232 research outputs found

    Miniature switchable millimeter-wave BiCMOS low-noise amplifier at 120/140 GHz using an HBT switch

    Get PDF
    A 120-140 GHz frequency-switchable, very compact low-noise amplifier (LNA) fabricated in a 0.13 µm SiGe:C BiCMOS technology is proposed. A single radio-frequency (RF) switch composed of three parallel hetero junction bipolar transistors (HBTs) in a common-collector configuration and a multimodal three-line microstrip structure in the input matching network are used to obtain a LNA chip of miniaturized size. A systematic design procedure is applied to obtain a perfectly balanced gain and noise figure in both frequency states (120 GHz and 140 GHz). The measured gain and noise figure are 14.2/14.2 dB and 8.2/8.2 dB at 120/140 GHz respectively, in very good agreement with circuit/electromagnetic co-simulations. The LNA chip and core areas are 0.197 mm2 and 0.091 mm2, respectively, which supposes an area reduction of 23.4% and 15.2% compared to other LNAs reported in this frequency band. The experimental results validate the design procedure and its analysis. © 2019 by the authors

    SiGe BiCMOS front-end circuits for X-Band phased arrays

    Get PDF
    The current Transmit/Receive (T/R) modules have typically been implemented using GaAs- and InP-based discrete monolithic microwave integrated circuits (MMIC) to meet the high performance requirement of the present X-Band phased arrays. However their cost, size, weight, power consumption and complexity restrict phased array technology only to certain military and satellite applications which can tolerate these limitations. Therefore, next generation X-Band phased array radar systems aim to use low cost, silicon-based fully integrated T/R modules. For this purpose, this thesis explores the design of T/R module front-end building blocks based on new approaches and techniques which can pave the way for implementation of fully integrated X-Band phased arrays in low-cost SiGe BiCMOS process. The design of a series-shunt CMOS T/R switch with the highest IP1dB, compared to other reported works in the literature is presented. The design focuses on the techniques, primarily, to achieve higher power handling capability (IP1dB), along with higher isolation and better insertion loss of the T/R switch. Also, a new T/R switch was implemented using shunt NMOS transistors and slow-wave quarter wavelength transmission lines. It presents the utilization of slow-wave transmissions lines in T/R switches for the first time in any BiCMOS technology to the date. A fully integrated DC to 20 GHz SPDT switch based on series-shunt topology was demonstrated. The resistive body oating and on-chip impedance transformation networks (ITN) were used to improve power handling of the switch. An X-Band high performance low noise ampli er (LNA) was implemented in 0.25 μm SiGe BiCMOS process. The LNA consists of inductively degenerated two cascode stages with high speed SiGe HBT devices to achieve low noise gure (NF), high gain and good matching at the input and output, simultaneously. The performance parameters of the LNA collectively constitute the best Figure-of-Merit value reported in similar technologies, to the best of author's knowledge. Furthermore, a switched LNA was implemented SiGe BiCMOS process for the first time at X-Band. The resistive body floating technique was incorporated in switched LNA design, for the first time, to improve the linearity of the circuit further in bypass mode. Finally, a complete T/R module with a state-of-the-art performance was implemented using the individually designed blocks. The simulations results of the T/R module is presented in the dissertation. The state-of-the-art performances of the presented building blocks and the complete module are attributed to the unique design methodologies and techniques

    SiGe BiCMOS ICs for X-Band 7-Bit T/R module with high precision amplitude and phase control

    Get PDF
    Over the last few decades, phased array radar systems had been utilizing Transmit/Receive (T/R) modules implemented in III-V semiconductor based technologies. However, their high cost, size, weight and low integration capability created a demand for seeking alternative solutions to realize T/R modules. In recent years, SiGe BiCMOS technologies are rapidly growing their popularity in T/R module applications by virtue of meeting high performance requirements with more reduced cost and power dissipation with respect to III-V technologies. The next generation phased array radar systems require a great number of fully integrated, high yield, small-scale and high accuracy T/R modules. In line with these trends, this thesis presents the design and implementation of the first and only 7-Bit X-Band T/R module with high precision amplitude and phase control in the open literature, which is realized in IHP 0.25μ SiGe BiCMOS technology. In the scope of this thesis, sub-blocks of the designed T/R module such as low noise amplifier (LNA), inter-stage amplifier, SiGe Hetero-Junction Bipolar Transistor (HBT) Single- Pole Double-Throw (SPDT) switch and 7-Bit digitally controlled step attenuator are extensively discussed. The designed LNA exhibits Noise Figure (NF) of 1.7 dB, gain of 23 dB, Output Referred Compression Point (OP1dB) of 16 dBm while the inter-stage amplifier gives measured NF of 3 dB, gain of 15 dB and OP1dB of 18 dBm. Moreover, the designed SPDT switch has an Insertion Loss (IL) of 1.7 dB, isolation of 40 dB and OP1dB of 28 dBm. Lastly, the designed 7-Bit SiGe HBT digitally controlled step attenuator demonstrates IL of 8 dB, RMS attenuation error of 0.18 dB, RMS phase error of 2° and OP1dB of 16 dBm. The 7-Bit T/R module is constructed by using the sub-blocks given above, along with a 7- Bit phase shifter (PS) and a power amplifier (PA). Post-layout simulation results show that the designed T/R module exhibits a gain of 38 dB, RMS phase error of 2.6°, RMS amplitude error of 0.82 dB and Rx-Tx isolation of 80 dB across X-Band. The layout of T/R module occupies an area of 11.37 mm2

    A tunable SiGe BiCMOS gain-equalizer for x-band phased-array RADAR applications

    Get PDF
    This paper presents a compact-size tunable gain-equalizer for X-Band Phased-Array RADAR applications in a 0.25μm SiGe BiCMOS technology. An isolated NMOS based variable resistance was used for the first time to tune the slope of the gain-equalizer. For NMOS, an isolated body created by a deep n-well was utilized to reduce insertion loss due to the substrate conductivity. Furthermore, the power-handling capability of the tunable gain-equalizer was improved thanks to the resistive body-floating technique. The designed tunable gain-equalizer operates in the frequency range from 8 to 12.5 GHz with a measured positive slope of 1 dB/GHz and 1 dB tunable slope. The effective chip area excluding the pads is 0.21 mm2, and the total area including pads is 0.31 mm2. To authors best knowledge, this study is the first tunable gain-equalizer in SiGe technology presented for X-band phased-array RADAR applications

    NEW APPROACHES TO WIDEBAND RF SWITCHING IN SILICON-GERMANIUM TECHNOLOGY

    Get PDF
    The objective of this research is to develop and investigate radio frequency (RF) switches utilizing silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) to provide a novel design approach for next-generation wideband circuits and systems. SiGe HBTs offer relatively small parasitic capacitance, making them suitable for wideband RF switching transistors with low insertion loss. Despite the available performance, the effective utilization of SiGe HBTs as RF series switches remains largely unexplored. The research presented in this dissertation introduces a novel RF series switch architecture, namely an anti-parallel (AP) SiGe HBT pair, as a potential wideband switching element for next-generation systems. The benefits of this novel RF series switch architecture are investigated, as well as insightful optimization techniques and an analysis of its operational principles. The dissertation then provides implemented design examples and develops design techniques leveraging properties possessed by the AP SiGe HBT pair.Ph.D

    Bidirectional common-path for 8-to-24 gHz low noise SiGe BiCMOS T/R module core-chip

    Get PDF
    This thesis is based on the design of an 8-to-24 GHz low noise SiGe BiCMOS Transmitter/Receiver (T/R) Module core-chip in a small area by bidirectional common-path. The next-generation phased array systems require multi-functionality and multi-band operation to form multi-purpose integrated circuits. Wide bandwidth becomes a requirement for the system in various applications, such as electronic warfare, due to leading cheaper and lighter system solutions. Although III-V technologies can satisfy the high-frequency specifications, they are expensive and have a large area. The silicon-based technologies promise high integration capability with low cost, but they sacrifice from the performance to result in desired bandwidth. The presented dissertation targets system and circuit level solutions on the described content. The wideband core-chip utilized a bidirectional common path to surpass the bandwidth limitations. The bidirectionality enhances the bandwidth, noise, gain and area of the transceiver by the removal of the repetitive blocks in the unidirectional common chain. This approach allows succeeding desired bandwidth and compactness without sacrificing from the other high-frequency parameters. The realized core-chip has 31.5 and 32 dB midband gain for the receiver and transmitter respectively, with a + 2.1 dB /GHz of positive slope. Its RMS phase and amplitude errors are lower than 5.60 and 0.8 dB, respectively for 4-bit of resolution. The receiver noise figure is lower than 5 dB for the defined bandwidth while dissipating 112 mW of power in a 5.5 mm2 area. The presented results verify the advantage of the favored architecture and might replace the III-V based counterparts

    RF-MEMS Switch Module in a 0.25 µm SiGe:C BiCMOS Process

    Get PDF
    Drahtlose Kommunikationstechnologien im Frequenzbereich bis 6 GHz wurden in der Vergangenheit in Bezug auf Leistungsfaehigkeit und Frequenzbereich kontinuierlich verbessert. Aufgrund der Skalierung nach dem Mooreschen Gesetz koennen heutzutage mm-Wellen Schaltkreise in CMOS-Technologien hergestellt werden. Durch die Einfuehrung von SiGe zur Realisierung einer leistungsfaehigen BiCMOS-Technologie wurde ebenfalls eine Verbesserung der Frequenzeigenschaften und Ausgangsleistungen erreicht, wodurch aktive CMOS- oder BiCMOS-Bauelemente vergleichbare Leistungsparameter zu III-V Technologien bei geringeren Kosten bereitstellen koennen. Bedingt durch das niederohmige Silizium-Substrat der BiCMOS-Technologie weisen vor allem passive Komponenten hoehere Verluste auf und weder III-V- noch BiCMOS-Technologien bieten hochlineare Schaltkomponenten mit geringen Verlusten und geringen Leistungsaufnahmen im mm-Wellen Bereich. RF-MEMS Schalter sind bekannt fuer ihre ausgezeichneten HF-Eigenschaften. Die Leistungsaufnahme von elektrostatisch angetriebenen RF-MEMS Schaltern ist vernachlaessigbar und es koennen im Vergleich zu halbleiter-basierten Schaltern hoehere Leistungen verarbeitet werden. Nichtsdestotrotz wurden RF-MEMS Schalter hauptsaechlich als eigenstaendige Komponenten entwickelt. Zur Systemintegration wird meist ein System-in-Package (SiP) Ansatz angewandt, der fuer niedrige Frequenzen geeignet ist, aber bei mm-Wellenanwendungen durch parasitaere Verluste an seine Grenzen stoesst. In dieser Arbeit wird ein in eine BiCMOS-Technologie integrierter RF-MEMS Schalter fuer mm-Wellen Anwendungen gezeigt. Das Design, die Integration und die experimentellen Ergebnisse sowie verschiedene Packaging-Konzepte werden beschrieben Zur Bereitstellung der hohen Auslenkungs-Spannungen wurde eine Ladungspumpe auf dem Chip integriert. Zum Schluss werden verschiedene, rekonfigurierbare mm-Wellen Schaltkreise zur Demonstration der Leistungsfaehigkeit des Schalters gezeigt.Wireless communication technologies have continuously advanced for both performance and frequency aspects, mainly for the frequencies up to 6 GHz. The results of Moore’s law now also give the opportunity to design mm-wave circuits using advanced CMOS technologies. The introduction of SiGe into CMOS, providing high performance BiCMOS, has also enhanced both the frequency and the power performance figures. The current situation is that the active devices of both CMOS and BiCMOS technologies can provide performance figures competitive with III-V technologies while having still the advantage of low cost. However, similar competition cannot be pronounced for the passive components considering the low-resistive substrates of BiCMOS technologies. Moreover, both III-V and BiCMOS technologies have the lack of low-loss and low-power consumption, as well as highly linear switching and tuning components at mm-wave frequencies. RF-MEMS switch technologies have been well-known with excellent RF- performance figures. The power consumption of electrostatic RF-MEMS switches is negligible and they can handle higher power levels compared to their semiconductor counterparts. However, RF-MEMS switches have been mostly demonstrated as standalone processes and have started to be used as commercial off-the-shelf (COTS) devices recently. The full system integration is typically done by a System-in-Package (SiP) approach. Although SiP is suitable for lower frequencies, the packaging parasitics limit the use of this approach for the mm-wave frequencies. In this thesis, a fully BiCMOS embedded RF-MEMS switch for mm-wave applications is proposed. The design, the implementation and the experimental results of the switch are provided. The developed RF-MEMS switch is packaged using different packaging approaches. To actuate the RF-MEMS switch, an on-chip high voltage generation circuit is designed and characterized. The robustness and the reliability performance of the switch are also presented. Finally, the developed RF-MEMS switch is successfully demonstrated in re-configurable mm-wave circuits

    Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

    Get PDF
    Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 17

    High-speed equalization and transmission in electrical interconnections

    Get PDF
    The relentless growth of data traffic and increasing digital signal processing capabilities of integrated circuits (IC) are demanding ever faster chip-to-chip / chip-to-module serial electrical interconnects. As data rates increase, the signal quality after transmission over printed circuit board (PCB) interconnections is severely impaired. Frequency-dependent loss and crosstalk noise lead to a reduced eye opening, a reduced signal-to-noise ratio and an increased inter-symbol interference (ISI). This, in turn, requires the use of improved signal processing or PCB materials, in order to overcome the bandwidth (BW) limitations and to improve signal integrity. By applying an optimal combination of equalizer and receiver electronics together with BW-efficient modulation schemes, the transmission rate over serial electrical interconnections can be pushed further. At the start of this research, most industrial backplane connectors, meeting the IEEE and OIF specifications such as manufactured by e.g. FCI or TE connectivity, had operational capabilities of up to 25 Gb/s. This research was mainly performed under the IWT ShortTrack project. The goal of this research was to increase the transmission speed over electrical backplanes up to 100 Gb/s per channel for next-generation telecom systems and data centers. This requirement greatly surpassed the state-ofthe-art reported in previous publications, considering e.g. 25 Gb/s duobinary and 42.8 Gb/s PAM-4 transmission over a low-loss Megtron 6 electrical backplane using off-line processing. The successful implementation of the integrated transmitter (TX) and receiver (RX) (1) , clearly shows the feasibility of single lane interconnections beyond 80 Gb/s and opens the potential of realizing industrial 100 Gb/s links using a recent IC technology process. Besides the advancement of the state-of-the-art in the field of high-speed transceivers and backplane transmission systems, which led to several academic publications, the output of this work also attracts a lot of attention from the industry, showing the potential to commercialize the developed chipset and technologies used in this research for various applications: not only in high-speed electrical transmission links, but also in high-speed opto-electronic communications such as access, active optical cables and optical backplanes. In this dissertation, the background of this research, an overview of this work and the thesis organization are illustrated in Chapter 1. In Chapter 2, a system level analysis is presented, showing that the channel losses are limiting the transmission speed over backplanes. In order to enhance the serial data rate over backplanes and to eliminate the signal degradation, several technologies are discussed, such as signal equalization and modulation techniques. First, a prototype backplane channel, from project partner FCI, implemented with improved backplane connectors is characterized. Second, an integrated transversal filter as a feed-forward equalizer (FFE) is selected to perform the signal equalization, based on a comprehensive consideration of the backplane channel performance, equalization capabilities, implementation complexity and overall power consumption. NRZ, duobinary and PAM-4 are the three most common modulation schemes for ultra-high speed electrical backplane communication. After a system-level simulation and comparison, the duobinary format is selected due to its high BW efficiency and reasonable circuit complexity. Last, different IC technology processes are compared and the ST microelectronics BiCMOS9MW process (featuring a fT value of over 200 GHz) is selected, based on a trade-off between speed and chip cost. Meanwhile it also has a benefit for providing an integrated microstrip model, which is utilized for the delay elements of the FFE. Chapter 3 illustrates the chip design of the high-speed backplane TX, consisting of a multiplexer (MUX) and a 5-tap FFE. The 4:1 MUX combines four lower rate streams into a high-speed differential NRZ signal up to 100 Gb/s as the FFE input. The 5-tap FFE is implemented with a novel topology for improved testability, such that the FFE performance can be individually characterized, in both frequency- and time-domain, which also helps to perform the coefficient optimization of the FFE. Different configurations for the gain cell in the FFE are compared. The gilbert configuration shows most advantages, in both a good high-frequency performance and an easy way to implement positive / negative amplification. The total chip, including the MUX and the FFE, consumes 750mW from a 2.5V supply and occupies an area of 4.4mm × 1.4 mm. In Chapter 4, the TX chip is demonstrated up to 84 Gb/s. First, the FFE performance is characterized in the frequency domain, showing that the FFE is able to work up to 84 Gb/s using duobinary formats. Second, the combination of the MUX and the FFE is tested. The equalized TX outputs are captured after different channels, for both NRZ and duobinary signaling at speeds from 64 Gb/s to 84 Gb/s. Then, by applying the duobinary RX 2, a serial electrical transmission link is demonstrated across a pair of 10 cm coax cables and across a 5 cm FX-2 differential stripline. The 5-tap FFE compensates a total loss between the TX and the RX chips of about 13.5 dB at the Nyquist frequency, while the RX receives the equalized signal and decodes the duobinary signal to 4 quarter rate NRZ streams. This shows a chip-to-chip data link with a bit error rate (BER) lower than 10−11. Last, the electrical data transmission between the TX and the RX over two commercial backplanes is demonstrated. An error-free, serial duobinary transmission across a commercial Megtron 6, 11.5 inch backplane is demonstrated at 48 Gb/s, which indicates that duobinary outperforms NRZ for attaining higher speed or longer reach backplane applications. Later on, using an ExaMAX® backplane demonstrator, duobinary transmission performance is verified and the maximum allowed channel loss at 40 Gb/s transmission is explored. The eye diagram and BER measurements over a backplane channel up to 26.25 inch are performed. The results show that at 40 Gb/s, a total channel loss up to 37 dB at the Nyquist frequency allows for error-free duobinary transmission, while a total channel loss of 42 dB was overcome with a BER below 10−8. An overview of the conclusions is summarized in Chapter 5, along with some suggestions for further research in this field. (1) The duobinary receiver was developed by my colleague Timothy De Keulenaer, as described in his PhD dissertation. (2) Described in the PhD dissertation of Timothy De Keulenaer

    Interference suppression techniques for millimeter-wave integrated receiver front ends

    Get PDF
    corecore