142 research outputs found

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach

    Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    Get PDF
    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem

    Control and Optimization of Laminar Incompressible Fluid Flow

    Get PDF
    The purpose of this thesis is to present a numerical algorithm for the dynamical opti­ mization of fluid flow systems that contain both geometric and control variables. This problem was formulated in an optimal control setting by specifying some performance functional to be minimized subject to the constraints provided by the discretized state equations. An algorithm was presented and applied successfully in the feedforward case to a simple fluid flow problem. Linear quadratic feedback control of laminar incompressible fluid was also studied with the eventual intention of incorporating feedback control into the optimization process. A feedback law was developed nu­ merically for incompressible fluid flow systems in some special cases, but after some numerical analysis it became clear that this method would have to be developed fur­ ther before it could be of any practical use

    Stabilized Reduced Basis Approximation of Incompressible Three-Dimensional Navier-Stokes Equations in Parametrized Deformed Domains

    Get PDF
    In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes equations for fluid flow in pipes with varying curvatures and cross-sections. We intend to compute a reduced basis approximation of the solution, employing the geometry as a parameter in the reduced basis method. This has previously been done in a spectral element PN−PN−2P_{{ \mathcal{N}}} - P_{{ \mathcal{N}}-2} setting in two dimensions for the steady Stokes equations. To compute the necessary basis-functions in the reduced basis method, we propose to use a stabilized P 1−P 1 finite element method for solving the Navier-Stokes equations on different geometries. By employing the same stabilization in the reduced basis approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition. This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping its good approximation properties. We prove the well posedness of the reduced problem and present numerical results for selected parameter dependent three dimensional pipe

    Approximation of the thermally coupled MHD problem using a stabilized finite element method

    Get PDF
    A numerical formulation to solve the MHD problem with thermal coupling is presented in full detail. The distinctive feature of the method is the design of the stabilization terms, which serve several purposes. First, convective dominated flows in the Navier-Stokes and the heat equation can be dealt with. Second, there is no restriction in the choice of the interpolation spaces of all the variables and, finally, flows highly coupled with the magnetic field can be accounted for. Different aspects related to the design of the final fully discrete and linearized algorithm are also discussed

    Approximation of the thermally coupled MHD problem using a stabilized finite element method

    Get PDF
    A numerical formulation to solve the MHD problem with thermal coupling is presented in full detail. The distinctive feature of the method is the design of the stabilization terms, which serve several purposes. First, convective dominated flows in the Navier–Stokes and the heat equation can be dealt with. Second, there is no restriction in the choice of the interpolation spaces of all the variables and, finally, flows highly coupled with the magnetic field can be accounted for. Different aspects related to the design of the final fully discrete and linearized algorithm are also discussed

    Interior penalty finite element approximation of Navier-Stokes equations and application to free surface flows

    Get PDF
    In the present work, we investigate mathematical and numerical aspects of interior penalty finite element methods for free surface flows. We consider the incompressible Navier-Stokes equations with variable density and viscosity, combined with a front capturing model using the level set method. We formulate interior penalty finite element methods for both the Navier-Stokes equations and the level set advection equation. For the two-fluid Stokes equations, we propose and analyze an unfitted finite element scheme with interior penalty. Optimal a priori error estimates for the velocity and the pressure are proved in the energy norm. A preconditioning strategy with adaptive reuse of incomplete factorizations as preconditioners for Krylov subspace methods is introduced and applied for solving the linear systems. Different and complementary solutions for reducing the matrix assembly time and the memory consumption are proposed and tested, each of which is applicable in general in the context of either multiphase flow or interior penalty stabilization. As level set reinitialization method, we apply a combination of the interface local projection and a fast marching scheme. We provide for the latter a reformulation of the distance computation algorithm on unstructured simplicial meshes in any spatial dimension, allowing for both an efficient implementation and geometric insight. We present and discuss numerical solutions of reference problems for the one-fluid Navier-Stokes equations and for the level set advection problem. Solutions of benchmark problems in two and three dimensions involving one or two fluids are then approximated, and the results are compared to literature values. Finally, we describe software design techniques and abstractions for the efficient and general implementation of the applied methods

    Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems

    Get PDF
    This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier-Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier--Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases considered.Neste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos Continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/convección-difusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran tests clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados.This thesis proposes a coupled continuous and hybridizable discontinuous Galerkin formulation to solve conjugate heat transfer problems. This model is then used to find the thermal response of Glass Fiber Reinforced Polymer (GFRP) tubular cross-section under fire. The first step of this thesis is to compare the computational efficiency of high-order Continuous Galerkin (CG) and Hybridizable Discontinuous Galerkin (HDG) methods for incompressible fluid flow problems in low Reynolds number regimes. Only 2-D examples and direct solvers are considered in the present work. A thoroughly comparison in terms of CPU time and accuracy for both discretization methods is made under the same platform. Various results presented suggests that HDG can be more efficient than CG when the CPU time, for a given degree, is considered. The stability of HDG and CG is studied using a manufactured solution that produces a sharp boundary layer, confirming that HDG provides smooth converged solutions in the presence of sharp fronts whereas, CG failed to converge due to the presence of numerical oscillations. Following, the solution of the coupled Navier–Stokes/convection-diffusion problem, using Boussinesq approximation, is formulated within the HDG framework and analysed using numerical experiments and benchmark problems. A coupling strategy between HDG and CG methods is proposed in the framework of second-order elliptic operators. The coupled formulation is implemented and its convergence properties are established numerically by using manufactured solutions. Finally, the proposed coupled formulation between HDG and CG for heat equation is combined with the coupled Navier–Stokes/convection diffusion equations to formulate a new CG-HDG model for solving conjugate heat transfer problems. Benchmark examples are solved using the proposed model and validated with literature values. The final part of the thesis applies the proposed CG-HDG coupled formulation to predict the thermal response of the GFRP tubular cross-section. The radiosity equation that governs the internal radiation is added to the CG-HDG coupled model. Estimates of the discretization errors are computed in order to establish the confidence intervals for quantities of interest. Results with the geometry having curved corners in the cavity are presented and shown to be within the estimated uncertainty intervals. CPU times for the linear solver suggests that the proposed CG-HDG model is more efficient than CG-CG model in all the cases consideredNeste trabalho é proposta uma formulação para acoplar os modelos continuous e hybridizable discontinuous Galerkin a fim de analisar problemas conjugados de transferência de calor. Este modelo é então usado para estudar a resposta térmica de perfis pultrudidos de secção tubular em polímero reforçado com fibras de vidro (GFRP) sob a acção do fogo. O primeiro passo desta tese é comparar a eficiência computacional dos métodos continuous Galerkin (CG) e Hybridizable Discontinuous Galerkin (HDG) de elevada ordem para problemas de escoamento de fluidos incompressíveis para valores reduzidos do número Reynolds. Apenas exemplos bidimensionais e métodos directos são considerados no presente trabalho. Uma comparação exaustiva em termos de tempo de CPU e precisão para ambos os métodos de discretização é efectuada sob uma plataforma comum. Os resultados apresentados sugerem que, em termos do tempo de CPU requerido, o HDG pode ser mais eficiente que o CG, para um determinado grau. A estabilidade do HDG e CG é estudada usando uma solução fabricada que produz uma abrupta descontinuidade, confirmando que o HDG fornece soluções convergentes e suaves na presença de descontinuidades, enquanto o CG não conseguiu convergir devido à presença de oscilações numéricas. Em seguida, a solução do problema acoplado Navier-Stokes/convecção-difusão, utilizando a aproximação de Boussinesq, é formulada no contexto HDG e analisada usando soluções de referência. Uma estratégia de acoplamento entre os métodos HDG e CG é proposta no âmbito de operadores elípticos de segunda ordem. A formulação acoplada é implementada e suas propriedades de convergência são estabelecidas numericamente usando soluções fabricadas. Finalmente, a formulação acoplada proposta entre HDG e CG para a equação do calor é combinada com as equações acopladas de Navier-Stokes/convecção-difusão para formular um novo modelo de CG-HDG para resolver problemas de transferência de calor conjugado. Exemplos de referência são resolvidos usando o modelo proposto e validados com valores de literatura. A parte final da tese aplica a formulação proposta CG-HDG acoplada para prever a resposta térmica de uma secção transversal tubular de GFRP. A equação de radiosidade que governa a radiação interna é adicionada ao modelo acoplado CG-HDG. Os erros de discretização são calculados para estabelecer os intervalos de confiança para quantidades de interesse. Resultados considerando a geometria circular dos cantos da cavidade são apresentados. Estes estão dentro do intervalo de incerteza estimado. Os tempos de CPU requeridos para resolver os sistemas de equações lineares sugerem que o modelo proposto CG-HDG é mais eficiente do que o modelo CG-CG em todos os casos considerados.En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la a solución de problemas térmicos conjugados. El modelo se utiliza para determinar la respuesta al fuego de Polímeros Reforzados con Fibras de Vidrio (GFRP) con sección tubular. El primer paso de la tesis es la comparación de la eficiencia computacional de CG y HDG de alto orden para problemas de flujo incompresible para número de Reynolds (Re) bajo. Se consideran sólo ejemplos 2D y métodos de resolución de sistemas lineales directos. Se presenta una comparación en términos de tiempo de CPU y precisión en la solución para ambas discretizaciones, bajo la misma plataforma de implementación. Los resultados sugieren que HDG puede ser más eficiente computacionalmente que CG en tiempo de CPU, para un grado fijado. La estabilidad de HDG y CG para Re alto se estudia con una solución manufacturada que produce un frente pronunciado, confirmando que HDG proporciona soluciones convergidas suaves en presencia de frentes verticales, en casos en que las oscilaciones numéricas de CG no permiten llegar a convergencia. A continuación, se plantea la solución del problema acoplado Navier-Stokes/conveccióndifusión, con la aproximación de Boussinesq, en el contexto del método HDG, y se analiza con experimentos numéricos. Se propone una formulación acoplada HDG-CG para la ecuación del calor. Se comprueban numéricamente las propiedades de convergencia del método propuesto. Finalmente, se combina la formulación acoplada propuesta para la ecuación del calor con el acoplamiento con la ecuaciones de Navier-Stokes en el dominio del fluido, creando una nueva formulación CG-HDG para problemas térmicos conjugados. Se consideran ejemplos clásicos para validar los resultados comparando con la literatura existente. La parte final de la tesis aplica la formulación acoplada CG-HDG propuesta a la predicción de la respuesta térmica de secciones tubulares de GFRP, incluyendo radiosidad interna en el modelo. Se calculan estimas de los errores de discretización para determinar intervalos de confianza para las cantidades de interés. Se presentan resultados con geometría con esquinas curvas en la cavidad mostrando resultados dentro de los intervalos de incertidumbre estimados. El tiempo de CPU para la resolución de sistemas sugiere que el modelo CG-HDG propuesto es más eficiente que el clásico método CG-CG en todos los casos considerados.Postprint (published version
    • …
    corecore