, G., 2007. Model-Driven Development for End-Users, too!? . In: End-User Software

Engineering Dagstuhl Seminar February 2007.

Enoksson, N. (2006) Serverside Solution for Conceptual Browsing on the Semantic Web. MSc.

Dissertation, Stockholm University.

Erdmann, M., Studer, R. 1999. Ontologies as Conceptual Models for XML Documents. In:

Proceedings of the 12th Workshop on Knowledge Acquisition, Modelling and Management (KAW’99),

Banff, Canada, October 1999.

Ernst, N. A., Storey, M., Allen, P., Musen, M., 2003. Addressing cognitive issues in knowledge

engineering with Jambalaya. In: Workshop on Visualization in Knowledge Engineering at KCA.

Erwig, M., Abraham, R., Cooperstein, I., Kollmansberger S., 2006. Automatic Generation and

Maintenance of Correct Spreadsheets?. In: Proceedings of the 27th international conference on

Software Engineering, St. Louis, MO, USA pp 136-145.

Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P. F., 2001. OIL: An

ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2), pp 38-45.

Fischer, G., 2007. Meta-Design: A Conceptual Framework for End-User Software Engineering. In:

End-User Software Engineering Dagstuhl Seminar February 2007.

179

Fluit, C., Sabou, M., Harmelen, F. V., 2003. Supporting User Tasks through Visualisation of Light-

weight Ontologies. In: S. Staab and R. Studer, ed. Handbook on Ontologies in Information Systems,

Springer-Verlag pp 415-434.

Frankel, D., Hayes, P., Kendall, E., McGuinness, D., 2004. The Model Driven Semantic Web. In: 1st

International Workshop on the Model-Driven Semantic Web (MDSW2004) Enabling Knowledge

Representation and MDA® Technologies to Work Together.

Garcia-Castro R., Gomez-Perez A., 2006. Interoperability of Protégé using RDF(S) as interchange

language. In: 9th Intl. Protégé Conference, July 23-26, 2006 - Stanford, California.

Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H., Sudarsan, R., Gokhale, A., Neema, S., Shi, F.,

Bapty, T., 2004. Model-Driven Program Transformation of a Large Avionics Framework. In: Third

International Conference on Generative Programming and Component Engineering GPCE, pp 361-

378.

Green, S., Beeson, I., Kamm, R., 2007. Process architectures and process models: opportunities for

reuse. In: 8th Workshop on Business Process Modeling, Development, and Support BPMDS07 and

CAiSE’07 11-15 June 2007, Trondheim, Norway.

Gross, M. D., 2007. Designers Need End-User Software Engineering. In: End-User Software

Engineering Dagstuhl Seminar February 2007.

Gruber, T. R., 1993. A Translation Approach to Portable Ontology Specifications, Knowledge

Acquisition, Vol 5 pp 199-220.

Gruber, T. R., 1993. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In:

N. Guarino and R. Poli, ed. Formal Ontology in conceptual Analysis and Knowledge Representation.

Kluwer Academic Publishers.

Guibert, N., Girard, P., Guittet, L., 2004. Example-based Programming: a pertinent visual approach for

learning to program. In: Proceedings of the working conference on Advanced visual interfaces. pp 358-

361 - ISBN:1-58113-867-9.

Gutowski, T. G., Haffner, S. M., Pas J. W., 2001. Web Based Cost Estimation for Advanced

Composites. In: Proceedings of the 2002 NSF Design, Service and Manufacturing Grantees and

Research Conference. San Juan, Puerto Rico, January 2002.

Hale, P., Scanlan, J., Bru, C., 2003, Design and Prototyping of Knowledge Management Software for

Aerospace Manufacturing. In: 10th ISPE International Conference on Concurrent Engineering.

180

Hale, P., (2009) Interactive Examples [online]. Available from: http://www.cems.uwe.ac.uk/~phale/

[Accessed 25 July 2011].

Hanna, K., 2005. A document-centered environment for Haskell. In: 17th International Workshop on

Implementation and Application of Functional Languages IFL 2005 Dublin, Ireland - September 19-21

2005.

Horrocks, I., 2002. DAML+OIL: a Reason-able Web Ontology Language. In: proceedings of the

Eighth Conference on Extending Database Technology (EDBT 2002) March 24-28 2002, Prague.

Horrocks, I., Patel-Schneider, P. F., van Harmelen, F., 2003. From SHIQ and RDF to OWL: The

making of a web ontology language. Journal of Web Semantics, Vol 1(1), pp 7-26.

Huber, G. P., 2001, Transfer of knowledge in knowledge management systems: unexplored issues and

suggested studies. European Journal of Information Systems, Vol 10 pp 80-88.

Hudak, P., Hughes, J., Jones, S. P., Wadler, P., 2007. A History of Haskell: being lazy with class. In:

The Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III) San Diego,

California, June 9-10, 2007.

Huhns, M., 2001. Interaction-Oriented Software Development. International Journal of Software

Engineering and Knowledge Engineering, 11, pp 259-279.

Hunter, A., (2002) Engineering Ontologies [online]. Available from:

http://www.cs.ucl.ac.uk/staff/a.hunter/tradepress/eng.html [Accessed 25 July 2011].

Jackiw, R. N., Finzer, W. F., 1993. The Geometer’s Sketchpad:Programming by Geometry. In: A.

Cypher, ed. Watch What I Do: Programming by Demonstration. MIT Press, Chapter 1 [online].

Available from: http://www.acypher.com/wwid/Chapters/13Sketchpad.html [Accessed 26 July 2011]

ISBN:0262032139.

Jackson, D., 2006. Software Abstractions: Logic, Language, and Analysis. MIT Press. ISBN 978-0-

262-10114-1.

Johnson, P., 2004. Interactions, collaborations and breakdowns. In: ACM International Conference

Proceeding Series; Proceedings of the 3rd annual conference on Task models and diagrams Vol 86

Prague, Czech Republic.

http://www.cems.uwe.ac.uk/~phale/
http://www.cs.ucl.ac.uk/staff/a.hunter/tradepress/eng.html
http://www.acypher.com/wwid/Chapters/13Sketchpad.html

181

Kim, T., Lee, T., Fishwick, P., 2002. A Two Stage Modeling and Simulation Process for Web-Based

Modeling and Simulation. ACM Transactions on Modeling and Computer Simulation, 12(3), 230-248.

Ko, A. J., 2007. Barriers to Successful End-User Programming. In: End-User Software Engineering

Dagstuhl Seminar February 2007.

Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith, J., 2002. UML for

Ontology Development. The Knowledge Engineering Review Vol 17(1) pp 61-64.

Kuljis, J., Paul, R. J., 2001. An appraisal of web-based simulation: whither we wander?. Simulation

Practice and Theory, 9, pp 37-54.

Lau, H. C. W., Ning, A., Pun, K. F., Chin, K. S., Ip, W. H., 2005. A knowledge-based system to

support procurement decision. Journal of Knowledge Management, 9(1), pp 87-100.

Leaver, N. (2008) Using RDF as an Enabling Technology. MSc. Dissertation, University of the West

of England, Bristol.

Lemos, M., (2009) MetaL: An XML based Meta-Programming language [online]. Available from:

http://www.meta-language.net [Accessed 25 July 2011].

Letondal, C., 2005. Participatory Programming: Developing programmable bioinformatics tools for

end-users. In H. Lieberman, F. Paterno, & V. Wulf (Eds.), End-User Development. Springer/Kluwer

Academic Publishers.

Lieberman, H., 2000. Your Wish is My Command: Giving Users the Power to Instruct their Software,

Morgan Kaufmann.

Lieberman, H., 2007. End-User Software Engineering Position Paper. In: End-User Software Engineering

Dagstuhl Seminar February 2007.

Macías, J. A., Castells, P., 2004. An EUD Approach for Making MBUI Practical. In: Intelligent User

Interfaces and Computer-Aided Design of User Interfaces Conference (IUI/CADU’2004). Funchal,

Madeira Island, Portugal, 13-16 January.

McGuinness, D. L., 2003. Ontologies Come of Age. In: Dieter Fensel, Jim Hendler, Henry Lieberman,

and Wolfgang Wahlster, ed. Spinning the Semantic Web: Bringing the World Wide Web to Its Full

Potential. MIT Press, 2003.

Mihalcea, R., Hugo, L., Lieberman, H., NLP (Natural Language Processing)

http://www.meta-language.net/

182

for NLP (Natural Language Programming) In: International Conference on Computational Linguistics

and Intelligent Text Processing, Mexico City, Springer Lecture Notes in Computer Science, February

2006.

Miller, J. A., Baramidze, G., 2005. Simulation and the Semantic Web. In. Proceedings of the 2005

Winter Simulation Conference.

Miller, J., Fishwick, P. A., Taylor, S. J. E., Benjamin, P., Szymanski, B., 2001. Research and

commercial opportunities in Web-Based Simulation. Simulation Practice and Theory, 9, pp 55-72.

Murphy, G. C., Walker, R. J., Baniassad, E. L. A., Robillard, M. P., Lai, A., Kersten, M. A., 2001.

Does aspect-oriented programming work?, Communications of the ACM, Vol 44(10) (October 2001) pp

75 - 77, ISSN:0001-0782.

Naeve, A., 2005, The Human Semantic Web – Shifting from Knowledge Push to Knowledge Pull.

International Journal of Semantic Web and Information Systems (IJSWIS), Vol 1(3) (July-September

2005) pp 1-30.

Noy, N.F., McGuinness, D., 2004. Semantic Integration: A Survey Of Ontology-Based Approaches.

SIGMOD Record, Special Issue on Semantic Integration, 33(4).

Nurminen, J. K., Karaonen, O., Hatonen, K., 2003. What makes expert systems survive over 10 years-

empirical evaluation of several engineering applications. Expert Systems with Applications 24(2) pp

199-211.

Olsson, E., 2004. What active users and designers contribute in the design process. Interacting with

Computers 16, pp 377-401.

Paine, J., 2003. Spreadsheet Structure Discovery with Logic Programming, In: Proceedings of

European Spreadsheet Risks Interest Group EuSpRIG Greenwich, England.

Palanque, P., Bastide R., 2003. UML for Interactive Systems: What is Missing INTERACT 2003

Closing the Gaps: Software Engineering and Human-Computer Interaction Zürich, Switzerland.

Panko, R. P., 2000. Spreadsheet Errors: What We Know, What We Think We Can Do. Proceedings of

European Spreadsheet Risks Interest Group EuSpRIG, Greenwich, England, pp 7–17.

Papert, S., Harel, I., 1991. Situating Constructionism An essay. In: book Constructionism (Ablex

Publishing Corporation, 1991) [online]. Available from:

http://www.papert.org/articles/SituatingConstructionism.html [Accessed 25 July 2011].

http://www.papert.org/articles/SituatingConstructionism.html

183

Paternò, F., 2005. Model-based tools for pervasive usability. Interacting with Computers, 17(3), pp

291-315.

Peirce, C.S. (1906) Prolegomena to an Apology for Pragmaticism [online]. Available from:

http://www.existentialgraphs.com/peirceoneg/prolegomena.htm [Accessed 25 July 2011].

Rajalingham, K., Chadwick, D. R., Knight, B., 2001. Classification of Spreadsheet Errors. In: Symp. of

the European Spreadsheet Risks Interest Group (EuSpRIG).

Reed, J. A., Follen, G. J., Afjeh, A. A., 2000. Improving the Aircraft Design Process Using Web-Based

Modeling and Simulation. ACM Transactions on Modeling and Computer Simulation, 10(1), pp 58-83.

Repenning, A., 2007. End-User Design. In: End-User Software Engineering Dagstuhl Seminar

February 2007.

Resnick, M., 1996. Distributed Constructionism. In: Proceedings of the International Conference on

the Learning Sciences Association for the Advancement of Computing in Education, Northwestern

University (accepted: March 1996; published: July 1996) [online]. Available from:

http://llk.media.mit.edu/papers/Distrib-Construc.html [Accessed 25 July 2011].

Scaffidi, C., Shaw, M., Myers, B., 2005. Estimating the Numbers of End-users and End-user

Programmers. In: IEEE Symposium on Visual Languages and Human-Centric Computing,

(VL/HC’05): 207-214 Dallas, Texas.

Scanlan, J., Hill, T., Marsh, R., Bru, C., Dunkley, M., Cleevely, P., 2002. Cost Modelling for Aircraft

Design Optimization, Journal of Engineering Design, 13(3), pp 261-269.

Scanlan, J., Rao, A., Bru, C., Hale, P., Marsh, R., 2006. DATUM Project: Cost Estimating

Environment for Support of Aerospace Design Decision Making. Journal of Aircraft, 43(4).

Schmitz, P., 2006. Inducing ontology from Flickr tags. In: WWW2006 Conference, Edinburgh, UK.

May 22-26, 2006.

Schrage, M., (1991) Spreadsheets: Bulking Up On Data [online]. Available from: http://www.systems-

thinking.org/buod/buod.htm Los Angeles Times [Accessed 25 July 2011].

Shim, J.P., Warkentin, M., Courtney, J. F., Power, D J., 2002, Past, present, and future of decision

support technology. Decision Support Systems 33 pp 111-126.

http://www.existentialgraphs.com/peirceoneg/prolegomena.htm
http://llk.media.mit.edu/papers/Distrib-Construc.html
http://www.systems-thinking.org/buod/buod.htm
http://www.systems-thinking.org/buod/buod.htm

184

Smith, D. C., 1977. A Computer Program to Model and Stimulate Creative Thought. Basel: Birkhauser.

Spahn, M., Scheidl, S., Stoitsev, T., 2007. End-User Development Techniques for Enterprise Resource

Planning Software Systems. In: End-User Software Engineering Dagstuhl Seminar February 2007.

Sternemann, K. H., Zelm, M., 1999. Context sensitive provision and visualisation of enterprise

information with a hypermedia based system, Computers in Industry Vol 40 (2) pp 173-184.

Storey, M., Lintern, R., Ernst, N., Perrin, D., 2004, Visualization and Protégé In: 7th International

Protégé Conference - July 2004 - Bethesda, Maryland.

Sutton, D. C., 2001. What is knowledge and can it be managed?. European Journal of Information

Systems, Vol 10 pp 72-79.

Tufte, E., R., 1990. Envisioning Information. Graphics Press.

Uschold, M., 2003. Where are the semantics in the semantic web? AI Magazine Vol 24 (3) pp 25-36.

Uschold, M., 2006. Ontologies Ontologies Everywhere - but Who Knows What to Think? In: 9th Intl.

Protégé Conference - July 23-26, 2006 - Stanford, California.

Uschold, M., Gruninger, M., 2004. Ontologies and Semantics for Seamless Connectivity. In:

Association for Computer Machinery - Special Interest Group on Management of Data - SIGMOD

Record December, 33(4).

Vernazza, L., 2007. Himalia: Model-Driven User Interfaces Using Hypermedia, Controls and Patterns

In: IFAC/IFIP/IFORS IEA Symposium - Analysis, Design, and Evaluation of Human-Machine

Systems Seoul, Korea - September 4-6th 2007 - International Federation of Automatic Control.

Volz, R., Oberle, D., Staab, S., Motik, B., 2003. KAON SERVER - A Semantic Web Management

System. In WWW (Alternate Paper Tracks).

Wakeling, 2007. Spreadsheet functional programming, Journal of Functional Programming,

17(1)(January 2007) pp 131-143 - ISSN:0956-7968.

Wallace, C., 2003. Using Alloy in process modelling. Information and Software Technology, 45(15),

pp 1031-1043.

Whiteside, S., (2009) Simkin the embeddable scripting language [online]. Available from:

http://www.simkin.co.uk/ [Accessed 25 July 2011].

http://www.simkin.co.uk/

185

Wikipedia (2009) Metaprogramming [online]. Available from:

http://en.wikipedia.org/wiki/Metaprogramming [Accessed 25 July 2011].

Willemain, T. R., Powell S. G., 2006, How novices formulate models. Part II: a quantitative description

of behaviour, Journal of the Operational Research Society, pp 1-12.

Zhao, W., and Liu, J.K., 2008. OWL/SWRL representation methodology for EXPRESS-driven product

information model Part I. Implementation methodology, Computers in Industry - Article in Press,

Corrected Proof [online]. Available from: http://www.sciencedirect.com/science/article/B6V2D-

4S7HWFC-1/2/8c720905e75881248d9df9fc64e6824e [Accessed 25 July 2011].

http://en.wikipedia.org/wiki/Metaprogramming
http://www.sciencedirect.com/science/article/B6V2D-4S7HWFC-1/2/8c720905e75881248d9df9fc64e6824e
http://www.sciencedirect.com/science/article/B6V2D-4S7HWFC-1/2/8c720905e75881248d9df9fc64e6824e

186

Chapter 9 Appendix

The following examples show how standardised ontologies can be represented and visualised,

Stylesheets are used to provide this representation and visualisation. This makes it possible to share

models with domain specific (e.g. engineering) agreed semantics above the level of generic agreed

semantics. This can make it practical to share and re-use ontologies and models.

9.1 Process Modelling

9.1.1 DATUM Process Modelling Example

Varieties of XML that allow for additional semantics such as standardised representation of inheritance

relationships, attributes and sequences or lists of items were investigated. RDF and DAML/OIL

(DARPA Agent Markup Language/Ontology Inference Layer) are represented using XML and allow

for this additional layer of semantics. These syntaxes allow for explicit representation of relationships

such as class/subclass, attributes, and sequences. These information representation languages were used

to represent Product Data Structures and Process, Materials, and Tooling libraries. An example
38

 of a

Process Sequence represented by the layered XML/RDF/RDF Schema standard and displayed using a

stylesheet is shown in Figure 64. The semantics were agreed with Rolls-Royce in the DATUM project

(Scanlan et al., 2006), and the representation was displayed using an XSL (eXtensible Stylesheet

Language) stylesheet :-

38

 Hale, P. (2009) Ring Manufacturing Sequence [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/rdfring.xml [Accessed 25 July 2011].

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/rdfring.xml

187

Figure 64. Representation of Engine Ring Manufacturing Sequence

Only demonstration test values without units are shown in the above illustration. The above example

could be extended to additional layered representation of DAML+OIL and/or OWL.

9.2 Process Specification Language - PSL

PSL was discussed in section 3.5.1 - ‘Engineering Domain Specific Standards’.

PSL can use XML, RDF (Resource Description Framework), and its own semantics to add a layer of

engineering meaning to these Semantic Web languages for communication between process modelling

tools, and for use in defining ontologies. These PSL examples make use of these languages as

recommended in this publication
39

 :-

“1. Use RDF Schema to represent the objects used in a process.

2. Represent timepoints as sequentially ordered groups of elements, with each timepoint element

having a unique identifier. If the XML application uses a Document Type Definition (DTD), the unique

39
 Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J., (1999) The Process

Specification Language (PSL) Overview and Version 1.0 Specification. NIST Internal Report (NISTIR)

6459, National Institute of Standards and Technology. Appendix C: Mapping PSL Concepts to the

eXtensible Markup Language (XML) Representation pp 76-79 [online]. Available from:

http://www.mel.nist.gov/msidlibrary/doc/nistir6459.pdf#page=76 [Accessed 25 July 2011].

http://www.mel.nist.gov/msidlibrary/doc/nistir6459.pdf#page=76

188

identifier should be represented using an ID attribute so that references to the timepoint can be made

using IDREF.

3. For each activity, specify a unique identifier (with an ID attribute if using a DTD) and an activity

name. If the activity contains subactivities, specify these within a container element. If the activity has

no subactivities, specify the resources used with references to the appropriate class defined in the RDF

Schema.

4. Specify occurrences of activities in sequential order with sub-activities enclosed inside parent

activities. Each activity occurrence should have a beginning and ending time point and, if it cannot be

decomposed into sub-activities, a list of RDF-defined resource instances it uses.”

The figures below
40

 show a section from an example PSL process sequence based on the NIST

example representation
39

, and rendered using an XSL (eXtensible Stylesheet Language) stylesheet.

This example is just to illustrate the standard, the example could be expanded to be a full ontology and

allow visualisation, navigation, and interactivity.

The first step is to declare the resources; this is shown below, Figure 65 :-

40
 Hale, P. (2008) Process Specification Language Example [online]. Available from:

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml [Accessed 25 July 2011].

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml

189

Figure 65. Section from PSL Process Taxonomy and sequence rendered with stylesheet - PSL

Class Definition

Instances of this class can then be declared; this is illustrated next, Figure 66 :-

190

Figure 66. PSL Instance Creation

Time points are then created to make it possible to create a sequence of activities; this is shown below,

Figure 67 :-

Figure 67. PSL Time Point Creation

After time points are created, ‘activities’ are specified; this is shown below, Figure 68 :-

191

Figure 68. PSL Activity Specifications

The activities are then assigned occurrence times that allow each activity to be related in a sequence of

sequences. Figure 69 demonstrates this :-

192

Figure 69. Activity Occurrence Times

9.3 STEPml

The next figure
41

 shows a STEPml example, Figure 70 :-

41

 Hale, P. (2009) STEPml [online]. Available from:

http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/STEPml.htm. [Accessed 25 July 2011].

http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/STEPml.htm

193

Figure 70. STEPml example rendered with stylesheet

9.4 XMI (XML Metadata Interchange)

The XML Metadata Interchange specification provides a standard format for describing UML (Unified

Modeling Language) model elements. Most UML tools contain functionality for exporting data in the

XMI format. Figure 71 shows part of a UML design translated into XMI. A stylesheet is used to

display the XMI on the Web in a readable form. A user can click on an associated term to view that

term.

194

Figure 71. XMI Taxonomy - Product Data Structure - Visualised with Stylesheet

9.5 Yahoo Pipes

Figure 72 below shows an example of a Yahoo Pipe created to test Yahoo Pipes as a diagrammatic end-

user programming tool. This did prove to be a useful and flexible diagrammatic programming tool to

use, with the advantage of making use of Semantic Web languages without requiring understanding of

their syntax.

195

Figure 72. Example Yahoo Pipe

This example is available at

http://pipes.yahoo.com/pipes/pipe.info?_id=1717f42cc067a80511c255e93deca0dc :-

And all the examples created can be accessed at :-

http://pipes.yahoo.com/pipes/person.info?display=pipes&eyuid=nyyrkD0jrXf16Jis1uKBZs5Yf3u7Ajv

pKQ--.

9.6 Online Examples

The table shows the examples created and put online, either by translation through the ontology and

modelling system created for this thesis, or created independently to test and demonstrate ideas,

technologies, and/or standards. An online interactive version of this table and the Language and Tool

Mapping table from chapter 3 is available at

http://www.cems.uwe.ac.uk/~phale/#LanguageToolMapping.

The categories of ‘Designed/Implemented/Translated from Ontology’, ‘Coded/Adapted’, and ‘Used’

indicate the authors experimentation with taking the role of ‘System Developer’, ‘Model Builder’ and

‘Model User’ respectively. The top headings indicate the type of system developed to aid End-User

Modelling. It was necessary to combine research and implementation in all these areas to make

progress in this thesis.

http://pipes.yahoo.com/pipes/pipe.info?_id=1717f42cc067a80511c255e93deca0dc
http://pipes.yahoo.com/pipes/person.info?display=pipes&eyuid=nyyrkD0jrXf16Jis1uKBZs5Yf3u7AjvpKQ--
http://pipes.yahoo.com/pipes/person.info?display=pipes&eyuid=nyyrkD0jrXf16Jis1uKBZs5Yf3u7AjvpKQ--
http://www.cems.uwe.ac.uk/~phale/#LanguageToolMapping

196

Table 5. Online Examples by Categories

 Taxonomy Visualisers Diagrammatic Editors Models Semantic Web/other

standards

Representations

Designed/Implem

ented/Translated

from Ontology

Taxonomy View of

Wingbox Model

http://www.cems.uwe.ac

.uk/~phale/Flash/FlashH

CI.htm

Java Applet Spar

taxonomy

http://www.cems.uwe.ac

.uk/amrc/seeds/PeterHal

e/JavaTree/AutomaticaO

utputSpar/classes/TreeO

utput.html

XML Spar Taxonomy

http://www.cems.uwe.ac

.uk/amrc/seeds/PeterHal

e/SparMenu.xml

CAD Diagrammatic View of Wingbox Model

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExample

s.htm

Spar Model

http://wiki.vanguardsw.com/bi

n/browse.dsb?det/Engineering

/Aerospace/Wing%20Spar%2

0Translated%20from%20Prot

ege%20Taxonomy

XML Spar Taxonomy

http://www.cems.uwe.ac.u

k/amrc/seeds/PeterHale/Sp

arMenu.xml

XML Colour Coded Wing

Taxonomy

http://www.cems.uwe.ac.u

k/amrc/seeds/PeterHale/Wi

ngMap/Wing.xml

XML Taxonomy View of

Wingbox Model

http://www.cems.uwe.ac.u

k/~phale/Flash/FlashHCI.ht

m

SVG - CAD Diagrammatic

View of Wingbox Model

http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm
http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm
http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/JavaTree/AutomaticaOutputSpar/classes/TreeOutput.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/JavaTree/AutomaticaOutputSpar/classes/TreeOutput.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/JavaTree/AutomaticaOutputSpar/classes/TreeOutput.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/JavaTree/AutomaticaOutputSpar/classes/TreeOutput.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/JavaTree/AutomaticaOutputSpar/classes/TreeOutput.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm
http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://wiki.vanguardsw.com/bin/browse.dsb?det/Engineering/Aerospace/Wing%20Spar%20Translated%20from%20Protege%20Taxonomy
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/SparMenu.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm
http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm
http://www.cems.uwe.ac.uk/~phale/Flash/FlashHCI.htm

197

http://www.cems.uwe.ac.u

k/~phale/InteractiveSVGE

xamples.htm

Coded/Adapted Drag and Drop

http://www.cems.uwe.ac

.uk/amrc/seeds/Ajax/co

mponents.html

XML Colour Coded

Wing Taxonomy

http://www.cems.uwe.ac

.uk/amrc/seeds/PeterHal

e/WingMap/Wing.xml

Interactive Map

http://www.cems.uwe.ac.uk/amrc/ajaxGoogleMapsMashup.

html

Parametric Cost Models

http://www.cems.uwe.ac.uk/~

phale/ParametricModelExamp

les/engine.xml - Created with

Christophe Bru

SVG State Transition

Example

http://www.cems.uwe.ac.u

k/amrc/seeds/PeterHale/Sta

teTransition/statetrans.htm

SVG Graph Example

http://www.cems.uwe.ac.u

k/~phale/SVGExamples/po

werpricegraph.htm

XML XForms

http://www.cems.uwe.ac.u

k/amrc/seeds/FormFaces/E

xamples/WingBox/index.ht

ml

Process Specification

Language

http://www.cems.uwe.ac.u

k/~phale/XMLDemonstrat

http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm
http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm
http://www.cems.uwe.ac.uk/~phale/InteractiveSVGExamples.htm
http://www.cems.uwe.ac.uk/amrc/seeds/Ajax/components.html
http://www.cems.uwe.ac.uk/amrc/seeds/Ajax/components.html
http://www.cems.uwe.ac.uk/amrc/seeds/Ajax/components.html
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/WingMap/Wing.xml
http://www.cems.uwe.ac.uk/amrc/ajaxGoogleMapsMashup.html
http://www.cems.uwe.ac.uk/amrc/ajaxGoogleMapsMashup.html
http://www.cems.uwe.ac.uk/~phale/ParametricModelExamples/engine.xml
http://www.cems.uwe.ac.uk/~phale/ParametricModelExamples/engine.xml
http://www.cems.uwe.ac.uk/~phale/ParametricModelExamples/engine.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/StateTransition/statetrans.htm
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/StateTransition/statetrans.htm
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/StateTransition/statetrans.htm
http://www.cems.uwe.ac.uk/~phale/SVGExamples/powerpricegraph.htm
http://www.cems.uwe.ac.uk/~phale/SVGExamples/powerpricegraph.htm
http://www.cems.uwe.ac.uk/~phale/SVGExamples/powerpricegraph.htm
http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html
http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html
http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html
http://www.cems.uwe.ac.uk/amrc/seeds/FormFaces/Examples/WingBox/index.html
http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml
http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/psl.xml

198

ors/psl.xml

RDF - Ring Manufacturing

Sequence

http://www.cems.uwe.ac.u

k/~phale/XMLDemonstrat

ors/rdfring.xml

STEPml

http://www.cems.uwe.ac.u

k/amrc/seeds/PeterHale/Pro

ductData/PDM_BOM_v20

3.xml

Used Yahoo Pipes

http://pipes.yahoo.com/pipes/

http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/rdfring.xml
http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/rdfring.xml
http://www.cems.uwe.ac.uk/~phale/XMLDemonstrators/rdfring.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/ProductData/PDM_BOM_v203.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/ProductData/PDM_BOM_v203.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/ProductData/PDM_BOM_v203.xml
http://www.cems.uwe.ac.uk/amrc/seeds/PeterHale/ProductData/PDM_BOM_v203.xml
http://pipes.yahoo.com/pipes/

