

A Service-Oriented Approach to

Implementing an Adaptive User Interface

Emile Senga

Supervisors: Prof. André Calitz and Prof. Jeàn Greyling

January 2010

Submitted in partial fulfilment of the requirements for the degree of

Magister Commercii in the Faculty of Business and Economic Sciences

at the Nelson Mandela Metropolitan University

Acknowledgements

I would like to thank my supervisors, Prof. André Calitz and Prof. Jeàn Greyling, for their

invaluable guidance and continuous support for the duration of this research. I wish to express

my gratitude for the many hours that were spent reading through this document and the

suggestions that were made to improve the content and structure. I would also like to thank them

for their encouragement when problems felt insurmountable.

I would also like to thank those that played a part in assisting me with the completion of this

dissertation:

 Mr Danie Venter, Senior lecturer and NMMU Research Statistician in the Department of

Statistics for his help and advice.

 Dr. Lester Cowley and Prof. Janet Wesson for their invaluable discussions that helped me

understand the concepts and ideas with which I had to work.

 Dr. Patrick Goldstone for assisting with the proof reading of this dissertation.

 My friends Alyssa Viduya, Bradley van Tonder, Felix Ntawanga and Juan Meyer for

their technical assistance and moral support.

 My family and friends whose continued support and confidence helped me complete this

work.

I would also like to thank the Department of Computing Sciences for enabling me to conduct my

research through the resources they provided. I would especially like to thank Telkom and the

NMMU Centre of Excellence programme for providing the necessary finance for this research.

Summary

Service-oriented architectures (SOA) are being adopted by organisations in order to integrate

disparate computational assets. A major hurdle they face is the decision on how to integrate the

UI in an SOA. In addition, technological advances have allowed complex applications and

complex user interfaces (UIs) to be realised and the increase in accessibility to computers

enables a diverse population of users with different characteristics, preferences and needs to use

these complex computer applications. Adaptive user interfaces (AUIs) have been proposed as a

solution to cater for the differences in user traits by adapting the UI to meet the diverse needs of

users. AUIs have, however, traditionally been developed using client/server architectures This

research, therefore, set out to investigate how to develop an AUI using a service-oriented

architecture (SOA).

In order to successfully achieve the goal of this research, literature concerning SOAs was

investigated to gain an understanding of SOAs. A literature review of AUIs was also undertaken

to gain an understanding of AUIs. A model-based approach was used to develop a model for UI

adaptation using knowledge gained in the literature reviews. The model generates different UIs

depending on various users‘ inferred level of expertise. The model describes the interaction

between AUI services that use design-time documents and run-time user-interaction to adapt the

UI. A prototype of the model was implemented and evaluated using an evolution strategy

devised to assess different aspects of the research. The evaluation strategy proved the following:

 The service components of the prototype adhere to SOA design principles;

 The implementation was effective based on software engineering metrics; and

 The implementation was usable and did not negatively affect the performance of users.

The successful implementation of the prototype provides evidence that the design of AUIs using

SOA is feasible. This dissertation therefore makes a contribution to the development of AUIs

using SOAs. The model could be used to provide UI adaptation for business software

applications.

Keywords: Service-oriented architectures, adaptive user interfaces, web services user interfaces,

user interface generation.

Table of Contents

Acknowledgements .. i

Summary ... ii

Table of Contents ... iii

List of Figures .. ix

List of Tables ... xii

List of Abbreviations ... xiii

Chapter 1: Introduction ..1

1.1 Background ... 1

1.2 Previous research at NMMU .. 3

1.3 Relevance of research ... 4

1.4 Research outline.. 5

1.4.1 Problem statement ... 5

1.4.2 Thesis statement .. 5

1.4.3 Research objectives ... 5

1.4.4 Research questions .. 6

1.4.5 Research method ... 6

1.4.5.1 Literature review .. 7

1.4.5.2 Model design .. 7

1.4.5.3 Prototype .. 7

1.4.5.4 Evaluation .. 7

1.4.6 Scope and constraints .. 8

1.5 Dissertation structure .. 9

Chapter 2: Service-Oriented Architecture ..11

2.1 Introduction .. 11

2.1.1 Enterprise architectures ... 12

2.1.2 Distributed architectures .. 13

2.2 Service-oriented architecture .. 17

2.2.1 Definition of SOA ... 20

2.2.2 Service orientation ... 20

2.2.3 Principles for SOA Design .. 22

2.3 Components of SOA ... 23

iv Table of Contents

2.3.1 Web services .. 24

2.3.1.1 Task services .. 26

2.3.1.2 Entity services .. 27

2.3.1.3 Utility services ... 27

2.3.2 Web services architecture .. 28

2.3.2.1 Web service description language (WSDL) ... 30

2.3.2.2 Universal discovery description integration (UDDI) 32

2.3.2.3 Simple object access protocol (SOAP) .. 32

2.4 Related standards .. 33

2.4.1 Rest web services .. 33

2.4.2 Business process execution language .. 35

2.5 SOA integration approaches ... 36

2.6 Service-oriented applications .. 39

2.6.1 Cloud computing ... 40

2.6.2 Software as a service ... 41

2.7 Existing systems and related work.. 42

2.7.1 Web service user interface generation ... 43

2.7.2 WSGUI .. 44

2.7.3 Servface ... 44

2.7.4 Web service user interface generation using XForms ... 45

2.7.5 Mash-ups ... 46

2.8 Summary ... 46

Chapter 3: Adaptive User Interfaces and User Expertise ...48

3.1 Introduction .. 48

3.2 Adaptive user interfaces ... 49

3.2.1 Definition of AUI .. 50

3.2.2 Benefits of AUIs .. 52

3.2.3 Functions of AUIs ... 53

3.2.3.1 Interface adaptation .. 53

3.2.3.2 Task assistance and adaptive help .. 54

3.2.3.3 Recommender systems and information filtering .. 54

3.2.3.4 Information presentation .. 55

3.2.3.5 Adaptive learning ... 55

v Table of Contents

3.2.4 Approaches to AUIs .. 55

3.2.4.1 Artificial intelligence approach .. 56

3.2.4.2 User modelling approach ... 56

3.2.5 Components of adaptivity.. 57

3.3 User expertise and user interfaces .. 64

3.3.1 Qualitative differences... 66

3.3.2 Quantitative differences ... 67

3.4 Designing user interfaces for novice and expert users.. 67

3.5 Related works ... 68

3.5.1 An IUI for contact centres ... 69

3.5.2 An AUI for contact centre agents .. 70

3.5.2.1 Knowledge base ... 72

3.5.2.2 Analysis engine .. 74

3.5.2.3 Agent manager ... 76

3.5.2.4 Presentation manager ... 76

3.6 Adaptive user interface generation ... 77

3.7 Summary ... 79

Chapter 4: Service-Oriented Analysis and Design ...81

4.1 Introduction .. 81

4.2 SO analysis and design ... 81

4.3 Service-oriented analysis .. 85

4.3.1 Define business requirements .. 85

4.3.2 Identification of automated systems .. 87

4.4 Service-oriented design .. 87

4.4.1 Composing an SOA ... 87

4.4.2 Design of Business Services .. 88

4.4.2.1 Service specifications ... 88

4.4.3 Design of SO Business Processes .. 90

4.5 Service realisation ... 91

4.6 Service-oriented analysis of an AUI ... 92

4.6.1 AUI service identification ... 92

4.7 Service-oriented design of an AUI ... 95

4.7.1 AUI service specification .. 95

vi Table of Contents

4.7.1.1 Agent manager – Watcher .. 96

4.7.1.2 Analysis engine .. 97

4.7.1.3 Presentation manager - Transformation ... 98

4.7.2 Proposed model ... 99

4.7.3.1 User model ... 100

4.7.3.2 Task model ... 101

4.8 Service realisation ... 102

4.9 Service interaction .. 102

4.10 Summary ... 104

Chapter 5: Implementation ..105

5.1 Introduction .. 105

5.2 The implementation domain ... 105

5.3 Implementation tools .. 107

5.4 Knowledge base .. 109

5.5 Agent Manager - Watcher Service ... 110

5.6 Analysis Engine – Analysis Engine Service ... 112

5.7 Presentation Manager – Transformation Service .. 113

5.7.1 XSLT ... 114

5.7.1.2 Novice XSLT ... 117

5.7.1.3 Expert XSLT .. 117

5.7.2 Object layout hierarchy ... 118

5.7.3 Element styles .. 119

5.8 User interface interaction .. 119

5.8.1 Technology for the UI ... 119

5.8.2 Querying web services from JavaScript .. 120

5.8.3 Managing UI element dependencies ... 120

5.8.4 Capturing user-interaction data ... 120

5.9 Generated user interfaces .. 121

5.9.1 Generated novice user interface .. 122

5.9.2 Generated Expert User interface ... 126

5.10 Pilot studies ... 127

5.10.1 Pilot study 1: evaluation of generated user interface ... 127

5.10.1.1 Participants ... 127

vii Table of Contents

5.10.1.2 Procedure.. 128

5.10.1.3 Results .. 128

5.10.2 Pilot study 2: formative evaluation of helpdesk AUI .. 129

5.10.2.1 Participants ... 130

5.10.2.2 Procedure.. 131

5.10.2.3 Results .. 131

5.11 Summary ... 132

Chapter 6: Evaluation and Results ..134

6.1 Introduction .. 134

6.2 Evaluation strategy ... 135

6.2.1 Proof of concept .. 135

6.2.2 Analytical evaluation ... 135

6.2.3 Software metrics evaluation .. 136

6.2.4 Usability evaluation ... 137

6.3 Analytical evaluation .. 138

6.4 Evaluation of software metrics ... 143

6.4.1 Coupling metrics ... 143

6.4.2 Architectural design metrics .. 145

6.4.2.1 Structural complexity ... 146

6.4.2.2 Data complexity ... 146

6.4.2.3 System complexity ... 147

6.4.3 Summary of evaluation by software engineering metrics ... 148

6.5 Usability evaluation of proof of concept .. 148

6.5.1 Experimental design .. 149

6.5.2 Evaluation metrics ... 149

6.5.3 Evaluation instruments .. 150

6.5.3.1 Location and Hardware .. 150

6.5.3.2 Software ... 150

6.5.3.3 Questionnaire ... 151

6.5.3.4 Task plan .. 151

6.5.3.5 Statistics ... 152

6.5.4 Evaluation procedure ... 152

6.5.5 Participant selection... 153

viii Table of Contents

6.5.6 Evaluation results .. 155

6.5.6.1 Effectiveness .. 155

6.5.6.2 Efficiency ... 157

6.5.7 Eye-tracking results ... 159

6.6 Conclusions .. 161

Chapter 7: Conclusions and Recommendations ...164

7.1 Introduction .. 164

7.2 Research contributions .. 164

7.2.1 Theoretical contributions ... 165

7.2.1.1 Literature review .. 165

7.2.1.2 Service-oriented analysis and design method .. 167

7.2.1.3 AUI services model .. 168

7.2.2 Practical contributions ... 169

7.2.2.1 Development of a prototype as proof of concept ... 170

7.2.2.2 Evaluation of the prototype .. 170

7.3 Benefits of the research .. 172

7.4 Limitations of the research ... 172

7.5 Recommendations for future research .. 173

7.6 Summary ... 174

References ...175

Pilot Study Appendices ..187

Appendix A: Pilot Study 2 - Test Plan ... 187

Appendix B: Pilot Study 2 - Questionnaire .. 188

Appendix C: Pilot Study 2 - Results .. 190

Main Study Appendices ..191

Appendix D: Preamble Letter ... 191

Appendix E: Consent Form .. 192

Appendix F: Demographics Questionnaire ... 194

Appendix G: Test Plan.. 195

Appendix H: Software Metric Data .. 198

Appendix I: Usability Evaluation Results .. 199

Appendix J: Code Snippets ... 200

List of Figures

Figure 1.1: Dissertation Structure ... 10

Figure 2.1: The relationship between SOA and EA (Colab 2007).. 13

Figure 2.2: Fundamental CORBA architecture (Sommerville 2006) ... 16

Figure 2.3: Relationship between SOA, CBA and OOA (Wilkes 2004) .. 18

Figure 2.4: Gartner Hype Cycle for Emerging Technologies (Carpenter 2009) ... 19

Figure 2.5: SOA interaction model ... 24

Figure 2.6: Orchestration (left) vs. Choreography (right) ... 25

Figure 2.7: Service Abstraction Layers (Erl 2008) ... 26

Figure 2.8: A purchase order application invoking services (Papazoglou 2006) .. 27

Figure 2.9: Web Services protocol stack (Lewis and Wrage 2006) .. 29

Figure 2.10: SOAP, WSDL and UDDI interaction (Laliwala 2007) .. 30

Figure 2.11: An Example of a WSDL document (Papazoglou 2006) ... 31

Figure 2.12: An example of a SOAP request message ... 33

Figure 2.13: SOA Integration approaches, ESB (A) and Point-to-Point (B) .. 37

Figure 2.14: Logical SOA reference architecture ... 38

Figure 2.15: WSGUI Model.. 44

Figure 2.16: Servface model (Servface 2008)... 45

Figure 3.1: Evolution of user interface design (López-Jaquero et al. 2004) ... 49

Figure 3.2: Multidisciplinary research areas in IUI (Alvarez-Cortes et al. 2007) 50

Figure 3.3: Office 2003 smart menu system (A), font selector (B). Fisheye lens Menu (C) 54

Figure 3.4: Brusilovsky‘s (1996) loop for ―user modelling adaptation‖ in adaptive systems 57

Figure 3.5: General Schema for processing an AUI (Jameson 2003) ... 58

Figure 3.6: Dimensions on which users experience differ (Nielsen 1993) ... 65

Figure 3.7: The Spectrum of Users‘ Needs (Padilla 2003) ... 68

Figure 3.8: Layered user interface: Layer 1(A) and Layer 2(A) (Shneiderman 2003) 68

Figure 3.9: IUI Model for Contact Centres (Singh 2007) ... 70

Figure 3.10: An AUI Model for Contact Centre Agents (Jason 2008) ... 71

Figure 3.11: Potential Predictive Features .. 73

file:///I:\NMMU\WRMD500\Dissertation\2009\FINAL%20-%20Graduation\MCom%20Dissertation%20(E.K%20Senga)%20-%2020100421.docx%23_Toc259614651
file:///I:\NMMU\WRMD500\Dissertation\2009\FINAL%20-%20Graduation\MCom%20Dissertation%20(E.K%20Senga)%20-%2020100421.docx%23_Toc259614657

x List of Figures

Figure 3.12: Informative Moments and the Corresponding Logging Steps (Jason 2008) 74

Figure 3.13: Automatically rendered interface for five different platforms (Gajos 2008) 78

Figure 4.1: Erl‘s (2005) service-oriented analysis process (A) and Arsanjani‘s (2004) SOMA (B) 84

Figure 4.2: Service-oriented analysis (Erl 2005) .. 85

Figure 4.3: Bottom up strategy (Erl 2005) .. 86

Figure 4.4: SO Design steps (Erl 2005) .. 87

Figure 4.5: Service Specification Framework (Terlouw and Maarse 2009) ... 90

Figure 4.6: Encapsulating parts of a process as a service (Erl 2005) .. 93

Figure 4.7: The components of adaptivity .. 93

Figure 4.8: Proposed Model .. 99

Figure 4.9: User Model Schema ... 100

Figure 4.10: Extract of Task Model Schema .. 101

Figure 4.11: AUI components and Call Logging processes sequence diagram .. 103

Figure 5.1: JavaScript Object showing the 9 Predictive Features (PF) for Informative Moments (IM) ... 111

Figure 5.2: UpdateUserModel Class for updating the IM data in the User Model 112

Figure 5.3: The Analyse Skill class for the Analysis Engine Service ... 113

Figure 5.4: The relationships between the elements of a WSDL Document (Burr 2006) 115

Figure 5.5: Creating User Interface Controls from XML elements .. 116

Figure 5.6: Example of the application of the layout groups to the Novice Step 1 118

Figure 5.7: Task Analysis for Logging a Call ... 122

Figure 5.8: Novice UI – Step 1 ... 123

Figure 5.9: Novice UI – Step 2 ... 124

Figure 5.10: Novice UI – Step 3 ... 125

Figure 5.11: Novice UI – Step 4 ... 125

Figure 5.12: Expert UI – Steps 1 to 4 ... 126

Figure 5.13: Summary of user testing results (n=10) .. 129

Figure 5.14: Pilot study Gender (A), Age (B), Occupation (C) and Computer Experience (D) (n=6) 130

Figure 5.15: Pilot study post test questionnaire results (n=6) ... 132

Figure 6.1: Visualisation of Analytical Evaluation ... 142

Figure 6.2: Formula for DCSS .. 144

Figure 6.3: AUI Services Graph and Matrix ... 144

xi List of Figures

Figure 6.4: Structural complexity formula .. 146

Figure 6.5: Data complexity formulae .. 146

Figure 6.6: System complexity formula .. 147

Figure 6.7: Relative System Complexity .. 148

Figure 6.8: Demographic profile of test participants (n = 30) .. 154

Figure 6.9: Stacked bar chart showing levels of success .. 156

Figure 6.10: Mean Timer per task (sec) .. 158

Figure 6.11: Efficiency as Completion Rate/Time. .. 158

Figure 6.12: AOI for Novice Steps ... 159

Figure 6.13: Heat map showing fixations for step one to four of Call Logging task (n=30) 160

Figure 6.14: Fixation count of AOIs ... 161

Figure 7.1: AUI services model .. 169

xii List of Tables

List of Tables

Table 1.1: Research Questions and Methodology .. 6

Table 2.1: RPC method (Left) REST URI (right) ... 34

Table 2.2: When to use REST or SOAP-RPC web services (Mulik 2007) .. 34

Table 3.1: A Comparison between Adaptive and Adaptable Systems (Fischer 2001) 51

Table 3.2: Differences between the Novice and Expert‘s ways of ―thinking‖ ... 66

Table 3.3: Summary of Predictive Features .. 73

Table 3.4: Predictive Features and their associated weights (Jason2008) .. 75

Table 3.5: Informative Moments and Associated Weights (Jason 2008) ... 76

Table 4.1: Comparison of SOA Development Methods (Ramollari et al. 2007) .. 83

Table 4.2: Identified Services ... 94

Table 4.3: Common Service Specification Information for all services ... 96

Table 4.4: Watcher Service Specification ... 96

Table 4.5: Analysis Engine Service Specification .. 98

Table 4.6: Transformation Service Specification.. 99

Table 5.1: Windows Server 2008 Server Specification .. 108

Table 5.2: XML Simple Data- Type to XHTML Control Mapping (Song and Lee 2007) 116

Table 5.3: User Testing Questionnaire (Song and Lee 2008) ... 127

Table 6.1: SOA Design Guidelines and how to measure them ... 139

Table 6.2: Summary of analytical evaluation ... 142

Table 6.3: Summary of Architectural Design Metrics for AUI services .. 147

Table 6.4: Evaluation procedure ... 153

Table 6.5: Summary of the results of the evaluation .. 162

Table 7.1: Research Questions and Methodology .. 165

xiii List of Abbreviations

List of Abbreviations

AUI Adaptive User Interface

BPEL Business Process Execution Language

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

DCOM Distributed component object model

DOM Document object model

EAI Enterprise application integration

ESB Enterprise service bus

GUIDD Graphical User Interface Deployment Description

KLM Keystroke Level Model

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

ORB Object request broker

REST Representational State Transfer

RIA Rich Internet Application

RPC Remote Procedure Call

SaaS Software as a Service

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOADM Service-Oriented Analysis and Design Method

SOMA Service Oriented Modelling Architecture

UDDI Universal description, discovery, and integration

UML Unified Modelling Language

URI Uniform resource identifier

WS Web services

WSDL Web Services Description Language

XML Extensible Mark-up Language

XSLT Extensible Stylesheet Language Transformation

Chapter 1: Introduction

1.1 Background

The advancement of computing technology has allowed organisations to store and manage an

ever-growing quantity of data and information. Managing such a large amount of information

requires a range of computing assets and applications in order to effectively support and optimise

a large number of operations. Today‘s dynamic and collaborative business environment requires

efficient access to information and enterprise applications, regardless of the underlying

architecture, platform or location of the information and applications. Since the turn of the

decade, as a result of the need for speed and agility in business, integrating computing assets

using the agile and flexible enterprise architecture known as service-oriented architecture (SOA)

has significantly increased.

SOA is seen as a solution to overcome access to computing assets such as applications and data

deployed on heterogeneous platforms (Menge 2007; Erl 2008). It is an architectural style and

design paradigm that advocates the development of computing systems as discrete pieces of

functionality that are agnostic, and defined using abstract terms in order to make them as loosely

coupled as possible (OASIS 2006; Papazoglou 2006; Josuttis 2007; Shen 2007; Erl 2008).

Loosely coupled components fit together and exchange information with minimal changes to

themselves or other components with which they interact.

Any organisation using SOA gains significant benefits, such as the ability to re-use application

functionality, the ability to access heterogeneous or legacy applications and the ability to create

composite applications in a relatively short space of time (Erl 2008). Composite applications are

applications created at run time by combining pre-existing components with specific

functionalities to create a new application.

Web services are currently the most popular enabler of SOA. They are the loosely coupled,

discrete functionalities through which SOA can be realised. Web services provide a set of

standards used to define how they interact with each other and with other applications (OASIS

Introduction 2

2006). The adherence to strict, platform-independent standards is a major factor in the popularity

of web services as an enabler for SOA.

Theoretically, achieving such levels of integration is possible. In practice, however, it is

challenging to achieve all the benefits of SOA. Establishing the right user interface (UI) through

which end-users can be able to access data and information in a service-oriented environment is

one of the significant challenges of SOA (Tibco 2006).

Various approaches to providing a UI to web services exist. Desktop applications, for example,

provide rich UIs with which end-users can interact and access the functionality of web services

(Ellinger 2007; Papazoglou, Aiello and Giorgini 2004; Josuttis 2007; Lawler and Howell-Barber

2007). However, they are expensive to develop, and costs are incurred if business requirements

for the application change. Additionally, by their very nature, desktop applications are developed

for specific platforms and may not function on other platforms (Tibco 2006).

Web-based solutions have also been proposed as a method of providing the UI of web services.

Web-based solutions provide benefits such as little or no installation on client devices, thus

reducing the cost of maintenance, upgrades or changes to the UI (Tibco 2006). In the past, these

solutions have lacked the interactivity and responsiveness of the desktop applications; and most

existing web based solutions were not flexible enough to take advantage of the flexibility and

agility of SOA. Recently, however, advancements in web technologies have allowed more

responsive and complex applications to be built by using web based technologies.

In addition, a second, more subtle challenge to the integration of applications is the increasing

disparity between end-users and computer applications‘ ability to cater for the individual

characteristics of these end-users. The differences in needs, preferences and the abilities of end-

users mean that not all users interact with computer applications in the same way. Adaptive user

interfaces (AUIs) have been proposed as a solution to this problem (Dieterich et al. 1993; Hook

2000; Jameson 2003). AUIs personalise the UI to suite the individual user, and thus allow them

to use the interface more effectively.

Various AUI models exist and they describe how an AUI can be implemented to cater for the

different characteristics of users (Jason 2008). For example, Adaptive HelpDesk is an

implementation of an AUI model designed to cater for novice and expert contact centre agents

Introduction 3

(Jason 2008). Adaptive HelpDesk (as well as other existing models) is, however, based on a

client/server architecture. This architecture splits the client and server applications into logical

and physical application components. Implementing Adaptive HelpDesk in a distributed

environment would provide its functionality over the network, allowing the re-use and enterprise

access to its functionality.

Current SOA models and standards do not address the use of AUIs in SOA (Papazoglou, Aiello

and Giorgini 2004; Cañas et al. 2007; Josuttis 2007; Lawler and Howell-Barber 2007; Erl 2008),

mostly because SOA is seen as a business architecture which focuses on business service and

data requirements (Cañas et al. 2007). The benefits of SOA and AUIs can be achieved if an AUI

is provided, using the principles advocated by SOA (Erl 2005; Tibco 2006). Although evidence

has been found of increasing interest in UIs for Web Services and SOA (Kassoff, Kato and

Mohsin 2003; Ellinger 2007; He and Yen 2007; Song and Lee 2007; Spillner, Braun, and Schill

2007; Nestler 2008), little evidence has been found addressing AUIs in SOAs (Davies 2006).

This study aims to examine how an AUI can be implemented by using SOA. The increase in

research in UIs for SOA means that a growing number of end-users will be accessing service

functionality by using UIs from such research. However, little attention is being given to

differences that these end-users exhibit. The main objective of this study is therefore to gain

knowledge of SOAs and AUIs and to develop an AUI services model using service-oriented

(SO) analysis and design methods. This model will be implemented and evaluated to determine

whether it adheres to SOA principles (Erl 2008), whether it can be implemented effectively and

to determine whether the UI from this process allows end-users in high information

environments to complete their tasks.

1.2 Previous research at NMMU

High-information environments use multiple systems to provide access to data and applications.

In contact centres, agents require access to several systems to perform the task of resolving a

customer query (Singh 2007). Furthermore, contact centre agents (CCA) may require increased

training to learn to use the CC applications.

Both of these problems have been addressed by research at the Nelson Mandela Metropolitan

University‘s Department of Computing Sciences (Singh 2007; Jason 2008). An IUI was

Introduction 4

developed to integrate information from various sources to facilitate the Call Logging task and

an AUI was developed to increase the performance of novice CCAs by providing an effective

design for novice CCAs and incorporating adaptation once their skill levels changed to experts.

In such an environment, SOA can be used to integrate the disparate systems and provide the

contact centre agent in charge of resolving queries with a unified application through which to

resolve customer queries. Not only would this provide the agent with a consolidated access to

information, it would also allow new applications to be created to facilitate interaction with the

customer and, ultimately, increase customer satisfaction.

1.3 Relevance of research

Applications that are created by combining pre-existing components are known as composite

applications. Interaction with composite applications currently requires the development of a UI.

Research into web service UIs shows that service-based UIs do not need the UI designed

beforehand. Descriptions of the web services interactions and layout models can be used to

dynamically create a UI instead, thus saving in UI development costs. Furthermore, maintenance

costs are reduced because only the web services need to be maintained and not an entire

application. Web services provide specific functionality within a limited scope, which facilitates

maintenance, upgrades and changes due to the lack of overlap in functionality.

Previous research efforts provide empirical evidence that AUIs can increase productivity in

information-intensive environments such as contact centres (Singh 2007). Empirical evidence

also suggests that models can be applied that improve the expertise level of contact centre agents

who work in high-information environments (Jason 2008).

AUIs comprise various components that work together in the adaptation process to model users

and provide meaningful adaptations. The use of AUI components as services means they can be

made reusable across various platforms. Furthermore, the components can be interchanged for

different ones, for example different user modelling techniques can be used for different users or

scenarios by simply using a service that provides that particular functionality.

Introduction 5

1.4 Research outline

This section will discuss the research outline in terms of the problem statement (Section 1.4.1),

thesis statement (Section 1.4.2), research objectives (Section 1.4.3), research questions (Section

1.4.4), research methods (Section 1.4.5) and scope and constraints (Section 1.4.6) used in this

research.

1.4.1 Problem statement

The main objective in this research is to develop an AUI services model and an AUI prototype

for end-users using an SOA. The domain of the AUI is contact centres (CC) and the model used

to develop the AUI must accommodate users with novice and expert skill levels. The AUI must

be implemented in a distributed environment with its components accessible as web services.

1.4.2 Thesis statement

The aim of this research is to establish how an AUI can be designed and implemented effectively

by using SOA to cater for novice and expert end-users. The thesis statement that guides this

research in achieving its goals (Hofstee 2006) is therefore:

An adaptive user interface can be designed and implemented using service-oriented architecture

principles.

The thesis statement is broken down into its separate constituents, and research objectives are

derived from them. These objectives are listed in the following section.

1.4.3 Research objectives

In order to research the thesis statement, this research study seeks to achieve the following

objectives:

 To gain comprehensive understanding of SOA and its enabling technology – Web

Services (Chapter 2).

 To understand AUIs and their components (Chapter 3).

Introduction 6

 To understand user expertise and the implications it has on user interface design

(Chapter 3).

 To determine how an AUI can be designed using an SOA (Chapter 4).

 To determine how an AUI can be implemented using an SOA (Chapter 5).

 To evaluate the SO design and implementation of an AUI (Chapter 6).

These objectives can be achieved by answering the research questions formulated in the

following sub-section.

1.4.4 Research questions

The primary research question for this project is:

How effectively can an adaptive user interface be implemented in a service-oriented architecture

at the service level to provide usable adaptation for novice and expert users?

In order to address the primary research question, several research questions must also be

answered. The research questions in Table 1.1 were formulated to achieve the research

objectives.

Table 1.1: Research Questions and Methodology

 Research Questions Research Methods Chapter
R1 What is SOA and what are its components?

Literature Study

Chapter 2

R2
What are AUIs and what are the components of an

AUI?
Chapter 3

R3 How can an AUI be designed using an SOA?
Service-Oriented Analysis and

Design
Chapter 4

R4 How can an AUI be implemented using an SOA?
Develop a prototype as Proof

of Concept.

Chapter 5

& 6

R5 Does the prototype adhere to SOA design principles?

Evaluation
Chapter 6

R6

How effectively can an AUI be implemented in an

SOA?

R7 What is the usability of the generated user interface?

1.4.5 Research method

This research will make use of the research method outlined in the following sub-sections to

achieve the objectives described in Section 1.4.3 and answer the research questions R1 to R7

outlined in Section 1.4.4.

Introduction 7

1.4.5.1 Literature review

The goal of this research is to implement an AUI using an SOA. In order to achieve this goal, an

understanding of both concepts is required as well as the components required of each in order to

realise them. A literature review on SOA is conducted to understand what SOA is and to

establish what the components of SOA are (R1). The literature review on AUIs is conducted to

understand what AUIs are and to explore the components of AUIs (R2).

1.4.5.2 Model design

In order to implement an AUI using an SOA, previous research is consulted to establish existing

models. These are defined as models. As such, a model is designed for this project as it provides

specifications by which a prototype can be implemented (R3).

1.4.5.3 Prototype

Prototypes provide a means to evaluate a design or alternatively they can be developed as a proof

of concept. The design and implementation of a prototype to demonstrate how an AUI can be

implemented by using an SOA is necessary. A prototyping approach is therefore taken in the

development of the AUI (R4). From the model design of R3, prototypes will be implemented and

evaluated.

1.4.5.4 Evaluation

Simply implementing a prototype as a proof of concept is insufficient. The prototype must be

evaluated to determine if it has achieved the goals set out for it in this research. As seen in Table

1.1, the prototype must prove the following:

 Whether the prototype adheres to SOA design principles (R5);

 Whether an AUI can be implemented effectively by using SOA (R6); and

 Whether the final UI created is indeed usable (R7).

To answer these questions an evaluation strategy must be devised which allows this research to

answer these questions. Pilot studies are used to uncover problems with prototypes and a main

Introduction 8

study is conducted to answer R5, R6 and R7. The main study entails an analytical evaluation,

software engineering metric evaluation and usability evaluation of the prototype.

1.4.6 Scope and constraints

The scope of this research is limited to investigating how an AUI can be implemented using an

SOA. The scenario in which the AUI is implemented is a contact centre. The domain restrictions

are outlined below:

 The domain is limited to the logging of customer queries of the NMMU ICT Service

Desk. Existing research on AUIs from the NMMU Computer Science department (Singh

2007, Jason 2008) is limited to this domain;

 The UI skill levels considered in this study range from novice to expert only (as opposed

to novice, intermediate and expert), because the UI skill of CCAs changes from novice to

expert quickly;

 Work on the effectiveness of design for novices and experts exists (Jason 2008) and has

been proven statistically. Therefore, this study does not need to focus on the actual design

of the UIs; and

 The requirements of the implemented prototype are limited to performing the following

functions using web services:

o Capturing user-interaction data;

o Performing inferences using the captured user-interaction data; and

o Generating the UI (Novice or Expert).

SOA is an implementation-agnostic paradigm which can be realised on any platform (Erl 2005;

Papazoglou 2006). At present, the dominant technology to realise SOA is web services. Different

types of web services exist to serve different functions. For example data services, composed

services and communication services may be used in an application for data management,

orchestration or communication (Erl 2008). This research focuses on service-orientation by way

of web services. Discussions of web services are also strictly confined to the context of SOA.

Introduction 9

1.5 Dissertation structure

This chapter has presented a brief introduction to SOAs and AUIs. It poses the question whether

an AUI can be implemented by using an SOA. Using the thesis statement, a set of objectives has

been devised to guide this research. This dissertation is comprised of eight chapters, each of

which aims to achieve a research objective as outlined in Section 1.4.3. Figure 1.1 provides an

illustration of the dissertation outline and how the different chapters relate to each other. This

section gives a brief synopsis of each chapter.

Chapter 2 (Service-Oriented Architectures) provides a background on the service-oriented

architecture paradigm and its most basic component. SOA design guidelines are presented and

the standards which enable web services, such as WSDL, UDDI and SOAP are investigated.

Several research projects on web services UIs are also discussed.

Chapter 3 (Adaptive User Interfaces and User Expertise) discusses AUIs by first defining AUIs

and investigating methods and techniques for realising AUIs. The components of an AUI are

investigated and novice and expert user differences as well as their implications for the design of

UIs are discussed. Various research projects in AUIs are investigated including Adaptive

HelpDesk and UI generation as a means of adapting the UI.

Chapter 4 (Service-Oriented Analysis and Design) discusses service-oriented (SO) analysis and

design methods. This proposes a hybrid approach by using two SO analysis and design methods.

In this chapter, the hybrid method is applied to existing AUIs and the outcome is an AUI services

model.

Chapter 5 (Implementation) discusses the implementation a proof of concept prototype based on

the model developed in Chapter 4. The implementation of the architecture, AUI components, and

services are described and results from the pilot studies are also presented.

Chapter 6 (Evaluation and results) presents the evaluation and results of the prototype developed

in Chapter 5. This chapter discusses a three-stage evaluation. The evaluation attempts to firstly

determine if the prototype adheres to SOA design principles, by performing an analytical

evaluation of the prototype. Secondly, the implementation of the prototype is evaluated based on

software engineering metrics. Finally, user testing evaluates the effect that the prototype UI has

Introduction 10

on the performance of novice contact centre agents. The results of the evaluations are also

presented and discussed.

Chapter 7 (Conclusions and Recommendations) concludes this research. Conclusions drawn

from this research are discussed in this chapter. The chapter verifies that the outlined objectives

were achieved and presents ideas for future research.

Figure 1.1: Dissertation Structure

Chapter 2
Service-Oriented

Architectures

Chapter 1
Introduction

Chapter 3
Adaptive User

Interfaces

Chapter 4
Service-Oriented

Analysis and Design

Chapter 5
Implementation

Chapter 6
Evaluation

Chapter 7
Conclusion

Chapter 2: Service-Oriented Architecture

2.1 Introduction

The advancement of computing technology has allowed organisations to store and manage an

increasing quantity of data and information. Managing such a large amount of information

requires a range of computing assets in order to effectively support and optimise all operations.

The service-oriented architecture (SOA) comprises an architectural style and design paradigm

that advocates the integration of disparate system by using independent, self-contained and

agnostic web services (Arsanjani 2004; Josuttis 2007; Erl 2008).

SOA evolved from the use of distributed objects (Trenman 2005). Design principles and

guidelines for loosely coupled components which enabled the composition of new applications

by using services thus became the cornerstone of SOA (Erl 2008). Loosely coupled components

facilitate the re-use of computational assets that exist within an organisation. The re-use of

computational assets leverages existing and legacy operational assets, which in turn increases the

return on investment of these assets (Schmetzer and Bloomberg 2004; Haddad 2005; Erl 2008).

The objective of this chapter is to gain a comprehensive understanding of SOA, and its enabling

technology: Web Services. In order to achieve this objective research question R1: What is SOA

and what are its components? will be answered.

The following will therefore be discussed. A brief introduction to Enterprise Architectures (EA)

(Section 2.1.1) and Distributed Architectures (Section 2.1.2) is given to illustrate the nature of

SOA as an enterprise spanning distributed architecture. A discussion on SOA is given (Section

2.2) to provide a definition for SOA and to highlight the principles that SOA advocates. The

components of SOA are discussed (Section 2.3), along with a detailed discussion on web

services, and the specifications, standards and protocols used by web services.

Related standards used to create SOA applications are also discussed (Section 2.4) and two

popular integration approaches are compared (Section 2.5). SOA application examples are

provided to illustrate how SOA concepts are applied in different domains (Section 2.6). Finally,

Service-Oriented Architecture 12

related work in user interfaces (UIs) for SOA are discussed to highlight existing research on how

to provide UIs using SOA (Section 2.7).

2.1.1 Enterprise architectures

The advent of computerised automated solutions has made the use of technology architectures

necessary when defining the abstract interactions of the components of these solutions (Erl

2008). Today, any organisation with a technological infrastructure has at some point defined an

enterprise architecture (EA) for the organisation. This technological infrastructure is dependent

on the enterprise‘s information needs and the specific context (Johnson et al. 2004). EA outlines

how the business processes and technological infrastructure are integrated and how that reflects

the organisations operating model (Weill 2007). The focus of EAs is therefore on processes,

objectives and organisational structures (Kohlmann 2007) while the focus of SOA is on service-

orientation. Business-level processes and services views are not accessible when subsequently

looking at low-level enterprise building blocks as a result (Zimmermann, Krogdahl and Gee

2004).

While EA defines organisational components, SOA defines the informational, application,

technical, implementational, operational and business architecture (Colab 2007). SOA is an

architectural style and therefore exists as a separate layer of abstraction below the EA (Colab

2007; Erl 2008).

Figure 2.1 illustrates the relationship between SOA and EA. Both SOA and EA have an

enterprise wide scope. However, SOA defines the more specific aspects of an organisation

(Knippel 2005; Colab 2007). The aspects of an organisation that SOA defines are the services.

Services are capabilities that provide functionality in a limited scope. Section 2.3.1 discusses

services within the context of SOA. In Figure 2.1 this is the Line of Business (LOB).

EA frameworks define the tools, processes and guidelines in the development of specific

enterprise architectures (Opengroup 2003; Winter and Fischer 2006). The majority of EA

frameworks advocate four viewpoints in the development of the architecture: the business

architecture, the application architecture, the information or data architecture and the technology

architecture (Winter and Fischer 2006).

Service-Oriented Architecture 13

Figure 2.1: The relationship between SOA and EA (Colab 2007)

Enterprise architectures can be comprised of several layers because of the complexity associated

with integrating organisational units (Knippel 2005). Distributed architectures facilitate the

integration of these layers and are discussed further below.

2.1.2 Distributed architectures

SOA is by its very nature a distributed architecture (Sommerville 2006; Li and Wu 2009). It

allows diverse applications running as services on different platforms to interact and create

meaningful applications. Distributed architectures separate the information-processing functions

of a system across multiple servers. Distributed system architectures provide several advantages

over conventional forms of computing (Sommerville 2006):

1. Open architecture: Distributed systems are usually designed around open protocols,

making it easy to add new resources written in the most suitable language (for the

application, the process or the developers preferred language) to the application;

2. Flexibility and Scalability: Open architectural designs allow distributed systems to easily

scale, but maintain the flexibility to change in order to meet business requirements;

3. Adaptability: Dynamic reconfiguration of the system is made possible, and applications

can adapt to the operating environment by binding with different services;

Service-Oriented Architecture 14

4. Resource Sharing: Organisational and inter-organisational assets are made accessible to a

wider range of users and applications;

5. Concurrency: In distributed environments, processes may operate at the same time but on

separate machines. These may need to communicate and exchange data; and

6. Fault tolerance: The availability of multiple computational units and services which are

loosely coupled means the system can tolerate some hardware and software failures

without any catastrophic consequences.

Distributed systems are usually composed of different applications and components, making

them large, complex and difficult to manage. Characteristics of distributed architectures and

some challenges, as identified by Sommerville (2006) and Josuttis (2007) include:

1. Complexity: Distributed systems are innately complex, as resources are distributed across

multiple locations, and issues such as performance are dependent on more than just

processing speed. Additionally, variables such as bandwidth speed and availability

significantly affect the system;

2. Security: Communication using communication protocols can expose a system to

malicious activities, such as eavesdropping;

3. Manageability: Heterogeneous computational units in the system that are faulty may have

a negative impact on the rest of the system. Distributed system adaptability may not

always rectify this timeously or even detect that there is a fault;

4. Unpredictability: Responses from the individual components of a distributed system can

be unpredictable and affect the stability of the overall system;

5. Heterogeneity: Distributed systems are composed of components and systems that were

developed for different purposes and were implemented at different times. They may be

deployed on different platforms and written in different programming languages. They

may also be based on different programming paradigms. This makes them very different

to each other; and

6. Ownership: This is an important characteristic which, however, does not apply to all

distributed systems. Components and sub-systems of a larger system may have different

owners.

SOA has evolved to overcome some of these challenges. There are, however, challenges that are

inherent to distributed systems which cannot simply be overcome by a change in architectural

Service-Oriented Architecture 15

design principles. Design principles are constraints and guidelines that guide the design of

architectures to adhere to established constraints (Erl 2008). Such challenges differ between

project implementations and must be solved on an individual implementation basis. Monolithic

architectures, from which SOA partly evolved, do not support the level of openness and

abstraction to design highly interoperable systems that are agile enough to adapt to new or

changing business needs (Erl 2005). The following sections discuss existing distributed

architectures that are part of the pool of architectures from which SOA has evolved.

2.1.2.1 Distributed object architecture

Objects of a distributed system can, in theory, run on disparate systems, they can be implemented

in different languages and be agnostic to other objects in the system (Sommerville 2006;

Trenman 2005). The implementation of distributed object architectures, however, requires

middleware that manages communications between distributed objects (Norman 1998; Trenman

2005). The middleware is responsible for linking the distributed objects together and providing

seamless communication between them. Two dominant distributed object system architectures

exist: CORBA, DCOM.

Common Object Request Broker Architecture (CORBA) is a distributed object computing

paradigm that combines distributed computing and object-oriented computing (OMG 2008;

Henning 2008). The re-usable objects in CORBA are constructed as modules and combined to

create applications (Sommerville 2006). Objects can be replaced or updated without affecting the

rest of the applications, and objects can communicate regardless of physical location (Taylor,

Medvidovic, and Dashofy 2009).

CORBA is middleware that allows disparate modules to communicate by acting as an object

request broker between the distributed objects and passing messages via a service bus to the

appropriate object (OMG 2008). CORBA functions on the principle of an ―Object Request

Broker‖ (ORB), a concept similar to a service bus in SOA (Section 2.5). The ORB is at the core

of any CORBA-based application brokering communication between the distributed objects of

the application (Vinoski 1997; OMG 2008; OMG 2009).

Service-Oriented Architecture 16

Figure 2.2 is an adapted version of the Object Management Group‘s (OMG) specification for

CORBA (Sommerville 2006; OMG 2008). This model proposes that a CORBA-distributed

application comprise:

1. Applications Objects: objects designed and developed for a specific application;

2. Standard Objects: objects define by the OMG for specific domains, for example, finance,

insurance, e-commerce, etc.;

3. Fundamental CORBA services: services and modules providing distributed computing

capabilities, such as directories and security management; and

4. Horizontal CORBA facilities: these are common facilities that are not specific to any

domain, such as UI facilities or system management facilities.

Figure 2.2: Fundamental CORBA architecture (Sommerville 2006)

The rise in popularity of CORBA began in the 1990s as it became the distributed computing

architecture of choice for enterprises-distributed systems (Henning 2008). CORBA, however,

had several shortcomings. Some of these shortcomings have since been addressed (Norman

1998; OMG 2008). CORBA is, nonetheless, not as popular as it was in the 1990s. Some factors

that led to the decrease in interest in the CORBA specification include (OMG 2008; Henning

2008):

1. Lack of open protocols: CORBA does not use open protocols in its communication

system. Instead, it has language mappings;

2. Cost: Expensive to implement and maintain;

CORBA services

Domain

facilities

Horizontal C ORBA

facilities

Application

objects

Object request broker

Service-Oriented Architecture 17

3. CORBA Component Model (CCM): Is sometimes too large and complex to be used

effectively;

4. Mapping: Currently there is only C++ and Java mapping for CORBA; and

5. Emerging Technologies: Industry shifting focus to new technologies, such as SOA and

web services-emerging technologies which offer more flexibility, interoperability and

language, as well as platform independence than CORBA.

CORBA applications have been relegated to run inside organisational networks, for two main

reasons. Firstly, in these closed environments the CORBA components are protected by firewalls

and security risks are minimised (Frankel 2005; Henning 2008). Secondly, CORBA is not a web

protocol, and as such is not used in B2B e-commerce (Frankel 2005).

The Distributed Component Object Model (DCOM) is an extension to Microsoft‘s Component

Object Model (COM) (OMG 2008). This extension allows COM to support communication

between objects on different computers. This may function over a LAN, WAN or the Internet.

The concepts in DCOM are very similar to SOA design concepts. Applications connect directly

to components and do not need middleware to broker the messaging or interaction (Microsoft

2008).

A fundamental difference between DCOM and SOA is that SOA uses open communication

standards and protocols for communication. DCOM on the other hand uses Remote Procedural

Calls (RPC) for communication. Although DCOM allows distributed systems to communicate

and exchange data, they are limited to systems that are able to interact with Microsoft‘s COM or

have an adapter or wrapper to convert the communication messages to a readable format. The

use of closed standards severely limits the systems and components with which DCOM is

capable of interacting. In addition, services provided by DCOM components are not published in

any way, thus placing the responsibility of finding the right services on the application

developer.

2.2 Service-oriented architecture

The previous section discussed existing distributed object architectures and distributed

architectures in general in order to provide a brief history of existing architectures from which

Service-Oriented Architecture 18

SOA was developed. This section introduces SOA and provides a definition for SOA which is

used in the rest of this study.

Organisations that provide services to customers must invest in a range of information

technology (IT) assets to support their operations (Newcomer and Lomow 2005). These assets

are integral components of the organisation, as they automate and control services to increase the

returns on investments in the business (Microsoft 2006). These assets are developed by different

vendors, are written in different programming languages and supported by diverse technologies,

hardware, operating systems, data storage and middleware (Erl 2005).

As a result, organisations find themselves with a large number of heterogeneous systems that are

not interoperable and are complex to integrate. The option of rebuilding an infrastructure from

the ground up may prove to be too costly and even more complex (Kodali 2005). SOA evolved

in order to resolve such issues.

SOA is an architectural style that focuses on loosely coupled system components. Re-usable

functionality is abstracted to the basic component of SOA, the web service (Knippel 2005).

Figure 2.3 illustrates the relationship between SOA, Component-Based Architectures (CBA) and

Object-Oriented Architectures (OOA) (Wilkes 2004).

Figure 2.3: Relationship between SOA, CBA and OOA (Wilkes 2004)

SOA is not predicated by CBD or OOA; Figure 2.3 illustrates the evolution path of SOA and the

influence that both CBD and OOA have on SOA. Software components developed using CBD or

Service-Oriented Architecture 19

OOP can be exposed as Services. By providing abstracted functionality as services, the need for

rebuilding applications is reduced, since the abstracted functionality can be re-used. Creating

new applications can be achieved by orchestrating web services to match new or existing

business functions.

Organisations with well-defined business functions can abstract the re-usable aspects of the

business functions to web services and make them accessible across the enterprise or with

partners (Erl 2005). Web services can abstract legacy applications by wrapping around the

legacy systems. Since a web service is accessible via its open interface, wrapping around a

legacy system exposes the functionality provided by the legacy application as a service (Knippel

2005).

Gartner has found that the use of SOA is still growing (Abrams and Schulte 2008). The Gartner

hype cycle shows SOA increasing in maturity (Figure 2.4). In the Figure, SOA has passed the

point of inflated expectation and the trough of disillusionment. This means that organisations

have a better understanding of SOA, its benefits and capabilities. They also understand that

simply implementing an SOA will resolve their integration problems.

Figure 2.4: Gartner Hype Cycle for Emerging Technologies (Carpenter 2009)

Service-Oriented Architecture 20

There are still however, a large number of definitions of SOA. Most of them revolve around the

notion of services; nevertheless a concrete definition of SOA is required for the purposes of this

research. The following section provides a concrete definition of SOA.

2.2.1 Definition of SOA

SOA is perceived by some as a universal solution to a wide variety of architectural challenges.

Various organisational bodies and vendors have, in consequence, proposed definitions for SOA.

A concrete definition of SOA is required for the purposes of this research. Erl (2005) provides a

definition of SOA as: “…an architectural model that aims to enhance the efficiency, agility, and

productivity of an enterprise by positioning services as the primary means through which

solution logic is represented in support of the realization of strategic goals associated with

service-oriented computing‖.

Erl‘s (2008) definition of SOA as ―an architectural model‖ is consistent with most existing

definitions of SOA today (Bianco, Kotermanski and Merson 2007; Shen 2007). Shen (2007)

also provides a definition of SOA: ―An architectural style whose goal is to achieve „loose

coupling‟ among interacting and contracted services via communication protocols.‖

Shen‘s (2007) use of the term ―loose coupling‖ suggests that the benefits described by Erl (2005)

can be achieved by using loosely coupled components. Loose coupling is an important concept

in SOA, since many of the benefits of SOA such as interoperability and ultimately re-use can be

realised through loosely coupled components.

A formal definition of SOA for use in this study could therefore be: ―An architectural style

whose goal is to achieve loose coupling by positioning services as the primary means through

which solution logic is represented.‖ This definition will be used for the remainder of this

research when referring to SOA.

2.2.2 Service orientation

Design using SOA principles provides the flexibility and agility for organisations to integrate

new assets and to create business processes that utilise these assets. Erl (2005) identifies the

goals and benefits of service-oriented computing as to:

Service-Oriented Architecture 21

1. Increase their intrinsic interoperability: Interoperable systems are capable of sharing data

seamlessly amongst themselves. Standardisation is important as it forms a basis from

which departments, partners and stakeholders can model their systems to allow them to

communicate;

2. Increase federation: In an IT-federated computing environment components, resources

and applications are united and function as one while maintaining their independence

from each other;

3. Increase vendor diversification options: Designing a service-oriented architecture that is

well aligned with, yet is not dependent on major vendor SOA platforms, allows the

abstraction of propriety service implementation details. This affords organisations the

option of selecting best-of-breed offerings of vendor products and components with

minimal alterations or redesign;

4. Increase Return on Investment: interoperable and agnostic solution logic increases the

potential for re-use, since the logic can be re-used in different compositions and

applications. This reduces the cost of redevelopment and any up-front investment in

solution logic has long-term financial returns; and

5. Increase organisational agility: Agile organisations are able to efficiently respond to

changes in the business environment by adapting business processes or creating new

ones. Highly standardised and composite services allow organisations to restructure

automated business processes to match changing requirements.

SOA is an evolution of the component style of distributed system development which defines

constraints for interaction and data exchange in a distributed environment (OASIS 2006). The

SOA paradigm advocates building heterogeneous units of computation that are autonomous and

platform independent and can be described, published and programmed using standard protocols

(Laliwala 2007). Section 2.3.1 discusses services in further detail.

The goals of increased interoperability, federation, diversification and agility can be achieved if

services are well defined prior to any developmental undertaking. Principles of SOA design

assist in the identification, abstraction, definition and implementation of services (Erl 2008).

These are discussed in the following section.

Service-Oriented Architecture 22

2.2.3 Principles for SOA Design

Erl (2008) defines a principle as a ―generalized, accepted industry practice‖. SOA is an

architectural style and design paradigm with design principles that provide guidelines for

service-oriented (SO) analysis and design. SOA design principles therefore provide guidelines by

which best results can be attained when using SOA.

Various service oriented principles exist (Knippel 2005; OASIS 2006; Erl 2008) and, in general,

these principles revolve around the concept of loosely coupled system components that integrate

effortlessly by using standard and open communication protocols. Erl (2008) proposes seven

design principles that encompass the most essential characteristics of SO design. These

principles were devised through extensive research involving various organisations and vendors

(Erl 2008). The seven principles are:

1. Service Composability: ―Services are effective composition participants, regardless of

the size and complexity of the composition”;

2. Service Coupling: ―Service contracts impose low consumer coupling requirements and

are themselves decoupled from their surrounding environment‖;

3. Service Abstraction: ―Service contracts only contain essential information and

information about services is limited to what is published in service contracts‖;

4. Service Statelessness: ―Services minimize resource consumption by deferring the

management of state information when necessary”;

5. Service Reusability: ―Services contain and express agnostic logic and can be positioned

as reusable enterprise resources‖;

6. Service Autonomy: ―Services exercise a high level of control over their underlying

runtime execution environment‖; and

7. Service Discoverability: ―Services are supplemented with communicative meta data by

which they can be effectively discovered and interpreted‖.

Designing SOA systems by adhering to the principles above, allows systems to benefit from the

loose coupling and re-usability of system components as services. The principles outlined realise

the qualities of SOA in the systems that adopts these principles (Zhang, Liu and Yang 2005). In

addition, the principles that are interdependent thereby enable other principles to be more

Service-Oriented Architecture 23

effective. Designing systems, however, requires the knowledge of the components in a system

and how they interact. The following section discusses the components of SOA.

2.3 Components of SOA

Bianco et al. (2007) define SOA as ―an architectural style where systems consist of service users

and service providers‖. An architectural style defines the vocabulary of component and

connector types and the constraints on how they can be combined (Fielding 2000). The basic

components of SOA are the service user and the service provider. The find-bind-execute pattern

illustrated in Figure 2.5 shows how the components of the SOA interaction model are

constrained in their interaction (Erl 2005; Papazoglou 2006; Bianco et al. 2007; Erl 2008). The

service provider is software that allows the sending and receiving of messages, while the service

itself is the abstracted functionality that is provided (Zhang et al. 2005).

Service registries allow service providers to register and publish their services in a registry. Once

a service has been developed, it can be made accessible to service consumers (Clement and

Rogers 2004). Service consumers can be other applications, services or end-users (Erl 2005).

Service providers make a service accessible to service consumers by first registering the service

in a registry and then publishing the service to a service registry (Clement and Rogers 2004). The

publishing of a service in a registry involves (Kanneganti and Chodavarapu 2008):

1. Registering the service by entering service information such as the service name, the

unique resource locator (URL) of the service, and specifying the location of the service

contract (using a different URL). Service contracts are defined using the Web Service

Definition Language (WSDL).

2. Publishing the service to make it accessible to service consumers. This step binds the web

service to the registry and users; searching the registry can now access the web service

(Kanneganti and Chodavarapu 2008).

The service consumer is bound to a service provider using a secondary component such as a

service registry before it can invoke and make use of a service. A service consumer seeking to

access a service that is published in a registry can link directly to the service if the address within

the registry is known or the consumer can search the registry for the service. Once an appropriate

Service-Oriented Architecture 24

service is found within the registry, service consumers can bind to the service provider after

which they can begin using the service by invoking it.

Figure 2.5: SOA interaction model

2.3.1 Web services

The Organisation for the Advancement of Structured Information Standards (OASIS) is one of

three standard bodies which aim to define SOA-related standards (OASIS 2006). The adoption of

the proposed standards will increase levels of interoperability amongst organisational systems, as

well as help in the analysis and development of SOA systems. The other two major bodies are

the World Wide Web consortium (W3C) and WS-I.

The OASIS group provides a SOA reference model which defines a service as ―a mechanism to

enable access to a set of one or more capabilities, where the access is provided using a

prescribed interface and is exercised consistent with constraints and policies, as specified by the

service description‖ (OASIS 2006). Business processes are composed of different activities and

in the same manner, SOA is composed of services. Services are the building blocks from which

composite applications are constructed (Papazoglou 2006; Josuttis 2007; Erl 2008). A service

represents a self-contained and well-defined piece of functionality that maps onto a real-world

business activity (Josuttis 2007; Erl 2008). Services can be independent software programs,

legacy applications or discrete functions (Lawler and Howell-Barber 2007; Erl 2008).

Web services are currently the most popular enabling technology for SOA (Knippel 2005;

Laliwala 2007; Erl 2008). The term service is typically used to refer to a web service. This

Service-Oriented Architecture 25

research focuses on service-orientation by way of web services; therefore any mention of

services refers to web services and vice-versa.

Web services are capable of collaborating and exchanging data in an agile network which can

adapt itself, depending on computational requirements. The OASIS Group (OASIS 2006)

compares web services to capabilities – the ability to solve or support a solution for a business

problem. Capabilities meet the particular requirements of a problem, and can be executed

independently, or in combination with other units in order to satisfy a given business need.

Each web service has its unique functional context and has capabilities defined specifically to

achieve this. Functional context refers to the exact function a service provides (Papazoglou

2006). As an example, a currency conversion function converts from one currency to another. Its

functional context is simply converting from one currency to another. Services can also be

invoked by different applications or services. The execution context refers to the broader domain

in which a service is executed (OASIS 2006).

A travel agent converting exchange rates for a travel package may invoke the currency

conversion service mentioned earlier. A bank can also invoke the exchange rate service to

acquire currency information. Services run within functional contexts that are agnostic of each

other (Erl 2008). This allows the service to participate in more than one service composition and

to be executed in different execution contexts.

Orchestration Choreography

Service

A

Service

B
Service

C

Service

A

Service

B
Service

C

Figure 2.6: Orchestration (left) vs. Choreography (right)

Service-Oriented Architecture 26

 Business processes are a series of business functions that are executed to achieve a business goal

(Josuttis 2007). Services must be choreographed or orchestrated to match a business process in

order to create business processes or applications (Figure 2.6). Service orchestration involves

using a process flow language to manage the execution of services in a given sequence (Shen

2007, Menge 2007). Process applications must identify certain characteristics of services to be

composed in order to effectively achieve either choreography or orchestration.

Service models group services by common characteristics, such as the encapsulated logic, the

potential for the re-use of this logic and how this logic relates to domains in the organisation

(Knippel 2005, Erl 2005). There are numerous other classifications of models; however, only the

most general models are discussed. The three primary service models are illustrated in Figure 2.7

and subsequently discussed.

Figure 2.7: Service Abstraction Layers (Erl 2008)

2.3.1.1 Task services

Task services are high-level, coarse-grained goals that represent the tasks a system can perform.

A task service is a business service which is directly associated with a specific business task or

business rules (Josuttis 2007; Erl 2008). These services are not service-agnostic. An agnostic

service is one that is not explicitly aware of other services around it. A service that has any

assumptions about services in its environment is tightly coupled to that environment and

changing some of its aspects, such as its implementation can have repercussions on its execution

environment (Quynh and Thang 2009). Task services are therefore dependent on the parent

processes that invoke them and are to a lesser degree tightly coupled to their environment. Such

services typically implement high level business functions.

Task Service Layer

Entity Service Layer

Utility Service Layer

Service-Oriented Architecture 27

In a contact centre environment an example of such a service is logging a query. The task

consists of a series of steps, where user and call information are captured and forwarded to other

services for processing.

2.3.1.2 Entity services

Entity services represent a business-centric service that bases its functional boundary and context

on one or more business entities such as a customer or an employee. Such services are highly

reusable because they are inherently agnostic to parent processes. This characteristic allows

entity services to be leveraged in multiple parent business processes that interact with a given

entity. In a contact centre, an example of such a service is a customer service. This service would

deal with all customer-related information (adding, editing, and retrieval of customer

information) (Erl 2008).

2.3.1.3 Utility services

Utility services perform at the lowest level of granularity (Josuttis 2007). They provide non-

business-centric utility functions that are generic in nature. They are highly agnostic and can be

used within or between applications (Erl 2008). Terms that characterise such services include

atomic, consistent, isolated and durable (Josuttis 2007).

Figure 2.8: A purchase order application invoking services (Papazoglou 2006)

Service-Oriented Architecture 28

The abstraction level of a web service depends on how a service interacts with other services, its

level of autonomy and the logic it possesses (Erl 2005). Higher level business-oriented services

are able to invoke discrete services and execute them in a business process.

Figure 2.8 illustrates this concept. In the figure, the purchase order represents a task service. It

does not include lower level functions, such as credit checking, inventory checking, billing or

shipment, which are required to fulfil a purchase order. Lower level functions are instead re-used

from services whose functional scope is smaller than their invoking service (Papazoglou 2006).

In Figure 2.8, these lower level functions represent utility services.

2.3.2 Web services architecture

The W3C consortium, a standardisation body for web technologies, defines a web service as

―…a software system designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-processable format (specifically [Web

services description language] WSDL).‖ (W3C 2006)

The definition above establishes that web services allow machines to communicate using

standard communication protocols transmitted over hyper text transfer protocol (HTTP). HTTP

is a widely adopted internet protocol for the transmission of data between communicating

machines; and applications using this protocol are able to communicate with minimal effort,

despite being deployed on different platforms and possibly in different geographical locations.

The growth in popularity that web services have experienced can be attributed to a variety of

factors. Lewis and Wrage (2006) list a few of these factors as:

 Systems can interact with one another via standard web technologies;

 Services can be built once and re-used many times;

 Services can be implemented in any programming language and on any platform;

 Systems can advertise capabilities as services for other systems to use; and

 There is tremendous vendor support for web service technology.

These factors stem from the concept of re-usability. Web services facilitate the reusability of

computational assets, and this has a network effect. The more popular web services standards

and protocols become, the more web services are used to integrate systems. These systems are

Service-Oriented Architecture 29

consequently able to communicate with a growing network of systems, thereby increasing the

value of the overall system (Marks 2004).

It is important to note the distinction between web services and SOA. SOA is not web services

and using web services is not SOA. Web services are a technology specification, while SOA is

an architectural style and design paradigm (Erl 2005). Web Services were first developed in

order to resolve issues related to distributed systems, such as lack of interoperability, by using

platform-independent and open protocols. Web services are therefore a standard approach to

making reusable components available and accessible across the web (Sommerville 2006).

Figure 2.9: Web Services protocol stack (Lewis and Wrage 2006)

Figure 2.9 shows the web services protocol stack. The main protocols of the stack are the

WSDL, SOAP and UDDI. Web services are based on a core set of open communication

standards and protocols. These use XML notation for the communication and data representation

(W3C 2006; W3C 2009d).

Simple Object Access Protocol (SOAP) is used for message and data exchange (W3C 2007),

while Web Service Description Language (WSDL) describes the interface of the web service

(W3C 2009d). Web services discovery uses the UDDI protocol (Bellwood et al. 2004), while

other standards cover events management, attachments, security, reliable messaging, transactions

and management (Lewis and Wrage 2006; Microsoft 2006). Figure 2.10 illustrates SOAP, UDDI

and WSDL interact in a web service architecture.

Service-Oriented Architecture 30

Figure 2.10: SOAP, WSDL and UDDI interaction (Laliwala 2007)

2.3.2.1 Web service description language (WSDL)

WSDL is a specification which defines how to describe a web service using XML (Cerami

2002). It defines how service consumers can interact with service providers by describing the

public interface of a service (Cerami 2002; Hansen 2007). The public interface outlines how the

service is invoked and how data are exchanged (Papazoglou 2006). WSDL describes the web

service in terms of its operations and the supported data types of the operations, and thus serves

as a contract between the service consumer and service requestor (Cerami 2002). This is why it

is sometimes referred to as a service contract (Erl 2008).

The description of operations using XML separates the implementation of the service from its

description and the implementation details of the service are never revealed (W3C 2009d). This

abstraction allows the implementation of a service to evolve without causing dependency failures

from consumers of the service. Sequence meta-data for operation messages are located in the

WSDL as well as the protocol bindings of the service and the Uniform Resource Identifier (URI)

of the service logic. The WSDL has two distinct sections:

Service-Oriented Architecture 31

1. Service-interface definition: this section describes the web service interface structure

which has information on the capabilities of the service, its operation parameters as well

as any abstract data types; and

2. Service Implementation: this section binds the interface to concrete implementations,

such as network address, specific protocols and concrete data structures.

Figure 2.11: An Example of a WSDL document (Papazoglou 2006)

Figure 2.11 illustrates the structure of a WSDL document. The WSDL specification uses the

following elements to define services (Cerami 2002):

1. Types: This element is a container for data type definitions, using a type system such as

XML Schema Definition (XSD);

2. Message: This element describes an abstract, typed definition of the data being

communicated. It contains different parts of the message, such as the name of the

message, parameters for the message and return values for the message;

3. Operation: an abstract description of an action supported by the service;

Service-Oriented Architecture 32

4. Port Type: This element describes an abstract set of operations supported by one or more

endpoints;

5. Binding: This element describes the protocol and data format specification for a particular

port type for how the service is implemented on the ‗wire‘;

6. Port: a single endpoint defined as a combination of a binding and a network address;

7. Service: This element defines a collection of related endpoints and the address (using a

URL) for invoking the service using SOAP (Section 2.3.2.3); and

These elements together define the WSDL of a web service thereby allowing other services and

applications to access the functionality of the service in a standard way.

2.3.2.2 Universal discovery description integration (UDDI)

The Universal Description Discovery and Integration (UDDI) protocol deals with the publishing

and discovery of web services (Bellwood et al. 2004). It provides definitions for registries of

business services (Kanneganti and Chodavarapu 2008). Registries can be made available to the

general public, or they can be private – that is, used within the boundaries of an organisation - or

they could be between partnering organisations, for example Amazon web services are only

available to registered developers and businesses (Amazon 2009).

It is not the entire web service that is published to the registry, only the WSDL is published to

the registry. When a consumer (service or developer) locates the WSDL of the service they

require within the UDDI registry, they are able to bind to it and invoke its logic as required

(Bellwood et al. 2004).

2.3.2.3 Simple object access protocol (SOAP)

SOAP is an XML-based message exchange protocol for communication over standard

HTTP/HTTPS. It is lightweight and geared for the exchange of information in a decentralised

environment. The use of XML technologies to define a messaging framework, allows it to be

platform and programming language-independent (Gudgin et al. 2007).

Service-Oriented Architecture 33

Figure 2.12 shows an example of a SOAP request. Web services take advantage of this fact in

the exchange of messages with other web services. The lightweight properties and self-contained

nature of SOAP allow for secure communication.

2.4 Related standards

Similar to the situation in most computerised solutions, interactions between components can be

implemented using different approaches. In SOA, service communication can be accomplished

in several ways. Each communication approach may impact key quality attributes of the overall

system. An approach to services that does not make use of a standard contract is the

Representational State Transfer (REST) approach. REST and another important standard for web

services – BPEL – are discussed in the following section.

2.4.1 Rest web services

Representational State Transfer (REST) is a Web architecture that promotes the definition of

web services as stateless client-server interfaces that return XML-based data (Fielding 2000).

Web Services are accessed using universal resource identifiers (URI), similar to how pages or

documents are accessed on the World Wide Web. At its core, REST defines network architecture

principles outlining how resources are defined and accessed.

Remote Procedural Call (RPC) is a protocol that allows remote method calls on objects in a

distributed environment. RPC with web services relies on SOAP for communication. RPC differs

from REST in several ways. Firstly, REST uses simple commands on resources: get, put, delete

and post (Tilkov 2007), while RPC allows defined methods for an object to be invoked.

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap=http://www.w3.org/2001/12/soap-envelope

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

<m:GetAStockPrice>

<m:StockName>MSFT</m:StockName>

</m:GetAStockPrice>

</soap:Body>

</soap:Envelope>

Figure 2.12: An example of a SOAP request message

http://www.ics.uci.edu/~fielding/
http://www.w3.org/2001/12/soap-envelope

Service-Oriented Architecture 34

Secondly, REST deals with the exchange of resources, where verbs define a uniform concept and

nouns define more identifiers while RPC methods must be aware of the existence of objects

within their execution environment before they may invoke any of the object methods.

Table 2.1: RPC method (Left) REST URI (right)

 RPC Method Call REST URIs.

Resources getUser()

addUser()

removeUser()...

http://example.com/users/

http://example.com/users/{user} (one for

each user)

http://example.com/findUserForm

Invocation

code

exampleAppObject = new

ExampleApp(„example.com:1234‟);

exampleAppObject.removeUser(‗001‘);

userResource = new

Resource("http://example.com/users/001")

userResource.get()

Table 2.1 shows the difference between an RPC client method call and the invocation of a REST

Web Service resource using its Universal Resource Identifier (URI). The table compares the

access methods for RPC against access methods for REST.

The REST approach uses URIs to access functions and data. The URI method allocates an ID to

every resource, thus, allowing access of that resource by simply invoking its URI. On the other

hand, RPC-type services are invoked as methods. The RPC-method invokes the remote

command of an object in order to access or manipulate any resource.

Table 2.2: When to use REST or SOAP-RPC web services (Mulik 2007)

REST SOAP (RPC)

Completely stateless web services are needed.
A formal contract is needed for a service

(to be provided as WSDL).

A caching infrastructure can be leveraged.

Complex non-functional (aka QoS)

requirements are present and need to be

handled in a standardized way.

The requirement is for point-to-point integration. This means

both service consumer and provider have mutual

understanding of the context and content being passed.

Requirements for asynchronous service

invocation are present.

Limited bandwidth exists between service consumer and

provider; e.g. having mobile device as a consumer.

Front-end technologies such as AJAX are being used.

In the comparison of RPC and REST in Table 2.1, both examples attempt to achieve the same

thing. The RPC approach defines the resources as a method, which can be invoked by the client.

The rest approach defines the resources as URIs, which can also be accessed by the client.

Service-Oriented Architecture 35

Depending on the architecture of an application, either the REST approach or the RPC approach

may be used. Table 2.2 shows the circumstances under which either REST or SOAP (RPC) is the

most appropriate (Mulik 2007).

Although REST Web Services are a growing trend, they have not been considered in this study.

This is because, unlike RPC web services, REST web services do not use description languages,

like WSDL, to document a contract for the services.

Accessibility to web services allows them to be invoked and integrated into applications.

Integrating a small number of services is acceptable when using this approach. The integration of

a larger number of services, especially when creating a business process, requires a more

structured and simplified approach for the effective execution of the web services.

Discussed next is BPEL. This standard was designed and created to facilitate the execution of

services in a process.

2.4.2 Business process execution language

Simply developing web services and exposing their functionality is not sufficient. In order to

fully realise the potential of web services as an integration platform, the complex interactions of

web services and business processes must be integrated by way of a standard process integration

model (Andrews et al. 2003; Papazoglou 2006). Given a scenario where a concert-purchasing

service has three operations: getting a price quote, purchasing a ticket, confirmation and

cancellation, we see the need for orchestrating these operations in the right order. Shen (2007),

therefore, recommends that business processes need to:

 Co-ordinate asynchronous communication between services;

 Correlate message exchanges between parties;

 Implement the parallel processing of activities;

 Implement compensation logic (e.g. undo operations);

 Manipulate or transform data between partner interactions;

 Support for long running business transactions and activities; and

 Support for exception handling.

Service-Oriented Architecture 36

Business Process Execution Language (BPEL) is an XML-based processing language for

managing the flow of business processes. In short, it is for the ―formal specification of business

processes and business interaction protocols‖ (Papazoglou 2006). BPEL is a specification used

to achieve orchestration.

Orchestration of services involves invoking services in a predetermined manner so as to achieve

a business objective. BPEL exists as a separate layer on top of WSDL, orchestrating the

interaction between web services. The web services provide computational capability, while the

BPEL defines the higher level business process (Andrews et al. 2003).

It is evident, from the descriptions of BPEL that it provides the agility required to effectively

leverage web services. BPEL can be used to reorganise an application to match new business

needs and to invoke new or different web services when the needs of a business or their

application requirements change, rather than re-engineering applications that invoke the services.

A number of other standards for the choreography of web services exist. WS-Coordination and

WS-Transaction, for example, complement BPEL by providing means for specifying protocols

used in interactions with transaction-processing systems and other applications that require

coordinating web services (Andrews et al. 2003).

BPEL allows web services to be orchestrated and invoked in predefined sequences that match

business processes (Andrews et al. 2003). BPEL does not, however, cater for uniform messaging

and transformation between web services. Enterprise service buses (ESB) are used to integrate

the messaging and transformation of services (Bianco et al. 2007). The following section

discusses this approach by which enterprise integration may be achieved.

2.5 SOA integration approaches

During the process of architecting an SOA system, many services may be identified for

implementation. The main approaches to integrating the interaction between services are the

point-to-point (hub-and-spoke approach) and the ESB approach (Bianco et al. 2007).

The point-to-point approach requires that communication and interaction between web services

be managed by the web services themselves (Figure 2.13 B). A direct connection between the

applications is designed, implemented, deployed and administered by the communicating

Service-Oriented Architecture 37

services (Lewis and Wrage 2006). Furthermore, the responsibility for messaging and routing is

distributed among the communicating web services.

Figure 2.13: SOA Integration approaches, ESB (A) and Point-to-Point (B)

ESBs offer a structured approach to messaging and routing between services (Figure 2.12 A,

Figure 2.13) (Lewis and Wrage 2006; Menge 2007). This approach is most appropriate in a

situation where a large number of services are deployed (Lewis and Wrage 2006).

As with SOAs, there are various definitions for ESB, but the central concepts are similar in most

definitions. Menge (2007) gives a definition encompassing the major concepts of ESB ―An

Enterprise Service Bus is open standards, message-based, distributed integration infrastructure

that provides routing, invocation and mediation services to facilitate the interactions of

disparate distributed applications and services in a secure and reliable manner‖.

ESB refers to both an architectural design and a software product (Bianco et al. 2007). The ESB

is the brokering middleware of software products that link applications with each other in an

SOA. It offers a unified, standard approach of passing messages between applications and other

core services. Each application communicates with the ESB, as opposed to each other (as is the

A B

Service-Oriented Architecture 38

case with point-to-point integration). The ESB transforms the message to meet predefined

standards, and then routes it to the appropriate application or service.

Figure 2.14: Logical SOA reference architecture

The ESB can be composed of services and processes for routing and message transformation

(Bianco et al. 2007; Menge 2007). The important services include the mediation service and the

registry and repository services (Figure 2.14) (Bianco et al. 2007). Interaction services, process

services and information services support the business and application services by managing

process flow by using (for example) BPEL to orchestrate web services.

Proponents of ESB claim the following benefits (Trenman 2005):

 Interoperability: ESB allows disparate systems on different platforms with different data

requirements to interact as service providers and consumers with minimal change to each;

 Modifiability: ESB allows many types of changes to service providers without affecting

the consumers of their services; and

 Extensibility: ESB facilitates the addition of services compared to the point-to-point

integration approach.

ESBs can be complex and hard to implement and this creates a large margin for error. In some

cases using an ESB creates its own set of unique problems. Some issues affect the decision to use

an ESB include:

Service-Oriented Architecture 39

 Performance: overheads in message transformation and routing can negatively impact

application performance; and

 System complexity and costs: may increase with the addition of new layers which have to

be supported and in ensuring that applications that interact with the ESB meet the

required standards.

Usage of either the point-to-point approach or an ESB depends on the SOA implementation; and

many factors must be considered. Some of these include (Keen et al. 2004):

 Current number of integrated services, as well as the planned services;

 Performance requirements of the current and future applications in terms of throughput

and response times;

 Communication patterns (e.g. synchronous, message queues, etc.);

 Support for current and future services; and

 Current and future technology trends.

ESBs are a matter of choice in the design and implementation of an SOA. Although there are

many benefits to be gained, they can introduce drawbacks such as the increased complexity of a

system. The use of an ESB is therefore dependent on the designers of the SOA and the

constraints which limit what the SOA may be capable of achieving.

2.6 Service-oriented applications

The SOA design paradigm has enabled a new breed of applications which allow scalable

infrastructure and software to be delivered over the internet as a service. Cloud computing is one

such application of SOA, where computing is conducted in a cloud. Data storage and information

processing occur in infrastructure abstracted to data centres that run parallel algorithms and

applications such as MapReduce, implemented in frameworks to manage processing on a large

scale (Varia 2008).

Software as a service refers to the applications which are made accessible to consumers through

the cloud. These concepts are discussed in the following sections.

Service-Oriented Architecture 40

2.6.1 Cloud computing

The traditional client-server architecture, introduced in the 1980s allowed data to be manipulated

in a central repository or server. Cloud-computing moves the server into data centres. Clouds are

defined as ―… a large pool of easily usable and accessible virtualized resources (such as

hardware, development platforms and/or services)‖ (Vaquero et al. 2009). The server and

hardware infrastructure are ―virtualised‖ and made accessible over the internet.

Cloud-computing is seen as a major step forward in on-demand computing (Vouk 2008). Ever

since IBM‘s announcement of the ―Big Cloud‖ (IBM 2007a), cloud-computing has become a

major talking point in both academia and industry (Amazon 2009; Nimbus 2009; OpenNebula

2009; Status 2009).

Cloud-computing is an example of SOA where computing infrastructure can be re-used to

provide on demand services to consumers by making them available as web services (Atkins et

al. 2003; Varia 2008). ―Consumers‖ refers to organisations, applications or individuals seeking

to use the virtualised infrastructure in the cloud.

Cloud-computing evolved from various architectures and computing paradigms, namely, grid

computing, virtualisation, utility computing and web services (Vouk 2008). Cloud-computing

can therefore be implemented by using any of the various architectures from which it evolved

(Weiss 2007). Underlying cloud-computing is SOA which what allows the cloud to be agile and

to be available on demand (Vouk 2008; Wang et al. 2008). The ‗cloud‘ refers to the hardware

and software running in a data centre to support applications delivered as a service over the

Internet (Armbrust et al. 2009).The cloud‘s infrastructure and capabilities are made accessible as

applications to consumers through the use of web services.

Amazon‘s Elastic Compute Cloud (EC2) (Amazon 2009) and Google‘s AppEngine (Google

2009c) for example, have servers and software that allow applications, such as Google Docs and

Gmail to be accessed over the internet (Weiss 2007; Varia 2008).

Microsoft‘s Windows Azure Platform is a cloud-computing platform that runs in Microsoft data

centres and manages the cloud infrastructure (Chappell 2009a). The Azure platform provides the

Windows Operating System service (Window‘s azure compute service), data storage (SQL

Service-Oriented Architecture 41

Azure storage service) services and .NET services. These are made accessible to remote client

applications over the internet (Chappell 2009b). The platform infrastructure is loosely coupled

and local and internet applications can invoke computing services as required, easily scaling up

when computing needs increase. The software that is delivered as a service is known as Software

as a service (SaaS) and is discussed further in the next section.

2.6.2 Software as a service

―Software in a cloud becomes a service‖ (Weiss 2007). Software as a service (SaaS) allows

customers to contract with application-service providers and to use software, such as ERP or

CRM on demand, directly from the service providers (Microsoft 2006). Software is delivered in

the same way that infrastructure is made available in cloud-computing. Third party service

providers can leverage the scalability and availability of cloud-computing infrastructure to

provide software as a service to application consumers (Dubey and Wagle 2007).

Service providers benefit from the instantaneous scalability of the infrastructure, while

consumers are able to use software on an as-needed basis. Business models, such as Amazon‘s

cumulative instance hours, charge consumers a fee per application in the cloud (Weiss 2007;

Amazon 2009). Other types of applications can also be delivered over the internet as services.

Operating system capability, for example, can be abstracted to the cloud and made accessible to

internet applications (e.g. Windows Operating System service mentioned in Section 2.6.1).

EyeOS system provides desktop functionality through a browser (Hayes 2008; EyeOS 2009)

while Google Docs (Google 2009a) and Buzzword (Buzzword 2009) provide word-processing

capability from a cloud.

Salesforce.com provides a suite of applications, such as Enterprise Resource Planning (ERP) and

Customer-Relationship Management (CRM) as a service (Salesforce 2009). Providing a suite of

enterprise applications in this manner is referred to as Enterprise Computing in a cloud (Hayes

2008).

Despite the publicity surrounding these applications, cloud computing and software as a service

face various challenges. Privacy, security and reliability become issues once third party services

take control of personal documents (Hayes 2008). The reliability of a third party to continue

running and safeguarding personal data can also become an issue.

Service-Oriented Architecture 42

2.7 Existing systems and related work

The research in this study focuses on SOA and adaptive user interfaces (AUIs). Existing works

and research in SOA have, predominantly, focused on machine-to-machine communication

between the basic components of SOA – web services (Paternò, Santoro and Spano 2008; Tsai et

al. 2008). The first step to achieving an AUI is to understand how UIs are used in SOA.

Ellinger (2007) discusses UIs that can be used in SOAs and classifies them by architecture type:

 Thin Clients: the UI is hosted on the client side, with system logic and data residing on

different servers;

 Portals: aggregate information from multiple services can act as an entry point for users

to access services;

 Rich Clients: complex applications with functionality distributed across the web or

network; and

 Smart Clients: stand-alone applications that hold additional content on the web or

network (Josuttis 2007).

Josuttis (2007), in his discussion on the specific programming model for the front ends of SOA

applications, purports that the purpose of a service is not to control the consumer, but rather to

serve him. Services, therefore, do not require human intervention, since interaction during the

service process violates the service-oriented model (this model was discussed in Section 2.3).

Interaction can, however, occur on an ad hoc basis, with processing services managing the

interaction between the front-end and appropriate services in the back-end.

Josuttis (2007) also supports Ellinger (2007) by stating that SOA front-ends should use

technologies, such as Portlets and Smart Clients to validate user-entered data and to invoke

services. Portlets render UIs from producer web services that allow end-users to interact with a

web service (Braun et al. 2007).

Portlets allow Portals and Web applications to aggregate information from multiple online

sources and provide them to the end-user for use (Braun et al. 2007). Due to its ubiquitous

nature, and its support for ―content-as-plug-and-play‖ (Braun et al. 2007), Portlets are widely

Service-Oriented Architecture 43

seen as the best approach to UI for SOA (Braun et al. 2007; Ellinger 2007; Lawler and Howell-

Barber 2007; Josuttis 2007).

Creating UIs, in a similar way to how Portlets create content, has been proposed by several

authors to create UIs at run time (Gajos 2008; Paternò et al. 2008; Tsai et al. 2008). This means

the UI is generated at the time the user needs to interact with it rather than being designed and

developed as part of an application.

Several other authors have proposed ways to use this same technique for web services in order to

create UIs that allow users to interact with web services at run time (Kassoff, Kato and Mohsin

2003; Song and Lee 2007; Spillner et al. 2007; He and Yen 2007; He et al. 2008). The following

section discusses such works for the generation of UIs for web services.

2.7.1 Web service user interface generation

Generating UIs for web services is an approach that has been proposed to provide a means for

interaction with web services (Kassoff, Kato and Mohsin 2003; Spillner et al. 2007).

Advancements in semantic description specifications for web services such as Semantic

Annotations for WSDL (SAWSDL) and Web Service Semantics (WSDL-S) currently exist.

These specifications are designed to further facilitate machine-to-machine communication by

providing mechanisms by which machines can evaluate services using the meaning of service

attributes, and empirical values.

The knowledge of how web service attributes are related can however be used in the creation of

UIs since they provide information regarding different aspects of web services (Kopecký et al.

2007). Nonetheless these specifications lack specific mechanisms and tools to effectively define

ways to create a UI for a web service.

The lack of specifications to support the creation of UIs for web services has resulted in

techniques being devised to generate UIs that allow direct communication between users and

web services. These techniques focus on parsing the WSDL of a given web service to extract

relevant information from which a UI can be created. The following sections discuss specific

works that employ web service user interface techniques.

Service-Oriented Architecture 44

2.7.2 WSGUI

Figure 2.15 illustrates the WSGUI. It is a general approach to supplement web services with UI

descriptions stored in UI meta-data documents constructed by a designer during the development

of the web service (Kassoff, Kato and Mohsin 2003). This approach uses meta-data to describe a

UI for a service. The meta-data documents are referred to as GUI Deployment Description

(GUIDD). The GUIDD is used to separate the display of the web services‘ UI from their

implementation, which allows the service to maintain the separation of concerns between its

implementation details and its appearance (Spillner et al. 2007). The GUIDD supplies

information on annotation data for aspects of the UI.

Figure 2.15: WSGUI Model

2.7.3 Servface

Servface‘s aim is to provide descriptions for UIs for services. This approach uses UI notation by

creating extensions for service descriptions (Servface 2008; Spillner et al. 2008). The goal of

Servface is to have service notations used in the rapid composition of UIs for web services

(Spillner et al. 2008). This can be achieved by extending current service specifications, such as

WSDL, or extending semantic annotations which offer a greater amount of information

concerning web services. Semantic annotations do not just provide functional and syntactical

information about a web service; they add meaning to the web services operations (Spillner et al.

2008).

Service-Oriented Architecture 45

Figure 2.16 shows the Servface model and illustrates how web services that are annotated with

UI descriptions can be composed to create composite applications with interfaces (Servface

2008). The use of annotations to describe UIs has been successfully achieved in previous works

(Spillner et al. 2008; Paternò et al. 2008). XML annotations can be used to describe an abstract

interface. XML is platform-neutral; it can be read or used from most existing platforms today

(Cerami 2002). This affords Servface the flexibility to have the UI annotations interpreted by

different platforms, thus making web service UIs created using this method as platform-

independent.

Figure 2.16: Servface model (Servface 2008)

2.7.4 Web service user interface generation using XForms

Song and Lee (2008) illustrate an approach that maps data found in a web services‘ WSDL to

XForms input controls and then generates XForms UIs. They apply their UI generation technique

to generate UIs based on the device (desktop, PDA, Smartphone etc.) from which a service is

invoked. This technique is similar to the work of Kassoff et al. (2003) and Spillner et al. (2007).

In summary, the process for UI generation begins with the web service definition to establish the

basic requirements of the service in terms of inputs, outputs and data types. Certain approaches

use external definitions, such as semantic mark-up or object hierarchies to refine the UI

generation process. This refinement is achieved by providing information regarding the

presentation of the UI elements from the service WSDL.

The WSDL definitions in combination with semantic mark-up are processed using pattern

matching techniques and a UI is then presented to the user.

Service-Oriented Architecture 46

2.7.5 Mash-ups

Enterprise mash-ups have also been proposed as a viable alternative to SOA UIs (Cañas et al.

2007; Lizcano et al. 2008; Nestler 2008; Nestler, Feldmann, and Schill 2008; Nestler et al. 2009).

Mash-ups, in principle, function in a similar way to Portlets. However, mash-ups include the

end-user in the composition of applications (Nestler 2008). This differs from other existing

approaches where a designer creates the application which end-users can then use. Mash-ups

utilise visual programming techniques to allow end-users to piece together composite

applications from pre-existing components (Nestler 2008; Nestler et al. 2008). An example of

such an application is Yahoo‘s Pipes‘ (Yahoo 2009) which allows users to create data mash-ups

by using popular third party web services. Users combine data from multiple sources to create

ad-hoc data applications. This approach is however, best suited for adaptable UIs. Adaptable UIs

allow users to change aspects of the UI so that it suits their preference. Adaptable UIs are

compared to adaptive UIs in the next chapter (Section 3.2.1).

2.8 Summary

The objective of this chapter was to gain a comprehensive understanding of SOAs, as well as

their enabling technology: Web Services. In order to achieve this objective research question R1:

What is SOA and what are its components? was asked. Due to the large number of vendors

promoting SOA, a plethora of definitions of SOA exist. A formal definition of SOA for this

study is therefore provided: ―An architectural style whose goal is to achieve loose coupling by

positioning services as the primary means through which solution logic is represented.‖

SOA is increasingly being adopted by enterprises looking to integrate current and future systems.

It advocates principles which focus around the notion of a service, which is the most basic

component of SOA. Other components include the service consumer, the service provider and

the service registry. Currently, the most popular means of realising SOAs are web services.

Several standards and protocols exist that allow web services to communicate, for example,

WSDL provides an open interface for service communication and SOAP a transport mechanism

for messaging.

Service-Oriented Architecture 47

The literature on SOAs shows that currently work on SOAs and web services focuses on

machine-to-machine communication. WSDL allows web services to expose their functions and

thus exchange data with other services. SOAP allows messages to be exchanged between

services and BPEL allows web services to be orchestrated to create meaningful processes.

Research in UIs for web services has been undertaken successfully (Section 2.7) showing that

UIs can be created to allow interaction with web services.

The next chapter moves to the second aspect of the study, namely adaptive user interfaces (AUI).

The functions that AUIs support as well as the challenges that they face are discussed in order to

understand why AUIs exist. Methods and techniques for the use of AUIs are discussed and

elaborated upon to understand how AUIs can be realised in practice.

Chapter 3: Adaptive User Interfaces and User Expertise

3.1 Introduction

The previous chapter discussed the evolution of service-oriented architectures (SOA) and the

technologies underlying the actualisation of SOA. This was done to create an understanding of

the principles that guide SOA design and its implementation and also to discuss web services

since these are currently the most popular methods used in the actualisation of SOA.

In order to achieve the goals of this research, which are to implement an adaptive user interface

(AUI) using an SOA and answer the main research question ―How effectively can an adaptive

user interface be implemented in a service-oriented architecture at the service level to provide

usable adaptation for novice users?‖ an understanding of AUIs is required. The chapter therefore

answers research question R2 which is ―What are AUIs and what are the components of an AUI‖ by

investigating AUI. The objective of this chapter is twofold. Firstly, it aims to investigate AUIs in

order to facilitate an understanding of AUIs and how they differ from static user interfaces.

Secondly, it investigates the domain of user expertise and its implications for user interface (UI)

design.

In order to achieve the first objective, AUIs are discussed (Section 3.2), a definition of AUIs is

given (Section 3.2.1) and the benefits (Section 3.2.2) and functions (Section 3.2.3) that AUIs

provide are discussed. Approaches to AUIs (Section 3.2.4) are presented to elaborate on the

existing methods used to learn about users and to adapt to their needs. The components that

allow AUIs to capture user data, learn about users and make inferences about users are fully

discussed (Section 3.2.5) in order to highlight the core components required to achieve

adaptation. Challenges faced by AUIs in this process are also subsequently discussed (Section

3.2.6.).

In order to achieve the second objective, the qualitative (Section 3.3.1) and quantitative (Section

3.3.2) differences between novice and expert users are discussed. The implications of these

differences on UI design are also discussed (Section 3.4).

Adaptive User Interfaces and User Expertise 49

Finally, works related to this study in terms of AUIs are presented - in order to subsequently

investigate the relevant literature on this subject (Sections 3.5 and 3.6).

3.2 Adaptive user interfaces

Personalisation of systems to individual users became popular in the early 1990s. The growth in

interest has been driven by the clear benefits that tailored UIs provide over traditional static UIs

in managing differences in user characteristics, such as expertise, experience and preferences

(Alvarez-Cortes et al. 2007). Jameson (2003) attributes this growth to three variables:

 The increasing diversity of users and the context of different uses;

 The increasing number and complexity of interactive systems; and

 The growing amount of information that has to be dealt with.

The growth in interest in personalised UIs has also led to an increase in the research efforts into

user-adaptive systems especially in commercial, large scale applications (Jameson 2003; López-

Jaquero et al. 2004; Alvarez-Cortes et al. 2007).

Figure 3.1: Evolution of user interface design (López-Jaquero et al. 2004)

Figure 3.1 illustrates the evolution of UI design. Initially, UIs were designed with a one-size-fits-

all mindset (Figure 3.1 A) (Gajos 2008). However, as awareness regarding differences in user‘s

traits increased, design progressed to accommodate user differences by using profiles to classify

Adaptive User Interfaces and User Expertise 50

users according to stereotypes (Figure 3.1 B). In recent times design has progressed even further.

AUIs are capable of modelling unique traits of users. Besides stereotypes and user profiles, AUIs

are able to recognise preferences, skills, and expertise as well as user behaviour which are not

easily captured or modelled in a stereotype (Figure 3.1 C).

3.2.1 Definition of AUI

A clear definition of AUIs is necessary before discussing specifics on AUIs. AUIs are a subset of

Intelligent User Interfaces (IUIs). These constitute a vast multidisciplinary field encompassing

such research areas as psychology, artificial intelligence and computer science. Figure 3.2, shows

the various disciplines that apply to IUIs. IUIs aim to increase the rate and quality of information

flow between humans and computers by leveraging methods and techniques from the vast pool

of disciplines that overlap in this field.

Figure 3.2: Multidisciplinary research areas in IUI (Alvarez-Cortes et al. 2007)

AUI is the subset of IUIs that deals specifically with the adaptation of the UI. The UI adapts

based on the differences in user characteristics. Jameson (2003) defines an AUI as: ―An

interactive system that adapts its behaviour to individual users on the basis of processes of user-

model acquisition and application that involve some form of learning, inference, or decision

making‖.

Adaptive User Interfaces and User Expertise 51

The definition above implies a difference between adaptive UIs and adaptable UIs. Adaptive UIs

monitor a user‘s interaction with the application and adapts user interface components based on

the identified usage patterns. Adaptable UIs, on the other hand, provide tools which allow users

to alter the UI directly (Alvarez-Cortes et al. 2007). An adaptive UI must therefore be able to

collect user-interaction data, store the data about user characteristics, and use this data to identify

patterns and make inferences about the user. Finally it must adapt the UI to match these

characteristics. Fischer (2001) provides a comparison of adaptive and adaptable systems using

the following criteria:

 Definition: the definition of each concept and what they do;

 Knowledge: how knowledge is stored or represented in each system type;

 Strength: advantages of the approach;

 Weaknesses: disadvantages of using the approach;

 Mechanics: components used to achieve the objective (e.g. adapt); and

 Application Domain: typical domain in which the type of system is applied.

Table 3.1: A Comparison between Adaptive and Adaptable Systems (Fischer 2001)

 Adaptive Adaptable

Definition
Dynamic adaptation by the system

itself to current task and current user.

User changes (with substantial system

support) the functionality of the system.

Knowledge
Contained in the system; projected in

different ways.
Knowledge is extended.

Strengths

Little (or no) effort by the user; no

special knowledge of the user is

required.

User is in control; user knows her/his

task best; system knowledge will fit

better; success model exists.

Weaknesses

User has difficulty developing a

coherent model of the system; loss of

control; few (if any) success models

exist (except humans).

Systems become incompatible; user

must do substantial work; complexity is

increased (user needs to learn the

adaptation component).

Mechanisms

Required

Models of users, tasks, and dialogs;

knowledge base of goals and plans;

powerful matching capabilities;

incremental update of models.

Domain-orientation; ―back-talk‖ from

the system; design rationale.

Application

Domains

Active help systems, critiquing

systems, differential descriptions, UI

customization, information retrieval.

Information retrieval, end-user

modifiability, tailorability, filtering,

design in use.

Adaptive User Interfaces and User Expertise 52

Table 3.1 provides a comparison of adaptive and adaptable UIs, using Fischer‘s (2001) criteria.

The differences between adaptive UIs and adaptable UIs are very apparent in this table.

Adaptive systems and adaptable systems differ at a fundamental level in that adaptive systems

adapt themselves, based on information captured during interaction sessions with users, while

adaptable systems allow the user to alter the system until it meets suits her preferences. Adaptive

systems therefore require little or no effort on the part of the user for adaptation to occur, while

adaptable systems put the user in total control.

In this research, Jason‘s (2008) definition (Benyon and Murray 1993; Langley 1999) of AUIs is

used:

“A software artefact which can automatically alter aspects of its functionality and/or interface

and improves its ability to interact with a user by constructing a user model based on partial

experience with that user.”

3.2.2 Benefits of AUIs

The users of any application differ in their preferences, skills, abilities, knowledge, experience

and various other traits (Alvarez-Cortes et al. 2007). Today however, UIs do not reflect this

diversity of users. User interfaces are simplified to cater for the greatest number of users by

catering for the lowest common denominator (Kobsa 2004). As a result, users have to learn to

use the interface instead of the interface learning to suit the user. AUIs adapt to the user in order

to overcome the limitations of static UIs and achieve the benefits of tailored UIs (Kühme 1993).

The benefits depend on the type of adaptation being provided.

AUIs provide several benefits. Firstly, AUIs provide users with UIs that are easy to use, but that

improve the efficiency and effectiveness of the interaction between the user and the AU (Jason

2008). Secondly, easy-to-use UIs make complex systems more usable which in turn allows users

to be more productive (Dieterich et al. 1993).

Thirdly, AUIs speed up interaction between the users and the UIs. This, in turn, increases user

satisfaction. The following section discusses ways in which AUIs are used to adapt to users, and

the benefits of each method are highlighted and discussed.

Adaptive User Interfaces and User Expertise 53

3.2.3 Functions of AUIs

Personalisation refers to the adaptation of the AUI to suit the user‘s traits, preferences or needs.

There are numerous functions that an AUI can provide in order to personalise and facilitate

human-computer interaction. These functions provide a solution to the problems faced by

traditional static UIs. Jameson (2003) outlines the following functions for AUIs split into two

general categories:

1 Supporting system use:

a. Taking over routine tasks;

b. Adapting the UI;

c. Giving advice about system use; and

d. Controlling a dialogue.

2 Supporting information acquisition:

a. Helping users find information;

b. Tailoring information presentation;

c. Recommending products;

d. Supporting collaboration; and

e. Supporting learning.

The following section elaborates on the functions of AUIs in more detail and groups them in five

general categories: interface adaptation, task assistance and adaptive help, recommendation and

information filtering, information presentation and adaptive learning (Van Tonder 2008).

3.2.3.1 Interface adaptation

AUIs in this category physically adapt the UI. The rationale behind this function is that altering

the UI to suit the way a user works will benefit the user (Jameson 2003). User interface elements

such as menus, icons and other artefacts are adapted based on interactions when using this form

of adaptation.

Figure 3.3 illustrates the use of adaptive menus, such as Microsoft‘s smart menu (Figure 3.3A),

font selection (Figure 3.3B) and a fisheye lens menu (Figure 3.3C). Initially, the menu only

displays the most frequently used options and hides those only occasionally used (Figure 3.3A).

Once the user either clicks on the extension button or dwells on the menu for an extended period

Adaptive User Interfaces and User Expertise 54

of time, more menu options are revealed. The font selection option in Microsoft office works in a

similar fashion. With this menu, recently used fonts are displayed at the top (Figure 3.3 B). This

is supposed to reduce the selection time for frequently used fonts.

Figure 3.3: Office 2003 smart menu system (A), font selector (B). Fisheye lens Menu (C)

3.2.3.2 Task assistance and adaptive help

Interactive systems under this classification include those that help with routine tasks, give

advice about system use, controlling dialogue and support collaboration. AUIs in this category

provide assistance by adaptively offering users information concerning what they are doing (or

what the system infers they are trying to do). Microsoft‘s ‗Clippy‘ is a famous example of such a

system; this evolved from the famous project, Lumiere (Ehlert 2003).

3.2.3.3 Recommender systems and information filtering

Recommendation systems are the most popular form of AUI because they are implemented in

the vast majority of e-commerce systems and are capable of making suitable product

recommendations to users using the user‘s previous history or the history of users with similar

characteristics. Information-filtering AUIs are able to filter information that users may be

interested in. An example of such an application is email clients and servers capable of filtering

A

B

C

Adaptive User Interfaces and User Expertise 55

spam email. Certain systems are able to identify spam based on the known characteristics of

spam.

3.2.3.4 Information presentation

AUIs are capable of going further than selecting what information to present to users. Some

AUIs are capable of tailoring information presentation to user preferences, that is, how

information is presented. Browne, Norman and Riches (1990) emphasise the importance of a

user‘s cognitive skills, as this plays a major role in how a user understands information

presentation. Users‘ productivity can be improved if information is presented based on the

preferences of the user (Jason 2008; Van Tonder 2008).

3.2.3.5 Adaptive learning

Adaptive systems aim to adapt to the user‘s level of knowledge and incrementally adapt as the

user learns more about the system and its domain (Brusilovsky and Schwarz 1997). Jameson

(2003) refers to such systems as Learner Modelling Systems.

The premise behind adaptive learning is that users are exposed to increasingly complex material

which builds on previous knowledge. Adaptive learning systems therefore incrementally expose

users to increasingly complex material after periods of interaction with the system (Brusilovsky

and Schwarz 1997).

3.2.4 Approaches to AUIs

Various methods and techniques exist which can be employed to adapt an AUI. The use of any

technique depends on different factors, such as the type of adaptation, the goal of the adaptation

or the information or data based on which the AUI is adapting. These methods and techniques

were developed to overcome current limitations with traditional graphic UIs in tackling

challenges such as (Alvarez-Cortes et al. 2007):

1. Creating personalised systems;

2. Taking over tasks from users;

3. Reducing information overflow; and

4. Providing assistance with complex systems.

Adaptive User Interfaces and User Expertise 56

The following sections outline two broad approaches to UI adaptation.

3.2.4.1 Artificial intelligence approach

The adaptation of information to the user requires that the system learn pertinent information

about the user and the environment in which it is operating. For this purpose, artificial

intelligence (AI) techniques are required that range from the relatively simple rule-based systems

to the more complex Bayesian networks that are sometimes employed (Alvarez-Cortes et al.

2007; Tomlinson et al. 2007). The techniques used involve learning user behaviour with the aim

of adapting the UI based on inferences made using knowledge acquired by monitoring users

(Tomlinson et al. 2007).

One technique however, has gained popularity in recent times. Machine learning has been

applied effectively in various applications and domains such as information filtering, information

retrieval and recommender systems (Alvarez-Cortes et al. 2007). This approach has gained

acceptance, especially in web-based systems, because it is used to collect and mine complex

interaction and navigation data (Alvarez-Cortes et al. 2007).

3.2.4.2 User modelling approach

The proliferation of interactive systems has increased research into human computer interaction.

The HCI approach focuses predominantly on how information is presented to the user (Alvarez-

Cortes et al. 2007). The user model approach consists of an AUI which displays adaptations

made by software components of the system.

Figure 3.4 illustrates the user modelling process. It is sometimes referred to as a cycle because

information travels through the different components in a cycle. As the user interacts with the

system, data is collected about the user and stored in the user model. The system then uses this

information to adapt itself (adaptation effect). It then continues to monitor the user for any

changes in behaviour.

Adaptive User Interfaces and User Expertise 57

Figure 3.4: Brusilovsky‘s (1996) loop for ―user modelling adaptation‖ in adaptive systems

3.2.5 Components of adaptivity

The premise behind AUIs is that users are different and therefore users have different

requirements from the UI (Van Tonder 2008). For the system to adapt, some information about

each user must be known. User models are perhaps the most important components of AUIs

because they store information about the user; however, they are not the only kind of model

employed by AUIs. Task models, are another important component of AUIs.

The user and task models are not always sufficient for adaptation. There exist other models that

can complement the user models and task models. Domain and system models allow AUIs to

store knowledge about its domain and itself, thereby enhancing the adaptation process. Domain

models store the AUIs domain information, while the system model stores system-specific

information. This allows the system to (for example) determine the best timing strategies, and

adaptations, as it knows its own capabilities. Oppermann (1994a) identifies three components of

adaptivity:

1. Afferential component: this is concerned with the acquisition and storage of user-

interaction data;

2. Inferential component: this is concerned with analysis of data to make inferences on how

to adapt; and

3. Efferential component: this is concerned with modifying the system by adapting.

Figure 3.5 is an overview depicting the general schema of an AUI. Oval shapes represent input

or output, rectangles represent processing, while the cylinders represent storage. The dotted

Adaptive User Interfaces and User Expertise 58

arrows represent the usage of information, while the solid arrows represent production of

information. (Jason 2008). The afferential and inferential components are also highlighted in the

overview to show which component manages the aspects depicted in the schema.

Figure 3.5: General Schema for processing an AUI (Jameson 2003)

3.2.5.1 Afferential component

An AUI is only capable of adapting itself once it has acquired data about the individual users.

The afferential component of adaptivity is responsible for acquiring the user-related data during

the user-interaction process (Oppermann 1994b). The afferential components responsibility with

respect to user-interaction data is twofold: acquisition and storage.

The acquisition of user-interaction data is achieved explicitly or implicitly. Explicit data

collection requires the user to input the necessary information. It does not usually involve

collecting user-interaction data, but rather user characteristics or preferences. Self-reports and

user evaluations on objectives are methods used to collect the data. Although explicit data

acquisition occurs relatively infrequently, it is fairly demanding on the user as a large amount of

data is usually collected (Ross 2000; Jameson 2003).

Implicit data collection records user-interaction covertly, that is, by monitoring the user‘s

interaction with the AUI. It does not generally require users to supply vast amounts of

information about themselves directly, in order for the system to adapt. The AUI may collect

data during the user-interaction with the AUI. For example, mouse movements and other task-

Inferential

Component

Afferential

Component

Adaptive User Interfaces and User Expertise 59

related interactions can be captured to reveal patterns which may indicate how the AUI can

adapt. Alternatively, past user-interaction is analysed to reveal patterns about a user‘s interaction

with the AUI. For example, in a web browser, previously visited sites could be analysed to reveal

a users web-usage patterns. There are however, limitations to implicitly collecting data. Data

collected implicitly are not always easy to interpret (Jameson 2003). Furthermore, the analysis of

previously stored information might yield results that are not helpful during the user-interaction

process. Such information is however useful at the start of the user-interaction process.

The data collected must be stored for analysis. The most common method of storing such data is

by using models. AUI‘s generally utilise the task, domain, system and user model to store this

information (Krogsaeter and Thomas 1994). The user model is one of the most critical

components when adapting the UI because it models user characteristics which the AUI uses to

adapt (Krogsaeter and Thomas 1994). These models are discussed in further detail in the

following sections.

3.2.5.1.1 Task model

The task model is used to define or store task-related information. There are two types of task

models, namely: dynamic task models and static task models. Dynamic task models are

dependent on the user. The users‘ goals are inferred based on their current activities and the task

model is constructed during interaction. This allows the system to perform functions such as

completing routine tasks or taking over tasks. This is similar to some aspects of user modelling

however the user is replaced with a task (Ross 2000).

Static task models on the other hand are defined during the design process. They cannot therefore

be altered at run time. Static task models define the specific activities the user can perform with

the system (Krogsaeter and Thomas 1994).

3.2.5.1.2 Domain model

The domain model represents the real world domain to which an AUI is applied. Real world

knowledge pertaining to the domain in which the AUI can be applied is stored within the domain

model (Reichenbacher 2003).

Adaptive User Interfaces and User Expertise 60

3.2.5.1.3 System model

The system model allows a system to store information about itself such as its capabilities and

features in order to better infer how to adapt. When an interactive system is aware of its

capabilities, it is better able to establish dialogue with the user so as to collect user data and infer

the best possible ways of adapting itself based on its capabilities (Reichenbacher 2003).

3.2.5.1.4 User model

The user model is a critical component of any AUI. For any adaptations of an interactive system

to be meaningful the system must have knowledge about the user, understand (to some degree)

the user and his/her needs, preferences and goals and adapt itself to match these traits. This

knowledge is stored in the user model. As this is a critical component, for the purposes of this

study a concrete definition of the user model is required. Jason (2008) defines a user model as:

―...an abstract representation, which contains a collection of information and explicit

assumptions about an individual user (as well as a user group) on relevant aspects of the

user, which is needed in the adaptation processes...‖

This definition is well suited to the purposes of this research since it shows how the user model is

different from user modelling techniques (which are commonly cited as alternatives to user

models), such as user profiles and personas. User models are abstract and they represent the

characteristics which differentiate users, while user profiles are instances of the user model of an

individual user. User models can be classified depending on various dimensions. Ross (2000)

outlines four dimensions for the classification of user models:

 What is being modelled: individual users, groups, personas, stereotypes?

 The source of the modelling information: explicit or implicit data collection;

 The model update methods: whether the model static (predefined) or dynamic (regularly

updated); and

 Time sensitivity of the model: specific information for short term usage or generic

information for long-term usage.

Adaptive User Interfaces and User Expertise 61

The knowledge of what is being modelled affects the structure of the user model as well as the

user modelling process. Modelling stereotypes, for example, requires the categorisation of users

by stereotype (e.g. novice or expert) (Rich 1998). Identifying the source of the modelling

information and the update methods for the user model will determine whether user observation

is necessary. Explicit acquisition of user information does not require user observation; neither

does a static user model require updating. In such situations, adaptations occur based on the

static information (Van Tonder 2008). User models are also time sensitive. The domain of the

AUI therefore affects the time period most appropriate for the user modelling process, that is, are

the user‘s modelled in real-time, over a short period of time, or for extended periods (e.g. months

or years).

3.2.5.2 Inferential component

The inferential component of adaptivity deals with making inferences about how to adapt the

system by analysing the user-interaction data acquired and stored by the afferential component.

In simple terms, the inferential component is responsible for turning user-interaction data

captured during the interaction process into knowledge about the user. This process is known as

user modelling.

Previously, Figure 3.4 showed the user modelling process. User modelling consists of managing

user profiles, including the creation, updating and deleting of profiles. Zukerman and Albrecht

(2001) identify two main approaches to user modelling:

1. Content–based Learning: in which adaptations are performed from observed user-

interaction data. User-interaction data must therefore be collected before adaptation can

occur (Van Tonder 2008); and

2. Collaborative Learning: in which adaptations are performed from the user-interaction

data of similar users to those of the current user.

The approaches above can be used in various user modelling techniques. Some techniques are

simple and require little information, while others are more complex.

Stereotyping is a relatively simple technique for user modelling. Users are categorised into user

groups to facilitate processing at run time. Interactive systems that use this approach make use of

use triggers. The system uses these triggers to determine the stereotype to which a user belongs

Adaptive User Interfaces and User Expertise 62

(Kules 2000). The stereotype modelling technique uses rules based on user theory to model users

(Jameson 2003). Three elements are required for the use of stereotypes (Kobsa 2004):

1. User groups: user groups with different characteristics must be identified;

2. User group characteristics: characteristics that differentiate the user groups must be

identified; and

3. Representation of stereotypes: the characteristics must be formally defined in an

appropriate representation system (Jason 2008). Hierarchical structures are usually the

most appropriate, as these allow for the definition of various subsets of stereotypes.

Groups that share a subset of characteristics can inherit from a super-group with those

same characteristics.

There is some criticism of the use of stereotypes. Some researchers believe users are too diverse

to be labelled by a stereotype. There is also the risk of modelling users under the wrong

stereotype. This can happen when, for example a user exhibits characteristics of a different

stereotype from the stereotype to which they actually belong.

Decision-theoretic modelling uses knowledge concerning users, their goals and the environment

in which the system is operating to make inferences about the user. Techniques in this category

tend to be complex, as they are not heavily data-dependent. This however, gives it the advantage

of not requiring a user model in order to adapt. Examples of such techniques include Bayesian

networks and Hidden Markov Models (HMM).

3.2.5.3 Efferential component

The efferential component of adaptivity specifies how a system should be adapted. This is

achieved by acting on the information stored within the knowledge base. However, it must still

be decided when and how the adaptation occurs. Dieterich et al. (1993) identified three timing

strategies to asses when adaptation should occur during an interaction session. These are:

 Before a session begins;

 After a session ends (i.e. between sessions); or

 During the interaction session.

Adaptive User Interfaces and User Expertise 63

Adaptation at the beginning of a session requires that users be classified prior to the interaction

process. This can be done using pre-tests or questionnaires. Users‘ needs may, however, change

during the course of interaction, which makes this timing strategy naive (Jason 2008).

Adaptation during interaction refers to adaptation taking place continually during the interaction

process. This strategy is suitable for continually updating the users‘ changing needs; however, it

can lead to confusion for users.

Adaptation between sessions facilitates complex adaptations by allowing adaptation to occur at

the end of each session, in preparation for the next. This strategy however becomes insignificant

when the period between sessions is very long.

The purpose of a UI is to present information and provide a means for users to interact with an

application‘s underlying functions. Adaptation can, therefore, take place at four different levels

(Oppermann 1994a; Jameson 2003):

1. Presentation adaptation: The presentation of information is adapted. For example, to

display information in such a way as to convey its importance by altering the colour, size

or shape of text in order to highlight important aspects;

2. Information adaptation: Information is adapted to suit the characteristics of the various

users. For example, information filtering to present only relevant information to specific

users; and

3. User Interface adaptation: User interface artefacts such as menus, buttons and icons are

moved or hidden to suit the unique traits of users.

4. Navigation: System navigation is adapted to suit the users‘ individual characteristics.

The methods discussed attempt to predict what a user wants or is trying to achieve, and somehow

to adapt to give the users what they want, or allow them to do what they want. Regardless of the

chosen user modelling technique and adaptation, the goal of AUIs must always be to achieve

results with which users are satisfied (Jameson 2003; Jason 2008). There are, however, various

challenges in trying to realise this ideal. These are discussed in the next section.

Adaptive User Interfaces and User Expertise 64

3.2.6 Challenges in AUIs

Despite the clear advantages of AUIs over traditional static UIs, they are not without challenges.

Jameson (2003) summarises the following usability challenges faced by AUIs:

1. Predictability and transparency: Users must, to some degree be capable of predicting the

repercussion of their actions (Jameson 2003; Paymans, Lindenberg and Neerincx 2004;

Gajos 2008; Jason 2008). Complex inferences, lack of transparency, and wayward

adaptations can all confuse the user;

2. Controllability: A function of AUIs is to ‗take over routine tasks‘ (Section 3.2.3). Data

for this adaptation are usually collected implicitly; users do not see when or how the data

are collected, therefore, they would not be able to interfere with this process. This takes

away control from the user (Hook 2000), which goes against the usability guideline of

user control and freedom;

3. Unobtrusiveness: Sudden adaptations or attempts to inform the user of an event could

easily distract the user from any current activities;

4. Privacy: Personalisation of UIs requires that user information be collected. Information

to identify users uniquely is also collected and this may raise concerns as to how the

information is going to be used; and

5. Breadth of experience: an AUI that takes over a task and attempts to facilitate user-

interaction must first perform an analysis and some form of learning on the application

domain. This limits the user‘s exposure to this information, and therefore the user‘s

breadth of experience.

Overcoming these challenges is not a trivial task. Nevertheless, they can be managed. The

previous sections discussed AUIs, the components of AUIs and challenges faced by AUIs. The

following section discusses a popular application domain of AUIs: User Expertise. Users have

been shown to behave differently, based on their level of expertise with an application or

domain. AUIs can thus be applied to cater for users exhibiting different levels of expertise.

3.3 User expertise and user interfaces

A major component of this study involves understanding UI design, as it applies to differences in

user expertise. Research shows that user expertise can be classified based on two criteria: a

Adaptive User Interfaces and User Expertise 65

user‘s knowledge of a system and time spent using that system (Prumper et al. 1991; Wu 2000;

Jason 2008). These criteria can be decomposed further into three dimensions:

1. Experience with the system;

2. Experience with computers in general; and

3. Experience with the task at hand.

Experience with the system refers to the application software, and the degree to which the user

has used similar applications. Experience with computers in general refers to the user‘s computer

literacy. Experience with the task at hand refers to user‘s experience with the task the system will

be performing.

Novice and expert users have been shown to exhibit different ways of thinking, and these are

defined as qualitative differences. Novice users exhibit fragmented conceptual models of the

system, and are concerned with how to accomplish tasks (Buxton, Kurtenbach, and Sellen 1993).

Expert users, in contrast, exhibit a consolidated model of the system‘s inner workings and are

able to infer new knowledge to achieve their goals.

Figure 3.6: Dimensions on which users experience differ (Nielsen 1993)

The most common use of the term expertise however, is when referring to a user‘s experience

with a particular UI (Jason 2008). Figure 3.6 illustrates the relationship between the criteria

given above for the classification of user expertise. A change in a user‘s experience with

Adaptive User Interfaces and User Expertise 66

computers and knowledge will necessarily affect the classification of a user as an expert or

novice user of a system. Research has shown that novice and expert users behave differently

(Hurst, Hudson and Mankoff 2007). These differences can be classified qualitatively or

quantitatively.

3.3.1 Qualitative differences

Qualitative differences in expertise refer to the exhibited differences in how novice and expert

users think about their tasks. As previously mentioned, novices are more concerned with how to

accomplish tasks; as opposed to how quickly tasks can be completed. Expert user thinking is

very different from that of novices. They have vastly more knowledge than novices and given a

large amount of task information, can quickly deduce goals and actions to achieve those goals

(Jason 2008). Galitz, (2007) compares the characteristics that novice and expert users exhibit

according to the different criteria.

Table 3.2: Differences between the Novice and Expert‘s ways of ―thinking‖

 Novices Experts

Conceptual Model
They have a fragmented conceptual model

of the system

They have an integrated,

conceptual model of the system;

Knowledge

Their knowledge is ordered less

meaningfully, orienting it towards surface

features of the system

Their knowledge is ordered more

abstractly and more procedurally

Organisation
They structure their information into fewer

categories

Information is organised more

meaningfully, orienting it

towards their task; and they

structure their information into

more categories

Inferences on new

Knowledge

They have difficulty in making inferences

and relating new knowledge to the

objectives and goals

They have a better ability to

make inferences and can relate

new knowledge to their

objectives and goals

Attention
More attention is paid to low-level details

and to surface features of a system.

Less attention is paid to low-

level details and surface features

of a system.

Table 3.2 shows the differences between novices and experts based on these criteria. Novice

users of a system tend to show a fragmented conceptual model of the system. They find it

difficult to connect the different functions of a system in order to achieve a goal. Consequently,

they take longer to achieve any goal using the system. Experts, on the other hand, have an

Adaptive User Interfaces and User Expertise 67

integrated conceptual model of the system and can easily link functions in order to achieve their

goals.

The comparison of knowledge, organisation, inferences on new knowledge and attention

between novice and expert users, shows the same type of differences between: experts are

organised and understand the system, while novices are concerned with the surface features of a

system.

3.3.2 Quantitative differences

Quantitative differences in expertise refer to measurable manifestations of users actions based on

their qualitative differences (Hurst et al. 2007). Research has have shown that not only do expert

users have better performance than novice users when achieving task goals but novice users

require more operations to achieve those goals (Dillon and Song 1997; Oka and Nagata 1999).

Expert users are also capable of making faster menu selections compared with novice users,

given that experts are more capable of recalling where menu items are. Novice users must still

discover where the menu options are (Jason 2008). As a result novices and experts can be

identified by their searching mechanisms. These differences have consequences for design and

are discussed further below.

3.4 Designing user interfaces for novice and expert users

Novices can be categorised as users that are new to a UI, based on the qualitative and

quantitative differences. The design implications of the differences discussed above are

illustrated in Figure 3.7. This figure shows the spectrum of user needs for novice and expert

users.

The design of UIs to accommodate both types of users must allow novice users to achieve their

goals, but manage this so it is not at the expense of expert users (Jason 2008). Crow and Smith

(1993) designed two separate UIs for novice and expert users, rather than accommodating both

users on a UI. Multi-layered UIs facilitate Crow and Smith‘s (1993) approach by layering the UI.

Users are gradually exposed to interactive system functionality as they gain experience using the

system.

Adaptive User Interfaces and User Expertise 68

Figure 3.7: The Spectrum of Users‘ Needs (Padilla 2003)

Figure 3.8 illustrates the concept of multi-layered UIs. Initially (Figure 3.8 A), common

commands are shown above the text area, in full view of any user who is unfamiliar with the

system being used. Once the system deems the user to be knowledgeable enough in regard to the

system, it affords such a user an extra layer of functionality and control Figure 3.8 (B).

A B

Figure 3.8: Layered user interface: Layer 1(A) and Layer 2(A) (Shneiderman 2003)

3.5 Related works

In this section, existing related work on IUI and AUI models will be discussed. The discussions

examine work done in the Department of Computer Science at the Nelson Mandela Metropolitan

University in the development of intelligent models for contact centres.

Adaptive User Interfaces and User Expertise 69

3.5.1 An IUI for contact centres

AUIs are a subset of IUIs (Section 3.2.1) therefore Models for IUIs have key components that

are part of AUIs (Jason 2008). Singh (2007) investigates IUI models for the development of an

IUI model for contact centres (CC). The result of this investigation was a three element model

which addressed the architectural, component and interface elements for an IUI (Figure 3.9)

(Singh 2007). The architectural component of Singh‘s (2007) model is based on the Tyler et al.

(1991) model for IUIs. Components of this model include (Singh 2007):

1. Input/Output (I/O) Manager: this component is responsible for the acquisition of user-

interaction data and the presentation of adaptation or information to the user;

2. Plan Manager: this component is responsible for determining the plans or goals of

users by comparing low level input data from the I/O manager against values held by

the task manager in order to infer the plans and goals of the user. The task manager is

discussed in Section 3.2.5.1;

3. Knowledge base: this component is responsible for the storage of application, domain

and communication knowledge as well as task information. The knowledge base is a

key component of IUIs because it stores all information on which intelligent inferences

are made in IUIs. AUIs use the knowledge base to store information on which

inferences are made for adaptation. The IUI model in Singh (2007) specialised the

knowledge base for contact centres;

4. Adapter /Agent Manager: this component is responsible for the updating or retrieval of

information from the knowledge base, based on the interaction with the plan manager;

and

5. Presentation Manager: in the IUI model of Tyler et al. (1991) IUI model, this

component is responsible for determining the most suitable modality to display user

information. In an AUI, this model is responsible for determining how best to adapt the

UI based on the user specifications.

Singh‘s (2007) model for IUIs consists of two other elements, namely the component level

element and the interface level element. The component level element stores user task and

solution models in the knowledge base. The interface element provides a template design which

specifies sections of the presentation of task-based information, user input and system feedback.

Adaptive User Interfaces and User Expertise 70

Figure 3.9: IUI Model for Contact Centres (Singh 2007)

A proof of concept was implemented and its evaluation showed that the proposed model could

be used to develop IUIs for contact centres. An AUI for contact centres was developed by Jason

(2008) using aspects of the IUI model in Singh (2007). This research will be discussed in the

following section.

3.5.2 An AUI for contact centre agents

In a Contact Centre (CC) the goal is to resolve customer queries. Once a query is initiated, the

typical steps performed to resolve the query include (Jason 2008):

1. Capture customer details;

2. Capture call details;

3. Assign the call; and

4. Provide the call resolution details.

Jason (2008) successfully developed an AUI for Contact Centre Agents (CCAs), dubbed

Adaptive HelpDesk, to improve the CCA performance when performing the call resolution steps

(hereafter referred to as Call Logging steps). Figure 3.10 shows the AUI model proposed by

Jason (2008) to achieve this.

The AUI model for CCAs has the same architecture component used by Singh (2007). The

architecture component (hereafter referred to as the IUI architecture), was discussed in detail in

Section 3.5.1. It was modified to address the original IUIs (Tyler et al. 1991) inability to infer a

user‘s goals (Singh 2007).

In addition to the architectural component, Jason‘s (2008) model includes an AUI Component

Design and an Interface Design component (Figure 3.10). The AUI component of the model

Adaptive User Interfaces and User Expertise 71

consists of the components of adaptivity which were discussed in Section 3.2.5. Together, these

components provide for adaptation of the UI. The components of adaptivity that Jason‘s (2008)

model support are:

 The Agent Manager: this component satisfies the afferential component of adaptivity;

 The Presentation Manager: this component satisfies the efferential component of

adaptivity;

 The Analysis Engine: this component satisfies the inferential component of adaptivity;

and

 The Knowledge Base: this contains the User and Task Model. It is part of the afferential

component of adaptivity.

+ +

Figure 3.10: An AUI Model for Contact Centre Agents (Jason 2008)

The Agent Manager, Presentation Manager and Knowledge Base are components of the IUI

architecture. Because AUIs are a subclass of IUIs, components of IUIs also supports AUIs and

Adaptive User Interfaces and User Expertise 72

are, in consequence, included in Jason‘s (2008) model for AUIs. This model is discussed in more

detail in the following sections.

3.5.2.1 Knowledge base

The knowledge base implemented by Jason (2008) consists of two components, namely, the user

model and the task model. The user model and the task model allow the AUI to be specialised to

CCs by incorporating CC knowledge into the Knowledge base (Singh 2007; Jason 2008). The

Knowledge base therefore stores the following information which is necessary for the AUI:

 Customer query information;

 Customer query information;

 User models of the CCAs using the application; and

 Task model relating to the tasks of logging customer calls.

The user model is a critical component of AUIs because it holds information about the user that

is needed for adaptation. Jason‘s (2008) user model resides in the Knowledge base and consists

of Information Moments (IM) and Predictive Features (PF) associated with that IM.

Hurst et al. (2007) propose the use of IM to measure user performance. Hurst et al. (2007) define

IMs as ―user actions which can be readily isolated, are indicative of the phenomena they wish to

study, model or predict, and can be easily and accurately labelled‖. The PFs are not task-

specific, nor are they based on a task model since they are low-level data. These characteristics

allow PFs to be used effectively in different applications.

The Call Logging task was found to be list-intensive, that is, a large number of selections had to

be made from list options, and as such, the PF approach is suitable for CCA performance

measurement. Of the different possible IMs, Jason‘s (2008) study chose to have an IM

represented as a list. Essentially, the PFs are metrics which measure the performance of users

when they make list selections. Each IM has 10 PFs associated with it. Figure 3.11 shows the

PFs captured for each IM and Table 3.3 provides a summary of the PFs for a list selection action.

The Keystroke Level Model (KLM) can be constructed from the data of an IM. The Keystroke

Level Model (KLM), as used by Jason (2008), is derived from Hurst et al. (2007). The KLM

Adaptive User Interfaces and User Expertise 73

specifies a detailed and task-specific model for expert behaviour. Expert users‘ performance is

presumed to fall close to or above the KLM.

Figure 3.11: Potential Predictive Features

Table 3.3: Summary of Predictive Features

Predictive Feature Description Unit

Low-Level motion characteristics

Total Time
Cumulative total time spent selecting an item from a list.

It stores the total of all selection times for a list action.
Seconds

Ymouse Velocity
Average velocity, on the vertical axis (Y-axis), of the

mouse during a list selection action.
Pixels / second

Ymouse Acceleration
Average (unsigned) acceleration, on the vertical axis (Y-

axis) of the mouse during a list selection action.

Change in

velocity /

second

Dwell Time
Time spend without movement during a list selection

action.
Seconds

Interaction Technique

Average Dwell Time Average dwell time during a list selection action.
Seconds / No.

Items visited

Nr. Items Visited Total count of items visited during a list selection action. Count

Unique Items Visited
Total count of unique items visited during a list selection

action.
Count

Selection Time Elapsed time for a list selection action. Seconds

Performance Models

KLM Difference

Difference between the Keystroke Level Model (KLM)

predicted selection time and the actual selection time for a

list selection action.

Seconds

KLM Ratio Time for a list selection action as a ratio of the KLM. Dimensionless

YMouse Velocity

Total Time

YMouse Acceleration

Informative Moment

Dwell Time

Average Dwell Time

Nr. Items Visited

Unique Items Visited

 Selection Time

KLM Ratio

KLM Difference

Adaptive User Interfaces and User Expertise 74

Nine IMs are used and each belongs to a step in the Call Logging task. Figure 3.12 shows the

IMs and the Call Logging step to which they belong, for example the Capture Customer Details

step has one IM: IM Search Customer, while Assign the Call has two IMs: IM Campus and IM

Cause.

Capture Customer Details IM Search Customer

Capture Call Details

 IM Service Name

IM Call Type

IM Priority

IM Source

Assign the Call IM Campus

IM Contact

Provide Solution Details
IM Cause

IM Resolved

Figure 3.12: Informative Moments and the Corresponding Logging Steps (Jason 2008)

The Task Model consists of representations of the tasks that users can perform with a system.

AUIs are able to recognise a user‘s goals using a task model. The task model used by Jason

(2008) provides task support in two forms: task status information and error checking. Users are

shown where in the Call Log process they were at any given time. Errors are also shown to

CCAs based on incomplete task information.

3.5.2.2 Analysis engine

The analysis engine in Jason‘s (2008) CCA model performs the critical role of user modelling

This is achieved by using information from the user models to obtain and infer information about

users. By performing the user modelling of users, the analysis engine fulfils the role of the

inferential component of adaptivity.

T-Scores are used to determine the performance of users. This is achieved by calculating a single

performance value for each of the nine IMs from the PFs. Each PF is, however, expressed in a

different unit of measure (e.g. seconds). In order to arrive at a single value, T-Scores were used

to standardise the PF values but to determine the T-Score, a Z-Score must first be calculated for

the PF. The Z-Score is a linear transformation of the values, while the T-Score shows how far a

Adaptive User Interfaces and User Expertise 75

Z-Score lies from the mean by using its standard deviation. The formula for calculating the Z-

Score is:

Z-Score = (x-μ) / σ

Where,

x = the score to be transformed (raw value)

μ = the mean of the distribution of those scores

σ = the standard deviation of the distribution of those scores

The T-Score is then calculated by substituting the Z-Score value in the following equation:

T-Score = μ + σ * (Z-Score)

Where,

μ = the mean

σ = the standard deviation

The PFs are then assigned positive directions to ensure that they move in the same direction

(negative values are multiplied by -1 to make them positive). This is done because the T-Scores

need to be averaged later and this requires that they be moving in the same direction. Finally, the

IM T-Score is determined by calculating the weighted mean of PFs using the following formula:

IM T-Score = weighted mean of PFs = Σ Wi Ti / (ΣWi)

Where,

Wi = weight of PF

Ti = T-score of PF

The weights are determined by first ranking the PFs in their order of importance and then

inversing the PFs value rank. Table 3.4 shows the PFs, their ranks, and the final weights.

Table 3.4: Predictive Features and their associated weights (Jason2008)

 Predictive Feature Rank Weight

1 Total Time 1 1

2 Y Mouse Velocity 9 0.11

3 Y Mouse Acceleration 9 0.11

4 Dwell Time 2 0.5

5 Average Dwell Time 3 0.33

6 Nr Items Visited 6 0.167

7 Unique Items Visited 7 0.143

8 Selection Time 3 0.33

9 KLM Difference 5 0.2

10 KLM Ratio 8 0.125

The T-Score for the user‘s performance is then determined by applying weights to the nine IMs

Adaptive User Interfaces and User Expertise 76

and the Total Task Time for a task by inversing their ranks. Table 3.5 shows the IMs, their ranks

and associated weights.

Table 3.5: Informative Moments and Associated Weights (Jason 2008)

 Informative Moments and Total Task Time Rank Weight
1 Total Task Time 1 1

2 Search Customer 8 0.125

3 Service Name 2 0.5

4 Call Type 2 0.5

5 Priority 9 0.111

6 Source 10 0.1

7 Campus 5 0.2

8 Contact 5 0.2

9 Cause 4 0.25

10 Resolved 5 0.2

3.5.2.3 Agent manager

The function of the Agent Manager in IUIs is to update the user model with information received

from the plan manager (Section 3.5.1). This allows the UI to be modified according to the user‘s

needs. Jason‘s (2008) AUI model caters for this by providing this functionality in the Watcher

component as is illustrated in previously shown model in Figure 3.10.

The function of the Watcher component is to acquire user-interaction information from the

interaction between the application and the user. This is achieved implicitly by observing the

user‘s actions. Information regarding the user collected through this component is stored in the

user model.

3.5.2.4 Presentation manager

The Presentation Manager decides how the UI is to be adapted to best suit the user‘s needs. This

is achieved by using the input from the agent manager and knowledge from the knowledge base.

Jason (2008) refers to this component as the Adaptation Effect. The adaptation effect serves the

same role as the presentation manager which is to determine how best to adapt the UI to match

the user‘s behaviour. Information used to make this inference is acquired from the knowledge

base. Various adaptations at different levels could be provided by the following components:

 Information;

 Presentation;

Adaptive User Interfaces and User Expertise 77

 User Interface; and

 Functionality.

The adaptation effect uses the Interface Design component to adapt the UI. The interface-design

component of the model is a multi-layered UI which consists of two layers, namely the novice

layer and the expert layer. The novice layer caters for novice users and the expert layer caters for

expert users. Both UIs support the same task; however the UI design for each UI is different.

The novice layer consists of a series of steps designed in a wizard-type interface with a separate

screen for each step. This allows novice users to familiarise themselves with the interface and the

task. The expert layer is not restricted in a step-by-step manner, thus allowing users to perform

more effectively. Instead, experts are able to navigate the tasks using tabs.

Up to this point, adaptation to the presentation layer that has been discussed as it deals with the

adaptation of the components of the UI. Some adaptations, however, generate entirely new

interfaces to suit the user‘s preferences. The following section summarises research in this area.

3.6 Adaptive user interface generation

Gajos (2008) argues that traditional manual UI design does not scale with constantly changing

user contexts, appliances, platforms, tools, experiences, skills and needs. He et al. (2008) argues

that, currently, redesign of the UI is necessary, whenever user requirements change or a new

device or platform is introduced. He et al. (2008), therefore, proposes adaptively generating the

UI as a means of overcoming this.

Figure 3.13 shows SUPPLE, an AUI developed by Gajos (2008) which adapts to the computing

platform and to users‘ preferences for input and motor skills. The different screens shown were

rendered from a single task definition. This type of adaptation is based on the multi-layered

approach. However, the different layers are not simply augmented at the different layers. Instead,

entirely new interfaces are generated to suit the different preferences or characteristics of the

various users.

Adaptive User Interfaces and User Expertise 78

Figure 3.13: Automatically rendered interface for five different platforms (Gajos 2008)

He et al. (2008) propose a similar approach to that of Gajos (2008), although their approach

operates in a distributed web service environment where the UI elements are created using cost

functions. The cost functions are determined by the users preferences, and each generated UI

element is evaluated to determine the degree to which generating this element in a specific way

deviates from the particular user‘s preferences.

He et al. (2008) have introduced the Object Layout Hierarchy (OLH) in their work on the

dynamic generation of UIs for web services. This component defines how the elements in a

WSDL are related, and by implication, how the elements in the generated UI are related. The

relationships are defined as nested groups and a parent-child relationship is thus created.

Elements that are the same reside in the same group.

Child elements within a group belong to the parent element in which they reside. The OLH

component is important as it allows related UI elements to be grouped together without any

specific declaration of the positions of the elements. For example, an application which

processes a WSDL considers ―home address‖ and ―work address‖ as two unrelated elements.

However, by using the OLH, such similar terms can be defined as ―addresses‖, thereby

prompting the placement of these elements closer together in the UI.

Adaptive User Interfaces and User Expertise 79

3.7 Summary

The aim of this chapter was to answer research question R2: What are AUIs and what are the

components of an AUI? This chapter achieved the objective by investigating the functions of

AUIs and by determining that the components of an AUI are the afferential, inferential and

efferential components. This was achieved through a review of existing literature on AUIs. an

understanding of what AUIs are and the components required to implement an AUI.

The increased complexity of software applications has resulted in an increased complexity of UIs

of these applications. Furthermore, an increasingly diverse population is making use of computer

applications. UIs do not cater for these users‘ differences and AUIs have been proposed as a

solution for this problem.

The literature shows that AUIs can increase the flow of information between humans and

computers by adapting themselves to suit the needs, preferences and traits of different users.

AUIs are capable of, for example, completing mundane tasks in order to save users time and

allow them to complete more critical tasks. The afferential component is responsible for

capturing user-interaction data and storing it in the knowledge base in order to learn more about

the user. Various methods and techniques are applied to learn more about users and to provide

meaningful adaptations; for example, machine learning uses complex algorithms to make

inferences about what a user may want to do next in an application, while stereotyping classifies

a user based on a predefined set of characteristics defined for the particular stereotype. This

function is performed by the inferential component. Finally, the efferential component decides

how adaptation should occur. Depending on the capabilities of the AUI, the efferential

component can alter various aspects of the UI to suit the user. It can, for example, alter the layout

of information, or change the controls used to interact with the UI.

Application users differ in a variety of ways, such as experience in using applications. This is

referred to as user expertise. Users with different levels of expertise have been shown to differ in

the way they think and their approaches when it comes to performing tasks. These differences

can be classified qualitatively or quantitatively. In addition, these differences have design

implications for UIs. AUIs cater for such differences between users. For example, Adaptive

Adaptive User Interfaces and User Expertise 80

HelpDesk is an application that has been used to increase the performance of novice CCAs by

monitoring low-level user-interaction data such and modelling it using the KLM.

Existing AUIs, concerned with user expertise have not however been implemented using a SOA

and web services. AUIs that use distributed architectures are focused on adapting to device

characteristics rather than user characteristics. They, however, use a generated UI approach to

adapt the UI to users by effectively creating a new UI, when changing to meet user needs. An

AUI can therefore be implemented using an SOA by generating UIs for users, based on their

inferred levels of expertise.

The following chapter proposes a service oriented analysis and design method which is applied

to an existing AUI in a contact centre scenario. A model for AUI generation in service oriented

architecture is the outcome of this method and it is discussed in order to show how an AUI can

be designed using SOA.

Chapter 4: Service-Oriented Analysis and Design

4.1 Introduction

Service-oriented architectures (SOA) and Adaptive user interfaces (AUI) were discussed in

previous chapters (Chapter 2 and 3 respectively). SOA has been found to be an architectural style

that advocates the design of computing systems using loosely coupled and reusable components.

Web services are currently the most popular way of realising SOAs, and as such were discussed.

AUIs were identified as user interfaces (UI) that adapt themselves to match distinct user

characteristics. Three distinct components of AUIs exist, the afferential, inferential and efferential

components, each of which plays a critical role in the how an AUI functions.

This chapter aims to design an AUI using a Service-oriented (SO) method. This is achieved by

answering research question R3: How can an AUI be designed using an SOA? The objective of this

chapter is, therefore, to investigate how an AUI can be designed using SOA. In order to achieve

this objective, a discussion on SO analysis and design methods (Section 4.2) is given in order to

first establish existing SO analysis method and secondly to get an idea of how SOA analysis and

design could be applied to an AUI. Due to the proprietary nature of some useful methods, a hybrid

method is devised by combining two SO analysis and design methods. SO analysis (Section 4.3),

SO design (Section 4.4) and realisation (Section 4.5) according to the hybrid method are discussed

and subsequently applied to an AUI (Sections 4.6 and 4.7). The result of the hybrid SO analysis

and design is a proposed AUI services model (Section 4.7.2). Service realisation of the model is

discussed to determine how services identified using the hybrid SO analysis and design methods

can be realised (Section 4.8). Finally, the AUI service model interaction is explained to show how

the different service and the UI interact to adapt the UI (Section 4.9) and a summary of the Chapter

is provided (Section 4.10).

4.2 SO analysis and design

Section 3.5.2 discussed an AUI designed to improve the performance of contact centre agents

(CCA). The model developed by Jason (2008) was found to contain all necessary components of

Service-Oriented Analysis and Design 82

an AUI. Furthermore, Jason‘s (2008) model included several component level elements such as

screen design and task breakdown to assist novice CCAs in learning how to use the UI. The

architecture used to develop Jason‘s (2008) model is a client/server architecture. The application

logic is deployed on a client computer, and a database storing the user model and domain models

is deployed on a server. The architecture used in this study however, is SOA. The purpose of this

section is to discuss existing methods in SO analysis and design. The best method to use in this

study will be proposed.

The design of an SOA without the use of a sound methodology or guidelines runs the risk of

failure because it is not understood how the design should be carried out (Erl 2009; Patig 2009).

Service-oriented analysis is a way of defining business automation requirements as loosely

coupled and agnostic services or Services-Orientation (Erl 2005). The objective of SO analysis is

to obtain requirements for potential candidate services. Candidate services are defined as business

processes or units of logic that have reusable, agnostic and independent (of other processes or

system logic) characteristics. Essentially, these components contain logic that has the potential to

be abstracted as services (Erl 2005). Service requirements are obtained using various methods,

which will be discussed later in Section 4.3.

SO analysis is followed by SO design. While SO analysis involves identifying candidate services

and modelling them to provide some functionality, SO design is the process of modelling the

service candidates into useful applications (Terlouw 2009).

The objective of service-oriented analysis and design is to identify suitable service candidates, to

design and realise them. Various methods such as Service-Oriented Modelling and Architecture

(SOMA), Service-Oriented Analysis and Design (SOAD), Service-Oriented Development of

Applications (SODA) and Service-Oriented Unified Process (SOUP) exist to aid the identification,

design and realisation of services (Arsanjani 2004; Zimmermann et al. 2004; Mittal 2006;

Arsanjani et al. 2008). Table 4.1 shows a comparison of existing methods for developing SOA

solutions by looking at specific characteristics of SOA development approaches, namely

(Ramollari, Dranidis and Simons 2007):

 Delivery strategy: Top-down (T), bottom-up (B) or meet-in-the-middle (M). Delivery

strategies are discussed more in Section 4.3.1;

Service-Oriented Analysis and Design 83

 Lifecycle coverage: Support for full SOA lifecycle or just phases (Planning, analysis and

design, construction, testing etc.);

 Prescriptive: Perspectives that specify phases, tasks deliverables, etc;

 Proprietary: Availability of detailed specifications;

 Agile: Use of agile methods to manage risks;

 Existing process: Use of existing development processes such a Rational Unified Process

(RUP) and eXtreme Programming (XP);

 Existing techniques: Use of existing techniques such as Business-Process-Management

(BPM) or Component-Based Development (CBD);

 UML: Use of existing notations;

 Applied in industry: Applied in industry to validate methodology; and

 Consumer / Provider view: Developmental view of service design and implementation.

Table 4.1: Comparison of SOA Development Methods (Ramollari et al. 2007)

Delivery

strategy
Lifecycle coverage Proprietary

Existing

process

Existing

techniques
UML

Applied in

industry

IBM

SOAD
M A&D

OOAD,

BPM

IBM

SOMA
M A&D

RUP - - Extensively

SOA RQ M complete

RUP -

Extensively

CBDI-

SAE
M complete

- - - Not Yet

SOAF M
A&D and

planning phases

NO

-
A Case

Study

SOUP M complete

RUP

XP

Not Yet

Papaz M complete

RUP
CBD,

BPM

Not Yet

Erl‘s

SOADM
T A&D

BPM

Not Yet

BPMN to

BPEL
T

A& D and

Implementation.

BPM

Not Yet

Jones‘ SA T Initial Planning

Not Yet

The IBM SOMA approach and Erl‘s (2005) approach were selected as the development

methodologies for the AUI services. SOMA is a proven approach used extensively in industry and

its phases provide a solid analysis and design framework. It uses the RUP approach for the

Service-Oriented Analysis and Design 84

elicitation, design and implementation of services. RUP is software development process which

defines, amongst other things, phases for the development of software (IBM 2007b). The goal of

RUP is to provide a disciplined approach to software development thereby increasing team

productivity and ultimately software quality. RUP is, however, a proprietary product and its most

detailed specifications are not publicly available. Erl‘s (2005) Service-Oriented Analysis and

Design Methodology (SOADM) fill this gap. SOADM provides detailed specification information

where SOMA information is not available. Another benefit of SOADM is its vendor neutrality. It

does not require specific or specialised vendor tools or assets to be used. The SOADM approach

has also recently been updated with SOA modelling and design notation, based on the notations

used in Erl (2008).

Figure 4.1 (A) shows the analysis, design and development phases according to SOADM. These

steps form the analysis and modelling component of the service-delivery lifecycle. SOMA

prescribes similar steps but gives them different names: service identification, specification and

realisation (Figure 4.1 B). The results of following these steps leads to the identification of service

candidates, the design of services and their contracts and the development of the identified

services. The following section discusses the SO analysis, design and implementation in more

detail.

Erl‘s SOMA

Figure 4.1: Erl‘s (2005) service-oriented analysis process (A) and Arsanjani‘s (2004) SOMA (B)

Service-Oriented
Analysis

Service-Oriented
Design

Service
Development

A

B

Service-Oriented Analysis and Design 85

The following sections discuss SO analysis and design using a hybrid method This method is a

combination of SOADM method and the SOMA method because, as previously mentioned, the

SOMA method is proprietary and certain details are not made publicly available; therefore,

combining it with SOADM provides details on specific aspects of SO analysis and design.

4.3 Service-oriented analysis

The aim of the SO analysis step is to firstly identify which services must be built and secondly, to

determine the logic that each service must encapsulate (Erl 2005). Figure 4.2 illustrates the

analysis process used to achieve these aims.

Figure 4.2: Service-oriented analysis (Erl 2005)

4.3.1 Define business requirements

This step involves the identification of services by defining the operational business requirements

for candidate services. Once operations have been identified, they are grouped into logical

candidates to form the basis of a service (Erl 2009). Service identification can be achieved in

several ways: top-down, bottom-up or middle-out technique (Arsanjani 2004). These approaches

are referred to as ―Service-delivery‖ approaches.

The top-down strategy, sometimes referred to as domain decomposition, initiates the modelling

and design process from a domain perspective (Erl 2005). The strategy entails breaking down a

domain into its functional areas. These are often good candidates for services (Arsanjani 2004).

This process generally results in high quality services, since the design of each service is carefully

analysed. This results in services that align well with the business requirements (Johnston 2005;

Arsanjani et al. 2008). However, it imposes a heavy burden on time and money because of the up-

front design investment and this makes managers reluctant to use it in practice (Erl 2005).

Define Business
Requirements

Identify Automation
System

Model Candidate
Services

Service-Oriented Analysis and Design 86

The bottom-up approach involves the analysis of existing systems to identify re-usable

components that have the potential to be services (Arsanjani 2004). The focus here is on providing

application-centric services that best suit the needs of an application (Erl 2005). Figure 4.3

illustrates the bottom-up approach to service identification and how the results of the steps are

used in modelling and developing services. The first step involves analysing the applications

service needs, then designing application services to meet these needs. Once the design is

complete, the services can be developed and tested to ensure that they meet the application

requirements. Finally, the services are deployed and are made accessible to the application. A

disadvantage of this approach is that it sometimes results in simple create, read, update and delete

(CRUD) services (Johnston 2005).

Figure 4.3: Bottom up strategy (Erl 2005)

The middle-out method ties services to business goals by identifying services based on the

business goals (Arsanjani 2004). This approach provides a means of identifying which goals a

service satisfies; and allowing the scope of the analysis to remain strictly within the boundaries of

a project (Arsanjani et al. 2008).

Hubbers, Ligthart and Terlouw (2007) outline various other methods of indentifying services from

a business perspective. Most of these methods are a variation of the top-down or bottom-up

analysis and identification technique. The meet-in-the-middle technique is an iterative process that

uses a combination of the top-down and bottom-up approach in identifying services (Arsanjani

Service-Oriented Analysis and Design 87

2004; Terlouw 2009). Service identification is enhanced by first identifying core business

processes, and then continuously analysing them to uncover possible service candidates.

4.3.2 Identification of automated systems

This step is usually conducted on large SO solutions and is therefore not always necessary (Erl

2005). In essence, it involves a bottom-up approach to identify service candidates within the

existing systems.

The outcome of SO analysis is a set of candidate services. The process used to derive tangible

service designs from the service candidates is the SO design process (Erl 2005). The physical

service designs can then be pieced together to form business processes. The following section

discusses SO design.

4.4 Service-oriented design

The aim of SO design is to specify physical services and define interactions between them in order

to realise business processes. This is achieved by modelling the service candidates into useful

applications. The steps to SO design are illustrated in Figure 4.4.

Figure 4.4: SO Design steps (Erl 2005)

4.4.1 Composing an SOA

Composing an SOA is the first step in SO design. It involves (Erl 2005):

 Selection of service layers: Large SOA solutions tend to be divided into service layers (Erl

2005) and the service layers are then used to represent groups of services that have similar

characteristics as a result. This grouping is most commonly based on service models of the

services (Section 2.3.1; Arsanjani 2004). Alternatively, it is done by the type of capabilities

Compose SOA

Design Business
services (entity

centric, application,
task centric)

Design SO
Business

Processes

Service-Oriented Analysis and Design 88

the services provide. It is important to identify which layers are necessary for a particular

solution in order to logically separate services.

 Positioning of the core standards: This step involves the selection of SOA-related

standards that will facilitate the realisation of physical services (Section 2.3.2). Examples

include the decision to use RPC or document-style messaging for an SOA solution or

whether to use REST services (Section 2.4.1) or RPC type services.

 Selection of the applicable SOA extensions: This step allows individual SOAs to be created

(Erl 2005). Specifications such as WS-BPEL are used to orchestrate entire applications and

processes thereby enabling the realisation of SO applications.

Composing an SOA therefore identifies the appropriate layers to include in an SOA. When this

step is complete, candidate services must be allocated to the layers.

4.4.2 Design of Business Services

The application of this step differs depending on the service model. Task services, utility services

and entity services are designed and modelled using slightly different approaches. The reason for

this is that the different service models (which reside on different service layers) have different

properties. Task services, for example, are top level services that can invoke lower layers services

to achieve a business function. A basic level of business knowledge, at least, is required in order to

achieve this. The utility services, on the other hand, are purely agnostic and require no business

analysis skills.

At this stage, the identified services must also be specified. Service specifications provide

information about a service that service consumers can use to evaluate a service and decide

whether to use it or not (Zhang et al. 2005; Amsden 2007). The following section discusses service

specification.

4.4.2.1 Service specifications

Services must be formally specified once analysis has been completed and candidate services have

been identified. A service specification defines a service and provides information about the

service capabilities. This has several advantages. Firstly, service specifications form the basis for

Service-Oriented Analysis and Design 89

the creation of service contracts (Amsden 2007). Secondly, the service specification provides

information for the implementation of candidate services.

Services that have been implemented are referred to as physical services. Finally, the

specifications allow different services to be developed independently from the specifications

alone, since all the information required for the service to interact with other services is provided

in the specification (Terlouw and Maarse 2009).

Terlouw and Maarse (2009) propose a service specification framework to define services. The

specification framework is shown in Figure 4.5. It contains three sections, namely, the Service

Provider, the Service Function and the Service Usage. The Service Provider stores information on

the entity responsible for the service. It is necessary to store a service‘s owner information,

especially in cases where service responsibility may be delegated or shared. Service responsibility

is shared when different people or organisations are in charge of different aspects of a web service.

The Service Function section provides information about the capability that the service provides.

A service type is provided for service classification purposes. These facilitate the searching for

services by type. The service types can be defined by the service owner or by the registry

supporting the services. The service type may, alternatively, be based on service models (Section

2.3.1). Information regarding the functions that the service supports is specified in this section.

Input and output parameters required by the service are specified along with any message errors,

preconditions or post-conditions of the service. Definitions of terms can be specified to avoid

semantic conflicts between the service provider and the service consumer.

The Service Usage section provides information on how to access the service. Information, such as

the location of the service (the URL), the protocols needed to communicate with the service and

the service version are included.

The use of a service specification framework to specify the technical aspects of a service provides

two distinct advantages. Firstly, all critical service information is captured. Secondly, all

information is captured in a uniform and consistent manner. This is important, as it provides

documentation on a service regarding the service capabilities, and makes the maintenance of the

service easier, since its critical information is readily available. Furthermore, service specification

Service-Oriented Analysis and Design 90

provides information for realising services. Service realisation will be discussed in the following

section.

Figure 4.5: Service Specification Framework (Terlouw and Maarse 2009)

4.4.3 Design of SO Business Processes

This step defines the orchestration of services into meaningful applications (Erl 2005). The logic

for the application can be formally expressed using XML languages, such as WS-BPEL or just

BPEL. The services identified in the previous step can be combined in different ways to create

new or different applications. Essentially, this step abstracts certain logic and responsibility that

make web services abstract, agnostic and loosely coupled (Erl 2005). The completion of this step

Service-Oriented Analysis and Design 91

concludes the SO design phase. The SO design is followed by the service realisation phase which

provides information on how services can be realised.

4.5 Service realisation

A service‘s specification provides detailed information on how a service candidate can be

implemented. Once specifications have been drawn up for candidate services the service must be

realised and provided. Service realisation is the use of notations such as UML to show the design

of services and how they can be implemented. An Implementation design is drafted in order to

(Amsden 2007):

 Decide which service providers will provide which services;

 Design the service implementations; and

 Assemble and connect service consumers and the providers required to model complete

implementations.

Service realisation forms part of service provisioning. Service provisioning involves deciding

exactly how services are to be realised. This decision is assisted by the use of a gap analysis to

compare planned services with existing software implementations (Papazoglou and Yang 2002).

The outcome of a gap analysis is a proposal to develop the services in-house, re-use existing

software services or purchase web services. These outcomes can be one of several approaches

being selected:

 In-house development: Service analysis, design and realisation are performed by the

organisation requiring the services;

 Using adapters or Wrappers: Legacy systems or database functionality are both wrapped

around service components to expose the legacy functions as services;

 Outsourcing: Once a service is specified, the design and implementation are outsourced to

a third party; and

 Leasing/Purchasing/Paying: Services are leased from service providers and a fee is paid

for every execution of the web service. This fee may be on a per-use basis, per

subscription, per lease or for the lifetime of the service.

Service-Oriented Analysis and Design 92

This section discussed how services that have gone through the analysis and design phases can be

realised. The next phase of this research is therefore to apply the process of SO analysis and design

discussed in the previous sections to an AUI in order to realise AUI services.

4.6 Service-oriented analysis of an AUI

The aim of the SO analysis is to identify services that can be built and, to determine the logic that

each service must encapsulate (Erl 2005). This section discusses the approach taken to identify

AUI services. SOA is a business-oriented architecture and it strongly advocates matching services

with business requirements. The use of the term business is consequently found in SO analysis and

design literature. In this study, the term business is used to refer to processes or artefacts that are

specific to the domain in which they are applied.

4.6.1 AUI service identification

Services can be identified by analysing scenarios. Scenarios give an idea of how services can be

used in an application. The Adaptive HelpDesk for a Contact Centre (CC) developed by Jason

(2008) provides the scenario for this study. This scenario is described in detail in Section 3.5.2 as

well and later in Section 5.2.

The bottom-up approach is used to identify services in this case since the scenario describes the

interaction of AUI components. The existing AUI can be analysed to identify service candidates.

The identification of services can be achieved by decomposing a process into ―the most granular

representation of processing steps‖ (Erl 2005). Figure 4.6 illustrates how steps in a process can be

extracted to create reusable services. Depending on the accepted level of granularity for an SOA

implementation, almost every process step, sub-process or process can be implemented as a

service.

The components of an AUI can be viewed as a workflow or a series of steps used to achieve

adaptation. Information is moved from component to component until the process is complete.

Section 3.5 established that an AUI consists of three main components, the afferential, inferential

and efferential components of adaptivity. Figure 4.7 illustrates the interaction between the

components of an AUI and how the components can be abstracted as services. The components of

an AUI form part of the general schema for processing an AUI: capture user-interaction

Service-Oriented Analysis and Design 93

(afferential), make inferences about users by using the captured information (inferential), and

finally, provide relevant adaptations based on the inferences made (efferential). The components

of an AUI can therefore, be designed as services to provide re-usable AUI components.

Figure 4.6: Encapsulating parts of a process as a service (Erl 2005)

Figure 4.7: The components of adaptivity

The components of an AUI have all the characteristics of services, namely: they are loosely

coupled, agnostic and independent when the adaptation process is decomposed to a sufficiently

Service-Oriented Analysis and Design 94

granular level. Three service candidates can be identified in the process: A Watcher Service, an

Analysis Engine Service and a Transformation Service.

The Watcher Service fulfils the afferential component of adaptivity since it is derived directly

from the afferential component and its role is solely to collect user-interaction data and update the

user model (Section 3.2.5.1).

The Analysis Engine Service fulfils the inferential component of adaptivity, since it provides the

same function as the inferential component of adaptivity (Section 3.2.5.2). User-interaction data

collected by the Watcher component is stored in the knowledge base. The inferential component

uses this user-interaction data to make inferences about users by employing user modelling

techniques.

The efferential component of adaptivity decides how to adapt the UI in an AUI. The decision on

how this occurs is based on inferences made by the inferential component. The Transformation

Service provides this functionality and therefore satisfies the efferential component of adaptivity

(Section 3.2.5.3).

Table 4.1 provides a summary of the identified AUI services. Short descriptions of each service

are provided to outline the scope of functionality required for each service. The AUI services are

derived from the components of adaptivity and encapsulate the functionality that each component

provides in an AUI.

Table 4.2: Identified Services

Service Name Service Description

Watcher Service
Capture user-interaction information and update the knowledge base

with this information.

Analysis Engine Service
Make inferences about users by employing user modelling

techniques using data from the knowledge base.

Transformation Service
Perform relevant adaptations to the UI based on the results of

invoking the Analysis Engine Service.

Candidate services have been identified by analysing existing AUI components. These service

candidates are based on the components of adaptivity that interact in order to provide relevant

adaptations to users. The following section explains how the candidate services identified in Table

4.2 are specified for use in an SOA and CC environment.

Service-Oriented Analysis and Design 95

4.7 Service-oriented design of an AUI

The aim of SO Design is to specify physical services and define the interactions between them. As

mentioned in Section 4.3.1, this phase includes the selection of service layers, the positioning of

core standards and the selection of applicable SOA standards.

 Selection of service layer: The services previously identified are classified as AUI utility

services. This is because they are agnostic of their environment and provide low level AUI

functionality;

 Positioning of Core Standards: The WSDL is the standard way of defining a web service

contract (Section 2.3.2.1). It will therefore be used to define the contracts of the identified

services. Remote Procedural Call (RPC) services are going to be used because a WSDL

must be defined since synchronous services are required (Section 2.4.1); and

 Selection of applicable SOA standards: An Enterprise Service Bus is used in SOAs when a

large number of services must interact using a standard messaging protocol for example

(Section 2.5). Only a small number of services were identified in this research, therefore an

ESB is not necessary. The point-to-point approach will be used instead.

The following step in the analysis of an AUI is the design of business services. The identified

services are of the same type, and once realised, they will be invoked using the RPC approach. The

specification of the services is, however, necessary in order to develop the service WSDLs and

provide specific service information for development and for the documentation of the service.

The following section discusses the specification of the AUI services.

4.7.1 AUI service specification

Terlouw and Maarse‘s (2009) specification framework contains a comprehensive list of service

specification information. In this section, the framework is used to specify the services identified

in the previous section. In order to avoid repeating the same information in service specifications,

Table 4.3 provides information that is common to all the services. This information will be made

accessible in the documentation of all services as required by the framework. The table includes

information of the specific service provider (an individual or organisation) and possible contact

Service-Oriented Analysis and Design 96

details. The messaging protocols supported by the service, the service location (URL) and the

service version are provided.

Table 4.3: Common Service Specification Information for all services

Aspect Information
Service Provider

Provider Name Emile Senga

Provider Contact Details Department of Computing Sciences, Nelson Mandela Metropolitan

University, University Way, 6001. Tel: 041 504 2049. Email:

emile.senga@nmmu.ac.za

Service Usage

Version 1.0

Protocols HTTP, SOAP.

Location http://pegasus:12001/

4.7.1.1 Agent manager – Watcher

This section provides specification information for the Watcher Service. The Watcher Service

satisfies the afferential component of adaptivity by capturing user-interaction information and

interacting with the knowledge base to update the user model.

Table 4.4 shows service-specification information for the Watcher Service. The supported

operations are shown along with the parameters to invoke them. The only operation accessible via

the Watcher Service interface is the ListMetrics function. The rest of the operations are delegate

functions that are invoked by ListMetrics to store appropriate performance data into the

appropriate sections of a user‘s profile.

Table 4.4: Watcher Service Specification

Aspect Information

Service Function
Service Type AUI Service

Supported Transactions Operation: ListMetrics – this is a switch type function that invokes

the appropriate private method to store user-interaction data in the user

model.

Operation: ServiceName

Description: Updates the user profile with the PFs for the IM ‗Service

Name‘.

Parameters: _AUI , String userid

Operation: CallType

Description: Updates the user profile with the PFs for the IM

‗CallType‘.

Parameters: _AUI , String userid

Tel:041

Service-Oriented Analysis and Design 97

Table 4.4: Watcher Service Specification (continued)

Aspect Information
Supported Transactions Operation: Priority

Description: Updates the user profile with the PFs for the IM

‗Priority‘.

Parameters: _AUI , String userid

Operation: Source

Description: Updates the user profile with the PFs for the IM ‗Source‘.

Parameters: _AUI , String userid

Operation: Campus

Description: Updates the user profile with the PFs for the IM

‗Campus‘.

Parameters: _AUI , String userid

Operation: Contact

Description: Updates the user profile with the PFs for the IM

‗Contact‘.

Parameters: _AUI , String userid

Operation: Cause

Description: Updates the user profile with the PFs for the IM ‗Cause‘.

Parameters: _AUI , String userid

Operation: Solution

Description: Updates the user profile with the PFs for the IM

‗Solution‘.

Parameters: _AUI , String userid

Description Capture KLM data for each informative moment and update the

current users profile with this information at the end of every task.

Input Operation: ListMetrics()

Description: A list of objects containing predictive features (PFs) for

informative moments (IMs)

Parameters: List<AUI>

Objects: AUI = TotalTime, SelectionTime, YmouseVelocity,

YmouseAcceleration, DwellTime, AverageDwellTime,

No.ItemsVisited, No.UniqueItemsVisited, InformationMomentID.

4.7.1.2 Analysis engine

This section discusses the specification of the Analysis Engine Service. The analysis engine makes

inferences about a given user‘s level of expertise by employing user modelling techniques. It

satisfies the inferential component of adaptivity. It also interacts with the knowledge base by

selecting the user model which is stored in the knowledge base. Table 4.5 provides service-

specification information for the Analysis Engine Service.

Service-Oriented Analysis and Design 98

The Analysis Engine Service supports just one operation, isExpert. This operation performs user

modelling for the user whose ID is passed as a parameter to this operation. Its output value is a

Boolean, which is true if a user is found to be an expert and false if the user is a novice.

The Analysis Engine Service requires that user-interaction data exist in the user model for users. If

none exist, then its default return value is false, i.e. the user is a novice. Furthermore, it does not

affect the user model in any way, and only reads the values of the parameters stored in the model.

Table 4.5: Analysis Engine Service Specification

Aspect Information

Service Function
Service Type AUI Service

Supported Transactions isExpert – performs user modelling analysis for a given user to

determine their level of expertise.

Description Make inferences about users by employing user modelling techniques

using data from the knowledge base.

Input Operation: isExpert

Description: performs user modelling analysis for a given user to

determine their level of expertise

Parameters: String userid

Output Boolean – true if user is found to be an expert, false if otherwise

Preconditions User-interaction data exists in knowledge base concerning said user. If

none, default to novice.

Postconditions User model is unaffected by the inferences.

QoS constraints -none-

4.7.1.3 Presentation manager - Transformation

This section discusses the specification of the Transformation Service. The Transformation

Service generates UIs based on the outcome of the user modelling performed by the Analysis

Engine Service. It creates UIs that are matched to a user‘s level of expertise. Several documents

are used to accomplish this, and they will be discussed in Chapter 5.

Table 4.6 shows the specification for the Transformation Service. The service supports just one

operation which takes as input well-formed XML documents in order to create UIs.

This section discusses the design of AUI services by applying SO design to an AUI. The outcome

is that appropriate standards for the services have been identified and service specifications have

been provided for the services. The next step is to design business processes and finally, to provide

realisation information for the services. The single business process in this case is the adaptation

Service-Oriented Analysis and Design 99

process. This is discussed as the proposed model for this study which outlines how adaptation can

occur in a SOA. The following section will discuss this.

Table 4.6: Transformation Service Specification

Aspect Information

Service Function
Service Type AUI Service

Supported Transactions TransformXML

Description Generate UI for novice or expert based on the inferences made by the

Analysis Engine Service.

Input Operation: TransformXML

Description: transforms the given xml (appropriate OLH + WSDLs)

using the given XSLT.

Parameters: String XML, String XSLT

Output Generated HTML mark-up from transformation of input documents.

Preconditions XML input documents must be well formatted.

Postconditions -none-

QoS constraints -none-

4.7.2 Proposed model

The service specification step, as previously stated, provides details on how services can be

implemented. The specified services must now be orchestrated to create meaningful applications.

A model is proposed for the interaction of AUI services for this study.

Figure 4.8: Proposed Model

Service-Oriented Analysis and Design 100

Figure 4.8 illustrates how the AUI services for this model interact in order to adapt and generate

UIs. The following sections discuss the specific aspects of the AUI services model.

4.7.3 Knowledge base

The function of the knowledge base in the proposed model for AUI services is to store the user and

task models. The user model defines the user and represents the characteristics that are important

for adaptation to take place (Section 3.2.5.1). The task model represents the tasks that the user can

perform (Section 3.2.5.1). This section shows and discusses the user and task models in the

proposed AUI model.

4.7.3.1 User model

The function of the user model in the AUI services model is to store information which is

subsequently used for adaptation. Novice and expert CCAs in a CC environment differ in

performance at the physical level of interaction i.e. the speeds at which CCAs are able to log calls

differ significantly (Jason 2008).

Figure 4.9: User Model Schema

Service-Oriented Analysis and Design 101

The user model must consequently contain performance-related information to differentiate

between novice and expert user. Informative Moments (IM) (Section 3.5.2.1) are used to represent

specific UI elements with which users interact. Each IM has associated Predictive Features (PFs).

Figure 4.9 shows the task model used to store user performance information

4.7.3.2 Task model

The task model represents the tasks that the user can perform with the system. The task model in

the AUI services model stores information on the Call Logging task. AUIs use task models to

recognise a user‘s goals. Task support and error checking can be performed using the task model.

Figure 4.10: Extract of Task Model Schema

In an SOA environment, the task model stores specific service information which is used to find

service descriptions when generating the UI. Services that support the Call Logging task are

Service-Oriented Analysis and Design 102

references from the task model. The UI itself is generated from the operations of web services.

Using this approach allows the UI to be flexible, loosely coupled and independent of

implementation. In order to add a new operation to the UI, for example, only requires a reference

to a web service that supports the operation to be included in the task model. Figure 4.10 depicts

the task model used.

The task model represents the tasks that the user can perform with the system by defining the

different aspects of the task as steps. Each step includes different operations. Each operation

includes the operation name, and the location of the web service that supports that operation.

4.8 Service realisation

Once services have been identified, and processes in which they are used have been defined, the

next phase is to decide how the services will be realised. Service realisation determines how

services will be provided. The in-house approach (Section 4.5) was selected for the realisation of

services in this study. In-house development consists of the analysis, design, realisation and

implementation of services within the organisation planning the services. Wrappers are also used

in several places to provide functionality from legacy source code as services.

4.9 Service interaction

The analysis and design of AUI services has already been discussed. This section describes how

the services in the implementation of the prototype will interact. The UI interaction with the AUI

services is discussed to illustrate how these components interact to allow CCAs to complete the

Call Logging task. The actual implementation of the services will only be discussed in Chapter 5.

Service annotations diagrams can be used to illustrate the final interactions of the services once

they have been implemented (Erl 2008). Figure 4.11 illustrates how the UI interacts with the AUI

services during the Call Logging task using a sequence diagram. Users must first login into the

system to differentiate between the different users. A utility login service authenticates the user at

this step. The current level of expertise of the user, as it is in the user model, is retrieved next. The

Transformation Service is invoked with the retrieved user expertise level as a parameter. The

appropriate UI is then generated based on this expertise passed on to this service.

Service-Oriented Analysis and Design 103

If the user is a novice, then the first step of the Call Logging task is generated. Once this step is

complete, and the user would like to move to the next step, the next step function is invoked. All

the user-interaction data is then submitted to the Watcher Service, which updates the user model of

the current user. The Transformation Service is then invoked to generate the UI for the next step.

For each subsequent step, the Watcher Service captures the user-interaction data and updates the

user model of the current user. Finally, once the entire task is complete, the user-interaction data

are submitted and the Analysis Engine Service (‗Expertise‘ in Figure 4.11) is invoked to determine

whether the user‘s latest performance moves him up to the level of experts. User modelling takes

place and if a user is found to be an expert then an expert UI is generated using the Transformation

Service. If the user is not an expert, then he will continue using the novice UI.

Figure 4.11: AUI components and Call Logging processes sequence diagram

Service-Oriented Analysis and Design 104

The user‘s performance is continually evaluated while he interacts with the application to

determine whether the user is performing at the level of experts. Once several tasks have been

completed with the application, the user‘s expertise may be elevated to the expert level. An expert

UI is generated to allow the user to interact faster with the UI. In this case the user-interaction data

are only captured by the Watcher Service once the entire task is complete.

4.10 Summary

The aim of this chapter was to answer research question R3: How can an AUI be designed using

an SOA? This chapter has shown the analysis and design phases of an AUI using a hybrid

approach developed by combining the phases of Erl‘s (2005) method for SO analysis and design

and the SOMA method (Arsanjani 2004). Various SO analysis and design methods exist.

However, those which are used extensively in industry and have a proven record, are proprietary

methods, hence the use of a hybrid method.

The SOMA approach developed by IBM (Arsanjani 2004) defines the different phases of SO

analysis, design and implementation while Erl‘s (2008) approach provides the details on the

specific steps in a generic and vendor agnostic manner.

Jason (2008) proposed and successfully implemented an AUI for contact centres (CC) which was

designed and implemented using a client/server architecture. The hybrid approach is used to

analyse and design AUI services based on Jason‘s (2008) implementation and the result is a model

for AUI services. This model defines how AUI services can be implemented to provide adaptivity

to generated UIs. The model consists of the traditional AUI components (the Afferential,

Inferential and Efferential components) as services that can be invoked over a network.

In order to validate the model, it must be implemented and evaluated. The next chapter discusses

the realisation of the model discussing the implementation of a prototype for CCs.

Chapter 5: Implementation

5.1 Introduction

The literature chapters (Chapter 2 and 3) discussed service oriented architectures (SOA) and

adaptive user interfaces (AUIs). Chapter 4 developed a model for AUI service interaction using

the knowledge gained in the literature chapters. Furthermore, a hybrid approach which combined

Erl‘s (2008) method and the SOMA (Arsanjani 2004; Arsanjani et al. 2008), was used to analyse

Jason‘s (2008) existing model and the result was the design of a SOA based AUI services model.

This chapter describes the implementation of a SOA based prototype of the AUI services model.

The objective of this chapter is to demonstrate how the proposed AUI services model proposed

in Chapter 4 was implemented. This implementation has been undertaken in order to demonstrate

whether the model can be effectively used in the design and development of a prototype

incorporating AUIs and making use of an SOA, thereby answering research question R4: How

can an AUI be implemented using an SOA? A discussion on the domain of the prototype has been

provided to give the setting in which the prototype was developed (Section 5.2). The

implementation tools selected to realise the prototype are also discussed (Section 5.3). The

realisation of the AUI model services are discussed beginning with the Knowledge Base (Section

5.4), followed by the Agent Manager (Section 5.5), the Analysis Engine (Section 5.6) and the

Presentation Manager (Section 5.7). The interaction between the model services is discussed in

Section 5.8 and the user interfaces (UIs) created from the interaction between the AUI model

services, are discussed in Section 5.9. Finally, pilot studies used to evaluate early prototypes are

discussed in Section 5.10.

5.2 The implementation domain

Section 3.5.2 discussed the implementation of an AUI in a contact centre (CC). This section

provides a brief discussion on CCs and the need to train CC personnel using AUIs. The objective

is to provide a domain context for the prototype implemented in this chapter.

Implementation 106

CCs are the main point of contact between companies and their customers. There has been an

increase in the investment in CC infrastructure and the accompanying workforce (Mandelbaum

2004). The goal of the CC and the task assigned to Contact Centre Agents (CCAs) is to resolve

customer queries. CCAs are the personnel responsible for interacting with customers in a CC and

they respond to customers‘ queries concerning company products or services.

The query resolution process begins with logging the customer‘s query (Jason 2008). The steps

that follow usually take the following sequence (though this may vary depending on the query):

 Provide the customer‘s details;

 Provide the call‘s details;

 Assign the call; and

 Provide the call‘s solution (resolution) details.

The majority of funds invested in a CC workforce is to train CCAs to respond effectively to

customer queries (Heathcote 2003). Various approaches have been proposed to reduce training

costs, including IUIs (Singh 2007) and AUIs (Jason 2008). An AUI has been implemented to

improve the performance of novice users in resolving customer queries.

Novice and expert users have been shown to perform and think differently when performing

tasks (Jason 2008). The implication of difference between users is that UIs must match the user‘s

level of expertise. Jason (2008) implemented an AUI to improve the performance of novice

CCAs by providing different UIs based on the user‘s inferred level of expertise.

Two UIs were created, one for novice users and the other for expert users. The design of the UIs

was influenced by research on qualitative (Section 3.3.1) and quantitative (Section 3.3.2)

differences in user expertise. Each UI was, therefore, specifically designed to match the expertise

of users.

The prototype implemented in this chapter was developed in the setting explained above. The

prototype allows novice CCAs to perform the query resolution steps and to respond to

customers‘ queries. This is, however, achieved using an SOA. Essentially, the AUI services

model has been developed to provide the necessary functionality to achieve the query resolution

Implementation 107

steps using an SOA. The following section discusses the implementation tools used to achieve

this.

5.3 Implementation tools

In this section the implementation tools used to develop the prototype of the AUI services model,

as specified in Chapter 4 are discussed. Different aspects of the model required the use of

different development tools. The model was consequently implemented using the tools

discussed.

Service development language – A deployed web service can be accessed from any platform;

therefore the implementation language of the services is not of great concern. Each web service

was evaluated to determine which platform would best provide the necessary functionality. The

existing source code acquired from a previous study (Jason 2008) was, however, in C#. Web

services were therefore implemented in C# using Visual Studio 2008 (Microsoft 2009e). In

addition, the .Net platform offers a mature and simple web service implementation platform with

annotations and support for web service standards (Microsoft 2009c).

Transformation language – Web services leverage XML (OMG 2009) in order to exchange

information and define service contracts. The Transformation Service uses the Web Services

Description Language (WSDL) (W3C 2009d) document of a service to generate the UI.

Although parsing of XML is possible on most platforms, Extensible Stylesheet Language

Transformation (XSLT) (W3C 2009e) was used to transform the necessary information from

WSDL, and object layout hierarchy (OLH) documents. XSLT is a flexible and powerful

language for manipulating XML. The use of XSLT in this research offers the possibility of easily

extending the platforms for which the UI is generated. If, for example, the platform for which the

UI is generated changes, then generating UI code for the new platform is much easier using

XSLT than it would be when using a different language such as C# or Java. In addition, XSLT

can also be run on any platform, while using languages such as Java or C# would require specific

platforms for the transformation of XML.

Service Deployment – The web services are published on Internet Information Services (IIS) 7

running on Microsoft‘s Windows Server 2008 (Microsoft 2009b). This was chosen as the

application server of choice because the web services were developed for the .NET platform.

Implementation 108

Microsoft‘s Windows Server 2008 runs on a Sun Fire V40z server. The configuration of the

server is shown in the table below.

Table 5.1: Windows Server 2008 Server Specification

Processors Four AMD Opteron Model 848 2.19 GHz

Memory 6 GB (4 x 1GB, 4 x 512 MB)

Disks 3 x 73 GB Ultra320 SCSI 10 000 rpm

Network Adapter 2 x Gigabit Ethernet

Operating 64-Bit Windows Server 2008 Service Pack 2

Knowledge Base – The User Model is stored using a MS SQL 2005 Database (Microsoft 2009b)

which is deployed on Microsoft‘s Windows Server 2008. The User Model stores user

performance information including XML snippets of the Information Moments (IMs) (Section

4.6.3.1).

System Interaction – Firefox v3.5.5 web browser was used to interact and evaluate the prototype.

W3Schools (2009) is a web resource that maintains a list of web browser statistics. The

generated UIs were tested on the following five most popular web browsers, according to

W3Schools (2009):

 Chrome v4.0.249 (Google 2009b);

 Firefox v3 (Mozilla 2009);

 Internet Explorer 8 (Microsoft 2009d);

 Opera v10 (Opera 2009); and

 Safari v4 (Apple 2009).

During this research it was found that none of the currently existing browsers, except Firefox,

support the programmatic access to events fired when interacting with HTML drop-down list

elements. In order to capture and measure predictive features (PFs) for IMs, such a feature is

crucial. The browser of choice for development and testing was therefore limited to Firefox v3.

The implementation of the AUI services model will be discussed in the following sections. They

elaborate on how the Knowledge Base, Agent Manager (Watcher Service), Analysis Engine

Service and Presentation Manager (Transformation Service) are implemented.

Implementation 109

5.4 Knowledge base

The knowledge base stores the user and task models. Both the user and task models are

implemented using XML. The User Model is used to store the parameters related to user

performance. The Task Model is used to define the task the user performs as well as to define the

aspects of the generated UI. These components are discussed further below.

5.4.1 User model

AUIs generally utilise a user model. The purpose of the user model is to store user related

information; which is used in the adaptation process. User‘s unique characteristics are either

stored or derived from the data stored within the user model. For the prototype, user performance

data are stored as an XML document within a user‘s profile in a database. In addition, the user

profile contains user‘s log-in times, and time taken to complete tasks.

Performance separates novice users from experts since experts complete tasks faster and more

efficiently than do novice users (Section 3.3.2). The performance data are used to analyse the

users‘ skills as they interact with the UI. Depending on the results of the analysis, a user is

subsequently classified by using a stereotype as either novice or an expert. Every user begins as a

novice regardless of expertise and experience. Once the performance matches the performance of

predicted expert users, the prototype ceases to generate the novice UI and now generates the

expert UI.

The Keystroke Level Model (KLM), discussed in Section 3.5.2.1, defines the threshold used to

determine whether a user is an expert or a novice (Hurst et al. 2007). Performance at or above

this threshold indicates that the user in an expert while performance below this figure indicates

that the user is a novice.

Although user-interaction data are collected during interaction with the application, the transition

from novice UI to expert UI occurs at the beginning of a task. This is because analysis of the data

on a user‘s performance is preformed at the beginning of the task.

Implementation 110

5.4.2 Task model

The task model maintains a model of a task or goal the user is trying to achieve. The model

defines a task and its sub-tasks in an hierarchical structure. The sub-tasks are marked as being

complete or incomplete as the user interacts with the UI and completes different sub-tasks. In

this study, the task model is stored as an XML document. It is also exploited to provide

additional capabilities, for example, element dependencies within the UI are addressed using the

task model.

Elements that depend on other elements have an attribute with the value as the name of the

element on which it is reliant, as well as the nature of the relationship. Navigation of the

application is also managed using the task model, since it defines the steps required to complete

a task and the order (if necessary) of execution. The task and user models are both implemented

using XML.

5.5 Agent Manager - Watcher Service

The function of the Watcher component is to capture user-interaction information and store this

information in the knowledge base. In order to achieve this as a service, the generated UI is

created with JavaScript code to collect user-interaction information for each IM. An AUI object

is created for each IM and updated if the user interacts with the IM. Figure 5.1 shows the

JavaScript AUI object that captures PFs for each IM. The Watcher Service is invoked at the

conclusion of a task to update the user model of the current user with the information stored in

the AUI objects.

The PFs that have time as a unit of measurement (Dwell Time, Total Time and Selection Time)

are measured using the start-time and the end-time of the action. The Dwell Time measures the

time (in seconds) during which a user was inactive for longer than 1 second while making a list

selection as determined by Jason (2008) and discussed in Section 3.5.2.1.

The Total Time measures the cumulative total time that a user has interacted with an IM. The

Selection Time measures the time taken from when a user selects a list until an item is selected in

the list. Y Mouse Velocity is measured by dividing the Selection time by the distance travelled by

the mouse along the Y-axis.

Implementation 111

The distance travelled by the mouse is determined by multiplying the number of items visited in

the list by the pixel height of the items in the list (it is assumed that the heights of all items in the

list are of equal height). Y Mouse Acceleration is determined by dividing the Y Mouse Velocity

by the Selection Time. The Average Dwell Time is determined by dividing the Dwell Time by

the number of items visited. The Unique Items Visited is determined by maintaining a list of

unique items that are visited during a list selection action.

The KLM Predicted Time is a constant value (2.65 seconds) and is obtained from the design of a

KLM (Jason 2008). The KLM Difference is obtained by subtracting the current Selection Time,

with the KLM Predicted Time. It represents the difference between a user‘s actual selection time,

and the expected times of experts. Experts are therefore expected to have a smaller KLM than

novice users (Jason 2008).

Figure 5.1: JavaScript Object showing the 9 Predictive Features (PF) for Informative Moments (IM)

The user model is updated when all the values for the PFs have been obtained. The

UpdateUserModel class is responsible for updating the user model with the PFs (Figure 5.2).

Updating is achieved by first retrieving all the PFs collected by the Watcher Service, and then

storing the IM information as XML in the Knowledge Base. The update process occurs in the

following sequence:

The function GetUserModelComboBoxXML is used to retrieve the IM XML from the

Knowledge Base;

The Update methods are called to update the appropriate sections of the retrieved IM XML with

values from the PFs obtained by the Watcher Service; and

Implementation 112

Once all PFs have been updated to the IM XML, the UpdateUserModelComboBox function is

used to save the updated IM XML to the Knowledge Base.

Figure 5.2: UpdateUserModel Class for updating the IM data in the User Model

The User Model in this study is updated with new interaction information at the end of each step

for novice users, and again at the end of each task for expert users. The User Model stores a

separate record of each task performed. Therefore, for novices the record of the task is updated

after each step, while an entire task record is stored at the end of each task for experts. Basically,

the UpdateUserModel class is only invoked for novice users as the record of the task is updated.

5.6 Analysis Engine – Analysis Engine Service

The role of the Analysis Engine Service is to make inferences about users from the information

stored in the user model. This service, when invoked, uses statistical inference techniques to

determine whether the current CCA‘s performance is equal to or better than the performance of

previously defined (not part of this study) expert users. This service functionality is exactly that

as provided in Jason (2008), as described in Section 3.5.2.2. Figure 5.3 shows the

implementation of this functionality. The CalculateFinalT function determines the performance

of the user for all the tasks completed by the user.

Additionally, it furthermore determines the performance of a user by calling the

GetArrayUserModelComboBoxXML function which acquires the user‘s User Model from the

Knowledge Base and then calling the GetArrayUserModelComboBoxExperts function to retrieve

the User Model of all expert users. The isExpert function then compares the performance of the

current user against the performance of the experts.

Implementation 113

If a user‘s overall T-Score is above the value of 52, then that user is classified as an expert (Jason

2008). In this case, isExpert function returns true, which means that the user is an expert. The T-

Score value of 52 is taken from Jason (2008); who statistically determined that the minimum T-

Score for experts performing the Call Logging task was 52. Tullis and Albert (2008) suggest

that users perform at least four tasks in order to get acquainted with a system. Hence, the rule

that users must have performed at least four tasks before the system can update the user‘s level

of expertise.

Figure 5.3: The Analyse Skill class for the Analysis Engine Service

The Analysis Engine Service is invoked by the Transformation Service to determine which type

of UI to generate for the user. The implementation of this service and its components will be

discussed next.

5.7 Presentation Manager – Transformation Service

The presentation manager, which satisfies the efferential component of adaptivity, specifies how

an AUI should adapt. In this study, adaptation is provided by generating a UI for a user, based on

the user‘s inferred level of expertise. The functionality of the presentation manager is provided

by the Transformation Service. The appropriate UI for a user‘s level of expertise is generated

once the expertise of the user is determined using the Analysis Engine Service.

The Transformation service performs its function by using Extensible Stylesheet Language

Transformation (XSLT) (W3C 2009e) rules to combine information from the Task Model, the

WSDL for the services that support Call Logging steps and the Object Layout Hierarchy to

create the UI. The following sections discuss the elements used by the Transformation Service.

Implementation 114

5.7.1 XSLT

The XSLT used in the UI generation process consists of a set of rules that generate UIs based on

the information stored in the Task Model. XSLT templates are defined in the XSLT document in

order to generate HTML mark-up for UI layout and user controls, whenever certain a XML

mark-up is encountered. The XSLT documents used to generate UIs are the WSDL XSLT, the

Novice XSLT and the Expert XSLT.

5.7.1.1 WSDL XSLT

The primary XSLT document used to generate UIs is the WSDL XSLT. This document contains

various templates which transform the WSDL of a web service, in order to create UI controls

that match the input elements of the web service. An XSLT template is a snippet of code that is

executed whenever a predefined pattern is found in a source XML document. The generated UI

allows users to input data in the appropriate format for a web service which the web service is

able to consume.

Figure 5.4 illustrates the different aspects of a WSDL and shows how they relate to each other.

An understanding of the relationships between the different aspects of the WSDL is required to

understand how the XSLT transformation is able to generate UIs. The Service element defines

the name of the service as a port (Figure 5.4 A). It is referenced by binding and a port-type

(Figure 5.4 B) element which defines the operations supported by the web service using that port

name (Figure 5.4 C).

The operation element defines the input and output messages for the operations of a web service.

The input and output messages are referenced in the schema of the WSDL (Figure 5.4 D) which

precisely defines the format and data types of the input and output messages of the web service‘s

operations.

The WSDL transformation process functions as follows:

 For each operation element in the WSDL:

 if the matching element in the WSDL is of labelled display;

 then generate user controls for the output message defined in the schema

Implementation 115

 else, generate the user controls for the input message defined in the

schema.

Figure 5.4: The relationships between the elements of a WSDL Document (Burr 2006)

Figure 5.5 illustrates how the UI controls are generated from the WSDL schema. XML elements

and their descendents are represented as nested elements. This can be explicitly defined as a

situation whereby the elements are defined in a hierarchy, or by reference, where a reference

element represents the actual child element.

The element ―CreatePackage‖ in Figure 5.5 is a reference to an operation called ―Create

Package‖. The children of the ―CreatePackage‖ operation define the input and output messages

of the operation. Figure 5.5(b) and (d) illustrate how elements are transformed to UI controls.

Figure 5.5 (c) shows an element referencing another element, and how this is transformed to a UI

control.

A

B

C

D

Implementation 116

Figure 5.5: Creating User Interface Controls from XML elements

Table 5.2 shows XML data-type element and the XHTML control mappings used to generate

user controls. Whenever a built-in-type element is encountered in the WSDL schema, an

appropriate control must be generated to either provide means for data input or to display

information in the format specified in the WSDL schema.

 A parameter is used in the task model to specify whether a service is a display service or an

input service. A display service displays information on the UI, while an input service requires

input from the UI. Although not all the mappings shown in Table 5.2 are eventually used in this

study, they were designed and implemented to cater for services that might require them.

Table 5.2: XML Simple Data- Type to XHTML Control Mapping (Song and Lee 2007)

XML Simple Data- Type XHTML Control

Built-in Type Input

Restrictions

String of restricted

length
Input / Text area

2 Selectable items/

Boolean
Radio

Lists
List of selectable

items
Select

Union of various items Composition of controls

Unknown Input

Implementation 117

The WSDL XSLT document is thus able to generate user controls for the input and output

messages of a web service‘s operations by matching operation the templates it contains with

operation information in a services‘ WSDL. The Task Model plays a part in the transformation

process. The URLs of the service WSDL for which a UI must be generated are stored in the Task

Model. Using this approach web services can easily be interchanged by simply changing the

URL of the WSDL in the task model.

5.7.1.2 Novice XSLT

The Novice XSLT document is used to generate UIs for novice users. This document was

designed by taking into account the design principles suitable for novice user UIs (Section 3.4).

The Call Logging steps that are defined in the Task Model are generated as separate input

screens when this document is applied. These screens are linked in a workflow format, thus

allowing novice users to move from step to step until the entire Call Logging task has been

completed.

The step-by-step functionality is achieved by defining the layout of the screens in the Object

Layout Hierarchy (OLH) (See Section 5.7.2) and by importing the WSDL XSLT document to

generate the UIs for operations from a service‘s WSDL. More detail, including screenshots of the

generated UIs are provided in Section 5.9.1.

5.7.1.3 Expert XSLT

The expert XSLT document is used to generate UIs for the expert users. It was designed taking

into consideration the design principles suitable for expert user UIs. The expert XSLT combines

all the steps of the Call Logging task into a single screen, in so doing allowing expert users to

interact with the UI and quickly complete tasks. This is achieved by defining templates to

generate UI controls in a layout specified in the OLH.

The user is able to navigate through the different steps of the Call Logging task with the

flexibility to quickly switch between the different steps of the task. This document uses the

WSDL XSLT document to generate the UIs for operations from a services‘ WSDL. A

Screenshot of the generated expert UI is provided in Section 5.9.2.

Implementation 118

5.7.2 Object layout hierarchy

The Object Layout Hierarchy (OLH) is an XML document which uses nested XML elements to

define groups of UI elements in a UI and the layout that these groups have (He et al. 2008). This

document is accessed with the Task Model and the XSLT documents to determine the UI layout

during the generation process. The layouts supported include:

 Ordered Horizontal Group (OH): UI elements in this group are ordered horizontally with

equal lengths and are numbered;

 Ordered Vertical Group (OV): UI elements in this group are ordered vertically, with

equal heights and are numbered;

 Plain Vertical Group (PV): UI elements in this group are ordered vertically without any

specific length or numbering;

 Plain Horizontal Group (PH): UI elements in this group are ordered horizontally without

any specific length or numbering;

 Plain Group (P): No layout information is provided for a group; and

 Ordered Group (O): UI elements in this group are of equal length and width, but no

orientation information is provided.

Figure 5.6: Example of the application of the layout groups to the Novice Step 1

Ordered Vertical

Group

Ordered

Horizontal Group

Implementation 119

The layout groups defined above allow UI elements, generated from web service operation

information, to be grouped and laid out on screen. Figure 5.6 illustrates how the layout

definitions are applied to the UI in order to achieve the layout of elements. Additional styling of

the UI is required however. The Element Styling document defines the styling of specific UI

elements and is discussed in the following sub-section.

5.7.3 Element styles

Element styles allow the generated UIs to be styled by adding colour, additional layout

information and the spacing of UI elements. The UI generated in this study is HTML which runs

in a browser. Cascading Style Sheets (CSS) were therefore used to define the element styles

(W3C 2009a). CSS describes how a document is presented on screen. It provides a mechanism to

define specific presentation information about a document. A CSS document is specified

separately to the document it describes. This makes defining document presentations more

flexible and easily manageable (W3C 2009a).

5.8 User interface interaction

The generated UIs must be dynamic and support user-interaction if they are to be successful.

This section discusses how UI interaction is achieved in the prototype. Several web technologies

were employed to achieve a suitable level of interaction. The following are discussed to

elaborate on how this was achieved:

 The choice of technology for the UI;

 The mechanism used to invoke the AUI web services;

 How dependencies are achieved in the UI; and

 How the capturing of user-interaction data is achieved.

5.8.1 Technology for the UI

Various scripts were developed to allow the UI to interact with the AUI components as services.

The scripts, developed using JavaScript (ECMA 2009), were designed to work with any web

service that has a WSDL. JavaScript was chosen as the language for the UI for two reasons.

Firstly, it is a powerful and flexible scripting language with libraries such as jQuery (jQuery

Implementation 120

2009) which facilitate the creation of rich interface applications (RIA). A responsive, flexible

and usable UI is therefore possible using JavaScript. Secondly, JavaScript is capable of using the

Document Object Model (DOM) (W3C 2009b) to manipulate XML.

DOM provides a ―platform and language-neutral interface for programs and scripts looking to

access documents and update the content, structure and style of those documents” (W3C 2009b).

Web services standards are highly dependent on XML. Therefore, the ability to manipulate the

WSDL, to capture messages being exchanged between services and craft messages based on web

service WSDL is extremely useful.

5.8.2 Querying web services from JavaScript

The generated UI is capable of interacting with the AUI web services using the XMLHttpRequest

object (W3C 2009c). The XMLHttpRequest object allows scripts to perform HTTP requests to

servers and retrieve data directly from the server (W3C 2009c). The HTTP requests for

submitting or retrieving data (SET or GET respectively) are crafted from the message definition

found in the WSDL of the AUI services. This approach allows any web service to be invoked

from the generated UI in a loosely coupled manner and the flexibility of the entire application

can consequently be maintained quite easily.

5.8.3 Managing UI element dependencies

It is critical for web services to maintain their characteristics of autonomy and independence

from their environment and other services as far as is possible (Section 2.2.3). Dependencies in

the UI are however inevitable. Certain elements require input from other elements in order to

show appropriate selection options themselves. The Task Model is used to define which elements

are dependent on the values of other elements. Scripts are then capable of invoking the

appropriate web services to populate the dependent elements.

5.8.4 Capturing user-interaction data

This research defines Informative Moments (IM) which are UI elements with which users

interact. For each IM that users interact with, various metrics, referred to as Predictive Features

(PFs) are captured. From the formal definition of a PF, as stated by Hurst et al. (2007) and given

Implementation 121

in Section 3.5.2.1, a PF relates to a specific, measurable action. It can be measured for any UI

element such as a drop down list. Since the Call Logging task consists of a series of screens,

where CCAs must search for information that matches the customer quires, PF data can be

collected for the drop down list selections that CCAs make when logging a call.

In order to collect the data, it was necessary to capture the PFs for all drop-down lists. In HTML,

drop-down lists are defined using the <select> tag. jQuery, the JavaScript framework used in

this research, provides ways to select specific UI controls such as text boxes, checkboxes and

drop-down lists (jQuery 2009). jQuery can also incorporate Cascading Stylesheet (CSS) (W3C

2009a) ‗selectors‘ to select UI controls based on the CSS class to which the UI control belongs.

A single binding function such as an event handler can be attached to all UI controls of a certain

type or belonging to a specific CSS class using jQuery. This facilitated the selection of all drop

down lists for which PFs were to be captured. Functions were then written to capture the PFs

whenever users interacted with drop down lists. Appendix J shows the code used to capture PFs

whenever users interacted with drop-down lists.

Various challenges were faced, however, when implementing this, for example, because the UI

is generated, event handlers which allow code to be executed whenever a user interacts with a

specific user control, could not be attached to UI controls in the generated UI. This was

surmounted by using a bind function which not only bound existing UI controls of a certain type

or CSS class to an event handler, but also bound any future elements of that type or class to that

event handler. This meant that future generated UI could link to the event handler which

captured the PF data required.

Once PF data for a drop-down list is collected, it is added to an array containing PF data for other

drop-down lists. The Watcher Service is then invoked and the array containing the PF data is

passed as a parameter to the Watcher Service which, in turn, stores this information in the

appropriate user‘s user model.

5.9 Generated user interfaces

This section illustrates the functionality of the generated novice UI for CCAs. The functionality

is limited in scope to the Call Logging task (Section 3.5.2).

Implementation 122

5.9.1 Generated novice user interface

The novice UI that is generated is consistent with the task-based UI design presented by Jason

(2008). It consists of the four Call Logging steps which the Contact Centre Agent (CCA)

navigates in a sequential manner. This is done to accustom the novice CCA to the tasks

performed when logging a call.

Figure 5.7 illustrates the Call Logging task by means of a hierarchical task analysis. The figure

shows the steps and the sub-steps required to log a call. The Log Call task and its steps are

defined in the Task Model. The sub-steps are also defined in the Task Model. The UIs to perform

the sub-steps are, however, generated from the WSDL documents of the web services that

support the capability to perform the sub-steps.

Figure 5.7: Task Analysis for Logging a Call

In Figure 5.7 all the sub-steps in white have a corresponding web service to provide the

functionality. UI controls are generated using the UI generation process to allow users to interact

with the service (Section 5.7). The remainder of this section shows the UIs generated to support

the steps and the sub-steps for the novice UI.

Step 1: Capture Customer Details

This screen allows a CCA to:

Log Call

Capture
Customer

Details

Select By

Search Value

Select
Customer

Capture
Call Details

Select Call
Description

Select Call
Categorisation

Select Call
Classification

Assign the Call

Select the
Assignee's
Campus

Select the
Assignee's

Contact

Provide
Solution Details

Solution
Description

Solution
Classification

Implementation 123

1. Select By: Select how to search for the customer (firstname, userid or lastname).

2. Search Value: The value to search by.

3. Select Customer: Select the customer from a list of customers retrieved.

Figure 5.8 illustrates the generated UI that allows the CCA to perform the Capture Customer

Details step. The UI supports dependencies between generated UI elements. This allows the user

to search for a customer, select a customer from a list of results and review the details for a

selected customer. The areas of the UI generated from specific web services are also highlighted

by the red boxes. The Search Customer service, Search Results service and the Customer Details

service are used to create this UI.

Figure 5.8: Novice UI – Step 1

Step 2: Capture Call Details

Figure 5.9 shows the generated UI for the Capture Call Details step. This step allows a CCA to:

1. Select Call Description: Provide a description of the problem the customer is having.

2. Select Call Categorisation: Categorise the call by specifying categorical details.

3. Select Call Classification: Classify the call by providing classification details.

Customer Details

Web Service

Search Results

Web Service

Search Customer

Web Service

Implementation 124

Figure 5.9: Novice UI – Step 2

This screen is generated from the WSDL documents of the Call Description service, the Call

Categorisation Service and the Call Classification service. The View Selected Customer

information is a part of the UI that is repeated throughout the Call Logging steps (Jason 2008).

The Task Model is used to define this property, and UI controls to interact with this service are

generated on each page.

Step 3: Assign Call

Figure 5.10 shows the generated UI for the Assign Call step. This step allows a CCA to:

1. Select Assignee Campus: Specify the campus of the assignee.

2. Select Assignee Contact: Specify the contact to which the call is assigned.

This screen is generated from the WSDL documents of the Search Assignee service and the View

Selected Assignee which displays assignee details. The view selected assignee service is defined

as a dependent on the Search Assignee.

Implementation 125

Figure 5.10: Novice UI – Step 3

Step 4: Provide Solution Details

Figure 5.11: Novice UI – Step 4

Implementation 126

Figure 5.11 shows the generated UI for the Provide Solution Details step. This step allows a

CCA to provide:

1. Solution Description: Provide a description of the solution to the customer‘s problem

which has been resolved.

2. Solution Classification: Categorise the cause of the problem with the customer and define

how it was resolved.

The screen in Figure 5.11 is generated from the WSDL documents of the Service Classification

service and the Service Description service.

5.9.2 Generated Expert User interface

This section illustrates the expert UI that is generated when the user‘s performance is classified

as being at the level of experts. The scope of the functionality of this UI is also limited to the

Call Logging task.

Figure 5.12 shows the generated UI for expert users. The expert UI supports the Call Logging

task by providing the user with a more compact UI which allows them to quickly navigate

between the steps of the Call Logging Task. This is because expert users require a highly

efficient UI which requires minimal interaction to complete a task (Section 3.4).

Figure 5.12: Expert UI – Steps 1 to 4

Step 1 Step 2 Step 3 Step 4

Implementation 127

The expert UI is generated using the same process as for the novice UI. Different documents are,

however used to define the layout of the UI. The OLH defines the layout of the expert UI. It was

designed to create a compact and tabbed UI.

5.10 Pilot studies

The development methodology selected for this study was the prototyping methodology. Preece,

Rogers and Sharp (2007) define a prototype as a design in limited form that allows users to

interact with it to investigate its suitability. Two prototypes were implemented and formatively

evaluated. Feedback from the evaluations was used to refine the prototypes. The results from the

two pilot studies of these two prototypes will now be discussed.

5.10.1 Pilot study 1: evaluation of generated user interface

Song and Lee (2008) proposed a method for generating UIs for web services using XForms. The

method was evaluated by generating UIs for web services from a remote repository after which

participants were asked to interact with the generated UIs. Participants were then asked to

answer a post –test questionnaire containing the questions shown in Table 5.3. The questions

were created to determine the users‘ convenience to the generated UIs and were rated using a

five-point Likert scale (Song and Lee 2008).

The goal of this pilot study is to gauge the quality of the generated UIs. Gauging the quality

involves determining whether the generated UIs for the web services were adequate for

interaction and to determine whether the quality of the UI is suitable for users.

Table 5.3: User Testing Questionnaire (Song and Lee 2008)

No Question
1 How fast were you able to input data using the screen?

2 How fast were you able to understand the overall structure of input controls?

3 How easy was it to learn how to use the user interface?

4 How efficient was it in helping you to reduce input errors?

5 Overall satisfaction of the user interface

5.10.1.1 Participants

A convenience sample of ten computer science students (8 males and 2 females) was selected to

evaluate the system. All participants had at least 5 years of computer experience and used

Implementation 128

computers daily. In addition, all participants had 5 years or more experience using web browsers.

These participants can therefore be considered expert users as they are familiar with computers

in general and web based UIs. Participants‘ ages ranged from 20-35 years.

5.10.1.2 Procedure

Web services were developed for the NMMU ICT Helpdesk; and UIs were generated for these

web services. Participants were required to complete a demographics questionnaire and were

subsequently asked to complete two tasks with the generated UI. Once the tasks were complete,

participants were given a questionnaire containing the questions in Table 5.3.

The questionnaire was used to elicit participant responses regarding their opinions of the UI and

what it allowed them to achieve. It consisted of the five questions Song and Lee (2008) used to

rate generated UIs. Each question pertained to a specific aspect of the UI. Participants rated the

system UI and overall satisfaction with the UI on a five-point likert scale. The questionnaire also

included space for comments from participants.

5.10.1.3 Results

Figure 5.13 shows a summary of the results collected using the questionnaire. Overall UI

satisfaction (Question 5) was very high (mean=4.2, std. Dev=0.84), indicating that participants

were satisfied with the generated UI.

Results also indicate that users were able to understand the overall structure of the generated UI

and its controls as this question received a high rating (mean=4.4, std. Dev=0.55). Users also

rated the learnability of the UI as high (mean=4.2, std.dev =0.45). These results are supported by

positive post-testing comments about the UI such as:

 ―Simple, intuitive user interface‖ ; and

 ―Good layout‖ (n=4).

Implementation 129

Figure 5.13: Summary of user testing results (n=10)

The results of this evaluation showed that the generated UIs were of usable quality and allowed

participants to interact with the UI for web services. Several participants did not like the ―overly

simplified‖ UIs that were generated for the web services however. They stated that ―the UIs were

too simple‖ to accomplish any meaningful tasks. The UIs were simplified to test the UI

generation process. Therefore, only simple UIs were generated. Since this pilot study found that

the UIs generated from web services were of suitable quality for use, a second prototype was

developed which uses this UI generation ability to generate a UI that has AUI capabilities. This

prototype used a task based UI generated entirely from web services. The pilot evaluation of this

second prototype will be discussed next.

5.10.2 Pilot study 2: formative evaluation of helpdesk AUI

A second formative evaluation was conducted after refinements in the UI generation process

were implemented from the feedback of the first evaluation. A task-based UI for contact centres

was introduced at this point, to allow users to complete meaningful tasks using the generated UI.

The goal of this evaluation was to discover any technical or usability problems that would affect

user performance and task completion.

1.Input Speed 2.Understanding 3.Learnability 4.Effeciency 5.Satisfaction

Mean 3.8 4.4 4.2 4 4.2

Median 4 4 4 4 4

Std Dev. 0.45 0.55 0.45 1.22 0.84

0

1

2

3

4

5

L
ik

e
rt

 S
c
a
le

 S
c
o

re
Questionnaire Results

Implementation 130

5.10.2.1 Participants

A second convenience sample of five computer science students and a systems analyst was

selected to evaluate the prototype. None of the participants from Pilot study 1 were used in Pilot

study 2. Figure 5.14 shows the demographics profiles of the participants selected for the pilot

study. Half (n=3) of the participants were female and the other half (n=3) were male. Half (n=3)

of the participants were in the 20-25 year age group; two participants are in the 25-30 year age

group , while one participant was in the 15-20 year age group.

Figure 5.14: Pilot study Gender (A), Age (B), Occupation (C) and Computer Experience (D) (n=6)

All the participants selected had at least six years of computer experience. This provided the

experience and familiarity of interacting with web based UIs in order to receive meaningful

feedback from the participants.

50%50%

Gender

Males Females

17%

50%

33%

Age

15-20 20-25 25-30

83%

17%

Occupation

Student Systems Analyst

100%

Computer
Experience

>6

Implementation 131

5.10.2.2 Procedure

Participants were required to perform two tasks with the UI (Appendix A). User performance

was not measured as this was not the goal of the evaluation. The UI was rated based on:

 Overall reaction to the system;

 UI design;

 System Navigation; and

 System Learnability.

A post-test questionnaire (Appendix B) was used to gauge participants‘ responses to the

generated UI. The questionnaire collected quantitative and qualitative data about the participant‘s

interaction with the UI.

5.10.2.3 Results

Figure 5.15 shows a summary of the results from the post-test questionnaire given to

participants. The results are also available in Appendix C.

The overall reaction to the system was positive (mean=4.33, std.Dev=0.55). The design received

the lowest rating (mean=3.50, std.Dev=0.55), while navigation was found to be intuitive

(mean=4.67, stdDev=0.55). This was because the design of the UI was incomplete, and

contained reported issues such as typographical errors and misaligned UI elements. The

learnability of the system was also rated highly (mean=4.33, stdDev=0.84).

Several technical issues were also identified during this evaluation, for example, user-interaction

data was not properly captured due to errors in some of the generated UI code. This did not

affect this pilot study, since user-interaction data was not being captured, but it allowed the

problem to be rectified to ensure the prototype functioned properly.

The first pilot study therefore found that the generated UI was suitable for use in an application.

The controls were appropriate for the tasks at hand, and participants had little trouble

understanding and learning to use the UI.

Implementation 132

The second pilot study included a more complex UI which allowed participants to complete

contact centre tasks. The evaluation revealed various technical issues in the capturing of user-

interaction data. The problems discovered during the pilot studies were rectified to ensure that

the main evaluation could be conducted. The main evaluation is discussed in Chapter 6.

Figure 5.15: Pilot study post test questionnaire results (n=6)

The results indicated that a generated task-based UI was possible and could be implemented with

an AUI in an SOA. The following section concludes the chapter, and introduces the next phase

of the research, the evaluation and the results of the study.

5.11 Summary

The objective of this chapter was to determine how an AUI can be implemented using an SOA.

Research question R4: How can an AUI be implemented using an SOA? was therefore answered in

this chapter. This was achieved by discussing the implementation of the AUI components, which

were analysed and designed in Chapter 4 as services. The Analysis Engine Service,

Transformation Service and Watcher Services were realised to provide the adaptation in an SOA.

A component of AUIs that was also implemented to enable user modelling and adaptation using

an SOA is the knowledge base. The knowledge base contains the user model and the task model.

Overall
reaction to
the system

Design Navigation Learnability

Mean 4.33 3.50 4.67 4.33

Median 4 4 5 4

Standard Deviation 0.55 0.55 0.55 0.84

0.00

1.00

2.00

3.00

4.00

5.00

L
ik

e
rt

 S
c
a
le

 S
c
o

re

System Rating

Implementation 133

The user model was implemented to define the users characteristics related to performance since

it was found that CCAs differ greatly at the performance level (Section 3.3.2).

The task model was taken from Jason‘s (2008) model and enhanced to support references for

web services. The transformation was realised using a number of technologies including XML,

XSLT transformations to create the UI and JavaScript to enable interaction with the UI.

Two pilot studies were conducted to validate the UI generation process; and the results show

positive feedback from the test subjects. The first pilot study showed that the UI generated were

appropriate for users to interact with. A second prototype was therefore developed incorporating

the UI generation components from the first pilot study. A second pilot study was conducted to

uncover problems that might affect the main evaluation. Various technical issues were uncovered

and rectified. Chapter 6 will discuss a comprehensive evaluation of the AUI services and the

SOA application in which they are consumed.

Chapter 6: Evaluation and Results

6.1 Introduction

Chapter 2 and 3 discussed the literature associated with the thesis statement (Chapters 1)

concerning AUIs and SOA. A model was designed (Chapter 4) based on this literature and

implemented as a prototype (Chapter 5). The objective of this chapter is to evaluate the design

and implementation of this prototype. An evaluation strategy was devised (Section 6.2) in order

to evaluate the design and implementation, thereof, based on the thesis statement:

―An adaptive user interface can be designed and implemented using service-oriented

architecture principles‖.

The objectives of this study as derived from the thesis statement can be achieved by answering

the following research questions:

 R4: How can an AUI be implemented using an SOA?

 R5: Does the prototype indeed adhere to SOA design principles?

 R6: How effectively can an AUI be achieved in a SOA?

 R7: What is the usability of the generated user interface?

Prototyping can be used to test or evaluate a design (Preece et al. 2007). A prototype was

therefore developed, based on the model proposed in Chapter 4, to answer the research question

R4: How can an AUI be implemented using an SOA? This prototype was subsequently evaluated

using the research questions R5 to R7.

Various authors have used the verification approach to ensure that services in an organisation

conform to SOA principles (Erradi, Anand and Kulkarni 2006; Kohlmann 2007). Verification of

the prototype‘s services based on SOA principles will establish the services‘ conformity to SOA

design principles (Section 6.3).

Distributed systems are innately complex (Sommerville 2006; Josuttis 2007). Software

Engineering metrics are used to measure the complexity of applications and the effort required to

Evaluation and Results 135

realise the applications (Pressman 2004). The prototype must therefore be evaluated using

software engineering metrics to determine how effectively the implementation has been achieved

using SOA (Section 6.4).

UIs are central to any GUI application. In this study the UIs are generated from documents and

scripts, and therefore there exists a possibility that the UI may not be generated with a usable

interface (Gajos 2008). Usability testing is therefore conducted to determine the effect that

generating the UIs has on novice CCA performance (Section 6.5). The usability evaluation is the

main study in this research.

6.2 Evaluation strategy

An evaluation strategy was devised to incorporate the various approaches required to achieve the

objectives of this research. The strategy consists of four components, namely: a proof of concept,

analytical evaluation, evaluation of software metrics and a usability evaluation. Each component

of the evaluation strategy seeks to achieve a specific objective. This section motivates the

evaluation strategy.

6.2.1 Proof of concept

Chapter 5 discussed the implementation of an AUI in a CC using SOA. The implementation can

be considered a proof of concept for an AUI using SOA. This component answered the research

question R4: How can an AUI be implemented using an SOA? The prototype functionality was

implemented in the form of services and a task model was used as a basis for the creation of

novice and expert UIs.

6.2.2 Analytical evaluation

Software services can be checked to ensure that they conform to SOA design principles (Patig

2009). Evaluation against design principles can be achieved using an analytical evaluation.

Analysing the prototype can establish the extent to which software services conform to SOA

principles. Erl (2008) outlines seven design principles for SOA systems which define best

practice guidelines for designing SOA systems. An analytical evaluation will therefore be used to

Evaluation and Results 136

determine whether the prototype satisfies the SOA design principles. This component answered

the research question R5: Does the prototype indeed adhere to SOA design principles?

6.2.3 Software metrics evaluation

Current research on metrics for software development in general, focuses on traditional

approaches to software development such as Object-Oriented (OO) and Procedural design

(Perepletchikov et al. 2007). These metrics cannot thereby be readily applied to SOA because of

the considerable structural differences between OO or Procedural systems and SOA

(Perepletchikov et al. 2007).

Coupling is the cornerstone to SOA design, since SOA advocates the loose coupling of

components. Measuring the coupling between services in an SOA environment is an indicator of

the maintainability, adaptability and flexibility of the service components in the environment

(Perepletchikov et al. 2007).

Effective SOA implementations depict loosely coupled characteristics between the

implementation components. Degree of Coupling within a given set of services (DCSS) measures

the coupling between the services in a system (Quynh and Thang 2009). This metric discussed

offers a measurable way to determine the coupling between a set of services.

Architectural design metrics are able to measure characteristics of a program‘s architecture

(Pressman 2004). In order to evaluate the prototype architectural design, and ultimately its

validity as an SOA application, these metrics give insight into the structural data and system

complexity of the design. Architectural complexity affects the efforts required to integrate web

services. The following architectural design metrics will therefore be measured:

 Structural Complexity (SC): Measures of the structural complexity of a piece of code.

 Data Complexity (DC): Indicates the complexity in the internal interface of a service.

 System Complexity (SC): The sum of the structural and data complexity.

Evaluating the prototype based on SOA metrics thus answers the research question R6: How

effectively can an AUI be achieved in a SOA? The results of the analysis of the proof of concept

based on these metrics will be displayed in tabular format and the interpretations explained. This

table will display all the main classes in the proof of concept and how the metrics apply to them.

Evaluation and Results 137

6.2.4 Usability evaluation

The function of the UI is to provide an interface with which users can access the functionality of

the underlying application. The UI must perform this function and allow its intended users to

complete tasks using the applications underlying functionality.

This section evaluates how effectively the generated UI allows users to perform the Call Logging

task. A summative usability study is used to answer the research question R7: What is the

usability of the generated user interface?

Research has shown that novice users are primarily concerned with how to complete tasks

(Section 3.4). For this reason, the users‘ goals for the usability study are performance-based. The

goal of the usability study is therefore to determine the effect of the generated interfaces on

novice CCA agents‘ performance.

The Call Logging task has a clearly defined beginning (search customer) and end (call

resolution). Furthermore, it is a task that is performed continuously by CCAs. Based on these

characteristics, the Call Logging task can be classified as a transaction. The scenario used in this

study is therefore the completion of a transaction of which the metrics typically involves the use

of the following usability metrics (Tullis and Albert 2008):

1. Effectiveness: Task success to measure successful completion of the ―log call‖ task; and

2. Efficiency: Combination of the time-on-task and task success as a measure of efficiency.

Vermaak (2008) states that CCAs at the NMMU ICT helpdesk, the helpdesk on which the

prototype is based, are required to resolve tasks within two minutes of the call being placed. If a

CCA is unable to resolve the call within this period he or she must assign the call to a technician.

Efficiency will therefore be measured using this benchmark as the CCAs task success rate per

two minutes. Research suggests 10-100 participants for a summative study (Tullis and Albert

2008). This study will use 30 participants for the usability evaluation.

The following section outlines the evaluation by discussing the analytical evaluation of the AUI

services using SOA design principles.

Evaluation and Results 138

6.3 Analytical evaluation

In Chapter 1, the question has been asked R1: How can an AUI be implemented using an SOA?

Chapter 5 answered this question by discussing the implementation of an AUI using SOA. This

section argues that the software services of the prototype (the AUI components) indeed adhere to

SOA design principles. An analytical evaluation is presented to show how the AUI services

conform to the following SOA design principles, as proposed by Erl (2008) (Section 2.2.3):

A. Service composability: ―Services are effective composition participants, regardless of

the size and complexity of the composition”;

B. Service coupling: ―Service contracts impose low consumer coupling requirements and

are themselves decoupled from their surrounding environment‖;

C. Service abstraction: ―Service contracts only contain essential information and

information about services is limited to what is published in service contracts‖;

D. Service statelessness: ―Services minimize resource consumption by deferring the

management of state information when necessary;

E. Service re-usability: ―Services contain and express agnostic logic and can be positioned

as reusable enterprise resources‖;

F. Service autonomy: ―Services exercise a high level of control over their underlying

runtime execution environment‖; and

G. Service discoverability: ―Services are supplemented with communicative meta data by

which they can be effectively discovered and interpreted‖.

Table 6.1 shows the SOA guidelines and how they can be measured (Erl 2008). The desirable

and undesirable characteristics are labels that are applied to services depending on how well they

conform to a principle. The levels that are underlined represent the highest level at which a

service can conform to that principle.

The AUI services include the Transformation Service, the Watcher Service and the analysis

service. The following sections discuss the evaluation of these components according to the SOA

design principles.

Evaluation and Results 139

Table 6.1: SOA Design Guidelines and how to measure them

Guideline How to Measure

 Measure Desirable Levels Undesirable Levels

Service Composability Composable Not Composable

Service Coupling Consumer Coupling Centralised Non Centralised

Service Abstraction

Contract Content

Abstraction Levels:

Access Control Levels:

Open / Controlled / No

Access

1.Concise

2.Optimised
Detailed

Service Statelessness Management

1.Partial Architectural

(Moderate)

2.Full Architectural (High)

3.Internally Deferred

(High)

Non-Deferred (Low to

no)

Partially Deferred

Memory (reduced)

Service Reusability
1.Intention of re-use service

2.Frequency of use

Service Autonomy
Implementation

Isolation:

1.Service logic (partial)

2.Pure (full)

1.Service Contract (n/a)

2.Shared (none)

Service Discoverability Sufficiently Described Insufficiently described

A. Service composability: ―Services are effective composition participants, regardless of

the size and complexity of the composition”.

The AUI services are designed to be autonomous and loosely coupled and therefore can interact

with any applications or services that use the WSDL to interact with the AUI service. This

effectively enables the AUI services to participate in any composition where the capabilities they

possess are required.

B. Service coupling: “Service contracts impose low consumer coupling requirements and

are themselves decoupled from their surrounding environment”.

Using a service contract essentially centralises the coupling at the service contract. The only

binding that occurs is at the service contract. This type of binding is known as the consumer-

contract-coupling, and is a recommendation for services (Erl 2008). The service contract

eliminates potential for direct connection to the service logic. This may lead to consumer-to-

implement coupling (Erl 2008). Consumer-to-implement binding occurs when a service or

Evaluation and Results 140

application binds directly to a service‘s implementation. If, for example, the implementation of

the service is altered, applications or services that use the altered service must also be updated.

The services are decoupled from their implementation because service logic is hidden from the

interface. The Transformation Service‘s service contract defines how services can transform any

well-formed XML documents with well-formed XSLT documents by using the service. The

Watcher Service‘s service contract defines how services can store user-interaction information in

the user model. The Analysis Engine‘s Service contract defines how services can input a user‘s

identification to perform user modelling.

C. Service abstraction: ―Service contracts only contain essential information and

information about services is limited to what is published in service contracts‖.

Information that does not directly support service invocation is abstracted to the service logic.

Each AUI service‘s WSDL contains information necessary for service invocation as a result.

Access to documentation is closed and the only information accessible to designers is that which

is available in the WSDL. The AUI services are each assigned an abstraction level as a result

(Table 6.1). This is because minimal validation constraints are applied at the service contract

since the major portion of the validation is performed in the web service logic.

D. Service statelessness: ―Services minimize resource consumption by deferring the

management of state information when necessary”.

State information refers to dynamic information about the state of the web service. Two

measures are taken to minimise the use of state information within the AUI services model.

Firstly, web service annotations are applied which render services stateless, and all the state

information is disregarded. Secondly, critical state information is deferred to appropriate

resources which allow the services to work with state information. This allows the services to not

manage state information themselves,. For example, a working data xml document is used to

store ―in memory‖ data which services can access when the current user or call log information

is required.

E. Service re-usability: ―Services contain and express agnostic logic and can be positioned

as reusable enterprise resources‖.

Evaluation and Results 141

The AUI services are not coupled to their implementation, external consumer applications or

other services. Coupling refers to the level of dependency between services. This increases their

potential for re-use. Tactical re-use refers to a services potential for re-use due to its highly

decoupled design. Tactically, the Transformation and Analysis Engine can be re-used by any

service looking in order to transform an XML document or perform user modelling for a specific

set of users in a CC domain respectively.

The Watcher Service is strictly designed to capture predictive features (PF) for specific

information moments (IM). This service therefore has low tactical re-use. It does, however, have

a high actual re-use rate within the study as it is constantly invoked to determine user expertise.

Actual re-use for the Transformation and Analysis Engine services is limited to invocation for UI

generation and the user modelling of users respectively. This service is invoked for every task

defined in the task model; and re-use within the study is consequently high.

It is important to note that service re-usability in a larger solution would most probably be much

higher. This is a limited case study and the focus is on a small number of services; hence the low

actual re-use of the services.

F. Service autonomy: ―Services exercise a high level of control over their underlying

runtime execution environment‖.

The services are designed to operate independently of external environmental influences. This

increases the reliability and predictability of services (Erl 2008). The service contract clearly

defines the boundaries of the service logic, thus providing means to ensure there is little or no

overlap in functionality with other services.

G. Service discoverability: ―Services are supplemented with communicative meta data by

which they can be effectively discovered and interpreted‖‖.

The WSDLs of the AUI services are supplied with enough information to easily distinguish the

services should they be deployed in a service repository. This information, known as meta-data

provides not only documentation concerning the service and its capabilities; it also provides

classification information which allows service consumers to search for services using keywords,

for example.

Evaluation and Results 142

Table 6.2: Summary of analytical evaluation

 Transformation Watcher Analysis

A. Service Composability Composable Composable Composable

B. Service Coupling Centralised Centralised Centralised

C. Service Abstraction Concise Concise Concise

D. Service Statelessness Partial Architectural
Partial

Architectural

Partial

Architectural

E. Service Reusability
Tactical High Low Low

Actual High High High

F. Service Autonomy Pure (full) Pure (full) Pure (full)

G. Service

Discoverability

Sufficiently

Described

Sufficiently

Described

Sufficiently

Described

Figure 6.1: Visualisation of Analytical Evaluation

0%

50%

100%

Service
Coupling

Service
Abstraction

Service
Statelessne

ss

Service
Reusability
(Tactical)

Service
Reusability

(Actual)

Service
Autonomy

Transformation

0%

50%

100%

Service
Coupling

Service
Abstractio

n

Service
Statelessn

ess

Service
Reusability
(Tactical)

Service
Reusability

(Actual)

Service
Autonomy

Analyisis

0%

50%

100%
Service Coupling

Service
Abstraction

Service
Statelessness

Service
Reusability
(Tactical)

Service
Reusability

(Actual)

Service Autonomy

Watcher

Evaluation and Results 143

Table 6.2 provides a summary of the service evaluation using SOA design principles. The table

shows the rating assigned to the AUI services based on the characteristics portrayed by the

services. Green cells in the table represent full adherence to the design principle by the service.

Yellow cells represent partial adherence. The information in Table 6.2 is evidence that the AUI

services conform to SOA principles. Figure 6.1 illustrates the extent, as a percentage of achieved

desirability to which the services adhere to the SOA design principles. As an example, for

service autonomy, achieving pure autonomy equates to 100% while achieving Service logic

(partial) equates to 75% (See Table 6.1).

Table 6.2 and Figure 6.1 show that the required levels for SOA design are all clearly achieved.

The desirable qualities of the SOA principles (Table 6.1) are achieved. It can therefore be stated

that, according to the SOA principles, the AUI services are SOA-based.

6.4 Evaluation of software metrics

Software engineering (SE) metrics measure the complexity and effort required to develop a

system. They can also be used to measure the specific quality attributes of a system. The

following section discusses SE metrics used to evaluate the prototype to show how effectively it

was implemented by measuring the coupling and architectural design metrics.

6.4.1 Coupling metrics

Degree of coupling within a given set of services (DCSS)

This section discusses DCSS and how it is measured. It also explains how the DCSS was

measured for the prototype in this study. The DCSS metric measures the degree of coupling

between a given set of services.

DCSS is computed on a given set of services and a low value signifies loose coupling between

the given set of services while a high value signifies tight coupling. DCSS is measured using the

equation in Figure 6.2:

Evaluation and Results 144

𝐷𝐶𝑆𝑆 =
𝑀𝑎𝑥 − 𝑑 𝑢, 𝑣 𝑢∈𝑉𝑢∈𝑉

𝑀𝑎𝑥 − 𝑀𝑖𝑛

 Where

1. u and v are two services in the set of services

2. d(u,v) is the distance between services u and v

3. Max = K*V*(V-1)

4. Min = V*(V-1)

Where,

a. K = Maximum value between any two services in the graph

b. V = number of services (nodes in the graph)

Figure 6.2: Formula for DCSS

Measuring the DCSS of a group of services requires that firstly, a graph be created which depicts

the interaction between the services for which the coupling will be measured. Figure 6.3 shows

the graph for the AUI services and illustrates the interaction between the services. The nodes of

the graph represent services, while the edges of the graph represent the interaction between the

services. Figure 6.3 illustrates how the Transformation Service invokes the analysis engine to

determine user expertise, and the analysis engine returns a value based on the query.

 A B C

A 0 1 3

B 1 0 3

C 3 3 0

Figure 6.3: AUI Services Graph and Matrix

The Watcher Service does not interact with any of these services since its sole responsibility is to

capture user-interaction data from the generated UI and to update the user model. The graph

Transformation

 (A)

Analysis Engine

(B)

Watcher Service

(C)

1

1

Evaluation and Results 145

therefore has three nodes (the services) and an edge with a value of two (for the two-way

interaction between the Transformation Service and the analysis engine).

The next step involves calculating the K, V, Max and Min values and constructing a matrix of

interaction. K is the highest edge value in the group of services and V represents the total number

of nodes in the graph. The Max and Min are determined using the formula for max and min in

Figure 6.3. The matrix in Figure 6.3 is used determine the coupling between the services.

The AUI model services are labelled with letters in Figure 6.3. A is the Transformation service;

B is the Analysis Engine and C is the Watcher service. The letters on the outer left most column

and top row represent the above mentioned services. The values in the matrix represent the

interactions between services. Where no interaction occurs, the value of K is inserted since K

represents the highest interaction value. A Service cannot interact with itself; therefore 0 is used

to represent that interaction.

Service A does not interact with itself, so a value of 0 is assigned to that interaction. A interacts

with B; therefore a value of 1 is assigned. B returns a value to A therefore that interaction is

assigned a value of 1. A does not interact with C; therefore, the K value is assigned to that

interaction. This continues until the entire matrix is complete.

The occurrences of values are then summed up to give a total of all the interactions, that is 1

appears twice and 3 appears four times (i.e. (1*2) + (3*4) = 14). These values are then used in

the DCSS equation to calculate coupling between the services. The DCSS was found to be 0.33

(abs). Quynh and Thang (2009) state that a lower value DCSS value equates to a lower degree of

coupling between services. Any result between 0 and 1 means that coupling for that set of

services is low. The coupling between the services can therefore be concluded to be low.

6.4.2 Architectural design metrics

Architectural design metrics can be used to measure various characteristics of an application‘s

architecture (Pressman 2004). Characteristics of an application such as structural complexity,

data complexity and system complexity can be measured using software engineering metric

models (Card and Glass 1990).

Evaluation and Results 146

6.4.2.1 Structural complexity

Structural complexity measures the complexity of a module using the Fan-out approach (Card

and Glass 1990; Pressman 2004). A module is any piece of code being evaluated and it could be

a class or a procedure. Fan-out refers to the number of function calls made to external modules

from within the module. For the purposes of this evaluation, fan-out refers to procedural calls to

dependent classes and web services, i.e. calls to other web services as well as subordinate classes

(e.g. data access class for a service). Fan-out is calculated for each procedure in a module, and

the sum of all procedures‘ fan-out values is the fan-out of the module. Figure 6.4 shows the

formula used to calculate the structural complexity of a system 𝑆 by adding up the fan-out for

each module 𝑖 (Kan 2002):

𝑆 =
 𝑓2 𝑖

𝑛

Figure 6.4: Structural complexity formula

Where,

𝑓2(𝑖) is the fan-out of each class or module being evaluated

and 𝑛 is the number f modules in a system.

6.4.2.2 Data complexity

Data complexity is a measure of the complexity in the internal interface for a given module

(Card and Glass 1990; Pressman 2004). Figure 6.5 (A) shows how the data complexity is

measured for each module of a system, while Figure 6.5 (B) shows how the data complexity of

each module in a system is added up to get the data complexity of a system.

𝐷 𝑖 =
𝑣(𝑖)

𝑓 𝑖 + 1
 𝐴 𝐷 =

 𝐷 𝑖

𝑛
 [𝐵]

Figure 6.5: Data complexity formulae

Where,

1. 𝑣(𝑖) is the number of input and output parameters passed to and

from the module.

Evaluation and Results 147

2. 𝑓(𝑖) is the fan-out of each class or module being evaluated

3. 𝑛 is the number of modules in a system.

6.4.2.3 System complexity

System complexity is a measure of the overall system complexity. Overall system complexity is

affected when the structural and data complexity of components within a system change (Kan

2002; Pressman 2004). System complexity is measured by adding the structural and data

complexity of a system using the formula in Figure 6.6:

𝐶 𝑖 = 𝑆 𝑖 + 𝐷 𝑖

Figure 6.6: System complexity formula

The AUI services of the prototype were evaluated using the above-mentioned architectural

design metrics. The metrics show the level of complexity of the components when implemented

in a SOA. High complexity values mean that complex code had to be written in order for the

modules to function in an SOA, while low values mean that the complexity is low. Low

complexity values are also a result of the abstraction of complexity to other modules (Kan 2002).

Table 6.3 shows a summary of the metrics when applied to the AUI services of the prototype.

Increased structural complexity increases the problem and perceived complexity of a system

(Bundschuh and Dekkers 2008). A complex system requires more effort to implement. Low

complexity values therefore indicate less effort in implementing a module.

Table 6.3: Summary of Architectural Design Metrics for AUI services

Service Architectural Design Metrics

Structural Complexity Data Complexity System Complexity

Transformation 0 2 2

Watcher 9 1.43 10.43

Expertise 1 1.5 2.5

Overall 10 4.93 14.93

The values in Table 6.3 show the structural and data complexity for the AUI services. The

transformation and expertise services have extremely low structural complexity values. This was

done intentionally to decouple the services from their external environment. The watcher class,

however, has some level coupling and dependency hence the elevated complexity values.

Evaluation and Results 148

The structural, data and system complexity alone do not provide values that effectively

determine the quality of a system. In order to determine good and bad quality values, the relative

system complexity (RSC) must be determined for a system (Card and Glass 1990). This averages

out the structural, data and system metrics over the entire system. The formula for RSC is shown

in Figure 6.7 (Card and Glass 1990).

𝑅𝑆𝐶 = 𝑆 𝑛 + 𝐷 𝑛

Figure 6.7: Relative System Complexity

Using the values in Table 6.3, the AUI services RSC is 4.98. Card and Glass (1990) state that

Good RSC <= 25.3 and poor RSC >= 26.5. The RSC value obtained for the AUI services is

significantly lower than the threshold for Good RSC. The tables used to determine this are

available in Appendix H.

6.4.3 Summary of evaluation by software engineering metrics

This section discussed SE metrics to measure the complexity and effort required to implement

the prototype. It was found that the coupling between services is low. Coupling between services

was measured using the DCSS approach proposed as by Quynh and Thang (2009) which

measures coupling between services using graphs. Architectural design metrics were also

measured and they showed that the structural complexity and the data complexity of the AUI

services were low. It can therefore be concluded that the overall system complexity for the AUI

services is low. This implies that the AUI was achieved effectively using an SOA.

6.5 Usability evaluation of proof of concept

The purpose of this section is to evaluate the generated UI by testing its usability. The

experimental design of the evaluation is discussed, while with the evaluation metrics were used

to measure user performance. The instruments used in the evaluation are also discussed. The

exact procedure followed with each participant is presented and the participant selection methods

are discussed. Finally, the evaluation results are presented.

Evaluation and Results 149

6.5.1 Experimental design

Performance metrics are measured for the eight tasks outlined for users. The independent

variables for the evaluation are the tasks; and the dependent variable being measured is the

participant‘s performance. Participants are not expected to complete all the tasks, however, since

the system may adapt when changing from one task to the next. The maximum number of tasks a

user can perform as a novice is 7 tasks. The final task (task 8) is performed using the expert UI.

This was done in order to allow all users to experience using the expert UI. As such, only the 7

novice tasks will be evaluated. The task plan is discussed further in Section 6.5.3.4.

6.5.2 Evaluation metrics

Effectiveness

Task success can be used to measure how effectively a user is able to complete a given set of

tasks on a UI (Tullis and Albert 2008). Task success can be measured in two ways: binary

success or levels of success. Binary success is a simple method that measures task completion as

‗Complete‘ or ‗Not Complete‘. The level of success method measures the degree to which users

have completed a task. This can be measured as the percentage of a task the user has completed.

The Call Logging task consists of four steps, namely: provide customer details, provide call

logging details, assignment to technician and call resolution (Section 3.5.2). The appropriate

measure of task success in this case is therefore the level of success, considering the different

steps needed to complete the task and the varying importance of each step. This metric measures

the degree to which users are able to complete the Call Logging task. Each sub-task represents a

percentage of the overall task. There are four steps and each step therefore contributes 25% to

the task completion. For this evaluation a 100 % completed task is one where the participant

requires no aid and captures at least 75% of the query information correctly.

Efficiency

Time-on-task is a metric that measures the length of time a participant takes to complete a task.

This is an important metric for tasks that are performed repeatedly since short completion times

Evaluation and Results 150

would mean more tasks can be completed (Tullis and Albert 2008). Combining this metric with

task success shows the participant‘s task efficiency as the completion rate per unit of time.

6.5.3 Evaluation instruments

This section describes the instruments used to conduct the evaluation including: location,

hardware and software, questionnaires, task plan and the statistics used for analysis.

6.5.3.1 Location and Hardware

Participants performed the required tasks in the Usability Laboratory in the Department of

Computing Sciences at the Nelson Mandela Metropolitan University. The hardware used during

the evaluation is the Tobii T60 Eye Tracker. Participants sat in the evaluation room, away from

distractions, where they completed the tasks on the eye-tracking equipment while the evaluator

sat in the control room monitoring the participants and issuing instructions.

6.5.3.2 Software

The evaluation was conducted on a Tobii T60 Eye Tracker running Windows XP. The eye

tracker allows evaluators to track where participants are looking during an evaluation. This

information gives insight into a user‘s cognitive processes (Tullis and Albert 2008). It also

provides quantitative statistics on where users look while using an application, allowing the

evaluator to determine the effectiveness of UI designs and layouts.

The software used to capture and manage eye tracking data is Tobii Studio 1.5.7. This software

comes with the Tobii T60 Eye Tracker. It allows evaluators to perform usability experiments and

provides various visualisation and comparison features used to analyse eye tracking data (Tobii

2009). Users interact with the application being evaluated while Tobii Studio runs in the

background capturing eye tracking metrics. Tobii Studio can also be used to capture other

metrics such as time on task since it captures screen recordings of participants performing tasks

which can later be reviewed to establish the exact time on task.

Participants were able to access and navigate the prototype using Firefox v3.5.5. This browser

was selected because it was found to be the only browser that provides mouse event information

for elements of a drop down list. Section 5.3 elaborated on the reasons for this.

Evaluation and Results 151

6.5.3.3 Questionnaire

The evaluation in this study required participants to have some level of computer experience,

sound knowledge of IT and no application or domain experience. A background questionnaire

was therefore developed to capture user‘s details (Appendix F). This document is based on the

Common Industry Format (CIF) document typically used in usability evaluations (Scholtz 2000).

The background questionnaire provided a means to determine if participants met the

requirements for the study. It was used to collect the following information:

 Demographic Details: Demographic details such as gender, age, education and

occupation;

 Professional Experience: Participants experience at their current profession in years (if

any);

 Computer Experience: The numbers of year‘s participants have been using computers

and their basic technical expertise (novice, intermediate or expert); and

 Product Experience: The numbers of year‘s participants have been using call centre

software.

6.5.3.4 Task plan

A test plan which provided instructions on how to complete the tasks and information on the

tasks to perform was created for the evaluation (Appendix G). The task plan was however only

meant for the evaluator.

The minimum number of tasks for a participant to complete before system adaptation is four.

This allows the system to collect sufficient user-interaction data for user modelling and gives

participants the opportunity to familiarise themselves with the UI (Tullis and Albert 2008). Some

of the questions included in the task plan were taken from Jason‘s (2008) study. These were

queries with solutions.

Queries with solutions refer to queries that participants could solve themselves. Only four such

queries were in the Jason study and therefore, additional queries were extracted from the

customer query database at the NMMU ICT helpdesk and added to the task plan. These

Evaluation and Results 152

additional tasks have the same difficulty level as the previous four tasks and each has a solution.

The task plan therefore consisted of 8 tasks in total.

6.5.3.5 Statistics

The NMMU research statistician, Mr. Danie Venter, was consulted for all statistical related work

during this study. Mr. Venter assisted with planning of data collection, and evaluation of data

and results (Venter 2009).

Microsoft Excel (Microsoft 2009a) was used to analyse metric data collected during the

evaluation. Excel provides various statistical analysis and visualisation tools such as graphs and

pie charts to analyse data. Descriptive statistics are used to describe data without making

statements about the population from which the data is collected. Descriptive statistics were used

to describe the data collected in the evaluation. The mean, median and standard deviation were

used to describe the data in this evaluation:

 Mean: This is the most common descriptive statistic (Tullis and Albert 2008). It shows

the arithmetic average for all observations (Terre Blanche 2002a).

 Median: This is the middle of the distribution. Half of all data falls below this point and the other

half is above it.

 Standard deviation: This measures the average that all observations have from the man

(Terre Blanche 2002b).

6.5.4 Evaluation procedure

The steps for conducting the evaluation were adopted from Pretorius (2005). Table 6.4 shows the

procedure used for the evaluation. One participant was evaluated at a time. A role playing

scenario was used for the evaluation and a simulated CC environment was created whereby the

participant played the part of a CCA, while the instructor took the role of a customer calling into

a CC with a query. This was so as to simulate how queries are resolved in practice.

The instructor read queries to the user for two reasons. First, it simulates how queries are

resolved at the NMMU ICT Helpdesk – the helpdesk being simulated - and it allowed the user to

focus solely on the task at hand and not get distracted by having to read the task plan. This also

maintains the users gaze on the eye-tracker (Pretorius 2005).

Evaluation and Results 153

Each participant completed the tasks in the test plan as the evaluator read the queries out to the

participant. Participants were not required to complete a post-test questionnaire after the

evaluation.

Table 6.4: Evaluation procedure

Step Step Description

1 Participants were welcomed by the test administrator

2

Participants were briefed about the following:

 The environment (usability laboratory)

 The eye-tracking equipment

 The purpose of the evaluation

 The evaluation procedure

3
Participants were asked to read the preamble letter (Appendix D) and complete a

consent form (Appendix E)

4 The eye-tracker was calibrated for the participant.

5
The test administrator sat in the observer room whilst the participant sat in the

participant room.

6

Participants were asked to commence with the evaluation. All interaction and eye-

tracking data were captured. The test administrator monitored the participant at all

times.

7
When the participant completed all tasks the session was ended and the test

administrator answered any queries by the participants.

8 The participant was thanked for his/her time.

9 Results (interaction and eye-tracking) were gathered and analysed.

6.5.5 Participant selection

The intended user group for this study consists of novice CCAs. Novice CCAs have sound

knowledge of IT-related issues, but have no experience using CC software. Participants were

selected, based on their knowledge of IT, to allow them to assist users with queries.

Consequently, the majority of participants were recruited from the NMMU Department of

Computing Sciences Department. Thirty participants were recruited for the evaluation. The

screening of participants was necessary in order to select a representative sample of users. A

demographics questionnaire (Appendix F) was issued prior to the evaluation of participants to

Evaluation and Results 154

determine whether they possessed the appropriate knowledge and expertise to take part in the

evaluation. The participants were not compensated for their participation.

 A B

 C D

 E F

Figure 6.8: Demographic profile of test participants (n = 30)

3%

83%

14%

Age

15-20 21-25 26-30

70%

30%

Gender

Male Female

77%

4%

3%

3% 3%
10% Occupation

Student
Analyst Programmer
Trainee Accountant
Premiere Banker
Self-Employed

3%

44%
53%

Computer Experience
(yrs)

2-5 5-10 10+

7%

43%
50%

Computer Expertise

Novice Intermediate Expert

100%

Call Centre Software
Experience (yrs)

0

Evaluation and Results 155

Figure 6.8 shows a summary of the participants selected for this study. Figure 6.8 (A) shows the

age distribution of the participants (n=30). A total of 84% (n=25) of the participants were aged

between 21-25 years old, while only 13% were between 26-30, and only 3 % (n=1) were

between the ages of 15-20. The genders are shown in Figure 6.8 (B) and 70% (n=21) of the

participants were males while 30% (n=9) were females.

Figure 6.8 (C) shows the occupation of all participants. Seventy seven percent (n=23) of the

participants were IT students from the Department of Computing Sciences; 10% (n=3) of the

participants were lecturers from the department, and the remainder of the participants were from

various occupations, namely: trainee accountants (n=1), premiere banker (n=1), analyst

programmer (n=1) and a self-employed entrepreneur (n=1).

Figure 6.8 (D) shows the computer experience of the participants. This represents how long

participants have been using computers. A high of 97% (n=29) of the participants had more than

five years of computing experience of which 44% (n=12) had five-to-ten years experience and

53% (n=17) had more than 10 years experience. Only 7% (n=1) had less than five years of

computer experience.

Figure 6.8 (E) shows the computer expertise and the Call Centre Software Experience of the

participants. This Figure shows that 50% (n=15) of participants considered themselves to be

computer experts; 43% (n = 13) of participants considered themselves to be intermediate

computer experts while only 7% (n = 2) thought they were still novices. Figure 6.8 (F) shows

that all participants (n = 30) had 0 years experience using Call Centre Software and could

therefore be considered novices.

6.5.6 Evaluation results

The results of the evaluation are discussed in terms of the performance metrics measured during

the evaluation.

6.5.6.1 Effectiveness

The log call task consists of four steps: provide customer details, provide call logging details,

assignment to technician and call resolution. Task success is used to measure the completion of

Evaluation and Results 156

each task. Each completed step without assistance from the evaluator and at least 75% of the

query information captured correctly constitutes a successful step completion (that is, 100%

completion).The task plan consisted of eight tasks, but depending on the participants‘

performance the UI would adapt after at least four tasks. This meant that not all participants

completed the same number of tasks. The only tasks that all participants completed were tasks

one to four.

Figure 6.9: Stacked bar chart showing levels of success

Figure 6.9 shows the task success and failure rates for tasks 1 to task 7. Each bar represents a

task, and it is subdivided into blocks which represent the completion rate attained by participants.

Task one shows poor performance, with only 30% of the participants (n=9) completing the task

with a 100% success rate and only 60% (n=18) completing more than 75% of the task

successfully. Over the course of the evaluation, however, the task completion rate is observed to

increase. Task 4 has 90% (n=27) of the participants completing more than 75% of the tasks and

task 7 has 100% of the participants completing 100% of the task. Only five participants

Task 1 (n =
30)

Task 2 (n =
30)

Task 3 (n =
30)

Task 4 (n =
30)

Task 5 (n =
14)

Task 6 (n =
6)

Task 7 (n =
5)

0% 3.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

25% 26.67% 0.00% 3.33% 3.33% 0.00% 0.00% 0.00%

50% 10.00% 13.33% 3.33% 6.67% 7.14% 0.00% 0.00%

75% 30.00% 30.00% 30.00% 26.67% 14.29% 33.33% 0.00%

100% 30.00% 56.67% 63.33% 63.33% 78.57% 66.67% 100.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Task Completion Rates

P
e

rc
e

n
ta

g
e

 o
f
P

a
rt

ic
ip

a
n

ts

Evaluation and Results 157

attempted task 7, however, since the UI adapted for all the other participants before they

attempted this task.

This increase in the completion rate can be attributed to the learning effect. The more users

interact with a UI, the more they become familiarised with it, thereby becoming more proficient

at completing the tasks.

6.5.6.2 Efficiency

Efficiency was measured using two metrics: time-on-task and a combination of time-on-task and

task success rate. Figure 6.10 shows the mean time-on-task achieved by all participants (n=30)

for task 1 to task 7. The average time to complete tasks reduced drastically after the first task

showing that users required only one task to familiarise themselves with the UI. Figures 6.10

and 6.11 together show that participants did became more effective with every task, although the

task time changed significantly after the first task.

The success rate for each task was combined with the time-on-task to give a value for efficiency.

CCAs from the NMMU ICT helpdesk are given approximately two minutes to resolve a query,

after which the call must be assigned to a technician who can resolve the query (Vermaak 2008).

Efficiency was therefore measured as the task completion rate per two minutes, that is, how

many calls an agent resolves every two minutes.

Figure 6.11 illustrates the efficiency rates for all the tasks completed by participants. This was

done by measuring the efficiency as the completion rate per unit of time (two minutes in this

case). A learning curve can also be observed from task 1 to task 7. Task 1 had the lowest

efficiency rate of 37% which means that users were only capable of completing 37% of tasks

every two minutes. This can be explained by the learning required to complete tasks. The lack of

familiarity with the UI meant users could not use it efficiently. This is supported by the increase

in efficiency rates in later tasks. Task 5 has the highest efficiency rate of 77%. Tasks 2, 4 and 7

had efficiency rates of 70%, 70% and 73% respectively, while task 3 and task 6 had efficiency

rates of 68% and 69% respectively.

Evaluation and Results 158

Figure 6.10: Mean Timer per task (sec)

Figure 6.11: Efficiency as Completion Rate/Time.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Mean Time-on-task 223.82 146.18 155.43 149.14 143.86 160.17 163.33

Std.Dev 61.86 34.30 66.18 51.21 38.08 28.41 33.86

0.00

50.00

100.00

150.00

200.00

250.00

T
im

e
-o

n
-t

a
s
k

Mean Time-on-task

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Effeciency 37 70 68 70 77 69 73

0

10

20

30

40

50

60

70

80

90

E
ff

e
c
ie

n
c
y
 (

C
o

m
p

le
ti

o
n

/t
im

e
)

Efficiency

Evaluation and Results 159

These results indicate that the users could effectively and efficiently complete the tasks outlined

in the task plan. By completing the tasks in good time and with few incomplete sections, it can

be inferred that the generated UIs did allow users to complete the tasks. The results for this study

are available in Appendix I.

6.5.7 Eye-tracking results

Goldberg et al. (2002) as well as Pretorius (2005) have shown the added value that eye-tracking

provides to usability evaluations. Eye-tracking data captured during the evaluation of the

prototype for this study provided additional information on the efficiency and effectiveness with

which participants were able to complete the tasks.

Heat maps and areas of interests (AOI) were used to analyse eye-tracking data on the UIs of the

four novice steps that comprise the Call Logging task. Heat maps reveal which areas participants

focus on the most by showing areas of high eye-fixation as red areas, while regions with fewer

fixations are green.

Figure 6.12: AOI for Novice Steps

AOIs are areas of an applications GUI that designers of the application see as an important

element that users require to complete tasks using the application. Demarcating AOIs provides

empirical evidence to evaluators as to the use of these elements.

The generated novice UIs all have the same general layout, therefore, for each of the four steps

four AOIs were defined, namely: the Header, Input Section, Timer and Step Counter. Each of

these AOIs is shown in Figure 6.12.

Input Section

Header

Customer

Information

Timer

Step Counter

Evaluation and Results 160

The AOIs were demarcated to establish which areas of the screen users were focusing on.

Wandering fixations usually reveal that users are either lost, or do not understand what to do

(Pretorius 2005). The heat maps in Figure 6.13 show the heat map for step one to four of the

Call logging task for all participants (n=30).

Figure 6.13: Heat map showing fixations for step one to four of Call Logging task (n=30)

The heat maps reveal that users did notice all the major elements that were generated as part of

the novice UI. The input section received the largest majority of fixations (count=221) for all

participants (n=30) and is clearly where the majority of red areas appear in Figure 6.13. This was

expected since this is the section where users input information related to resolving customer

queries.

Evidence from the heat map images points to the fact that the UI generated did not confuse or

distract the users. In fact, users were able to clearly distinguish the different sections of the UI

and thus complete the tasks effectively and efficiently. Users regularly checked the customer

Evaluation and Results 161

information AOI when entering customer data, as it was important to keep a track of the

customer during the course resolving the customer query.

Figure 6.14: Fixation count of AOIs

Figure 6.14 supports the heat maps by showing the total fixations for each AOI for steps one to

four of the Call Logging task. Customer information and Input Section have the only visible

fixation counts in Figure 6.14. Although users did notice the other elements, such as the Step

Header, which provides the step name, and the Step Counts, which provides information as to the

current step, they did not see these as important in assisting them with the tasks, hence the very

low fixations.

6.6 Conclusions

This chapter has discussed the evaluation of this project by employing a four component

evaluation, namely, a proof of concept (Chapter 5), an analytical evaluation (Section 6.3), an

evaluation of software engineering metrics (Section 6.4) and a usability evaluation (Section 6.5).

The four components of the evaluation strategy together prove that an AUI can be implemented

using an SOA effectively and the UI is usable.

The aim of the evaluation was to answer research questions R4 to R7 outlined in Section 1.4.4.

The proof of concept is the implementation of the prototype which is explained in Chapter 5

which answered the research question R4: How can an AUI be implemented using an SOA? The

analytical evaluation involved the evaluation of the implementation to determine if the AUI

0

50

100

150

200

250

Customer
Information

Input Section Step Header Timer Step Counter

AOI fixation count: Step 1-4 (n=30)

fixation count

Evaluation and Results 162

services conform to SOA principles. It answered the question R5: Does the prototype adhere to

SOA design principles? The AUI services were analysed using SOA design principles. The

results of this evaluation indicated that the services conform to the SOA design principles.

Table 6.5: Summary of the results of the evaluation

Research Question Answer

R4: How can an AUI be implemented using an SOA?

R5: Does the prototype indeed adhere to SOA design principles?

R6: How effectively can an AUI be achieved in a SOA?

R7: What is the usability of the generated user interface?

The evaluation of software engineering metrics used coupling metrics and architectural design

metrics to evaluate how effectively – in terms of software engineering – the implementation was

achieved. It answered the question R6: How effectively can an AUI be achieved in a SOA? It can

be inferred that the AUI services were indeed effectively implemented based on the results of

this evaluation which show that:

 The coupling between the AUI services is low; therefore, the services are easily

interchangeable, reusable and loosely coupled. Furthermore, they are self contained and

not influenced by external environment.

 The complexity of the AUI services is also low, thereby showing that the services were

implemented without extraneous effort.

The evaluation of the usability of the SOA application created using the AUI services was

performed to evaluate the effect that generating the UI has on the effectiveness and efficiency of

CCAs. This component answered the question R7: What is the usability of the generated user

interface? Results of the usability study and eye-tracking show that users were capable of

completing the Call Logging task at the required efficiently rates and with minimal incomplete

sections and errors.

Literature has shown that UIs for SOA research is on the increase. This is attributed to the

benefits of the loosely coupled design of SOA components. The evaluation in this study has

shown that the UIs for SOA can be made adaptive thus providing AUIs in a loosely coupled

Evaluation and Results 163

manner. This can be achieved effectively with low complexity. Usability testing and eye-tracking

results show that this approach does not impede end-users ability to perform their tasks.

The results of the evaluation strategy clearly indicate that an AUI can indeed be designed and

implemented effectively using SOA. Chapter 7 concludes this study summarising its contribution

and achievements, as well as outlining possibilities for future research.

Chapter 7: Conclusions and Recommendations

7.1 Introduction

Service-oriented architectures (SOA) are being adopted in industry at an unprecedented rate. The

benefits gained by using SOA such as business agility and short response times are driving this

growth in adoption. Providing user interfaces (UIs) in a service-oriented (SO) environment poses

various challenges. One such challenge is the UIs inability to cater for the differences in user

needs, preferences and abilities. Adaptive user interfaces (AUIs) have been proposed as a

solution to the growing disconnection between the needs, preferences and abilities of users and

the capability of UIs to accommodate these differences to the individual users.

The aim of this dissertation was to develop an AUI using an SOA. A model was developed

(Chapter 4) using knowledge acquired from the existing literature (Chapters 2 and 3)

consequently a proof of concept prototype was implemented (Chapter 5) and evaluated (Chapter

6) to demonstrate its adherence to SOA principles, its effective implementation and its ability to

allow novice contact centre agents (CCAs) to complete Call Logging tasks.

In this chapter, the objectives of this research are to be revisited in order to determine whether

these objectives have been achieved. Theoretical and practical contributions of this research are

highlighted and the limitations of this research are presented. Finally, recommendations for

theory, practice and future research will be made.

7.2 Research contributions

The research objectives, as stated in Section 1.4.3 were:

 To gain a comprehensive understanding of SOA and its enabling technology – Web

Services (Chapter 2).

 To understand AUIs and their components (Chapter 3).

 To understand user expertise and the implications it has on UI design (Chapter 3).

 To determine how an AUI can be designed using an SOA (Chapter 4).

 To determine how an AUI can be implemented using an SOA (Chapter 5).

Conclusions and Recommendations 165

 To evaluate the SO design and implementation of an AUI (Chapter 6).

These objectives and the research questions in Section 1.4.4 were analysed and discussed in the

chapters of this dissertation. Table 7.1 shows the research question from chapter 1 and how each

research question was answered by a comprehensive discussion in a chapter.

Table 7.1: Research Questions and Methodology

 Research Questions Chapter Answered
R1 What is SOA and what are its components? Chapter 2

R2 What are AUIs and what are the components of an AUI? Chapter 3

R3 How can an AUI be designed using an SOA? Chapter 4

R4 How can an AUI be implemented using an SOA? Chapter 5 & 6

R5 Does the prototype adhere to SOA design principles? Chapter 6

R6 How effectively can an AUI be implemented in an SOA? Chapter 6

R7 What is the usability of the generated user interface? Chapter 6

This remainder of this section outlines the theoretical and practical contributions of this research.

7.2.1 Theoretical contributions

The theoretical achievements of this research are highlighted in the investigation done into AUIs

and SOA. The achievements include:

 Research into SOA and AUIs;

 The development of a method for the analysis and design of an AUI using SOA;

 The application of this method and its outcome the AUI services model; and

 The evaluation strategy used to evaluate the model and the prototype developed as a

proof of concept.

7.2.1.1 Literature review

Service-oriented architectures (SOA)

Research Questions addressed: R1 - What is SOA and what are its components?

This study undertook an in depth investigation of SOA and its components in Chapter 2. Its

relation to enterprise architectures (EA) and distributed architectures highlighted the similarities

as well as the differences between SOA and architectures similar to it. SOA is an architectural

Conclusions and Recommendations 166

style and design paradigm that advocates the loosely coupled and agnostic design and

construction of distributed systems. The construction of a system in this way enables the system

to be agile and thus more adaptable to changing business requirements. The components of a

system are consequently designed as services. SOA applications and system consist of three

main components, namely, the service consumer, the service provider and the registry.

A service is an autonomous unit of functionality. Essentially, it provides a discrete function in a

stateless and agnostic environment. Services or applications, referred to as service consumers,

can re-use a service‘s functionality without having to implement it themselves. This is achieved

by invoking the service, which subsequently performs its function and, if that is part of its

function, returns a value.

Various standards exist to facilitate the searching, linking and invocation of services (Bellwood

et al. 2004; W3C 2006; W3C 2007; W3C 2009d). Universal Discovery Description and

Integration (UDDI) is a repository protocol which allows service consumers to search a

repository of services based on the descriptions of services. Service consumers are then capable

of bind to any service, using the services‘ interface defined by the WSDL.

Web Services Description Language (WSDL) defines the operations of a service and how

external applications or other services can bind to the service in order to invoke its functionality.

Simple Object Access Protocol, now simply known as SOAP, is a transportation protocol used to

transport messages between services providers and service consumers.

Adaptive User Interfaces (AUI)

Research question addressed: R2 - What are AUIs and what are the components of an AUI?

Chapter 3 discussed the topic of AUIs. Research into AUIs has increased in recent years due to

the increasing complexity of applications and their UIs. The aim of AUIs is to increase the flow

of information between humans and computers by adapting the UI. AUIs provide a variety of

functions, such as automatic completion of mundane tasks, giving advice about system use or

controlling a dialogue. These functions assist the users of AUIs in achieving their goals with the

system. Most notably, AUIs can adapt the UI to suit the needs, preferences or traits of its users.

This is achieved by modelling users and monitoring the characteristics which differentiate users.

Conclusions and Recommendations 167

An AUI can be separated into three distinct components, namely: the inferential, afferential and

efferential components of adaptivity. The afferential component captures user-interaction data

and stores the data in the knowledge base. The knowledge base is a collection of models about

the AUIs environment including the user, the task, the system and the domain. The AUI uses

information in the knowledge base to make inferences about its environment and adapt itself if

necessary. This inferring functionality is provided by the inferential component.

The inferential component uses various methods to analyse the AUIs environment by using the

data stored in the knowledge base. It subsequently makes inferences about the environment. The

afferential component decides how to adapt the AUI based on the inferences made by the

inferential component.

7.2.1.2 Service-oriented analysis and design method

Research question addressed: R3 - How can an AUI be designed using an SOA?

Existing service-oriented (SO) analysis and design methods are either proprietary or have not

been proven as being effective through extensive use in industry. As such a hybrid method was

devised in the analysis and design of the model for this study. This method combined two

existing methods, namely, SOMA (Arsanjani 2004) by IBM, and Erl‘s (2008) SO analysis and

development method (SOADM). SOMA is a proprietary method. IBM, however, provides

sufficient information (Arsanjani 2004; Arsanjani et al. 2008) about the higher level components

of this process to understand the process and possibly to apply it.

SOMA is an industry proven but proprietary method, and as such information on specific aspects

of the SOMA process is not publicly available (Ramollari et al. 2007). SOADM, although

unproven in industry, provides details on specific aspects of SO analysis and design. The specific

details provided SOADM, which relate to components found in SOMA, provide vital

information that is not made public in the SOMA method. As such, SOADM specifics are used

to complement the SOMA method and a hybrid SO analysis and design method is the result.

The hybrid approach consisted of the three components of the SOMA approach, namely: SO

Analysis (Section 4.3), Design (Section 4.4) and Realisation (Section 4.5). SO Analysis

consisted of the definition of requirements (Section 4.3.1) and identification of automated

Conclusions and Recommendations 168

systems (Section 4.3.2). SO Design consisted of the composition of SOA by selecting the

appropriate service layers (Section 4.4.1), designing services using service specifications

(Section 4.4.2.1) and designing SO processes (Section 4.4.3). The final step of the process was

the decision on how to realise the services (Section 4.5).

7.2.1.3 AUI services model

Research question addressed: R3 - How can an AUI be designed using an SOA?

The AUI services model developed in this research provides a means for AUI services to be

implemented in a network and accessed as a discrete function. The model, by virtue of being

implemented as services, is a collection of loosely coupled AUI components that interact

together to provide adaptation functions.

Research into SOAs has shown the increased adoption of this architectural style to integrate

disparate platforms. A major hurdle identified is how to establish the right UI with which end-

users can access information in an SOA. Various approaches exist as solutions to this problem

such as web-based Portlets or desktop-based smart clients (Tibco 2006). By their very nature,

integrated systems are high information environments. A second and sometimes less obvious

issue with UIs in high information environments is that end-users of the UIs differ in many ways.

End-users differ in preference, ability and needs; and currently UIs for integrated systems or

complex desktop systems for that matter, do not adequately address this difference. AUIs have

been proposed as a solution for this problem.

This research consequently developed a model for AUIs based on existing SOA and web

services UI methods to provide an AUI services model (Figure 7.1). This model was developed

by applying the SO analysis and design method described in Sections 4.3 and 4.4 to an existing

AUI scenario.

The model consists of services developed around traditional AUI components: the afferential

component, the inferential component and the efferential component of adaptivity. The

afferential component of adaptivity (Section 3.2.5.1) consists of a Watcher Service which

captures data and stores them in the knowledge base.

Conclusions and Recommendations 169

The AUI services model uses a knowledge base consisting of a user and task model. The user

model stores characteristics that distinguish users from each other, for example, performance-

related information. The task model defines the task(s) that the end-users perform and which the

AUI monitors.

The inferential component of adaptivity (Section 3.2.5.2) consists of an Analysis Engine Service

which performs user modelling on the user-interaction data captured by the Watcher Service.

Finally, the efferential component of adaptivity (Section 3.2.5.3) consists of a Transformation

Service which uses output from the user modelling component, the Analysis Engine Service, in

order to generate UIs with appropriate adaptations included in this new UI.

Figure 7.1: AUI services model

7.2.2 Practical contributions

The main practical contribution of this dissertation is the implementation of a prototype as proof

of concept for the proposed AUI services model. The second practical contribution is the

Conclusions and Recommendations 170

evaluation of the prototype. These contributions and the research questions they addressed will

be discussed in the following sub-sections.

7.2.2.1 Development of a prototype as proof of concept

Research question addressed: R4 - How can an AUI be implemented using an SOA?

This research provided several practical contributions. The implementation of a proof of concept

of an AUI service model serves to show that an AUI can be implemented using an SOA (Chapter

4). The prototype was implemented effectively to adhere to SOA principles outlined in Section

2.2.3. An analytical evaluation proves this (Section 6.3). Various technologies came together

around the web services to realise the prototype, most notably the XML based web service

standards, JavaScript for the UI interaction and C# for the service functionality.

Various web services were developed to provide functionality for contact centres (CC), which is

the domain of the prototype. UIs were then generated for these web services to allow end-users

to interact with them and complete the Call Logging task. The UI with which users would

interact was design to be an AUI. The AUI services developed from the AUI service model in

Chapter 4, provided this functionality by collecting user-interaction data, storing them in a user

model, making inferences on this data and generating new UIs based on the inferences made.

The prototype consisted of three layers, the UI shell, the application web services and the AUI

services. The UI shell provided a blank HTML template where the generated UI was injected to

create a new UI. The application services provided discrete CC functionality while the AUI

services provided the AUI functionality.

7.2.2.2 Evaluation of the prototype

This research set out to determine how to implement an AUI using SOA. Several objectives were

also outlined to guide how this implementation was to be achieved. Research questions based on

these objectives were formulated and they are:

 R5: Does the prototype indeed adhere to SOA design principles?

 R6: How effectively can an AUI be achieved in a SOA?

 R7: What is the usability of the generated user interface?

Conclusions and Recommendations 171

A three component evaluation strategy was devised to answer the research questions above and

determine if the research objectives were achieved. This evaluation consisted of the following:

 An analytical evaluation: SOA is an architectural style and design paradigm. It advocates

the development of application and system components as services. Erl (2008) proposes a

set of SOA design principles for the development of SOA systems. In order to determine

whether the prototype actually adhered to SOA design principles, it was evaluated against

these principles using an analytical evaluation. The outcome of this analysis was that the

AUI services model did indeed adhere to the SOA design principles as outlined by Erl

(2008). This component thus answered the research question R5: Does the prototype

indeed adhere to SOA design principles?

 Evaluation by Software Engineering Metrics: SOA is a distributed architecture, with

many of the components of SOA system designed to run on different platforms and

servers and probably in different locations. Distributed systems are innately complex, but

the AUI services model cannot be overly complex, otherwise it introduces new issues

such as barriers of entry for organisations seeking to use it. The crux of SOA is that its

components are loosely coupled. A software engineering coupling metric was, therefore

used to measure the coupling between the AUI services model. A high degree of coupling

means that changes to one service affect other services in its environment; therefore a low

degree of coupling is always desired. System complexity metrics were used to measure

the complexity with which the functionality of the AUI services model was achieved.

Results showed that there was little coupling between the services and the prototype was

implemented with little complexity. Therefore the research question R6: How effectively

can an AUI be achieved in a SOA? was adequately answered.

 Usability Evaluation of the Generated UIs: This research implemented the AUI services

model by taking advantage of a currently existing method for creating UIs that change,

generating the UI. By generating the UI, changes to the UI could be created on-the-fly.

This approach implies that different adaptations can be included in the UI and the UI has

control over very specific elements of the UI. Generating UIs however, does not always

produce desirable results. Therefore, a usability evaluation was conducted to determine if

the generated UIs allowed end-users to complete their tasks effectively and efficiently.

The evaluation consisted of a convenience sample of thirty participants selected because

Conclusions and Recommendations 172

they have profiles similar to that of novice CCAs. A biographical questionnaire was used

to determine if participants were suitable participants (Appendix F). Each participant was

evaluated in a controlled environment to avoid distractions. In addition, eye-tracking was

used to confirm the results of the evaluation. The usability evaluation results and the eye-

tracking results confirm that the participants completed the tasks in an effective and

efficient manner, thus showing that the UI did in fact generate usable interfaces with

which users could interact and also answering the research question R7: What is the

usability of the generated user interface?

The test results of the main study in which the prototype was evaluated prove that an AUI can be

effectively implemented using SOA.

7.3 Benefits of the research

This research showed that an AUI can effectively be implemented using an SOA. Various

benefits can be derived from this research:

Reduced development time: The UIs generated from the work in this study were generated

directly from the task model. Using this approach, the development of AUIs can be reduced to

defining the AUI using the task model and linking it to various services that provide adaptive

functionality.

Loosely Coupled Components: Since the components of the AUI are implemented as distributed

services, they are easy to maintain thanks to their loosely coupled nature. Applications can also

easily exchange functionality, for example, employ a different user modelling technique by

simply changing the service that provides that function.

7.4 Limitations of the research

The research has several limitations. The Watcher web service is not as re-usable as it could be,

due to its nature of capturing data for specific interface events and elements. This is evident in its

high complexity levels, as demonstrated in the software engineering evaluation section of this

research (Table 6.3). Recommendations to improve this and make it more re-usable would be to

Conclusions and Recommendations 173

make the data capturing more generic. In this study, data from the UI was captured generically,

that is, a data collection function managed event capturing for all the IMs.

The Watcher Service required information about which IM the data related to, which resulted in

some coupling issues. The capturing of different types of UI interaction events can be achieved

without specifically noting the element from which this data came. For example, in this study,

specific IMs were defined. However, if the IMs are marked as ‗drop-down list‘ or ‗button‘, then

the data collected can be aggregated on-the-fly, and stored as a single parameter for all ‗drop-

down lists‘ or ‗buttons‘.

The AUI component of this study is based on an existing AUI developed by Jason (2008)

comparing the prototype from this study with that of Jason is not possible since this study

implemented an AUI by using an SOA.

7.5 Recommendations for future research

SOA is an increasingly popular architecture for realising the goals of interoperability in industry.

This research showed that an AUI can be implemented by using an SOA. This was achieved by

leveraging existing research into UI generation by using a core component of the AUI, the task

model, and generating a UI based on this. Various other avenues for future research were

identified during the course of this research. These are discussed in this section.

During this research, a need to provide definitions of UI elements and a means to define how

these elements relate to each other was identified. The Object Layout Hierarchy was used to

satisfy this need; however, the development of an ontology for web services UI could provide a

more reliable means of defining web service elements, their layouts and the relationships

between elements from different services.

Generating the UI was chosen as the best approach to deliver the UI of web services. Currently

there exist Abstract User Interface languages that provide a means to define a UI in abstract

notation and subsequently create a concrete UI from this abstract notation. However, none of the

abstract languages examined were found mature enough for use in this research. In future, when

more work exists in abstract UI notation, the implementation of Web Service UI using Abstract

Conclusions and Recommendations 174

UI notation could provide better UI controls and a wider range of platforms for which UIs can be

created.

During this research, adaptable UIs and adaptive UIs were compared. Adaptable UIs were found

to allow users to define how the UI must look. The combination of this approach and a dynamic

task model could provide a means for users to dynamically define the UI for a business process.

This is similar to what Nestler (2008) proposes, however, this could be looked at from the

perspective of generating UIs for different platforms.

The scope of SOA is usually the enterprise. Enterprise architectures are large and span multiple

departments and even organisations. The prototype implemented in this study was evaluated in a

closed and controlled environment. Further research could evaluate the AUI services model in a

commercial environment with a greater number of services running on various platforms.

7.6 Summary

The thesis statement for this research study, as stated in Section 1.4.2 was:

An adaptive user interface can be designed and implemented using service-oriented

architecture principles.

The goal of this research was to implement an AUI using SOA. Following the thesis statement,

an AUI model for contact centres (CCs) was analysed and designed using a service-oriented

method (Chapter 4). The model was subsequently implemented (Chapter 5) as a proof of

concept. The proof of concept serves to show how an AUI can be implanted using an SOA. It

was evaluated using an analytical evaluation, to determine the extent to which the prototype

adheres to SOA principles, software engineering metrics, to determine how effectively it was

implemented and finally a usability study to evaluate the generated UI (Chapter 6). The

statistical results from the evaluation show that the implementation was successful, and a

usability evaluation, supported by eye tracking, showed that the prototype implemented allowed

users to complete their tasks effectively and efficiently. The goal of this research was thus

successfully achieved theoretically, with the SO analysis and design method for the proposed

model, the model itself and its evaluation, and practically by the implementation of the model as

a proof of concept.

References

ABRAMS, C. and SCHULTE, R.W. (2008): Service-Oriented Architecture Overview and Guide

to SOA Research [online]. Report Number G00154463. Gartner. Stamford, CT, USA.

Available at: http://www.gartner.com/DisplayDocument?doc_cd=154463. [Accessed on:

12 November 2009].

ALVAREZ-CORTES, V., ZAYAS-PEREZ, B.E., ZARATE-SILVA, V.H. and URESTI, J.A.R.

(2007): Current Trends in Adaptive User Interfaces: Challenges and Applications. In

Proceedings of Electronics, Robotics and Automotive Mechanics Conference. pp. 312-

317.

AMAZON (2009): Amazon Elastic Compute Cloud (Amazon EC2) [online]. Available at:

http://aws.amazon.com/ec2. [Accessed on: 13 March 2009].

AMSDEN, J. (2007): Modeling SOA: Part 2. Service specification [online]. Available at:

http://www.ibm.com/developerworks/rational/library/07/1009_amsden/index.html.

[Accessed on: 20 May 2009].

ANDREWS, T., CURBERA, F., DHOLAKIA, H., GOLAND, Y., KLEIN, J., LEYMANN, F.,

LIU, K., ROLLER, D., SMITH, D., THATTE, S., TRICKOVIC, I. and

WEERAWARANA, S. (2003): Business Process Execution Language for Web Services

[online]. Version 1.1. OASIS. Billerica, MA. Available at:

http://xml.coverpages.org/BPELv11-May052003Final.pdf. [Accessed on: 13 April 2009].

APPLE (2009): Safari 4 [online]. Available at: http://www.apple.com/safari/. [Accessed on: 11

June 2009].

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A.D., KATZ, R.H., KONWINSKI, A.,

LEE, G., PATTERSON, D.A., RABKIN, A., STOICA, I. and ZAHARIA, M. (2009):

Above the Clouds: A Berkeley View of Cloud Computing [online]. UCB/EECS-2009-28.

University of California at Berkeley. Available at:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html. [Accessed on:

18 December 2009].

ARSANJANI, A. (2004): Service-Oriented Modeling and Architecture (SOMA) [online].

Available at: https://www.ibm.com/developerworks/webservices/library/ws-soa-design1/.

[Accessed on: 20 May 2009].

ARSANJANI, A., GHOSH, S., ALLAM, A., ABDOLLAH, T., GANAPATHY, S. and

HOLLEY, H. (2008): SOMA: A method for developing service-oriented solutions. IBM

Systems Journal. 47(3), July 2008, pp. 377-396.

ATKINS, D.E., DROEGEMEIER, K.K., FELDMAN, S.I., GARCIA-MOLINA, H., KLEIN,

M.L., MESSERSCHMITT, D.G., MESSINA, P., OSTRIKER, J.P. and WRIGHT, M.H.

(2003): Revolutionizing Science and Engineering Through Cyberinfrastructure:Report of

the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure

[online]. National Science Foundation. Available at:

http://www.nsf.gov/od/oci/reports/atkins.pdf. [Accessed on: 30 April 2008].

BELLWOOD, T., CAPELL, S., CLEMENT, L., COLGRAVE, J., DOVEY, M.J., FEYGIN, D.,

HATELY, A., KOCHMAN, R., MACIAS, P., NOVOTNY, M., PAOLUCCI, M., VON

RIEGEN, C., ROGERS, T., SYCARA, K., WENZEL, P. and WU, Z. (2004): UDDI

Version 3.0.2 [online]. Available at: http://www.uddi.org/pubs/uddi_v3.htm. [Accessed

References 176

on: 20 August 2008].

BENYON, D. and MURRAY, D. (1993): Applying user modeling to human-computer

interaction design. Artificial Intelligence Review. 7(3/4), pp. 199-225.

BIANCO, P., KOTERMANSKI, R. and MERSON, P. (2007): Evaluating a Service-Oriented

Architecture [online]. CMU/SEI-2007-TR-015. Software Architecture Technology

Initiative. Available at: http://www.sei.cmu.edu/reports/07tr015.pdf. [Accessed on: 28

October 2008].

BRAUN, C., BROBERG, J., CASSIDY, M., FREEDMAN, M., JONES, T.N., SCHAECK, T.

and TAYAR, G. (2007): Web Services for Remote Portlets Specification [online]. The

Organization for the Advancement of Structured Information Standards [OASIS].

Available at: http://www.oasis-open.org/committees/wsrp. [Accessed on: 23 May 2008].

BROWNE, D., NORMAN, M. and RICHES, D. (1990): Why Build Adaptive Systems? In

Adaptive User Interfaces. pp. 15-58. BROWNE, D., TOTTERDELL, P. and NORMAN,

M. (eds). London, UK: Academic Press.

BRUSILOVSKY, P. (1996): Methods and techniques of adaptive hypermedia. User Modeling

and User-Adapted Interaction. 6(2), pp. 87-129.

BRUSILOVSKY, P. and SCHWARZ, E. (1997): User as Student: Towards an Adaptive

Interface for Advanced Web-Based Applications. In Proceedings of the Sixth

International Conference on User Modeling (UM '97). Chia Laguna, Sardinia, Italy.

Springer. pp. 177-188. June 2-5 1997.

BUNDSCHUH, M. and DEKKERS, C. (2008): The IT Measurement Compendium: Estimating

and Benchmarking Success with Functional Size Measurement. Berlin / Heidelberg.

Springer. pp 644.

BURR, M. (2006): Processing WSDL documents with XSLT: Tips and tricks for transforming

Web service WSDL documents using XSLT stylesheets [online]. Available at:

http://www.ibm.com/developerworks/webservices/library/ws-xsltwsdl/. [Accessed on: 30

April 2009].

BUXTON, W.A.S., KURTENBACH, G.P. and SELLEN, A.J. (1993): An empirical evaluation

of some articulatory and cognitive aspects of "marking menus". Human Computer

Interaction. 8(1), pp. 1-23.

BUZZWORD (2009): Buzzword [online]. Available at: https://buzzword.acrobat.com/.

[Accessed on: 20 April 2009].

CAÑAS, M.A., HIERRO, J.J., HOYER, V., JANNER, T., LIZCANO, D., REYES, M.,

SCHROTH, C. and SORIANO, S. (2007): Enterprise Mashup. Putting a face on the next

generation global SOA. In Proceedings of the 8th International Conference on Web

Information Systems Engineering. Nancy, France. Lecture Notes in Computer Science.

4831: BENATALLAH, B., CASATI, F., GEORGAKOPOULOS, D., BARTOLINI, C.,

SADIQ, W. and GODART, C. (eds). Springer Berlin / Heidelberg.3-6th December, 2007.

CARD, D.N. and GLASS, R.L. (1990): Measuring Software Design Quality. University of

Michigan, Detroit, USA. Prentice Hall.

CARPENTER, H. (2009): Gartner Hype Cycle for Emerging Technologies 2009: What‟s

Peaking, What‟s Troughing? [online]. Available at:

http://bhc3.wordpress.com/2009/07/27/gartner-hype-cycle-2009-whats-peaking-whats-

troughing/. [Accessed on: 12 November 2009].

CERAMI, E. (2002): Web Services Essentials Distributed Applications with XML-RPC, SOAP,

UDDI & WSDL. Sebastopol, California, USA. O'Reilly Media.

References 177

CHAPPELL, D. (2009a): Introducing Windows Azure [online]. White Paper. David Chappell

and Associates. Available at: http://download.microsoft.com/download/0/C/0/0C051A30-

F863-47DF-BC53-

9C3CFA88E3CA/Windows%20Azure%20David%20Chappell%20White%20Paper%20

March%2009.pdf. [Accessed on: 20 April 2009].

CHAPPELL, D. (2009b): Introducing The Windows Azure Platform: An Early Look at Windows

Azure, SQL Azure, and .Net Services [online]. David Chappell and Associates. Available

at: http://download.microsoft.com/download/8/2/5/825A26EF-8561-4891-A8B5-

516337590BF0/SplusS09_Ketnote_e.pdf. [Accessed on: 20 April 2009].

CLEMENT, L. and ROGERS, T. (2004): Using WSDL in a UDDI Registry [online].

Specification Report. Organisation for the Advancement of Structured Information

Standards Available at: http://www.oasis-open.org. [Accessed on: 20 August 2008].

COLAB (2007): SOA and EA [online]. Available at:

http://colab.cim3.net/file/work/pgfsoa/pgfsoa-

ea/SOA%20and%20EA%20Key%20Messages_Final%20Draft.doc. [Accessed on: 12

January 2009].

CROW, D. and SMITH, B. (1993): The Role of Built-in Knowledge in Adaptive Interface

Systems. In Proceedings of the 1st international conference on Intelligent User

Interfaces. Orlando, Florida, United States. ACM. pp. 97-104.

DAVIES, D. (2006): SOA at the User Interface [online]. Available at:

http://www.looselycoupled.com/opinion/2006/davies-ui-dev0424.html. [Accessed on: 1

June 2008].

DIETERICH, H., KÜHME, T., MALINOWSKI, U. and SCHNEIDER-HUFSCHMIDT, M.

(1993): State of the Art in Adaptive User Interfaces. In Adaptive User Interfaces. pp. 11-

48. Amsterdam, North-Holland.

DILLON, A. and SONG, M. (1997): An Empirical Comparison of the Usability for Novice and

Expert Searchers of a Textual and a Graphic Interface to an Art-resource Database.

Journal of Digital Information. 1(1).

DUBEY, A. and WAGLE, D. (2007): Delivering software as a service. The McKinsey Quarterly

Business Journal(28 August 2008), May 2007, pp. 1-12.

ECMA (2009): Standard ECMA-262 ECMAScript Language Specification [online]. Available at:

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf.

[Accessed on: 05 April 2009].

EHLERT, P.A.M. (2003): Intelligent user interfaces: introduction and survey [online]. Research

Report DKS03-01 / ICE 01. Delft University of Technology. Available at:

http://www.kbs.twi.tudelft.nl/Publications/Report/2003-Ehlert-DKS03-01.html.

[Accessed on: 24 January 2009].

ELLINGER, R.S. (2007): Service Oriented Architecture and the User Interface Services: The

Challenge of Building User Interface Services. Technology Review Journal. 15(1),14

November 2008, pp. 43-61.

ERL, T. (2005): Service-Oriented Architecture: Concepts, Technology, and Design. Upper

Saddle River, NJ Prentice Hall PTR.

ERL, T. (2008): SOA Principles of Service Design. Service-Oriented Computing. Upper Saddle

River, NJ. Prentice Hall.

ERL, T. (2009): SOA Methodology [online]. Available at: http://www.soamethodology.com/.

[Accessed on: 05 June 2009].

References 178

ERRADI, A., ANAND, S. and KULKARNI, N. (2006): SOAF: An Architectural Framework for

Service Definition and Realization. In Proceedings of the International Conference on

Service Oriented Computing (SCC 2006). Los Alamitos. IEEE.

EYEOS (2009): EyeOS [online]. Available at: http://Eyeos.org. [Accessed on: 13 March 2009].

FIELDING, R.T. (2000): Architectural Styles and the Design of Network-based Software

Architectures. Ph.D thesis, University Of California. Irvine.

FISCHER, G. (2001): User Modeling in Human-Computer Interaction. User Modeling and User-

Adapted Interaction 11, pp. 65-86.

FRANKEL, D.S. (2005): What happened to CORBA? [online]. Available at:

http://www.bptrends.com/publicationfiles/05-05%20COL%20CORBA%20-

%20Frankel.pdf. [Accessed on: 30 October 2009].

GAJOS, K.Z. (2008): Automatically Generating Personalized User Interfaces. PhD thesis,

Computer Science and Engineering, University of Washington.

GALITZ, W.O. (2007): The Essential Guide to User Interface Design: An Introduction to GUI

Design Principles and Techniques. 3rd ed., Hoboken, NJ. John Wiley & Sons. pp 640.

GOLDBERG, J., STIMSON, M., LEWENSTEIN, M. and SCOTT, N. (2002): Eye Tracking in

Web Search Tasks: Design Implications. In Proceedings of the symposium on ETRA: Eye

tracking research and applications symposium. pp. 51-58.

GOOGLE (2009a): Google Docs [online]. Available at: http://docs.google.com/. [Accessed on:

13 March 2009].

GOOGLE (2009b): Google Chrome [online]. Available at: http://www.google.com/chrome.

[Accessed on: 11 June 2009].

GOOGLE (2009c): Google App Engine [online]. Available at:

http://code.google.com/appengine/. [Accessed on: 13 March 2009].

GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J.J., NIELSEN, H.F.,

KARMARKAR, A. and LAFON, Y. (2007): SOAP Version 1.2 Part 2: Adjuncts (Second

Edition) [online]. World Wide Web Consortium. Available at:

http://www.w3.org/TR/2007/REC-soap12-part2-20070427/. [Accessed on: 12 September

2008].

HADDAD, C. (2005): Where‟s the ROI? [online]. Available at:

http://www.ftponline.com/weblogicpro/2005_03/magazine/colums/soapbox. [Accessed

on: 13 December 2009].

HANSEN, M.D. (2007): SOA Using Java Web Services. Upper Saddle River, NJ. Pearson

Education, Inc.

HAYES, B. (2008): Cloud computing. Commun. ACM. 51(7), pp. 9-11.

HE, J. and YEN, I.-L. (2007): Adaptive User Interface Generation for Web Services. In

Proceedings of the e-Business Engineering, 2007. ICEBE 2007. IEEE International

Conference on. Washington, DC, USA. IEEE Computer Society. pp. 536-539.

HE, J., YEN, I.L., TU, P., JING, D. and BASTANI, F. (2008): An Adaptive User Interface

Generation Framework for Web Services. In Proceedings of the Congress on Services

Part II, 2008. (SERVICES-2. IEEE). pp. 175-182.

HEATHCOTE, P.M. (2003): Training. A-Level Information and Communication Technology,

pp. 265.

HENNING, M. (2008): The rise and fall of CORBA. Commun. ACM. 51(8), pp. 52-57.

HOFSTEE, E. (2006): Constructing a Good Dissertation: A Practical Guide to Finishing a

Masters, MBA or PhD on Schedule. Johannesburg, South Africa. EPE.

References 179

HOOK, K. (2000): Steps to take before intelligent user interfaces become real. Interacting with

Computers. 12, pp. 409-426.

HUBBERS, J.-W., LIGTHART, A. and TERLOUW, L. (2007): Ten Ways to Identify Services.

SOA Magazine, December 10 2007.

HURST, A., HUDSON, S.E. and MANKOFF, J. (2007): Dynamic detection of novice vs. skilled

use without a task model. In Proceedings of the SIGCHI conference on Human factors in

computing systems. San Jose, California, USA. ACM. pp. 271-280.

IBM (2007a): Blue Cloud Project [online]. Available at: http://www-

03.ibm.com/press/us/en/pressrelease/22613.wss. [Accessed on: 12 July 2009].

IBM (2007b): IBM Rational Unified Process [online]. Available at:

ftp://ftp.software.ibm.com/software/rational/web/datasheets/RUP_DS.pdf. [Accessed on:

05 June 2009].

JAMESON, A. (2003): Adaptive interfaces and agents. In The human-computer interaction

handbook: fundamentals, evolving technologies and emerging applications. pp. 305-

330. Mahwah, NJ: Lawrence Erlbaum Associates Inc.

JASON, B.A. (2008): An Adaptive User Interface Model for Contact Centres. Masters thesis,

Department of Computer Science and Information Systems, Nelson Mandela

Metropolitan University. Port Elizabeth. South Africa.

JOHNSON, P., EKSTEDT, M., SILVA, E. and PLAZAOLA, L. (2004): Using Enterprise

Architecture For CIO Decision-Making: On The Importance Of Theory In Proceedings

of the Conference on Systems Engineering Research. University of Southern California,

Los Angeles, California. April 15-16, 2004.

JOHNSTON, S.K. (2005): Tooling platforms and RESTful ramblings [online]. Available at:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/johnston/entry/service_i

dentification_top_down_or?lang=en. [Accessed on: 01 January 2009].

JOSUTTIS, N.M. (2007): SOA in Practice: The Art of Distributed System Design. Sebastopol,

CA, USA. O'Reilly Media, Inc.

JQUERY (2009): jQuery [online]. Available at: http://jquery.com/. [Accessed on: 11 December

2008].

KAN, S.H. (2002): Metrics and Models in Software Quality Engineering. Reading, Mass.

Addison-Wesley Professional.

KANNEGANTI, R. and CHODAVARAPU, R. (2008): SOA Security. Greenwich, CT. Manning

Publications Co.

KASSOFF, M., KATO, D. and MOHSIN, W. (2003): Creating GUIs for Web Services. IEEE

Internet Computing. 7(5), pp. 66-73.

KEEN, M., ACHARYA, A., BISHOP, S., HOPKINS, A., MILINSKI, S., NOTT, C.,

ROBINSON, R., ADAMS, R. and VERSCHUEREN, P. (2004): Patterns: Implementing

an SOA using an ESB. IBM Redbook.

KNIPPEL, R. (2005): Service Oriented Enterprise Architecture. Masters thesis, University of

Copenhagen. Copenhagen.

KOBSA, A. (2004): Adaptive Interfaces. In Encyclopedia of Human-Computer Interaction.

BAINBRIDGE, W.S. (ed) Great Barrington, MA: Berkshire Publishing.

KODALI, R.R. (2005): What is Service-Oriented Architecture? An Introduction to SOA [online].

Available at: http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa.html.

[Accessed on: 20 August 2008].

KOHLMANN, F. (2007): Service identification and design - A Hybrid approach in decomposed

References 180

financial value chains. In Proceedings of the 2nd International Workshop on Enterprise

Modeling and Information Systems Architecture (EMISA ‟07). Koellen-Verlag, Bonn pp.

205-218.

KOPECKÝ, J., VITVAR, T., BOURNEZ, C. and FARRELL, J. (2007): SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Computing. 11(6), December

2007, pp. 60-67.

KROGSAETER, M. and THOMAS, C.G. (1994): Adaptivity: System-Initiated Individualization.

In Adaptive User Support : Ergonomic Design of Manually and Automatically Adaptable

Software. OPPERMANN, R. (ed) Hillsdale, New Jersey, USA Lawrence Erlbaum

Associates Inc.

KÜHME, T. (1993): A User-Centered Approach to Adaptive Interfaces. In Proceedings of the

International Conference on Intelligent User Interfaces (IUI '93). Orlando, Florida, USA.

ACM Press. pp. 243-245. January 4 - 7, 1993.

KULES, B. (2000): User Modeling for Adaptive and Adaptable Software Systems [online].

Available at: http://www.otal.umd.edu/UUGuide/wmk/. [Accessed on: 13 March 2009].

LALIWALA, Z. (2007): Event-driven Service-oriented Architecture for Dynamic Composition

of Web Services. PhD thesis, Information and Communication Technology, Dhirubhai

Ambani Institute of Information and Communication Technology. Gandhinagar. India.

LANGLEY, P. (1999): User modeling in adaptive interfaces. In Proceedings of the Seventh

International Conference on User Modeling. Banff, Canada. Springer-Verlag New York,

Inc. pp. 357-370.

LAWLER, J.P. and HOWELL-BARBER, H. (2007): Service-Oriented Architecture: SOA

Strategy, Methodology, and Technology. Boca Raton, FL, USA. Auerbach Publications.

LEWIS, G.A. and WRAGE, L. (2006): Model Problems in Technologies for Interoperability:

Web Services [online]. Technical Report CMU/SEI-2006-TN-021. Carnegie Mellon

Software Engineering Institute Available at: http://www.sei.cmu.edu/reports/06tn021.pdf.

[Accessed on: 28 October 2008].

LI, H. and WU, Z. (2009): Research on Distributed Architecture Based on SOA. In Proceedings

of the International Conference on Communication Software and Networks. Los

Alamitos, CA, USA. 0:IEEE Computer Society. pp. 670-674.

LIZCANO, D., JIMÉNEZ, M., SORIANO, J., CANTERA, J.M., REYES, M., HIERRO, J.J.,

GARIJO, F. and TSOUROULAS, N. (2008): Leveraging the Upcoming Internet of

Services through an Open User-Service Front-End Framework. In Proceedings of the 1st

European Conference on Towards a Service-Based Internet. Madrid, Spain.

5377/2008:Springer Berlin / Heidelberg. pp. 147-158.

LÓPEZ-JAQUERO, V., MONTERO, F., FERNÁNDEZ-CABALLERO, A. and LOZANO,

M.D. (2004): Towards Adaptive User Interfaces Generation - One Step Closer To

People. In Enterprise Information Systems V. pp. 226-232. Albacete, Spain: Springer

Netherlands.

MANDELBAUM, A. (2004): Call Centers: Research bibliography with abstracts [online].

Available at: http://ie.technion.ac.il/serveng. [Accessed on: 16 December 2009].

MARKS, E. (2004): The SOA Network Effect: Technical and Cultural Issues Drive Value

[online]. Available at:

http://www.computerworld.com/action/article.do?command=viewArticleTOC&specialRe

portId=620&articleId=95258. [Accessed on: 24 February 2009].

MENGE, F. (2007): Enterprise Service Bus. In Proceedings of FREE AND OPEN SOURCE

References 181

SOFTWARE CONFERENCE 2007, Sankt Augustin, Germany. pp. 1-6.

MICROSOFT (2006): Real World SOA [online]. Available at:

http://download.microsoft.com/download/b/4/d/b4db580a-0361-4907-9a6e-

9d2866d8b581/Real%20World%20SOA.doc. [Accessed on: 28 August 2008].

MICROSOFT (2008): DCOM Technical Overview [online]. Available at:

http://technet.microsoft.com/en-us/library/cc722927.aspx. [Accessed on: 28 August

2008].

MICROSOFT (2009a): Microsoft Office Excel [online]. Available at:

http://office.microsoft.com/en-us/excel/default.aspx. [Accessed on: 11 December 2009].

MICROSOFT (2009b): Microsoft Support [online]. Available at:

http://support.microsoft.com/ph/2855. [Accessed on: 13 December 2009].

MICROSOFT (2009c): Microsoft Visual Studio 8 [online]. Available at:

http://msdn.microsoft.com/en-us/vstudio/default.aspx. [Accessed on: 11 December 2009].

MICROSOFT (2009d): Internet Explorer 8 [online]. Available at:

http://www.microsoft.com/windows/Internet-explorer/default.aspx. [Accessed on: 11

June 2009].

MICROSOFT (2009e): The C# Language [online]. Available at: http://msdn.microsoft.com/en-

us/vcsharp/aa336809.aspx. [Accessed on: 11 December 2009].

MITTAL, K. (2006): Build your SOA, Part 3: The Service-Oriented Unified Process [online].

Available at: http://www.ibm.com/developerworks/webservices/library/ws-soa-

method3/index.html. [Accessed on: 21 October 2008].

MOZILLA (2009): Firefox [online]. Available at: http://www.mozilla.com/en-

US/firefox/firefox.html. [Accessed on: 11 June 2009].

MULIK, S. (2007): When to use REST and when to use SOAP [online]. Available at:

http://shrikant-mulik.blogspot.com/2007/08/when-to-use-rest-and-when-to-use-

soap.html. [Accessed on: 30 April 2009].

NESTLER, T. (2008): Towards a Mashup-driven End-User Programming of SOA-based

Applications. In Proceedings of the 10th International Conference on Information

Integration and Web-based Applications and Services. Linz, Austria. ACM. pp. 551-554.

NESTLER, T., FELDMANN, M., PREUYNER, A. and SCHILL, A. (2009): Service

Composition at the Presentation Layer using Web Service Annotations. In Proceedings of

the ComposableWeb'09. San Sebastian, Spain. 1: DANIEL, F., CASTELEYN, S. and

HOUBEN, G.-J. (eds). pp. 63-68. June 24-26, 2009.

NESTLER, T., FELDMANN, M. and SCHILL, A. (2008): Design-Time Support To Create User

Interfaces For Service Based Applications. In Proceedings of the IADIS International

Conference WWW/Internet 2008. Freiburg, Germany. ISAÍAS, P., NUNES, M.B. and

IFENTHALER, D. (eds). International Association for Development of the Information

Society (IADIS). pp. 457-460.

NEWCOMER, E. and LOMOW, G. (2005): Understanding SOA with Web Services. Addison

Wesley.

NIELSEN, J. (1993): What is usability? Usability Engineering. San Francisco. Morgan

Kaufmann. pp 36-46.

NIMBUS (2009): Nimbus is cloud computing for science [online]. Available at:

http://www.nimbusproject.org/. [Accessed on: 20 April 2009].

NORMAN, R.J. (1998): CORBA and DCOM: Side by Side. Distributed Computing. 1(5), pp.

41-45.

References 182

OASIS (2006): Reference Model for Software Oriented Architectures [online]. Available at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm. [Accessed on:

15 March 2008].

OKA, M. and NAGATA, M. (1999): A Graphical User Interface Shifting from Novice to Expert.

In Proceedings of the 8th International Conference on Human-Computer Interaction:

Ergonomics and User Interfaces. Munich, Germany. 1: BULLINGER, H.-J. and

ZIEGLER, J. (eds). Lawrence Erlbaum Associates Inc. pp. 341-345. August 22-26, 1999.

OMG (2008): The Common Object Request Broker: Architecture and Specification [online].

Available at: http://www.omg.org/spec/CORBA/3.1/. [Accessed on: 05 November 2008].

OMG (2009): CORBA®, XML And XMI® Resource Page [online]. Available at:

http://www.omg.org/technology/xml/. [Accessed on: 05 November 2008].

OPENGROUP (2003): TOGAF "Enterprise Edition" Version 8.1 [online]. Available at:

http://www.opengroup.org/architecture/togaf8- doc/arch/. [Accessed on: 05 November

2008].

OPENNEBULA (2009): OpenNebula.org [online]. Available at: http://www.opennebula.org/.

[Accessed on: 20 April 2009].

OPERA (2009): Opera [online]. Available at: http://www.opera.com/. [Accessed on: 11 June

2009].

OPPERMANN, R. (1994a): Adaptive user support: ergonomic design of manually and

automatically adaptable software. Series on computers, cognition, and work. Hillsdale,

NJ, USA. L. Erlbaum Associates Inc.

OPPERMANN, R. (1994b): Adaptively supported adaptability. International Journal of Human-

Computer Studies. 40(3), pp. 455-472.

PADILLA, M. (2003): Strike a balance: Users' expertise on interface design [online]. Available

at: http://www.ibm.com/developerworks/webservices/library/ws-soa-

method3/index.html. [Accessed on: 15 November 2008].

PAPAZOGLOU, M., AIELLO, M. and GIORGINI, P. (2004): Service-Oriented Computing and

Software Agents. In Extending Web Services Technologies. 13: pp. 29-52. Springer US.

PAPAZOGLOU, M. and YANG, J. (2002): Design Methodology for Web Services and Business

Processes. In Technologies for E-Services. Lecture Notes in Computer Science,

2444/2002: pp. 175-233 Springer Berlin / Heidelberg.

PAPAZOGLOU, M.P. (2006): Web Services Technologies and Standards [online]. Available at:

http://infolab.uvt.nl/pub/papazogloump-2006-97.pdf. [Accessed on: 08 August 2008].

PATERNÒ, F., SANTORO, C. and SPANO, L.D. (2008): Designing Usable Applications based

on Web Services. In Proceedings of the Interplay between Usability Evaluation and

Software Development (I-USED‟08). Pisa, Italy. ABRAHÃO, S., LAW, E.L.-C.,

STAGE, J., HORNBÆK, K. and JURISTO, N. (eds). pp. 67-73. September 25-26, 2008.

PATIG, S. (2009): Cases of Software Service Design in Practice. In Software Service

Engineering. 09021. LEYMANN, F., SHAN, T., HEUVEL, W.-J.V.D. and

ZIMMERMANN, O. (eds). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, Germany.

PAYMANS, T.F., LINDENBERG, J. and NEERINCX, M. (2004): Usability Trade-offs For

Adaptive User Interfaces: Ease of Use and Learnability. In Proceedings of the 9th

International Conference on Intelligent User Interfaces. Funchal, Madeira, Portugal.

ACM. pp. 301-303.

PEREPLETCHIKOV, M., RYAN, C., FRAMPTON, K. and TARI, Z. (2007): Coupling Metrics

References 183

for Predicting Maintainability in Service-Oriented Designs. In Proceedings of the

Australian Software Engineering Conference. Los Alamitos, CA, USA. 0:IEEE

Computer Society. pp. 329-340.

PREECE, J., ROGERS, Y. and SHARP, H. (2007): Interaction Design: Beyond Human-

Computer Interaction. 2nd ed., New York, NY. John Wiley & Sons. pp530-540.

PRESSMAN, R. (2004): Software Engineering: A Practitioner's Approach. 6 ed., New York,

NY, USA. McGraw-Hill Science/Engineering/Math.

PRETORIUS, M. (2005): The Added Value of Eye Tracking in the Usability Evaluation of a

Network Management Tool. Masters thesis, Department of Computer Science and

Information Systems, Nelson Mandela Metropolitan University. Port Elizabeth. South

Africa.

PRUMPER, J., FRESE, M., ZAPF, D. and BRODBECK, F.C. (1991): Errors in computerized

office work: differences between novice and expert users. SIGCHI Bulletin. 23(2), pp.

63-66.

QUYNH, P.T. and THANG, H.Q. (2009): Dynamic Coupling Metrics for Service--Oriented

Software. International Journal of Computer Science and Engineering. 3(1), pp. 46-46.

RAMOLLARI, E., DRANIDIS, D. and SIMONS, A. (2007): A Survey of Service Oriented

Development Methodologies. In Proceedings of the Second European Young

Researchers Workshop on Service Oriented Computing. Univeristy of Leicester.

GORTON, S., SOLANKI, M. and REIFF-MARGANIEC, S. (eds). Univeristy of

Leicester.11-12 June 2007.

REICHENBACHER, T. (2003): Adaptive Methods for Mobile Cartography. In Proceedings of

the 21st International Cartographic Conference. Durban, South Africa. pp. 1311-1323.

RICH, E. (1998): User Modeling via Stereotypes. In Readings in intelligent user interfaces. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc. pp. 329-342.

ROSS, E. (2000): Intelligent User Interfaces: Survey and Research Directions. [online].

Research Report CSTR-00-004. Available at:

http://www.cs.bris.ac.uk/Publications/Papers/1000447.pdf. [Accessed on: 24 February

2009].

SALESFORCE (2009): Salesforce.com [online]. Available at: http://www.salesforce.com/.

[Accessed on: 13 August 2009].

SCHMETZER, R. and BLOOMBERG, J. (2004): Three Roads to the SOA Implementation

Framework [online]. Available at: http://searchwebservices.techtarget.com/

originalContent /0,289142,sid_gci958544,00.htm. [Accessed on: 20 May 2009].

SCHOLTZ, J. (2000): Common industry format for usability test reports. In Proceedings of the

Conference on Human Factors in Computing Systems. The Hague, The Netherlands.

CHI '00: CHI '00 extended abstracts on Human factors in computing systems. ACM. pp.

301-301.

SERVFACE (2008): Service engineering methodology (inital version) [online]. 216699. SAP.

Available at:

http://141.76.40.158/Servface/index.php?option=com_docman&task=doc_download&gi

d=3&Itemid=61. [Accessed on: 05 August 2008].

SHEN, H.T. (2007): Service-Oriented Architecture [online]. INFS 3204/7204 University of

Queensland, Australia. Available at:

http://www.itee.uq.edu.au/~infs3204/Lecture_Notes/M1.pdf. [Accessed on: 5 October

2008].

References 184

SHNEIDERMAN, B. (2003): Promoting universal usability with multi-layer interface design. In

Proceedings of the 2003 conference on Universal usability. Canada. ACM. pp. 1-8.

SINGH, A. (2007): An Intelligent User Interface Model for Contact Centre Operations. Masters

thesis, Computer Science and Information Systems, Nelson Mandela Metropolitan

University. Port Elizabeth. South Africa.

SOMMERVILLE, I. (2006): Software Engineering. 8 ed., Reading, MA, USA. Addison Wesley.

pp 864.

SONG, K. and LEE, K.-H. (2007): An Automated Generation of XForms Interfaces for Web

Service. In Proceedings of the IEEE International Conference on Web Services 2007. pp.

856-863. 9-13 July 2007.

SONG, K. and LEE, K.-H. (2008): Generating multimodal user interfaces for Web services.

Interacting with Computers. 20(4-5), September 2008, pp. 480-490.

SPILLNER, J., BRAUN, I. and SCHILL, A. (2007): Flexible human service interfaces. In

Proceedings of the 9th International Conference on Enterprise Information Systems.

Funchal, Madeira, Portugal. pp. 79-85.

SPILLNER, J., FELDMANN, M., BRAUN, I., SPRINGER, T. and SCHILL, A. (2008): Ad-

Hoc Usage of Web Services with Dynvoker. In Proceedings of the 1st European

Conference on Towards a Service-Based Internet, Madrid, Spain. pp. 208-219. Springer-

Verlag.

STATUS (2009): Status Project [online]. Available at: http://www.acis.ufl.edu/vws/. [Accessed

on: 20 April 2009].

TAYLOR, R.N., MEDVIDOVIC, N. and DASHOFY, E.M. (2009): Software Architecture:

Foundations, Theory, and Practice. Hoboken, NJ. Wiley, John & Sons, Incorporated.

TERLOUW, J. (2009): An Assessment Method for Selecting an SOA Delivery Strategy

Determining Influencing Factors and Their Value Weights. Masters thesis, Information

and Computing Sciences, Utrecht University. Utrecht.

TERLOUW, L. and MAARSE, K.E. (2009): A Service Specification Framework for Developing

Component-Based Software: A Case Study at the Port of Rotterdam. In Advances in

Enterprise Engineering III. 34: pp. 100-114. Springer Berlin / Heidelberg.

TERRE BLANCHE, M. (2002a): Tutorial 3: Central tendency. In Numbers, Hypotheses &

Conclusions. pp. 52-69. TREDOUX, C. and DURRHEIM, K. (eds). Lansdowne: UCT

Press.

TERRE BLANCHE, M. (2002b): Tutorial 4: Variability. In Numbers, Hypotheses &

Conclusions. pp. 52-69. TREDOUX, C. and DURRHEIM, K. (eds). Lansdowne: UCT

Press.

TIBCO (2006): Rich Portals: The Ideal User Interface for SOA [online]. Available at:

www.tibco.com/resources/mk/rich_portals.pdf. [Accessed on: 14 May 2008].

TILKOV, S. (2007): A Brief Introduction to REST [online]. Available at:

http://www.infoq.com/articles/rest-introduction. [Accessed on: 25 February 2009].

TOBII (2009): TOBII EYE TRACKING TECHNOLOGY [online]. Available at:

http://www.tobii.com/corporate/eye_tracking/our_technology.aspx. [Accessed on: 12

August 2009].

TOMLINSON, B., BAUMER, E., YAU, M.L., ALPINE, P.M., CANALES, L., CORREA, A.,

HORNICK, B. and SHARMA, A. (2007): Dreaming of Adaptive Interface Agents. In

Proceedings of the Conference on Human Factors in Computing Systems. San Jose, CA,

USA. ACM. pp. 2007-2012. April 22-27, 2006

References 185

TRENMAN, A. (2005): Using Open Source Software for SOA [online]. Available at:

http://objectwebcon06.objectweb.org/xwiki/bin/download/Main/DetailedSession/A-

Trenaman-SOA.pdf. [Accessed on: 08 October 2009].

TSAI, W.-T., HUANG, Q., ELSTON, J. and CHEN, Y. (2008): Service-Oriented User Interface

Modeling and Composition. In Proceedings of the 2008 IEEE International Conference

on e-Business Engineering. IEEE Computer Society. pp. 21-28.

TULLIS, T. and ALBERT, W. (2008): Measuring the User Experience: Collecting, Analyzing,

and Presenting Usability Metrics. Interactive Technologies. Burlington, MA, USA.

Morgan Kaufmann.

TYLER, S.W., COOK, L.K., GARGAN JR., R.A. and SCHLOSSBERG, J.L. (1991): An

Intelligent Interface Architecture for Adaptive Interaction. In Intelligent User Interfaces.

TYLER, S.W. and SULLIVAN, J.W. (eds). New York, NY: ACM Press. pp. 85-108.

VAN TONDER, B. (2008): Adaptive User Interfaces for Mobile Map-based Visualisation.

Masters thesis, Computer Science and Information Systems, Nelson Mandela

Metropolitan University. Port Elizabeth. South Africa.

VAQUERO, L.M., RODERO-MERINO, L., CACERES, J. and LINDNER, M. (2009): A Break

in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev. 39(1),

pp. 50-55.

VARIA, J. (2008): Cloud Architectures [online]. Available at:

http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf. [Accessed on:

12 December 2009].

VENTER, D. (2009): Personal Communication. Senior lecturer and Statistical consultant at the

Nelson Mandela Metropolitan University. Port Elizabeth.

VERMAAK, R. (2008): Personal Communication. ICT Helpdesk Manager at the Nelson

Mandela Metropolitan University. Port Elizabeth. South Africa.

VINOSKI, S. (1997): CORBA: integrating diverse applications within distributed heterogeneous

environments. Communications Magazine, IEEE. 35(2), pp. 46-55.

VOUK, M.A. (2008): Cloud computing — Issues, research and implementations. Journal of

Computing and Information Technology - CIT. 16(4), June, 2008, pp. 235-246.

W3C (2006): Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language

(W3C Candidate Recommendation 27 March 2006). [online]. World Wide Web

Consortium Available at: http://www.w3.org/TR/wsdl20/. [Accessed on: 15 March

2009].

W3C (2007): SOAP Version 1.2 [online]. Available at: http://www.w3.org/TR/soap/. [Accessed

on: 10 March 2009].

W3C (2009a): Web Style Sheets [online]. Available at: http://www.w3.org/Style/. [Accessed on:

11 March 2009].

W3C (2009b): Document Object Model (DOM) [online]. Available at:

http://www.w3.org/DOM/. [Accessed on: 05 May 2009].

W3C (2009c): XMLHttpRequest [online]. Available at: http://www.w3.org/TR/2009/WD-

XMLHttpRequest-20091119/. [Accessed on: 15 March 2009].

W3C (2009d): WSDL [online]. Available at: http://www.w3.org/TR/wsdl. [Accessed on: 15

August 2009].

W3C (2009e): XSLT [online]. Available at: http://www.w3.org/TR/xslt. [Accessed on: 15 April

2009].

W3SCHOOLS (2009): Web Browser Statistics [online]. Available at:

References 186

http://www.w3schools.com/browsers/browsers_stats.asp. [Accessed on: 11 June 2009].

WANG, L., TAO, J., KUNZE, M., CASTELLANOS, A.C., KRAMER, D. and KARL, W.

(2008): Scientific Cloud Computing: Early Definition and Experience. In Proceedings of

the 2008 10th IEEE International Conference on High Performance Computing and

Communications. IEEE Computer Society. pp. 825-830.

WEILL, P. (2007): Innovating with Information Systems: What do the most agile firms in the

world do? [online]. Barcelona, Spain. Available at:

http://www.iese.edu/en/files/6_29338.pdf. [Accessed on: 12 December 2009].

WEISS, A. (2007): Computing in the clouds. NetWorker. 11(4), pp. 16-25.

WILKES, L. (2004): The Essential Guide to Service Orientation. CBDI Journal, May 2004, pp.

10-16.

WINTER, R. and FISCHER, R. (2006): Essential Layers, Artefacts, and Dependencies of

Enterprise Architecture. In Proceedings of the 10th IEEE on International Enterprise

Distributed Object Computing Conference Workshops, Washington, DC, USA. pp. 30-

42. IEEE Computer Society.

WU, J. (2000): Accommodating both Experts and Novices in One Interface [online]. Available

at: http://www.otal.umd.edu/UUGuide/jingwu/. [Accessed on: 13 March 2009].

YAHOO (2009): Yahoo Pipes [online]. Available at: http://pipes.yahoo.com/. [Accessed on: 18

December 2009].

ZHANG, Z., LIU, R. and YANG, H. (2005): Service Identification and Packaging in Service

Oriented Reengineering. In Proceedings of the 17th International Conference on

Software Engineering and Knowledge Engineering. Taipei, Taiwan. IEEE Computer

Society Press, Los Alamitos (CA). pp. 219–26. July 14-16 2005.

ZIMMERMANN, O., KROGDAHL, P. and GEE, C. (2004): Elements of Service-Oriented

Analysis and Design [online]. Available at:

http://www.ibm.com/developerworks/webservices/library/ws-soad1. [Accessed on: 20

May 2009].

ZUKERMAN, I. and ALBRECHT, D.W. (2001): Predictive Statistical Models for User

Modeling. User Modeling and User-Adapted Interaction. 11(1-2), pp. 5-18.

Pilot Study Appendices 187

Pilot Study Appendices

Appendix A: Pilot Study 2 - Test Plan

Log into the system with following credentials

Username: JP

Password: jacksparrow

Task 1

Step 1: A customer calls in, gives username as bgallant

(Press enter after entering username)

Step 2: The user is having what they think is a general problem with their
Network Drive, but it might be a problem with the modem. This is a top
priority as the user is a Lecturer that needs to communicate with an out of
town team via email. Consequences may be severe if not repaired.

 1 = Highest Priority / Severity

 3 = Lowest Priority / Severity

Step 3: RobinD (from South Campus) is the network expert at the call centre, so
assign the call to him.

Step 4: You ask if they user rebooted the modem, they say no, so you ask them
to reboot it. They reboot the system and it works.

Task 2

Step 1: A customer calls in, gives username as bhseale

(Press enter after entering username)

Step 2: user is having what they think is a hardware problem with their Monitor.
This is not urgent, therefore is a low priority case.

 1 = Highest Priority / Severity

 3 = Lowest Priority / Severity

Step 3: You decide to ask basic questions to establish if this is not an easy case
therefore you ask if the monitor is plugged into the PC. They say NO.
You ask them to plug it in, and it works.

Step 4: Write the solution to this problem and log the call.

Pilot Study Appendices 188

Appendix B: Pilot Study 2 - Questionnaire

Section A: Computer experience

1
Gender

MALE FEMALE

2 Age 15-20 21-25 26-30 31-25

3 Occupation <1 1-2 3-5 6+

4 Professional Experience (Experience with Contact Centres). <1 1-2 3-5 6+

5 How many years of computer experience do you have? <1 1-2 3-5 6+

6 How many years of Call Logging software experience do you have? <1 1-2 3-5 6+

Section B: Interface Evaluation

 Question

4 Overall reaction to the system
Very frustrating Very satisfying

1 2 3 4 5

5 Design
Very unpleasant Very pleasant

1 2 3 4 5

6 Navigation
Very difficult Very easy

1 2 3 4 5

7 Learnability
Very difficult Very easy

1 2 3 4 5

Department of Computing Sciences
Nelson Mandela Metropolitan University

Tel: 041 504 2094, Cell: 078 222 2116
e-mail: Emile.Senga@nmmu.ac.za

Pilot Study Questionnaire

Pilot Study Appendices 189

4. Describe any observed Negative aspects of the following:

 4.1 Design

 4.2 Navigation

 4.3 Functionality

5. Any other comments you may have on the following:

 5.1 Design

 5.2 Navigation

 5.3 Functionality

Pilot Study Appendices 190

Appendix C: Pilot Study 2 - Results

Interface Evaluation P1 P2 P3 P4 P5 P6 Mean Median
Standard

Deviation

Overall reaction to the system 4 4 5 5 4 4 4.33 4 0.55

Design 3 4 4 4 3 3 3.50 4 0.55

Navigation 4 4 5 5 5 5 4.67 5 0.55

Learnability 4 3 5 4 5 5 4.33 4 0.84

Generated UI Evaluation Mean Median
Standard

Deviation

How fast were you able to input data using the screen 2 3 5 4 4 4 3.67 4 1.14

How fast were you able to understand the overall structure of input

controls
3 3 5 4 5 5 4.17 4 1.00

Easy to learn how to use the user interface 4 3 5 4 5 5 4.33 4 0.84

Efficient in helping you to reduce input errors 3 4 5 4 5 5 4.33 4 0.84

Overall satisfaction of the user interface 3 3 5 4 4 4 3.83 4 0.84

Main Study Appendices 191

Main Study Appendices

Appendix D: Preamble Letter

Faculty of Science

NMMU

Tel: +27 (0)41 504-2094

Emile.senga@nmmu.ac.za

Contact person: Emile Senga

Dear participant

You are being asked to participate in a research study. We will provide you with the necessary

information to assist you to understand the study and explain what would be expected of you

(participant). These guidelines would include the risks, benefits, and your rights as a study subject. Please

feel free to ask the researcher to clarify anything that is not clear to you.

To participate, it will be required of you to provide a written consent that will include your signature, date

and initials to verify that you understand and agree to the conditions. You have the right to query

concerns regarding the study at any time. Immediately report any new problems during the study, to the

researcher. Telephone numbers of the researcher are provided. Please feel free to call these numbers.

Participation in research is completely voluntary. You are not obliged to take part in any research.

Although your identity will at all times remain confidential, the results of the research study may be

presented at scientific conferences or in specialist publications.

This informed consent statement has been prepared in compliance with current statutory guidelines.

Yours sincerely

Emile Senga (RESEARCHER)

Main Study Appendices 192

Appendix E: Consent Form
NELSON MANDELA METROPOLITAN UNIVERSITY

INFORMATION AND INFORMED CONSENT FORM

RESEARCHER‟S DETAILS

Title of the research project A Service-Oriented Approach to Implementing an Adaptive User Interface

Reference Number

Principal investigator Emile Senga

Address P.O. Box 77000 Port Elizabeth 6031

Postal Code 6031

Contact telephone number 041 504 1234

A. DECLARATION BY PARTICIPANT
Initial

I, the participant and the

undersigned

A.1 HEREBY CONFIRM AS FOLLOWS: Initial

I, the participant, was invited to participate in the above-mentioned research project

that is being undertaken by Emile Senga

from Department of Computing Sciences

of the Nelson Mandela Metropolitan University.

A.2 THE FOLLOWING ASPECTS HAVE BEEN EXPLAINED TO ME, THE
PARTICIPANT:

Initial

2.1 Aim:
The investigators are studying the effect that adapting user interfaces in

a distributed computing environment has on user performance.

The information will be used for statistical analysis of the aim given

above.

2.2 Confidentiality:
My identity will not be revealed in any discussion, description or

scientific publications by the investigators.

2.3 Access to findings:

Any new information or benefit that develops during the course of the

study will be shared as follows: Published in a dissertation, journal or

conference article.

2.4
Voluntary participation

/ refusal /

discontinuation:

My participation is voluntary YES NO

My decision whether or not to participate

will in no way affect my present or future

care / employment / lifestyle
TRUE FALSE

Main Study Appendices 193

A.3 I HEREBY VOLUNTARILY CONSENT TO PARTICIPATE IN THE ABOVE-
MENTIONED PROJECT:

Date:

Signature

Tel:

Cell:

Email:

.. ..

Main Study Appendices 194

Appendix F: Demographics Questionnaire

Demographics Questionnaire

 Biographical Details

1 Gender Male Female

2 Age 15-20 21-25 26-30 31-35

3 Education Undergraduate Postgraduate

4 Occupation

5

Professional Experience

(Experience at your

profession)

0-2 2-5 5-10 10+

6
Computer Experience

(Years using a computer)
0-2 2-5 5-10 10+

7
Computer Expertise

(Technical)
Novice Intermediate Expert

8

Product Experience

(Experience with Call

Centre Software)

0 2-5 5-10 10+

Participant ID: _______

Department of Computing Sciences
Nelson Mandela Metropolitan University

Tel: 041 504 2094, Cell: 078 222 2116
e-mail: Emile.Senga@nmmu.ac.za

Main Study Appendices 195

Appendix G: Test Plan

Test Plan

Task 1

Hi, This is Beverly Gold (blgold). I‘m typing in a word document and I would like my paragraph justified

but I don‘t know how. Can you please help me?

User: blgold

Service Name: Software

CallType: MS-Office

Sub-Call Type: Word

Priority: 3

CallSolution: Select text you want justify and click on the justify icon in the ribbon

Cause: Software

Task 2

Hi this is Annette Knight (akknight). Could you please assist me with editing the header & footer in a

Word document.

User: akknight

Service Name: Software

CallType: MS-Office

Sub-Call Type: Word

Priority: 3

CallSolution: Double click on header or footer and edit as necessary

Cause: Software

Task 3

Nelson Mandela Metropolitan University

Department of Computer Science

and Information Systems

Main Study Appendices 196

Call: Hi, this is Craig Botha (cjbotha) and I‘m working on PowerPoint and I need to print multiple slides

on a page but I have no idea how to do this. Could you please help me??

User: cjbotha

Service Name: Software

CallType: MS-Office

Sub-Call Type: Presentations

Priority: 3

CallSolution: Select print from menu. Select „handouts‟ next to „print what‟, and then select

„slides per page‟.

Cause: Software

Task 4

Call: Hey this is Adrian Konik (akonik). Can u please help me? I want to change my homepage to

NMMU portal.

User: akonik

Service Name: Web

CallType: Internet

Sub-Call Type: Change-Home Page

Priority: 3

CallSolution: Tools > Settings > Homepage

Cause: Web

Task 5

Hi, my name is Dylan MacDonald (DYLAN). Need help with image in MS Word. I can‘t remove the

border around an image that I am trying to add from a web site.

User: DYLAN

Service Name: Software

CallType: MS-Office

Sub-Call Type: Word

Priority: 3

CallSolution: Crop image to remove border

Main Study Appendices 197

Task 6

Hi, my name is Ena Wessels (EnaW). Please could you setup my laptop for Internet use?

User: EnaW

Service Name: General

CallType: Internet

Sub-Call Type: - leave blank -

Priority: 3

CallSolution: Change proxy settings to appropriate and enter your username and password

when requested.

Task 7

Hi, I am a student and I forgot my computer password? Can you please reset it for me? My student

number is 203123456.

User: STUDENT

Service Name: General

CallType: - blank -

Sub-Call Type: AD Password

Priority: 3

CallSolution: Password Reset

Task 8

Call: Hi this is Ernest Koboka (ernest). I Ran out of credit. I think Area 51 sites seem to use up

User: ernest

Service Name: Web

CallType: Internet-Quota

Sub-Call Type: - leave blank -

Priority: 3

CallSolution: Gave credits.

Cause: Add-Quota

Main Study Appendices 198

Appendix H: Software Metric Data

Software Metrics

Service List of

Functions

Fan-out

(External

Calls)

No. Input

Variables

No.

Output

Variables

v(i)

f2out(i)

Transformation TransformXML 0 1 1 2 0

Watcher CallType 1 2 1 30 1

 Campus 1 2 1 1

 Cause 1 2 1 1

 Contact 1 2 1 1

 ListMetrics 0 1 0 0

 Priority 1 2 1 1

 SearchCustomer 1 2 1 1

 ServiceName 1 2 1 1

 Severity 0 0 1 0

 Solution 1 2 1 1

 Source 1 2 1 1

 SubCallType 0 0 1 0

Expertise isExpert 1 1 2 3 1

Service Architectural Design Metrics

 S(i) = f
2
out(i) D(i) =

V(i)/[fout(i) + 1]

C(i) = S(i) +

D(i)

Transformation 0 2 2

Watcher 9 1.43 10.43

Expertise 1 1.5 2.5

 3.33 1.64 14.93

Main Study Appendices 199

Appendix I: Usability Evaluation Results

Task Time

Task Success

No. Group TT1 TT2 TT3 TT4 TT5 TT6 TT7 TT1-4Mean TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS1-4Mean

S01 2 191 139 103 153

146.50 100 100 100 75

93.75

S02 2 175 107 132 91

126.25 100 100 100 100

100.00

S03 2 124 104 101 109

109.50 75 75 75 100

81.25

S04 2 270 159 138 168

183.75 50 100 100 100

87.50

S05 2 195 99 131 155

145.00 75 100 100 100

93.75

S06 2 261 171 153 170 124 137 171 188.75 100 100 100 100 100 100 100 100.00

S07 2 232 159 125 88

151.00 75 75 75 100

81.25

S08 2 158 125 91 77 87

112.75 100 100 100 100

100.00

S09 2 128 134 98 140 90

125.00 100 100 100 100

100.00

S10 2 333 137 306 190 154 156 134 241.50 50 50 25 25 100 100 100 37.50

S11 2 248 146 128 128 159

162.50 100 100 75 75

87.50

S12 2 209 93 88 89

119.75 75 100 100 100

93.75

S13 2 96 144 115 112 113

116.75 100 100 100 100

100.00

S14 2 212 130 147 192 136

170.25 75 75 75 50 100

68.75

S15 2 264 194 222 146 210

206.50 50 75 75 75 100

68.75

S16 2 222 206 370 253 147 184 164 262.75 0 75 100 100 100 75

68.75

S17 2 162 155 163 102

145.50 100 100 100 50 50

87.50

S18 2 237 202 209 194 161 119 192 210.50 25 75 50 75 75 100 100 56.25

S19 2 147 161 213 130

162.75 50 50 75 75 75

62.50

S20 2 201 143 141 158

160.75 50 50 75 75

62.50

S21 2 300 214 180 267 185 172 204 240.25 25 50 75 100 100 100 100 62.50

S22 2 298 149 140 133 109

180.00 100 100 100 100

100.00

S23 2 276 96 81 74

131.75 50 75 100 100

81.25

S24 2 237 182 164 190

193.25 50 75 100 100

81.25

S25 2 289 168 207 228 160

223.00 50 100 100 100 100

87.50

S26 2 203 92 84 105

121.00 75 100 100 100 100

93.75

S27 2 254 136 133 133

164.00 75 100 100 75 100

87.50

S28 2 345 148 189 201 179 193 115 220.75 25 100 100 75 100 75 100 75.00

S29 2 232 108 86 109 84

133.75 75 100 100 100 100

93.75

S30 2 273 155 127 142 143

174.25 75 75 75 100

81.25

Main Study Appendices 200

Appendix J: Code Snippets

Drop Down List Predictive Feature Capturing Code

/* Array to store Data Objets */

var dataIdx = new Array();

/* Variables used for timing purposes */

var timeout;

var interval;

var mouseingOverOptions = false;

/* List of Unique Items visited */

var u_Items;

/*

_AUI Object: for passing 'Predictive Feature' data to the database.

*/

function _AUI(id, time, yM, yA, dTime, nrVI, uIC, sTime, avgDTime, KLMR,

KLMD) {

 this.id = id; // insert the name of the drop down list here so it can be

identified "type:string"

 this.totalTime = parseInt(time); //int

 this.yMouseV = parseInt(yM); //int

 this.yMouseA = parseInt(yA); //int

 this.dwellTime = parseInt(dTime); //int

 this.nrVisitedItems = parseInt(nrVI); //int

 this.uniqueItemCount = parseInt(uIC); //int

 this.selectionTime = parseInt(sTime); //int

 this.avgDwellTime = parseInt(avgDTime); //int

 this.KLMRatio = parseFloat(KLMR); //double

 this.KLMDifference = parseFloat(KLMD); //double

 this.KLMPredictedTime = 2.65; //double

}

/* *** */

/* ******************* Drop Down List ******************* */

/* *** */

// When user clicks on dropdownlist set up ‘aui’ object and capture PFs.

$('.dropdownlist').livequery('mouseenter', function() {

 aui = new AUI();

 // Reset

 aui.reset();

 // Initialise();

 aui.initialise();

 // Begin capturing

 aui.start();

 // set aui object ID

 aui.setId($(this).attr("id"));

 //setuplist of uniqueitems

 u_Items = [];

 clearTimeout(timeout);

 clearInterval(interval);

 timeout = setTimeout('startIncrement()', 1000);

 return false;

});

// Reset timer on movemouse over drop down list

$('.dropdownlist').livequery('mousemove', function(e) {

Main Study Appendices 201

 clearTimeout(timeout);

 clearInterval(interval);

 timeout = setTimeout('startIncrement()', 1000);

});

// On mouseleave event, capture all PFs and store in array

$('.dropdownlist').livequery('mouseleave', function(e) {

 // TODO: stall for 100 milliseconds then check if mouse moved over list.

If yes = continue increasing ONLY dwell time and don't stop AUI, else reset

everything.

 aui.stop();

 clearTimeout(timeout);

 clearInterval(interval);

 var item_height = $(this).children("option:selected").height();

 var items_visited = ((parseInt(aui.NrVisitedItems()) + 1) / 2) - 0.5;

 var distance = item_height * items_visited;

 aui.SetUniqueItemsCount(u_Items.length);

 aui.SetNumberOfVisitedItems(items_visited);

 aui.YMouseVelocity(distance, aui.SelectionTime());

 aui.YMouseAcceleration(distance, aui.SelectionTime());

 _aui = new _AUI(aui.getId(),

 aui.TotalTime(),

 aui.YMouseVelocity(distance, aui.SelectionTime()),

 aui.YMouseAcceleration(distance, aui.SelectionTime()),

 aui.DwellTime(),

 aui.NrVisitedItems(),

 aui.UniqueItemsVisited(),

 aui.SelectionTime(),

 aui.AverageDwellTime(aui.DwellTime(), items_visited),

 aui.KLMRatio(aui.TotalTime()),

 aui.KLMDifference(aui.TotalTime())

);

 addAUI(_aui, idx);

 //aui.reset();

 clear(u_Items);

});

$('.dropdownlist').livequery('change', function() {

 aui.stop();

 clearTimeout(timeout);

 clearInterval(interval);

 //test: computing distance - for yVelocity etc

 var item_height = $(this).children("option:selected").height();

 var items_visited = ((parseInt(aui.NrVisitedItems()) + 1) / 2) - 0.5;

 var distance = item_height * items_visited;

 aui.SetUniqueItemsCount(u_Items.length);

 aui.SetNumberOfVisitedItems(items_visited);

 aui.YMouseVelocity(distance, aui.SelectionTime());

 aui.YMouseAcceleration(distance, aui.SelectionTime());

 _aui = new _AUI(aui.getId(),

 aui.TotalTime(),

 aui.YMouseVelocity(distance, aui.SelectionTime()),

 aui.YMouseAcceleration(distance, aui.SelectionTime()),

 aui.DwellTime(),

 aui.NrVisitedItems(),

 aui.UniqueItemsVisited(),

 aui.SelectionTime(),

 aui.AverageDwellTime(aui.DwellTime(), items_visited),

 aui.KLMRatio(aui.TotalTime()),

Main Study Appendices 202

 aui.KLMDifference(aui.TotalTime())

);

 addAUI(_aui, idx);

 // reset global aui

 aui.reset();

 clear(u_Items);

 //Value of selected item

 var selected = $(this).children("option:selected").val();

 return false;

});

/* *** */

/* ******************* Drop Down List Option ******************* */

/* *** */

// Mouse over drop down list options

$('.dropdownlist option').live('mouseover', function() {

 clearTimeout(timeout);

 clearInterval(interval);

 mouseingOverOptions = true;

 //Increment count of visited item

 aui.IncrVisited();

 console.log("Visited: " + ((parseInt(aui.NrVisitedItems()) + 1) / 2));

 add(u_Items, $(this).val());

 timeout = setTimeout('startIncrement()', 1000);

})

$('.dropdownlist option').live('mousemove', function() {

 clearTimeout(timeout);

 clearInterval(interval);

 timeout = setTimeout('startIncrement()', 1000);

})

// Mouse moves off drop down list options stops timer

$('.dropdownlist option').live('mouseleave', function() {

 aui.stop();

 clearTimeout(timeout);

 clearInterval(interval);

 mouseingOverOptions = false;

 aui.reset();

 clear(u_Items);

fired");

})

