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Abstract

Motivation: The rank distance model represents genome rearrangements in multi-chromosomal genomes as matrix
operations, which allows the reconstruction of parsimonious histories of evolution by rearrangements. We seek to
generalize this model by allowing for genomes with different gene content, to accommodate a broader range of bio-
logical contexts. We approach this generalization by using a matrix representation of genomes. This leads to simple
distance formulas and sorting algorithms for genomes with different gene contents, but without duplications.

Results: We generalize the rank distance to genomes with different gene content in two different ways. The first ap-
proach adds insertions, deletions and the substitution of a single extremity to the basic operations. We show how to
efficiently compute this distance. To avoid genomes with incomplete markers, our alternative distance, the rank-
indel distance, only uses insertions and deletions of entire chromosomes. We construct phylogenetic trees with our
distances and the DCJ-Indel distance for simulated data and real prokaryotic genomes, and compare them against
reference trees. For simulated data, our distances outperform the DCJ-Indel distance using the Quartet metric as
baseline. This suggests that rank distances are more robust for comparing distantly related species. For real prokary-
otic genomes, all rearrangement-based distances yield phylogenetic trees that are topologically distant from the ref-
erence (65% similarity with Quartet metric), but are able to cluster related species within their respective clades and
distinguish the Shigella strains as the farthest relative of the Escherichia coli strains, a feature not seen in the refer-
ence tree.

Availability and implementation: Code and instructions are available at https://github.com/meidanis-lab/rank-indel.

Contact: meidanis@ic.unicamp.br or l.chindelevitch@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the context of genome comparison, one can view a genome as a
collection of contiguous, conserved segments arranged in linear and/
or circular chromosomes. These segments can be genes or long, con-
tinuous stretches of very similar DNA sequences. Here, we use the
term ‘markers’ to mean either of these cases. In this abstraction, we
pay no attention to point mutations, and focus instead on larger
rearrangements, changing the order of segments with respect to one
another. A rearrangement event commonly seen in bacterial
genomes is known as chromosomal inversion, which is a major
driver for their adaptation to a changing environment (Noureen
et al., 2019). Another example of such rearrangements, known as
chromosomal translocation, occurs when a portion of one chromo-
some is interchanged with a portion of a different chromosome, and
is a hallmark of cancer (Hogenbirk et al., 2016). Since such events
are much rarer than nucleotide substitutions, they have the potential

to serve as good indicators of how evolution unfolded in a larger
time span.

In simpler models of genome rearrangement, the operations only
move genomic segments around, without creating or destroying
markers. However, to better reflect genome evolution, it is desirable
to include operations that alter the content of the genome. For ex-
ample, we may consider operations that add contiguous segments to
the genome, called insertions, and operations that remove contigu-
ous segments from the genome, called deletions. In general, we call
these two types of operation indels. To the best of our knowledge,
the work on including indels in genome rearrangement models has
so far been limited to the inversion distance (Hannenhalli and
Pevzner, 1999) for unichromosomal genomes, and the Double-Cut-
and-Join (DCJ) distance (Yancopoulos et al., 2005) on multi-
chromosomal genomes (Braga, 2013; Paten et al., 2014).
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El-Mabrouk (2001) first studied the problem of sorting by inver-
sions and indels, developing an exact algorithm for the cases where
there were only insertions or deletions, but not both. Yancopoulos
and Friedberg (2009) proposed extending the DCJ model to account
for insertions and deletions, and Braga et al. (2011a) presented a
linear-time algorithm for the DCJ-Indel problem. Later, Compeau
(2013) used a different approach, looking at indels as DCJ opera-
tions themselves, and arrived at a simpler DCJ-Indel distance for-
mula and sorting algorithm. Another extension of the DCJ model by
Braga et al. (2011b) comes from adding a more powerful operation:
a substitution of a genome segment for another. The development of
DCJ-Indel also led to advancements on the inversion-indel distance,
by Willing et al. (2013). The aforementioned results rely on the as-
sumption that the genomes under comparison have the same set of
unique markers. Shao et al. (2015) further extended the DCJ dis-
tance by allowing for duplicate markers. This generalized version of
the genomic distance problem becomes NP-hard, and they give an
Integer Linear Programming (ILP) formulation to compute the dis-
tance. However, their approach is limited to genomes that have
equal numbers of duplicates of any marker. Later, Bohnenkämper
et al. (2021) proposed an ILP formulation to compute the DCJ dis-
tance for natural genomes—in which any marker may occur an arbi-
trary number of times—which, very recently, was improved by
Rubert et al. (2021).

One of the main concerns with the addition of indel operations
to a genomic distance is respecting the triangle inequality. When
indels have a constant cost, the triangle inequality is easily violated.
Yancopoulos and Friedberg (2009) call this violation ‘the free lunch
problem’. Their suggestion to deal with this problem is to add a sur-
charge to the cost of an indel, based on the adjacency graph. Braga
et al. (2011a) dealt with the violation of the triangle inequality by
adding a simpler surcharge after the computation of their DCJ-indel
distance. In addition, Braga et al. (2011c) defined a framework to
assign variable costs to indels, a linear function of the number of
markers inserted or deleted, and showed that it is equivalent to the a
posteriori surcharge.

Another point worth considering involves computing median
genomes, which are important in the context of constructing ancestral
genomes in a given phylogeny (Tannier et al., 2009). For the DCJ dis-
tance, finding a median of three genomes is NP-hard (Tannier et al.,
2009). For the rank distance, however, this problem is still open, and
there are polynomial-time algorithms to compute the rank median of
three matrices, some of them running in cubic time when the inputs
are genomic (Meidanis and Chindelevitch, 2021). Although this algo-
rithm sometimes yields non-genomic matrices, it is an encouraging
step in a field with mostly negative results.

In this article, we explore the addition of indels to the rank dis-
tance model, which was initially developed for same-content genomes
(Zanetti et al., 2016). In this model, genomes are represented as
matrices, and the distance between two genomes is the rank of their
difference. We expect this model to have a natural extension to
genomes with unequal content, leading to simple formulas and algo-
rithms. Unlike the DCJ distance, the rank distance, with the proposed
extension to the matrix representation of genomes, naturally offers an
indel mechanism with weights that avoid the free lunch problem.

A summary of these results appear in Table 1.
The rest of this article is organized as follows. Section 2 presents

the background on the rank distance and defines the representation
of genomes that do not necessarily have all the markers being con-
sidered. In Section 3, we expand the rank distance to encompass
genomes with different genomic content. In Section 4, we present a
different approach for adding indels to the rank distance model.
Section 5 describes our experiments, and Section 6 presents our
conclusions.

2 Definitions

2.1 Markers, genomes and matrices
We begin our definitions with the notion of a marker, which can be
a contiguous DNA stretch that is conserved in all genomes where it

appears, or a gene, or an operon, or any other conserved marker of
interest. This will be our building block in constructing genomes.

Let G be a set of markers. Each marker g 2 G has two extrem-
ities: a head gh and a tail gt. The set

VðGÞ ¼ fgh; gtjg 2 Gg

contains all extremities associated to G. We will fix a 1–1 mapping
identifying VðGÞ with the canonical basis fe1; e2; . . . ; e2ng of R

2n,
where n ¼ jGj and ei is the 2n� 1 column vector whose ith entry is 1
and all others are 0. Since this mapping is fixed, we will use the
same letter and type font to denote both an extremity x and its cor-
responding column vector.

A genome A over G consists of a set VðAÞ � VðGÞ of extremities
and a set E(A) of adjacencies, which are unordered pairs of distinct
extremities from V(A), with the extra restriction that each extremity
in V(A) can belong to at most one adjacency. Note that a genome
does not necessarily contain all the extremities from all the markers
in G. We do not even require that gt 2 VðAÞ if gh 2 VðAÞ, and vice
versa. The reason for that will become clear in Section 3.

If a pair fx, yg belongs to E(A), we say that x and y are adjacent
in genome A. From the definitions, we see that each extremity x 2
VðAÞ has to either be adjacent to exactly one other extremity, or be
a free end, i.e. an extremity not adjacent to any other. This happens
near the end of a linear chromosome. Circular chromosomes do not
have free ends. Therefore, this representation contemplates both cir-
cular and linear chromosomes. In addition, extremities from VðGÞ
that do not belong to V(A) will be called A-null, because they will
correspond to null rows and columns in the matrix for A, as we will
see shortly.

For example, let G ¼ fa; b; c;dg, and let A be a genome with ex-
tremity set VðAÞ ¼ fah;bh; dh; at; bt; dtg, and adjacency set
EðAÞ ¼ ffah; btg; fbh; dhgg. Genome A is illustrated in Figure 1.

Given that extremities are identified with column vectors of R2n,
we may view genomes as matrices as follows. Using the same letter
and typeface A to represent the matrix associated to the genome A,
we will define:

Ax ¼
y; when fx; yg 2 EðAÞ;
x; when x is a freeendin VðAÞ;
0; when x 62 VðAÞ:

8<
:

This formula unambiguously defines A, since it specifies the
image under A of a basis of R2n. As an example, the matrix represen-
tation for the genome A in Figure 1 is:

at ah bt bh ct ch dt dh

at

ah

bt

bh

ct

ch

dt

dh

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

2
66666666664

3
77777777775

;

where at ¼ e1; ah ¼ e2,. . ., dh ¼ e8. A matrix that can be obtained
from a genome in this fashion will be called a genomic matrix. It is
easy to see that a square binary matrix A 2 f0;1g2n�2n is genomic if
and only if AT ¼ A and A2 is a diagonal matrix with 0’s and 1’s on
the diagonal; indeed, the 1 entries on the diagonal of A2 correspond
to the extremities present in V(A).

2.2 Rank distance
Let A and B be two genomic matrices. We can define a distance be-
tween them as follows:

drðA;BÞ ¼ rðB� AÞ;

where r(X) denotes the rank of matrix X. For invertible genome
matrices A and B, which do not have zero rows or columns and
therefore include all the extremities, this definition generalizes the
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rank distance of Zanetti et al. (2016). This distance satisfies the
required properties for a metric:

• drðA;BÞ ¼ 0() A ¼ B
• drðA;BÞ ¼ drðB;AÞ
• drðA;CÞ � drðA;BÞ þ drðB;CÞ:

For example, consider the genome A defined above, and let B be
the following genome, illustrated in Figure 2:

B ¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

2
66666666664

3
77777777775

:

Having matrices for both A and B on hand, we can compute
their difference:

B�A ¼

�1 0 0 0 0 0 0 0
0 0 �1 0 0 0 0 0
0 �1 1 0 0 0 0 0
0 0 0 0 1 0 0 �1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 �1 0
0 0 0 �1 0 0 0 1

2
66666666664

3
77777777775

:

Thus, we have the distance drðA;BÞ ¼ rðB� AÞ ¼ 8. However,
computing the rank of the matrix B–A directly is not the most

computationally efficient way to compute the rank distance. In
Section 3.1, we will see how to do that in O(n) time.

2.3 Augmented breakpoint graph
To prepare for the addition of indels to the rank distance model, we
defined genomes so that they do not necessarily have the same gene
content. We use a structure called the augmented breakpoint graph,
analogous to the regular breakpoint graph, but, following Compeau
(2013), with different classifications for path endpoints.

The nodes of the augmented breakpoint graph BG(A, B) of A and B
are the extremities of the set VðGÞ � VðAÞ [ VðBÞ, and two nodes x
and y are adjacent in BG(A, B) if they are adjacent in either A or B. For
visual convenience, we represent the adjacencies from A with black solid
edges and those from B with grey dashed edges. As in the regular break-
point graph, all components are either paths or cycles. Sometimes, we
refer to them as a k-path or a k-cycle when we want to emphasize that k
is the number of edges in the path or the cycle.

In the augmented breakpoint graph, all nodes with degree 2 are
necessarily in VðAÞ \ VðBÞ, because they are parts of adjacencies in
both genomes. On the other hand, a node x with degree 1 is a path
endpoint, and at least one of the following cases applies:

• x is a free end in A: Ax¼x,
• x is a free end in B: Bx¼x,
• x is A-null: Ax¼0,
• x is B-null: Bx¼0.

When a path has at least one edge, then it has exactly two dis-
tinct end nodes. For each of these two nodes at the ends of the path,
exactly one of the cases above apply. When both endpoints are free
ends, we call the path proper. We say a path is A-null (B-null) when
one of its ends is a free end, and the other is an A-null (B-null) node.
When a path has two distinct A-null (B-null) ends, we call the path
AA-null (BB-null). In the case where one end is A-null and the other
is B-null, the path is called AB-null.

Finally, when a node x has degree zero in BG(A, B), exactly two
of the previous cases apply, leading to four possibilities:

• When x is a free end in both A and B, it forms a proper path;
• When x is a free end in A and B-null, it forms a B-null path;
• When x is A-null and a free end in B, it forms an A-null path;
• Finally, when x is null in both A and B, the ‘natural’ definition

would be to consider it an AB-null path. However, as we will see

in Section 4, for the rank-indel distance it makes more sense to

consider this path a proper path. For the rank distance, it makes

Table 1. Computational complexities for the best known algorithms in genome comparison, by means of the DCJ, rank and rank-indel dis-

tances, with respect to the number n of markers

DCJ

Same content Indels Repetitions

Distance O(n) Yancopoulos et al. (2005) O(n) Braga et al. (2010, 2011a) ILP Bohnenkämper

et al. (2021)

Scenarios Output size Braga and Stoye (2010) Characterization Compeau (2013) Open —

Median NP-hard Tannier et al. (2009) NP-harda — NP-hard —

Rank

Same content Indels Repetitions

Distance O(n) Feij~ao and Meidanis (2013) O(n) This article Open

Scenarios Output size Zanetti et al. (2019) Open — Open

Median Oðn3Þb Meidanis and Chindelevitch (2021) Open — Open

aBy straightforward reduction.
bSometimes not genomic.

Fig. 1. Genome A with extremity set VðAÞ ¼ fah; bh; dh; at ; bt ; dtg and adjacency set

EðAÞ ¼ ffah; btg; fbh; dhgg

Fig. 2. Chromosomal representation of a genome B with VðBÞ ¼
fbh; ch; dh; bt ; ct ; dtg and adjacencies ffbh; ctg; fch; dtgg

Rank distance with indels 3
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no difference to consider it as either a proper path or an AB-null

path. We choose to adopt the convention that it is a proper path,

to accommodate both versions of the distance.

As an example, Figure 3 is the augmented breakpoint graph BG(A,
B) of the genomes A and B seen earlier.

Given two genomes A and B, we will define some statistics for
BG(A, B). We will use c(A, B) and p(A, B) to denote, respectively, the
number of cycles and paths in BG(A, B). The number of paths can be
further decomposed as the sum of the number of paths of each type:
p0ðA;BÞ is the number of proper paths in BG(A, B), while
pAðA;BÞ; pBðA;BÞ; pAAðA;BÞ; pBBðA;BÞ and pABðA;BÞ are the num-
ber of A-null, B-null, AA-null, BB-null and AB-null paths, respectively.

3 Rank distance in the presence of indels

In this section, we discuss the rank distance of genomes with pos-
sibly different marker content. First, in Section 3.1, we provide a
linear-time algorithm to compute the rank distance. Then, in Section
3.2, we define the most concise set of operations needed to trans-
form one genome into another. Finally, in Section 3.3, we show how
to use these operations to optimally sort genomes.

3.1 Efficient computation of the rank distance
Algorithm 1 implements the ideas of Theorem 8 in
boxedSupplementary Appendix SA and runs in O(n) time, efficiently
computing drðA;BÞ ¼ rðB� AÞ. It is a Breadth-First Search travers-
ing BG(A, B) that additionally computes a score s for each compo-
nent, equal to the difference between the number of A-null and B-
null extremities in it. Note that extremities i such that A½i� > 0 and
B½i� > 0 contribute zero to the score. A score of zero means the com-
ponent has the same number of A-null and B-null extremities, so we
decrease d by 1 for a path, or by 2 for a cycle. Since the initial value
of d is 2n, we end up with d ¼ drðA;BÞ.

3.2 Basic operations
A matrix X is an operation when there is a genome A such that
AþX is a genome. In this case, we say that X is applicable to A.
The weight of an operation X is the rank of X. From here to the end
of Section 3, we call these the basic operations to transform one gen-
ome into another when they do not share the same set of markers.

As expected, we need to consider the insertion or the deletion of
an entire chromosome. Insertions and deletions of parts of chromo-
somes are not needed, as we show in the Supplementary Appendix.
The matrix for the insertion or deletion of a chromosome with k
markers is, up to the sign, equivalent to a genome with k markers,
and always has weight 2k. Therefore, the weight of such an oper-
ation is 2k.

In addition, we consider a new kind of operation that takes advan-
tage of our relaxed definition of genomes. Recall that, when we defined

genomes in Section 2, we mentioned that, given a genome A, we do
not require that gt 2 VðAÞ if gh 2 VðAÞ, or vice versa. This relaxed
definition now comes into play. We define an operation that substitutes
a single extremity for an extremity that does not exist in the genome;
due to its rank, we assign such an operation a weight of 2.

Introducing this kind of operation implies that the concept of
chromosomes also has to be relaxed. In a genome where, for every
g 2 G, the extremities gh and gt are either both present or both ab-
sent, a chromosome is a sequence of markers that can be either cir-
cular, having no free ends, or linear, with exactly two free ends. In
the case of a genome with only one extremity of a marker, there are
semi-chromosomes that, instead of ending at a free end, end with an
unpaired extremity, i.e. a head extremity whose corresponding tail
is not in the genome, or vice versa. As a result, now an insertion or a
deletion can be of a whole chromosome, or of a whole semi-
chromosome, always with a weight equal to the number of extrem-
ities being inserted or deleted.

With the introduction of extremity substitutions, we now have
six types of basic operations:

• Cut, with cost 1.
• Join, with cost 1.
• Double swap, with cost 2.
• Deletion of whole chromosomes or semi-chromosomes, costing

the number of extremities deleted.
• Insertion of whole chromosomes or semi-chromosomes, costing

the number of extremities inserted.
• Substitution of one extremity, with cost 2.

When the genomes considered have the same marker content, it
was shown in previous work by the first and last authors along with

Fig. 3. Augmented breakpoint graph BG(A, B). Black solid edges are adjacencies

from A, gray dashed edges are from B. White nodes are extremities in both V(A)

and V(B). Black nodes are either A-null or B-null, as specified besides them. The

components are two A-null paths and two B-null paths. For convenience, we repro-

duce here the chromosomal representation of both genomes, A on top and B in the

bottom

Algorithm 1 Algorithm to compute the distance between

genomes A and B. Genome A is given as a list of length 2n,

where A[i] ¼ j if Aei ¼ ej , and A[i] ¼ 0 if Aei ¼ 0; similarly

for B. The algorithm scores each component in BG(A,B) by

comparing the numbers of A-null and B-null extremities.

Equal numbers mean the component decreases the distance,

by 1 for a path, or by 2 for a cycle.
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P. Biller that only three types of operations are sufficient to sort any
genome into another with respect to the rank distance, i.e. at a cost
equal to the rank distance between them: cuts, joins and double
swaps (Meidanis et al., 2017). Cuts and joins have weight 1, while
double swaps have weight 2. These operations are illustrated in
Figure 4.

In this article, we seek to add to our model operations that deal
with unequal gene content and, similarly to the work cited above on
same-content genomes, to reduce them to a minimal sufficient set of
basic operations. The first operations considered are insertions and
deletions. These operations insert or delete contiguous blocks of
markers, as in Figure 5.

The deletion of a contiguous section of k markers at the end of a
chromosome has weight 2kþ 1. It is effectively equivalent to a cut
separating these k markers from the rest of the chromosome, costing
1, followed by the deletion of the new chromosome, at a cost of 2k.
If the deleted region is internal (does not include a free end), the de-
letion costs 2kþ 2. Such an operation is then equivalent to a double
swap that extracts the region into a new circular chromosome fol-
lowed by the deletion of this chromosome, also at a total cost of
2kþ 2.

A similar reasoning is valid for insertions, but in the inverse dir-
ection. Inserting a segment of k markers at the end of a chromosome
is the same as inserting the k new markers as a linear chromosome
and then applying a join between the new chromosome and its tar-
get. To insert a region inside a chromosome, we perform the inser-
tion of a circular chromosome with the k markers, and then we use
a double swap to incorporate the region into the chromosome. It is
important to note that in the rank distance model, both linear and
circular chromosomes can be inserted, and at the same cost per
marker.

As a result, we can concern ourselves only with the deletion/in-
sertion of whole chromosomes, as any other type of deletion can be
replaced by a cut or double swap followed by a chromosome dele-
tion, and insertions can be represented by a chromosome insertion
plus a join or double swap. Therefore, we end up with a cast of five
basic operations:

• Cuts or joins, with cost 1.
• Double swaps, with cost 2.
• Insertions or deletions of linear or circular chromosomes with k

markers, with cost 2k.

Let S be the chromosome being inserted or deleted. Let A(S) be
the set containing all the adjacencies fx, yg in S, and the singleton
fzg for every free end z in S. Then, the deletion D(S) can be written
as the matrix

DðSÞ ¼ �
X

fx;yg2AðSÞ
ðxyt þ yxtÞ �

X
fxg2AðSÞ

xxt:

On the other hand, the insertion of S can be written as the matrix
�DðSÞ. This covers both the case where S is circular and the case
where it is linear.

The matrix for the insertion or deletion of a chromosome with k
markers is, apart from the signs, equivalent to the matrix of a gen-
ome with k markers, and always has weight 2k. However, this initial
set of basic operations is not sufficient to explain the changes in
gene content under the rank distance. Consider the genomes in
Figure 6. To go from A to B using only cuts, joins, double swaps,
insertions and deletions, it would be necessary to cut the adjacency
fah;xtg, delete x, insert y and join ah and yt. This sequence of opera-
tions would cost 6 (1 for the cut, 1 for the join, 2 for the deletion,
and 2 for the insertion). Nevertheless, drðA;BÞ ¼ rðB�AÞ ¼ 4.

This example shows that it is not enough to consider our initial
set of basic operations. We thus introduce one more type of oper-
ation: the substitution. A substitution takes p contiguous markers,
anywhere in the genome, and substitutes them with another block of
q markers, at a cost of 2pþ 2q. Biologically, a substitution can be
seen as the accumulation of a series of small mutations that trans-
forms a block of markers into a block of different markers over time
(Braga et al., 2011b).

Unfortunately, these substitutions are still not enough to sort
genomes under the rank distance. Consider the genomes in Figure 7.
The rank distance between them is eight, but there is no way to sort
one into the other with the operations described so far, since just the
two substitutions of w for x and z for y already cost 8, and do not
move markers b and c.

One way of dealing with cases like this is to take advantage of
our relaxed definition of genomes. Recall that when we defined

Fig. 4. Examples of cuts, joins and double swaps

Fig. 5. Example of an insertion of markers b and c and its inverse operation, the de-

letion of b and c

Fig. 6. Example of two genomes that cannot be optimally sorted only with insertions

and deletions. Left: genome A. Right: genome B. The distance d(A, B) is 4, but delet-

ing the marker x and inserting y in its place would cost 6

Fig. 7. Example of two genomes that cannot be optimally sorted using only inser-

tions, deletions and marker substitutions. Top: genome A. Bottom: genome B. The

distance d(A, B) is 8, but substituting x for w and y for z already costs 8, and does

not lead to genome B

Rank distance with indels 5
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genomes in Section 2, we mentioned that, given a genome A, we do
not require that gt 2 VðAÞ if gh 2 VðAÞ, or vice versa. This relaxed
definition will now come into play.

Insertions, deletions and substitutions as described so far always
act on both ends of every marker involved, either adding or remov-
ing the marker as a whole. But we may define an operation that sub-
stitutes a single extremity with another extremity that does not exist
in the genome, and assign weight 2 to such an operation.

Introducing this kind of operation implies that the concept of
chromosomes also has to be relaxed. In a genome where, for every
g 2 G, both extremities gh and gt are either present or absent, a
chromosome is a sequence of markers that can be either circular, hav-
ing no free ends, or linear, with exactly two free ends. In the case of a
genome with only one extremity of a marker, there are semi-chromo-
somes which, instead of ending at a free end, end with an unpaired ex-
tremity, i.e. a head extremity whose corresponding tail is not in the
genome, or vice versa. As a result, an insertion or a deletion can now
be of a whole chromosome, or of a whole semi-chromosome, always
with a weight equal to the number of extremities being inserted or
deleted. With these more flexible definitions, the example in Figure 7
can be sorted with a total weight of 8, by performing four extremity
substitutions: xt ! wt;xh ! zh; yh ! wh; yt ! zt.

It may be hard to argue for the biological relevance of an event
that replaces a single extremity, but mathematically they are capable
of explaining the rank distance. With the introduction of extremity
substitutions, we have now six types of basic operations:

• Cut, with cost 1.
• Join, with cost 1.
• Double swap, with cost 2.
• Deletion of whole chromosomes or semi-chromosomes, costing

the number of extremities deleted.
• Insertion of whole chromosomes or semi-chromosomes, costing

the number of extremities inserted.
• Substitution of one extremity for another, with cost 2.

As we explain next, it turns out that this collection of basic oper-
ations is sufficient to construct a scenario transforming any genome
into any other genome, whether or not they have the same content,
at a total cost equal to the rank distance between them.

3.3 Sorting and distance formula
Let X ¼ ðX1;X2; . . . ;XkÞ be a sequence of operations such that, for
every 1 � i � k, the operation Xi is applicable to
AþX1 þ � � � þXi�1, and AþX1 þ � � � þXk ¼ B. We say that X is
a sorting scenario from A to B. The weight of X is the sum of the
ranks of its operations, i.e.

wðXÞ ¼
Xk

i¼1

rðXiÞ:

We denote by w(A, B) the minimum weight of a sorting scenario
from A to B. When a scenario X from A to B satisfies
wðXÞ ¼ wðA;BÞ, we call X optimal. In Supplementary Appendix
SB, we prove intermediate results to show that the rank distance
d(A, B) is equal to the optimum weight of a scenario going from A
to B using the basic operations listed in Section 3.2:

drðA;BÞ ¼ wðA;BÞ:

The following formula, proven in the Supplementary Appendix
SA, allows for efficient (linear-time) computation of the rank dis-
tance, based on parameters of the augmented breakpoint graph:

drðA;BÞ ¼ 2n� 2cðA;BÞ � p0ðA;BÞ � pABðA;BÞ:

4 An alternative: the rank-indel distance

In order to avoid general extremity substitutions and genomes with-
out both extremities of a marker, a different approach to the add-
ition of indels to the rank distance is to define a genomic distance
that includes the basic operations of the rank distance for genomes
with the same content, plus insertions and deletions, all with the
same weight as in the rank distance model. This way, we define the
rank-indel distance diðA;BÞ of A and B as the minimum cost of an
operation sequence sorting A into B, using the basic operations:

• Cuts/joins, with cost 1.
• Double swaps, with cost 2.
• Insertions/deletions of linear or circular chromosomes with k

markers, costing 2k.

We already know that diðA;BÞ 	 rðB� AÞ. This inequality can
sometimes be strict. In fact, we obtain the following formula for the
rank-indel distance between A and B (we prove it in Supplementary
Appendix SC):

diðA;BÞ ¼ 2n� 2cðA;BÞ � p0ðA;BÞ þ pABðA;BÞ:

5 Experiments

We ran experiments both on simulated and real data on a computer
running Ubuntu version 16.04 with a 2.3 GHz AMD Ryzen 7 pro-
cessor (eight cores) and 8 GB of RAM. Both comprise the computa-
tion of the DCJ-Indel, rank, and rank-indel distances between pairs
of genomes from a set of genomes in order to construct distance
matrices. For the DCJ-Indel distance, we used UniMoG (Braga et al.,
2011a), a software that unifies many rearrangement distance mod-
els, including the DCJ-Indel model. Although there exists a newer
tool to compute the DCJ distance, namely DING, an ILP implemen-
tation developed by Bohnenkämper et al. (2021), we chose UniMoG
because we do not use DING’s ability to handle repeated genes. In
addition, DING is significantly slower than UniMoG because it lever-
ages ILP to compute the DCJ distance. For the rank and rank-indel
distances, we used in-house developed scripts available at https://
github.com/meidanis-lab/rank-indel. We noticed that the results for
rank and rank-indel distances were identical, which shows that the
number of AB-null paths is small enough in practice to not result in
differences reflected in a phylogenetic tree. Hence, we developed a
single optimized script to compute the rank distance, which was
used to obtain the results presented below.

After computing pairwise rearrangement distances between
genomes and constructing distance matrices, we inferred phylogen-
etic trees using the Neighbor-Joining (NJ) algorithm (Saitou and
Nei, 1987) as implemented in the ape package (Paradis and Schliep,
2019). The resulting trees were then compared against a reference
tree using the Robinson–Foulds (RF) (Robinson and Foulds, 1981)
and Quartet (Estabrook et al., 1985) metrics, both implemented in
the Quartet package (Brodal et al., 2004; Sand et al., 2014; Smith,
2019). The RF metric is a standard metric to compare phylogenetic
trees, but we also adopted the Quartet distance because it outper-
forms a number of widely used tree distances, in particular, the RF
metric, in some theoretical and practical metrics (Smith, 2020; Steel
and Penny, 1993).

Table 2. Default parameters used in simulation tool

Parameter No. of chromosomes No. of genes Insertion rate Deletion rate Duplication rate Size of indel

Default value 20 5000 0.2 0.4 0 3.5
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In Section 5.1, we describe the data analysis approach applied to
a simulated dataset and a randomly generated phylogenetic tree,
taken as the ground-truth. We do the same in Section 5.2, but for

real bacterial genomes, Escherichia coli and Shigella species, and the
phylogenetic tree constructed by Skippington and Ragan (2011)

taken as our reference.

5.1 Performance benchmark
We generated a random phylogenetic tree, denoted hereafter as T,

with 20 taxa using Ngesh (Tresoldi, 2021) with default parameters.
This tree was fed to the simulation tool developed by
Bohnenkämper et al. (2021), which samples gene order sequences

over T. This tool starts from a random gene order sequence with
user-defined length and samples Poisson-distributed DCJ events

with expectation equal to the corresponding edge weights of T. The
same applies to insertion, deletion and duplication events of one or
more consecutive genes, but their frequency is dependent on a rate

factor adjusted by the user. In addition, the length of each segmental

insertion, deletion and duplication is drawn from a Zipf distribu-
tion, whose parameters are also adjusted by the user. We summarize
the default values we used for the parameters in Table 2. In particu-
lar, the chosen values for the insertion and deletion rates are twice
the values used by Bohnenkämper et al. (2021). We doubled this
parameter in order to have a better assessment of the rank and DCJ-
Indel distances when indel events occur more frequently. The dupli-
cation rate was set to 0 because we do not consider repeated
markers. Using these parameters, the simulator outputs the leaf
genomes of T as gene order sequences.

To assess the performance of the rank and DCJ-Indel distances,
we fixed the parameters to the values shown in Table 2, but varied
the number of genes and insertion/deletion rates, one at a time. By
varying the number of genes from 5000 to 50 000 in steps of 5000,
we assessed the running time of our implementation of the rank dis-
tance and the DCJ-Indel distance as implemented in UniMoG. We
note that UniMoG receives a single input file containing the markers
of all genomes to be compared, similar to the FASTA format. It is
unclear whether UniMoG uses parallelism in this computation. On
the other hand, our implementation of the rank distance receives
two input files, each containing the markers of a single genome.
This allowed us to compute the rank distance between pairs of
genomes in parallel using eight cores. Figure 8 shows the running
time of the rank and DCJ-Indel implementations as a function of the
number of genes. Note that the curves reflect the linear-time com-
plexity of both distance models.

In the second experiment, we varied both the insertion and dele-
tion rates from 0.0 to 0.9 in steps of 0.1. For each step, we inferred
10 phylogenetic trees for each distance model, compared each one
against the ground-truth using the Quartet and normalized RF met-
rics, and generated box plots. The results are shown in Figure 9.

We observe that the rank distance, on average, outperforms the
DCJ-Indel distance in the Quartet metric, even though the rank dis-
tance exhibits greater variability for this metric. As for the normal-
ized RF metric, the similarity of the resulting trees with the ground-
truth remains stable between 60% and 70% under the DCJ-Indel
distance, on average, whereas the rank distance shows comparable
results only for higher rates of indel events; for lower rates of indel
events, the results for the rank distance are mixed and overall incon-
clusive. This discrepancy may be due to the fact that the RF metric is
more sensitive to the relocation of taxa, whereas the Quartet metric
is more stable (Smith, 2020; Steel and Penny, 1993). We conclude
that the rank distance is more robust to higher rates of indel events,
or, equivalently, to genomes that greatly differ in their marker con-
tent. This may indicate that the rank distance can provide better
approximations when comparing genomes of distantly related

Fig. 8. Running time of our implementation of the rank distance against DCJ-Indel

as implemented in the UniMoG software package

Fig. 9. Each box plot corresponds to 10 phylogenetic trees compared against the ground-truth; the insertion and deletion rates were varied and the remaining parameters were

fixed. Left: Quartet metric. Right: normalized RF metric
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species, while for closely related species both distance models are
equally applicable if one uses the Quartet metric as a comparator.

5.2 Real data analysis
We used the phylogenetic tree for the E.coli and Shigella species con-
structed by Skippington and Ragan (2011) as our reference. The
E.coli strains were divided into five distinct E.coli reference collec-
tion phylogenetic groups—A, B1, B2, D and E—while the Shingella
strains were grouped under the S group. That tree has 27 taxa, but
not all genomes were available for download at the National Center
for Biotechnology Information (NCBI). Hence, we used a subset of
the tree—with 20 genomes in total—described in that study and
restructured the reference tree accordingly. Table 3 lists the
genomes, we used.

We could maintain all the groups, except the E.coli strains of
group E. Following Skippington and Ragan (2011) and Touchon
et al. (2009), our reference tree is rooted using Escherichia ferguso-
nii as an outgroup. The restructured reference tree is shown in
Figure 10. Note that group D is the only one reported as polyphylet-
ic, while groups A, B1 and B2 are monophyletic. In addition,

Shigella dysenteriae appears as an ancestor of the other Shigella
strains of group S.

In this experiment, markers are genes and we need a way to as-
certain gene homology. We used NCBI’s Protein Clusters as follows.
Most annotated genomes from NCBI contain non-redundant protein
record (WP) identifiers, which can be mapped to a protein cluster.
Genes are considered homologous if, and only if, they map to the
same cluster.

We wrote scripts to download generic feature format (GFF) files
from NCBI corresponding to the genomes and extracted the WP

Table 3. Data downloaded from NCBI used in our study

Accession Species Strain Identifier

GCF002949755.1 Shigella dysenteriae 07-3308 SD_073308

GCF000013585.1 Shigella flexneri 8401 SF_8401

GCF000007405.1 Shigella flexneri 2457 T SF_2457T

GCF000020185.1 Shigella boydii BS512; CDC 3083-94 SB_CDC308

GCF000007445.1 Escherichia coli CFT073 EC_CFT073

GCF003028775.1 Escherichia coli E24377A EC_24377A

GCF000010245.2 Escherichia coli K-12 substr. W3110 EC_K12W31

GCF000017765.1 Escherichia coli HS EC_HS

GCF000013305.1 Escherichia coli 536 EC_536

GCF000013265.1 Escherichia coli UTI89 EC_UTI89

GCF000010385.1 Escherichia coli SE11 EC_SE11

GCF000019645.1 Escherichia coli SMS-3-5 EC_SMS35

GCF000019385.1 Escherichia coli ATCC 8739 EC_ATCC87

GCF000026265.1 Escherichia coli IAI1 EC_IAI1

GCF000026285.1 Escherichia coli S88 EC_S88

GCF000026245.1 Escherichia coli 55989 EC_55989

GCF000026325.1 Escherichia coli UMN026 EC_UMN026

GCF000026345.1 Escherichia coli IAI39 EC_IAI39

GCF000026305.1 Escherichia coli ED1a EC_ED1a

GCF000026225.1 Escherichia fergusonii ATCC 35469 T EF_ATCC35

Note: The ‘Identifier’ column lists the labels used in the phylogenetic trees.

Fig. 10. Left: subset of reference tree constructed by Skippington and Ragan (2011). Middle: Rank/Rank-Indel tree. Right: DCJ-indel tree

Table 4. RF and Quartet distances from our trees against the

reference

Rearrangement distance

Metric Rank Rank-Indel DCJ-Indel

Robinson–Foulds 0.470 0.470 0.411

Quartet 0.656 0.656 0.657
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accessions for all their genes. Most of the GFF files had WP acces-
sions; those that did not were discarded. The next step was to use the
mapping from WP to the Protein Cluster Database provided by NCBI
to operate on this translation. Genes mapped in this manner served as
our comprehensive marker set G in this analysis. Any paralogous genes
(duplicated genes in the same genome) were discarded. At the end of
this filtering process, each genome consisted of a sequence of genes
along with their orientations. We ran pairwise comparisons between
the genomes using the rank, rank-indel and DCJ-Indel distances to
construct distance matrices and infer phylogenetic trees with the NJ
algorithm. Finally, we compared our resulting trees against the refer-
ence tree using the Quartet and normalized RF metrics. The resulting
metrics are shown in Table 4. Note that the metrics for the rank and
rank-indel distances were the same; indeed, the computed phylogenet-
ic trees for both rank distances were identical. Figure 10 shows the
resulting trees for the rank and DCJ-Indel distances.

The rank distances clustered all groups as monophyletic, where-
as the DCJ-Indel distance placed groups D and S as polyphyletic.
Although these groups are also polyphyletic in the reference tree, the
placement of these strains within each group—specially group S of
the Shigella strains—is very different between the two trees. The
Shigella and E.coli species are closely related and challenging to dif-
ferentiate at the sequence level (Chattaway et al., 2017; Devanga
Ragupathi et al., 2018). On the other hand, whole-genome-based
approaches show that they are distinct species, although sister spe-
cies within the Escherichia genus (Zuo et al., 2013). This is concord-
ant with our results, which show that Shigella and E.coli can be
distinguished at the genome level just by looking at the order and
orientation of genes. Moreover, the rearrangement-based distances
placed the Shigella species as the most distant relative of the E.coli
strains, a feature not seen in the reference tree.

Overall, the rank and DCJ-Indel distances exhibited comparable
results for this set of bacterial genomes, differing most in the place-
ment of groups D and S. Although we conclude that both distances
are adequate for phylogenetic inference, further studies are needed
to assess their applicability in evolutionary molecular biology, since
our experiments are restricted to prokaryotic genomes of well-
known species.

6 Conclusion

In this article, we expanded the rank distance to account for
genomes with different gene content, but still without duplications.
The first step, in Section 2, was to define genomes that do not neces-
sarily contain all the markers of G. This allows for the representation
of genomes with different markers from each other, and is done very
naturally, by using zeros in the rows/columns corresponding to the
missing markers. We then developed two ways to compare these
genomes.

The first approach simply extends the rank distance, keeping the
distance drðA;BÞ between two genomes A and B equal to the rank
rðB� AÞ of their difference. We showed how to efficiently compute
dr, and how to transform A into B using only basic operations, add-
ing insertions, deletions and the substitution of a single extremity to
the cast of basic operations of the rank distance of genomes with the
same markers.

The substitution of single extremities leads to genomes with in-
complete markers. To avoid this, we also present an alternative
rank-indel distance that changes the content of a genome only
through insertions and deletions of chromosomes. We note that
both distances have very simple formulas, and are closely related,
with diðA;BÞ ¼ drðA;BÞ þ 2pABðA;BÞ.

We conducted experiments with real and simulated data using
the rank, rank-indel and DCJ-indel distances. We noted that the
phylogenetic trees for the rank and rank-indel distances were the
same, showing that the distinguishing term in their formulas is very
small in our experiments. In all cases, the phylogenetic trees con-
structed from real data were able to cluster related species within
their respective clades, although the topological comparison against
the reference tree shows many differences. A notable feature of the
rearrangement-based phylogenetic trees is the clear distinction

between the Shigella and E.coli species. In this regard, the rank and
rank-indel distances exhibit similar results when compared to the
DCJ-indel distance. As for the experiments with simulated data, we
observed that the rank distance outperformed the DCJ-Indel dis-
tance in the Quartet metric, which is more robust than the RF metric
for phylogenetic tree comparisons (Smith, 2020; Steel and Penny,
1993). This may indicate that the rank distance is a better model for
multi-chromosomal genomes with unequal marker content, but still
without repeated markers. Recall that both DCJ and rank represent
different extensions of the algebraic distance (Meidanis and Dias,
2000)—originally defined for circular chromosomes—to linear
chromosomes. They differ in the way they count the number N of
genes after circularization of linear paths: the DCJ model takes the
maximum N between the two genomes being compared, while rank
takes the average N (Meidanis and Yancopoulos, 2013).

Overall, we noted that there is enough phylogenetic signals in
the order and orientation of genes alone, which makes
rearrangement-based distances applicable to phylogenetic studies.
Moreover, the rank and DCJ distance models are, to the best of our
knowledge, the only rearrangement-based distances capable of han-
dling multi-chromosomal genomes with linear and circular chromo-
somes, which makes these distances the most applicable from the
genome rearrangement literature. Although sequence-based methods
are the gold standard in phylogenetics, rearrangement-based meth-
ods are faster and can provide good approximations. Nevertheless,
further studies are needed to better assess the usefulness of these dis-
tances in wider biological contexts, e.g. inferring the evolutionary
history of eukaryotic genomes. Lastly, although we introduced the
notion of a semi-chromosome, which may seem absurd from a bio-
logical perspective, this article contributed further evidence that
modeling genome evolution with the rank distance has biological
relevance and can be used in practice.
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