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ABSTRACT OF THE DISSERTATION

Integration of Alignment and Phylogeny in the Whole-Genome Era

by

Hongtao Sun

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2015

Professor Jeremy Buhler, Chair

With the development of new sequencing techniques, whole genomes of many species

have become available. This huge amount of data gives rise to new opportunities and chal-

lenges. These new sequences provide valuable information on relationships among species,

e.g. genome rearrangement and conservation. One of the principal ways to investigate such

information is multiple sequence alignment (MSA). Currently, there is large amount of MSA

data on the internet, such as the UCSC genome database, but how to e↵ectively use this

information to solve classical and new problems is still an area lacking of exploration. In

this thesis, we explored how to use this information in four problems, i.e. sequence similarity

search, multiple alignment improvement, short read mapping, and genome rearrangement

inference.

The first problem is sequence similarity search, i.e., given a query sequence, search its

similar sequences in a database. The expansion of DNA sequencing capacity has enabled

the sequencing of whole genomes from a number of related species. These genomes can be

combined in a multiple alignment that provides useful information about the evolutionary

x



history at each genomic locus. One area in which evolutionary information can produc-

tively be exploited is in aligning a new sequence to a database of existing, aligned genomes.

However, existing high-throughput alignment tools are not designed to work e↵ectively with

multiple genome alignments. We introduce PhyLAT, the Phylogenetic Local Alignment Tool,

to compute local alignments of a query sequence against a fixed multiple-genome alignment

of closely related species. PhyLAT uses a known phylogenetic tree on the species in the

multiple alignment to improve the quality of its computed alignments while also estimating

the placement of the query on this tree. It combines a probabilistic approach to alignment

with seeding and expansion heuristics to accelerate discovery of significant alignments. We

provide evidence, using alignments of human chromosome 22 against a 5-species alignment

from the UCSC Genome Browser database, that PhyLAT’s alignments are more accurate

than those of other commonly used programs, including BLAST, POY, MAFFT, MUSCLE,

and CLUSTAL. PhyLAT also identifies more alignments in coding DNA than does pair-

wise alignment alone. Finally, our tool determines the evolutionary relationship of query

sequences to the database more accurately than do POY, RAxML, EPA, or pplacer.

The second problem is multiple alignment quality improvement, i.e., given a multiple

alignment, correct any wrong matches, i.e., matches between non-orthologous characters

(bases or residues). This is important to all other data analysis based on multiple align-

ments. However, existing methods either compute alignments non-iteratively or use complex

models which are very time-consuming and have the risk of overfitting. We developed an

optimization algorithm to iteratively refine the multiple alignment quality. In each iteration,

we take out one sequence from the multiple alignment, and realign it to the rest of the

sequences using our phylogeny-aware alignment framework. We tested several strategies for

picking sequences, i.e., picking out the most distant species from the rest species, picking out

the closest species from the rest species and randomly picking out a sequence. Experiment

xi



results showed that di↵erent picking strategies gave very similar results. In other words, our

method is very insensitive to sequence picking strategy, which makes it a stable algorithm

for improving alignments of any number of sequences. The results showed that our method

is more accurate than existing methods, i.e. MAFFT, Clustal-O, and MAVID, on test data

from three sets of species from the UCSC genome database.

The third problem is phylogeny-aware short read mapping using multiple informant

sequences. Given a set of short reads from next-generation sequencing results, mapping

them back to their orthologous locations in a reference genome is called short read mapping.

This is a new problem arising with the development of next-generation sequencing techniques.

Existing methods cannot deal with indels in alignments, and cannot do interspecies mapping.

We developed a model, PhyMap, to align a read to a multiple alignment allowing mismatches

and indels. PhyMap computes local alignments of a query sequence against a fixed multiple-

genome alignment of closely related species. PhyMap uses a known phylogenetic tree on the

species in the multiple alignment to improve the quality of its computed alignments while also

estimating the placement of the query on this tree. We showed theoretically that our model

can di↵erentiate orthologous sequences from paralogous sequences. Thus our algorithm can

align short reads to their homologous positions in reference sequences. Our experiment

results have proved this and showed that our model can di↵erentiate between orthologous

and paralogous alignments. Furthermore, we compared our method with other popular short

read mapping tools (BWA, BOWTIE and BLAST) on simulated data, and found that our

method can map more reads to their orthologous locations in their closely-related species’

genomes than any one of them.

The fourth problem is genome rearrangement inference, i.e., given a set of orthologous

alignments along with the genomic orders in each aligned sequence and a set of new sequences

xii



orthologous to the given alignments, determine the genomic order of the new sequences. Ex-

isting methods on genome rearrangement inference have several shortcomings. First, most

of these methods rely on annotated genes. They are only applicable to genomes with an-

notated genes. They cannot infer on parts of genomes where there are no genes or do not

have annotated genes. Second, they either only infer a set of conserved intervals without

specifying their order or just infer a fixed single order of all the genes without giving alterna-

tive solutions. We gave a simple genome rearrangement model which can express inversions,

translocations and inverted translocations on aligned genome segments. We also developed

an MCMC algorithm to infer the order of the query segments. We proved that using any

Euclidian metrics to measure distance between two sequence orders in the tree optimization

goal function will lead to a degenerated solution where the inferred order will be the order

of one of the leaf nodes. We also gave a graph-based formulation of the problem which can

represent the probability distribution of the order of the query sequences.

This thesis is not only about the four problems. Our goal is to give an attempt to solve

di↵erent problems in this field using the same underlying model. We feel that with the fast

accumulation of biological data and deeper and deeper understanding people have on these

data, di↵erent problems become related to each other and can be integrated under the same

framework. With a unified model, di↵erent problems do not need ad-hoc solutions. The ulti-

mate vision is that all problems can be expressed in their biologically realistic representations

and solved by algorithms based on this real model. All of the four problems studied in this

thesis are independent in their own areas, but are also related to each other in the sense that

a better solution to one problem will give better solutions to other problems. On one hand,

the problem of MSA quality improvement is a foundation of the other two problems, and on

the other hand, building a high-quality MSA on new sequences requires accurate short read

mapping in the first place. First, we showed that by doing alignment and short read mapping

xiii



together, we can get more accurate short read mapping. Second, we showed that improving

existing multiple alignment quality can be aided by incorporating phylogenetic information

and a probabilistic scoring system. Last, we showed that multiple sequence alignment can

be used to infer genome rearrangement events with the help of phylogenetic information.

Our work does not only explored the solutions to the four problems, but also provides a new

viewpoint that with the development of new techniques and availability of new data, many

existing and new problems can be viewed in the same framework and solved using the same

model.
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Chapter 1

Introduction

With the development of new sequencing techniques, whole genomes of many species have

become available. This huge amount of data gives rise to new opportunities and chal-

lenges. These new sequences provide valuable information on relationships among species,

e.g. genome rearrangement and conservation. One of the principal ways to investigate such

information is multiple sequence alignment (MSA). Currently, there is large amount of MSA

data on the internet, such as the UCSC genome database [130], but this data has not con-

sistently been applied to solve classical and new problems in biosequence analysis. In this

thesis, we explore how to use this information in four problems, i.e. sequence similarity

search, multiple alignment improvement, short read mapping, and genome rearrangement

inference.

Before diving into details of problems and solutions, several core concepts need to be intro-

duced.

Sequence Alignment : a sequence alignment is a method of comparing similar biological

sequences. Usually an alignment of N sequences is represented as a matrix with N rows,

each row containing the characters in a sequence plus some gaps to make similar characters

be in the same column. An example is shown in Figure 1.1.

Finding accurate alignments is usually the first step to many bioinformatic problems. High-

score alignment means more similarities between the aligned sequences, which is often a good
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sequence1 CACCTAAGTACT
sequence2 CACGTAA--ACT
sequence3 CTCCTAAGTACA
sequence4 CACCCAAGTACT

Figure 1.1: An example of multiple alignment of four sequences. Gaps are inserted into the
second sequence to make similar characters aligned in the same columns.

indication that the aligned sequences may share the same biological functions or have the

same ancestral sequence.

Phylogeny : a phylogeny is a tree structure, representing the evolutionary history of several

species. Each leaf node represents an extant species. An inner node represents a common

ancestor of the species in its subtree. Each branch in the tree may be associated with a

length, representing the evolutionary time from the parental species to the child species.

The longer the branch is, the more possible changes there may be between the parental

sequence and the child sequence. Thus the branch length can also be proportional to the

amount of character changes from the parental sequence to its child sequence. An example

is shown in Figure 1.2.

species 1 species 2 species 3

A1

A2

Figure 1.2: An example of phylogeny. There are three extant species, i.e. species 1, species
2 and species3. A1 is the latest common ancestor of species 1 and species 2. A2 is the latest
common ancestor of all three species.

Next-generation Sequencing : next-generation sequencing is a group of technologies for

sequencing biological sequences, i.e., DNA and RNA sequences. A sequence is sampled at a

large number of locations. Each sample is called a read, with a length ranging from 21 to

400 bases [56, 129], depending on what kind of technology is used. A read usually contains

errors and sometimes missing bases. Each location in the original sequence is sampled 40

to 500 times. Compared with previous sequencing techniques, next-generation sequencing is

2



low-cost and much faster. An example is human genome sequencing. It cost 3 billion dollars

and 13 years at the time of the Human Genome Project [139]. Now it only costs $1000 and

a single run of a sequencing machine.

A common factor of the four problems is that they are intrinsically related to multiple

alignment and phylogeny. However, there are very few researches which try to use a unified

biological framework for these di↵erent kinds of tasks. We feel it is the right way to view these

problems in such a framework that each problem can leverage the biologically meaningful

models and solutions to other problems in the framework. The core of the framework should

be multiple alignment and the concepts of homology and rearrangement. These are the most

important aspects of modeling the real biological process of sequences evolution. Our study

on sequence similarity search, PhyLAT (Phy logeny-aware Local Alignment Tool), showed

that using a multiple alignment as reference sequence and a phylogeny-based probabilistic

scoring system can improve the alignment accuracy and the accuracy of tree placement of

the query species. This implies that by combining multiple alignment and phylogeny, we can

do better on both problems. The next step is naturally to apply this combined framework to

other related problems, which are the rest three problems we study in this thesis. So we will

first introduce our study on sequence similarity search, then the rest three problems. In the

multiple alignment improvement problem, we use our PhyLAT framework as the basis for

aligning each sequence back to the rest of the multiple alignment. In the short read mapping

problem, we use PhyLAT to align each read to its possible matching positions in a multiple

alignment database. In genome rearrangement inference problem, we use PhyLAT as the

first step to infer orthology mapping from query sequence segments to reference sequence

blocks in a database.

1.1 Overview

In this section, we give an overview of the four problems (including our previous research on

sequence similarity search) we studied, and briefly discuss our methods and results.
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1.1.1 Sequence Similarity Search

The first problem we studied is sequence similarity search. Sequence similarity search is the

basis for nearly all downstream researches in bioinformatics. In principle, using a reference

multiple alignment as database, rather than any one of its component genomes, to align a

query sequence should result in a more accurate alignment, since the aligner can use the

pattern of conservation at each position to more accurately determine which query base cor-

responds to which multiple alignment column. Moreover, given a phylogenetic tree relating

the species in the reference, an aligner should be able to use standard probabilistic models

of evolution to compare the likelihoods of possible alignments, rather than resorting to an

arbitrary scoring system. In fact, alignment could even infer the evolutionary relationship

of the query to the reference, placing it on the tree of the reference’s species.

In practice, however, most widely used alignment tools either cannot use reference multiple

alignments or cannot do so in a phylogenetically aware way [6, 6, 12, 44, 45, 47, 70, 150,

159, 162]. So the first problem we study is practical implementation of high-throughput

pairwise alignment between a query sequence and database of reference multiple alignments

with phylogenetic information.

We developed PhyLAT (the Phylogenetic Local Alignment Tool), a tool for rapidly aligning a

query DNA sequence to a database of multi-genome reference alignments. PhyLAT combines

BLAST-style seeding and extension heuristics with a EM-like, phylogenetically aware back-

end alignment algorithm. We score alignments to references containing gaps using a model

that is simplified enough for e�cient implementation but disallows alignment hypotheses

that are demonstrably impossible alignment given the pattern of gaps in the reference. We

show that PhyLAT produces results in protein-coding regions of mammalian genomes that

are better supported by external evidence than the results of pairwise alignment, and that

our tool can accurately infer the evolutionary relationship of the query to the species in the

multiple alignment.

The framework behind PhyLAT is the cornerstone of all the rest problems we study.
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1.1.2 Multiple Alignment Improvement

The first problem is iterative improvement of multiple alignment quality using phylogenetic

information.

Sequence alignment is a prerequisite to nearly all downstream comparative genomic analyses,

including the identification of conserved sequence motifs, estimation of evolutionary distance

between sequences, and inference of evolutionary history of genes and species. Errors in

sequence alignment are found to have a significant negative e↵ect on subsequent inference

of sequence divergence, phylogenetic trees, and conserved motifs [76].

While there are many tools for constructing multiple alignment, there are few for refining

existing multiple alignments. Existing tools may be fast and give a good initial multiple

alignment, but the alignment quality can be improved by using more complex models, i.e., a

biologically realistic and probabilistic model. It was shown that deletions in sequences will

result in errors in several multiple sequence alignment tools using non-probabilistic scoring

schemes, i.e., ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, T-COFFEE, and

PRANK [55, 119]. It was also shown that iterative methods are more accurate than non-

iterative methods [119].

We developed an optimization algorithm to iteratively refine the multiple alignment quality.

It is a probabilistic model, using an iterative refining strategy. In each iteration, we take

out one sequence from the multiple alignment, and realign it to the rest of the sequences

using our phylogeny-aware alignment framework. We tested several strategies for picking

sequences during iterations. Experiments show that our method is more accurate than

existing methods on our test data.

1.1.3 Short Read Mapping

The second problem is phylogeny-aware short read mapping using multiple informant se-

quences.

Given a set of short reads from next-generation sequencing results, mapping them back

to their orthologous locations in a reference genome is called short read mapping [90, 132].
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This is a new problem arising with the development of next-generation sequencing techniques

[124]. Because genomes from the same species are similar to each other in terms of DNA

sequence and genome arrangement, it is relatively easy to map reads to a reference sequence

from the same species.

Although in most cases, the reference genome is from the same species as the query reads,

there are cases where interspecies mapping is necessary. One example is when such a reference

genome is not available, i.e., no individuals of the same species have been sequenced and

assembled before [126]. Another example is from metagenomics, where the reads can only

be traced back to a set of species, or the species of the reads are totally unknown. In this

case, the reads have to be classified according to their species, and then assembled within

each species [8, 86]. Another example is RNA expression estimation. It has been shown that

using read mapping to estimate the expression level is more accurate and repeatable than

using microarray [87]. In many cases, some closely related species to the newly sequenced

species have already been sequenced and assembled, which can provide useful information

for classification and assembly of the newly sequenced reads [62, 63].

With the development of next-generation sequencing techniques, short reads are obtained in

large volume every day. Most existing short read mapping tools either use a single reference

genome, or are not designed for interspecies mapping because of these tools’ limited ability to

deal with interspecies levels of divergence between read and reference. As many new species

are sequenced, methods for e�cient and accurate interspecies mapping are needed. Such

methods must use information from multiple informant species and do an alignment-based

mapping procedure, but how to model mapping problem within this scenario is still an open

problem.

We developed a model, PhyMap, to align a read to a multiple alignment allowing mismatches

and indels. Because the number of reads is huge, we developed an e�cient hashing technique

to search for promising orthologous loci in the reference multiple alignment. This alignment

framework can be easily extended to use as many informant species as we want. PhyMap

computes local alignments of a query sequence against a fixed multiple-genome alignment

of closely related species. PhyMap uses a known phylogenetic tree on the species in the

multiple alignment to improve the quality of its computed alignments while also estimating

the placement of the query on this tree. We show that our model can di↵erentiate between
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orthologous and paralogous alignments. Furthermore, we compared our method with other

popular short read mapping tools (BWA, BOWTIE and BLAST) on simulated data, and

found that our method can map more reads accurately than any one of them.

1.1.4 Genome Rearrangement Inference

The third problem is inferring genomic order of query segments using informant sequences

and phylogeny.

While many genomes have been sequenced and assembled into continuous sequences, for

some species, their genomes are partly available or cannot be assembled into continuous

sequences. One example is short read mapping. While read mapping can map reads to their

orthologous locations in related species, di↵erent reference species will give di↵erent order of

the mapped reads. Existing read assembly algorithms will produce segments of assembled

reads, without inferring their orders [95, 107]. This is because the order of othologous

segments in reference species is not the same as in the query species.

If a set of genes always appear together in a genomic block in both species, then this block

is called synteny block. Genes across synteny blocks do not always appear together. Thus

it is very di�cult to assemble segments which do not belong to the same synteny blocks.

Furthermore, breaks between synteny blocks are very common among species. For example,

synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle,

dog, opossum, and chicken) were compared at < 1 human-Mbp resolution. There are 2233

homologous synteny blocks (HSBs) [81].

To infer the order of a set of segments is NP-hard [22]. When multiple informant genomes

are available, the rearrangement information in those genomes can actually be used to infer

the rearrangement events or the order of the segments in the query species.

We give a probabilistic model of genome rearrangement. Based on that model, we develop

an MCMC algorithm to infer the order of genome segments in a query species using orders

of orthologous segments in informant species. Experiment results show that the MCMC

algorithm can converge to the optimal solution under breakpoint distance measurement. It

can find the ground-truth solution for small number of orthologous sequences. But it failed
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for large data sets. Note that the failures result from the discrepancy between the optimal

goal function value which is the overall breakpoint distance and the ground-truth solution.

The MCMC algorithm actually can find the optimal solution under the given goal function.

We prove that using any Euclidean distance metrics as the goal function of the optimization

process will result in the order of segments of the query species being the same as the order

of one of the leaf nodes in the tree, which means the optimization program just picks one

input as output under such case. We also tried a graph-based algorithm. The results show

that while the distance measurement can be well approximated by breakpoint distance, the

model of genome rearrangement needs to be refined.

1.2 Outline

This dissertation is organized as follows.

In chapter 2, we describe our model for aligning a single sequence to a multiple alignment

using a phylogeny. This model is used in all subsequent problems as well. In the multiple

alignment improvement problem, each sequence in the multiple alignment is taken out and

realigned to the rest of the multiple alignment within this framework. In the short read

mapping problem, each read is aligned to the multiple alignment within this framework,

except that the aligned sequences are much shorter than in our homology search problem.

In the genome rearrangement inference problem, the query sequences are first aligned to the

informant sequences under this framework, then the order of the query sequences is inferred

using the orders of the sequences of the informant species.

In chapter 3, we describe an optimization algorithm to iteratively refine multiple alignment

quality. We did experiments using di↵erent re-aligning strategies. Our experimental results

show that our alignment program can improve multiple alignment quality better than other

alignment programs. We also show that our algorithm is robust regardless of the optimization

order of the aligned sequences.

In chapter 4, we give a model to di↵erentiate between orthologous and paralogous alignments.

We describe our method for aligning a read to a multiple alignment allowing mismatches and

indels. We give a theoretical proof that our model can di↵erentiate between orthologous and
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non-orthologous alignments. We also give experimental results on simulated reads showing

that our alignment algorithm PhyMAP can align short reads more accurately than other

short read mapping tools.

In chapter 5, we describe a probabilistic model of genome rearrangement. Then we describe

our MCMC optimization algorithm for finding the order of query sequences using the orders

in informant species. We also prove that using any Euclidian distance measurement will

result into a degenerated solution where the inferred order of the query sequences is the

same as the order of one of the leaf nodes in the tree relating the informant species. We also

give a graph-based method for the sequence order inference problem, which can represent

the probability distribution of the order of the query sequences.

In chapter 6, we give a summary of the content of this dissertation. We briefly describe our

works and results. We discuss prospects for future work.
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Chapter 2

A Probabilistic Alignment Model for

Multiple Alignment

In this chapter, we describe our framework for aligning a single query sequence to an existing

multiple alignment. We will first introduce the background of the problem, then give detailed

description of our model. This model is the basis for addressing all the problems studied in

this thesis.

2.1 Background

The proliferation of high-throughput DNA sequencing has produced a huge amount of ge-

nomic DNA sequence, including genomes from many higher eukaryotes. Intensively studied

clades of organisms – such as mammals, Drosophila fruit flies, and worms of the genus

Caenorhabditis – are now typically represented in public databases by complete or partial

genomes of multiple species. A group of closely related genomes can be combined into a

large-scale multiple alignment of orthologous sequences [19, 20, 172].

Building a high-quality multiple-genome alignment requires a large investment of computa-

tional resources and curation time, particularly if the alignment will become a reference for

future users. We would therefore like to amortize this investment by e↵ectively utilizing in-

formation present in the alignment that is not readily available from its component genomes.

Multiple-genome alignments are commonly used to interrogate a clade’s evolutionary history
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[37], often with the help of a phylogenetic tree on the component species, or to discover ge-

nomic loci of unusually high conservation [9] or unusually fast change [18]. However, they

are rarely used to augment one of the most common operations in bioinformatics: aligning

a new sequence to an existing reference.

In principle, using a reference multiple alignment, rather than any one of its component

genomes, to align a query sequence should result in a more accurate alignment, since the

aligner can use the pattern of conservation at each position to more accurately determine

which query base corresponds to which multiple alignment column. Moreover, given a phy-

logenetic tree relating the species in the reference, an aligner should be able to use standard

probabilistic models of evolution to compare the likelihoods of possible alignments, rather

than resorting to an arbitrary scoring system. In fact, alignment could even infer the evo-

lutionary relationship of the query to the reference, placing it on the tree of the reference’s

species.

In practice, however, most widely used alignment tools either cannot use reference multiple

alignments or cannot do so in a phylogenetically aware way. BLAST [6] and other accelerated

variants of Smith-Waterman [150] are widely used for pairwise sequence comparison, but

these methods compare only individual sequences. PSI-BLAST [6] creates an alignment

between a query and a profile computed from a database of individual reference sequences.

However, the construction of the profile does not take into account phylogenetic information,

so it does not weigh each reference sequence in a phylogenetic-aware way. HMMER [44, 45,

47] and SAM [70] can align a sequence to a preexisting multiple alignment, if it is generalized

to a profile hidden Markov model, but even these tools use only statistical conservation at

each position, rather than phylogenetic information, to perform alignments.

There are tools for de novo multiple sequence alignment using trees to improve alignment

quality. The classic CLUSTAL [159] software uses a guide tree to align multiple sequences.

More recent tools, such as POY [162], can align sequences given a tree or jointly compute

a multiple alignment and a supporting phylogeny. However, these tools cannot as a rule

incrementally update a multiple alignment and its associated tree starting from pre-existing

references, which is the computation needed to align a query sequence to a multiple alignment

database. Moreover, the high cost of de novo multiple alignment limits the computation-

ally feasible methods that these tools can employ. PaPaRa [12], unlike the tools described
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above, uses a guide tree to map queries, in particular short reads, to an existing multiple

alignment, but it does not score or improve the resulting alignments probabilistically given

the phylogeny. Practical implementation of high-throughput pairwise alignment between a

query sequence and database of reference multiple alignments with phylogenetic information

therefore remains an open problem.

Classical results from phylogeny [173] give the theory needed to construct a maximum-

likelihood alignment between a query sequence and a reference multiple alignment, provided

that neither query nor reference contains gaps. This theory can be extended to allow the

query to contain bases that are not homologous to any reference position or vice versa;

for example, Siepel and Haussler describe such an approach for phylogenetic HMMs [145].

However, multi-genome reference alignments typically include columns with both bases and

gaps, which may in fact be homologous to certain query bases. Finding a reasonable way to

evaluate the likelihood of such putative homologies is a di�cult problem. This fundamental

issue, as well as assorted technical details needed to adapt any alignment algorithm to

BLAST-like high-throughput use, make the construction of a fast, phylogenetically informed

tool nontrivial.

2.2 The PhyLAT Alignment Framework

2.2.1 Overview

In this section, we describe PhyLAT (the Phylogenetic Local Alignment Tool) [155], a tool

for rapidly aligning a query DNA sequence to a database of multi-genome reference align-

ments. PhyLAT combines BLAST-style seeding and extension heuristics with a EM-like,

phylogenetically aware back-end alignment algorithm. We score alignments to references

containing gaps using a model that is simplified enough for e�cient implementation but

disallows alignment hypotheses that are demonstrably impossible given the pattern of gaps

in the reference. We show that PhyLAT produces results in protein-coding regions of mam-

malian genomes that are better supported by external evidence than the results of pairwise

alignment, and that our tool can accurately infer the evolutionary relationship of the query

to the species in the multiple alignment.
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Figure 2.1: Structure of PhyLAT algorithm. Not shown is the o✏ine preprocessing of the
database to compute its consensus and parameterize a mutation model at each position.

PhyLAT is built around an EM-like algorithm that simultaneously computes an alignment

between a query sequence and a multiple alignment and predicts the placement of the query

on the tree associated with the multiple alignment. The algorithm iteratively refines query

alignment and branch placement until both have converged. To accelerate this core alignment

algorithm, we adopt a BLAST-like seed generation and extension heuristics (see supplemen-

tary methods). We use the evolutionary consensus sequence of the multiple alignment to

rapidly generate pairwise seed alignments, filter these seeds by E-value, and finally apply the

core algorithm to each seed. The structure of the aligner is illustrated in Figure 2.1. The

key contribution of PhyLAT is the use of the new underlying alignment model, which will

be applied to later problems as well, and its e�cient implementation.

Problem formulation for final alignment stage

Let M be a database composed of a multiple alignment of n orthologous DNA sequences.

The species from which the DNA sequences are drawn are related by a phylogenetic tree

⌧ , whose n leaves correspond to the n species. Each branch i in the tree has a length l
i

,

which is the evolutionary distance between the two endpoints of the branch. To convert

these branches to transition probabilities, we use a mutation rate matrix Q, similar to the

extended Tamura-Nei model [105, 157], that we estimate from the columns of M . We chose

this Tamura-Nei-like model because it has a simple form with few parameters to estimate.

In fact, PhyLAT can use arbitrary, non-time-reversible mutation models.

Given a query DNA sequence q, we want to find all high-scoring local alignments between q

and M . We use a seed-and-extend procedure, described in the next section, to choose short

substrings of q and subregions of M to align. For each such chosen pair, an alignment A is
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Figure 2.2: An example of augmented phylogenies. The phylogeny on the left is the original,
while the rest are its four possible augmented phylogenies. Each augmented phylogeny is
actually a family of trees with two parameters l

0

and l
1

, which are the length of the new
branch and its attachment site to its parent branch.

chosen to maximize a likelihood

Pr(q,M |A, ⌧). (2.1)

Here, we assume that all possible alignments of q and M are a priori equally likely and

choose the most likely one given the data and the tree.

Computing the complete-data likelihood for an alignment A requires that we know where

the query is placed on ⌧ relative to the sequences of M . We assume that we do not have

this information; instead, we sum over all possible augmented tree topologies ⌧ ⇤
i

that add

the query to a given branch on ⌧ , as shown in Figure 2.2:

Pr(q,M |A, ⌧) =
X

i

Pr(q,M, ⌧ ⇤
i

|A, ⌧).

For compactness of notation, we drop the explicit dependence of Pr(q,M |A, ⌧) on the fixed

tree ⌧ in subsequent sections.

EM computation of optimal local alignment

Alignment of a query to a reference starts with seed generation, which produces initial

ungapped seed alignments between the query and one or more reference regions. Details

of seed alignment generation are given later in this chapter. For each seed alignment, we

perform gapped extension. Initially, we apply this final alignment stage to a region of the

query and database of length 20. To allow for final alignments of varying lengths, we retry the

14



computation on regions whose size is progressively doubled until doing so does not improve

the final alignment score.

We now describe the EM algorithm used to compute the final local alignment A for given

regions of q and M , as well as the probabilities of the augmented phylogenies ⌧ ⇤
i

. First, we

define a set of indicator variables {x
i

} for each possible augmented phylogeny:

x
i

=

(
1 if augmented topology is ⌧ ⇤

i

0 otherwise.

In this EM model, the known data are M and q (and the tree ⌧), while the latent variables

are the x
i

’s. The unknown parameter of the model is the alignment A. The EM algorithm

iteratively refines an initial guess A(0) at the alignment A while simultaneously inferring

a distribution over the position of q in the phylogeny. The mth iteration starts with an

alignment A(m�1) computed in the previous iteration. In the E-step of the iteration, the

algorithm computes the expectation of each x
i

:

x̂
i

= Pr(x
i

= 1|q,M,A(m�1)) . (2.2)

In the M-step, the algorithm computes a new alignment A(m) to maximize the expected

log-likelihood function:

A(m) = argmax
A

X

i

x̂
i

log Pr(q,M |x
i

= 1, A) . (2.3)

Each iteration improves the likelihood of A and recomputes the distribution of the query’s

position in the tree. Finally, a local optimal point is reached, and the algorithm reports

both a final alignment and an associated probability distribution over possible augmented

tree topologies.
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Assuming that the residues of q are stochastically independent, as are the columns of M , we

can decompose the probability of the data given a tree placement and alignment as

Pr(q,M |x
i

= 1, A) =
|A|Y

j=1

Pr(y[j], Z[j]|x
i

= 1) · Pr
y 62q0

(y) Pr
Z 62M 0

(Z|⌧), (2.4)

where y[j] and Z[j] are a residue in q and column in M , respectively, from the jth column

of alignment A, and q0 and M 0 are the aligned regions of q and M respectively.

Computation of per-column probability

In both the E-step and the M-step, we need to compute the probability of an aligned query

position and multiple alignment column given an augmented tree. The details of how this

probability is computed determine the accuracy and e�ciency of our algorithm. We introduce

two key innovations for this task: treatment of alignment gaps in a way that is informed by

the tree ⌧ , and caching of subtree probabilities to accelerate the computation.

Further details of the per-column computation are given later in this chapter.

Treatment of gaps

An alignment of a query q to multiple alignment M may include gaps in either of q or M , or

it may align a base of q to a column of M that contains both bases and gaps. To e�ciently

estimate the probabilities associated with such alignments, we need a gap model that is fast

yet incorporates meaningful information about the alignment M . We consider two kinds of

gaps. The first kind, the “local” gap, is assumed to arise as a series of single-base indels,

while the second, the “global” gap, arises through a mutation that adds, deletes, or moves

many contiguous bases at once. Local gaps are modeled using a single-base indel model,

while global events may require a more complex model. In our work, we use the local model

for sequence gaps of length  20; gaps longer than this are treated as missing data in the

species where they occur. We note that this threshold was not empirically tuned to our test
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data but rather was an a priori estimate of the threshold between local and global indel

events.

A very simple local indel model used in some work, including our own earlier work on

PhyLAT [29], treats a gap as a fifth residue that can freely interconvert with A, C, G, and

T. However, such treatment is inappropriate because, when we score an alignment column

using a phylogeny, all observed residues are at the leaves in the tree. To compute the

probability of the column, we sum over all possible labelings of the tree’s internal nodes,

which describe possible histories of insertion and deletion. Unfortunately, these labelings

may include some histories that are biologically meaningless because they imply that aligned

residues are nonhomologous. The models of [105] also have the problem of illegal labelings.

Other models exist that consider only legal indel histories for a given phylogeny [36, 41, 42].

However, the tools using these models are computationally expensive in practice because

they enumerate all possible labelings. Moreover, these models consider only whether there

is a base or gap at an inner node, disregarding the identity of the base. The model of [161]

considers only legal labelings, but it still requires a time-reversible mutation model.

The current version of PhyLAT uses a gap model that recognizes that gaps cannot inter-

convert freely with residues in a phylogeny. Our model imposes two constraints. (1) Once

a residue is deleted (converted to gap) on a branch, it cannot later be inserted, because the

inserted residues are not homologous to the original residue. See Figure 2.3A. (2) If any in-

ternal node of the tree has a gap, then only one of its children can have a residue (insertion);

the other one must have a gap. See Figure 2.3B. Note that once a residue is inserted, it can

afterwards be deleted.

PhyLAT’s per-column probability computation, while based on a simple mutation rate ma-

trix Q (described in Methods) that nominally treats a gap as a fifth residue, sums over

only those configurations of internal residues that are consistent with the two constraints

given above. This excludes impossible indel histories that would otherwise contribute to the

computed alignment probability.
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Figure 2.3: (A) If residue A1 is deleted and A2 is then inserted, A1 and A2 should not be
considered homologous. This case is not allowed in our model. (B) If insertions occur on
both child nodes, then residues A1 and A2 should not be considered homologous. This case
is not allowed in our model.

2.2.2 Generation and refinement of seed alignments

PhyLAT identifies candidate alignments between the query and the database using a BLAST-

like seeded alignment approach that is designed for pairwise alignment of two sequences.

Each candidate local alignment becomes an input to the general problem described above.

To generate candidates, we first reduce the multiple alignment M to its most likely ancestral

sequence, using the aforementioned Tamura-Nei-like mutation model. We first hash all 20-

mers in the ancestral sequence, then go through the query to find all locations of 20-mers

which are present in the hash table. We choose 20 because this length is suitable for whole-

genome alignment and is also the default seed length in MegaBLAST [177]. We then perform

ungapped extension at each seed location using the DNAPAM-50 scoring matrix [28, 40]. We

chose DNAPAM-50 according to the distances among the species in the multiple alignment

used in our experiments; other matrices could be used for other databases. We retain those

seeds whose ungapped alignment scores pass an E-value threshold of 10 as determined by

ungapped Karlin-Altschul statistics [68]. These seeds are passed to the next phase of gapped

extension.
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2.2.3 Computation of per-column probability

There are many scoring functions [168, 175], but none of them take into account phylogenetic

information. Assuming that the residues of q are stochastically independent and so are the

columns of M , we have

Pr(q,M |A, ⌧ ⇤) =
|A|Y

j=1

Pr(y[j], Z[j]|⌧ ⇤) ·
Y

y 62q0
Pr(y)

Y

Z 62M 0

Pr(Z|⌧) (2.5)

where q0 and M 0 form the alignment in A, and ⌧ ⇤ is a tree obtained by adding q to a branch

in the tree ⌧ . When the placement of the query in the phylogeny is known, this information

can be used as a priori knowledge in our algorithm. When this is unknown, we set the initial

length of the branch leading to the query to 0.1, and set the placement of the new branch

on the middle point of the branch where the new branch is placed.

Computation of per-column probabilities in the original phylogeny

In order to keep track of insertions and deletions in the phylogeny, for each node in the

phylogeny, we define several probabilities of observing the residues at leaves due to di↵erent

evolutionary histories. For convenience, we use the following definitions and notations.

Definitions and Notations: We use c and r to denote a node in the phylogeny and the

residue at the node, respectively.

Z
r

denotes the residues at leaves.

Pr
ID

(leaves = Z
r

|c = r) denotes the probability of observing Z
r

with only insertions followed

by deletions and substitutions allowed.

Pr
S

(leaves = Z
r

|c = r) denotes the probability of observing Z
r

with only substitutions

allowed.

Pr
D

(leaves = Z
r

|c = r) denotes the probability of observing Z
r

with only deletions and

substitutions allowed.

sub(X) = {A,C,G, T} for X 2 {A,C,G, T}
sub(X) = � for X = �
ins(X) = {A,C,G, T} for X = �
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Figure 2.4: (A) An augmented phylogeny. (B) The original phylogeny. The probabilities at
the node r can be computed from probabilities at its two children.

ins(X) = ; for X 2 {A,C,G, T}
del(X) = {�} for X 2 {A,C,G, T}
del(X) = ; for X = �

We compute Pr
ID

, Pr
S

and Pr
D

recursively as following.

Pr
S

(Z
r

|r) (2.6)

=
X

a2sub(r)

X

b2sub(r)

Pr
S

(a|r)Pr
S

(b|r)Pr
S

(Z
a

|a)Pr
S

(Z
b

|b)
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Pr
D

(Z
r

|r) (2.7)

=
X

a2sub(r)

X

b2sub(r)

Pr
S

(a|r)Pr
S

(b|r)Pr
D

(Z
a

|a)Pr
D

(Z
b

|b)

+
X

a2sub(r)

X

b2del(r)

Pr
S

(a|r)Pr
D

(b|r)Pr
D

(Z
a

|a)Pr
S

(Z
b

|b)

+
X

a2del(r)

X

b2sub(r)

Pr
D

(a|r)Pr
S

(b|r)Pr
S

(Z
a

|a)Pr
D

(Z
b

|b)

+
X

a2del(r)

X

b2del(r)

Pr
D

(a|r)Pr
D

(b|r)Pr
S

(Z
a

|a)Pr
S

(Z
b

|b)

Pr
ID

(Z
r

|r) (2.8)

=
X

a2sub(r)

X

b2sub(r)

Pr
S

(a|r)Pr
S

(b|r) · (Pr
ID

(Z
a

|a)

Pr
M

(Z
b

|b) + Pr
M

(Z
a

|a)Pr
ID

(Z
b

|b)

�Pr
M

(Z
a

|a)Pr
M

(Z
b

|b))

+
X

a2ins(r)

X

b2sub(r)

Pr
I

(a|r)Pr
S

(b|r)Pr
D

(Z
a

|a)Pr
S

(Z
b

|b)

+
X

a2sub(r)

X

b2ins(r)

Pr
S

(a|r) Pr
I

(b|r)Pr
S

(Z
a

|a)Pr
D

(Z
b

|b)

+
X

a2sub(r)

X

b2del(r)

Pr
S

(a|r)Pr
D

(b|r)Pr
S

(Z
a

|a)Pr
S

(Z
b

|b)

+
X

a2del(r)

X

b2sub(r)

Pr
D

(a|r)Pr
S

(b|r)Pr
S

(Z
a

|a)Pr
S

(Z
b

|b)

+
X

a2del(r)

X

b2del(r)

Pr
D

(a|r)Pr
D

(b|r)Pr
S

(Z
a

|a)Pr
S

(Z
b

|b)

Note that in the above equations r can be a residue or gap. We write so in order to

give general forms. In specific cases, some terms in the equations will be empty.
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Computation of per-column probability in augmented phylogeny

To compute the probability for an augmented phylogeny, we decompose the tree into three

parts: the part above the augmented branch, the augmented brach with its neighboring

branches, and the part below the augmented branch. These probabilities are precomputed

and dynamically combined when computing the probability of the augmented phylogeny.

If r 2 {A,C,G, T},

Pr
ID

(y, Z
r

|r)

=
X

c2⌃

(Pr
D

(Zc

r

|r)(
X

d2del(c)

Pr
D

(d|c)Pr
S

(Z
d

|d)

+
X

d2sub(c)

Pr
S

(d|c) Pr(Z
d

|d))

(
X

b2del(c)

(Pr
D

(b|c)Pr
S

(y|b)
X

a2sub(b)

(Pr
S

(a|b)Pr
S

(Z
a

|a)))

+
X

b2sub(c)

(Pr
S

(b|c)Pr
D

(y|b)
X

a2⌃

(Pr
D

(a|b)Pr
D

(Z
a

|a)))))
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If r = �,

Pr
ID

(y, Z
r

|r)

=
X

c2{A,C,G,T}

[Pr
ID

(Zc

r

|r)(
X

d2⌃

Pr(d|c)Pr
D

(Z
d

|d))

·
X

b2⌃

(Pr(b|c)Pr
D

(y|b)
X

a2⌃

(Pr
D

(a|b)Pr
D

(Z
a

|a)))]

+ Pr
S

(Zc

r

|c)((
X

d2{A,C,G,T}

Pr(d|c)Pr
D

(Z
d

|d)) · Pr(b = �|c)

Pr(a = �|b) Pr(y = �|b)Pr
S

(Z
a

|a))

+ Pr
S

(Zc

r

|c)(Pr(d = �|c)Pr
S

(Z
d

|d)(
X

b2{A,C,G,T}

Pr(b|c)

Pr
D

(y|b)
X

a2⌃

Pr(a|b) Pr(Z
a

|a)))

+ Pr
S

(Zc

r

|c)(Pr(d = �|c)Pr
S

(Z
d

|d) Pr(b = �|c) Pr(y|b)

Pr(a = �|b)Pr
S

(Z
a

|a))

+ Pr
S

(Zc

r

|c)(Pr(d = �|c)Pr
S

(Z
d

|d) Pr(b = �|c)Pr
S

(y|b)

(
X

a2{A,C,G,T}

Pr(a|b)Pr
D

(Z
a

|a)))

+ Pr
S

(Zc

r

|c)(Pr(d = �|c)Pr
S

(Z
d

|d) Pr(b = �|c)Pr
S

(y|b)

Pr(a = �|b)Pr
ID

(Z
a

|a))

In the equation above, Pr(Zc

r

|r) denotes the probability of observing all the leaves in the

tree rooted at r and considering the inner node c as a leaf. This is pre-computed using

equations in the previous section. In this equation, the first term in the summation gives the

probability of an insertion before c. The second term gives the probability of an insertion at

(c, d). The third term gives the probability of an insertion at (c, b). The fourth term gives

the probability of an insertion at (b, y). The fifth term gives the probability of an insertion

at (b, a). The sixth term gives the probability of an insertion after a.
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Figure 2.5: Computation of per-column probability. The probabilities of subtrees rooted
at a and d are precomputed. We also precompute the probability of the tree rooted at r
considering c as a leaf. During each EM iteration, we optimize l

0

and l
1

. To compute the
probability of the whole tree, we just need to combine the precomputed probabilities with
the probabilities of edges (c, d), (c, b), (b, a), and (b, y).

Accelerating the per-column computation

Computing the probability associated with a leaf labeling of a large phylogeny, especially

using the enhanced treatment of gaps described above, can be computationally expensive.

To avoid enumerating all possible labelings, we developed a caching technique and a dynamic

programming algorithm that can reduce the computational cost exponentially. To minimize

the cost of this computation, we decompose the augmented phylogeny into subtrees for which

we may precompute probabilities for every possible leaf labeling in a bottom-up fashion, then

cache the probabilities for all such labelings in tables stored in the nodes of the augmented

phylogeny. To compute a per-column probability, we combine the cached probabilities, which

depend on the residues in the alignment column, with terms describing the contribution of

the query residue, as illustrated in Figure 2.5.

Computational complexity

Subtree caching trades a nontrivial (but manageable) space cost for a substantial speedup

gained by not having to recompute probabilities from scrach for each alignment column.

The precomputed values are stored in tables of total size O(|⌃|n+1) where n is the number
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G

↵⇡
T

G �⇡ ↵⇡
A

�⇡
C

· �⇡
T

T �⇡ �⇡
A

↵⇡
C

�⇡
G

·

Table 2.1: Mutation rate matrix Q. ⇡
r

is the background frequency for residue r in M .

of species in the tree. Using a bottom-up approach to fill the tables for each node in the

tree, precomputation requires only constant time per table cell.

During the EM algorithm, the per-column probability computation for each augmented tree

uses the precomputed values plus a computation at the augmented branch. In the E-step,

the algorithm runs over all the columns in the alignment A for each possible augmented tree,

so the time cost is just O(n · |A|). In the M-step, the algorithm uses banded linear-space

Smith-Waterman. The time cost is O(W · |q|), where W is the width of the band and q is

the query.

2.2.4 Mutation model

The mutation matrix used in our method is shown in Table 2.1. The three free pa-

rameters ↵, �, and � correspond to instantaneous rates of transitions, transversions, and

indels. Although our mutation rate matrix is time-reversible, our algorithm to estimate the

parameters in this model does not rely on this property, nor does our probabilistic model

for computing alignments between q and M . Hence, our algorithms can be directly used on

general non-time-reversible models [174].
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2.3 Experimental Results

We have implemented PhyLAT in the C++ language, using the TAO optimization package

[10] to estimate maximum-likelihood values for the edge-length parameters l
0

and l
1

shown

in Figure 2.2. In this section, we interrogate the result quality of PhyLAT.

We tested PhyLAT’s accuracy on three queries: human chromosome 22, C. elegans chromo-

some 3, and D. melanogaster chromosome 4, each aligned to a database of multiple genome

alignments for related species. Here, we present only the human results, which are represen-

tative of our tool’s qualitative performance vs. competing aligners; the other experiments’

results are described in our supplementary material. We aligned human chromosome 22

(assembly hg19, GRCh37) against a whole-genome alignment of five mammals (shown in

Figure 2.6) from the UCSC genome database [20, 72], which was assembled using human

chromosome 22 as the reference sequence. We also tested the accuracy of tree placement by

aligning opossum to a di↵erent five-species tree from the UCSC database.

Bushbaby

Rhesus

Guinea Pig

Rat

Cow

Figure 2.6: Phylogeny of the species in the multiple alignment. Branch lengths are propor-
tional to evolutionary distances.

Accuracy of DNA alignment of human chromosome 22

Currently, there are no good methods to evaluate absolute accuracy of arbitrary multiple

alignments of DNA sequence [73, 76, 127]. However, protein-coding regions are gener-

ally stable and can be translated to protein and aligned by a protein aligner, producing

alignments of generally higher quality than those obtained from DNA alone. We therefore
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#sequences #alignments #orthologous %orthologous %identical

2 982 797 81.16% 53.65%
3 383 316 82.51% 46.89%
4 553 477 89.49% 52.89%
5 726 704 96.97% 59.38%

Total 2644 2294 86.76% 53.83%

Table 2.2: E↵ect of using multiple alignment on improving orthology detection. # sequences :
number of species present in the aligned multiple alignments. # alignments : number of Phy-
LAT alignments. # orthologous : number of orthologous PhyLAT alignments. % orthologous :
# orthologous/# alignments. % identical : percentage of PhyLAT columns containing iden-
tical bases. The more database species present at a locus, the greater the percentage of
alignments involving orthologous sequences.

validated PhyLAT’s alignment quality by examining local alignments involving annotated

coding sequences. We used the UCSC database’s reference alignment between human and

the other five species as our ground truth for orthology relationships among our sequences.

Table 2.2 illustrates one benefit of using multiple species for recovering alignments between

the query and orthologous sequences in the database. We divided the alignments found

by PhyLAT according to the number of species (up to five) with sequence at the locus

of the alignment in the database. The more species present in the database at a given

locus, the higher the probability that an alignment at that locus aligns the query to orthol-

ogous sequences. We note that alignments with more species present are not systematically

better-conserved than those with fewer species; indeed, aligned regions with only two aligned

sequences had higher identity on average than those with three or four. Nevertheless, the

fraction of query sequences aligned to their orthologous regions in the multiple alignment

increased monotonically with the number of species present.

Validation of DNA alignment by protein alignment

To estimate the likely accuracy of PhyLAT’s alignments in coding DNA, we extracted and

translated the sequences it aligned, then used a protein multiple aligner to realign them,

and finally checked whether the DNA alignment inferred from the aligned proteins matched
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PhyLAT’s alignment. Because protein alignment uses information not available to a DNA

aligner, we expect that it will yield more accurate results in general; hence, concordance be-

tween the DNA and protein alignments acts as a proxy for the (unknown) absolute accuracy

of the DNA alignment.

From PhyLAT’s DNA alignments involving orthologous sequences, we first extracted those

portions that covered protein-coding regions (as annotated in the UCSC database). For

each such alignment between a DNA query q and a multiple alignment of k DNA sequences

s
1

. . . s
k

, PhyLAT’s output induces pairwise protein alignments A
i

between the translation

of q and that of each s
i

. We compared the induced alignments A
i

to alignments A0
i

obtained

by first translating q and s
i

independently, then aligning the two resulting protein sequences

using a protein-specific alignment tool. A codon in a query was considered “accurately

aligned” to the database if and only if, for 1  i  k, A
i

agreed with the corresponding,

independently derived A0
i

over that codon. We repeated this experiment using four di↵erent

protein aligners – ClustalW [159], DIALIGN [112], Muscle [48], and T-Co↵ee [117] – and

obtained substantially similar results with each. Additional validation would be possible by

comparing our results to, e.g., structural superposition of the aligned proteins. However,

such superpositions are already known to agree closely with protein aligners’ output on

mammalian proteins [14], so we did not pursue this extra validation step.

The first part of Table 2.3 shows PhyLAT’s accuracy on our test set using ClustalW as the

protein aligner. Over 97% of query codons aligned by the algorithm were accurately aligned

to the database by our measure. Moreover, PhyLAT’s alignments covered more than 99%

of all annotated codons in the multiple alignment, so this accuracy applies to essentially all

the coding sequence that could possibly be aligned.

We further subdivided the protein-coding region of the database to identify regions where

the protein multiple alignment induced by the DNA multiple alignment of s
1

. . . s
k

was

inconsistent with the result obtained by independently translating each of s
1

. . . s
k

, then

aligning the resulting sequences using a protein multiple aligner. Such regions are more

likely to be misaligned in the database, which in turn provides bad information to PhyLAT’s

aligner. For the 84% of codon positions in the database that were consistent by the above

criterion, PhyLAT’s accuracy was well over 99%.
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An alternative to PhyLAT’s approach would be to align the query to a single, representative

DNA sequence instead of a DNA multiple alignment. For example, one might align our

human query to one of the multiple alignment’s component species’ genomes, or to the

evolutionary consensus of these genomes given the tree. We therefore investigated whether

such pairwise alignments, as realized by the widely used BLAST software (v2.2.23+) [30],

could match the accuracy and coverage obtained by PhyLAT.

It was not computationally feasible to BLAST the entirety of human chromosome 22 at

once against a database sequence as long as our multiple alignment. Instead, for each

homologous PhyLAT alignment of query segment q and database segment M , we extracted

the collinear block B in UCSC’s multispecies multiple alignment that contained q and M .

We then used BLAST to align q to each individual sequence in B, or to its evolutionary

consensus. If BLAST returned more than one local alignment between a query and a block,

then we retained all such alignments. Finally, we evaluated the collection of induced BLAST

alignments in protein coding regions of the query using the same accuracy and coverage

measures described above. Note that accuracy for a pairwise BLAST alignment of two

coding DNA sequences is determined by agreement with a single pairwise protein alignment

between them, whereas for PhyLAT, all induced pairwise alignments must agree with the

protein aligner’s results.

The second part of Table 2.3 shows the results of using BLAST pairwise alignments, rather

than PhyLAT’s approach, on our human to mammalian alignment task. For species other

than rhesus, the closest to the human query, per-codon accuracy of the pairwise alignments

was inferior to PhyLAT’s. Aligning to the consensus actually lowered accuracy compared to

two-species alignments. Moreover, the pairwise alignment sets covered fewer codons in the

original multiple alignment than did PhyLAT’s output. This lower coverage arises because

not all species had sequence at every point in the reference multiple alignment. Hence, even

aligning human to rhesus, which produced alignments to nearly 100% of the codons in the

rhesus sequence, yielded less than 92% coverage of all codons in the multiple alignment.

Overall, PhyLAT produced alignments with accuracy comparable to using BLAST to search

against the best single reference species from the multiple alignment, while o↵ering substan-

tially improved coverage because of the availability of multiple species to cover assembly or

homology gaps left by any one species’ genome.
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We also compared PhyLAT with other commonly used multiple alignment tools, including

POY, MAFFT [71], MUSCLE , CLUSTAL, and PaPaRa [12]. Because these programs

produce multiple alignments, which include all input sequences, it is not proper to feed the

whole reference sequences and query to them to produce genome-scale multiple alignments.

Instead, we use homologous segments from the reference sequences and the query where

PhyLAT finds alignments. The results are shown in Table 2.3. Note that because we do

global alignments on the input, these aligners aligned all the input codons.

Tree placement of human sequences

Another measure of PhyLAT’s accuracy is whether it placed each query sequence in its correct

location on the tree of the species in the database. For the local alignments of orthologous

sequences in our test set, EM should place the human query in its accepted location relative

to the other, non-human mammalian species with a high posterior probability while assigning

low probabilities to incorrect placements.

Although some methods are available for comparing two trees with branch lengths [122],

there is not an acknowledged standard on correct branch lengths for a given phylogeny. We

therefore assessed only whether the most likely placement of the query in each local alignment

was topologically correct, i.e. was the human sequence placed on the branch leading to rhesus,

or to some other branch?

Figure 2.7 shows how many alignments placed the human sequence on each branch of the

phylogeny with highest probability. 88.7% of alignments correctly placed the human sequence

adjacent to rhesus. If we add in “almost correct” placements (defined as branch placement

adjacent to the correct one), the fraction of such placements rises to 95.2%.

We also compared PhyLAT’s accuracy with that of tools whose results include a branch

placement for the query sequence, including POY, RAxML [151], EPA [11], pplacer [104]

and PaPaRa [12]. Because all these programs need multiple alignments to do prediction, we

used only orthologous informant sequences and queries as the input. Because gene trees may

be di↵erent from species trees, in order to assess branch placement accuracy, we also divided

the placements into two categories: those whose informant trees matched the trees built by

PHYLIP [49] from MAFFT alignments of the sequences, and those whose informant trees
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#aligned #accurate accuracy #total coverage coverage
in species in MA

PhyLAT whole MA 16404 15956 97.27% 16445 - 99.75%
consistent MA 13487 13414 99.46% - - -

inconsistent MA 2917 2542 87.14% - - -

BLAST Cow 12384 11607 93.73% 15129 81.86% 75.31%
Guinea Pig 12306 11667 94.81% 16159 76.16% 74.83%
Bushbaby 10732 9748 90.83% 12527 85.67% 65.30%

Rhesus 15066 14700 97.57% 15077 99.93% 91.61%
Rat 11503 10597 92.12% 15787 72.86% 69.95%

consensus 16174 14420 89.16% 16445 - 98.35%

POY whole MA 16445 14556 88.51% 16445 - 100.00%
consistent MA 13502 12423 92.01% - - -

inconsistent MA 2943 2133 72.48% - - -

MAFFT whole MA 16445 15600 94.86% 16445 - 100.00%
consistent MA 13502 13122 97.19% - - -

inconsistent MA 2943 2442 82.98% - - -

MUSCLE whole MA 16445 15181 92.31% 16445 - 100.00%
consistent MA 13502 12911 95.62% - - -

inconsistent MA 2943 2270 77.13% - - -

CLUSTAL whole MA 16445 15238 92.66% 16445 - 100.00%
consistent MA 13502 13044 96.61% - - -

inconsistent MA 2943 2194 74.55% - - -

PaPaRa whole MA 16445 15296 93.01% 16445 - 100.00%
consistent MA 13502 13091 96.96% - - -

inconsistent MA 2943 2205 74.92% - - -

Table 2.3: Comparison among PhyLAT alignments, BLAST pairwise alignments, and align-
ments of other phylogeny-aware tools. # aligned : total # of codons in query aligned to the
database; # accurate: number of aligned codons in previous column that are aligned the
same by DNA and protein aligners; accuracy : ratio of accurate to aligned codons; # total :
total number of codons present in the indicated sequence; coverage in species : total number
of codons in species’ sequence covered by query alignments; coverage in MA: total number
of codons in entire multiple alignment database covered by query alignments.
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Figure 2.7: Tree placements for all human query sequences. The correct location of the
query is on the branch leading to rhesus. Each branch is labeled with the number of queries
placed on that branch, as well as the percentage of all queries that this number represents.

#correct in #correct in #total correct overall accuracy
congruent incongruent

PhyLAT 1452 641 2093 91.72%
POY 1 0 1 0.04%
RAxML 669 599 1268 55.57%
EPA 650 634 1284 56.27%
pplacer 731 695 1426 62.49%

Table 2.4: Tree placement of orthologous human query sequences. There are 1558 congruent
informant trees and 641 incongruent informant trees.

were incongruent with their PHYLIP trees. The results are shown in Table 2.4. PhyLAT’s

placement accuracy was substantially greater, both absolutely and relative to its competitors,

when the informant sequences matched the supplied phylogeny. We note that POY has only

one correct placement; this is because it builds an entirely new tree on the input sequences

instead of just inserting the query species into the existing tree of informant species. We

provided the informant phylogeny as input restrictions on the tree topology, but POY used

it only as a starting tree and failed to produce output trees consistent with these restrictions.

We further investigated how confident PhyLAT typically was about its branch placements.

A confident placement has the vast majority of the probability mass, with little probability

assigned to other hypotheses, while an low-confidence placement distributes the probabil-

ity more equally across branches. We computed the entropy for the posterior placement

distribution of each query, summarizing these entropies in a histogram in Figure 2.8. For

most correct branch placements, PhyLAT was highly confident about its predictions, while
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Figure 2.8: Histograms of entropies (in bits) of posterior branch placement distributions.
Because there are 8 possible values for the branch placement, the entropy is in interval [0,3].
The smaller the entropy, the more concentrated the probability distribution, and the more
confidence PhyLAT has in the branch placement.

confidence for incorrect predictions was typically lower. For almost-correct placements, the

ratio of high- to low-confidence placements is close to even. We could detect and reject most

incorrect placements, with relatively few false rejections, by rejecting any placement with an

entropy over 0.25 bits.

The absolute accuracy of tree placement for our experiments on C. elegans andD. melanogaster

was considerably lower than for our mammalian alignment – between 40 and 50%. However,

as in the mammalian case, PhyLAT’s results were more accurate than those of compet-

ing tools that gave placement information in their output. Details may be found in our

supplementary material.

Tree placement of the opossum species

In spite of the fact that phylogenetic relations of existing species have been explored exten-

sively, many relations remain missing, and many are being modified constantly. In a recent

update of the phylogenetic tree of 46 species from the UCSC database, 35 species changed

33



their tree placements [130]. One example of such a change was the movement of opossum

from relatively near the root of the mammalian phylogeny to a location much closer to other

marsupials such as wallaby.

As a further test of PhyLAT on a di↵erent data set, we aligned opossum chromosome X to

a 5-species multiple alignment from the UCSC genome database. PhyLAT produced 931

local alignments, with branch placements of the opossum queries as shown in Figure 2.9.

Assuming, as in the revised UCSC tree, that the correct placement is on the branch to

wallaby, 63.3% of queries were placed correctly, while 81.3% were placed correctly or almost

correctly. In contrast, the number of queries placed at opossum’s old location in the tree

was only 6.3%. This example shows that PhyLAT’s placement probabilities can be useful

for discovering inconsistencies with an accepted phylogeny.

Frog
Wallaby

Dog
Mouse

Human58, 6.4%
6, 0.67%

32, 3.6%
570, 63%

41,4.6%

57, 6.3%
108, 12%

29, 3.2%

Figure 2.9: Tree placement for opossum. Branch lengths are proportional to evolutionary
distances. The correct location of the query is on the branch leading to wallaby. Opossum
had until recently been placed on the branch leading to the parent of wallaby. Each branch
is labeled with the number of queries and the fraction of all queries placed on it.

2.4 Conclusion

This chapter introduced our PhyLAT alignment framework. This framework will be used in

all of our rest three problems studied in the following chapters. The core of our alignment

framework is using a multiple alignment as a reference sequence and using a phylogeny as

the basis for the scoring system. These two concepts, multiple alignment and phylogeny,

are important and fundamental in bioinformatics field, but they are seldom dealt with to-

gether. Our model combines them together. With this biologically realistic model, we
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developed the EM optimization algorithm. Our algorithm can e�ciently align a sequence to

a multiple alignment and simultaneously predict the branch location of the query sequence.

Experiments strongly suggest that our framework is better than other methods in terms of

alignment accuracy and tree placement accuracy [155].
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Chapter 3

Multiple Alignment Improvement

3.1 Problem Introduction

Sequence alignment is a prerequisite to nearly all downstream comparative genomic analyses,

including the identification of conserved sequence motifs, estimation of evolutionary distance

between sequences, and inference of evolutionary history of genes and species. Errors in

sequence alignment are found to have a significant negative e↵ect on subsequent inference

of sequence divergence, phylogenetic trees, and conserved motifs [76].

While there are many tools for constructing multiple alignment, there are few for refining

existing multiple alignments. Existing tools may be fast and give a good initial multiple

alignment, but the alignment quality can be improved by using more complex model, i.e.,

a biological realistic and probabilistic model. It was shown that deletions in sequences will

result in errors in several multiple sequence alignment tools using non-probabilistic scoring

schemes, i.e., ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, T-COFFEE, and

PRANK [55, 119]. It was also shown that iterative methods are more accurate than non-

iterative methods [119]. Here we gave a method for iteratively refining a multiple alignment

by using phylogenetic information in a probabilistic scoring scheme.

Our work in Chapter 2 shows that simultaneously aligning a query sequence to a multiple

alignment reference and inferring the query’s tree placement will give more accurate results

on both problems than doing separately [155]. But aligning one sequence to a reference is

di↵erent from improving a multiple alignment. The most important di↵erence is that these

two tasks require very di↵erent computational resources. Aligning a query to a multiple
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alignment assumes that the multiple alignment is accurate; thus it is a pairwise alignment

whose complexity is quadratic. But for multiple alignment improvement problem, the whole

alignment is subject to be optimized. The computational complexity is exponential in the

number of sequences. We cannot simply enumerate all possible cases. There will also be

suboptimal alignments with locally maximal scores.

We developed an iterative algorithm which combines the power of iterative realignment

process and the power of a phylogeny-based probabilistic scoring system. The iterative

process makes our algorithm very steady and insensitive to the realignment order, while

the probabilistic scoring scheme make the detection of column-wise homology much more

sensitive than other algorithms which do not use phylogenetic information or probabilistic

scoring systems like ClustalO, MAFFT, and MAVID [24, 71, 146].

3.2 History, Applications, and Existing Tools

Before fast sequencing techniques were developed, there are few whole genomes available.

For example, the genomes online database (GOLD), which is a comprehensive resource for

accessing information related to completed and ongoing genome projects world-wide, had

only six complete genomes and a handful of ongoing genome projects when it was establisted

in 1997. Now it has 60853 genome projects and 58153 complete genomes [16]. With the

fast increasing number of genomes available, building reliable multiple sequence alignment is

needed. Genome rearrangement events are common between di↵erent species. For example,

it was shown that 9% of human/mouse homology may be attributed to small rearrangements

[26]. Thus people developed glocal alignment algorithms which try to align all parts of

genomes from di↵erent species. Traditional local alignment and global alignment algorithms

cannot do this. With glocal alignment algorithms, researchers can find homologous segments

from di↵erent species, even if the segments are not in the same order. Thanks to glocal

alignment algorithms like MAVID and MultiZ [20, 24], UCSC genome database [51] contains

multiple alignments for 67 vertebrates.

With a better multiple sequence alignment database, other downstream researches, e.g. con-

served element finding, gene prediction, and phylogeny reconstruction, can be improved. It

was shown that using multiple alignment as informant, one can achieve higher sensitivity
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in finding gene-coding areas [27]. Multiple alignment database can also be used to find

transcription factor binding sites [120]. Another application of multiple sequence alignment

is ancestral sequence inference [24]. Higher-quality multiple sequence alignment database

will allow more accurate detection of homology and better understanding of genome rear-

rangement events in query sequences or newly sequenced genomes [26]. Our work in chapter

2 showed that there are errors in these multiple alignments in coding regions [155].

Figure 3.1 lists popular multiple alignment algorithms and classifies them according to their

scoring scheme and alignment procedure. We can see that most algorithms are non-iterative

and therefore are unable to correct errors occurred in previously aligned alignments. This

might lead to lower-quality alignments. Those algorithms which are iterative do not use

probabilistic scoring schemes. Most of them use empirical parameters for scoring the align-

ments, resulting in scores which are not meaningful in the sense of probability. HMM-based

models su↵er from high time complexity and extra e↵orts for estimating large number of pa-

rameters. Iterative algorithms are not commonly applied to improve genome-scale multiple

alignments. Our goal lies in the category of non-HMM iterative probabilistic algorithms.
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Figure 3.1: Existing multiple alignment algorithms

Gibbs sampling has also been applied to multiple alignment [83, 97]. There are variations of

Gibbs sampling when it is applied to multiple alignment. Sampling can be applied to a local

part of an alignment or a whole sequence in the alignment. Sampling can also be applied to

leaves in a phylogeny or internal nodes. One problem with Gibbs sampler is it may still be

trapped at local optima. Another problem is it performs well only when there is a clear block

of ungapped alignment shared by all of the sequences, and performs poorly on general sets

of test cases when compared with global alignment methods [117, 160]. Futhermore, it was

shown that Gibbs sampling could never align more than 10 sequences in an experiment trying

to align kinase sequences [117]. The common background probability distribution of letters

in alignment is easily a↵ected by background noise. Gibbs sampling has been coupled with

higher-order probabilistic distribution [158] to refine the probability distribution. However,

this introduces extra time complexity without guaranteed improvements.
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Phylogeny-aware scoring scheme has also been explored in the Gibbs sampling framework

[144]. However, such methods have several problems. First, they do not use point muta-

tion model. This leads to incomplete use of the phylogenetic information in the phylogeny.

Second, they do not use variable branch lengths in phylogeny. This also reduced the e↵ec-

tiveness of the phylogenetic information. Third, they only use time-reversible models, which

makes the scoring scheme restrictive and inaccurate. Fourth, They use fixed phylogeny,

which means the structure of the phylogeny must be known. Thus they cannot correct er-

rors in tree structures. Fifth, when computing alignment scores they include invalid indel

histories. This will also result in inaccurate alignment scores. Sixth, they use unrooted phy-

logeny, which is not realistic. Seventh, they do not use a�ne gap penalty, which also leads

to inaccurate scores. [59, 66, 82, 93, 99, 100, 106, 115, 128, 144, 154, 168]. Last but not

the least, appropriate parameters in Gibbs-sampling-based alignment algorithms can only

be found with experience gained from careful analysis of the sampling results [106].

For our problem, we want to improve existing multiple alignments where all the aligned

sequences are supposed to be orthologous, possibly containing indels. We want to use a

biologically more realistic model, i.e., rooted phylogeny, non-time-reversible mutation model,

a�ne gap penalty, only valid indel history, and variable-length phylogeny. In this case, a

phylogeny-aware probabilistic global alignment algorithm may outperform existing Gibbs-

sampling-based methods.

3.3 Problem Formulation

Given a multiple alignment M of n sequences s
1

...s
n

from species 1...n, and a phylogeny ⌧

associated with the n species, we want to find the optimal multiple alignment by iteratively

refining M . In each iteration, we take out a sequence s
i

from M . By taking out s
i

, the

reduced alignment is M
i

, and the reduced phylogeny is ⌧
i

. We realign s
i

to M
i

using ⌧
i

,

constraining species i on its original branch in ⌧ allowing its distance to its parent and

children variable. In other words, we want to find a new alignment A⇤
i

of M
i

and s
i

and a

new phylogeny ⌧ ⇤
i

, which maximize the following probability:

Pr(M
i

, s
i

|A⇤
i

, ⌧ ⇤
i

), (3.1)
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or equivalently the following:

logPr(M
i

, s
i

|A⇤
i

, ⌧ ⇤
i

). (3.2)

We iteratively do this for each sequence in M until this probability does not increase. We

observe that the alignment maximizing the sum 3.2 does not change if we subtract from this

sum the constant

C 0 = log(Pr(s
i

) · Pr(M
i

|⌧
i

)). (3.3)

Considering each column in M
i

independent, maximizing 3.2 is to maximize

logPr(M
i

, s
i

|A⇤
i

, ⌧ ⇤
i

)� C 0 = log
Pr(M

i

, s
i

|A⇤
i

, ⌧ ⇤
i

)

Pr(s
i

) · Pr(M
i

|⌧
i

)
(3.4)

=
X

j

log
Pr(y

j

, Z
j

|⌧ ⇤
i

)

Pr(y
j

) · Pr(Z
j

|⌧
i

)
. (3.5)

where y
j

and Z
j

are the jth column in alignment A⇤
i

.

For the details of computation of the tree probabilities, please see Chapter 2.

Because the resulting alignment may not be the correct one, it is preferable to measure the

uncertainty in the given alignment, and possibly give suboptimal alignments as well. Because

we use probabilistic scoring scheme, paths in our Smith-Waterman-like alignment process

can be easily viewed in a probabilistic way. We can give suboptimal alignments by tracing

back along the suboptimal paths.
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3.4 Results

We developed our iterative probabilistic multiple alignment improvement algorithm called

PhyMAIT, which stands for Phylogenetic Multiple Alignment Improvement Tool. To im-

prove a given multiple alignment, PhyMAIT iteratively takes out a sequence from a multiple

alignment according to a given strategy and realigns the sequence back to the rest of the

multiple alignment. During each iteration of the improvement, one sequence is picked out

and realigned to the rest of the multiple alignment. Di↵erent strategies can be used for pick-

ing out sequences. The strategy for picking out a sequence can be any user-defined strategy.

It can be as simple as Round-Robin or a very complex one. We used three strategies. The

first one is first picking out those sequences which are more distant from the rest of the

species. The rationale behind this is that the most-distant sequence may be aligned the

least accurate because it is the least similar sequence to the rest. The second one is first

picking out those sequences which are less distant from the rest of the species. The rationale

behind this is that the closest sequences are the core of the alignment whose correctness

may have more impact on the rest of the alignment. The third one is randomly picking out

sequences. The rationale behind this is that random walk may avoid being trapped at local

optimal solutions. The ideal case is that all these strategies give the same result when they

converge to the same optimal alignment. We will discuss the e↵ect of using di↵erent picking

strategies in section 3.5. This process iterates until the quality of the multiple alignment

does not change. During each iteration, an EM-like algorithm is employed to simultaneously

compute an alignment between the taken-out sequence and the remaining multiple alignment

and optionally estimate the placement of the taken-out species on the tree associated with

the remaining multiple alignment. The EM algorithm iteratively refines the alignment and

branch placement until both have converged. The structure of PhyMAIT is illustrated in

Figure 3.2.

We first tested PhyMAIT’s accuracy on three multiple alignment databases: a multiple

alignment database of 6 mammalian sequences, a multiple alignment database of 6 worm

sequences, and a multiple alignment database of 6 fruitfly sequences. All the three databases

are from UCSC database [20, 72]. The phylogenies relating the species in the three databases

are shown in Figure 3.3, Figure 3.4 and Figure 3.5. The mammalian multiple alignment was
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Figure 3.2: Structure of PhyMAIT algorithm. Not shown is the o✏ine preprocessing of the
database to parameterize a mutation model at each position.

assembled using human chromosome 22 as the reference sequence. The worm multiple align-

ment was assembled using C.elegans chromosome 3 as the reference sequence. The fruitfly

multiple alignment was assembled using D.melanogaster chromosome 4 as the reference se-

quence.

date assembled alignment length #codons
mammals Dec 2013 23133033 184317
worms Oct 2010 6253062 814609
fruitflies Aug 2014 1701564 56444

Table 3.1: Datasets used in PhyMAIT experiments. Alignment length is the total length of
the multiple alignment database. #codons is the number of codons used in protein validation
process.

Accuracy of DNA alignment

Currently, there are no good methods to evaluate absolute accuracy of arbitrary multiple

alignments of DNA sequence [73, 76, 127]. However, protein-coding regions are generally

stable and can be translated to protein and aligned by a protein aligner, producing alignments

of higher quality than those obtained from DNA alone. We therefore validated PhyMAIT’s
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Figure 3.4: Worm tree.
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Figure 3.5: Fruitfly tree.

alignment quality by examining alignments involving annotated coding sequences. We used

the exon alignments in the UCSC database as our ground truth for orthology relationships

among our sequences.

Validation of DNA alignment by protein alignment

To validate our results, we realign the sequences from coding regions using protein align-

ment programs. If a base is aligned to the same bases in both DNA alignment and its

corresponding protein alignment, then it is considered aligned correctly, or wrong otherwise.

To estimate the likely accuracy of PhyMAIT’s alignments in coding DNA, we used exon

DNA alignments from the UCSC database as input and used their protein alignments as

the standard. We checked whether the DNA alignments of PhyMAIT are consistent with

the protein alignments. Because protein alignment uses information not available to a DNA

aligner, we expect that it will yield more accurate results in general; hence, concordance be-

tween the DNA and protein alignments acts as a proxy for the (unknown) absolute accuracy

of the DNA alignment.
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MAF PhyMAIT ClustalO MAFFT MAVID
c 93.85% 99.19% 93.03% 94.26% 94.10%

human i1 5.63% 0.52% 6.37% 5.13% 5.09%
i2 0.52% 0.29% 0.60% 0.61% 0.81%
c 91.02% 97.64% 90.37% 91.09% 90.79%

worm i1 7.97% 1.91% 8.42% 7.95% 8.35%
i2 1.01% 0.45% 0.81% 0.96% 0.86%
c 92.41% 97.13% 91.82% 92.01% 91.96%

fly i1 7.14% 2.59% 7.79% 7.63% 7.25%
i2 0.45% 0.28% 0.39% 0.36% 0.79%

Table 3.2: Comparison of coding alignments from PhyMAIT, CLUSTAL Omega, MAFFT
and MAVID, and the original UCSC MAF alignments. Lines “c”, “i1” and “i2” denote
consistently aligned codons, non-frame-shifted inconsistently aligned codons, and frame-
shifted inconsistently aligned codons, respectively.

For each input alignment of k DNA sequences s
1

. . . s
k

, PhyMAIT’s output induces multiple

protein alignment A of the translation of the k sequences. We compared the induced align-

ment A to alignment A0 obtained by first translating the k sequences independently, then

aligning the resulting protein sequences using a protein-specific alignment tool. A codon was

considered “accurately aligned” in the DNA multiple alignment if and only if it was aligned

to the same codons in A and A0. We created these ground-truth protein alignments using four

di↵erent protein aligners – ClustalO [146], DIALIGN [112], Muscle [48], and T-Co↵ee [117] –

and obtained substantially similar results with each. Additional validation would be possible

by comparing our results to, e.g., structural superposition of the aligned proteins. However,

such superpositions are already known to agree closely with protein aligners’ output [14], so

we did not pursue this extra validation step.

Table 3.2 shows PhyMAIT’s accuracy on our test set using ClustalO as the protein aligner.

Overall, PhyMAIT aligns more accurately than the original MAF file and other competitors.

We further examined the inconsistent parts of the alignments. We classified the inconsistently

aligned bases into two classes. The first class contains those bases which were not aligned to

the same bases as in the protein alignments without ORF shifting. The second class contains

those bases which were not aligned to the same bases as in the protein alignments with ORF

shifting. See Figure 3.8.
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We validated our method on protein-coding regions of the multiple alignments. The human

multiple alignment contains 125848 codons. The C. elegans multiple alignment contains

578447 codons. The Drosophila multiple alignment contains 90269 codons. Table 3.2 shows

the alignment accuracies of PhyMAIT and other competitors including both iterative and

non-iterative methods. We noted that these accuracies are not high considering we are

aligning coding regions. We checked those CDS sequences from UCSC database, and found

they actually contain ORF-shifted regions.

Impact of Adding Additional Species to Alignment

We also tested PhyMAIT’s and the competing tools’ ability to exploit additional genomes

to improve the accuracy of induced alignments. Starting from our fruit fly MAF alignment

set, we extracted from each coding multiple alignment a subset of just three species. These

reduced alignments formed our “exp3” data set. We then progressively augmented these

alignments to produce sets “exp4” through “exp8” with 4-8 species. The species used in

each experiment are shown in the tree of Figure 3.6.

Ideally, the quality of alignments obtained by the various tools should improve as more

species are added to the alignment, since deeper alignments provide more information to

resolve ambiguities of which base should align to which. On the other hand, more species

provide a more stringent test by our accuracy metric, since a “consistent” codon must be

aligned consistently in all informant species.

Table 3.3 shows the accuracies of each program on sets exp3 through exp8, using the pro-

cedure described in the previous experiment for each set. All programs obtained at least

some improvement in accuracy as more species were added, from exp3 to exp7. (The original

aligner used to build the MAF alignments only obtained improvements for up to six species.)

However, PhyMAIT was both the most accurate tool for every number of informant species

and showed the largest gains in accuracy with additional species (6%, compared to only

about 3% for MAFFT and MAVID). This result suggests that PhyMAIT is more able than

the competing tools to make appropriate use of additional species.

Interestingly, the accuracy of every program declined from set exp7 to set exp8. The source

of the decline is not immediately clear; it may be that the eighth species, D. willistoni,
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MAF PhyMAIT ClustalO MAFFT MAVID
c 88.37% 92.01% 86.60% 89.15% 88.73%

exp3 i1 9.72% 6.32% 11.05% 8.93% 9.34%
i2 1.91% 1.67% 2.35% 1.92% 1.93%
c 89.12% 93.63% 86.99% 90.31% 89.72%

exp4 i1 9.14% 5.03% 11.72% 8.82% 9.39%
i2 1.74% 1.34% 1.29% 0.87% 0.89%
c 90.06% 95.53% 88.74% 91.45% 90.51%

exp5 i1 8.93% 3.98% 10.12% 7.96% 8.77%
i2 1.01% 0.49% 1.14% 0.59% 0.72%
c 92.41% 97.13% 91.82% 92.01% 91.96%

exp6 i1 7.14% 2.59% 7.79% 7.63% 7.25%
i2 0.45% 0.28% 0.39% 0.36% 0.79%
c 91.79% 98.16% 92.03% 92.22% 92.18%

exp7 i1 7.45% 1.63% 7.61% 7.45% 7.22%
i2 0.76% 0.21% 0.36% 0.33% 0.60%
c 91.47% 98.01% 91.10% 91.89% 91.52%

exp8 i1 7.63% 1.32% 7.37% 6.77% 7.05%
i2 0.90% 0.67% 1.53% 1.34% 1.43%

Table 3.3: Comparison of alignments from PhyMAIT, Clustal Omega, MAFFT, and MAVID
versus original MAF alignments with increasing number of species. Experiment exp3 to exp8
has 3-8 species respectively, with one species added in each experiment.
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Figure 3.6: Order of addition of species for experiments exp3 to exp8. Non-numbered species
are present in all experiments.

is unusually di�cult to align or has inaccurate sequence or annotation that corrupted the

protein alignments.

Validation on Simulated Non-Coding DNA

While the coding experiments of the previous section used real alignment data and o↵ered

a readily available source of ground truth, they have the disadvantage of focusing on some

of the best-conserved, and hence easiest-to-align, regions in the genomes of interest. Ideally,

we would be able to conduct similar experiments on the non-coding parts of the aligned

genomes to evaluate each tool’s performance in a wider variety of conditions. Unfortunately,

there is no readily available ground truth for such experiments; hence, we instead turn to

simulated data to further exercise the capabilities of the tools.

We started with the six-species mammalian phylogeny of Figure 3.5 and used the ROSE

simulator [152] to produce orthologous sequences according to this phylogeny. Because the

data is simulated, the actual homology relationships among bases are known, and so ground

truth is readily available. ROSE allows the overall rate of evolution to be adjusted; we chose
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indel rate mutation rate
low evolutionary rate 0.000080 0.01000
mid evolutionary rate 1 0.000185 0.01175
mid evolutionary rate 2 0.000290 0.01350
mid evolutionary rate 3 0.000395 0.01525
high evolutionary rate 0.000500 0.01700

Table 3.4: Parameters of ROSE used to generate simulated data with di↵erent evolutionary
rates.

low and high rates that roughly matched the observed mutation rates of coding regions and

conserved LINE repeat elements in the real mammalian MAF alignments, respectively, and

then interpolated several more rates in between to observe behavior for a range of rates. We

generated roughly a million multiple alignment positions for each rate tested.

We used ROSE to generate 1000 sets of aligned sequences, each of length roughly 1000,

for each choice of mutation parameters tested; exact lengths varied due to the introduction

of indels. The ancestral sequence at the root of each phylogeny was randomly generated

with equal base frequencies; ROSE then introduced simulated mutations (substitutions and

indels) along the branches of the mammalian phylogeny used for the previous experiment.

Substitutions were generated according to an HKY model with parameters TransitionBias

= 2.5 and TTration = 2.5.

Evolutionary rate parameters were chosen to match the observed indel frequencies of coding

DNA in our mammalian alignments at the lowest rate and to match the observed frequencies

in conserved LINE elements at the highest rate. We then chose three equally spaced inter-

mediate mutation rates. The exact parameters used for each evolutionary rate are given in

Table 3.4.

As before, we applied each of MAFFT, MAVID, and Clustal Omega to align these sequences

de novo. We then used the Clustal Omega alignment (which typically had the lowest accuracy

of the three competitor programs) as input to PhyMAIT to produce a refined result. In these

experiments, we report accuracy as the fraction of alignment positions in which all aligned

bases are actually homologous.
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Figure 3.7 shows the accuracy of the four programs on our simulated alignments. PhyMAIT

consistently outperforms the competing tools, despite starting from the least accurate initial

alignments (Clustal Omega’s). The results at the lowest evolutionary rate roughly reproduce

the observations on real coding alignments, as expected. Even at the highest evolutionary

rate tested, PhyMAIT was still able to align roughly 90% of positions correctly; in contrast,

the competitors’ accuracies ranged from 50 to 75%.

We note that no change was required to PhyMAIT’s settings to deal with the di↵erent data

sets shown here. Instead, its initial parametrization step, with its inferred branch length

multipliers at each position, adjusted its model appropriately for each experiment.

Computational E�ciency

PhyMAIT uses several techniques to reduce computational cost. We use a compact, column-

oriented storage format for multiple alignments to reduce cache misses. Moreover, we use

customized phylogenetic caching techniques, described in [155], to store per-column proba-

bilities, which greatly reduces the cost of probability computations.

As an indicator of relative performance, PhyMAIT took 31 minutes to compute the optimized

fruit fly alignments used in the experiment of Table 3.2 on an Intel Xeon 2.4GHz processor,

while the three competing tools took between 9 and 21 minutes. Moreover, the refinement

task is easily parallelized across alignments, so PhyMAIT, like other alignment tools, can

easily be distributed across multiple processors.

The time complexity of PhyMAIT lies mainly in the E-step of its iterative realignment

algorithm, in particular evaluating alternative augmented tree topologies and optimizing the

additional branch lengths for each. With increasing numbers of informant species, this cost

comprises the greatest part of the running time. The space requirements of PhyMAIT’s

caching strategy scales exponentially with the number (but not the genome length!) of

species in the alignment; however, the space cost is only tens of megabytes for aligning up

to ten species.
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Overall, the increased resource requirements of PhyMAIT are feasible and likely worthwhile

given its observed and implied ability to improve widely used multiple alignments, even in

regions of comparatively low conservation.

3.5 Discussion

3.5.1 Order of Sequence Re-Alignment

In order to test the e↵ect of picking order on the accuracy of resulting alignment, we tested

several strategies. The first is picking the species with the minimum distance to all other

species first. The second is picking the species with the maximum distance to all other

species first. The third is picking randomly. The rationale behind the first strategy is that

the most-distant species may be aligned most inaccurately. Thus by realigning it first, we

can correct the most errors in the resulting alignment. The rationale behind the second

strategy is that the central species is part of the core of the alignment. Thus by improving

the core alignment, the whole alignment would be improved. The rationale behind the third

strategy is that random walk can avoid trap at local optimal solutions.

All strategies gave similar results, which means the final alignment converged to the same

local optimal solution. We can view each step of realignment as a step in the global opti-

mization process. The initial alignment can be viewed as the initial solution. By iteratively

picking out a sequence and realigning it to the rest of the alignment, the initial solution is

improved. Each time only one sequence is picked out, so the search step is limited. This

may be the reason why all three strategies converged to the same local optimal solution: the

limited search step in each iteration limits the ability to jump out of local optimal solutions.

3.5.2 Optimal Number of Species

We also tested the e↵ect of number of species on the accuracy of the resulting alignment.

Theoretically, the more species we have, the more homology information we can use to

improve the alignment. However, in practice, more species may not give better resulting

52



alignment. This may due to several possible reasons. First, the quality of the extra sequence

may not be good enough for providing accurate information. For example, it may contain

sequencing errors. Second, the extra sequence may not be orthologous to the rest alignment.

This is an error in the initial alignment, which cannot be corrected within our framework.

Third, the branch in the phylogeny relating the extra species to the rest species may not

be accurate. Thus the computation of column score in the alignment is not accurate, which

will a↵ect the accuracy of the resulting alignment. Fourth, the extra species may be too

distant from the rest species. Thus the orthology information may be lost due to saturation

of mutations. In this case, the extra sequence is just like a random sequence, which cannot

provide useful information but only noise.

3.6 Conclusion

High-quality DNAmultiple-genome alignments are an important substrate for modern genome

annotation and exploration. Evidence for the presence of conserved functional elements and

signals, particularly in non-coding regions, as well as overall conclusions about the evolu-

tionary history at di↵erent genomic loci, rest on the accuracy of the underlying sequence

alignments. To ensure that the biological community has the highest-quality alignments

possible, we investigated whether iterative refinement of existing DNA alignments, using

knowledge of their underlying evolutionary relationships, is likely to yield measurable im-

provements in alignment quality.

We have described PhyMAIT, an e�cient, phylogenetically aware tool for improving DNA

multiple sequence alignments of orthologous genomes. PhyMAIT demonstrably improves

the quality of multiple alignments even in coding regions – the regions most likely to be

correctly aligned a priori – from the widely-used UCSC Genome Database. Moreover, results

on simulated data suggest that equal or greater improvement is likely to be achieved on a

variety of alignable non-coding sequences, depending on their degree of conservation. In

our tests, PhyMAIT outperformed several competing tools and was better able to exploit

additional informant genomes to improve alignment quality. Our work strongly suggests both

that better genomic DNA alignments are achievable in practice, and that existing, widely-

used genomic alignments both can be substantially improved and provide a usable basis for
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refinement. We plan to apply PhyMAIT on a larger scale to improve the multiple alignment

tracks for several assemblies, starting with improving the UCSC Drosophila alignments to

support an ongoing project to find novel regulatory motifs on the fourth chromosome of D.

melanogaster.

A number of opportunities exist to improve PhyMAIT’s performance and utility. First, our

scoring model’s assumption that successive columns in the multiple alignment are stochas-

tically independent is not realistic. It could be useful to add a dependence model between

adjacent bases/columns. The theory of phylogenetic HMMs provides one clear avenue to

such improvements.

Second, because PhyMAIT is based on an underlying probabilistic model, it may be pos-

sible to augment its computation to evaluate posterior confidence in the refined multiple

alignments. Confidence estimates, e.g. the likelihood that a particular position is correctly

aligned, would be helpful for judging the reliability of alignments and identifying where

multiple, alternative hypotheses are plausible. If a region of importance has low posterior

confidence, it might even be worth acquiring additional sequence data from other informant

species to resolve ambiguities. Currently, the realignment step of PhyMAIT naturally pro-

vides a posterior distribution over augmented tree topologies as a result of its EM algorithm,

but it is not immediately clear how to estimate a similar distribution over multiple align-

ments. One possibility is to modify the iterative selection and realignment of sequences into

a true MCMC method, which would allow sampling from the posterior distribution of align-

ments. Whether such an approach can be made e�cient enough to support robust confidence

estimates is a topic for future work.

Finally, it could be useful to consider alternative trees for the underlying multiple alignment.

While PhyMAIT already considers multiple hypotheses for the tree placement of and branch

length to the sequence being realigned, it does not use information from one realignment step

to modify the tree for subsequent steps. It may be that one can improve the relative branch

lengths, or even alter the tree topology, simultaneously with improving a set of alignments.

If a large improvement in alignment score occurs with a major change in topology or branch

length, this could indicate an error in orthology assignment or an region of localized rapid

evolution in some subclade of species. While it is possible to sum probabilities over multiple

tree hypotheses, the increased computational cost of using multiple trees makes it imperative
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to be careful not to consider too many such alternatives. Heuristics for limiting the search

space of alternatives could help to guide the process.
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Figure 3.7: Accuracy comparison of PhyMAIT, CLUSTAL Omega, MAFFT, and MAVID
using simulated data. Error bars show 95% confidence intervals on each sample of 1000
simulated alignments.
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Figure 3.8: Example of ORF-shifted bases in alignment.
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Chapter 4

Short Read Mapping

4.1 Problem Introduction

Given a set of short reads from next-generation sequencing results, mapping them back

to their orthologous locations in a reference genome is called short read mapping [90, 132].

This is a new problem arising with the development of next-generation sequencing techniques

[124]. Because genomes from the same species are similar to each other in terms of DNA

sequence and genome arrangement, it is relatively easy to map reads to a reference sequence

from the same species.

Although in most cases, the reference genome is from the same species as the query reads,

there are cases where interspecies mapping is necessary. One example is when such a reference

genome is not available, i.e., no individuals of the same species have been sequenced and

assembled before [126]. Another example is from metagenomics, where the reads can only

be traced back to a set of species, or the species of the reads are totally unknown. In this

case, the reads have to be classified according to their species, and then assembled within

each species [8, 86]. Another example is RNA expression estimation. It has been shown that

using read mapping to estimate the expression level is more accurate and repeatable than

using microarray [87]. In many cases, some closely related species to the newly sequenced

species have already been sequenced and assembled, which can provide useful information

for classification and assembly of the newly sequenced reads [62, 63].

With the development of next-generation sequencing techniques, short reads are obtained in

large volume every day. Most existing short read mapping tools either use a single reference
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genome, or can only do intraspecies mapping. As many new species are sequenced, methods

for e�cient and accurate interspecies mapping are needed. Such methods must use infor-

mation from multiple informant species and do an alignment-based mapping procedure, but

how to model mapping problem within this scenario is still an open problem.

We use a phylogenetic-aware short read mapping algorithm for doing interspecies mapping.

It was shown that multiple alignment of phylogenetically diverse sequences is substantially

better than pairwise alignment at capturing orthologous sequences [102]. We use a multiple

alignment of several reference sequences from di↵erent species and a phylogenetic tree of

those species. We assume the originating species of the reads is unknown (if it is known

or partially known, then it can be considered as user’s prior). By simultaneously aligning

the reads to the multiple alignment and calculating the posterior probability of each branch

placement, we can find their orthologous positions and the most likely tree placements.

Our work in Chapter 2 show that by using a multiple alignment as reference, othologous

queries can be detected more accurately than using a single reference sequence [155]. By si-

multaneously aligning queries to the reference and inferring tree placements, both alignments

and tree placements may be inferred more accurately than doing them separately.

4.2 History, Applications, and Existing Tools

Since the publication of the first human genome [77, 163], there has been revolutionary

progress in the genome sequencing techniques. With next-generation sequencing techniques,

the human genome can be sequenced at a 10-fold coverage in a single run, resulting 30 Gb

DNA sequence data, yet with less than $1000 cost, comparing with 3 billion dollars and

13 years at the time of the Human Genome Project! This huge amount of short read data

brings many new opportunities and challenges.

One application of read mapping is read assembly [57, 126, 147, 156, 164]. While tradi-

tional read assembly algorithms work well on longer reads, reads from the next-generation

sequencing techniques are much shorter, making it more complex and time-consuming to

assemble them into a continuous sequence. Ab initio read assembly algorithms are much

slower than mapping. For example, Bowtie (version 1 [78] and 2 [79]) can map 30 million
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reads per hour using 3.2 Gb memory, while SSAKE [169] can only assemble 4 million reads

per hour using 32 Gb memory. Ab initio assemblers cannot give a continuous assembled

sequence, leaving hundreds to thousands of contigs [176], because they cannot determine

the order of assembled segments. Because two genomes from the same species or closely

related species are similar to each other [25], read mapping can accelerate read assembly

by mapping newly sequenced reads to one or more existing reference genomes. Because the

reference genomes also provide information on genome rearrangement, this information can

be used to determine the order of assembled contigs of the new genome.

Another application is variation discovery, which is to find the variations among genomic

sequences [1, 7, 34, 54, 57, 60, 64, 74, 84, 85, 88, 94]. One example is targeted resequencing

[126]. Targeted resequencing typically investigates a few genes across a large population.

All the genes are sequenced individually and then compared with each other. Recognition

of functional variants is at the center of NGS data analysis and bioinformatics [101]. The

goal of variation detection is to detect genomic variations between two or more genomes

or functional elements. Such variations can be insertions, deletions, SNPs, or genome re-

arrangements. Using a reference sequence from the same species as the reads will not give

genome rearrangement information. When such a reference genome is not available, closely

related species can be used.

Another application scenario for short read mapping is gene expression estimation. RNA-Seq

[87] is a new technology using short reads from RNA sequences to estimate gene expression

level. Studies have shown that expression estimates using RNA-Seq are highly reproducible

[103] and more accurate than microarray results [113, 114]. Because reads are short, they

are often mapped to more than one gene or isoform. In this case, accuracy of expression

estimation will be lowered. Using multiple informant genomes will help placing the reads

onto their correct locations.

Another application is from metagenomics. In metagenomics, genomes from di↵erent species

are sequenced. To assemble them, one must first classify them into their own species. One

way is to map the reads to sequences from di↵erent taxa related by a phylogenetic tree [12].

Reads mapped to the same node are considered coming from the same phylotype.
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Another application is functional prediction. Given a database of functional elements, one

can map the newly sequenced reads to the database and predict the function of the new se-

quence. The reason for using read mapping instead of assemble-and-align method is because

mapping takes much shorter time than assembly and uses less memory [78, 169].

There are many existing short read mapping tools [90, 132], but they are not suitable to

our problem because of several issues. First, they are not designed for interspecies mapping

[4, 61, 125, 143] . Secondly, they cannot use multiple reference sequences [35, 39, 58, 98, 141,

142, 149]. Thirdly, they can handle only limited number of indels and gaps [78, 78, 89, 92].

Fourthly, they cannot handle long reads produced by newer next-generation sequencing

machines [91] . Fifthly, they do not use biologically realistic alignment models [12, 170].

By using our phylogeny-aware alignment model, we have a probabilistic scoring scheme that

incorporates more biologically relevant information. Furthermore, we do not need to align

the query to each inner node in the tree, which reduces the time complexity. Our model

also uses the posterior probability of the branch placement of the query to reflect the actual

evolutionary history of the query and the informant species, which enables us to infer the

query species and also helps to improve the alignment score quality.

4.3 Problem Formulation

Given a query sequence, we want to find its orthologous region in a reference sequence.

A clear distinction between orthologous and paralogous sites is critical for the construction

of a robust evolutionary classification of genes and reliable functional annotation of newly

sequenced genomes. Finding homologous parts of the query in the reference is relatively

easy. Because non-homologous regions are independent of the query, they can be considered

as random sequences. The score distribution of random alignments empirically follows a

Gumbel distribution [5]. Homologous alignments usually have high scores, which are at the

tail of the Gumbel distribution. Thus standard seeding-alignment methods can find homolo-

gous regions, but distinguishing orthologous from paralogous parts is di�cult, because they

can be very similar. Here we want to use several informant sequences to help di↵erentiate

ortholog from paralog. We assume that the reference and the informants are contained in a

multiple alignment, and the species are related by a phylogenetic tree. The branch lengths
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of the tree can be di↵erent at di↵erent locations in the multiple alignment. For simplicity,

we make the following assumption.

Assumption 1. Each column in the multiple alignment is composed of only orthologous

bases.

For many parts in our experiments, we use data from the UCSC (University of California

Santa Cruz) Genome Bioinformatics Site [51]. The database contains the reference sequence

and working draft assemblies for a large collection of genomes, as well as multiple alignments

built with those reference sequences. Though actual multiple alignments from the database

may contain non-homologous alignments, their goal is to construct orthologous alignments.

In fact, they use species tree to guide the multiple alignment, which means the sequences

are considered orthologous rather than paralogous.

The rationale of our method is that the evolutionary tree of orthologous sites is in accor-

dance with the taxa phylogeny, while the evolutionary tree of paralogous sites is not [165].

Furthermore, orthologous regions and paralogous regions are under di↵erent evolutionary re-

strictions, which means they follow di↵erent evolutionary model in terms of indel rates and

mutation rates. Thus if we score paralogous sites using the evolutionary model of orthologous

sites, it will give lower scores.

Our problem is given multiple matches between the query and the multiple alignment, find

the orthologous one.

We use the following notations:

⌧ - phylogeny at orthologous location without query

⌧ ⇤ - phylogeny at orthologous location with query

⌧ 0 - phylogeny at paralogous location without query

⌧ ⇤0 - phylogeny at paralogous location with query

A typical duplication scenario is shown in Figure 4.1, R, Q and I standing for reference,

query and informants. Base Y is duplicated at the root. Q is orthologous to R and I, and

paralogous to R’ and I’. Aligning Q to R and I using phylogeny ⌧ ⇤ will place Q on the correct
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Figure 4.1: Orthology and paralogy
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Figure 4.2: Paralogous query and reference sequences
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branch, while aligning Q to R’ and I’ using phylogeny ⌧ ⇤0 will place Q at the root Y 0 with a

lower score.

We want to di↵erentiate between orthologous and paralogous alignments by their scores. So

their score distributions must be di↵erent. Next we examine their score distributions.

We are given one query sequence and multiple orthologous loci in the multiple alignment, at

most one of which is truly orthologous. When aligning Q to the orthologous part using ⌧ ⇤,

considering aligning a single base, the probability and score of the alignment are:

prob
orth

= Pr(R,Q, I|⌧ ⇤), score
orth

= Pr(R,Q,I|⌧⇤)
Pr(R,I|⌧)Pr(Q)

.

Please refer to equation 2.1 for the definition of Pr(R,Q, I|⌧ ⇤) and the conversion from the

tree probability on the lefthand side to the score representation on the righthand side.

The probability is the likelihood of the phylogeny ⌧ ⇤. The score is the likelihood ratio for

two hypotheses: the first one being the sequences are correctly aligned, the second being the

sequences are independent. The score will be used to pick the orthologous alignment. When

aligning Q to paralogous parts using ⌧ 0⇤, the probability and score of the alignment are:

prob
para

= Pr(R0, Q, I 0|⌧ ⇤00), score
para

= Pr(R

0
,Q,I

0|⌧⇤0)
Pr(R

0
,I

0|⌧ 0)Pr(Q)

.

Note that the phylogenies used in calculating probability is di↵erent from the one used in

calculating score. Because when we align the query to the paralogous site, we do not know

whether it is orthologous or paralogous. We compute the score as if the query is orthologous

to the reference. But to calculate the theoretical score distribution, we should use the real

probability of this event.

4.4 Results and Discussion

We did both theoretical computation of alignment score distributions for orthologous and

paralogous alignments and experiments on real data. The structure of our algorithm is shown

in Figure 4.3.
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Figure 4.3: Structure of PhyMap

4.4.1 Theoretical Comparison of Alignment Score Distributions

We did both theoretical computation and experimental researches. We compared the theo-

retical score distributions of orthologous alignments and non-orthologous alignments using

our PhyMap model with informant species, our PhyMap model without informant species,

and Smith-Waterman dynamic programming model, which uses similar dynamic program-

ming algorithm as our PhyMap but does not use non-probabilistic scoring system and does

not use tree model.

Based on the real phylogeny of human and 4 related species, we compute the score distri-

butions for various alignment lengths ranging from 1 to 64. To generate an alignment of

length K, we generate each column of the alignment independently. For each column, we

know the phylogeny with branch lengths and the evolutionary model, so we can compute

the distribution of assignment of bases in the tree which are generated by the evolutionary

model. Similarly, to generate a paralogous alignment column, we need to take into account

duplication events in the phylogeny. We assume the duplication event does not incur any

mutations. We also assume the duplicated site has the same evolutionary rate as the original

site.

Our computations show that there is a big di↵erence between distributions of scores of

orthologous alignments and paralogous alignments using informant species, as shown in

Figure 4.4. Using PhyLAT with informant sequences, the score distributions of orthologous

alignments and paralogous alignments have increasing di↵erence as the alignment length
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increases. For Smith-Waterman alignments, the di↵erence is much harder to detect even as

the query length increases.
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Figure 4.4: Distributions of scores of orthologous/paralogous alignments of length 64. The
first column shows score distributions of PhyLAT using informant sequences. The second
column shows score distributions of PhyLAT not using informant sequences. The third col-
umn shows score distributions of Smith-Waterman alignments of the query and the reference
sequence.

Our results are preliminary evidence that adding the informants provides substantially more

information about the correct alignment than methods that do not use the phylogeny and as-

sociated information. Thus our model can di↵erentiate between orthologous and paralogous

alignments better than non-phylogenetic pairwise models.

4.4.2 Experimental Results with Simulated Data

Furthermore, we compared our method with other popular short read mapping tools (BWA,

BOWTIE and BLAST V2) on simulated data. To prepare the input sequences, we choose

an multiple alignment of human chromosome 22 and four related mammalian species from
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Figure 4.5: Histogram of number of matches for human query reads.

UCSC genome database as raw data, so we know that the sequences are orthologous to each

other. The five species and their relating phylogeny is shown in Figure 4.6. We use human

chromosome 22 as the query species. To generate reads, we first cut the human chromosome

22 into reads of length 100. For PhyMap we use the remaining multiple alignment of the

four informant species as the reference sequence. For other competitor alignment tools, we

use rhesus sequence as the reference sequence because rhesus is the closest single informant

species. Then we use BLAST to generate seed matches between query reads and reference

sequences. There are 21689 reads. Total number of seeds is 128138682. Each read has

5908 seeds on average. Figure 4.5 shows the histogram of number of seeds per read for

the experiment with human query reads. We can see that the distribution is a long-tail

distribution where majority of the reads have less than 1000 matches, while some reads have

more than 40000 matches. After generating matches, we run PhyMap and the competitor

alignment tools on the top 10 seeds to get full alignments with scores. Then we pick the

alignment with the highest score as the orthologous alignment for each seed.

We found that PhyMap can correctly map more reads than competitor tools, i.e., BWA,

BOWTIE, and BLAST. See Table 4.1. We chose BLAST because most other tools were

designed specifically for intra-species mapping. Interspecies mapping has to be able to handle

higher rates of indels and mismatches. We can see that short read mapping tools like
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Figure 4.6: Mammalian tree.

BWA and BOWTIE can only map a small fraction of reads. This is because they cannot

properly handle indels or mutations in short reads. We used Blast to find promising mapping

locus for a given read, then used PhyMap to find the orthologous one. This is because

BLAST is very good at fast locating promising matches while it lacks the ability to further

refine those matches to a level we need for the short read mapping task. While Blast can

map most of the reads, but many of the highest-scoring matches given by Blast are not

actually orthologous matches. This supports our belief that by incorporating phylogenetic

information and informant sequences, we can achieve higher accuracy in orthology mapping.

The running time for PhyMap is 7.28 hours. The running time for BLAST, BWA and

BOWTIE are 2.15 hours, 1.21 hours and 1.09 hours respectively. We can see that while

PhyMap uses longer time than other mapping tools, it achieves much higher accuracies than

them.

Table 4.1: Comparison of BWA, BOWTIE, BLAST, and PhyMap on simulated data. Reads
are simulated from human chromosome 22. #correct: number of correctly mapped reads.
#wrong: number of wrongly mapped reads. #unmapped: number of unmapped reads.
Accuracy: #correct/#total.

#correct #wrong #unmapped accuracy
BWA 5795 1626 14268 26.72%
BOWTIE 8593 3394 9702 39.62%
BLAST 15813 5855 21 72.91%
PhyMap 19545 2123 21 90.11%
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Chapter 5

Genome Rearrangement Inference

5.1 Problem Introduction

The problem we discuss in this chapter is inferring the order of a set of sequences of a

query species given the phylogeny and sequence orders of orthologous informant sequences.

While many genomes have been sequenced and assembled into continuous sequences, for

some species, their genomes are partly available or cannot be assembled into continuous

sequences. While read mapping can map reads to their orthologous locations in related

species, di↵erent reference species will give di↵erent order of the mapped reads. This is

because the order of orthologous segments in reference species is not the same as in the

query species.

If a set of genes always appear together in a genomic block in both species, then this block is

called synteny block. Genes across synteny blocks do not always appear together. Thus it is

very di�cult to assemble segments which do not belong to the same synteny blocks. Further-

more, synteny blocks are very common among species. For example, synteny relationships

among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and

chicken) were compared at < 1 human-Mbp resolution. There are 2233 homologous synteny

blocks (HSBs) [81]. Existing read assembly algorithms will produce segments of assembled

reads, without inferring their orders [95, 107]. When multiple informant genomes are used

in read mapping, the rearrangement information in those informant genomes can actually

be used to infer the rearrangement events in the new genome. How to use rearrangement

information in orthologous sequences to infer genomic order of query sequences is still an

open problem.
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Because we have multiple informant sequences combined in a multiple alignment, and the

multiple alignment is divided into blocks of orthologous sequences, a set of blocks with

available genomic orders in informant sequences along with a phylogenetic tree should provide

a lot of information for inferring the order of the segments at any node in the phylogeny,

including leaf nodes which represent existing species. This is shown in Figure 5.1.

Our study showed that simultaneously aligning a query to a multiple alignment reference

and inferring the query’s branch placement gives more accurate results to both problems

than doing them separately [155]. It also provides a biologically realistic and probabilistic

model for aligning blocks of sequences. With more accurate alignments, tree placements,

and the genome rearrangement information contained in the multiple alignment, we attempt

to make progress on the genomic order inference problem.

A1B1 B2A2 A3B3

A4B4 or B4A4?

Figure 5.1: Infer block order with phylogeny. Species 1,2,and 3 are informant species. Species
4 is query. A1, A2, A3, and A4 are orthologous segments. B1, B2,B3,and B4 are orthologous
segments. Because the order of A and B are known for the informant species, we can infer
a distribution over the possible orderings of A and B at the query species, with the help of
the phylogeny.

5.2 History, Applications, and Existing Tools

Genome rearrangement has been studied since the early 20th century [153]. While there

are many existing methods for inferring phylogenies from genomic sequences or functional

elements, there is less research on inferring sequence order from phylogenetic information.

For the problem of inferring phylogeny from sequences, di↵erent methods use di↵erent kinds

of sequences. They can be nucleotide or amino acid sequence data [96, 99, 128], genes

[148], SNPs [116, 121], or gene order [17, 110, 111, 134]. Although they use di↵erent
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kinds of data, all the methods try to optimize a goal function of some kind of sequence

di↵erence in the tree. For those methods using sequence data, they compute sequence

di↵erence based on mutation models of DNA or protein sequences. For those methods using

gene order, they try to minimize the total number of evolutionary events, like insertions,

deletions, duplications, and inversions. Although evolutionary model of a single nucleotide

or amino acid has been well studied, the evolution pattern of a whole genome is less studied.

Due to the computational intractability of theoretical models for whole-genome evolution,

algorithms which try to measure the evolutionary distance between two or more sequences of

blocks or genes in genomes often resort to approximate measurements of the real evolutionary

distance, such as breakpoint distance.

The general computational problem of reconstructing a phylogeny from gene order data

is NP-hard [32, 108, 123]. Yet it is well studied. Many heuristic algorithms have been

developed [109]. Existing models can be divided into three classes, i.e., distance-based,

maximum parsimony, and maximum likelihood. Wang et. al. [167] proposed a method for

inferring phylogeny from gene orders of equal gene content. Sanko↵ [134] gave a method using

consensus gene order, but for unequal gene content, it is impossible to infer the consensus

gene order. Sanko↵ [134] also gave a method for phylogeny reconstruction using binary

phylogeny model and breakpoint distance as measurement of distance between two gene

orders.

For the inverse problem, inferring the order of a set of sequences of a query species given

the phylogeny and sequence orders of orthologous informant sequences, there is very limited

research. Existing methods for related problems can be classified into two categories. The

first category concentrates on the problem of estimating the evolutionary distance between

two gene orders [166]. The second category concentrates on finding the gene order minimizing

the sum of its distances to a set of existing orders. For those works in the second category,

they either infer a set of conserved intervals without specifying their order or give just a

single order of all the genes without giving alternatively solutions [13]. Existing methods

for inferring a sequence in a phylogeny or inferring gene orders in a phylogeny have their

limitations which make them not suitable to inferring sequence order for existing species.

For example, in ancestral gene order inference, if we want to reshape the phylogeny such that

an existing species becomes the ancestor, then we must assume the global rearrangement
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model is time-reversible. Just similar to a reversible nucleotide substitution model, this time-

reversibility is unrealistic in the biological sense. Another limitation of these methods is that

they usually ignore the length or genomic positions of the sequences or genes. Instead, the

sequences or genes are treated just as an order. Furthermore, these algorithms use simple

non-biologically-meaningful models, lacking models of genome rearrangement. Catchen [33]

used a mapping between two gene orders to roughly infer their ancestral gene order, but it

only considered gene clusters up to a pre-set limited size. It did not infer an order of all

genes appearing in children species.

We need a genome rearrangement model which (1) gives plausible probabilities associated

with rearrangement events, and (2) is computationally tractable to explore the space of

hypotheses. Without such a model, there are two issues. First, without such a model,

we cannot measure the evolutionary distance and probability precisely. Measurements like

breakpoint distance are a good approximation, but far from precise. Second, without such

a model, it is hard to e�ciently explore the vast solution space. For example, if there are

100 segments, then there will be 10! = 3.6 ⇥ 106 possible rearrangements of the segments.

Furthermore, if there are 10 species in the phylogeny, there will be 9 inner nodes. Each inner

nodes will have 106 possibilities. Then there will be 1069 = 1054 possible rearrangements

for the whole tree. If we have such a model, then we can sample the possible orders in a

probabilistic way.

5.2.1 Measurement of distance

To infer sequence order at a node in a phylogeny given sequence orders at other nodes, one

needs a measurement of evolutionary distance between gene orders. Evaluating the evolu-

tionary distance between genomes in terms of gene order rearrangements has been intensively

studied since the early 90’s. This is partly due to its important applications in comparative

genomics [23]. From an algorithmic point, it can roughly be defined as follows: given a set A

of gene families, two genomes G and H, represented as sequences of signed elements (genes)

from A, and a set of evolutionary operations that operate on segments of genes (like reversals,

transpositions, insertions, duplications, deletions for example), what is the minimum number

of operations needed to transform G into H? This number is often called the edit distance.

From this definition, it is obvious that there are many possible measurements, depending on
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the types of operations allowed. In practice, due to the complexity of edit distance, people

usually use approximate measurements. Here we talk about two of the most popular ones.

Breakpoint Distance Bhutkar [17] used number of shared neighboring gene pairs (NGP).

Sanko↵ [134] used breakpoint distance. A breakpoint is a pair of adjacent markers in one

genome that are not adjacent in another. Although solving for the tree with the fewest

breakpoints is not the same as solving for the tree optimizing a weighted combination of

rearrangements, it preserves some of that information and is much faster. This is because

breakpoint model is a very simple model and its computation has linear time complexity.

So the number of breakpoints between two genomes can be rapidly computed for a pair

of genomes. Blanchette et al. introduced a heuristic method involving solving multiple

traveling salesman problems to infer breakpoint patterns at inner nodes of a tree, until there

is no change in the number of breakpoints in the tree [21]. Cosner and Moret et al. have

used the binary presence/absence coding for breakpoints [38, 110]. Gallut et al. have used

a modified breakpoint coding with states that represent a marker with its two neighbors,

assuming unordered parsimony change between these states [52, 53]. In inferring hypothetical

ancestors within the tree, they retain only those combinations of states that would yield a

full genome.

Sorting by Reversals Another measurement of rearrangement distance is number of

reversals. David Sanko↵ [136, 138] proposed a model of sorting by reversals. Given the

orders of genes in two genomes ⇡ = ⇡
1

⇡
2

...⇡
n

and � = �
1

�
2

...�
n

. A reversal ⇢(i, j) of an

interval ⇡
i

...⇡
j

is the permutation ⇡
j

...⇡
i

. The reversal distance between two permutations

is define as the minimum number of reversals needed to convert one permutation to the

other. Though this is a more biologically realistic model than breakpoint distance, but it

is much harder to compute. Given a set of permutations ⇡1, ..., ⇡k, the problem of finding

a permutation � such that the sum of the distances
P

i=1,k

d(⇡i, �) is minimized is called

Multiple Genomic Distance Problem. In the case where the distance is reversal distance,

Caprara showed that both the signed and the unsigned sorting-by-reversal problems are NP-

hard [31, 32]. Berman and Kaplan devised fast algorithms for sorting signed permutations

by reversals [15, 67] . The Kaplan algorithm has quadratic time complexity by bypassing
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the equivalent transformations step of the Hannenhalli-Pevzner algorithm and exploring the

properties of the interleaving graph of gray edges rather than the interleaving graph of cycles.

Since Multiple Genomic Distance is di�cult in the case of reversal distance, most genomic

molecular evolution studies are based on breakpoint distance. However, the Multiple Ge-

nomic Distance problem in this formulation is also NP-hard. Sanko↵ suggested heuristics

for this problem [134].

5.3 Problem Formulation

We are given the following information:

• n permutations ⇡1...⇡n of genome segments from n informant species. Each ⇡i is a

permutation ⇡i = ⇡i

1

...⇡i

m

. Each segment ⇡i

j

has a genomic location �(⇡i

j

) and a length

l(⇡i

j

). For 1  j < k  m, �(⇡i

j

) < �(⇡i

k

). ⇡i

k

is orthologous to ⇡j

k

for all k 2 {1...m}
and i, j 2 {1...n} and i 6= j.

• A set of query segments {q
1

, ..., q
m

} from a query species. Each segment q
i

has one and

only one orthologous segment in {⇡k

j

|j 2 {1...m}} for k 2 {1...n}.

• A phylogeny relating the n informant species and the query species. Optionally the

phylogeny can have branch lengths representing the evolutionary distances between

the species.

The output is the true order of the query segments {q
1

...q
m

} in its genome.

Probabilistic Rearrangement Model Assume we have K segments of queries, each

query qk having been aligned to a multiple alignment Mk in the database. Mk is composed

of N informant sequences, sequence for species i being sk
i

. All segments from species i are

ordered as si0
i

, ..., siK
i

in the genome of species i. Given ordered segments from species i and

species j, i.e., S
i

= si0
i

...siK
i

and S
j

= sj0
j

...sjK
j

, there is a probability with which S
i

evolves

into S
j

, denoted by P
t

(S
i

, S
j

). Our problem is to find an order of q0...qk and an order for
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each inner node to maximize the probability of observing all the leaves, i.e.,

Y

e2inner nodes

P
t

(S
e

, S
left child

) · P
t

(S
e

, S
right child

),

where left and right child are the left and right child of e, and S
e

is considered as missing data.

Note that in our formulation, we preserve as much information as possible. For example, we

can also use the length of the segments as parameters in our model. We can also use the

genomic distances between segments as model parameters. How much information we use

depends on two things: (1) how much complexity and computational work will they incur;

(2) how will they a↵ect the accuracy of the results.

When the nodes are residues or bases, the phylogeny gives the information on indels. Sim-

ilarly, here the phylogeny gives the information of genome rearrangement events in the

informant species and the query. The di↵erence is that for base/residue phylogeny, there are

well-established mutation models, but for genome rearrangement there are not.

To parameterize our model, we have insertion rate, deletion rate, inversion rate, translocation

rate and inverted translocation rate. We do not have coalescence rate or separation rate.

Modeling them may give us more powerful model, but will also increase the complexity of

the model, and make it harder to e�ciently explore the full solution space. For each type

of rearrangement event, we use constant rate. These rates can optionally be estimated from

existing data, such as the TICdb database [118], which describes the genomic location of

1,225 translocation breakpoints in human tumors, corresponding to 247 di↵erent genes.

A translocation is determined by three variables, which are the starting position where the

translocation happens, the length of the translocated sequence and the distance between

its translocation starting and ending locations. For simplicity, we can ignore the first vari-

able, which is the length of the translocated sequence. We also ignore the e↵ect of the

starting point of the translocation on the translocation probability. We only consider the

distance between the starting and ending points of the translocation event. In other words,

two translocations with the same translocation distances are considered to have the same

probability. If we normalize the whole sequence range to [0, 1], a translocation distance is

just a real number in [0, 1] which the translocation probability depends on. We assume the
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translocation distance x follows a beta distribution:

f(x;↵, �) =
x↵�1(1� x)(��1)

R
1

0

u↵�1(1� u)��1d
u

The beta distribution is a family of continuous probability distributions defined on the in-

terval (0, 1) parameterized by two positive shape parameters, typically denoted by ↵ and

�. See Figure 5.2 for examples. The beta distribution is suited to the statistical modeling

of proportions in applications where values of proportions equal to 0 or 1 do not occur. For

our problem, we can integrate over an interval � around x.

Figure 5.2: Examples of beta distribution. The one with ↵ = 1 and � = 3 has the trend
suitable for our problem.

We assume a constant rate for all types of events across the entire genome. Future work

may consider non-constant rates due to e↵ects such as 3D folding of chromatin.

Parsimonious Methods v.s. MCMC Methods As we discussed previously, there

are two disadvantages of using non-probabilistic rearragement models. First, it might not

76



capture as much information about alternative orderings of sequences. Second, it will make

it very hard to e�ciently explore the vast solution space. For parsimonious models, they

are subject to the common disadvantages of their kind. For example, a parsimonious model

considers the evolutionary history with the minimum number of events the only correct

history, but this is often not the case. It is probable that parsimony methods will do better

in the case of gene orders than they do for aligned molecular sequences, because the chance

of parallel change or reversion is much lower in the gene order case.

Sanko↵ et al. were the first to make a non-parsimonious parametric model of rearrangement

of a map (using only inversions and not allowing deletion or duplication) [137]. Sanko↵ et al.

have made a start on statistical analysis of probabilistic models by using only the breakpoints

information and computing phylogenetic invariants for a model of breakpoints independently

arising and disappearing in a model of unsigned inversions (”reversals”) [135]. This implies

that probabilistic models can be carried out on phylogeny-related inferences. To search for

the optimal solution under such probabilistic models, Markov chain Monte Carlo methods

are among the most popular and most powerful ones. An MCMC algorithm was previously

used to infer mitochondrial gene order that is assumed to change by inversions [80]. Their

Bayesian MCMC considered both gene orders and phylogenies. MCMC algorithm was also

applied to the problem of inference of ancestral gene order in bacteria [43].

Our algorithm is composed of two steps. The first step is an optional step. We estimate

the rearrangement rates using maximum likelihood method. In the second step, we estimate

the order of the target sequences using MCMC algorithm. The reason we do not use an EM

algorithm for this is because we do not believe the rearrangement rates will be a↵ected much

after inserting the target species into the phylogeny.

Metropolis-Hastings Markov Chain Monte Carlo (MCMC) Sampling Method

The following is an introduction to the general MCMC algorithm using genealogy inference

as an example. Since the correct genealogy is not known, especially in more complex cases

such as those with rearrangement, the estimate should be based on a good sample of pos-

sible genealogies. To make the sampling as e�cient as possible, only genealogies that are

reasonably concordant with the data are chosen. Undirected random sampling (Monte Carlo

sampling) is not e�cient since the number of possible genealogies skyrockets as the number
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of sampled individuals increases. MCMC sampling, by imposing preferences on the random

walk, allows movement through the space of possible genealogies in a purposeful fashion.

The Metropolis-Hastings algorithm [131] can draw samples from any probability distribution

P (x), provided you can compute the value of a function f(x) which is proportional to the

density of P . The lax requirement that f(x) should be merely proportional to the density,

rather than exactly equal to it, makes the Metropolis-Hastings algorithm particularly useful,

because calculating the necessary normalization factor is often extremely di�cult in practice.

Two things are necessary to build up a Metropolis-Hastings MCMC coalescent sampler.

First, a mathematical statement of how the parameters are expected to a↵ect the shape

of the genealogy is needed. In other words, we must have a way to assess the fitness of a

genealogy given the parameters. Second, the relative fit of the data to the various genealogies

must be assessed so that the sampler can concentrate on genealogies that explain the data

well. This is the goal of phylogeny estimation as well; therefore similar methods may be used.

Likelihood methods are the most appropriate in this situation because they are accurate and

flexible and because they can tell not only which genealogy is better, but also by how much.

The fit of data to a genealogy can be expressed as the probability of the data, assuming an

appropriate model of molecular evolution, with respect to any given genealogy. Combining

the two parts, we can calculate the likelihood of the parameters ⇥ given the data D by

summing over all possible genealogies G, i.e. L(⇥) =
P

G

P (D|G)P (G|⇥).

Unfortunately, the whole summation is not possible in any but trivial cases. To overcome

this problem, the Metropolis-Hastings sampler generates a biased set of genealogies driven

by an assumed value ⇥
0

of the parameters, and then it corrects for that bias in evaluating

the likelihood. The result is a relative likelihood:

L(⇥)/L(⇥
0

) = ⌃
G

⇤(P (D|G⇤)P (G⇤|⇥))/(P (D|G⇤)P (G⇤|⇥
0

))

Here ⌃
G

⇤ is a sum over genealogies selected in proportion to P (D|G)P (G|⇥
0

). If an infinitely

large sample could be generated, then this approximation would give the same results as the

straightforward likelihood. In practice, a su�ciently large sample must be considered so

that the region of plausible genealogies is well explored. The algorithm will only e�ciently

explore the right region if ⇥
0

, which acts as a guide, is close to the true, unknown ⇥. Kuhner

proposed a strategy (used in LAMARC [75]) to make short runs of the program in order

to obtain a preliminary estimate of ⇥, and then feed that estimate back in as ⇥
0

. The
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final run will then have ⇥
0

close to ⇥, and will be more e�cient (and less biased) than

the earlier ones. The program generates its sample of genealogies by starting with some

arbitrary or user-supplied genealogy and proposing small rearrangements to it. The choice

of rearrangements is guided by P (G|⇥
0

).

Once a rearranged genealogy has been produced, its plausibility is assessed (P (D|G)) and

compared to the plausibility of the previous genealogy. If the new genealogy is superior, it is

accepted. If it is inferior, it still has a chance to be accepted: for example, genealogies that

are ten times worse are accepted one time in ten that they occur. This behavior helps keeping

the sampler from walking up the nearest ”hill” in the space of genealogies and sticking there,

even if there are better regions elsewhere. Given su�cient time, all areas of the space will be

searched, though proportionally more time will be spent in regions where P (D|G)P (G|⇥
0

)

is higher.

Once a large sample of genealogies has been produced, it is then used to construct a likelihood

curve showing L(⇥)/L(⇥
0

) for various values of ⇥, which is normally displayed as a log-

likelihood curve. The maximum of this curve is the maximum likelihood estimate of ⇥; the

region within two log-likelihood units of the maximum forms an approximate 95% confidence

interval. Typically, the strategy is to run 5-10 short chains of a few thousand genealogies

each, to get a good starting value of ⇥, and then 1-2 long chains to generate the final

estimate.

The most di�cult part of creating such a Metropolis-Hastings sampler is working out a way

to make rearrangements guided by P (G|⇥
0

): this is particularly challenging in cases with

rearrangement, where the genealogy becomes a tangled graph. A flowchart of the MCMC

process for the genealogy inference problem is shown in Figure 5.3.

In our problem, we need to compute the probability P
t

(S
i

, S
j

) for each edge (S
i

, S
j

) in the

tree. We only want to infer the order at the query species node, but in order to compute the

probability of the tree, we also need to infer the orders at inner nodes. In order to do this,

we need a mapping from {sk
i

} to {insertion, deletion, translocation, stay} to specify which

segments are translocated and which segments remain at the same location. For example,

in Figure 5.4, species a and b each have three segments, but there are at least two possible

mappings shown in the figure. We choose the most likely one to compute P
t

(S
a

, S
b

). In other

words,
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Choose Initial 
Parameters
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Yes
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Figure 5.3: Flowchart of Metropolis-Hastings MCMC algorithm.

P
t

(S
i

, S
j

) = argmax
mapping m

P
t

(S
i

, S
j

,m).

Our experiment data from the UCSC database contains starting and ending genomic po-

sitions for each sequence segment. So we know the orientation of the segments. To take

this into account, our model also contains inversion event. However, considering inversion

will make our problem much harder. Specifically, instead of needing a mapping from each

segment s
i

to the set of rearrangement events, we need a rearrangement history to compute

the probability P
t

(S
i

, S
j

, h), where S
i

is the ancestral permutation, S
j

is the o↵spring permu-

tation, and h is the evolutionary history. There are two possible solutions to this problem.

One is using an approximate cost function instead of the probabilistic function. Another is

to estimate the evolutionary history and compute the probability from the history. Here we

used the first solution, which is breakpoint distance.
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Figure 5.4: Two possible scenarios of rearrangement mapping.

5.4 Results and Discussion

5.4.1 MCMC-based method

The main part of the MCMC optimization process is as follows. First, we assign a random

permutation to each inner node and the query node in the tree. In each iteration of the

MCMC process, we simulate a random rearrangement event at each node. If the event

decreases the cost of the tree, then it is accepted. Otherwise, the rearrangement event is

accepted with its probability. Then we re-estimate the evolutionary rate parameters based

on sampled permutations. Then we use the new parameters to sample new permutations.

This process continues until the fitness of the permutations does not improve. In other

words, we stop when the overall cost of the tree cannot be decreased. Figure 5.5 shows the

flowchart of the MCMC algorithm we used.

The rearrangement model we used is as follows. There are five kinds of rearrangement events

we considered, i.e., insertion, deletion, inversion, translocation and inverted translocation. To

make a rearrangement event, we first pick a rearrangement type according to its probability,

then we choose the location of the rearrangement event according to the distribution of the

event, then perform the rearrangement event on the given permutation. The probability
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of each rearrangement type is set equally. Note that this will only a↵ect the e�ciency of

searching the solution space, not the computation of the goal function.

We did experiments using Drosophila melanogaster as the query species and 9 others as

informant species from the UCSC database. The phylogeny of the query and informant

species is shown in Figure 5.6. The database is composed of blocks of orthologous sequences

from these species and is generated using MultiZ. Because the query sequences have genomic

positions with them in the database, we know the ground truth of the order of the query

sequences. Note that the database only contains orthologous sequence blocks. It does not

contain any inference results on sequence orders. We originally wanted to also use human

chromosome 22 and C. elegans chromosome 3 as query species and their closely-related

species as informant species, but the UCSC genome database does not have mappings of the

segments of these species with genome rearrangement events in the mappings.

We first extracted those alignment blocks in the maf file containing these species and re-

moved other species. Then we removed unequal gene content. Then we have a mapping of

orthologous segments from these species and their genomic order in each species. We made

three test data sets from our input. A small test data set contains 4 species and 5 segments

for each species. A mid test data set contains 10 species and 20 segments. A large test data

set contains 10 species and 135 segments. The phylogeny of the species in the small test

data set is shown in Figure 5.7. The phylogeny in the mid and the large test data sets are

the same as in Figure 5.6.

The results are shown in Table 5.1 and Table 5.2. The di↵erence between these tables is

that Table 5.1 shows the value of the fitness function after the run, while Table 5.2 actually

measures the accuracy vs ground truth. Note that for the same data set, the initial values

in the ”before” column are di↵erent for di↵erent rows. This is because the initial solution

is randomly generated. From Table 5.1 we can see that the goal function value decreases

tremendously as we increase the number of iterations in the MCMC algorithm. The goal

function value tends to converge as the number of iterations increases. However, from Table

5.2 we can see that for all three experiments, even if we greatly increase the number of

MCMC iterations, the breakpoint distance between the resulting query permutation and the

ground-truth query permutation is not improved.
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Figure 5.5: Flowchart of the MCMC algorithm used to infer query sequence order.
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Figure 5.6: Phylogeny of Drosophila melanogaster(dm3) and 9 informant species

The inconsistency between the decrease of the goal function value and the decrease of the

distance between the optimized sequence order and the real order indicates that our goal

function may not be a good one. In other words, using breakpoint distance does not give the

solution we want. As for the MCMC algorithm, it is indeed e↵ective in optimizing the goal

function. Then we analyzed the property of breakpoint distance and found that it is a kind of

Euclidean distance [65]. Actually, we proved that using any Euclidian distance measurement

in optimizing the permutations will give an output permutation of the query segments in the

same order as the query’s sibling. If the sibling is an input informant permutation, in this

situation, the output of the query’s permutation will just converge to the input permutation.

See Theorem 1.

droMoj3
dp4

droSec1
dm3

Figure 5.7: Phylogeny of species in small test data set.

Theorem 1. Using any Euclidean distance measurement in optimizing permutations in a

tree will give a query permutation the same as one of the leaves in the tree.
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Table 5.1: Optimization results of overall breakpoint distance in tree for small, mid and large
size experiments. The ”before” columns contain breakpoint distances of the initial tree. The
”after” columns contain the breakpoint distances of the optimized tree.

small mid large
before after before after before after

#iterations

10 17 8 309 274 2376 2376
100 16 6 307 207 2373 2286
1000 14 4 305 109 2381 1942
10000 8 4 319 41 2369 1359

Table 5.2: Optimization results of breakpoint distance between query’s initial permutation
and true permutation for small, mid and large size experiments. The ”before” columns
contain the breakpoint distances between the initial query permutation and the query’s true
permutation. The ”after” columns contain breakpoint distances between the optimized query
permutation and the query’s true permutation.

small mid large
before after before after before after

#iterations

10 2 1 18 17 131 131
100 2 4 19 18 130 130
1000 2 4 19 17 133 134
10000 2 3 16 18 134 127
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Figure 5.8: Illustration of optimization with additive cost function.
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Proof. The situation here is like in the problem of optimal lifted alignment, where given a

labeling of sequences at the leaves of a phylogenetic tree, a lifted alignment (in which each

internal node is labeled with one of the leaf sequences) is close to the best possible.

Let d be the distance measurement, which means it satisfies the following three conditions

for any permutation x and y:

• d(x, y) � 0 and d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, y) + d(y, z) � d(x, z)

Without loss of generality, we assume the tree structure is as in Figure 5.8a. For any assign-

ment in the tree, if the permutation at q is not the same as the permutation at p, then we can

set permutation at q to perm(p) to reduce the cost. So perm(q) must be equal to perm(p),

as shown in Figure 5.8b. Then at node p, we will argue that perm(p) is either perm(r) or

perm(b). If it’s not, then we can set perm(p) to perm(b) or perm(r) and get a lower-cost tree,

as shown in Figure 5.8c. If perm(p)=perm(b), then perm(q)=perm(p)=perm(b) and proof

is done. Otherwise, perm(p) must be equal to perm(r), as shown in Figure 5.8d. Similarly,

for node r, the permutation must be either perm(s) or perm(t). We can reroot the tree at

node q. We showed that the permutation at a node must be the same as one of the two

permutations at its children nodes. Thus, permutation at q must be equal to a permutation

of the leaves in the tree.

Breakpoint distance has been extensively used in other researches as the metric of gene order

distance [3, 21, 22, 50, 123, 134, 171]. We also used breakpoint distance as an approximation

to the real sequence order distance. We want to know how does this a↵ect our results.

Corollary 2. Using breakpoint distance as optimization goal function will give an optimiza-

tion result in which the query segments’ order is the same as one of the segment orders of

the input species.

Proof. Because breakpoint distance satisfies the definition of a mathematical distance, ac-

cording to theorem 1, the segments’ order at the query node will be one of the leaf nodes’

segment orders.
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5.4.2 Graph-algorithm-based method

From the above experimental results we have several observations. While the breakpoint

distance may not be a good choice in our goal function, MCMC algorithm is indeed e↵ective

in optimizing the goal function, even though the size of the search space is exponential to

the number of input sequences. Thus MCMC algorithm still has the potential to solve the

problem as long as we can find a proper goal function. We proved that using any Euclidean

distance as the optimization goal function will lead to degenerated solution where the inferred

segment order will be equal to one of the input segment orders. An alternative is to use a

non-distance based scoring scheme.

The property in Euclidean distance definition that leads to degenerated solution is the prop-

erty that d(x, x) = 0. In a non-distance based metrics, we want d(x, x) > 0. One instance of

such metrics is probability. For example, solutions to inferring the probability of one segment

order given another order can be classified into exact solutions and approximate solutions.

To get an exact solution, one needs to compute the probability distribution of the recombined

order given the original order. Because the solution space size is exponential to the input and

the number of segments and ways of rearrangements are large, it is impossible to compute

the exact distribution of the recombined order. Another choice is to estimate the most likely

rearrangement history between two orders and use its probability as the distance between

the two orders. However, due to the large search space, such a path must be estimated from

a heuristic search or randomized search, which will make the estimated path highly unstable

from one run to another, which will make the estimated probability inaccurate. Yet another

option for tackling the exponential solution space is that we decompose the whole solution

space into orthogonal subspaces.

In this section, we explore such possibilities. We give another formulation of the rearrange-

ment inference problem, which is a combinatorial optimization representation. For each node

in the tree, we compute the probability of one segment being present before another segment

by combining such probabilities in its two child nodes. For example, in Figure 5.9, the order

of segments a and b is given at the three leaves A, B, and C. At node D, the probability of

a being present before b is defined by
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P (a < b in D) ⌘ ↵ ⇤ P (a < b in A) + (1� ↵) ⇤ P (a < b in B),

where ↵ is the weight of the left child and 1�↵ is the weight of the right child. The weights

can be defined in terms of branch lengths. We weigh the left and right probabilities of

sequence a preceding sequence b by right branch length and left branch length respectively.

Formally we have:

Pr(a < b|D) =
Pr(a < b|A) · l

DB

+ Pr(a < b|B) · l
DA

l
DB

+ l
DA

.

For node A, because it is a leaf, so P (a < b in A) = 1. Finally we will have a distribution on

the order of a and b in the root node E. In our original problem, the query node is a leaf. In

this case, we can reroot the tree. In our example, assume all branches have the same length.

Then we will have the following probabilities:

P (a < b in A) = 1.0,

P (a > b in A) = 0.0,

P (a < b in B) = 0.0,

P (a > b in B) = 1.0,

P (a < b in C) = 0.0,

P (a > b in C) = 1.0,

P (a < b in D) = 0.5 ⇤ P (a < b in A) + 0.5 ⇤ P (a < b in B) = 0.5,

P (a > b in D) = 0.5 ⇤ P (a > b in A) + 0.5 ⇤ P (a > b in B) = 0.5,

P (a < b in E) = 0.5 ⇤ P (a < b in D) + 0.5 ⇤ P (a < b in C) = 0.25,

P (a > b in E) = 0.5 ⇤ P (a > b in D) + 0.5 ⇤ P (a > b in C) = 0.75,

After computing the probability distribution at each node in the tree, we want to find an

order at the query node which maximizes the overall probability of the order. Let’s examine
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Figure 5.9: A phylogeny with three species and two sets of homologous sequences.

another example, shown in Figure 5.10. In this example, there are three segments at each

node. At each node, we have P (x < y) for any pair of x and y. From the probability

distribution at the root node, we build a graph in the following process. Each segment is

converted to a node. Each pair of nodes has two directional edges. The edge from node x

to y has weight P (x < y). The resulting graph for the root node is shown in Figure 5.11.

The edges in solid lines represent a solution, which is a directional Hamilton path in the

graph. Our goal is to find the Hamilton path with the maximum probability. To convert

the product of probabilities into a sum of edge weights, we can take log on each probability.

Then finding an Hamilton path with maximum probability becomes finding an path with

maximum weight. We use MCMC algorithm to find such a path.

There are several advantages of this method. First, it represents all possible paths in a

single graph. Remember that all other algorithms can only infer a single order of the in-

put segments. This graph-based representation gives essentially a probability distribution

of the order of the input segments. Second, though finding a max-weight Hamilton path is

still NP-hard, but this reduces the original search problem by exponential scale. Because
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Figure 5.10: A phylogeny with three species and three sets of homologous sequences.
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Figure 5.11: Conversion from rearrangement inference problem to Hamilton path problem.
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in the original problem, we need to consider all possible rearrangements at each node. As-

sume there are m species and n segments, then there are O(n!) permutations at each node,

which is O(nn). There are m species, so there are 2m nodes in the tree. Thus there are

O((nn)2m) = O(n2mn) possible cases in the tree. In our graph-based formulation, there are

only n! di↵erent Hamilton paths. Furthermore, finding a max-weight Hamilton path is a

classical combinatorial optimization problem and there exists many existing solutions to this

problem. Note that even if we just compute a single output order, the search space is much

smaller than the search space of the original problem. Given any path, we can compute its

probability in O(n) time, compared with in the original problem where we need to sample

possible mutations at each inner node.

Using our three test data sets, the experimental results are shown in Table 5.3 and Table

5.4. The di↵erence between these tables is that Table 5.3 shows the length of the initial and

final path, while Table 5.4 actually measures the accuracy vs ground truth. Note that in

both table the ”before” values in a column are di↵erent for di↵erent rows. This is because

the initial permutation is randomly chosen.

Table 5.3: Optimization results of longest path in graph for small, mid and large size exper-
iments. The ”before” columns contain the initial distances. The ”after” columns contains
the optimized path length. These are all log distances.

small mid large
before after before after before after

#iterations

10 -26.63 -1.28 -400.35 -189.94 -2929.03 -2973.06
100 -24.84 -1.28 -355.13 -157.89 -3085.46 -2883.31
1000 -25.80 -1.28 -400.66 -169.88 -2976.59 -2864.47
10000 -47.02 -1.28 -394.79 -165.51 -3065.70 -2956.32

We can see that except for the small data set, the graph-based algorithm still failed to get

closer to the ground truth.

Experimental Results on Simulated Data Next we want to separate our algorithm

to the problem from the underlying model. We tested our algorithm on simulated permu-

tations generated using our own rearrangement model. First we fix the phylogeny, then we

assign a random permutation at the root. Next, from the root to the leaves, we simulate
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Table 5.4: Optimization results of query permutation for small, mid and large size experi-
ments. The ”before” columns contain the breakpoint distances between the original query
permutation and the query’s true permutation. The ”after” columns contain breakpoint
distances between the optimized query permutation and the query’s true permutation.

small mid large
before after before after before after

#iterations

10 4 1 18 17 131 129
100 3 1 15 17 134 130
1000 3 1 17 16 128 127
10000 2 1 16 17 133 132

rearrangement events sampled by our rearrangement model. Finally we run our algorithm

on the simulated data to infer the query permutation. Our experimental results showed that

our algorithm can correctly infer the permutation at the query node for small data sets and

works to some extent for mid-size data sets, but failed for large data sets. The results are

shown in Table 5.5 (in terms of path length) and Table 5.6 (in terms of breakpoint distance

to the ground truth permutation).

Table 5.5: Optimization results of longest path in graph for small, mid and large size exper-
iments. The ”before” columns contain the initial distances. The ”after” columns contains
the optimized path length.

small mid large
before after before after before after

#iterations

10 -12.80 -0.59 -330.25 -121.71 -3039.66 -3016.64
100 -14.02 -0.59 -326.36 -153.36 -2977.25 -2885.40
1000 -12.79 -0.59 -373.58 -129.02 -2972.08 -2856.95
10000 -37.06 -0.59 -375.32 -166.01 -3002.51 -2841.58

To further validate our assumption, we investigated the relationship between breakpoint

distance and branch length of the simulated data. We computed breakpoint distances and

branch lengths between all pairs of leaf nodes in the tree. The results are shown in Table

5.7. The relationship between breakpoint distance and path length is shown in Figure 5.12.
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Table 5.6: Optimization results of query permutation for small, mid and large size experi-
ments. The ”before” columns contain the breakpoint distances between the original query
permutation and the query’s true permutation. The ”after” columns contain breakpoint
distances between the optimized query permutation and the query’s true permutation.

small mid large
before after before after before after

#iterations

10 2 0 18 9 132 131
100 3 0 15 9 130 126
1000 2 0 18 9 130 125
10000 4 0 17 8 131 124

Table 5.7: Examples of breakpoint distances and branch lengths in phylogeny.

dm3 droSec1 0 0.041684
dm3 droYak2 0 0.077513
dm3 droEre2 0 0.078749
dm3 dp4 1 0.196726
dm3 droPer1 1 0.19749
dm3 droWil1 2 0.250317
dm3 droVir3 2 0.274038
dm3 droMoj3 2 0.289755
dm3 droGri2 2 0.281076

... ... ... ...
droGri2 dm3 2 0.281076
droGri2 droSec1 2 0.28681
droGri2 droYak2 2 0.298465
droGri2 droEre2 2 0.299701
droGri2 dp4 2 0.310848
droGri2 droPer1 2 0.311612
droGri2 droWil1 4 0.331701
droGri2 droVir3 3 0.160424
droGri2 droMoj3 0 0.176141
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Figure 5.12: Relationship between breakpoint distance and path length of simulated data.
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We can see that with simulated data, the optimization result is much closer to the truth than

using the real data. The only di↵erence between the simulated data and real data is that

the simulated data is generated according to our rearrangement model while the real data is

not. This implies that our model is indeed inaccurate for the problem. From the relationship

between breakpoint distance and path probability, we can see that the breakpoint distance

is a good approximation of the path length in the probability graph. This means using the

probability of path as a goal function is a reasonable metric.

5.4.3 Conclusion so far

We give a probabilistic model of genome rearrangement. Based on that model, we develop

an MCMC algorithm to infer the order of genome segments in a query species using orders

of orthologous segments in informant species. Experiment results show that the MCMC

algorithm can find the solution on small data set with breakpoint distance measurement.

But it failed for large data sets. The failures result from the discrepancy between the optimal

goal function value which is the overall breakpoint distance and the ground-truth solution.

The MCMC algorithm actually can find the optimal solution under the given goal function.

We prove that using any Euclidean distance metrics as the goal function of the optimization

process will result in the order of segments of the query species being the same as the order

of one of the leaf nodes in the tree, which means the optimization program just picks one

input as output under such case. We also tried a graph-based algorithm. The results show

that while the distance measurement can be well approximated by breakpoint distance, the

model of genome rearrangement needs to be refined.
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Chapter 6

Conclusions and Future Work

The contributions of this dissertation include several aspects. First, we formulated four

problems. The first one is sequence similarity search using a multiple alignment database

and a phylogeny-based scoring system. The second one is multiple alignment improvement.

The third one is interspecies short read mapping. The fourth one is genome rearrangement

inference. Second, we gave solutions to the problems. For the sequence similarity search

problem, we integrated the multiple alignment database and the phylogeny-based proba-

bilistic scoring scheme in an EM framework. Our method successfully find good matches

between a query sequence and a database. Our method performs better than competitors.

In the multiple alignment problem, we embedded the multiple-alignment-phylogeny frame-

work into an iterative optimization process. We customize the sequence similarity search

algorithm to fit in this process. Our method can successfully correct errors in multiple align-

ment database. Our method also performs better than other competitor algorithms. For

the interspecies mapping problem, we tackle the problem from both theoretical computation

aspect and experimental aspect. We have successfully mapped substantially more reads to

their orthologous locations in reference sequence than competitor programs. For the genome

rearrangement inference problem, we successfully applied MCMC algorithm to the break-

point distance optimization problem, though the breakpoint distance metrics may not be a

proper one. We also formulated the problem as a graph problem and developed a partially

working algorithm for it which can find solutions to small and mid-size data sets on simu-

lated data. We pointed to possible future directions and solutions. Last but not least, we

formulated these problems in a common biological model and algorithmic framework. With

the fast accumulation of newly assembled whole genomes and increasing understanding of

97



the problems in bioinformatics, more problems can be related to each other and solved in

the same framework. This dissertation is an example of this kind of work.

6.1 Sequence Similarity Search

In Chapter 2 we studied the sequence similarity search problem. We introduce PhyLAT,

the Phylogenetic Local Alignment Tool, to compute local alignments of a query sequence

against a fixed multiple-genome alignment of closely related species. PhyLAT uses a known

phylogenetic tree on the species in the multiple alignment to improve the quality of its com-

puted alignments while also estimating the placement of the query on this tree. It combines

a probabilistic approach to alignment with seeding and expansion heuristics to accelerate

discovery of significant alignments. We provide evidence, using alignments of human chro-

mosome 22 against a 5-species alignment from the UCSC Genome Browser database, that

PhyLAT’s alignments are more accurate than those of other commonly used programs, in-

cluding BLAST, POY, MAFFT, MUSCLE, and CLUSTAL. PhyLAT also identifies more

alignments in coding DNA than does pairwise alignment alone. Finally, our tool determines

the evolutionary relationship of query sequences to the database more accurately than do

POY, RAxML, EPA, or pplacer.

Several opportunities exist to improve PhyLAT’s performance and utility. First, our assump-

tion that successive residues in the query or successive columns in the multiple alignment

are stochastically independent is not realistic. It could be useful to add a dependence model

between adjacent bases/columns to improve the accuracy of alignment.

Second, PhyLAT assumes that its query is a single DNA sequence. It would be useful to

handle queries that are themselves multiple alignments. However, there are unresolved com-

putational complexity issues with this extension. In particular, we cannot simply enumerate

all simultaneous branch placements of all species in the query multiple alignment with respect

to the database multiple alignment. Some e�cient way must be found to form a hypothesis

about how the query species and database species relate within a single tree.

Third, we need to develop e�cient approaches to estimate the statistical significance of

gapped alignments in PhyLAT without resorting to expensive simulations. Karlin and
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Altschul’s theory for ungapped alignments is not applicable to gapped alignments [69]. How-

ever, many kinds of alignments involving gaps were empirically demonstrated to follow EVD

[6, 46, 133, 140]. To derive empirical parameters of KA statistics, tens of thousands of align-

ments need to be generated and scored. This process is computationally expensive but may

not give parameters accurate enough for computing statistical significance for new align-

ments, especially when the composition of new data is di↵erent from that in simulation. In

[133], a rescaling technique was explored to use a standard score distribution to estimate sta-

tistical significance of profile alignments of new profiles. In Aleksandar’s work [2], the island

method was applied to collect more optimal scores from a single simulated alignments.

Finally, it would be useful to consider alternative database trees during alignment, e.g. to

accommodate the possibility that a query is not being aligned to an orthologous locus in

the database. While it is possible to sum probabilities over multiple tree hypotheses, the

increased computational cost of using multiple trees makes it imperative to be careful not

to consider too many such alternative trees. Heuristics for picking likely trees would help to

guide the search.

6.2 Multiple Alignment Improvement

In Chapter 3 we discussed is multiple alignment improvement. Multiple alignments are often

the initial input of down-stream analysis. The accuracy of multiple alignments will directly

impact the results of the analysis. Though there are many tools for generating multiple

alignments, there are few tools for improving existing multiple alignments. The reason we

need an improvement tool besides multiple alignment generation tools is that we can use

fast algorithms to generate initial multiple alignment and then use more complex models

to fine tune the alignments. We developed PhyMAIT, which is a phylogeny-aware multiple

alignment improvement tool. It uses iterative optimization to improve multiple alignments.

It also incorporates phylogenetic information and uses probabilistic alignment framework

to accurately align sequences. We tried several strategies for the alignment process. Our

experiment results show that our algorithm can improve the quality of existing multiple

alignments.
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One future work is the acceleration of the multiple alignment process. Because alignments

can be as long as thousands of columns with each column containing dozens of bases from

di↵erent species. Redoing the whole alignment during each iteration is very time consuming.

After a few iterations, some parts of the alignment may be very steady and change little. In

such cases, we have good reasons to ignore those regions and focus on only the regions with

less stability.

6.3 Short Read Mapping

In Chapter 4 we discussed short read mapping problem. We identified the need for inter-

species mapping. Before our work, there is only intra-species mapping. There are several

possible use cases for interspecies mapping. One example is metagenomics. With the de-

velopment of genome sequencing techniques, short reads are generated at a unprecedented

pace. Often it is the case that a species’ genome is sequenced for the first time. In this case,

no reference sequence of the same species is available. We then can use one or more closely-

related species’ sequences as the reference sequence. We formulated the short read mapping

problem in the context of multiple sequence alignment with phylogenetic information. We

then gave an algorithm to do short read mapping. Our experiment results show that our

algorithm can align short reads more accurately than other intra-species mapping tools.

One thing to explore is how to speed up the short read mapping process. Because the number

of short reads generated from some applications are very large, acceleration of the alignment

process is very important. One solution is parallel computation of the alignment phase. Be-

cause the alignment of di↵erent reads are irrelevant of each other, so they can be done sepa-

rately on di↵erent machines. This is a perfect use case for Map-Reduce framework. During

the Map phase, short reads are hashed into a key-value pair < readid, readsequence >. Dur-

ing the map phase, each read will be aligned to the multiple alignment where there is a seed.

The output of the map phase are pairs of< alignedreadposition,< read, alignmentscore >>.

Note that the second element is a tuple of the read sequence and score. The output of the

map phase will be grouped by aligned read position, so reads mapped to the same position

will be grouped together. Then during the reduce phase, we can use scores to decide which

read is the true orthologous sequence.
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6.4 Genome Rearrangement Inference

In Chapter 5 we discussed is genome rearrangement inference. With new genomes being

sequenced everyday, assembling the sequences is a huge task. Often when people try to

assemble the sequences, they can not fully resolve the order of the sequences. However,

with the help of other informant sequences and their phylogenetic relationships with the

target sequence, inferring the order of sequences of the new genome may become easier. We

defined a model of genome rearrangement, which can account for inversion, translocation

and inverted translocation. This is a probabilistic model. We tried to use breaking point

distance as the measurement of distance between di↵erent orders of sequences. We found

that it did not work. We proved that using any Euclidean measurement in the optimization

algorithm will result in a degenerated solution. However, our algorithm did find the optimal

or near-optimal solutions under the condition of using breakpoint measurement. This is a

hint that MCMC algorithm will work for finding the evolution history of sequences, which

can be used together with a probabilistic measurement to find the order of sequences in

target genome.

Because this problem is very open, there are still a lot of things to do. One is improving the

genome rearrangement model. This is a more biological problem than algorithmic. It is also

the most important part in this problem. Starting with a wrong model, whatever complex

algorithms we use, we will not likely to get the correct results. The model contains two

parts. One is what kinds of events we want to model. Examples are transitions, inversions,

indels and translocations. Currently we just consider translocations, inversions and inverted

translocations. In other words, we only considered equal-gene-content cases. We filtered the

input data so they only contain the same set of genes. This is a very strong restriction.

Another is the parameters of the model. One example is the transition rate. Di↵erent sets of

species may have di↵erent rates. Even for the same set of species, rates on di↵erent branches

may be di↵erent. Another possible future work is modeling this problem in a di↵erent way.

Current models, including our model, can only give a single output of the optimized order

of the input sequences. Because MCMC is a randomized algorithm, the output may be

di↵erent each time. However, compared with the number of possible solutions, this is still

a very small number. How to evaluate the reliability of the output with respect to other

possible solutions is very important. One possible solution is finding a representation which
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can express all the possible solutions in parallel. We modeled the problem using a graphical

model, whose nodes represent the genes and edges represent the relative probabilistic order.

Then we find the order with the largest probability by finding the Hamilton path in the graph

with the largest weight. Given any order, we can also calculate its probability by calculating

the weight of the corresponding Hamilton path. Though finding the optimal Hamilton path

is also an NP-hard problem, but it reduces the complexity of the original problem by orders

of magnitude. Furthermore, there exists many approximation algorithms for this problem.
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