774 research outputs found

    Progressive Mauve: Multiple alignment of genomes with gene flux and rearrangement

    Full text link
    Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms. We describe a method to align two or more genomes that have undergone large-scale recombination, particularly genomes that have undergone substantial amounts of gene gain and loss (gene flux). The method utilizes a novel alignment objective score, referred to as a sum-of-pairs breakpoint score. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The progressive genome alignment algorithm demonstrates markedly improved accuracy over previous approaches in situations where genomes have undergone realistic amounts of genome rearrangement, gene gain, loss, and duplication. We apply the progressive genome alignment algorithm to a set of 23 completely sequenced genomes from the genera Escherichia, Shigella, and Salmonella. The 23 enterobacteria have an estimated 2.46Mbp of genomic content conserved among all taxa and total unique content of 15.2Mbp. We document substantial population-level variability among these organisms driven by homologous recombination, gene gain, and gene loss. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve .Comment: Revision dated June 19, 200

    Generalizations of the genomic rank distance to indels

    Get PDF
    MOTIVATION: The rank distance model represents genome rearrangements in multi-chromosomal genomes as matrix operations, which allows the reconstruction of parsimonious histories of evolution by rearrangements. We seek to generalize this model by allowing for genomes with different gene content, to accommodate a broader range of biological contexts. We approach this generalization by using a matrix representation of genomes. This leads to simple distance formulas and sorting algorithms for genomes with different gene contents, but without duplications. RESULTS: We generalize the rank distance to genomes with different gene content in two different ways. The first approach adds insertions, deletions and the substitution of a single extremity to the basic operations. We show how to efficiently compute this distance. To avoid genomes with incomplete markers, our alternative distance, the rank-indel distance, only uses insertions and deletions of entire chromosomes. We construct phylogenetic trees with our distances and the DCJ-Indel distance for simulated data and real prokaryotic genomes, and compare them against reference trees. For simulated data, our distances outperform the DCJ-Indel distance using the Quartet metric as baseline. This suggests that rank distances are more robust for comparing distantly related species. For real prokaryotic genomes, all rearrangement-based distances yield phylogenetic trees that are topologically distant from the reference (65% similarity with Quartet metric), but are able to cluster related species within their respective clades and distinguish the Shigella strains as the farthest relative of the Escherichia coli strains, a feature not seen in the reference tree. AVAILABILITY AND IMPLEMENTATION: Code and instructions are available at https://github.com/meidanis-lab/rank-indel. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Molecular recording of mammalian embryogenesis.

    Get PDF
    Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes

    Proton and alpha radiation-induced mutational profiles in human cells

    Full text link
    Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability. Whole-genome sequencing revealed that mutation rates were not overall markedly increased upon proton and alpha exposures. However, there were modest changes in mutation spectra and distributions, such as the increases in clustered mutations and of certain types of indels and structural variants. The spectrum of mutagenic effects of particle beams may be cell-type and/or genetic background specific. Overall, the mutational effects of repeated exposures to proton and alpha radiation on human cells in culture appear subtle, however further work is warranted to understand effects of long-term exposures on various human tissues.Ā© 2023. The Author(s)

    Genome-Wide Identification of Human Functional DNA Using a Neutral Indel Model

    Get PDF
    It has become clear that a large proportion of functional DNA in the human genome does not code for protein. Identification of this non-coding functional sequence using comparative approaches is proving difficult and has previously been thought to require deep sequencing of multiple vertebrates. Here we introduce a new model and comparative method that, instead of nucleotide substitutions, uses the evolutionary imprint of insertions and deletions (indels) to infer the past consequences of selection. The model predicts the distribution of indels under neutrality, and shows an excellent fit to humanā€“mouse ancestral repeat data. Across the genome, many unusually long ungapped regions are detected that are unaccounted for by the neutral model, and which we predict to be highly enriched in functional DNA that has been subject to purifying selection with respect to indels. We use the model to determine the proportion under indel-purifying selection to be between 2.56% and 3.25% of human euchromatin. Since annotated protein-coding genes comprise only 1.2% of euchromatin, these results lend further weight to the proposition that more than half the functional complement of the human genome is non-protein-coding. The method is surprisingly powerful at identifying selected sequence using only two or three mammalian genomes. Applying the method to the human, mouse, and dog genomes, we identify 90 Mb of human sequence under indel-purifying selection, at a predicted 10% false-discovery rate and 75% sensitivity. As expected, most of the identified sequence represents unannotated material, while the recovered proportions of known protein-coding and microRNA genes closely match the predicted sensitivity of the method. The method's high sensitivity to functional sequence such as microRNAs suggest that as yet unannotated microRNA genes are enriched among the sequences identified. Futhermore, its independence of substitutions allowed us to identify sequence that has been subject to heterogeneous selection, that is, sequence subject to both positive selection with respect to substitutions and purifying selection with respect to indels. The ability to identify elements under heterogeneous selection enables, for the first time, the genome-wide investigation of positive selection on functional elements other than protein-coding genes

    Evolutionary Inference via the Poisson Indel Process

    Full text link
    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classical evolutionary process, the TKF91 model, is a continuous-time Markov chain model comprised of insertion, deletion and substitution events. Unfortunately this model gives rise to an intractable computational problem---the computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a new stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The new model is closely related to the TKF91 model, differing only in its treatment of insertions, but the new model has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared to separate inference of phylogenies and alignments.Comment: 33 pages, 6 figure

    On the Inversion-Indel Distance

    Get PDF
    Willing E, Zaccaria S, Dias Vieira Braga M, Stoye J. On the Inversion-Indel Distance. BMC Bioinformatics. 2013;14(Suppl 15: Proc. of RECOMB-CG 2013): S3.Background The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. Results In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components

    From parasite genomes to one healthy world: Are we having fun yet?

    Get PDF
    In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making

    Integration of Alignment and Phylogeny in the Whole-Genome Era

    Get PDF
    With the development of new sequencing techniques, whole genomes of many species have become available. This huge amount of data gives rise to new opportunities and challenges. These new sequences provide valuable information on relationships among species, e.g. genome recombination and conservation. One of the principal ways to investigate such information is multiple sequence alignment (MSA). Currently, there is large amount of MSA data on the internet, such as the UCSC genome database, but how to effectively use this information to solve classical and new problems is still an area lacking of exploration. In this thesis, we explored how to use this information in four problems, i.e. sequence orthology search problem, multiple alignment improvement problem, short read mapping problem, and genome rearrangement inference problem. For the first problem, we developed a EM algorithm to iteratively align a query with a multiple alignment database with the information from a phylogeny relating the query species and the species in the multiple alignment. We also infer the query\u27s location in the phylogeny. We showed that by doing alignment and phylogeny inference together, we can improve the accuracies for both problems. For the second problem, we developed an optimization algorithm to iteratively refine the multiple alignment quality. Experiment results showed our algorithm is very stable in term of resulting alignments. The results showed that our method is more accurate than existing methods, i.e. Mafft, Clustal-O, and Mavid, on test data from three sets of species from the UCSC genome database. For the third problem, we developed a model, PhyMap, to align a read to a multiple alignment allowing mismatches and indels. PhyMap computes local alignments of a query sequence against a fixed multiple-genome alignment of closely related species. PhyMap uses a known phylogenetic tree on the species in the multiple alignment to improve the quality of its computed alignments while also estimating the placement of the query on this tree. Both theoretical computation and experiment results show that our model can differentiate between orthologous and paralogous alignments better than other popular short read mapping tools (BWA, BOWTIE and BLAST). For the fourth problem, we gave a simple genome recombination model which can express insertions, deletions, inversions, translocations and inverted translocations on aligned genome segments. We also developed an MCMC algorithm to infer the order of the query segments. We proved that using any Euclidian metrics to measure distance between two sequence orders in the tree optimization goal function will lead to a degenerated solution where the inferred order will be the order of one of the leaf nodes. We also gave a graph-based formulation of the problem which can represent the probability distribution of the order of the query sequences
    • ā€¦
    corecore