

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/136411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Integration of Relational Database Metadata and XML

Technology to Develop an Abstract Framework to Generate

Automatic and Dynamic Web Entry Forms

Mohammed Mosbah Elsheh

PhD

2009

ii

Integration of Relational Database Metadata and XML

Technology to Develop an Abstract Framework to Generate

Automatic and Dynamic Web Entry Forms

An investigation into the development of an abstract framework for
producing automatic and dynamic web entry forms based on database

metadata and deploying XML technology

Mohammed Mosbah Elsheh

Submitted for the degree of Doctor of Philosophy

Department of Computing

School of Informatics

 University of Bradford

2009

iii

Acknowledgements

First of all, I am very grateful to my Lord Almighty ALLAH who helped me and guided

me throughout my life and made it possible. I could never have done it by myself!

I would like to express my deep thanks and appreciations to my supervisor: Mr.

Mick.J.Ridley for his invaluable guidance and insightful direction throughout this

research work. This work is the result of inspiration, advice and motivation that were

extended to me by him. I am indebted to him. His most prominently directed guidance

helped me overcome many problems which otherwise have taken more efforts and time.

Finally, I deeply thank my wife for her support and encouragement throughout my

studies.

iv

Abstract

Developing interactive web application systems requires a large amount of effort on

designing database, system logic and user interface. These tasks are expensive and

error-prone. Web application systems are accessed and used by many different sets of

people with different backgrounds and numerous demands. Meeting these demands

requires frequent updating for Web application systems which results in a very high cost

process. Thus, many attempts have been made to automate, to some degree, the

construction of Web user interfaces. Three main directions have been cited for this

purpose. The first direction suggested of generating user interfaces from the

application’s data model. This path was able to generate the static layout of user

interfaces with dynamic behaviour specified programmatically. The second tendency

suggested deployment of the domain model to generate both, the layout of a user

interface and its dynamic behaviour. Web applications built based on this approach are

most useful for domain-specific interfaces with a relatively fixed user dialogue. The last

direction adopted the notion of deploying database metadata to developing dynamic

v

user interfaces. Although the notion was quite valuable, its deployment did not present a

generic solution for generating a variety of types of dynamic Web user interface

targeting several platforms and electronic devices.

This thesis has inherited the latter direction and presented significant improvements on

the current deployment of this tendency. This thesis aims to contribute towards the

development of an abstract framework to generate abstract and dynamic Web user

interfaces not targeted to any particular domain or platform. To achieve this target, the

thesis proposed and evaluates a general notion for implementing a prototype system that

uses an internal model (i.e. database metadata) in conjunction with XML technology.

Database metadata is richer than any external model and provides the information

needed to build dynamic user interfaces. In addition, XML technology became the

mainstream of presenting and storing data in an abstract structure. It is widely adopted

in Web development society because of its ability to be transformed into many different

formats with a little bit of effort. This thesis finds that only Java can provide us with a

generalised database metadata based framework. Other programming languages apply

some restrictions on accessing and extracting database metadata from numerous

database management systems. Consequently, JavaServlets and relational database were

used to implement the proposed framework. In addition, Java Data Base Connectivity

was used to bridge the two mentioned technologies.

The implementation of our proposed approach shows that it is possible and very

straightforward to produce different automatic and dynamic Web entry forms that not

targeted at any platform. In addition, this approach can be applied to a particular domain

without affecting the main notion or framework architecture. The implemented

vi

approach demonstrates a number of advantages over the other approaches based on

external or internal models.

vii

List of Author’s Publications Related to this

Thesis

1. Elsheh, M.M. and M.J. Ridley. DEVELOPING AN ABSTRACT

REPRESENTATION FOR USER INTERFACE ELEMENTS BASED ON

DATABASE METADATA in IADIS International Conference WWW/Internet

2007 October 2007. Vila Real, Portugal

2. Elsheh, M.M. and M.J. Ridley. Using Database Metadata and its semantics to

Generate Automatic and Dynamic Web Entry Forms. In WCECS 2007 World

Congress on Engineering and Computer Science 2007. San Francisco, USA:

IAENG, International Association of Engineers.

3. Elsheh, M.M. and M.J. Ridley. A Generic Approach to Generate an Abstract

Web Entry XForms Using Database Metadata. In the Ninth Informatics

Workshop for Research Students. 2008. University of Bradford, UK.

viii

Contents

1.0 Overview ... 1

1.1 Motivations ... 2

1.2 Aims and objectives .. 3

1.3 Thesis Outline ... 4

Capter 2 ... 6

Web Technologies ... 6

2.0 Introduction ... 6

2.1 Mark-up languages .. 7

2.1.1 SGML .. 8

2.1.2 HTML ... 8

2.1.3 XHTML .. 15

2.1.4 XML .. 16

2.1.5 XForms .. 21

2.1.6 XSLT ... 34

2.1.7 XPath ... 39

2.2 Client-side Scripts ... 40

2.2.1 JavaScript .. 40

2.3 Server-side technologies ... 42

2.3.1 CGI .. 42

2.3.2 Fast CGI .. 43

2.3.3 Java Servlets .. 44

2.4 Server-side scripting technologies .. 46

ix

2.4.1 Active server pages (ASP) .. 47

2.4.2 ASP.NET ... 47

2.4.3 PHP ... 49

2.4.4 Perl .. 50

2.4.5 Java Server Pages: ... 51

Chapter 3 ... 53

Database Development.. 53

3.0 Introduction ... 53

3.1 Relational Database, an overview ... 54

3.2 JDBC and its Architecture .. 57

3.2.1 JDBC vs. ODBC ... 61

3.2.2 How JDBC works? .. 62

3.2.3 JDBC and Database Metadata ... 68

3.3 Conclusion .. 70

Chapter 4 ... 71

Literature Review .. 71

4.0 Introduction: .. 71

4.1 Related work on user interface to databases ... 73

4.1.1 Accessing relational databases from the World Wide Web 73

4.1.2 Automatically generating World-Wide Web interfaces to relational

databases 74

4.1.3 An Improved Method for Creating Dynamic Web Forms Using APL ... 75

4.2 Related work on user interface to metadata .. 76

x

4.2.1 Metadata tables to enable dynamic data modelling and web interfaces

design: the SEER example .. 77

4.2.2 Developing Web Entry Forms Based on Metadata 79

4.2.3 GUI Generation from Annotated Source Code 80

4.2.4 Automatic Generation of Web User Interfaces in PHP Using Database

Metadata 81

4.3 Related work on user interface and XML ... 83

4.3.1 Using XML/XSL to Build Adaptable Database Interfaces for Web Site

Content Management .. 83

4.3.2 Generating Form-Based User Interface for XML Vocabularies 85

4.3.3 A framework for automatic generation of web-based data entry

applications based on XML .. 86

4.3.4 GARP: A Tool for Creating Dynamic Web Reports Using XSL and

XML Technologies ... 87

4.3.5 Generic XForms-Based User Interface Generation for XML Schema ... 89

4.4 Web application frameworks .. 90

4.4.1 Web frameworks definition and classifications 90

4.4.2 Ruby on Rails .. 91

4.5 Conclusion .. 93

Chapter 5 ... 95

Framework Implementation .. 95

5.0 Introduction ... 95

5.1 Prototype Overview .. 96

xi

5.2 The Prototype Characteristics ... 100

5.3 Three tier solution ... 101

5.4 Framework Architecture ... 102

5.5 The mechanism of the prototype ... 107

5.5.1 Connecting to database and retrieving metadata 107

5.5.2 Converting metadata into XML document ... 108

5.5.3 Transforming XML document into Web entry forms 113

5.6 Extended Example Scenario ... 132

5.6.1 Arisen limitations .. 139

5.7 Conclusion .. 140

6.0 Conclusion .. 141

6.1 Future Work .. 144

xii

List of Figures

Figure 1 The layout of an XML document ... 18

Figure 2 Xforms input control associate with XML Schemata data type xs:string 28

Figure 3 XForms input control associate with XML Schemata data type xs:date 28

Figure 4 XForms output control. ... 29

Figure 5 XForms secret control. ... 30

Figure 6 XForms textarea control. .. 30

Figure 7 XForms select1 control. .. 31

Figure 8 XForms select1 control invoked in X-Smiles Web browser. 32

Figure 9 XForms select1 control invoked in Mozilla firefox Web browser. 32

Figure 10 XForms range control. .. 33

Figure 11 XSLT transformation process ... 35

Figure 12 Syntax of choose element ... 39

Figure 13 role of DBI for accessing database in Perl applications 51

Figure 14 Components of the JDBC Architecture .. 60

Figure 15 flows of JDBC processes .. 62

Figure 16 flow of accessing and retrieving information from ResultSet object. 66

Figure 17 DB2 WWW System overview captured from [71]. .. 74

Figure 18 A subset of the SEER data model, adapted from [1] 78

Figure 19 EER description in XML, adapted from [78] ... 85

Figure 20 Reports generator architecture [GARP], adapted from [82] 89

Figure 21 RoR architecture, captured from [88] ... 92

xiii

Figure 22 Three level database architecture, adapted from [89] 98

Figure 23 Three level database architecture with Metadata flow 99

Figure 24 Metadata levels in logical model .. 100

Figure 25 Three-tier solution .. 101

Figure 26 Architecture of the frame work ... 104

Figure 27 Framework architecture performing transformation task on server-side 106

Figure 28 Database table’s structure ... 108

Figure 29 A portion of raw metadata retrieved from a database table shown in Figure 28

 ... 109

Figure 30 XML document built up from a database metadata 110

Figure 31 XML document built up from database metadata. 112

Figure 32 XHTML Web entry form generated from database metadata on the fly,

invoked in IE Web browser. ... 118

Figure 33 XHTML Web entry form generated from database metadata on the fly,

invoked in Google Chrome Web browser. .. 119

Figure 34 Pseudocode of generic JavaScript function .. 122

Figure 35 Data validation warning message ... 123

Figure 36 an XForms Web entry form generated from an XML document 128

Figure 37 University of Bradford main page rendered in X-Smiles Web browsers 131

Figure 38 University of Bradford main page rendered in Mozilla Firefox Web browsers

 ... 132

Figure 39 flight's table ... 133

Figure 40 adult's table ... 133

xiv

Figure 41 child's table ... 134

Figure 42 card's table .. 134

Figure 43 titles' table ... 134

Figure 44 issuers' table .. 134

Figure 45 XML document generated from database ... 135

Figure 46 web entry form to collect flight's information .. 136

Figure 47 web entry form to collect adult's information ... 137

Figure 48 web entry form to collect child's information ... 137

Figure 49 web entry form to collect finance information ... 138

xv

List of tables

Table 1 Functions of XPath expressions. Captured from [37]. 40

Table 2 Employee table ... 54

Table 3 Cars table .. 55

Table 4 JDBC Types Mapped to Java Types. Adopted from [56] 67

Table 5 The metadata table that represents the SEER data model shown in Figure 18,

adapted from [1] .. 78

Table 6 Possible mappings of abstract items, adapted from[77] 81

xvi

List of listing

Listing 1 HTML document structure .. 11

Listing 2 usage of XForms namespace in declaring XForms elements. 25

Listing 3 a simple example of XForms document .. 26

Listing 4 sample of mark up of XForms input control .. 28

Listing 5 sample markup for XForms output control ... 29

Listing 6 sample markup for XForms secret control .. 30

Listing 7 sample of markup for XForms textarea control ... 30

Listing 8 sample markup for XForms select1 control ... 31

Listing 9 sample markup for XForms select control ... 32

Listing 10 sample markup for XForms range control ... 33

Listing 11 general structure of XSLT stylesheet ... 36

Listing 12 illustrates how XML document is built ... 113

Listing 13 illustrates creating input box using XSLT statements 120

Listing 14 XHTML fragment code generated by XSLT code Listing 13 120

Listing 15 XSLT stylesheet Pseudocode that transforms XML document into XForms.

 ... 125

Listing 16 illustrates building an instance data ... 126

Listing 17 illustrates building binding elements. ... 126

Listing 18 illustrates building a user interface element .. 127

Listing 19 segment of page source code corresponding to page shown in Figure 36 ... 129

Introduction

1

Chapter 1

Introduction:

1.0 Overview

Nowadays the Internet is ubiquitous. Dozens of websites, blogs and Web applications

systems are deployed everyday. Websites are the first kind of Web systems appeared

during the 1970’s. They offer information to the end-users in a static way. The

interaction between them and end-users is unidirectional. However, blogs are

considered as some sort of web sites. They allow users to post their comments on a

specific topic. The most powerful and beneficial Web systems are the web application

systems. They allow the end-user to fill in web forms in order to post several types of

data such as text, images and audio/video files.

The interaction of a database and the Web is becoming the cornerstone of developing

Web application systems. Shifting legacy data that held in stand-alone systems to be

used in Web application systems is an expensive and time consuming chore for many

corporations.

Introduction

2

Building Web application systems involves several phases and needs a lot of work to

integrate several tasks with each other. They can be developed by a team where each

member has a specific role and need not work on common files.

The automatic and dynamic generation of Web application systems has become the

mainstream in Web development sector. Many efforts have been made over the last two

decades in order to address the difficulties faced by this approach. The majority of these

efforts concentrated on the external data model such as [1], [2] and [3] whereas a few of

them make use of internal data model but they failed to tackle the problem in an optimal

approach since they did not achieve the separation between the logic, content and

presentation such as in [4] and [5] .

1.1 Motivations

The explosive growth and variety of Web technologies has pushed many business

organisations to turn their database applications into on-line systems. From another side,

as new technologies such as XML and its surrounding children such as XHTML and

XSLT have gained a wide acceptance in the Internet society, updating current Web

applications to take advantages of these technologies is becoming a top priority for

many Web applications’ developers and owners. Developing interactive Web

applications that meet most clients’ demands in terms of the portability and

compatibility of the existence soft/hard ware is a complicated task and has challenged

Web developers in many phase including:

• Time needed to develop, maintain and amend Web application systems.

Introduction

3

• High cost. The longer it takes to build up, maintain and amend the Web

application the higher cost is paid.

• Taken in account the variety of platforms of end-users.

• Building Web application considering the separation between the content, logic

and presentation.

1.2 Aims and objectives

The overall aim of this study is to build and test a generic and flexible approach that

can be used to generate automatic and dynamic Web application systems, using

database metadata that held in system catalogue tables in relational databases

management system (RDBMS) in conjunction with XML technology and its related

technologies. To achieve this aim, the follows objectives are considered:

• To carry out an extensive literature review about the existing web technologies.

This literature mainly focuses on the limitations of the most used technologies in

Web application development.

• To carry out an extensive study to investigate and discover the potential

resources of database metadata in order to determine for how extent this

resource can provide us with sufficient information to achieve the main aim.

• To explore the features of Web browsers and to what extent they support our

approach. This mainly focuses on how Web browsers deal with Xforms

technology and to what degree they can support it.

Introduction

4

• To investigate XML technology and its surrounding technologies in order to

determine for how level it can be combined with database metadata to build a

very high-level abstract representation for user interface elements.

1.3 Thesis Outline

The rest of this thesis is organised as follows:

• Chapter 2: This chapter describes the state-of-the-art in Web technologies. The

main purpose of this chapter is conducting a survey of available technologies

and asses the most suitable ones to implement the proposed approach.

• Chapter 3: In this chapter, a comprehensive survey was carried out to understand

the current state-of-the-art in database field in order to asses the suitability of

different technologies for implementation of the prototype system to be

developed throughout this study. Database developments and Java DataBase

Access gained the most focus in this chapter.

• Chapter 4 : The philosophy of academic research is to build up on what others

have done, improving what already has been made or discovering new directions

and methods to push forward the wheel of life. For this reason, this chapter

surveys a number of academic research papers and commercial products dealing

with issues that relate to Web user interface to databases. Three main sections

Introduction

5

are considering in this chapter. The first concentrates on issue of building Web

user interfaces to databases in general. The second deals with the issue of

employing metadata to producing user interfaces. The last is concerning on the

notion of using XML technology to developing dynamic Web user interface.

• Chapter 5: This chapter begins with an overview of the characteristics of the

prototype system. A general notion of how the framework constructed is

introduced. System architecture and its layers are demonstrates in details. How

does the system work and how it is employed database metadata in conjunction

with XML technology to improve the notion of building an abstract framework

to generate different automatic and dynamic Web entry forms is illustrated and

discussed.

• Chapter 6: Concludes the thesis and points out possible future work.

Web Technology

6

Capter 2

Web Technologies

2.0 Introduction

Nowadays, the main method of providing interaction between end users and Web

application systems are Web forms. They are used in all sorts of Web application

systems, from basic customer support services, to more sophisticated use such as stock-

sharing systems. At present, such web form based applications are primarily

implemented using HTML [6], complemented with client-side scripting such as

VBScript [7] and JavaScript [8], that is used for basic functionality such as data

validation, and by server-side technologies such as PHP [9], .Net and JSP [10] that offer

more complicated business processing and functionality. Lately, many Web developers

have adopted XML [11] and its surrounding technologies for building more extensible

and interactive Web application systems. As a result, XForms [12] technology that is

Web Technology

7

compliant with XML technology is introduced to solve the shortcomings of the current

HTML Web forms.

Since the main focus of this study is to find out to what extent can relational

database metadata in conjunction with XML technology fit in generating automatic and

dynamic Web forms, the main focus of this chapter will be on those Web technologies

that most fit our approach.

The chapter is spilt into three main sections. The first section discusses the most

commonly used Mark-up language in building the concrete part of Web forms. The

second section surveys the commonly used server-side technologies, mainly Javaservlet.

The last section introduces the client-side technologies, mainly JavaScript.

2.1 Mark-up languages

Although the term “Mark-up” has several different means, the basic idea behind it in

general, is to take plain text web content and add some indications of how this text

should be formatted. One of the common purposes of Mark-up languages is to structure

information in a proper way for display reasons. Nowadays, the common language

widely used to mark-up text for web site and web applications is HyperText Mark-up

Language (HTML). However, to enhance the appearance and formatting different

HTML elements, Cascading Style Sheets (CSS) [13] can be used along with HTML.

XML (or Extensible Mark-up Language) is another mark-up technology originating on

the web and its main usage is not in creating web pages but to interchange data over the

internet between different systems having different software and different platforms.

Web Technology

8

Lately, XForms was introduced and intended to replace traditional HTML, it built on a

new concept, which separate the look and feeling of Web forms.

Similar to CSS in some respects, XSLT [14] is a tool that can be used to transform

XML documents into different forms such as HTML, XHTML, XForms and so forth.

This chapter introduces the commonly used mark-up languages used in Web

applications development.

2.1.1 SGML

Standard Generalized Mark-up Language (SGML) was created in the middle of

the 1970’s to be used as a tool to automate document processing. SGML is an

international standard (ISO8879) for the definition of platform and system

independent methods of representing texts in electronic form [15]. SGML is not a

document language itself but it is a Meta language that defines a description of how

to specify a document language. HTML, for instance is defined in SGML.

2.1.2 HTML

HyperText Markup Language (HTML) is the most commonly used Markup

language for creating websites and web applications. It has been in use on the World-

Wide Web (WWW) since the early days of the last decade. HTML has been reviewed

and many releases came out with many enhancements. These versions are introduced as

follows:

• HTML 1.0

Web Technology

9

This version was the first release of HTML to the public. Since the number of

people involved in website development was very limited, this release was very basic

and did not offer any sort of interactivity between the end users and websites.

• HTML 2.0

This release is the first definitive one of the HTML family. It came with most

HTML elements are that still in use until now such as the INPUT types, PASSWORD,

RADIO, CHECKBOX, RESET, SUBMIT and so forth.

• HTML 3.0

Although this version of HTML provided several additional capabilities over HTML

2.0 such as tables, page alignment for block structuring elements and text flow around

figures, it did not survive, even it did not complete. The reason is that W3C was forced

to produce HTML 3.2 as an attempt to formalise all the bits that Microsoft and Netscape

had implemented.

• HTML 3.2

It became an official standard in 1997. It introduced new HTML elements such as

TABLES, IMAGE, HEADING and other element ALIGN attributes. The obvious

drawback in this version is that missing some of the Microsoft/Netscape extensions

such as APPLET, FRAME and EMBED.

• HTML 4.0

Web Technology

10

This version includes support for most of the proprietary extensions. In addition, it

supports new features including support for Cascading Style Sheets, internationalised

documents, extra FORM, TABLE and ECAMScript [16] enhancements. A very short

time after this version has come out, it was revised and corrected in a few slight ways

and was entitled HTML 4.1.

• HTML 5.0

It is the latest proposed version of the HTML family and still in the draft stage. It is

formed by a group called Web Hypertext Application Technology Working Group

(WHATWG) [17]. It adds some convenient elements for more detailed semantic

structures within HTML. It also removed legacy-formatting elements such as (center,

font, frame, frameset and many others) and suggested using CSS to deal with layout

issues. Beside the existing features in HTML 4.01 and XHTML 1.0, the proposed

release introduces new items, including:

• New layout elements that reflects typical usage on modern Web sites. A

number of of these elements are technically similar to earlier elements such

as and <div> tags, but have a semantic meaning, for instance

<footer> and <nav> (website navigation block). Other elements offer new

functionality via standardised interface, like the <video> and <audio>

elements.

• Server-sent DOM events which intended to improve native, cross-browser

streaming. Server-sent events defines a data format for streaming events to

Web Technology

11

web browsers, and an related DOM API for accessing those events, via

attaching call-back functions to specific named event types.

• Dynamic graphic capabilities.

• Programming changes to the Document Object Model (DOM). The existing

DOM interfaces are extended and new APIs are introduces such as drag-and-

drop and timed media playback.

2.1.2.1 HTML Document Structure

As shown in Listing 1, HTML documents are structured into two main parts, the

HEAD, and the BODY. The former contains information about the document that is not

generally displayed with the document, such as its title. The later contains the body of

the text. All form elements are placed in this part of document. Elements allowed inside

the HEAD, such as TITLE, are not allowed inside the BODY, and vice versa.

Listing 1 HTML document structure

2.1.2.1.1 HTML Form Controls

http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/head.html�
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/body.html�
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/title.html�

Web Technology

12

HTML is very rich in controls and attributes that are used to construct the user

interface. The most commonly used controls and attributes in building interactive Web

forms are listed as follows:

• Input Control is the most used form control. This control can accept any

data type specified by the type attribute. Among a dozen input types, the list

below shows the most commonly used ones.

1. Text Fields: used to allow the end user to enter any values from the key

board including numeric digits, letters and special characters. This attribute

is constructed as: <input type=”text” name=”any name”>. Entered data

type can vary based on the value of type attribute and can include int, float,

date, url, hidden, etc.

2. Radio Buttons: used to allow users to select one among a limited number of

choices. The layout of this attribute is as:

 <input type=”radio” name=”any name” value=”any value”>.

3. Checkboxes: allow users to select one or more than one options among a

limited number of choices. Checkboxes are constructed as:

<input type="checkbox" name="name1" value="value1">

<input type="checkbox" name="name2" value="value2">

<input type="checkbox" name="name3" value="value3">

The list could hold tens or hundreds of values based on the browser

capability.

Web Technology

13

4. Submit Button and Action attribute: used to submit entered data to a

specific URL. The layout of these attributes are as follow:

<input type=”submit” value =”any text”>.

The URL is specified by Action attribute as follows:

<form name=”input” action=”any URL”>

2.1.2.2 HTML Limitations

HTML forms are considered the most significant features of HTML that facilitate the

interaction between users and Web applications. However, although HTML has had

some important developments since its first appearance, it still has some limitations that

make it reasonable to look for another alternative tool to create and deploy Web

applications. A commonly cited drawback of HTML forms is their dependency on

scripting languages such as JavaScript, JScript and Visual Basic Script. Real-world

HTML forms are reliant on scripts to accomplish many common tasks such as marking

controls as required, performing validations and calculations, displaying error messages,

and managing dynamic layout. This dependency results in complex documents, which

are expensive and time consuming to maintain [18].

Another limitation is that the initialisation of data is control specific and complex to

manage [19]. Since each form control has its own unique way of defining initial data

this means that in order to process a blank form into a filled one, either a new document

Web Technology

14

needs to be constructed piece by piece or an existing document needs to be patched in

numerous places. Constructing such forms is CPU resource consuming and can lead to

bottlenecks on servers.

The third limitation is that HTML Forms can only represent flat data structures or

name/value pairs [19]. In the real world, most business documents such as purchase

orders needed to benefit from a complex data such as audio representation where

HTML fails to deliver for this requirement. However, XML provides a better

foundation for most business documents than a flattened set of names and values by

offering a very rich data representation.

The fourth limitation is that HTML forms have a very simple one step process from

client to server and back again. However, today's business processes are becoming ever

more automated and the ability to define complex processes are typical within forms

based applications. This simple limitation means that more complex back end

processing and workflow management needs to be introduced which again adds

complexity and cost of maintenance for these systems. One goal of introducing AJAX

(Asynchronous JavaScript And XML) is to deal with the above limitation. AJAX allows

processing on a client computer (in JavaScript) with data taken from the server. It can

selectively modify a part of a page displayed by the browser, and update it without the

need to reload the whole document with all images, menus and so forth. For instance,

fields of forms, choice of user, may be processed and the result displayed immediately

into the same page. To clarify this concept, let us consider this example adopted from

[20] . A pizza order and delivery system holds the customers’ data such as name, phone

Web Technology

15

number, address and so forth. The order reservation page uses the phone number as

access key. The order needs to be delivered to the customer address and the order itself

needs to be specified by the customers every time they make a new order. Following

AJAX approach, as soon as the system gets the phone number and cursor left the input

field, the page should automatically fill in the customer’s address. This allows

customers to work on their order while the server is getting their address. However,

AJAX lacks in support small electronic devices. More information about AJAX in [21].

The final drawback with HTML is the fact that there is poor separation between data

and presentation, which leads to importable web forms. In other words, if a form is

designed to be deployed on a desktop browser another form is needed for deployment

on a mobile or handheld device [19].

Because of the above drawbacks of current HTML Web forms, XForms that is an XML

based technology was introduced to tackle these limitations and make Web forms more

extendable and interactive.

2.1.3 XHTML

The Extensible Hypertext Markup Language or XHTML is a W3C recommendation

for Web developers [22]. Unlike HTML that is an application of SGML, a very flexible

Markup language, XHTML is an application of XML, a more restrictive subset of

SGML. Since XHTML is a reformulation of HTML 4.01 in XML, it can be thought of

as a hybrid of HTML and XML.

Web Technology

16

The first generation of XHTML (i.e. XHTML 1.x) has not brought significant changes

to HTML 4 apart from some features to achieve conformance with XML. The most

important change that was introduced in this generation is the requirement that the

document must be well formed and that all elements must be explicitly closed as

required in XML. However, the most important improvements are introduced in

XHTML 2.0 which is still in draft stage, these new features include:

• Unlike the first generation of XHTML, XHTML 2.0 is not backward compatible

with its predecessors (HTML x.x and XHTML 1.x).

• HTML forms are replaced by XForms which allow forms to be displayed in

appropriate ways on different devices.

• XFrames will replace HTML frames.

• DOM events will be replaced by XML Events, which use the XML Document

Object Model.

2.1.4 XML

XML (Extensible Mark-up Language) became a W3C recommendation in February

1998 [11]. XML sits between the two technologies (SGML and HTML), not as a

complex as SGML, whereas is vastly more powerful than HTML. XML is a meta

language which allows the definition of multiple Mark-up languages [23] . In addition,

XML it is not only designed to be used as a text encoding tool, but also to be used as a

main vehicle to exchange information between different kinds of computers, different

Web Technology

17

Web application systems and different organisations without needing to go through

several layers of conversion. Furthermore, XML has numerous specifications for

mathematical formula (MathML) [24], Molecular Information [25] and many others.

Unlike HTML, XML tagging can be used to define the logical content of a document

rather than its physical structure that makes it possible for different applications to

format the same document in different ways using numerous tools such as XSL.

The main motivation behind XML is the need to support Web applications that can not

be accomplished within the limitations of HTML (see section 2.1.2.2). These

applications are divided into four categories:

• Applications that require the Web client to mediate between two or more

heterogeneous databases.

• Applications that attempt to distribute a significant proportion of the processing

load from the Web server to the web client.

• Applications that require the Web client to present different views of the same

data to different users.

2.1.4.1 XML Document Structure

As W3C states, XML has both physical and logical structure. Physically, it is

comprised of storage units called entities. Entities are pieces of information that refer to

other data and pages as shortcuts. Logically, an XML document consists of declarations,

comments, elements, references, characters and processing instructions.

As shown in Figure 1, an XML document consists of three main parts that are Prolog,

Body and Epilog.

Web Technology

18

• Prolog is an optional part and not required in order for an XML document to

be well-formed. XML declaration, comments, processing instructions and

document type declaration are the most pieces of information are embedded

in this part. In addition, if XML declaration is included, it must be the first

line of the XML document.

• A document body or instance is the bulk of the information content of the

document.

• Epilog is an optional part. Comments and processing instructions could be

included in this part.

Figure 1 The layout of an XML document

Web Technology

19

2.1.4.2 Well-formed or valid XML document

The nominal requirement for any XML document is to be well-formed. A well-

formed XML document must adhere to the following set of conventions:

• XML document must have consistent, well-defined structure.

• Apart from empty elements, all start tags must have matching end tags.

• All attributes values must be quoted. Either by single or double quotes.

• Every XML document has only one root element and must contain all others.

• Elements must be well nested and not overlapping.

• Apart from root element, each element must have exactly one parent element

that contains it.

• Attributes and elements names are case-sensitive.

• Keywords such as ENTITY and DOCTYPE must always written in uppercase.

Despite adherering to all the above rules, an XML document maybe still an invalid

document. Valid document must be both, well-formed and stick to the constraints

imposed by a DTDs or XML schema.

2.1.4.3 XML validation

It is well known that every XML document must be well-formed. Beside that in many

cases, XML document is required to be validated in order to meet specific requirements.

Web Technology

20

Among of several techniques used to validate XML document, DTDs and XML schema

are the most used ones.

• DTD

It stands for Document Type Definition [26]. It uses formal grammar to identify the

structure and permitted values of XML documents. DTDs can be declared as an external

reference, or inline inside an XML document. Despite that fact that DTDs still in use

and operates in meaningful matter, it comes with several drawbacks that make it

reasonable to look for a new technique to replace it. Among of these shortcomings are:

• It dose not support a range of data types.

• It has no support for extensions or inheritance of declaration.

• Lack of namespaces, which make it not possible for an XML document to

reference more than one external DTD.

• XML schema

XML schema is a language that used to describe the structure of an XML document

[27]. It is written in XML and adheres to all XML rules. It can be seen as extension to

DTDs with a restricted form of specialisation. It was introduced to tackle the

shortcomings of the existing DTDs, so it comes with new features including:

• Support for primitive data types such as (xsd:date, xsd:integer, xsd:string, and so

on).

• The ability to define custom data types.

• It is compatible with other XML technologies such as XSLT and XQuery.

Web Technology

21

2.1.5 XForms

This section introduces the Xforms technology, discussing its characteristics, structure

and elements and how it differs from the current HTML.

2.1.5.1 Definition

XForms 1.0 became a W3C recommendation on October, 2003 [12]. It is intended to

replace the current HTML form. XForms is built on the concept of Extensible Markup

Language (XML). They are intended to be platform and device independent that makes

Web forms reusable on many electronic devices such as PC’s, handhelds, cellular

phones and other systems. XForms is not a stand-alone technology, but a XML based

technology. A host language is an essential requirement for XForms to be deployed.

Among many XML based technologies such as SVG, XHTML, and WML, XHTML is

the most common technology associated with XForms.

2.1.5.2 XForms Features

Unlike HTML, XForms is designed to separate action from intention, meaning from

presentation. This philosophy resulted in many new features that were missed in

traditional HTML. These features are listed as follows:

• Minimise round trips

Web Technology

22

In Web applications environment, the performance bottleneck is often resulted either

from the network connection between the client and server or from the server when it is

exhausted by processing a load of connections. To overcome this issue, it would be a

great achievement if part of these processes were shifted to the client side. For example,

many calculation’s tasks can be made on the client side by integrating HTML and

JavaScript. JavaScript’s implementation results in a massive number of lines of code

and requires a lot of work for maintenance. However, XForms presents an elegant

solution by adding calculation fields that rely on the content of other fields.

• Input validation

Filling out forms is an error-prone task due to the humanity nature. In most current Web

applications, many complex JavaScript codes are used to verify essential constraints

such as a birthday being in the future, rather than in the past or credit card number

having the correct number of digits. XForms provides built-in form validation on both

the client and on the server that eliminate the need of using any scripting language to

validate the entry data against specific constraints.

• Multiple environments

As stated earlier, XForms is intended to run in numerous environments including typical

desktop Web browsers like Microsoft Internet Explorer and Firefox; audio browsers and

mobile phone browsers. XForms says nothing about how the form will be displayed on

the browsers or how the user will interact with it. Presentation task is totally left to the

browser’s processor. In addition, XForms does not make any postulation about what

Web Technology

23

sort of machine is used to fill out the form. For instance, there is no XForms control

element called date, but binding an input control element with data type of date type

maybe returned in some Web browsers as a date picker.

• Accessibility

Since XForms is capable of running in many different browsers and on many different

electronic devices, this allows it to work for any person who has manual, visual, or any

other disabilities. For instance, an audio interface can be used by people to fill out

XForms while they are driving.

2.1.5.3 XForms Limitations

Currently, only X-Smiles Web browser supports XForms natively, some other Web

browsers provide plug-in software that must be installed on the client machine in order

for Web browsers to return XForms documents in proper way. Other technologies

suggested generating XForms on the server-side before sending them back to a browser.

The following section outlines some of these technologies:

• FormsPlayer, extends Internet Explorer 6 to include not only support for

the full XForms standard, but also provides DOM 2 events, DOM 3

XPath, XML Events and the DOM 3 implementation Registry [28].

• FormFaces is a pure JavaScript processor. This means that

XForms+HTML can be sent directly to the browser where JavaScript

translates XForms controls into regular HTML form controls and

processes the bindings directly within the browser without any need to

server-side processing or plugins. This goal can be achieved in a very

simple way by adding the following tag into Xforms+HTML documents:

<script type=”text/javascript” src=”formfaces.js”> </script> [29].

Web Technology

24

• Firefox is supposed to support XForms via an extension and it is in use

for versions 1.x and 2.x.

• X-Smiles is a client-side implementation. It is an open source XML

browser, developed at Telecommunications Software and Multimedia

Laboratory of the Helsinki University of technology [30]. It supports

XForms as well as most current XML languages, such as XHTML and

XSLT.

• Server-side XForms engine

In [31], Erik Bruchez concluded that implementing a server-side XForms

engine could be the promising solution to bring the capabilities of

XForms to web browsers deployed today. He argued that many benefits

could be obtained when this approach is adopted. These benefits include:

1. Eliminate the need to install plug-ins or upgrading the existing

browsers such MS Internet Explorer.

2. Web pages developers can use XForms without paying any

attention to the difference between web browsers.

3. Improving latency, saving bandwidth, and providing enhanced

confidentiality.

• Ajax-Based XForms:

In [32], it is argued that by using Ajax-Based XForms technology,

XForms will reach the web at large and fulfil its initial promise. As it is

reported in this work, the above technology has solved the main issue

with regards to XForms which is XForms deployment and it provided

additional benefits compared to browser plug-in and native

implementations, including:

1. Improved security. This is achieved by entirely keeping XForms engine

state on the server and prevents end users from accessing the XForms

engine internally.

Web Technology

25

2. Performance optimizations. By keeping very large XForms instances on

the server instead of sending them to the client, this leads to improved

page startup time and latency.

3. Ease of upgrade. By upgrading one server-side component, bug-fixes,

new widgets, and extensions are deployed to all clients.

2.1.5.4 Xforms Document Structure

XForms is an application of XML and is intended to be used in conjunction with other

XML vocabularies. XForms is not stand-alone technology. A host language is needed to

accommodate XForms. XHTML is the most common used host language in use to host

XForms. Since XForms is not standard part of XHTML 1.0, a namespace of XForms is

essential to declare all XForms elements. The official namespace of XForms is

http://www.w3.org/2002/xforms.

As Listing 2 shows the XForms: prefix is used to declare the model element. Yet there

is no restrictions of choosing XForms namespaces prefix.

Listing 2 usage of XForms namespace in declaring XForms elements.

XForms document is built up from two main parts. The first part describing the model

of XForms document and the second part describing the form controls, Listing 3

illustrates a very simple example of an XForms document.

http://www.w3.org/2002/xforms�

Web Technology

26

Listing 3 a simple example of XForms document

• XForms Model

XForms model consists of three main parts, XForms instance, bind elements and

submission elements. One or more XForms instance can be defined in the XForms

model. These instances can be defined either inline or by externally defined initial

instance data. In our implemented prototype this instance is constructed automatically

and dynamically from database metadata; and fed automatically to XForms model.

Binding elements are declared in the XForms model, they contain item properties. A

model item property describes characteristics of each node of the XForms instance on

Web Technology

27

which it operates. Model item properties enforce each single node to meet numerous

conditions. These conditions can depict data type, necessity of data (allow null values or

not) and so forth. In our work, similar to XForms instance, binding elements are

generated automatically based on database metadata.

Submission element determines which part of the XForms instance data should be

serialised and how that should be made. Data can be submitted in several formats

ranging from pure XML to XML with embedded data such as Word documents or

images. In addition, for compatibility reasons XForms can submit data in the format of

name/values pairs to allow XForms to communicate with server-side systems that were

built to work with traditional HTML forms. In contrast with traditional HTML forms,

XForms has no restrictions to submit all data provided by the end user in a single

process. Numerous submission elements can be defined in XForms model which allow

different parts of XForms instance to be submitted in several ways to different

locations.

• User Interface

Since XForms does not depict how form controls should look, XForms processor in

use is responsible for how these controls will be presented. Similarly to HTML, XForms

offers several controls that allow users to input textual data or choose a single or multi

items among several choices.

In the reminder section, brief description of the most used XForms controls are

introduced citing the fundamental differences comparing to HTML controls.

• Input

Web Technology

28

Input control is quite similar to that one used with HTML forms. It allows users to enter

any character data. Since XForms controls have the ability to use an XML Schema data

type, user experience has been improved significantly. The input control may be

returned in different shapes based on associated XML Schema data type. Listing 4

shows sample markup for two input controls with different data types, which resulted in

different style of input controls, as shown in Figure 2 and Figure 3.

Listing 4 sample of mark up of XForms input control

Figure 2 Xforms input control associate with XML Schemata data type xs:string

Figure 3 XForms input control associate with XML Schemata data type xs:date

Web Technology

29

The most cited difference comparing to traditional HTML forms controls is that all

XForms controls must be associated with label element. The content of label element

can be text, image or an external file. This richness of data type of label element can be

very useful when XForms targeted people with visual disabilities.

• Output

This control cannot accept any user input. It renders data from an XForms model as

inline text. The syntax of this control is shown in Listing 5 and its appearance is shown

in Figure 4.

Listing 5 sample markup for XForms output control

Figure 4 XForms output control.

• Secret

This form control is quite similar to its HTML forms equivalent. It does not offer any

sort of encryption, rather offer only a cursory level of security. The syntax of this

control is shown in Listing 6 and its appearance is shown in Figure 5.

Web Technology

30

Listing 6 sample markup for XForms secret control

Figure 5 XForms secret control.

• Textarea

This form control has the same function of input control; the difference is that it is

optimised for larger stretches of text. The syntax of this control is shown in Listing 7

and its appearance is shown in Figure 6.

Listing 7 sample of markup for XForms textarea control

Figure 6 XForms textarea control.

• Select1

Web Technology

31

This control allows users to select only one item among several items. The rendered

control in not bounded to a specific shape such as (radio buttons or checkboxes), rather

it depends on XForms processor in use. The select control is supported by appearance

attribute that may be used to meet specific demands of Web users. This attribute has

several values, which are:

Appearance=”minimal”. This attribute value renders a minimal list.

Appearance=”full”. This attribute value renders all available choices.

Appearance=”compact”. This attribute value renders more compact list.

The syntax of this control is shown in Listing 8 and its appearance is shown in Figure 7.

Listing 8 sample markup for XForms select1 control

Figure 7 XForms select1 control.

• Select

This form control is similar to select1 control; in addition, it allows users to select more

than one item among several items. As select1 control, the returned control relies on

XForms processor to shape it. Listing 9 shows sample markup for XForms select

Web Technology

32

control and this sample is represented in two different shapes according to the web

browsers used to invoke it as shown in Figure 8 and Figure 9.

Listing 9 sample markup for XForms select control

Figure 8 XForms select1 control invoked in X-Smiles Web browser.

Figure 9 XForms select1 control invoked in Mozilla firefox Web browser.

• Range

This control is very new and was not introduced in any form in traditional HTML. It

provides as spontaneous method to enter a bounded value. This control is associated

Web Technology

33

with three attributes. Start and end which used to determine the upper and lower

bounder. The suggested interval is determined by the attribute step. The syntax of this

control is shown in Listing 10 and its appearance is shown in Figure 10.

Listing 10 sample markup for XForms range control

Figure 10 XForms range control.

• Submit

Submit control is quite similar to its HTML equivalent. However, since XForms

document might contains more than one submit control, the submit parameters are taken

from the element that match the IDREF specified on the attribute submission [18].

All XForms controls are supported by several elements that might be used to enhance

the user experience. These elements are:

• Help

It contains a message which is presented based on an explicit request.

• Hint

Web Technology

34

It contains a message which is shown at the discretions of the Xforms processor, for

example, if the user exceeds the given time of hovering the mouse over a form

control.

• Alert

It contains a message that presented to the user in case of error condition, for

instance, if a form control fails the validation.

2.1.6 XSLT

This section outlines the main features, structure and the mechanism of how XSLT
works.

2.1.6.1 Introduction

Nowadays, a huge amount of data is stored, transported and exchanged in a form of

XML. Having data in a form of XML does not mean this data becomes immediately

useful. Data needed to be manipulated, stored, retrieved and presented to the Web users

in a meaningful and friendly look. XML data intended to be viewed as HTML pages on

the Web, as PDF [33] documents for printing and as WML [34] pages on WAP mobile

phones [35]. Thus, a tool for transforming XML documents into different formats

running on several platforms is needed.

Although XML documents can be transformed using general programming languages

such as Java, C++ and C, XSLT has the advantages of being more lightweight than

these languages. It allows Web developers to code programs much smaller than in

traditional programming languages.

Web Technology

35

Since our proposed prototype relies heavily on using XSLT as described in (5.5.3.3), the

reminder of this section introduces XSLT and its mate, XPath, in brief considering only

features that used in implementing the proposed prototype.

2.1.6.2 XSLT document’s syntax and structure

The main purpose of XSLT is to transform XML document into another XML

document or into another format such as HTML, PDF and etc. in order for the

transformation process to succeed, three components must be integrated with each

other: an XML document, a XSLT stylesheet and XSLT processor as Figure 11

demonstrates.

Raw XML
document

XSLT
stylesheet

XSLT processor Result tree
XML, XHTML ,etc.

Figure 11 XSLT transformation process

XSLT document obeys normal rules of XML document, which means it must be a well-

formed XML document that conform to W3C standards of syntax. As XML document,

XSLT document must have a single document element, which in this case is

xsl:stylesheet. Although the prefix xsl: is widely used, it is not obligatory to stick with

it.

Web Technology

36

The mechanism of how XSLT works to transform an XML document into other formats

is introduced in (chapter 5). A brief introductory of XSLT structure and most used

statements are described in this section.

2.1.6.2.1 XSLT structure

As shown in Listing 11, XSLT consists of three main parts: document element, output

element and main body.

Listing 11 general structure of XSLT stylesheet

• Document element: <xsl:stylesheet version="1.0"
 xmlns:xsl=http://www.w3.org/1999/XSL/Transform>

 it has two attributes :

 version which indicates the version of XSLT in use.

 xmlns:xsl which declares the XML namespace, defining the meaning of the

xsl:prefix.

• Output element: The xsl:output specifies the type of target document.

• XSLT’s main body: XSLT’s main body is made up of a number of templates,

each of which matches a specific part of the source XML document and process

it according to what it instructed. Templates are rules, which define how a

specific part of the raw XML document maps on to the desired result.

http://www.w3.org/1999/XSL/Transform�

Web Technology

37

2.1.6.2.2 XSLT’s Elements

XSLT comes with many useful elements that facilitate the transformation process.

The following elements are the most used in our implemented approach:

• <xsl:template>: Defines a reusable template for generating the wanted output

for nodes of a specific type and context. This element is always associated with

the match attribute that identifies the source node or nodes to which the rule

applies. The syntax of this element is: <xsl:template match="/">. The value of

attribute match could be any node on XML document specified by XPath

expression.

• <xsl:apply-templates>: Directs the XSLT processor to find the suitable template

to apply, based on the type and context of each selected node. This element is

associated with two attributes select and mode. The syntax of this elements looks

like <xsl:apply-templates select="Expression ">.

Expression could be used to select nodes for processing and specifying

conditions for several ways of processing a node.

• <xsl:copy>: Copies the current node from the source document to the output.

• <xsl:copy-of>: Inserts sub trees and result tree fragments into the result tree. It

always associated with select attribute. The syntax of this element looks like

<xsl:copy-of select = Expression />

• <xsl:value-of>: Inserts the value of a particular node as text. The common used

attribute with this element is select. The syntax of this element is <xsl:value-of

select = Expression />

Web Technology

38

• <xsl:variable>: Specifies a value bound in an expression. It is associated with

two variables: name and select. The syntax of this element is <xsl:variable

name= Qualified name select=Expression/>. Where qualified name is

constructed of prefix and a local part.

In addition to above elements, XSLT as other general programming languages offers a

set of elements that can be used in looping, branching and taking decisions. These

elements are listed as follows:

• <xsl:for-each>: Applies a template repeatedly. It associated with required

attribute select. The syntax of this element looks like <xsl:for-each

select=Expression>I. where the expression is evaluated on the current context to

decide the set of nodes to loop over.

• <xsl:if>: Allows simple conditional template fragments. It associated with

required attribute test. The syntax of this element is <xsl:if test= Boolean

expression />.

• <xsl:choose>: Tests compound conditions in conjunction with <xsl:when> and

<xsl:otherwise> attributes. The syntax of this element is shown in Figure 12.

Web Technology

39

Figure 12 Syntax of choose element

2.1.7 XPath

The first version of XPath has become a W3C recommendation on November 1999

[36]. XSLT depends heavily on XPath to identify subsets of the source XML document

tree. XPath uses path expressions to navigate in XML document similar to those used

with traditional computer systems. XPath comes with plenty of built-in functions to deal

with all sorts of data types. Since the main use of XPath in XSLT is to identify a

specific XML nodes with specific characteristics, selecting a particular node might be

performed by using a suitable path expression. The code fragment below illustrates of

using an XPath expression in conjunction with an XSLT statement for accessing and

retrieving a particular XML node value.

<xsl:value-of select="data/node1" />

 Table 1 lists the most common used expressions in XPath regarding to XSLT.

Web Technology

40

Expression Description
nodename Selects all child nodes of the named node
. Selects the present node
.. Selects the parent of the present node
/ Selects from the root node
// Selects nodes in the document from the current

node that match the selection no matter where they
are

@ Selects attributes
* Matches any element node
@* Matches any attribute node
Node() Matches any node of any kind

Table 1 Functions of XPath expressions. Captured from [37].

2.2 Client-side Scripts

 The term “Scripts” refers to a general programming term for short, text-based

software programs. Client-side Scripts are embedded in HTML WebPages and executed

on the client side of the client/server architecture, rather than on the Web server. Client-

side Scripts languages are light weight programming languages and do not have the

complete functionality that is available to full-fledged programming languages such as

Java, C, and C++. For instance, JavaScript does not support a database access. These

scripting languages are used to perform some tasks on the client-side such as data

validation, do some simple computations, change text style and so forth. An available

Scripting languages include VBScript [38], Jscript [39], JavaScript [8]. The latter one is

the most widely used scripting language and was chosen to implement our prototype.

2.2.1 JavaScript
JavaScript is an interpreted scripting language originally developed by Netscape.

Although it shares many features and structures of the full Java language, it was

http://www.webopedia.com/TERM/J/Java.html�

Web Technology

41

developed independently. JavaScript allows executable content to be embedded in Web

browsers for client side execution. It is not intended to draw graphics, or perform

networking or file I/O but to control browser behaviour and content.

The core JavaScript language was standardised in the ECMA-262 standard [40].

JavaScript interpreters are embedded in the most popular Web browsers such as Internet

Explorer, Mozilla firefox and Netscape. JavaScript interpreters in these browsers

provide many features beyond those in the ECMA specifications, which concentrates

more on the core of the language syntax.

Browser compatibility is the widely cited problem with JavaScript. Mainly, there are

two significant problems with JavaScript and browsers:

• Numerous JavaScript versions in different browsers. Despite the fact that the

names and the numbers of JavaScript’s versions supported by Microsoft and

Netscape, the languages themselves are broadly, but not entirely, the same.

Small and subtle differences can result in broken web pages.

• Browser programmability. Access to the browser’s elements and features is

determined by its own level of programmability.

Despite the fact that JavaScript can also be implemented at server-side, this approach

has many drawbacks including the intrinsic limitations of the language and the

requirement for the JavaScript runtime engine on the web server.

Despite all JavaScript compatibility issues, Web developers are left with no choice but

to make use of it or its equivalents in order to perform basic processes on the client side

such data input validations. However, XForms is a new trend which meant to present

an elegant solution for these issues. Theoretically, JavaScript’s role will be gradually

Web Technology

42

decremented as much as investments adopted to the major Web browsers that will

allow them to natively support XForms and as many people as getting familiar with this

technology.

2.3 Server-side technologies

Although there are large numbers of server-side technologies available to Web

developers, this section focuses on the most commonly used technologies and the main

focus will be on JavaServlets chosen to implement our prototype system.

2.3.1 CGI

CGI stands for Common Gateway Interface, it is a protocol which allows a web

server to obtain data from or send data to databases, documents and other programs and

present that data to end users via the Web. A CGI program receives input from the

client’s browser, via interaction with the Web server, by reading environment variables

and or standard input, and produces HTML page output via interaction with the Web

server, by writing to standard output. Although CGI programs can be written in any

programming language such as (C, C++, Perl, Visual Basic), Perl is one of the most

popular and widely used languages.

Despite the fact that CGI has made a big impact in the development of dynamic Web

pages and has driven this sector for many years because it has a number of benefits

including ease of implementation, the use of standard Web browsers as clients and the

existence of a wealth of existing tools and sample code, it has many drawbacks which

Web Technology

43

are making CGI technology fade over time and let competitor technologies such as

ASP, JSP, PHP, and JavaServlets overtake its role. The following are the most cited

CGI drawbacks:

• Each request to a CGI application spawns a new process which leads to

resources problems when the server is heavily visited.

• CGI programs when compiled become device dependant and if interpreted may

lead to efficiency problems.

• Since each CGI process is shutdown after each request, this makes maintaining

state too difficult.

• CGI has security vulnerabilities which make many ISPs restrict access to CGI

scripts.

2.3.2 Fast CGI

FastCGI is a fast, secure Web server interface, and open extension to CGI that

provides better performance without the limitation and complexity of server specific

APIs [41]. Fundamentally, FastCGI is very similar to CGI, with a major difference:

FastCGI processes are persistent; they need to be started prior to serving any requests,

and after finishing one, they wait for a new request instead of terminating. A process

manager is needed to control all processes created by FastCGI. It works with heuristics

to estimate when new instances of applications need to be created. This makes FastCGI

applications difficult to develop, because special directives need to be included in the

web server configuration files. In addition to the previous problem, FastCGI is not

implemented for some of the most popular Web Servers such as Microsoft’s IIS [42].

Web Technology

44

2.3.3 Java Servlets

Java Servlets are small, platform independent server-side programs that

programmatically extend the functionality of a Web server. The Servlet API was

developed to take advantages of the Java platform to solve the issue of CGI and

proprietary APIs.

2.3.3.1 How it works

Since a Servlet is a Java class, it needs to be executed in a Java Virtual Machine

(JVM) by a service called a Servlet engine. When a Servlet is invoked via an HTTP

GET or POST request from a client the web server directs the HTTP request to the

Servlet engine. If the desired class is not already in memory, the Servlet engine loads

and initialises it and it stays in memory until it is unloaded or the Servlet engine is

stopped, consequently it handling more than one request without having to reload it.

The Servlet engine then encapsulates the HTTP request into a class called

HTTPServletRequest and delivers it to doGet or doPost methods. The Servlet responds

by writing HTML into HTTPServletResponse which is sent back to the web server and

delivered back to the HTTP client.

2.3.3.2 Servlets Web Servers

Nowadays, most web servers support Servlets in some way. Some of them provide a

full-featured web server and possibly many other capabilities such as Sun

Web Technology

45

Microsysystem Java Server Web Development Kit (JSWDK) [43], W3C’s Jigsaw [44]

and Apache Tomcat [45]. Others operate as a add-on for other web servers, Netscape’s

Enterprise Server [46], Microsoft Internet Information Server (IIS) [47] and Apache

[48] are some examples of the second type of Web servers.

The central abstraction in the servlet API is the Servlet interface, which is implemented

by all servlets, either directly, or more commonly by extending a class that implements

it such as HTTPServlet and GenericServlet. Developers are more likely to override

HTTPServlet to implement their servlet [49].

When a servlet is invoked, it is loaded by the server and runs the init method.

Initialisation is allowed to complete before client requests are handled or the Servlet is

destroyed. Since the server calls init method once when it loads the servlet and will not

call it again unless it is reloading the servlet, the concurrency issue is already solved.

Once the init method is loaded and initialised client requests are ready to be handled, the

service method is responsible for processing the requests. Since Servlets are capable of

running multiple service methods at a time, the SingleThreadModel interface is needed

to be implemented to overcome the concurrency issue. Servlets run until they are

removed from service, the destroy method is called to terminate the Servlet.

In functionality, Servlets lie somewhere between Common Gateway Interface (CGI)

programs and proprietary server extensions such as the Netscape Server API (NSAPI).

However, Servlets have many advantages over other server extension mechanisms

which are listed as following:

Web Technology

46

• They are faster than CGI scripts and Fast CGI scripts since they use a different

process model. Since there is only a single instance which answers all requests

concurrently, this saves memory and allows a Servlet to easily manage persistent

data.

• They use a standard API that is supported by many web servers.

• They inherit all the advantages of the Java language, including ease of

development and platform independence.

• They have the ability to access the large set of APIs available to the Java

platform such as JDBC API to access enterprise database, Enterprise JavaBeans

and others.

• Inexpensive, there are a number of free or very inexpensive Web servers, which

support servlets available that are good for personal use or low-volume web

sites.

For all above features, JavaServlets technology was chosen to implement the

proposed prototype. Using JavaServlets makes our approach portable across operating

systems and Web servers. Moreover, it allowed access to the full range of Java APIs

such as JDBC to access enterprise databases.

2.4 Server-side scripting technologies

Web Technology

47

This section surveys the commonly used server-side technologies in use for

developing web applications. These technologies are similar in concept but vary in term

of performance and reliability.

2.4.1 Active server pages (ASP)

Active Server Pages is a Web server scripting language developed by Microsoft

used for embedding dynamic content into HTML Web pages. ASP is language

independent. Active Server Pages enables server side scripting for IIS with native

support for both Jscript and VBScript. The ASP code is executed on the server and the

content is translated into HTML before sending it to a Web browser.

ASP is implemented as an ISAPI (Internet Server API) application integrated into

Microsoft Information Server (IIS), which implies that ASP technology is basically

restricted to Microsoft Windows based platforms. However, ASP technology can be

targeted to other platforms via third-party porting products.

2.4.2 ASP.NET

The philosophy behind the .NET Framework is to create globally distributed

software with internet functionality and interoperability. The .NET Framework consists

of many class libraries, includes multiple language support and a common execution

platform. ASP.NET is built into this framework. ASP.NET pages execute on the server

and generate mark-up such as HTML, WML, or XML that is sent to a desktop or

Web Technology

48

mobile browser [50]. In comparison to ASP, many differences between these two

technologies are reported including:

• Unlike ASP, ASP.NET code is a compiled CLR (Common Language Runtime)

instead of interpreted code. Since the ASP.NET code is complied the first time

the page is requested and a copy of the compiled page is saved for the next time

it is requested. This makes the latter technology faster than the former. This

concept is similar to that one adopted in Java technologies. For instance,

JavaServlet code is compiled to JVM at the first time the page is invoked and

remains available to next requests. Similarly, when JSP is invoked, it is

automatically converted to Servlet and compiled to JVM code.

• ASP.NET makes for easy deployment. There is no need to register components

because the configuration information is built-in.

• Unlike ASP, ASP.NET supports a fully separation between logic and

presentation. It consists of two main layers, .NET language such as (C#, C++,

VB, etc.) and presentation layer. The later consists of WebForms and

WebControls. WebForms can bee seen as a workspace where you draw controls.

Building Web user interfaces employ placing selected WebControls onto

WebForm. WebForms controls are created and run on the server-side. After

executing whatever operation they are intended to do, they render the suitable

HTML and send that HTML into output stream. WebForm Controls do not

require mapping to any particular mark-up language. For instance,

DropDownList control will be rendered as <select> and <option> tags when

sent to a browser. Yet, if the target is a portable phone, the same control might

Web Technology

49

render WML. Although ASP.NET is very rich in built-in WebForm Controls

such as (TextBox, Button, etc.), it is possible to Web applications’ developers to

build their own custom controls. In addition to previous Controls, ASP.NET

framework introduces Field Validator Controls that can be used to validate data

on the client browser to minimise the round trip between the client and the

server. requiredFieldValidator, CompareValidator and RangeValidator are

example of these controls.

2.4.3 PHP

PHP stands for PHP: Hypertext Pre-processor. It is an open-source, server-side

scripting language designed for creating dynamic Web pages [9] . It similar to JSP and

ASP i.e. its code appears in HTML pages embedded within simple delimiters. PHP

provides native support for the most common used databases like MYSQL, Oracle 8,

PostgreSQL, Sybase, MSSQL and Informix. In addition, databases that are not natively

supported can be connected via protocol-based functions; these include DBM style,

LDAP and ODBC. Although PHP has come with high level features like sessions in a

nice abstract way, its database access is very DBMS specific and does not provide

metadata access except via specific queries on known system catalogues [51]. For

instance, connecting to PostgreSQL DBMS requires using the following function:

pg_connect(“dbname=XXX user=XXX password=XXX”);

While connecting to MySQL DBMS requires using a different function as shown

below:

mysql_connect(‘localhost’, ‘root’, ‘password’);

Web Technology

50

Regardless to the type or number of parameters, the used functions are totally different

in syntax.

2.4.4 Perl

Perl is well known as “Practical Extraction Report Language” [52]. It is an

interpreted language. It gained a wide popularity since it was the most commonly used

language for writing CGI scripts to generate dynamic Web pages. Dynamic Web

applications require a straightforward mechanism for connecting to many different

DBMSs in such dynamic way. Perl provides a very powerful tool that connects Perl

scripts with different DBMSs. DBI (Database Independent Interface) is an interface

between an application and one or more database driver modules. It allows a Perl

application to talk to several types of DBMSs using the same method, variable and

convention. As shown in Figure 13, DBI locates the database driver module for a

specific DBMS and dynamically loads the suitable DBD (Database Driver) which

contains the required libraries to talk with a particular database.

Once the DBI is loaded, the Perl application performs the reminding steps:

• Connect to a particular database.

• Prepare a query.

• Execute the query.

• Get the results

• Finally, close the connection.

This concept is quite similar to that one adopted in JDBC. (See section 3.2).

Web Technology

51

Figure 13 role of DBI for accessing database in Perl applications

2.4.5 Java Server Pages:

Java Server Pages (JSP) is a technology that enables rapid development of web-

based applications that are server and platform independent [10]. JSP can be seen as a

high-level abstraction of Java Servlets that is implemented as an extension of the Servlet

API, this is because the JSP is compiled to Servlet by the container when it is invoked

the first time. A JSP document is a text-based file that mixes JSP technology-specific

and custom tags, in combination with other static (HTML or XML) tags. This document

is interpreted by a JSP engine and the result is sent back to the client in a form of

HTML or XML pages.

Web Technology

52

Due to the fact that our approach aims at generating different forms of Web forms by

totally separating the presentation from logic and content, JSP was not considered to be

used for implementation of the prototype system coded trough this study.

Database Technology

53

Chapter 3

Database Development

3.0 Introduction

The interaction of a database and the Web is becoming the cornerstone of

developing Web application systems. Relational database systems are the most common

form of database used for this purpose. Dynamic Web applications are the mainstream

in Web development. This trend requires using database metadata. Database metadata

can be extracted by several tools according to developers and users demands. JDBC is

one of most used tools for this purpose. This chapter introduces a very short

introduction to relational databases. Since our approach depends heavily on using JDBC

for the extraction of relational database metadata, this tool is discussed in greater detail.

Database Technology

54

3.1 Relational Database, an overview

The main function of any database is storing data in such a way that this data can be

retrieved from it. Databases come in many models including:

• A relational database.

• An object-oriented database.

• A hierarchical database.

• A hybrid database.

While all of these different types of databases are in use for many different purposes, it

is most common to use relational databases for Web applications due to their stability

and speed. The simplest description of a relational database is one that presents data in

tables with rows and columns. Each column contains only one piece of data. For

instance, Table 2 illustrates relational database table that consists of five columns:

Employee_Number, Name, Gender, Date_of_Birth and Car_Number. This table

consists of three rows, each one representing a different employee.

Employee_Number Name Gender Date_of_Birth Car_Number

12012 Adam Smith M 12-12-1970 21

12013 Sarah King F 11-11-1985 36

12014 Ali Khan M 13-08-1981 null

Table 2 Employee table

Every relational database table must have a primary key that could be a very simple one

consisting of a single column or a composite one consisting of more than one column.

The primary key in Table 2 is Employee_Number. Data in a relational database is stored

Database Technology

55

in several tables instead of using a single table. The processing of organising data in

several tables is called normalisation. There are two main benefits of this process:

• Eliminating redundant data (i.e. storing the same data in more than one table).

• Ensuring data dependencies (i.e. only storing related data in a table).

A distinguishing feature of a relational database is that it is possible to get data from

more than one table, this process is called join. For instance, if we wanted to know

which employee has a company car and which car the employee has, including the

make, model, colour and year of the car. The cars information is stored to a particular

table called cars and illustrated in Table 3.

Car_Number Make Model Colour year

21 Nissan Sunny Black 2006

36 Toyota Crown Red 2005

Table 3 Cars table

The above tables are joined by a common column which appears in both of them. This

column, which must be the primary key in one table, is called the foreign key in the

other table. As seen in Table 3, Car_Number is the primary key and is a foreign key in

the Table 2.

Besides storing data, RDBMSs store data about the data itself in system tables or

catalogs. This data is known as a metadata. RDBMSs use metadata to maintain integrity

and keep data accurate and reliable all the time. RDBMSs enforce the integrity

constraints each time data is inserted, updated or deleted. For this aim a set of integrity

rules are applied for each relational table and are tested against the metadata. Among

these rules are:

Database Technology

56

1. Duplicated rows are not allowed in a relational table.

2. Null values are permitted only under specific constrains.

3. Any column that is part of any primary key must not be null.

4. Each column can accommodate only one data type.

For example, if the car number 36 in Table 3 is no longer owned by the company and

needed to be removed from the cars table, it must be removed from Employee table in

order to maintain what is called referential integrity. A foreign key must either be null

or equal to an existing primary key value of the table to which is refers.

A relational database must provide access to its structure through the same tools that are

used to access the data. Each database includes a set of system catalog tables, which

describe the logical and physical structure of the data. These tables contain information

about the definitions of database objects such as user tables, views and indexes. They

are created when the database is created, they can be queried by any user but can not be

explicitly created or updated. Some DMBS distinguish the system tables by giving them

a special prefix like “pg_” for PostgreSQL system tables [53]. Others (SQL compatible

ones) put the system tables in a separate schema such as INFORMATION_SCHEMA.

In standard SQL, the data that describes the database is stored in schema called

INFORMATION_SCHEMA. The information schema consists of a set of views,

exposing metadata in a relational format. This allows executing SELECT statements to

retrieve or to format metadata. The information schema automatically exists in all

databases. We are allowed to query the information schema, but we are not allowed to

change its structure or modify its data [54].

Database Technology

57

Information schema is written on top of System catalogs and written in an easy and

readable manner. For instance, a query that will return the names of the fields of a table

using SYSTEM CATALOGS is as follows:

SELECT a.attname from pg_class c, pg_attribute a, pg_type t

 WHERE c.relname=’ table name ‘

 AND a.attnum > 0

 AND a.attrelid = c.oid

 AND a.atttypid = t.oid

While using INFORMATION_SCHEMA the query is as follows:

SELECT column_name

 FROM information_schema.columns

 WHERE table_name = ‘table name‘

3.2 JDBC and its Architecture

The commonly used technologies to access databases from Java applications are

JDBC (Java API for database connection used by Java programs)1

1 JDBC is just a trademark name and Sun says it is not acronym of Java Database Connectivity

 and ODBC (Open

Database Connectivity). They are types of database access middleware. Practically,

JDBC is the more powerful technology in use with a Java application due to Java’s

nature. JDBC is an abstraction layer defined by Javasoft that provides a standard SQL-

based interface to any data source[55]. Database vendors or other third parties provide

the actual implementation of these interfaces in the form of JDBC drivers. In the real

Database Technology

58

environment, JDBC is constructed from four main components: the application, driver

manager, driver and data source as Figure 14 illustrates.

• The application, which invokes JDBC methods to send SQL statements to the

database and retrieve results.

• Driver manger loads specific drivers for the user application.

• Driver processes JDBC methods invocations, sends SQL statements to a

particular data source, and returns results back to the application that handles the

database interface. JDBC Drivers are classified into four types, which are:

1. Type 1- JDBC to ODBC Bridge: - the function of this type of JDBC

Driver is to translate JDBC methods calls to ODBC function calls and

makes it possible to access any ODBC data source through JDBC. Since

this style of driver uses multiple levels of translation this results in a poor

performance. Another problem associated with this style of driver is that,

it depends on native libraries of the underlying operating system which

makes it platform-dependent. This makes any application that uses this

driver non-portable as the ODBC driver for the specific operating system

is required in the client machine.

2. Type 2- Native API, Partly Java Driver: This sort of driver translates

JDBC into calls to a native data API. Performance is generally better

than with Type1 drivers due to one less translation layer. Since this style

of driver requires the database vendor’s proprietary library on each client

computer, the deployment problems remain unsolved.

Database Technology

59

3. Type 3 - Network Protocol, All Java Driver: This driver translates JDBC

calls into a DBMS-independent network protocol that a middle-tier

server translates into a DBMS-specific protocol. This flexible driver is

well suited for distributed three-tier architectures. Performance issue still

remains because the middle tier may itself use a Type 1 or Type 2 driver

to access the database.

4. Type 4 - Native Protocol, All Java Driver: This driver converts JDBC

calls directly into the network protocol used by a specific DBMS.

Performance is usually good because native database calls are made

directly over the network.

• Data source is a particular database where user data resides.

Database Technology

60

Java Servlet or Applet

JDBC Driver Manager

JDBC API

JDBC DRIVER JDBC DRIVERJDBC DRIVER

SQL Server
ODBC Data

Source Oracle

Figure 14 Components of the JDBC Architecture

Database Technology

61

3.2.1 JDBC vs. ODBC

ODBC is a Microsoft product implementing a CLI (Call Level Interface). A CLI

application uses a standard set of functions to execute SQL statements and related

services at runtime. Adopting a CLI approach allows Web developers to develop

portable applications that are fully independent of database vendors and can be

distributed in binary form. ODBC supports this tendency and allows Web developers to

develop applications that are independent of any specific DBMS.

JDBC is quite similar to ODBC. It is a portable, open and published API that uses

drivers to target specific databases. JDBC API is a natural Java interface to the basic

SQL abstractions and concepts [56]. It takes the advantages of ODBC and builds upon it

instead of starting from scratch. In fact, both interfaces are based on the X/Open SQL

CLI [57] . However, the main difference between JDBC and ODBC is that, unlike the

later, the former builds on and reinforces the style and virtues of Java.

Since ODBC uses a C interface, it is considered an unsuitable solution for direct use

from Java. This is because, indirect usage of ODBC from Java, using calls from Java to

native C code has many shortcomings in term of security, portability, implementation

and robustness. However, JDBC is designed to reduce these drawbacks, and will not

only allow applications, which are independent of the database product but will also

allow machine independent applications to be written.

When ODBC is used, the ODBC driver manager and drivers must be manually installed

on every client machine. Unlike ODBC, JDBC requires zero configuration on client

Database Technology

62

side, its code is fully automatically installable, portable, and secure on all Java

platforms from network computers to mainframes [58].

As a conclusion, JDBC is a reliable tool and can be used for any database system as

long as a driver exists. It is not limited to relational database but includes object

relational databases and even non-relational technology such as IBM’s IMS [59].

3.2.2 How JDBC works?

Accessing and retrieving information from databases using JDBC involves several

processes as described below and shown in Figure 15.

Figure 15 flows of JDBC processes

Database Technology

63

1. Registering and loading the JDBC Driver

It is essential to register and load a JDBC driver with the driver manager before

establishing any connection with database. The driver manager’s job is to

maintain a reference to all driver objects that are available to JDBC clients. The

registration task is very straightforward and it is made automatically when a

JDBC driver is loaded. Loading the JDBC driver requires using only one

method. For instance, the following method can be called to load any selected a

JDBC driver.

Class.forName(Driver);

Driver parameter is any desired driver.

As an example the following Java statement

String Driver="org.postgresql.Driver";

can be used to load a PostgreSQL driver, where as

String Driver="org.gjt.mm.mysql.Driver";

can be used with MySQL driver.

2. Establish a Database Connection

When the JDBC driver is loaded, establishing connection to database can be

made using the following line of code.

Connection c = DriverManager.getConnection(url, “userID”,

“password”);

The parameter url tells the driver manager which driver and data source to use.

The formal syntax of database url is:

jdbc:subprotocol:subname

Database Technology

64

The subprotocol is the name of a valid JDBC driver. The subname is normally a

logical name or pseudonym that maps to a physical database. For instance, if

mysql driver is used to access a MySQL database called “studentinfo”, the

connection process could be

Connection c = DriverManager.getConnection(jdbc:mysql://

studentinfo/ “userID”, “password”);

The returned connection is an open connection that can be used to produce

JDBC statements that pass SQL statement to the DBMS.

3. Executing SQL statements

A statement is defined as an object that sends an SQL statement to the DBMS.

For a statement to be executed it must be created first. It is created as shown

below.

Statement statement = con. createStatement();

The statement object provides methods to perform different operations against a

database. An example of these method is executeQuery(). It accepts an SQL

SELECT statement and returns a ResultSet object containing the database rows

extracted by the query. Update() method is another example which can be used

for insertion, deleting or updating tasks. The ResultSet object can be created like

this:

ResultSet result = statement executeQuery(“select * from

mytable”);

4. Process the Results

Database Technology

65

The whole result produced by executing an SQL statement is stored in ResultSet

object. Retrieving or processing this set of result requires using several methods

of the ResultSet object including next(), previous() and getObject() methods.

The Figure 16 demonstrates the flows accessing and retrieving information from

ResultSet object. next() and previous() methods are used to traverse through the

ResultSet object using either the column name or the column number, while

getObject() method and all of the data type-specific “get” methods are used to

extract the actual value of data. For instance, if the first column of the ResultSet

object resultset is called “student_no” and its value is associated to integer data

type, second column is named “student_name” and its value is associated to

string data type, either of the following statements can be used to extract the

value of each column.

int student_no = resultset.getInt(1);

int student_no = resultset.getInt(“student_no”);

String student_name = resultset.getString(2);

String student_name = resultset.getString(“student_name”);

However, Java data types are not accurately isomorphic to JDBC data types and

SQL data types. For instance, a Java String object does not precisely match any

of the JDBC CHAR types, but it gives enough type information to represent

CHAR, VARCHAR, or LONGVARCHAR successfully.

Nevertheless, the JDBC driver is capable of converting most of the underlying

data to the particular Java type and then returning an appropriate Java value as

shown in Table 4.

Database Technology

66

Figure 16 flow of accessing and retrieving information from ResultSet object.

Database Technology

67

JDBC Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Table 4 JDBC Types Mapped to Java Types. Adopted from [56]

The ResultSet object is reusable and it is tied to the Statement object that

created it. If ResultSet object used to execute another query, the ResultSet is

closed automatically.

5. Closing Database Connection

Despite the fact that the Java virtual machine’s garbage collector releases all

resource that are no longer in use, it is recommended to close any connection

Database Technology

68

when processing is complete. This practise includes closing ResultSet,

Statement objects and database itself. A close() can be used for all objects. The

syntax of this method is as follows.

statement.close(); // close Statement after use

resultset.close(); // close ResultSet after use

dbconnection.close(); // close database connection in finally stage.

However, practically closing database after ending of each request results in

overhead associated with creating a new connection for each request. A

connection-pooling strategy can be obtained to solve this issue.

3.2.3 JDBC and Database Metadata

Developing dynamic Web applications requires using database metadata in an

efficient way. Metadata is defined as data about data [60]. Although the scope of

database metadata is very wide, one of its most useful functions is to obtain information

on the database objects themselves such as tables and SQL grammar. Obtaining this

information requires the use of two interfaces:

• DatabaseMetaData which provide information about the database as a whole.

It contains dozens of methods for enquiring about a database. For instance, using

these methods JDBC can retrieve very general information such as the database

vendor. The code fragment below illustrates use of this interface.

DatabaseMetaData dbmd= connection.getMetaData();

System.out.println(dbmd.getDatabaseProductName());

Database Technology

69

Based on connected database JDBC will retrieve the database vendor such as

PostqreSQL. More useful information can be extracted from database metadata

using this interface and its methods such as number of tables in a database, their

names and so forth.

• ResultSetMetaData which provides information about the types and properties

of the column in ResultSet object. The information about a ResultSet object’s

column that is contained in a ResultSetMetaData object is accessed by invoking

numerous ResultSetMetaData methods. Every piece of information can be

extracted by using a specific method. The following piece of code demonstrates

creating a ResultSetMetaData object.

ResultSet result = statement. executeQuery(“SELECT * FROM

student_table”);

ResultSetMetaData resultmd= result.getMetaData();

Much significant information such as primary Keys, foreign Keys, and database

constraints can be retrieved using particular methods. For instance, using the

previous ResultSetMetaData object the following methods can be invoked:

• Resultmd.getColumnCount(); returns the number of columns

in the student_table.

• Resultmd.getColumnType(i); returns the JDBC type for the

value stored in column ith.

• Resultmd.getColumnLabel(i); returns the name of the ith

column.

Database Technology

70

3.3 Conclusion

This chapter has surveyed the technology options that were available at the time of

conducting this research. These technologies were discussed and reasons for particular

choices were described. Because the proposed approach is heavily depends on database

metadata, the relational database was chosen as best suited for implementing our

approach. Since one gaol of our research is to come up with an abstract module that not

limiting to any particular platform or any DBMS, JDBC was chosen because it allows

us to develop applications at this higher level of abstraction independent of the details

of a specific DBMS. Since the main scope of this research is exploring the capabilities

of database metadata and investigating to what extent it can be fit in developing abstract

dynamic Web forms, the issue of performance was not considering. As a result issues

such as differences between driver types, database size, or rate of data exchange are

ignored throughout this study.

Literature Review

71

Chapter 4

Literature Review

4.0 Introduction:

Since its first appearance in the early part of the 1990’s, the Internet has improved

vastly in terms of usage, equipment, data exchange and user interface design. Moving

from static web pages to dynamic web applications and the ability of mobile devices to

access the Internet have brought along with it many challenges to web page developers

especially in terms of extracting data from databases, data exchange and user interface

design.

In reality, nearly every web application consists of the following stages:

• End user initiates a connection with a server asking for a service.

• The server replies by sending back a web form for gathering data from the user.

• Collected data is sent back to the server for further processing and connection

with data source, normally a database, is required for meeting the end user

requirements.

Literature Review

72

• The outcome of this processing is formatted as web pages (HTML, XHTML,

etc.) and sent back to the end user.

It is widely known that designing and building user interfaces based on data-model or

domain model is an expensive task. The demands of users are numerous following their

backgrounds and their equipment used to run or access the desired application. To

address these concerns either in the Web-based or non-web based environment, many

attempts have been presented in academic papers and articles, also many commercial

products have been produced to address the above mentioned issues ([61], [62], [63],

[64], [65], [66], [67] , [68] , [69], [70]).

This chapter surveys a number of academic research papers dealing with issues that

relate to Web user interface, mainly concerned to databases. It consists of four sections.

The first one discusses related work on user interface to databases. In particular, this

section focus on usage of databases in Web development mainly in generating

automatic user interfaces. The second section gives an overview of related work on to

what extent that database metadata was used to construct web user interfaces. In the

third section, a survey about the efforts that have been made in using XML and its

surrounding technologies for generation web user interfaces is conducted. This chapter

concludes with giving a brief glance at Web application frameworks. As an example,

Ruby on Rails is discussed.

Literature Review

73

4.1 Related work on user interface to databases

It is important how much information you have, but the most important factor and

the key to success in Web application development is how to organise, store, protect,

access, query, update and browse this information. Integrating database with web

application systems has become the cornerstone of web development community. The

rest of this section introduces a brief overview of some academic papers related to usage

of databases in Web development and its binding to user interface generation.

4.1.1 Accessing relational databases from the World Wide Web

Preceding the existing of ODBC and JDBC, many efforts had been made to bridge

the relational database and Web applications. To illustrate the significant and ease of

use of the ODBC and JDBC, one of the preceding techniques is discussed in this

section. The authors in [71] described a general purpose solution which can be used to

build web applications that can access numerous databases by using a page layout

paradigm which encapsulates HTML [72] and SQL [73]. In order to enable web

applications developers from using the full potential capabilities of HTML for building

of query forms and reports, and SQL for querying and updating relational databases it

suggested a technique to bridge the gap between these technologies. This technique

based on flexible, general purpose variable substitution mechanism that provides cross-

language variable substitution between HTML input and SQL query strings as well as

between SQL result rows and HTML output. The above mechanism is used in design

and implementation of the system called DB2 WWW Connection as demonstrated in

Figure 17. This system enables swift and straightforward building of application that

Literature Review

74

access relational DBMS data from the Web. In addition, since the mentioned system

uses native HTML and the SQL language, several visual tools could be used for

building HTML forms and for production of the SQL query.

However, nowadays many powerful tools can be used to bridge web applications with

RDBMS such as ODBC and JDBC. The later is chosen to implement our approach.

(JDBC structure and reasons of why chosen it, see section 3.2)

Figure 17 DB2 WWW System overview captured from [71].

4.1.2 Automatically generating World-Wide Web interfaces to
relational databases

The authors in [74] argue that reformatting the information currently hosted in

databases into HTML pages to deploy on the World-Wide Web is time and money

consuming. To avoid this cost, they proposed a system that supports both direct

querying of the database and browsing via dynamic Hyper Text links. These links are

constructed from referential integrity constraints defined in the metadata.

Literature Review

75

This approach is close to what are proposing in this thesis in terms of using database

metadata directly. However, a remarkable difference between the two approaches is

noted. In [74] the proposed system does not use a general method of accessing the

metadata; it is DBMS specific via DB2. In addition, the types of metadata and the ways

that they were used are also limited since their primary focus seems to be database

browsing. On the other hand, our approach is more generic since the metadata tables are

automatically generated on the fly from any given database using the JDBC Metadata

classes. So the need for manual update of metadata tables or the web interface code will

be eliminated.

As a conclusion, this approach is still closer to those using an external representation

rather than directly using the database metadata.

4.1.3 An Improved Method for Creating Dynamic Web Forms Using

APL

The author in [75] argues that Dyalog APL (Array Programming Language) is a

very powerful tool to create and deploy sophisticated web applications. In addition, it is

argued that relying on a Web server model will minimise the issue of hardware and

software incompatibilities on the client machines. To overcome the issue of updating

and maintaining the look and feel of web pages without involving in recoding or

recompiling chores, it suggested using an existing approach of creating a template of a

HTML page. A server program updates this file before being rendered to the client

browser. However, since this approach adds special non-standard tags to the HTML in

the template document, the source document cannot conveniently be developed and

Literature Review

76

maintained using visual editing tools. To solve this matter, the author suggested using

an HTML template that contains only standard HTML tags. This page can be pre-

processed by APL on the server to dynamically modify HTML controls on the page as

required.

 The proposed model is required for using a commercial software product that allows

users to configure a web server so that client requests for files having a specific

extension.

In comparison to our approach, the proposed model generates only HTML web forms,

whereas ours is capable to produce several types of web forms with very little effort. In

addition, the model described in this work does mix the main component of the

application which are content, logic and presentation. This makes it not possible to

update or maintain the application without recoding and compiling the source program.

Moreover, the mentioned model is meant to be using an external representation rather

than directly using the database metadata.

4.2 Related work on user interface to metadata

Metadata is data about data. From this definition it is obvious that the actual data

held in database tables or in other sort of data store is not the only source of information

available to Web application developers or to computer programmers in general to

create automated user interface. Based on this fact, a couple of efforts targeted this

source of information in order to take advantages from the potential capabilities of

metadata to build an automated user interfaces for Web applications. This section

Literature Review

77

discusses two academic papers related to user interface and metadata with two different

aspects of metadata.

4.2.1 Metadata tables to enable dynamic data modelling and web

interfaces design: the SEER example

In [1] the authors present an approach of dynamically generating web interfaces.

Instead of recoding the source code of the interface, altering the metadata table can

result in a new look and feel web user interface. They describe the development of a

web-based interface engine whose content and structure are generated via interaction

with a manually developed metadata table as shown in Table 5, which contains

information about the main basic elements needed to represent a data model: table

names, field names, field data type, and linkage among tables. They argue that this

model should facilitate the presentation of data from several data sources via a common

web interface.

The similarity between the above approach and what we have proposed in this thesis is

that both models allow the web interface to be constructed automatically and

dynamically from the metadata. However, the described approach needs more effort

since the metadata is built by hand, whereas, we suggest using database metadata that

can be retrieved dynamically on the fly using JDBC. Therefore, we conclude that the

described approach is considered as using an external representation rather than directly

using the database metadata.

Literature Review

78

Figure 18 A subset of the SEER data model, adapted from [1]

Table 5 The metadata table that represents the SEER data model shown in Figure 18, adapted
from [1]

Literature Review

79

4.2.2 Developing Web Entry Forms Based on Metadata

The authors in [76] proposed an approach that can be applied to develop automatic

and dynamic HTML web forms based on metadata extracted from system catalogue

tables. They suggest making use of Java and mainly Java DataBase Connectivity

(JDBC), which provide a very general method for addressing databases and also

includes metadata features. By overriding the advantages of metadata and JDBC,

dynamic HTML forms were produced at runtime. In addition to the previous task,

database metadata was used to produce user help messages. Moreover, the valuable

information such as column data type and whether a specific column allows null values

or not was extracted from database metadata and used in conjunction with JavaScript to

validate entered data.

Although this approach and what we are proposing in this thesis target the same goal

and use the same information resource that is database metadata, obvious dissimilarities

between them have been cited. First, the proposed approach mainly intended to produce

a single type of web form, that is HTML web forms, where as ours is more generic and

abstract since it is capable of generating several sorts of web forms based on selecting

an XSLT stylesheet (see section 5.5.3). Second, in our model the separation between the

main components of web application (logic-business-presentation) is achieved, whereas

the mentioned model has mixed up the three components which makes system

redevelopment a very laborious task. Third, we propose to build up a stock of generic

and extendable blocks of JavaScript functions that will be used to validate the entered

data. Since these blocks of JavaScript are stored in an external file, they can be updated

with no requirements to recompile the system.

Literature Review

80

4.2.3 GUI Generation from Annotated Source Code

The authors in [77] aim to reduce the effort needed for developing graphical user

interface across different platforms with numerous requirements and restrictions. It is

argued that by defining the user interface on an abstract level in the form of task model,

the targeted goal will be achieved. The proposed approach is based on direct derivation

of UI model from application source code enriched by abstract commands of user

interaction to control the generation of the UI.

Generating a concrete GUI involves two stages. First, mapping the abstract GUI

elements to concrete GUI supported by a given platform. Numerous possible mappings

[77] between the data transfer abstract GUI elements and concrete platform-dependent

GUI elements are illustrated in Table 6. Second, performing computations of sub

optimal layout of the GUI elements including splitting the elements into groups that

may not be visible simultaneously. Among several existing techniques to solve this

issue, a simple ad hoc technique was chosen that puts elements mostly vertically and

eventually splits the form into several tabs to fit the window if necessary.

Literature Review

81

Abstract item Possible mappings

Text input text field, text area, etc.

number input text field, slider, scroll bar, spin,

combination of elements, etc.

single item selection radio buttons, combo box, list, text field, etc.

multiple item

selection

check boxes, list, etc.

monitoring gauge, label, status bar, etc.

responding to alerts modal dialogs, alerts, etc.

Table 6 Possible mappings of abstract items, adapted from[77]

In comparison to our approach, the described effort aims to generate a cross

platform automatic graphical user interface by using the source code of a given

program. However, we propose to make use of database metadata to achieve a similar

goal. In addition, to generate dynamic web-based UI, different database columns are

mapped to UI controls based on characteristics of each column and on a set of supplied

rules (see section), unlike in [77].

4.2.4 Automatic Generation of Web User Interfaces in PHP Using

Database Metadata

Literature Review

82

The authors in [5] depict a way to generate dynamic user interface elements based

on database metadata. PHP and the abstract library ADOdb were used to achieve this

goal. PHP is able to extract database metadata from either information schema or

system catalogues. Despite the fact that PHP is a very rich in functions that allow it to

speak natively with the majority of DBMSs, every single supported DBMS has its own

functions to perform the same tasks. To solve this issue and for sake of ease of program

development and maintenance, it proposed to use a database abstract interface that can

be used in development of across DBMSs Web application system with either no or a

very small effort.

The described approach is similar to ours in many faces in which it makes use of the

extracted information from database metadata to build up dynamic Web user interface.

In addition, the same concept of mapping every single attribute in database’s tables to a

specific user interface control has been used. Our approach, in contrast, makes use of

the Java and XML technologies instead of PHP. This direction gives it a very high level

of abstraction. The outcome of our approach is not bound to a specific type of Web

form. It can be formed in many different sorts of Web forms such as HTML, XHTML,

XForms, etc. As long as XSLT is capable of transforming a XML document to any

desired Web form, our approach will be the outstanding solution. Moving on an

additional dissimilarity between the two approaches, in our case database metadata was

used to build up and use generic and dynamic blocks of JavaScript to validate the data

entry. Moreover, in case of generating XForms Web entry forms database metadata was

used to construct the model layer that is responsible for data validation. However, the

Literature Review

83

authors in [5] say nothing about how database metadata can be used for the above

purpose.

4.3 Related work on user interface and XML

XML is widely accepted in the Internet society as an alternative to old web

technologies such as HTML. It comes with many new features that make it a promising

technology to most existing web technology problems. Nowadays, XML and its

surrounding technologies (XPath, XSLT, XForms, etc.) are a hot research topic in many

different aspects. This section discusses some academic papers related to user interfaces

to XML.

4.3.1 Using XML/XSL to Build Adaptable Database Interfaces for

Web Site Content Management

The authors in [78] concluded, that maintaining a web site can become a

sophisticated task by the time of the number of offered services and amount of data

grow steadily. Integrating relational database with web sites eases the task of content

management. Web-based forms are used by content mangers to insert and update

information in the database and HTML pages are either statically or dynamically

produced from database content. Despite the fact that databases offer support for

content management, integration with the web user interface is an expensive chore. A

considerable re-development effort is often required. In this paper the authors describe

how XML/XSL can be deployed in creating adaptable database interfaces using

Literature Review

84

WebCUS (Web Content Update System), a tool they implemented to achieve their goal.

WebCUS uses XML/XSL technologies and their MyXML template engine to generate

Web forms from the underlying database schema description and has support for access

control management.

 In contrast to our approach, the database schema is represented in an external XML

file separate from the database. However, the common aspect between the two

approaches is that in the described model the XSLT stylesheets are used by MyXML

template engine to transform the MyXML documents created by WebCUS into web-

based user interface, whereas we used XSLT stylesheets to transform an XML

document that was generated on the fly from the database into several formats of web

forms. In WebCUS, the database schema is represented in an external XML file

separate from the database. This XML information uses a special syntax to describe the

tables, attributes and relations between tables in the database. The Extended Entity

Relationship (EER) [79] methodology was used in their projects for modelling the

database information. This model has to be manually converted into the WebcUS XML

database schema description. Figure 19 illustrates a sample WEbCUS XML schema

description for a table: book. For every single column of the table, XML attributes

specify the name, textual representation and the data type of the column.

Literature Review

85

Figure 19 EER description in XML, adapted from [78]

4.3.2 Generating Form-Based User Interface for XML Vocabularies

Y.S.Kuo, et al [2] propose and implement a tool called Forms-XML. It is intended to

generate dynamic HTML forms to allow end users to interact with and update XML

data complaint with the given schema. According to [80], XML vocabularies are

classified in two main categories, data-centric and document-centric vocabularies.

However, Forms-XML is targeted at the former category. The described tool is fed by

four inputs: an XML schema, an XML document complaint with the XML schema, a

user interface customisation (UIC) file, and a CSS style sheet. Hierarchal HTML forms

as generated based on schema and UIC, which allow the user to edit the input XML

Literature Review

86

document. The layout of generated HTML is left for a given stylesheet that can be

written by an interface designer. Furthermore, Forms-XML comes with custom control

that can be invoked for customisation purposes.

This work is similar to what we are proposing in that it is targeted at producing dynamic

web user interface. In contrast, the described model is specifically designed to deal with

an external XML document as a data model rather than using an internal data model. In

addition, the outcome of this model is entirely bound to HTML forms, whereas, our

approach is more generic and flexible since it is capable of producing different types of

web form based on a selected XSLT stylesheet.

4.3.3 A framework for automatic generation of web-based data entry

applications based on XML

According to Turau in[81] , the main advantage of this framework is a clear separation

between the business logic and the presentation. He argued that this model allows work

on each phase to carry on in parallel along relatively independent but cooperating

tracks. The framework is built according to the MVC design pattern and introduces a

method for the conceptional and the navigational design based on a textual specification

in the form of an XML application. This shapes the input to a code generation

environment allowing for actual automated prototyping. The environment generates

fully functional skeletons for the web pages. Collectively with the framework classes

they can be utilized for testing and for needs review. They can also outline the starting

point for the work of the presentation design. The described framework contributes a

Literature Review

87

method for a high level specification of data entry tasks in shape of an XML-document

that can be validated against an external DTD. In comparison to our framework, the

described model is specifically designed to deal with an external XML documents as a

data model rather than using an internal data model.

4.3.4 GARP: A Tool for Creating Dynamic Web Reports Using XSL

and XML Technologies

The authors in [82] describe an approach aimed at generating automatically Web

reports from database scheme. They suggested creation of a set of JSP files holding all

required information by the reports. The proposed software tool is built up based on two

main technologies: XML and Java. JDBC is used to extract database metadata that is

finally formed as an XML document. The outcomes of the proposed tool are JPS files

and they are formatted using XSL templates.

The authors highlight the benefits for application developers in automated use of

database metadata and platform independence that can be achieved by the use of

JDBC. The tool they describe has three separate distinct phases as shown in Figure

20 and listed as follows:

• Extraction of database metadata in a basic XML format.

• Conversion of XML using XSL.

• Production of JSP files from XML.

Although the first and third stages use Java they are completely separate and the

authors indicate the use of manual intervention to move files and use of separate

Literature Review

88

servers for different parts of the execution. The initial XML produced appears to be

quite generic and very specific formatting instructions for the web reports are input

via the XSL transformation at the second phase.

The authors argue that using this technique will minimise the effort in building and

maintaining the described tool. Moreover, they argued that by embedding database

scheme in an XML document it will be possible for the tool to convert the Web

reports into several formats such as Word, Excel, PDF, etc.

Despite the fact that their approach has similarities to ours in that it uses queries on

database metadata to produce XML output targeted to the Web, their approach is

limited in that it is not interactive and only focuses on “Web Reports” . In addition,

their principal motivation for the use of XML seems to be that it offers a simple

route to a variety of output formats such as Word, Excel and PDF particularly via

the use of XSL-FO.

Since their emphasis is on reports they appear to focus on table names, attribute

names and data types but not on issues such as referential integrity (relevant to input

or query forms but not to reports), nulls (important for data entry) or the cross over

between metadata and data (significant for offering possible data values for query or

input).

Literature Review

89

Figure 20 Reports generator architecture [GARP], adapted from [82]

4.3.5 Generic XForms-Based User Interface Generation for XML

Schema

Koen De Wolf et al [3] described a way of generating automatic and dynamic

XForms user interfaces from an XML schema description and XSLT stylesheet. Using

XForms features it is explained how XForms Actions could be used to eliminate basic

scripting tasks performed by common classic client-side scripting language such as

VBScript, JScript and JavaScript. XML schema is non-deterministic and can be used to

validate several instance documents. A schema is considered to be non-deterministic if

the parser is unable to clearly determine the structure to validate with the schema. On

the other hand, an XForms must be deterministic. The whole structure of the XForms

Literature Review

90

instance must be known and at runtime, no elements or attributes can be added or

removed apart from homogenous collections. This fact makes automatic generation of

XForms based on XML schema very complex task to using a single XSLT stylesheet in

a generic manner.

The similarity between our approach and the described model is that both approaches

target generation of automatic and dynamic Web XForms. However, the described

model relies on an external representation. It makes use of an XML schema description

and XSLT stylesheet to produce Web XForms user interface in generic manner. In

addition, the XSLT stylesheet used in this model is capable of generating only XForms

input elements and misses generating the other powerful controls such as select and

select1. On the other side, we proposed the use of an internal data model to achieve the

same goal with different techniques. (See section 5.5.3.4).

4.4 Web application frameworks

In this section, a brief introduction about the principle of web application

frameworks is given. For its robust and widely recommended in web development

society, Ruby on Rails is introduced and contrasted with our approach.

4.4.1 Web frameworks definition and classifications

A web application framework can be defined as a software framework that is designed

to facilitate the development of dynamic web applications and web services. The main

goal behind a Web application framework is to minimise the overhead linked with

ordinary activities used in web development. For instance, most frameworks offer

Literature Review

91

libraries to ease database access, session management, templating frameworks and often

support code reuse.

The majority of frameworks are built based on the Model View Controller (MVC) [83]

architectural pattern. The remarkable feature of this approach is the separation of the

data model, business rules and presentation. In addition, MVC frameworks can be

classified into two categories. The first is push-based frameworks. They use actions that

perform the required processing, and then push the data to the view layer to deliver the

results. Ruby on Rails, Struts and Django are good examples of this architecture. The

second is the pull-based frameworks architecture. They start with the view layer, which

can then pull results from several controllers as required. In this model, several

controllers can be involved with a particular view. Examples of frameworks using their

model are Struts2 [84], JBoss [85] and Tapestry [86].

4.4.2 Ruby on Rails

Ruby on Rails, often referred to as “Rails” or “RoR” was developed by David

Heinemeier Hansson and released to public in July 2004 [87]. RoR is built based on the

MVC architecture and consists of several sub frameworks. The main components of

RoR are shown in Figure 21 and they are:

• Active Record, which establishes the connection between the database and

domain, objects. It bridges Action Controller and the database by transforming

CRUD (Create, Read, Update, Delete) functions into SQL statements, sending

requests to database, receiving and passing results to the Action Controller.

Literature Review

92

• Action Controller, which handles actions from forms and other user input. In

addition, it establishes the connection with Active Record in order to receive and

pass database data to Web Action Web Services, Action View and Action

Mailer.

• Action View is responsible for facilitating templates that generate XML, HTML

and other output.

• Action Mailer that provides powerful e-mailing services.

• Action Web Services which offers API creation functionality.

Figure 21 RoR architecture, captured from [88]

As any other technology or tool, RoR comes with some shortcomings. The main

remarkable issue bounded to RoR is using a naming convention. In the RoR approach

Literature Review

93

primary keys must be of integer data type and must be identified by the use of a column

whose name ends with _id. From the point of view of many developers, this seems to be

an excessively restrictive model since the fact that a column is a primary key can be

obtained from database metadata regardless of its name. In this thesis, we proposed an

approach that allows the use of existing, or more natural, naming of database columns

such as when an external real world entity like a national number provides a primary

key. In addition, our approach makes it possible to work with complex primary keys

and foreign keys found in existing databases since they can be retrieved from database

metadata in a straightforward manner instead of relying on a name convention.

Moreover, the notion of using XML technologies in conjunction with database metadata

as adopted in our approach is a more independent route and more generic since it can be

applied without any restriction regarding database conventions or use of particular

design methods.

4.5 Conclusion

This chapter has discussed research related to our proposed approach. The majority

of systems were considered targeted at creating application domain specific interfaces

rather than generic interfaces. A few others did consider the notion of developing

generic interfaces but they come with several shortcomings that we tried to solve them

in this study. Compared all efforts discussed in this chapter to our approach, our

approach is not limited by domains, because we are not developing or maintaining an

Literature Review

94

external data model or representation. Moreover, our approach makes clear separation

between the content, logic and presentation; this allows the application to be developed

by team independently on each other. In addition, combining database metadata with

XML technology allows our approach from generating different types of Web entry

forms without the need to recompile the source code or making any changes to access

DBMS.

Framework Implementation

95

Chapter 5

Framework Implementation

5.0 Introduction

This chapter introduces our suggested approach and its implementation in detail. We

aim to design a framework to support the notion of using relational database metadata to

generate automatic and dynamic Web entry forms. The framework is meant to be a high

abstract level, i.e. it is not bounded to any DBMSs or platform, and it is flexible and

reusable with minimal effort. It begins with an overview of the features of the proposed

approach. The structure of the implemented approach is demonstrated. Extracting and

converting database metadata into an XML document is explained with support of code

fragments. Transforming the XML document into different types of Web entry form is

Framework Implementation

96

illustrated in detail. Usage of database metadata in conjunction with JavaScript to

validate data entry is discussed. A short conclusion is included at the end of this chapter.

5.1 Prototype Overview

The main principle of our approach and its implementation was not building a

comprehensive Web framework targeting a particular field or domain. Rather it aims to

study and investigate to what extent we can use the potential information held in

database metadata in conjunction with XML technology and its surrounding

technologies to develop an abstract representation that can be used for producing

different Web entry forms that not bound to a particular platform or to a specific device.

Compared with the majority of approaches and modules that we considered in the

chapter 4 (Literature Review), our approach is not bound to a specific domain.

Considering external data models was totally avoided in this research. Instead, the

internal information in relational database metadata was considered. It is richer than the

external data model. Furthermore, it is implemented the dynamic and relationship type

of information. This approach aims to get the most abstract, highest level, most reusable

and general solution for extracting and using database metadata. In our implemented

approach, we suppose if a traditional model of data flow in a database environment is as

illustrated in Figure 22, then we would like to correspond the structure with database

metadata flow as demonstrated in Figure 23. Metadata can be retrieved from a logical

model by several techniques at certain levels. Figure 24 shows the metadata levels in a

conceptual schema. At the highest level, metadata can be extracted using JDBC

metadata classes at runtime. The second level of metadata is resided in an information

schema. At the bottom of the logical model metadata can be accessed by querying

Framework Implementation

97

system catalogs. Querying information schema and system catalogs could be restricted

by the version’s of DBMS. However, for reasons listed in section 3.2.1, JDBC was

chosen to implement our approach. The details of how JDBC gets results at driver level

by either query information schema or system catalogs; or how JDBC encapsulates

getting metadata is beyond the scope of this research. In our implemented framework,

metadata will be retrieved using JDBC metadata classes at runtime, converted into an

XML document and then sent back to a Web browser to transform it into a desired Web

entry form based on applying a set of rules.

 As far as the generation of different types of Web entry forms using a single prototype

system is concerned, separation between the main components of a Web application

(content, logic and presentation) is considered. Adopting XML technology in our

approach allows us to achieve this goal in a straightforward way. Combining the

dynamic features of database metadata with the ability of XML documents to be

presented in several formats was the key to this approach.

Framework Implementation

98

Figure 22 Three level database architecture, adapted from [89]

Framework Implementation

99

Figure 23 Three level database architecture with Metadata flow

Framework Implementation

100

Figure 24 Metadata levels in logical model

5.2 The Prototype Characteristics

The following are features of the prototype:

• The code is reusable. No need to rewrite specific code for different databases or

different platform.

• The code required for validation of entry data can be eliminated by adopting

XForms technology.

• Web entry forms are generated and validated in an automatic and dynamic

manner.

Framework Implementation

101

• Dynamic appearance of Web forms based on accessed data. Changes made to

databases are reflected the next time the data is accessed.

• Legacy databases can be accessed, enquired and different Web entry forms can

be generated in a straightforward way.

• Separation between content, logic and representation is complete. The code does

not need to be recompiled in order to get different Web entry forms.

5.3 Three tier solution

The prototype system was implemented using a three tier solution as shown in

Figure 25

Figure 25 Three-tier solution

A 3-tier solution allows users to communicate to a middle-tier which is JavaServlet via

HTTP. The JavaServlet communicates with the data tier using JDBC. This solution has

Framework Implementation

102

many advantages over its predecessors (1-tier and 2-tier) solutions. Among these

advantages:

• Database Connection Pools: The middle tier can be used to pool database

connections by reusing the pre-started processes that are already connected to

the database. This eliminates the need to establish a new connection for each

request.

• Network traffic is minimised: The middle tier logic executes multiple SQL

queries and performs additional database processing to return only the final

result to the client. This result in reducing the volume of data exchanged

between the client and the server.

• Tiers independency: Since the three tiers are independent of each other,

upgrading one tier does not require upgrading the other ones. For instance,

upgrading the client tier does not require re-writing the business logic.

Separation the data tier and business logic through standard database access

API, makes it more flexible to upgrade or replace the underlying database.

However, there is another solution which called n-tier solution. This architecture is one

which has n tiers, usually including client tier, database tier, and more than one tier in

between.

5.4 Framework Architecture

As shown in Figure 26, the architecture of the proposed framework consists of several

stages. These stages are listed as follow:

Framework Implementation

103

• A connection to a database management system is established using JDBC.

Metadata about this database and its tables are extracted via JDBC

Framework Implementation

104

Web Client

Web Server

DBMS Server

Servlets

JDBC

XML

Metadata

XSLT Processor

XSLT
stylesheet

HTML
page

XHTML
page

Xforms
page

Figure 26 Architecture of the frame work

Framework Implementation

105

• Retrieved database metadata is converted to an XML document for further

processing.

• The XML document is transformed into an HTML, XHTML, and XForms

document or into any desired format of Web entry forms. This process is performed

by using XSLT stylesheet in conjunction with a set of rules (5.5.3.1). However, at

present the rules we have developed are very generic. In addition, it would be

possible to develop and apply domain specific rules without altering the logic of the

implemented approach. The implemented methodology makes a clear separation

between content, logic and representation. A small alternation to a XSLT stylesheet

results in a new look Web user interface without the need to re-write or re-compile

the source code on Web server.

• The generated Web form is returned back to the client as a Web form which enables

the user to fill in. Entered data needs to be validated against database metadata. This

task can be performed via invoking proper JavaScript functions in case of generating

HTML or XHTML Web forms, or can be achieved by using the built-in functions

in case of XForms Web forms.

However, as shown in Figure 26 the transformation task is performed on the client-side

leaving the choice of how the desired document will be rendered to Web browser. In

addition, as shown in Figure 27 it would be possible in the proposed approach to

perform the transformation task on the server-side and sending back the desired page

into Web browser. However this choice has several disadvantages and not implemented

in this study. These disadvantages including: it requires extra processing on the server

and there are number of web hosts which do not have the XSLT extension.

Framework Implementation

106

Web Client

Web Server

DBMS Server

Servlets

JDBC

XML

Metadata

XSLT Processor

XSLT
stylesheet

HTML
page

XHTML
page

Xforms
page

Figure 27 Framework architecture performing transformation task on server-side

Framework Implementation

107

5.5 The mechanism of the prototype

To illustrate this methodology and to investigate if there are any difficulties in

implementing it, the following section introduces an example of the implementation of

this approach.

For the sake of simplicity, this example is kept as minimal as possible. The concept is

one, i.e. mapping each table’s column to a specific Web entry form control based on a

set of rules. The commonly used features of database metadata for this purpose are: the

variety of data types, null or non null able fields, primary/foreign keys, and the

semantics of metadata. The outcome of this approach is rich and determined by

applying a specific XSLT stylesheet. The steps follow:

5.5.1 Connecting to database and retrieving metadata

We start with creating a database table which contains personal information as

illustrated in Figure 28.

Framework Implementation

108

Figure 28 Database table’s structure

 JDBC is used to retrieve the database metadata about this table. In practice not all

extracted information will be used for producing dynamic Web pages. Only the required

pieces of information will be used, such as column name, data type, column size and so

forth. A piece of the extracted information is shown in Figure 29.

5.5.2 Converting metadata into XML document

In order to make use of the retrieved database metadata, this information needs to be

converted into an XML document. The document may contain a large amount of

information. Besides the information shown in Figure 29, other pieces of information

such as whether the column is primary key or not, whether the column is foreign key or

not are needed to be added to the XML document in order to get sufficient information

for transforming the XML document into other form.

Framework Implementation

109

Figure 29 A portion of raw metadata retrieved from a database table shown in Figure 28

Framework Implementation

110

Figure 30 XML document built up from a database metadata

Framework Implementation

111

As shown in Figure 30, each column in a database table is represented in a single

XML node which is <Form_Element>. This node has seven child nodes containing

information on this column including:

1. Column name.

2. Column type. If the type is string data type then it requires an extra child

node which holds the length of this column.

3. Whether the column is primary key or not.

4. Whether the column is foreign key or not.

5. Whether the column is serial or not.

6. Whether the column accepts null values or not.

At this point the database metadata is extracted and converted into XML document.

It is described in an abstract way. It is generated automatically and dynamically,

every time a new database table(s) is queried, a new and different XML document

will be generated holding the seven pieces of information about every column. If an

extra piece of information is needed it can be added in a straightforward manner.

For instance, the following code fragment is used to create the <Pkey> child in

every <Form_Element> node as shown in Figure 30.

Element node5 = doc.createElement("PKey");

 Node5.appendChild(doc.createTextNode(IsPK));

 row.appendChild(node5);

Where the (IsPK) parameter in the second statement returns a boolean value of a

function that checks whether a passed column name is a primary key or not.

Framework Implementation

112

Any number of children can be added to <Form_Element> node using the above

code fragment.

However, the structure of the XML is flexible and can be built in many different

ways, keeping the same information. Instead of presenting every single column in a

database table in a single XML document containing several child nodes; it could be

presented as a single XML node with several attributes holding the same

information as in the previous structure Figure 30 . As shown in Figure 31, each

column in the database table is presented as one XML node with several attributes.

In addition, Listing 12 illustrates how this XML is built; it is possible to add as

many attributes as needed.

Figure 31 XML document built up from database metadata.

Framework Implementation

113

Listing 12 illustrates how XML document is built

Both of the above XML structures can be transformed into different Web entry

forms in a straightforward manner. Since any piece of information in the XML

document is accessed and retrieved using as XPath expression, the choice of using

either of the above structures is left to the XSLT stylesheet developer. However, if

for any reason a new desired XML’s structure is needed, it would be possible to

build it without altering the main concept of this approach.

5.5.3 Transforming XML document into Web entry forms

The two previous steps that were introduced in sections (5.5.1 and 5.5.2) were

performed on the DBMS server and Web server. This step involved transformation of

the XML document into Web entry forms and is performed on the Web client.

Transformation execution is achieved by applying an XSLT stylesheet to the XML

document in conjunction with a set of rules. The Web browser parsers the XSLT

stylesheet and generates the desired Web entry form. Transformation is based on the

idea of mapping every column in the database table which is presented as an XML node

Framework Implementation

114

to a specific Web form control element. As stated earlier, the proposed approach is

intended to be generic and abstract to the highest possible point. Separating the content,

logic and presentation allow us to generate different types of Web entry forms without

the need to recompile the source code. Every type of Web forms such as HTML,

XHTML or XForms can be achieved by writing and applying a particular XSLT

stylesheet.

5.5.3.1 Developing the Rules or Heuristics

For developing automatic and dynamic Web entry forms by taking advantage of

database metadata, we propose to develop a set of rules or heuristics which could be

applied to database metadata in order to produce abstract and generic Web entry forms.

Developing a set of rules is not arbitrary. It is based on potential information that

resides in database metadata and data itself. Since any Web interface is built up of

several user interface controls such as those currently used in HTML (radio button, drop

down menu, input box, etc.), it will be more efficient if we could generate a Web

dynamic user interface on the fly without the need to hard code the presentation of the

user interface following changes to database tables or the data type of each column in

the database. By developing a set of rules, we argue that it will be possible to

automatically map each column in a database to a specific user interface control without

taking into account the way the browser will render the user interface controls. Second,

these rules can be used to maintain database integrity. This can be achieved, for

example, instead of letting a non null Boolean column generate a database error; we

Framework Implementation

115

automatically generate an application that provides TRUE/FALSE must be entered

options and behaviour.

Examples of developed rules

The set of rules shown below is built based on the column’s data type. However, more

rules can be developed based on the semantics of a column’s name (section 5.5.3.2).

• Rule1: if a column is a serial, then it should not be mapped to any form element

(in insert mode). Its value will be incremented automatically and stored in this

column.

• Rule 2: if a column is a primary key, then its value must not be a null value.

• Rule 3: If a column is a string data type and its length (l=x) then a JavaScript

function is called to check that the length of input is acceptable.

• Rule 4: if a column is character or string data type and less than 30 characters

(for example), then it should be mapped to a text box. If longer or equal to 30

characters it could be mapped to textarea Web form control. The number of the

characters could be more or less and it is left to the user interface designer to

determine which length of text box suited best the user interface.

• Rule 5: if a column is a foreign key, then get the possible values from the

referenced table and offer them as choices initiated as a pull down menu if the

number of values is under a specific limit. This rule shows the usage of

database metadata to get the fact that it is a foreign key and makes use of the

data itself for possible values.

Framework Implementation

116

• Rule 6: if a column is a Boolean then refer it as choice and it is implemented as

a group of radio buttons in case of HTML or XHTML Web forms. However,

this column could be implemented in other ways. For instance, in XForms

which has more flexibility to render Web form elements, it could be returned as

radio buttons, drop down menu or any other possible type based on the client

machine.

Furthermore, since there is a clear methodology to implement such basic rules, this set

of rules can be easily extended when new demands are raised. The above set of rules is

very generic and could be applied for any situation. Specific rules for particular cases

can be produced and applied.

5.5.3.2 Limitation of database metadata

In the proposed approach each database column is mapped to a specific Web form

element based on the database metadata and a set of rules. As shown in Figure 29,

JDBC is able to retrieve a significant amount of information about each column in

database. However, the most reliable piece of information that can give indication of

how to perform the mapping task is a column data type. Nevertheless, this piece of

information on its own is insufficient in some cases to generate a perfect Web entry

form. For instance, the only clue tells that a particular column is intended to be a

password is its name. Another example, there is no way to tell that a particular string

data type is meant to be an email address so we can invoke a suitable JavaScript

function to validate this string against a standard email address format. Knowing this

fact leads us to look for another resource of information that can help in solving this

Framework Implementation

117

issue. Working on the semantic database metadata especially on semantics of columns’

name was the available resource; regardless there is no guarantee that this resource will

give accurate indications.

To tackle this issue, another rule is developed and added to the rules’ list. For instance,

the following assumption could be used to map a particular database column into

password text box in HTML or into secret in XForms instead to map it into an input text

box.

Rule: if a column is a String data type and its 6<=length <= 12 and its name holds the

phrase (password or secret or sub set of this phrase), then this column should be mapped

into password text box. To make this assumption more general, it is suggested that a list

of synonyms for password words could be populated to an XML configuration file. This

could contain non-English words such as French or Spanish words for

internationalisation purpose.

Another example, as shown in Figure 28, the sex column is a Boolean and as a general

rule, any Boolean column is mapped into a group of radio buttons with a label

True/False. However, to give a meaningful label for this user interface element, the

name of this column can be interpreted and then the label is derived i.e. if a column’s

name is sex or gender then the label should be presented as Male/Female assuming that

Male is associated with true and Female with false.

As it is assumed that any label is the actual value of the column’s name in database. For

enhancing the appearance of Web forms, column’s name can be processed to produce

an elegant label. For example, a column’s name with more than one word separated

with underscore could be represented as a label with underscores replaced with space

Framework Implementation

118

and the first character of all words in upper case. For instance, if a column’s name is

first_name it could be presented as First Name as shown in Figure 32 and Figure 33.

Figure 32 XHTML Web entry form generated from database metadata on the fly, invoked in IE
Web browser.

Framework Implementation

119

Figure 33 XHTML Web entry form generated from database metadata on the fly, invoked in
Google Chrome Web browser.

5.5.3.3 Transforming the XML document

During this research we tested two different types of Web forms by writing two

different style sheets.

5.5.3.3.1 Transforming the XML document into XHTML Web entry form

• The first stylesheet transforms the XML document into an XHTML document as

shown in Figure 32. Since the XML document reflects a relational database

table, its structure is kept very simple, i.e. as flat document displayed in Figure

30.

 The XSLT processor starts parsing the XML document by matching the root

document. Then it loops through the document processing every XML node and

Framework Implementation

120

its children that represent a single database column. The following code

demonstrates this process.

<xsl:for-each select=”Form_spec/Form_Element”>

Every XML document is transformed into a XHTML form control by applying a

set of rules that explained in section 5.5.3.1. For instance, the Listing 13

generates the input box for any string data type.

Listing 13 illustrates creating input box using XSLT statements

The code fragment in Listing 13 generates the code fragment shown in Listing

14

Listing 14 XHTML fragment code generated by XSLT code Listing 13

Framework Implementation

121

As we can see in Listing 14, database metadata such as its (name, type, whether

accepts null values or not) for the selected column is embedded in the XHTML

control form. These pieces of information will be used for validation purposes.

For instance, the attribute idnull is used to verify whether this control can accept

null values or not.

5.5.3.3.2 Data validation

Since an XHTML Web form entry is generated automatically and dynamically on the

fly, a generic method for data validation is needed to fit this approach.

Two possible solutions are considered to solve this issue. The first one is to use

database metadata for each column located in the XML document to dynamically

generate JavaScript at the same time as the form is generated. The second is to use the

database metadata to include the required information in the name of element to validate

the form element as shown in Listing 14. Then a generic JavaScript function as shown

in Figure 34 is invoked to loop through the form elements and parse the names to

validate the data in the element generating a suitable message if needed, an example is

shown in Figure 35.

Framework Implementation

122

Figure 34 Pseudocode of generic JavaScript function

Framework Implementation

123

Figure 35 Data validation warning message

Although throughout this work only the second method was implemented and tested, its

functionality was good enough to rely on without the need to consider the other method.

However, the implemented method can be contrasted to the first one since it comes with

a large amount of code on all pages, although that same block of code can be referenced

by many pages efficiency. The implemented method, however, has some advantages

compared to the first one. The first is that it is easier to test the validity of what it

produce. The second moves a lot of load to the client-side whereas the validation code

production is loaded on the server-side in the first approach. Once entered data is

validated on client-side it is sent back to Web server to revalidate it and store it the

database.

Framework Implementation

124

5.5.3.4 Transforming the XML document into XForms Web entry form

To transform the generated XML document into an XForm Web entry form, another

XSLT stylesheet is needed. As stated earlier the transformation process is based on

mapping every single database column into a specific Web form control according to a

set of rules. Although the majority of the above rules (section 5.5.3.1) can be used in

both cases (XHTML,XForms), a small number of them are not applicable with XForms

where JavaScript is not involved in the process.

For demonstration purposes, let us reuse the database table shown in Figure 28 by

omitting the serial property from the first column (id_card) and using the second format

of the XML document shown in Figure 31.

As demonstrated in (chapter 2), XForms technology is based on separation of content

from presentation. It consists of two main parts; model which includes instance data

elements, binding element and submission elements, and a user interface which

consists of the user interface controls. XSLT transforms the XML document by building

each part of the above as shown in Listing 15.

Framework Implementation

125

Listing 15 XSLT stylesheet Pseudocode that transforms XML document into XForms.

For explanation purposes, the instance data can be built by applying the template shown

in Listing 16.

Framework Implementation

126

Listing 16 illustrates building an instance data

Where as Listing 17 demonstrates creating of binding elements.

Listing 17 illustrates building binding elements.

Building user interface elements is performed by accessing each XML node and getting

its information associated with a set of rules. For instance, Listing 18 illustrates how

textarea element can be built.

Framework Implementation

127

Listing 18 illustrates building a user interface element

Applying such an XSLT stylesheet to the XML document generates an XForms Web

form entry as shown in Figure 36 and segment of page source code shown in Listing 19.

Framework Implementation

128

Figure 36 an XForms Web entry form generated from an XML document

Framework Implementation

129

Listing 19 segment of page source code corresponding to page shown in Figure 36

5.5.3.4.1 Data validation

One of the most interesting features in XForms is that the mechanism of data

validation. JavaScript is no longer needed when working with XForms Web entry

forms. As stated in chapter (2), XForms is very rich in data types and come with many

built-in functions that can be used to facilitate the validation process.

Since every single user interface control is bound with associated binding element as

shown in Listing 19, the XForms processor should apply every piece of constraint found

Framework Implementation

130

in the associated binding element to that particular user interface control. For instance,

the first user interface control

<xforms:input ref="id_card" style="width:70pt">

<xforms:label>id_card</xforms:label>

</xforms:input>

is associated with the binding element

<xforms:bind nodeset="id_card" required="true()" type="xs:integer"/>

This means that this control can not accept any null values and its value must be an

integer data type. So, attempting to enter any other sort of data type will generate a

warning message such as that one seen on the bottom of Figure 36.

Although the concept of XForms seems to be quite clear and simple, the

implementation of XForms comes with a number of overhead issues including:

• Plug-in software that enables Web browser’s processor to process XForms is not

always straightforward working as it is proposed to do which disallow Web

browser’s to render XForms pages as they should be. As mentioned in chapter 2,

X-Smiles is the only Web browser that native support of XForms; however this

browser is very basic and the majority of social, educational, news,

entertainment and commercial companies do not consider this Web browser

when upgrading their pages. For example, Figure 37 and Figure 38 illustrate the

main page of the University of Bradford Web site rendered in X-Smiles and

Mozilla Firefox Web browsers. This fact makes this Web browser unpopular

and useable only by a few numbers of users.

Framework Implementation

131

• Using xml namespace requires a lot of care. For instance, the instance data

element must be written in the following form

<xforms:instance xmlns="">

Missing the attribute xmlns=”” will make the Web browser’s processor behave

in unpredictable way.

Figure 37 University of Bradford main page rendered in X-Smiles Web browsers

Framework Implementation

132

Figure 38 University of Bradford main page rendered in Mozilla Firefox Web browsers

5.6 Extended Example Scenario

The previous section (5.5) demonstrates a very generic example of how the

prototype system was implemented. The implementation involved of using a single

database table that contains personal information. However, for further testing of the

proposed approach this section shows how this approach can be implemented in multi

database table’s environment. We illustrate the operation of the prototype with an

extended example based on a simulation of an airplane booking scenario.

Since the mechanism and the logic is same, and to avoid redundancy, this section

will be summarised and the main differences and results are mentioned. In addition,

since this research is concentrated on generating of web entry forms this example shows

Framework Implementation

133

the generating of sequence of web entry forms that allow the user to interact with the

system in a virtual environment.

 As in section (5.5.1) we start with creating a portion of database tables that allow

us to simulate the booking system and then extracting the database metadata from this

database. The suggest database consists of six tables containing information about

flight, passengers’ details and paying information. These tables are shown in figures (

Figure 39, Figure 40, Figure 41, Figure 42, Figure 43 and Figure 44).

Figure 39 flight's table

Figure 40 adult's table

Framework Implementation

134

Figure 41 child's table

Figure 42 card's table

Figure 43 titles' table

Figure 44 issuers' table

Framework Implementation

135

Figure 45 XML document generated from database

As mentioned earlier in section 5.5.2, XML is flexible and can be built in different

structures to accumulate as much information as needed. The produced XML document

in this example as in Figure 45 is very similar to that one in Figure 31. However, since

the table name is an essential piece of information in transformation stage, the XML

document is built up of six nodes representing every table in database. These nodes

consist of several child nodes describing every table columns.

The concept of transforming the XML document shown in Figure 45 is same to that

one applied in 5.5.3 that suggest applying a set of rules and XSLT stylesheet to the

XML document. However, since this example is dealing with several database tables

Framework Implementation

136

that representing in several XML nodes, the system logic is responsible of directing the

flow of the applied XSLT stylesheet.

The system starts by passing the name of first table which is flight table to produce a

web form that gathering data about the desired flight as shown in Figure 46 .

Figure 46 web entry form to collect flight's information

Assuming that all entry data was valid and the desired flight is available, then the

system will pass the names of the adult and child tables with the number of adults and

children in order to generate web entry forms that collect data about every passenger as

shown in Figure 47 and Figure 48.

Framework Implementation

137

Figure 47 web entry form to collect adult's information

Figure 48 web entry form to collect child's information

Framework Implementation

138

As we can see in Figure 47 and Figure 48 the web entry form that collect child’s

information is similar to that one collect adult’s information apart from one text field

that collect the title of the passenger.

Once the user entered the whole needed information about every passenger the system

will pass the name of the card table to the XSLT stylesheet to allow it from traversing

through the XML document to transform the node that representing this table. This task

produces a web entry form as shown in Figure 49.

Figure 49 web entry form to collect finance information

However, the same concept of data validation in section 5.5.3.3.2 is applied in this

example.

Framework Implementation

139

5.6.1 Arisen limitations

Through developing this example some limitation have arisen and listed as follows:

• Since the XML document is built up from database’s table dynamically, the

whole columns in every database table are representing in XML document in

the same order that allocated in each table. In addition, the transformation

task is performed in a sequential manner. As a result, the web entry form

controls will appear in the same order of the columns in every table. For

instance, if the to column in flight’s table preceding the column from then

the first web entry form control in Figure 46 will be To instead of From.

Therefore, if the database tables were built up carelessly, the layout of web

entry form controls will appear in confusable matter.

• There is no clue tells if there are some form controls should be grouped

together. As a result every form control will appear in a separate line even

though there are several form controls should be represented in a single line

such as title, first_name and family_name.

• Since the transformation task is performed based on the data type of every

column and a set of rules and then presented to the end user as web entry

form to fill in, it is not possible to involve the actual data that entered by the

end user for generating dynamic form controls. For instance, in Figure 46, if

the value of return field was false then the return_date field should not

appear to the user.

Framework Implementation

140

5.7 Conclusion

Implementing our approach shows the potential capabilities of relational database

metadata that can be used to develop automatic and dynamic Web entry forms.

Extracting database metadata is a straightforward task by using JDBC. Converting this

metadata into XML documents in several formats makes this metadata an abstract data

with the ability to transform it into many Web form types and invoked in different Web

browsers as shown in Figure 32, Figure 33, Figure 35 and Figure 36. The same principle

possibly could apply to producing output for not only desktop computer devices but for

other devices like PDAs either by making XHTML/XForms producing a different

appearance or if needed a different processing for WML (Wireless Markup Language) if

that was what they needed.

Knowing and retrieving a massive amount of information from database metadata does

not make it an optimal tool. A lot of work on database metadata semantics is needed in

order to gain a high level of accuracy.

XForms seem to be an elegant solution for developing Web entry forms, however, the

lack of native support of major Web browsers may be the big challenge for this

technology.

Conclusions and Future work

141

Chapter 6

Conclusions and Future work

6.0 Conclusion

Designing and generating abstract dynamic user interfaces for web database

applications and most other types of application is a very complicated task. It is often

tedious, expensive and error-prone. Automatic and dynamic generation of Web user

interfaces has gained a huge amount of attention in the last two decades and many

efforts have been made to achieve this target.

The common feature of current tools for the automated design of user interfaces is their

ability to generate the static layout of an interface from the application’s data model

using intelligent programs that apply design rules.

Conclusions and Future work

142

Other models and approaches adopted the use of a domain model to generate both, the

layout of user interface and its dynamic behaviour. Although this approach overtakes

the shortcomings of its predecessor, user interface generation based on this approach is

most useful for domain-specific interfaces.

For sake of developing a dynamic Web user interface that is not targeted to any

particular domain, it is argued that by making use of an existing model (i.e. the

information held in database metadata) it would be possible to generate automatic and

dynamic user interfaces that target any domain. Although this tendency proved the

valuable notion of using database metadata in developing automatic and dynamic Web

user interface, some shortcomings are associated with employing database metadata for

this purpose such as mixing content, logic and presentation.

This thesis is built on the same notion, but it contributes toward a number of significant

improvements for the current employment of the database metadata notion. This

research proposed and evaluated an abstract framework that makes use of database

metadata in conjunction with XML technology to produce different types of Web entry

forms on the fly. Separation between logic, content and presentation allows user

interface designers to work independently of core system developers.

Unlike other programming languages that require access to DBMSs specific system,

Java can offer us a generalised database metadata based approach. Consequently,

JavaServlets and JDBC were chosen to implement our approach. In addition to Java,

XML technology plays a big role in designing and implementing our approach. Its

ability to be transformed into many different formats of Web forms makes it the most

suitable technology to implement abstract dynamic Web entry forms.

Conclusions and Future work

143

A relational database was chosen as the database technology because it provides the

most needed database metadata features, such as Table/Column definition and

Primary/Foreign key definition.

The developed prototype system shows a dynamic Web interface to an underlying

relational database and provides automatic generation of different types of Web entry

forms that facilitate swift deployment of interactive Web based applications.

Automatically extracting relational database metadata and converting it to an XML

document makes it possible to produce multi types of Web entry forms based on

applying a particular XSLT stylesheet. This notion allows Web developers to generate

Web entry forms for legacy database based systems, also it is possible to generate Web

forms to target different types of platforms and small electronic devices based on

applying a proper XSLT stylesheet. Moreover, since the XSLT stylesheet is responsible

for converting the database metadata into Web forms and it is totally separated from the

core system, generating Web forms for future types of Web forms would be a very

straightforward task by writing a suitable XSLT stylesheet. The prototype system shows

how database metadata can be used for data entry validation. Either by populating all

required data in XHTML document elements and invoking a general JavaScript

function that loops through the XHTML document verifying all data, or by using

database metadata in building binding elements in the case of XForms Web forms.

In contrast to the commercial products that offer Web database integration, the

implemented approach is generic because of its ability to produce any desired type of

Web entry forms without the need to recode or recompile the core system. A sufficient

Conclusions and Future work

144

knowledge of XSLT language permits the generation of any particular type of Web

forms.

Since the implemented approach written in Java mainly JavaServlets in conjunction

with XML technology, the issues of portability and performance were overtaken. Using

JDBC to bridge Web servers and database servers allows the implemented approach to

communicate with any DBMS without any restrictions. Separation between the three

components of the Web application: logic, content and presentation make it possible to

maintain any component individually without affecting the other components. However,

through this research some weaknesses were detected. Firstly, although JDBC retrieves

a considerable amount of database metadata information, this information by itself is

not enough in many cases to build up perfect Web entry forms. Working on database

metadata semantics is very necessary to reach a considerable percentage of good quality

Web forms. Database metadata semantics are very broad and even in some cases not

predictable, therefore there is no guarantee that paying more attention on this issue will

lead to an optimal solution. Secondly, despite the fact that XForms technology is a very

elegant and promising solution, the lack of native support for this technology in major

Web browsers limited its usage and implementations.

6.1 Future Work

The purpose of this research was to explore to what extent we can use database

metadata in conjunction with XML technology to generate an abstract model for

generation of multi type Web entry forms on the fly. As a result of this exploration the

following issues are raised and can be developed in further stages.

Conclusions and Future work

145

• Investigating the capabilities of relational database metadata in building

interactive Web applications that relies on using multi media elements such as

working on imaging and audio data types.

• Writing XSLT stylesheets targeting small electronic devices in order to detect

and resolve any shortcomings associated with this approach.

• Since the set of rules developed throughout this research is very generic, it

would be possible to develop domain specific rules to support the generic rules

for manipulation of semantics of database metadata. For instance, it would be

possible to develop to deal with French or Spanish language domain.

• The set of rules could be re-formalised in an XML format to allow the model to

be executed or adopted possibly using RuleML.

References

146

References

1. Mark, W. and C. Micah Sherr and Abigail, Metadata tables to enable dynamic

data modeling and web interface design: the SEER example. International

Journal of Medical Informatics, 2002. 65(1): p. 51.

2. Kuo, Y.S., et al., Generating form-based user interfaces for XML vocabularies,

in Proceedings of the 2005 ACM symposium on Document engineering. 2005,

ACM Press: Bristol, United Kingdom.

3. Wolf, K.D., F.D. Keukelaere, and R.V.D. Walle. GENERIC XFORMS-BASED

USER INTERFACE GENERATION FOR XML SCHEMA in IADIS International

Conference e-Society 2004

4. Abdualrraouf, A.E. and M.J. Ridley, Using metadata for developing automated

Web system interface, in Proceedings of the 1st international symposium on

Information and communication technologies. 2003, Trinity College Dublin:

Dublin, Ireland.

5. Mgheder, M.A. and M.J. Ridley. Automatic Generation of Web User Interfaces

in PHP Using Database Metadata. in Internet and Web Applications and

Services, 2008. ICIW '08. Third International Conference on. 2008.

6. http://www.w3.org/html/.

7. http://msdn.microsoft.com/en-us/library/sx7b3k7y(VS.85).aspx.

8. http://www.javascript.com/.

9. Bakken, S., A. Gutmans, and D. Rethans, PHP 5 Power Programming. 2004:

Prentice hall.

http://www.w3.org/html/�
http://msdn.microsoft.com/en-us/library/sx7b3k7y(VS.85).aspx�
http://www.javascript.com/�

References

147

10. Java Server Pages Specifications version 2.1. 2006. available online at:

http://java.sun.com/products/jsp/.

11. W3C. Extensible Markup Language (XML) 1.0 W3C Recommendation.

February-1998: http://www.xml.com/axml/testaxml.htm.

12. http://www.w3.org/TR/xforms/.

13. http://www.w3.org/Style/CSS/.

14. http://www.w3.org/TR/xslt.html.

15. http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG.

16. ECMAScript Language Specification. available at http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf.

17. WHATWG community. available at http://www.whatwg.org/.

18. Dubinko, M., XForms essentials. 2003, Sebastopol, Calif ; Farnham: O'Reilly.

xiv, 215 p.

19. http://www.xformation.com/xforms/pr02_02.asp.

20. McLaughlin, B., Head Rush Ajax. 2006: O'REILLY.

21. Asleson, R., Foundations of Ajax. 2005: Apress.

22. XHTML Specifications. http://www.w3.org/TR/xhtml1/.

23. Needleman, M.H., XML. Standards Update, 1999. 25(1): p. 117-121.

24. W3C. Mathematical Markup Language (MathML™) 1.01 Specification.

http://www.w3.org/TR/REC-MathML/: 7 July 1999.

25. Gkoutos, G.V., et al. The Application of XML Languages for Integrating

Molecular ResourcesChemical Markup Language (CML):

http://www.ch.ic.ac.uk/rzepa/xml/.

http://java.sun.com/products/jsp/�
http://www.xml.com/axml/testaxml.htm�
http://www.w3.org/TR/xforms/�
http://www.w3.org/Style/CSS/�
http://www.w3.org/TR/xslt.html�
http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG�
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.whatwg.org/�
http://www.xformation.com/xforms/pr02_02.asp�
http://www.w3.org/TR/xhtml1/�
http://www.w3.org/TR/REC-MathML/:�
http://www.ch.ic.ac.uk/rzepa/xml/�

References

148

26. http://www.w3schools.com/DTD/dtd_intro.asp.

27. W3C. XML Schema Part 1: Structures , W3C Recommendation. May 2, 2001:

available online at: http://www.w3.org/TR/xmlschema-1/.

28. http://www.formsplayer.com/.

29. http://www.formfaces.com/.

30. http://www.x-smiles.org/.

31. Bruchez, E. Are Server-Side XForms Engines the Future of XForms? in XTech

2005: XML, the Web and beyond 24-27 May, 2005. . Amsterdam, Netherlands.

32. Erik Bruchez, O. XForms: an alternative to Ajax? in XTech 2006: Building Web

2.0. 16-19 May 2006. Amsterdam, The Netherlands.

33. http://www.adobe.com/.

34. WML Language References. available online at

http://developer.openwave.com/htmldoc/41/wmlref/.

35. Ruseyev, S., WAP Technology and Applications. 2001: Charles River Media.

36. http://www.w3.org/TR/xpath.

37. http://www.w3schools.com/XPath/xpath_syntax.asp.

38. Microsoft, VBScript Language Reference: available online at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/script56/html/ddfa5183-d458-41bc-a489-070296ced968.asp.

39. Microsoft, JScript Language Reference: available online at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/script56/html/29f83a2c-48c5-49e2-9ae0-7371d2cda2ff.asp.

http://www.w3schools.com/DTD/dtd_intro.asp�
http://www.w3.org/TR/xmlschema-1/�
http://www.formsplayer.com/�
http://www.formfaces.com/�
http://www.x-smiles.org/�
http://www.adobe.com/�
http://developer.openwave.com/htmldoc/41/wmlref/�
http://www.w3.org/TR/xpath�
http://www.w3schools.com/XPath/xpath_syntax.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/ddfa5183-d458-41bc-a489-070296ced968.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/ddfa5183-d458-41bc-a489-070296ced968.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/29f83a2c-48c5-49e2-9ae0-7371d2cda2ff.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/29f83a2c-48c5-49e2-9ae0-7371d2cda2ff.asp�

References

149

40. ECMAScript Language Specification. Standard ECMA-262 3r d Edition.

December 1999. http://www.ecma-international.org/publications/files/ECMA-

ST/Ecma-262.pdf.

41. http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm.

42. Hunter, J. and W. Crawford., Java Servlet Programming. 1998: O'Reilly &

Associates.

43. JavaServerTM Web Development Kit, Version 1.0.1. Available online at:

http://java.sun.com/products/servlet/README.html.

44. Jigsaw - W3C's Server, version 2.2.5. available online at:

http://128.30.52.31/Jigsaw/.

45. Apache Tomcat. Available online at: http://tomcat.apache.org/.

46. Netscape Enterprise Server Release Notes. available online at

http://www.redhat.com/docs/manuals/ent-server/release-notes/es61sp2note.html.

47. Internet Information Server. . Available online at:

http://www.microsoft.com/windowsserver2003/iis/default.mspx.

48. Apache HHTP Server Project Available on line at :http://httpd.apache.org/.

49. Davidson, J.D. and S. Ahmed, Java™ Servlet API Specification. 1998:

Available onnline at: http://www.cs.helsinki.fi/u/laine/tsoha/servlet-2.1.pdf.

50. Microsoft ASP.NET. available on line at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnanchor/html/anchoraspdotnet.asp.

51. Elbibas, A.A., The use of Database Metadata to Build Adaptable Dynamic

Database Interfaces for Web Applications. Ph.D. 2005, University of Bradford.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf�
http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm�
http://java.sun.com/products/servlet/README.html�
http://128.30.52.31/Jigsaw/�
http://tomcat.apache.org/�
http://www.redhat.com/docs/manuals/ent-server/release-notes/es61sp2note.html�
http://www.microsoft.com/windowsserver2003/iis/default.mspx�
http://httpd.apache.org/�
http://www.cs.helsinki.fi/u/laine/tsoha/servlet-2.1.pdf�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anchoraspdotnet.asp�
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/anchoraspdotnet.asp�

References

150

52. Schwartz, R.L., T. Phoenix, and b.d. foy, Learning Perl. 4th ed. 2005: O'Reilly

Media, Inc.

53. System Catalogs. Available online

at:http://www.postgresql.org/docs/8.1/static/catalogs.html.

54. The Information Schema. Available online at:

http://www.postgresql.org/docs/7.4/static/information-schema.html.

55. Callahan, T., So You Want a Stand-alone Database for Java. JDJ: Java

Development Journal, December 1998

56. Hamilton, G., R. Gattell, and M. Fisher, JDBC Database Access with Java.

1997: ADDISON-WESLEY.

57. Data Management: SQL Call Level Interface (CLI) (CAE Specification S.) 1995:

X/OPEN Co.

58. What Is JDBC? available online at:

http://72.5.124.55/docs/books/jdbc/intro.html.

59. IMS, Information Management System. available at http://www-

01.ibm.com/software/data/ims/.

60. Jeffery, K.G. Metadata the Future of Information Systems. in 12th Conference

on advanced information systems engineering. 2000.

61. Sparenborg, J., Dynamic User Interface Creation with ArcObjects Based on

DatabaseConstraints, in ESRI - Professional papers. 2004.

62. Cronin, G. Dynamic Generation of a Database User-Interface based

on Database Meta-data 'BeanBase'. available online at:

http://www.croninsolutions.com/writing/BeanBase.pdf.

http://www.postgresql.org/docs/8.1/static/catalogs.html�
http://www.postgresql.org/docs/7.4/static/information-schema.html�
http://72.5.124.55/docs/books/jdbc/intro.html�
http://www-01.ibm.com/software/data/ims/�
http://www-01.ibm.com/software/data/ims/�
http://www.croninsolutions.com/writing/BeanBase.pdf�

References

151

63. Eliezer, K. and S. Oded, The adaptable user interface. Commun. ACM, 1989.

32(11): p. 1352-1358.

64. Paulo Pinheiro da Silva, N.W.P. User Interface Modelling with UML. in 10th

European-Japanese Conference on Information Modelling and Knowledge

Representation. May 2000. Finland: IOS Press.

65. Ralf Schweiger, A.T., et al. Using XML for flexible data entry in healthcare

example use for pathology in XML Europe Conference. June 2000.

66. Polak, G. and J. Jarosz. Automatic Graphical User Interface Form Generation

Using Template Haskell. in TFP 2006 Seventh Symposium on Trends in

Functional Programming. 19 - 21 April, 2006. University of Nottingham, UK.

67. Cooper, M., A. Donnelly, and P. Sergeant. User interface approaches for

accessibility in complex World-Wide-Web applications- an example approach

from the PEARL project. in 6th ERCIM workshop user interfaces for all. 25-26

October 2000. CNR-IROE, Florence, Italy.

68. ALAMN, X., et al. Using context information to generate dynamic user

interfaces. in 10th International Conference on Human-Computer Interaction,

HCI International

 2003.

69. Amihai, M., VAGUE: a user interface to relational databases that permits

vague queries. ACM Trans. Inf. Syst., 1988. 6(3): p. 187-214.

70. Lefer, W. automatic graphic user interface generation for VTK. in The 10-th

International Conference in Central Europe on Computer Graphics,

References

152

Visualization and Computer Vision'. February 4-8, 2002. University of West

Bohemia, Czech Republic.

71. Tam, N. and V. Srinivasan, Accessing relational databases from the World Wide

Web, in Proceedings of the 1996 ACM SIGMOD international conference on

Management of data. 1996, ACM Press: Montreal, Quebec, Canada.

72. http://www.w3.org/MarkUp/.

73. http://www.sql.org/.

74. Papiani, M., A.N. Dunlop, and A.J.G. Hey. Automatically Generating World-

Wide Web Interfaces to Relational Databases. in British Computer Society

Seminar Series on New Directions in Systems Development. April 1997.

University of Wolverhampton.

75. Steven, J.H., An improved method for creating dynamic web forms using APL, in

Proceedings of the international conference on APL-Berlin-2000 conference.

2000, ACM Press: Berlin, Germany.

76. Elbibas, A. and M.J. Ridley. Developing Web Entry Forms Based on

METADATA. in International Workshop on Web Quality in conjunction with

ICWE 04- International Conference on Web Engineering. July 27, 2004. Munich

(Germany).

77. Josef, J. and S. Pavel, GUI generation from annotated source code, in

Proceedings of the 3rd annual conference on Task models and diagrams. 2004,

ACM Press: Prague, Czech Republic.

http://www.w3.org/MarkUp/�
http://www.sql.org/�

References

153

78. Kirda, E., C. Kerer, and G. Matzka. Using XML/XSL to Build Adaptable

Database Interfaces for Web Site Content Management. in 23rd International

Conference on Software Engineering. 2001. Toronto, Ontario, Canada.

79. Toby, J.T., Y. Dongqing, and P.F. James, A logical design methodology for

relational databases using the extended entity-relationship model. ACM

Comput. Surv., 1986. 18(2): p. 197-222.

80. Bourret, R. "XML and databases". July 2004. available at

http://www.rpbourret.com/xml/xml/xml/xml/xml/xml/XMLAndDatabases.htm.

81. Volker, T., A framework for automatic generation of web-based data entry

applications based on XML, in Proceedings of the 2002 ACM symposium on

Applied computing. 2002, ACM: Madrid, Spain.

82. Guillen, M., et al. GARP: a tool for creating dynamic Web reports using XSL

and XML technologies. in Proceedings of the Fourth Mexican International

Conference on Computer Science ENC 2003.

83. Selfa, D.M., M. Carrillo, and M. Del Rocio Boone. A Database and Web

Application Based on MVC Architecture. in Electronics, Communications and

Computers, 2006. CONIELECOMP 2006. 16th International Conference on.

2006.

84. Apache Struts 2 availabe at http://struts.apache.org/2.x/

85. JBoss community avaialbe at https://www.jboss.org/.

86. Tapestry framework available at http://tapestry.apache.org/.

87. http://en.wikipedia.org/wiki/Ruby_on_Rails.

http://www.rpbourret.com/xml/xml/xml/xml/xml/xml/XMLAndDatabases.htm�
http://struts.apache.org/2.x/�
http://www.jboss.org/�
http://tapestry.apache.org/�
http://en.wikipedia.org/wiki/Ruby_on_Rails�

References

154

88. http://www.eclips3media.com/workshop/wp-

content/uploads/2007/12/rails_architecture.png.

89. Eaglestone, B. and M. Ridley, Web Database Systems. 2001, London:

McGRAW HILL.

http://www.eclips3media.com/workshop/wp-content/uploads/2007/12/rails_architecture.png�
http://www.eclips3media.com/workshop/wp-content/uploads/2007/12/rails_architecture.png�

	Overview
	Motivations
	Aims and objectives
	Thesis Outline

	Capter 2
	Web Technologies
	Introduction
	Mark-up languages
	SGML
	HTML
	HTML Document Structure
	HTML Form Controls

	HTML Limitations

	XHTML
	XML
	XML Document Structure
	Well-formed or valid XML document
	XML validation

	XForms
	Definition
	XForms Features
	XForms Limitations
	Xforms Document Structure

	XSLT
	Introduction
	XSLT document’s syntax and structure
	XSLT structure
	XSLT’s Elements

	XPath

	Client-side Scripts
	JavaScript

	Server-side technologies
	CGI
	Fast CGI
	Java Servlets
	How it works
	Servlets Web Servers

	Server-side scripting technologies
	Active server pages (ASP)
	ASP.NET
	PHP
	Perl
	Java Server Pages:

	Chapter 3
	Database Development
	Introduction
	Relational Database, an overview
	JDBC and its Architecture
	JDBC vs. ODBC
	How JDBC works?
	JDBC and Database Metadata

	Conclusion

	Chapter 4
	Literature Review
	Introduction:
	Related work on user interface to databases
	Accessing relational databases from the World Wide Web
	Automatically generating World-Wide Web interfaces to relational databases
	An Improved Method for Creating Dynamic Web Forms Using APL

	Related work on user interface to metadata
	Metadata tables to enable dynamic data modelling and web interfaces design: the SEER example
	Developing Web Entry Forms Based on Metadata
	GUI Generation from Annotated Source Code
	Automatic Generation of Web User Interfaces in PHP Using Database Metadata

	Related work on user interface and XML
	Using XML/XSL to Build Adaptable Database Interfaces for Web Site Content Management
	Generating Form-Based User Interface for XML Vocabularies
	A framework for automatic generation of web-based data entry applications based on XML
	GARP: A Tool for Creating Dynamic Web Reports Using XSL and XML Technologies
	Generic XForms-Based User Interface Generation for XML Schema

	Web application frameworks
	Web frameworks definition and classifications
	Ruby on Rails

	Conclusion

	Chapter 5
	Framework Implementation
	Introduction
	Prototype Overview
	The Prototype Characteristics
	Three tier solution
	Framework Architecture
	The mechanism of the prototype
	Connecting to database and retrieving metadata
	Converting metadata into XML document
	Transforming XML document into Web entry forms
	Developing the Rules or Heuristics
	Limitation of database metadata
	Transforming the XML document
	Transforming the XML document into XHTML Web entry form
	Data validation

	Transforming the XML document into XForms Web entry form
	Data validation

	Extended Example Scenario
	Arisen limitations

	Conclusion

	Conclusion
	Future Work

	cover_sheet_thesis1.pdf
	University of Bradford eThesis

