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[1.0 || INTRODUCTION

As part of the continuing effort at NASA/Lewis to improve both the durability and
reliability of hot section Earth-to-Orbit engine components, significant enhancements must
be made in existing finite element and finite difference methods, and advanced techniques,
such as the boundary element method, must be explored. Despite this considerable effort,
the accurate determination of transient thermal stresses in these hot section components
remains one of the most difficult problems facing engine design/analysts. For these prob-
lems, the temperature distribution is strongly influenced by the external hot gas flow,
the internal cooling system, and the structural deformation. Currently, experimentally-
determined film coefficients and ambient temperatures are required for use as boundary
conditions for the thermal stress analysis of the structural component. The determina-
tion of these coefficients is obviously an expensive and time-consuming task. Recently an
attempt was made by Gladden (1989) to use a finite difference-based Navier-Stokes code
to approximate the thermal boundary conditions, and to then input these into a finite
clement structural analysis package. However, the most effective way to deal with this
problem is to develop a completely integrated solid mechanics, fluid mechanics, and heat
transfer approach.

In the present work, the boundary element method (BEM) is chosen as the basic
analysis tool principally because the critical surface variables (i.e., temperature, flux, dis-
placement, traction) can be very precisely determined with a boundary-based discretization
scheme. Additionally, model preparation is considerably simplified compared to the more
familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow
is captured through the use of an analytical fundamental solution, eliminating the depen-
dence of the solution on the discretization pattern. The price that must be paid in order
to realize these advantages is that any BEM formulation requires a considerable amount
of analytical work, which is typically absent in the other numerical methods.

This report details all of the research accomplishments of a multi-year program, com-
mencing in March 1986, aimed toward the development of a boundary element formulation
for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section com-
ponents. It should be noted that this work represents approximately four man-years of
funding from NASA/Lewis. Most of that effort expended under this program has been
directed toward the examination of fluid flow, since boundary element methods for flu-
ids are at a much less developed state. However, significant strides have been made, not
only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure
interaction problem.

Early in the research program, a two-dimensional boundary element formulation was
developed for the time-dependent response of a thermoelastic solid. This effort resulted
in the first time domain, boundary-only implementation for this class of problems. Since
volume discretization is completely eliminated and surface transient thermal stresses can
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be captured very accurately, the new approach provides distinct advantages over standard
finite element methods.

Meanwhile, the initial fluid formulations that were developed, based upon Stokes fun-
damental solutions, provided solutions in the low-to-moderate Reynolds number range,
For creeping flow, these reduce to boundary-only techniques. As the fluid velocities are in-
creased, volume discretization is required, however the solutions are typically very precise,
particularly in the determination of surface quantities. At very high speed, these formu-
lations are less effective, because the Stokes fundamental solutions no longer embody the
character of the flow field which becomes dominated by convection.

This led to the development of convective viscous integral formulations based upon Os-
een fundamental solutions. Since the new convective kernel functions, that were developed
as a part of this effort, contain more of the physics of the problem, boundary element so-
lutions can now be obtained at very high Reynolds number. Flow around obstacles can be
solved approximately with an efficient linearized boundary-only analysis or more exactly
by including all of the nonlinearities present in the neighborhood of the obstacle. This
perhaps represents the major accomplishment of the present program.

The other significant development has been the creation of a comprehensive fluid-
structure interaction capability within a boundary element computer code. This new
facility is implemented in a completely general manner, so that quite arbitrary geometry,
material properties and boundary conditions may be specified. Thus, a single analysis
code can be used to run structures-only problems, fluids-only problems, or the combined
fluid-structure problem. In all three cases, steady or transient conditions can be selected,
with or without thermal effects. Nonlinear analyses can be solved via direct iteration or
by employing a modified Newton-Raphson approach.

Most of the boundary element formulations developed under this grant have been
incorporated in the computer code BEST-FSI {Boundary Element Solution Technique for
Fluid Structure Interaction). A few of the general features of this code are enumerated
in Table 1.1, while Table 1.2 lists some of the major capabilities relating to the analysis
of fluid-structure interaction. An effort has been made to develop a reliable, user-friendly
code. However, it should be emphasized that the current version of BEST-FSI is primarily
a research code. Additional work is needed to produce a practical engineering analysis tool.
In particular, significant improvements could be made regarding computational efficiency,
since the primary emphasis during the grant was on development of new boundary element
capability.

This document is intended to serve multiple purposes. First, it serves as a report
summarizing the work developed under this grant. Section 2 provides all of the relevant
theoretical background, while numerous applications are discussed in Section 3. It should
be noted that all of those examples were run on Sun SPARC workstations. The remainder
of the report focuses on the documentation of the computer code BEST-FSI. Section 4
presents a brief introduction for a first-time boundary element user. Complete details of
the input data required to execute BEST-FSI are contained in Section 5. Each data item
is described individually and examples of use are provided. Then, in Section 6, several
sample problems are examined. After each problem is defined, the entire input dataset is
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presented, along with selected BEST-FSI output. The interface between BEST-FSI and
the graphics package PATRANTM is discussed in Section 7. Finally, all references are

collected in Section 8.

In addition to this User Manual, source code for BEST-FSI has been delivered to
NASA. The code is written in FORTRAN 77 and contains considerable documentation in
the form of comment lines. This version of BEST-FSI is suitable for use on Sun SPARC-
stations. A series of test problems have also been delivered to aid in the verification
process and to provide additional assistance to a user during the preparation of BEST-FSI
datasets. Included are complete input datasets and BEST-FSI output files.
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TABLE 1.1
GENERAL FEATURES OF BEST-FSI

- Two-dimensional problems

- Conforming element approach to provide inter-element continuity of the field vari-
ables, along with efficient solutions

- Substructured regions (super-elements) to permit multiple materials and more ef-
ficient solutions

- Automatic adaptive numerical integration schemes

- Cyclic and planar symmetry

- Local or global boundary condition specification

- Shding, frictional spring and resistance-type interfaces
- Exterior domains

- Block banded solver routines based upon LINPACK

- Restart capability for low cost re-analysis

- Free-format, keyword-driven input

- Automatic error checks of input data

- Automatic check of equilibrium and heat balance

- PATRANTM interfaces for pre- and post-processing
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TABLE 1.2
ANALYSIS CAPABILITIES OF BEST-FSI

Steady thermoelasticity

Transient (quasistatic) thermoelasticity

Steady incompressible thermoviscous flow

- Stokes-based formulations
- Oseen-based formulations
_ Full Navier-Stokes formulations

- Unsteady incompressible thermoviscous flow

- Stokes-based formulations
- Full Navier-Stokes formulations

Convective heat transfer

Buoyancy effects

Fluid-structure Interaction (involving any of the above formulations)
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2.0 || THEORETICAL BACKGROUND

This section contains a detailed presentation of all of the boundary element formu-
lations developed under this grant. First, in Section 2.1 a brief review of the applicable
literature is provided. The remaining sections described the methodology employed for
the analysis of thermoelastic deformation, incompressible thermoviscous flow, convective
incompressible thermoviscous flow, convective potential flow, compressible thermoviscous
flow, and fluid-structure interaction.
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2.1 || LITERATURE REVIEW

Very little has appeared in the literature on the analysis of coupled thermoviscous fluid-
structure problems via the boundary element method. However, a number of publications
have addressed the fluid and structure separately.

In general, the solid portion of the problem has been addressed to a much greater
degree. For example, a boundary-only steady-state thermoelastic formulation was initially
presented by Cruse et al (1977) and Rizzo and Shippy (1977). Recently, the present
authors developed and implemented the quasistatic counterpart (Dargush, 1987; Dargush
and Banerjee, 1989b, 1990a, 1990b), which is presented in detail in Section 2.2. Others,
notably Sharp and Crouch (1986) and Chaudouet (1987), introduce volume integrals, to
represent the equivalent thermal body forces. A similar domain based approach was taken
earlier by Banerjee and Butterfield (1981) in the context of the analogous geomechanical
problem.

An extensive review of the applications of integral formulations to viscous flow prob-
lems was included in a previous annual report (Dargush et al, 1987), and will not be
repeated here. Interestingly, only a few groups of researchers are actively pursuing the
further development of boundary elements for the analysis of viscous fluids. The work re-
ported in Piva and Morino (1987) and Piva et al (1987) focuses heavily on the development
of fundamental solutions and integral formulations with little emphasis on implementation.
On the other hand, Tosaka and Kakuda (1986, 1987), Tosaka and Onishi (1986) have im-
plemented single region boundary element formulations using approximate incompressible
fundamental solutions. This latter group has developed sophisticated non-linear solution
algorithms, and consequently, are able to demonstrate moderately high Reynolds num-
ber solutions. Meanwhile, Dargush and Banerjee (1991a, 1991b) present general purpose
steady and time-dependent boundary element methods for moderate Reynolds number
flows.

The most recent work from the above researchers has been collected into a volume en-
titled Developments in BEM - Volume 6: Nonlinear Problems of Fluid Dynamics, edited
by Banerjee and Morino. Contributions from Wu and Wang, and Bush and Tanner are also
included, along with two chapters from the present co-authors. The volume, published by
Elsevier Applied Science Publishers became available in mid-1990, and provides a state-of-
the-art review of boundary element fluid dynamics. However, it should be noted that the
convective thermoviscous formulations of Section 2.4 are not included. These represent a
significant further advancement which permit solutions for high Reynolds number flows.
Interestingly, the basis for much of this latter development is actually work done early in
this century by Oseen (1911, 1927).

For analysis of the interaction problem, a boundary element thermoelastic solid repre-
sentation must be coupled with a suitable thermoviscous fluid formulation. Only Dargush
and Banerjee (1988,1989a) have tackled this problem. These two papers provide a sum-
mary of the early work performed under this grant.
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2.2 || THERMOELASTIC DEFORMATION

2.2.1 INTRODUCTION

In the current section, a surface-only time-domain boundary element method (BEM)
will be described for a thermoelastic body under quasistatic loading. Thus, transient heat
conduction is included, but inertial effects are ignored. This BEM was first developed as
part of the work performed during the second year (1987) of this grant. Since that time a
number of improvements and extensions have been incorporated. During 1989, the algo-
rithms for numerical integration have been made more efficient as well as more accurate,
and a comprehensive PATRAN interface has been added to aid in the post-processing of
the boundary element results. Additionally, a streamlined approach for uncoupled ther-
moelasticity was introduced (Dargush and Banerjee, 1989b). In 1990, boundary elements
with a quartic variation of the field variables were implemented. These elements are par-
ticularly well suited for problems involving the bending of components (Deb and Banerjee,
1989).

Details of the integral formulation for 2D plane strain is presented below. (Problems
of plane stress can be handled via a simple change in material parameters.) Separate
subsections present the governing differential equations, the integral equations, and an
overview of the numerical implementation. Similar formulations have also been developed
for three-dimensional (Dargush and Banerjee, 1990a) and axisymmetric problems (Dargush
and Banerjee, 1992).

2.2.2 GOVERNING EQUATIONS

With the solid assumed to be a linear thermoelastic medium, the governing differential
equations for transient thermoelasticity can be written

9%y, 8%y, ae
(A+ “)ax,-aij + “ax,-azj -(32+ 2#)OTi =0 (2.2.1a)
a6 a2

(2.2.1)

Pt = ka;,—azj
where
u; displacement vector
¢ temperature
t time
z; Lagrangian coordinate
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k thermal conductivity

p mass density

ce specific heat at constant deformation
A, u Lamé constants

a coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated by repeated
indices. For two-dimensional problems considered herein, the Latin indices i and j vary
from one to two.

Note that (2.2.1b) is the energy equation and that (2.2.1a) represents the momentum
balance in terms of displacements and temperature. The theory portrayed by the above
set of equations, formally labeled uncoupled quasistatic thermoelasticity, can be derived
from thermodynamic principles. (See Boley and Weiner (1960) for details.) In developing
(2.2.1), the dynamic effects of interia have been ignored.

2.2.3 INTEGRAL REPRESENTATIONS

Utilizing equation (2.2.1) for the solid along with a generalized form of the reciprocal
theorem, permits one to develop the following boundary integral equation:

cpa(€)up(l 1) = /S [gﬁa*tﬁ(X,t) - foa * up(X,t)|dS(X). (2.2.2)

where
e, 8 indices varying from 1 to 3
S surface of solid
uq, to generalized displacement and traction
U= [uy uz 87
te=[t: t2 QJT
6,9 temperature, heat flux
9os, fap generalized displacement and traction kernels
cap constants determined by the relative smoothness of $ at ¢

and, for example

t
Gag ¥ta = / Gap(z, &, Tita(z, T)dT
0

denotes a Riemann convolution integral. The kernel functions g5 and fap are derived from
the fundamental infinite space solutions of (2.2.1).

In principle, at each instant of time progressing from time zero, this equation can be
written at every point on the boundary. The collection of the resulting equations could then
be solved simultaneously, producing exact values for all the unknown boundary quantities.
In reality, of course, discretization is needed to limit this process to a finite number of
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equations and unknowns. Techniques useful for the discretization of (2.2.2) are the subject
of the following section.

2.2.4 NUMERICAL IMPLEMENTATION

2.24.1 INTRODUCTION

The boundary integral equation (2.2.2), developed in the last section, is an exact state-
ment. No approximations have been introduced other than those used to formulate the
boundary value problem. However, in order to apply (2.2.2) for the solution of practical
engineering problems, approximations are required in both time and space. In this section,
an overview of a general-purpose, state-of-the-art numerical implementation is presented.
Many of the features and techniques to be discussed, in this section, were developed previ-
ously for elastostatics (e.g., Banerjee et al, 1985, 1988), and elastodynamics {e.g., Banerjee
et al, 1986; Ahmad and Barerjee, 1988), but are here adapted for thermoelastic analysis.

2.2.4.2 TEMPORAL DISCRETIZATION

Consider, first, the time integrals represented in (2.2.2) as convolutions. Clearly, with-
out any loss of precision, the time interval from zero to ¢ can be divided into N equal
increments of duration At.

By assuming that the primary field variables, t; and ug, are constant within each At
time increment, these quantities can be brought outside of the time integral. That is,

N nat
goa+1a(X,1) = 3 13(X) ] palX — €t —T)dr (2.2.3a)
n=1 ( '—I)At
N naAt
fﬁa * uﬁ(X$t) = z ug(x)‘/( Ha fﬁ&(X - t- T)df (223b)
n=1 - L

where the superscript on the generalized tractions and displacements, obviously, represents
the time increment number. Notice, also, that, within an increment, these primary field
variables are now functions of position only. Next, since the integrands remaining in
(2.2.3) are known in explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as
nAt
GEPTMX -8 = /('H)m 9pal(X — & t = T)dr (2.2.4a)
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nat

FiH—n(X - g) = /<,._1)m foalX = &, — )dr. (2.2.48)

These kernel functions, G3,(X -¢) and Fga(X - &), are detailed in Appendix 2.2. Combining
(2.2.3) and (2.2.4) with (2.2.2) produces

N
coal)ug (€)= /5 [G{;:“"(x — ENG(X) = FRF (X - f)u;;(X)} dS(X), (2.2.5)
n=1

which is the boundary integral statement after the application of the temporal discretiza-
tion.

2.2.4.3 SPATIAL DISCRETIZATION

With the use of generalized primary variables and the incorporation of a piecewise
constant time stepping algorithm, the boundary integral equation (2.2.5) begins to show
a strong resemblance to that of elastostatics, particularly for the initial time step (i.e.,
N = 1). In this subsection, those similarities will be exploited to develop the spatial
discretization for the uncoupled quasistatic problem with two-dimensional geometry. This
approximate spatial representation will, subsequently, permit numerical evaluation of the
surface integrals appearing in (2.2.5). The techniques described here, actually, originated
in the finite element literature, but were later applied to boundary elements by Lachat and
Watson (1976).

The process begins by subdividing the entire surface of the body into individual ele-
ments of relatively simple shape. The geometry of each element is, then, completely defined
by the coordinates of the nodal points and associated interpolation functions. That s,

X(¢) = #:(¢) = Nul)ziw (2.2.6)

with
¢ intrinsic coordinates
N, shape functions
z;, nodal coordinates

and where w is an integer varying from one to W, the number of geometric nodes in the
element. Next, the same type of representation is used, within the element, to describe

the primary variables. Thus,
u3(C) = No(Q)uz., (2.2.7a)

ta({) = Nu(OtG. (2.2.76)

in which v}, and ¢, are the nodal values of the generalized displacement and tractions,
respectively, for time step n. Also, in (2.2.7), the integer w varies from one to Q, the total
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number of functional nodes in the element. From the above, note that the same number
of nodes, and consequently shape functions, are not necessarily used to describe both the
geometric and functional variations. Specifically, in the present work, the geometry is
exclusively defined by quadratic shape functions. In two-dimensions, this requires the use
of three-noded line elements. On the other hand, the variation of the primary quantities
can be described, within an element, by linear, quadratic or quartic shape functions. For
each quartic element, two additional quarter-point nodes are automatically generated by
the program. It should be noted that the introduction of quartic elements provides the
foundation for the development of a p-adaptive boundary element capability.

Once the spatial discretization has been accomplished and the body has been subdi-
vided into M elements, the boundary integral equation can be rewritten as

N M
cpal)up (€)= { )3 ] [Gﬁ:""(X(o — )NLtR
n=1 Sm

- (X0 - Nl asCX©))} (2.2.8)

where
M
5= | Sm-
m=1
In the above equation, t3, and uj, are nodal quantities which can be brought outside the
surface integrals. Thus,

N M
o @O = L { 2t [ GEFOKO - ONAOSX Q)
n=1 m=1 m

= AT —s)Nw(c)dS(X(c))} (2.29)

The positioning of the nodal primary variables outside the integrals is, of course, a key
step since now the integrands contain only known functions. However, before discussing
the techniques used to numerically evaluate these integrals, a brief discussion of the sin-
gularities present in the kernels G3, and Fj, is in order.

The fundamental solutions to the uncoupled quasistatic problem contain singularities
when the load point and field point coincide, that is, is when r = 0. The same is true of G3,
and FJ,, since these kernels are derived directly from the fundamental solutions. Series
expansions of terms present in the evolution functions can be used to deduce the level of
singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-
tioned. First, as would be expected Fl; has a stronger level of singularity than does the
corresponding GL,, since an additional derivative is involved in obtaining Fls; from G,
Second, the coupling terms do not have as a high degree of singularity as do the corre-
sponding non-coupling terms. Third, all of the kernel functions for the first time step could
actually be rewritten as a sum of steady-state and transient components. That is,

G;ﬁ =" Gap +5r GLﬁ
Fis="° Fap+" Fop.
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Then, the singularity is completely contained in the steady-state portion. Furthermore,
the singularity in G}; and Fj, is precisely equal to that for elastostatics, while G}, and Fj,
singularities are identical to those for potential flow. (For two-dimensions, the subscript
¢ equals three.) This observation is critical in the numerical integration of the Fos kernel
to be discussed in the next subsection. However, from a physical standpoint, this means
that, at any time ¢, the nearer one moves toward the load point, the closer the quasistatic
response field corresponds with a steady-state field. Eventually, when the sampling and
load points coincide, the quasistatic and steady-state responses are indistinguishable. As
a final item, after careful examination of Appendix 2.2, it is evident that the steady-state
components in the kernels G7; and FJ;, with n > 1, vanish. In that case, all that remains
is a transient portion that contains no singularities. Thus, all singularities reside in the

*Gqp and **Fop components of G ; and F.;, respectively.

2244 NUMERICAL INTEGRATION

Having clarified the potential singularities present in the coupled kernels, it is now
possible to consider the evaluation of the integrals in equation (2.2.9). That is, for any
element m, the integrals

[ MmO - 9ML@asx() (2.2.100)

A FNHI=2(X(() — E)NL(C)dS(X(O)) (2.2.108)

will be examined. To assist in this endeavor, the following three distinct categories can be
identified.

(1) The point ¢ does not lie on the element m.

(2) The point ¢ lies on the element m, but only non-singular or weakly singular integrals
are involved.

(3) The point ¢ lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the inte-
gration occurring in equation (2.2.9) will be of the category (1) variety. In this case,
the integrand is always non-singular, and standard Gaussian quadrature formulas can be
employed. Sophisticated error control routines are needed, however, to minimize the com-
putational effort for a certain level of accuracy. This non-singular integration is the most
expensive part of a boundary element analysis, and, consequently, must be optimized to
achieve an efficient solution. In the present implementation, error estimates, based upon
the work of Stroud and Secrest (1966), are employed to automatically select the proper
order of the quadrature rule. Additionally, to improve accuracy in a cost-effective man-
ner, a graded subdivision of the element is incorporated, especially when ¢ is nearby. For
two-dimensional problems, the integration order varies from two to twelve, within each of
up to four element subdivisions.
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Turning next to category (2), one finds that again Gaussian quadrature is applicable,
however, a somewhat modified scheme must be utilized to evaluate the weakly singular
integrals. This is accomplished in two-dimensional elements via suitable subsegmentation
along the length of the element so that the product of shape function, J acobian and kernel
remains well behaved.

Unfortunately, the remaining strongly singular integrals of category (3) exist only in
the Cauchy principal value sense and cannot, in general, be evaluated numerically, with
sufficient precision. It should be noted that this apparent stumbling block is limited to the
strongly singular portions, **Fi; and * Fgs, of the F; kernel. The remainder of Flg, including
tFL and " Fj, can be computed using the procedures outlined for category (2) However,
as w1ll be discussed in the next subsection, even category (3) **Fi; and **Fgs kernels can be
accurately determined by employing an indirect ‘rigid body’ method originally developed
by Cruse (1974).

2.2.4.5 ASSEMBLY

The complete discretization of the boundary integral equation, in both time and space,
has been described, along with the techniques required for numerical integration of the ker-
nels. Now, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writ-
ing (2.2.9) at each global boundary node. The ensuing nodal collocation process, then,
produces a global set of equations of the form

N
Z ([GN“”"]{t"} - [F”“’"]{u"}) = {0}, (2.2.11)

n=1

where
[GN+1-"] unassembled matrix of size (d +1)P x (d + 1)Q, with coefficients determined
from (2.2.10a)

[FN+1-n] assembled matrix of size (d+1)P x (d+1)P, with coefficients determined from
(2.2.10b) and cg, included in the diagonal blocks

{t"} global generalized nodal traction vector with (d + 1)@ components
{u"} global generalized nodal displacement vector with (d+ 1)P components
{0} null vector with (d + 1)P components
P total number of global functional nodes
Q=S4
A, number of functional nodes in element m

d dimensionality of the problem.
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In the above, recall that the terms generalized displacement and traction refer to the
inclusion of the temperature and flux, respectively, as the (d + 1) component at any point.
Consider, now, the first step. Thus, for N = 1, equation (2.2.11) becomes

[G'){2'} -~ [F'[{u'} = {0}. (2.2.12)

However, at this point the diagonal block of [F!] has not been completely determined due to
the strongly singular nature of *F,; and * Fys. Following Cruse (1974) and, later, Banerjee
et al (1986) in elastodynamics, these diagonal contributions can be calculated indirectly
by imposing a uniform ‘rigid body’ generalized displacement field on the same body, but
under steady-state conditions. Then, obviously, the generalized tractions must be zero,
and

[**FI{1)} = {0}, (2.2.13)

where {1} is a vector symbolizing a unit uniform motion. Using (2.2.13), the desired
diagonal blocks, **F;; and **Fge, can be obtained from the summation of the off-diagonal
terms of [**F]. The remaining transient portion of the diagonal block is non-singular, and
hence can be evaluated to any desired precision. After summing the steady-state and
transient contributions, (2.2.12) is once again written as

[¢'){e'} - [F'{'} = {0}, (2.2.14)

but now the evaluation of [F?] is complete.

In a well-posed problem, at time At, the set of global generalized nodal displacements
and tractions will contain exactly (d + 1)P unknown components. Then, as the final stage
in the assembly process, equation (2.2.14) can be rearranged to form

[A'Hz'} = [B'[{y"}, (2.2.15)

in which
{z!} unknown components of {u!} and {t'}

{v'} known components of {u!} and {'}

[A'],[B!] associated matrices

2.2.4.6 SOLUTION

To obtain a solution of (2.2.15) for the unknown nodal quantities, a decomposition
of matrix [A!] is required. In general, [4!] is a densely populated, unsymmetric matrix.
The out-of-core solver, utilized here, was developed originally for elastostatics from the
LINPACK software package (Dongarra et al, 1979) and operates on a submatrix level.
Within each submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of [4!] is stored in a direct-access file
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for reuse in subsequent time steps. Backsubstitution then completes the determination of
{z'}. Additional information on this solver is available in Banerjee et al (1985).

After turning from the solver routines, the entire nodal response vectors, {v'} and
{t'}, at time At are known. For solutions at later times, a simple marching algorithm is
employed. Thus, from (2.2.11) with N =2,

[G'{#'} ~ [F'){a'} + [G'}{*} - [F'H{u?} = {0}. (2:2.16)

Assuming that the same set of nodal components are unknown as in (2.2.14) for the first
time step, equation (2.2.16) is reformulated as

[41){2?} = [B'H¥*} - [GTHE'} + [F7{«"). (2.2.17)

Since, at this point, the right-hand side contains only known quantities, (2.2.17) can be

solved for {z?}. However, the decomposed form of [4'] already exists on a direct-access file,

so only the relatively inexpensive backsubstitution phase is required for the solution.
The generalization of (2.2.17) to any time step N is simply

N-1
[z} = [B'HyV} - 3 ([GN“‘"]{t"} - [FN“'"]{“"}) (22.18)
n=1
in which the summation represents the effect of past events. By systematically storing
all of the matrices and nodal response vectors computed during the marching process,
surprisingly little computing time is required at each new time step. In fact, for any
time step beyond the first, the only major computational task is the integration needed
to form [GV] and [F¥]. Even this process is somewhat simplified, since now the kernels
are non-singular. As a result, reduced subsegmentation and gaussian integration order is
appropriate. Also, as time marches on, the effect of events that occurred during the first
time step diminishes. Consequently, the terms containing [GN] and [FV] will eventually
become insignificant compared to those associated with recent events. Once that point is
reached, further integration is unnecessary, and a significant reduction in the computing
effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear uncoupled quasistatic problem, with homogeneous properties, can be obtained in
terms of the nodal response vectors, without the need for any volume discretization. In
many practical situations, however, additional information, such as, the temperature at
interior locations or the stress at points on the boundary, is required. The next subsection
discusses the calculations of these quantities.

2.2.4.7 INTERIOR QUANTITIES

Once equation (2.2.18) is solved, at any time step, the complete set of primary nodal
quantities, {u”} and {t"}, is known. Subsequently, the response at points within the body
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can be calculated in a straightforward manner. For any point ¢ in the interior, the gener-
alized displacement can be determined from (2.2.9) with ¢g, = é5o. That is,

u3(E) = { [tﬂw / GIH=(X(C) - )NulO)dS(X(C))

—“.@w/ FR (X - E)NL(QdS(X )]} (2.2.19)

Now, all the nodal variables on the right-hand side are known, and, as long as, £ is not on the
boundary, the kernel functions in (2.2.19) remain non-singular. However, when ¢ is on the
boundary, the strong singularity in * Fj, prohibits accurate evaluation of the generalized
displacement via (2.2.19), and an alternate approach is required. The apparent dilemma
is easily resolved by recalling that the variation of surface quantities is completely defined
by the elemental shape functions. Thus, for boundary points, the desired relationship is
simply

ug (§) = No(Qull (2:2.20)
where N, (¢) are the shape functions for the appropriate element and ¢ are the intrinsic
coordinates corresponding to ¢ within that element. Obviously, from (2.2.20), neither
integration nor the explicit contribution of past events are needed to evaluate generalized

boundary displacements.
In many problems, additional quantities, such a heat flux and stress, are also important.
The boundary integral equation for heat flux, can be written

o) = {E[:saw / EXH-(X(C) — £)NoQ)AS(X(C))

~ui, [ DO - oNuas x| (2221)
where
ESai(X(C)%):—kEW : (2.2.21a)
AFZL(X(C) —
DEs(X(¢) —€) = —k—'-—‘”—(———-af(f)——f—) (2.2.21b)

This is valid for interior points, whereas, when ¢ is on the boundary, the shape functions
can again be used. In this latter case,

N = ni©)al (€) (2.2.22a)

an(() N 13:, N
ey = -1 5@, (2.2.228)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from

N M

o= { T & [ B ex© - on@esx o)
n=1 * m=l Sm
—ul, f DN‘“‘"(X(C f)Nu(q)dS(X(q))” (2.2.23)
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in which

2uy .,BGE‘ BGf; BGE; n
- 21’6” aft aEJ + afi ﬂéngﬂa (22230)
. _ ou  OFp, (aFg 8Fp
with v representing the Poisson ratio and 4 = (3 +2u)a. Equation (2.2.23) is, of course, de-
veloped from (2.2.19). Since strong kernel singularities appear when (2.2.23) is written for
boundary points, once again an alternate procedure is needed to determine surface stress.
This alternate scheme exploits the interrelationships between generalized displacement,
traction, and stress and is the straightforward extension of the technique typically used in
elastostatic implementation (Cruse and Van Buren, 1971). Specifically, the following can
be obtained

Efi;(X(Q) - €)= ]

) — B8:; Fge, (2.2.238)

ni(€)ol (€) = Nu(OrLl (2.2.24a)
De.
o) - == (ukN,z(E) + upil€ )) = —B6i; No(Q)upy, (2.2.24b)
0x; N ey = WNu v

Eutd(s) - ac Uy (22'246)

in which uY is obviously the nodal temperatures, and,
ijkl = My + 2ubikbii.

Equations (2.2.24) form an independent set that can be solved numerically for ¢[j(€) and
ul;(€) completely in terms of known nodal quantities uY, and tY,, without the need for kernel
integration nor convolution. Notice, however, that shape function derivatives appear in
(2.2.24c), thus constraining the representation of stress on the surface element to something
less than full quadratic variation. The interior stress kernel functions, defined by (2.2.23),
are also detailed in Appendix 2.2.

2248 ADVANCED FEATURES

The thermoelastic formulation has been implemented as a segment of the general pur-
pose boundary element computer program, BEST-FSI. Consequently, many additional
features, beyond those detailed above, are available for the analysis of complex engineer-
ing problems. Perhaps, the most significant of these items, is the capability to analyze
substructured problems. This, not only extends the analysis to bodies composed of several
different materials, but also often provides computational efficiencies. An individual sub-
structure or geometric modeling region (GMR) must contain 2 single material. During the
integration process, each GMR remains a separate entity. The GMR’s are then brought
together at the assembly stage, where compatibility relationships are enforced on common
boundaries between regions. Typically, compatibility ensures continuous displacement and
temperature fields across an interface, however, recent enhancements to the code permit
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sliding between regions, spring contacts and interfacial thermal resistance to model air
gaps or coating resistances. In the latter instances, discontinuities appear at the interface.
In any case, the multi-GMR assembly process produces block-banded system matrices that
are solved in an efficient manner.

As another feature, a high degree of flexibility is provided for the specification of bound-
ary conditions. In general, time-dependent values can be defined in either global or local
coordinates. Not only can generalized displacements and tractions be specified, but also
spring and convection boundary conditions are available. Another recent addition permits
time-dependent ambient temperatures. A final item, worthy of note, is the availability of
a comprehensive symmetry capability which includes provisions for both planar and cyclic
symmetry.

During the past three years, an interface to the well-known PATRAN graphics package
was developed and enhanced. This interface allows the user an option to view deformed
shapes, temperatures and stress boundary profiles or contours. A number of PATRAN-
produced illustrations are included throughout this manual. Several examples are pre-
sented in Section 3 to demonstrate the validity and applicability of this boundary-only
formulation.
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APPENDIX 2.2

KERNEL FUNCTIONS

This appendix contains the detailed presentations of all the kernel functions utilized in
the formulations contained in Section 2.2. Two-dimensional (plane strain) kernels are pro-
vided, based upon continuous source and force fundamental solutions. For time-dependent
uncoupled quasistatic thermoelasticity the following relationships must be used to deter-
mine the proper form of the functions required in the boundary element discretization.

That 1is,
Goa(X — &) = Gap(X — £, nAt) forn=1

na(z =€) = Gap(X — £,nAt) — GopX - &, (n — 1)At) forn>1,

with similar expressions holding for all the remaining kernels. In the specification of these
kernels below, the arguments (X — ¢,¢) are assumed. The indices

i3, k1 vary from 1 to d
o, vary from 1 to (d+1)
9 equals d +1
where d is the dimensionality of the problem. Additionally,
z; coordinates of integration point
& coordinates of field point
vi=zi— & r? = yiyi.

For the displacement kernel,

G = i [(52) ~ s - ]

Gig=0
Goj = 2%_ (F(',\f_—zﬂj) [(y:') .‘74(17)]

Goo = % (%) [35(n)]

whereas, for the traction kernel,
11 T ymivene) _ f Siyknk+ yi"j) _
YT 4wr (1-v) [ ( r3 ) ( r (1-2v)

+ (M) a- 2u)]

r

Fig=0
Py = o= (52gs) [(25%) Fstm ~ (n i)

4T +2u ré

Fyp = -2-'.'1r_r [(yk:k) fs(ﬂ)] .
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In the above,

ga(n) = hlz(") + b gﬂ;)
gs(n) = b (2%)

Fo(n) = hi(n)

iy = ) 2 gg"_)

Finy=em 1

For the interior stress kernels,

2,(111 BGm 3G5,' BG;;,-
Epij = —22 g, 228 2201 _ g,
Big 1—2v iy a& + ( af: + 3{, ,B JG,BB
o 2uy __8F,3; OFp; dFp; By
Dﬁu =1 2y61_7 afl + ( aEJ + 3& ﬂéu FBE

where

9G;; _ 1 1 vy ik &'kyj) (5*’1'1”‘)
8 Brru(l-v) [( r3 r r + " (3-4v)

aac;:j =& (k()«ﬁw)) [(yigk) thi} = (5e) {’;—1 ¥ %}]

ary _ 1 1 [_ (4yiyjykymt _ WYtk bimmn
v)

B ~ 4mr2(1- rt r2 r2

Sixyjuini\ - 265k yms 2¥iyn; z
- —:—2'— fi(n) - ir-f———ﬁijﬂk+ irz L — by ) faln)

(3%1 - ) fa(n)]

4

OFy; 1 2y . 2 ; ;
0 _ ( a ) [( yjl:';ylﬂl) {2hy —e" /4} _ (ykn.r + Yink +

86 Amr \ A+ 2u * r
filn) =

fn=1-2

fa(n)=1-2v
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2.3 || INCOMPRESSIBLE THERMOVISCOUS FLOW

23.1 INTRODUCTION

In the following, steady and time-dependent formulations are presented for relatively
slow incompressible flow. The primary variables in each case are velocity, temperature,
traction and heat flux. This is the set of variables for which boundary conditions are
most readily defined, and for which the extension to three-dimensions is most easily ac-
complished. As will be seen, the individual formulations have much in common. The
major differences involve the fundamental solutions that are employed, and the treatment
of the contributions of past events. Both formulations have been implemented within the
computer code BEST-FSI.

2.3.2 GOVERNING EQUATIONS

Application of the Principles of the Conservation of Mass, Momentum and Energy for

an incompressible thermoviscous fluid lead to the development of the following differential
equations:
A,
321!.' ap Dvy;

—— — i i= . .lb
‘ua.’l:jaa‘j az; p Dt +f 0 (23 )

a2 Dé
km - ngﬁ +3%=0 (2.3.1¢)

where
z; Eulerian coordinate
t time
v; velocity vector
p pressure
¢ temperature
p mass density
u viscosity
k thermal conductivity
c. specific heat
f: body force
¥ body source,

and the operator
D a a

Bt-— = a + Uja—z; (232)
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represents a material time derivative. By introducing a constant free stream velocity U,
and a velocity perturbation u;, such that

v; = Uy + uy, , (2.3.3)

the governing equations can be rewritten as

aui-
%y, dp Bu; Ju; 3
Wie0s, am Pt iss, g, THi=0 (2.3.45)
8% a6 a0 a6
m b pcea - pC(UJ' a — PCelj a + ‘w =0. (2346)

Note that in equations (2.3.4) only the terms pu”,—l and pcguJB— are actually nonlinear,
although in some instances the body forces and sources may also contain nonlinearities. A
number of distinct integral formulations are possible, depending upon which of the linear
terms are included in the differential operator. All terms excluded from the differential
operator, must then be grouped together as effective body forces and sources, f/ and ¢,
respectively. Integral formulations based upon Stokes kernels are detailed in the next
subsection.

233 INTEGRAL REPRESENTATIONS

2.3.3.1 STEADY

In this first formulation the time-dependent terms vanish, and the entire contribution
of the convective terms are considered as effective body forces and sources. Thus,

(9‘!‘.- au,‘

fi= Ui g — iy + )i (2.3.5a)
3 ae
P = —chUjgj - pcguj-é;; + ¢ (2.3.56)

As a result, the well-known fundamental solutions for incompressible Stokes flow and
steady-state heat conduction are applicable. The integral formulation, which can be de-
rived directly from the governing differential equation (Dargush and Banerjee, 1990b), can
be written

Caplla = [S{Gaﬁta = faplig — Gagtg] ds + /v [Daﬂko'ga + Gagfa] dV (2.3,6)
where
g = {u; up A} (2.3.7a)
={t; 12 g} (2.3.78)
fa={fH f2 ¥} (2.3.7¢)
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are generalized velocities, tractions, and body forces. In (2.3.7b), 1, are the surface tractions

defined by
t; = mjng; — png (2.3.8a)

with n; representing the local unit outward normal to the surface S, and =; the fluid
stresses, while the heat flux is defined via

o

¢= —k(—.a;:ni- (2.3.8b)
Furthermore,
I B2 0 _ G.'J' a _ F.'J' 0
Cop = [ 0 ng] , Gag= [ 0 Gos , Fap= 0 Fae (2.3.9a,b,¢)
G
Dogx = a;"f’ (2.3.9d)
Tho = [P(Uk + i) pee(Ui + ux)f] (2.3.10a)
12 = op Nk (2.3.10b)

In the terminology of Lighthill (1952), og; is the momentum flux tensor or fluctuating
Reynolds stress. Here, g, is labeled the generalized convective stress tensor, while 3 is
the generalized convective traction. Both of, and ¢, contain terms which are nonlinear in
the generalized velocities.

In (2.3.9a), c;;(€) and ces(€) are constants. When ¢ is inside S,¢;; = 6; and ces = 1. If
¢ is on the boundary then the values are determined by the relative smoothness of S at
¢. For ¢ outside the region V, both ¢;; and ces are zero. Meanwhile, the kernel functions
Gij, Ges, Fi; and Fes are provided in Appendix 2.3.1.

2.3.3.2 TIME-DEPENDENT

For this next formulation, the effective body forces and sources are identical to those
provided in (2.3.5), however, the time-dependent terms are now included in the linear
operator. The required fundamental solution for the viscous portion was first given by
Oseen (1927), while the transient heat conduction fundamental solution is well-known
(Carslaw and Jaeger, 1959). By applying standard methodology (Banerjee and Butterfield,
1981; Dargush and Banerjee, 1990c), the following governing integral equations can be
derived

Catia = j (g0 # fer — fap * tic = Jap ¥ 5145 + ] (dape + 0%0 + Gop * fo — Gappul)dV  (23.11)
s Vv

Note that (2.3.11) is similar to (2.3.6) for the steady case, except that Riemann convolution
integrals over time have been introduced, along with an initial condition volume integral
involving u2. Once again o, and 3 contain terms which are nonlinear in the generalized
velocities. Kernel functions; Ges and Fus, developed from the instantaneous point force and
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source adjoint fundamental solutions g,z and f,s, are provided in Appendix 2.3.2. It should
be noted that these functions are considerably more complicated than the corresponding
steady kernels.

2.3.4 NUMERICAL IMPLEMENTATION

2.3.4.1 INTRODUCTION

Analytical solutions are possible for only the simplest geometries and boundary con-
ditions. More generally, approximations must be introduced in both time and space to
expose the practical utility of these integral equations. Consequently, in this section, state-
of-the-art boundary element technology is applied to steady and unsteady incompressible
thermoviscous flows. Recent boundary element developments in the fields of elastodynam-
ics (Banerjee et al, 1986; Ahmad and Banerjee, 1988) and thermoelasticity (Dargush and
Banerjee, 1989b, 1990a) are directly applicable for these problems. The presentation below
will concentrate on those aspects of the numerical implementation which differ from that
detailed in Section 2.2. The current implementation is limited to the two-dimensional case,
although certainly both of the integral formulations presented in the previous subsection
are equally valid in three dimensions.

2.3.4.2 TEMPORAL AND SPATIAL DISCRETIZATION

For time-dependent problems, the total time interval from zero to r is subdivided into
N equal increments of duration Ar. Then, the field variables t,, uq, t2, and of, are assumed
constant within each Ar time increment. As a result,

N N
Gop *la = Ztg/ gapdt = 3 _12GNTH (2.3.12)
n=1 {(n—1}ar T o=l

naT

with similar expressions holding for the remaining convolution integrals. This is identical
to the treatment discussed in Section 2.2 for thermoelasticity.

'The methodology employed for spatial discretization of the bounding surface also fol-
lows that described in Section 2.2. Thus, linear, quadratic or quartic shape functions are
utilized to portray the functional behavior of the field variables over surface elements with
three geometric nodes, as shown in Figure 2.3.1.

However, in addition to the surface description, the domain must be discretized into
cells in the regions where the nonlinear convective effects are important, or where nonzero
initial conditions are present. Shape functions are once again introduced to approximate
the geometric and functional variation with each volume cell. Thus, for any point X within
an individual cell

2(0) = Mu(Oiu (2.3.13)
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and
afa(() = Mw(C)aioaw (2.3.14)

where
M,, M. shape functions

z;, nodal coordinates

o2, nodal generalized convective stress .
The current implementation utilizes six and eight-noded cells for the geometric repre-
sentation, along with linear, quadratic, or quartic functional variation. Typical cells are
depicted in Figure 2.3.2. For the quadratic cell, both serendipity (8-noded) and lagrangian
(9-noded) variations are included. Serendipity quartic cells were found to have unsatisfac-
tory performance and consequently are not available.

As a result of the spatial discretization, the boundary integral equation for time-

dependent thermoviscous flow can now be written

N M
Captiy =Y {Z [tgw f GG "HINLAS — ul, / FL7 4N, dS —t2, f Gf;”*lmds]
n=1 \m=1 Sm Sm Sm

+z [az';w/ Dg'ﬁ_k"“ MudV] } + Z [pu‘;u-/ g{:ﬁdeV] (2.3.15a)
L] Vi

L L
i=1 =1

while for steady conditions this reduces to

M
Caflia = Z [tm./s GopN,dS — uawL Fa,andS—tgu[g Ga;;NwdS]

m=1

L
+3 [cr,‘:m, fv DamedV], (2.3.15b)
=1

where M and I are the total number of surface elements and volume cells, respectively,
and

M
5= Sm (2.3.16a)
m=1
L
v=Jwu (2.3.16b)
=1

The positioning of the nodal variables outside of the integrals is a key step, since now the
integrands of (2.3.15) contain only known functions, which can be evaluated numerically.

Up to this juncture, the region of interest has been assumed to be composed of a single
volume V with surface 5. However, this need not be the case. In general, space may
be subdivided into a number of individual non-overlapping geometric modeling regions
(GMRs). Each GMR occupies a certain volume of space, say V,, bounded by the surface
S,. For a point ¢ within Vg, the integration required by (2.3.15) need only be conducted
over S, and V,, since the contribution to u(€) from the other GMRs outside 5, will be zero.
As a result, integration costs can be dramatically reduced by introducing multiple GMRs
for thermoviscous flow problems. Additionally, there is no inherent requirement that all
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GMRs utilize the same physical model. For example, one GMR could employ the steady
formulation of equation (2.3.6), while a second region includes the transient kernel effects
contained in the formulation of (2.3.11). In any case, compatibility must, of course, be
maintained across all GMR-to-GMR interfaces. Examples of the mixed GMR formulation
are contained in Section 3. This approach also provides for fluid structure interaction
which will be explored in Section 2.7.

2.343 INTEGRATION

The evaluation of the integrals appearing in (2.3.15) is the next process to be examined.
Due to the singular nature of the kernel functions G, F.s and Dggr. considerable care must
be exercised during numerical integration. This is particularly true for incompressible
viscous flow, in which the final solution is extremely sensitive to errors in integration
coefficients. In general, the integration algorithms must be much more sophisticated than
those developed for thermoelasticity. In the present implementation, discussed in detail in
Honkala (1992), a number of different integration schemes are employed depending upon
the order of the kernel singularity, the proximity of the field point ¢ to the element, and
the size of the element.

Once again consider the following three distinct categories for the surface integrals:

(1) The point ¢ does not lie on the element m.

(2) The point ¢ lies on the element m, but the kernels involve only weakly singular inte-
grands of the in r type.

(3) The point ¢ lies on the element m, and the integral has a strong ! singularity.

In practical problems involving many elements, it is evident that most of the integration
occurring in equation (2.3.15) will be of the Category (1) variety. The integrand is non-
singular and standard Gaussian quadrature can be employed. However, for near-singular
cases when ¢ is close to element m very high order formulas are needed to capture the
kernel behavior. For these instances, it is beneficial to identify the point X° on the element
nearest to £, and then subdivide the interval of integration about X°. Within each of
the two subsegments a nonlinear transformation is used to further reduce the order of
Gaussian quadrature needed for high precision. This nonlinear transformation is similar
to that proposed by Mustoe (1984) and Telles (1987), however it should be emphasized
that subsegmentation is still required.

Turning next to Category (2), one finds that, unlike elasticity or potential flow, stan-
dard Gaussian formulas alone are inadequate. Instead the terms involving in r must be
isolated and integrated with special log-weighted Gaussian integration. The remaining
non-singular terms comprising G are then evaluated utilizing standard quadrature.

The strongly singular integrals of Category (3) exist only in the Cauchy principal
value sense and cannot be evaluated numerically with sufficient precision. Fortunately,
the indirect ‘rigid body’ or ‘equipotential’ method, originally developed by Cruse (1974),
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is applicable, and leads to the accurate determination of the singular block of the sec-
ond integral in (2.3.15). The remainder of that integral is non-singular. Consequently,
subsegmentation along with standard Gaussian quadrature is adequate.

Similar care is needed for the volume integrals, which involve the kernel D,s: con-
taining a !-type singularity. However, for two-dimensional volume integration, this kernel
is only weakly singular, and can be evaluated in the following direct manner. First, the
nearest node, say A, in cell I to the point ¢ is determined. The cell is then subdivided
into triangles radiating from A as shown in Figure 2.3.3. Next, each triangle is mapped
onto a unit square. The apex corresponding to A is stretched to form one side of the
square. This process essentially eliminates the ! singularity. Finally, the square is further
subsegmented in both radial and circumferential directions depending upon the closeness
of ¢ and the size of cell i. Standard Gaussian quadrature is applied to each subsegment.
This cell integration scheme was based on work by Mustoe (1984) for elastoplasticity. In
the present incompressible viscous flow implementation, tolerances have been tightened so
that additional subsegmentation is performed, along with higher order quadrature formu-
las. Additionally, it has been found that circumferential subsegmentation is much more
beneficial than the radial breakup.

In time-dependent problems, beyond the first time step, additional integration is re-
quired. This integration involves the kernels G2, F1i; and D3, for n > 1. From Table 2.3.1,
these are all nonsingular. As a result, a much less sophisticated integration scheme is em-
ployed to obtain the required level of accuracy with fewer subsegments and gauss points.
If the initial velocities are not uniform, then the nonsingular initial condition integral of
equation (2.3.15a) must also be evaluated at each time step. This is accomplished in a
manner similar to the integration of DJs;.

Table 2.3.1 - Kernel Singularities

Kernel Singularity Order
Gls inr

Gpg for n>1 non-singular
Fi, ,1.
Fsforn>1 non-singular
D ;

Do for n>1 non-singular

2344 ASSEMBLY

Once the spatial discretization and numerical integration algorithms are completely
defined, a system of nonlinear algebraic equations can be developed to permit an approx-
imate solution of the thermoviscous boundary value problem. The method of collocation
is employed by writing (2.3.15) at each functional mode.

BEST-FSI User Manual March, 1992 Page 2.23



For each time step N of a transient problem, this nodal collocation process yields

N
Z [GN—n+ltn — Nt n _ gN-nt+lion + DN—n+lo_on] e =0 (2.3.17)
n=1

where

t" nodal traction vector for time step n with 3Q components

u” nodal velocity vector for time step n with 3P components

tn nodal convective traction vector for time step n with 3Q components

o nodal convective stress vector for time step n with 6P components

u® nodal initial velocity vector with 3P components

G" unassembled matrix of size 3P x 3Q calculated from the first
integral of (2.3.15) during time step n

F assembled matrix of size 3P x 3P calculated from the second
integral of (2.3.15) during time step n, plus the c.s contribution
in F!

D" assembled matrix of size 3P x 6P calculated from the first volume
integral of (2.3.15)

o assembled matrix of size 3P x 3P calculated from the initial condition
integral of (2.3.15)

P total number of functional nodes

M
Q= z-;l Am
Am number of functional.nodes in element m .

All of the coefficient matrices in (2.3.17) contain independent blocks for each GMR in
multiregion problems. However, for any well-posed problem, the boundary conditions and
interface relations remove all but 3P unknown components of u?¥ and t®¥. Furthermore, by
solving (2.3.17) at each increment of time, all of the components of u”,t",t> and ¢ for
n < N are known from previous time steps. Then, (2.3.17) can be rewritten at time NAr
as

g(x) = AXN _ Dla,oN + GltON - ByN

N-1
_ z {GN_n+]tn _ FN—ﬂ+luﬂ - GN—"+1tm + DN—ﬂ+la.m] + I\Nuo =0 (23.18)
n=1
in which
xv nodal vector of unknowns with 3P components
yN nodal vector of knowns with 3Q components
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while A and B are the associated coefficient obtained from F! and G*. The A matrix now
includes the compatibility relationships enforced on GMR interfaces. As aresult, the GMR
blocks in A are no longer independent, however A does remain block banded.

The terms included in the summation of (2.3.18) represent the contribution of past
events. This, along with the terms By" and I'™u°, can be simply evaluated once at each
time step N with no need for iteration. Let,

N-1
bV = —ByY - ¥ [GNrHgn - pNr W - G + DpN-ntigm] + TNuC. (2.3.19)

n=1

Then (2.3.18) becomes the following nonlinear set of algebraic equations

g(x) = Ax" - D'e°V + GtV + bV = 0. (2.3.20)

A closer examination of b" is in order. For example with N =1
b! = ~-By' +T'u’, (2.3.21a)
while for the second time step
b? = —By? — G2%t! + F?u’ + G%°! -~ D% +I'*u° (2.3.21%)

Obviously, for each step N, one new set of matrices GV,F¥, DV and I'V must be determined
via integration and assembly. Integration, particularly the volume integration needed for
DV and TV, can be quite expensive.

As an alternative to the convolution approach defined above, a time marching recur-
ring initial condition algorithm can be employed. This has been utilized by a number of
researchers for transient problems of heat conduction, acoustics, and elasticity (Banerjee
and Butterfield, 1981). For this latter approach, at time step N the entire contribution of
past events is represented by an initial condition integral which utilizes uM-! as the initial
velocity. Thus,

g(x) = AxV - D¢V + G1t°N + bV =0 (2.3.22)

with
b = —By" + 'u"L (2.3.23)

Obviously, (2.3.22) is identical to (2.3.20). Only the evaluation of b" is different. The
advantage of the recurring initial condition approach is that no integration is needed beyond
the first time step. However, volume integration is required throughout the entire domain
because of the presence of uV-!, even for linear problems in which volume integration
would not normally be required.

In order to take full advantage of both methods, the present work utilizes the con-
volution approach in linear regions, and the recurring initial condition algorithm for the
remaining nonlinear GMRs which are filled with volume cells. Since b~ can be computed
independently for each GMR, this new dual approach provides no particular difficulty.
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2.34.5 SOLUTION

An iterative algorithm, along the lines of those traditionally used for BEM elastoplas-
ticity (Banerjee and Butterfield, 1981; Banerjee et al, 1987), can be employed to solve the
boundary value problem. However, convergence is usually achieved only at low Reynolds
number. More generally the interior equations must be brought into the system matrix, as
in (2.3.20), and a full or modified Newton-Raphson algorithm must be employed to obtain
solutions even at moderate Reynolds number. (Similar ‘variable stiffness’ algorithms have
also been introduced by Banerjee and Raveendra (1987) and Henry and Banerjee (1988)
for elastoplasticity.) Symbolically, at any iteration k,

o) o)

x*+ = x* + AxF (2.3.25)

and the derivatives on the lefthand side of (2.3.24) are evaluated at x*. With the full
Newton-Raphson approach, I = k and the system matrix must be formed and decomposed
at each iteration. The out-of-core solver used in the present implementation was devel-
oped originally for elastostatics (Banerjee et al, 1985) from the LINPACK software package
(Dongarra et al, 1979), and operates on a submatrix level. Within each submatrix, Gaus-
sian elimination with single pivoting reduces the block to upper triangular form. The final
decomposed compacted form of the system matrix is stored in a direct access file for later
reuse. Backsubstitution completes the determination of Ax*. Iteration continues until

where

licax™ )|
=Nl
where ¢ is a small tolerance, and {|x|f is the Euclidean norm of x. For the modified Newton-

Raphson algorithm, the system matrix is not formed at every iteration, and only backsub-
stitution is needed to determine Ax*,

<e (2.3.26)

2.3.4.6 CALCULATION OF ADDITIONAL BOUNDARY QUANTITIES

Once the iterative process has converged, a number of additional boundary quantities
of interest can be easily calculated. For example, lift and drag can be calculated by numer-
ically integrating the known nodal traction and shape function products over the surface
elements of interest. Low order Gaussian quadrature is adequate for this integration, since
all the functions are very well behaved.

Furthermore, at each boundary node, the pressure p, stress ¢,;, and strain rates ;ﬂr{- can
be determined by simultaneously solving the following relationships:

75i(E)n;(£) = Nu(Qtiw (2.3.27a)
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ey du; B_ul _
i (&) “(az,- €+ e (E)) +p(£)=0 (2.3.27b)
dz; Bu;, . _ 8N
34—5;(6) = p¢ M (2.3.27¢)
57(5—) +p(§) =0. (2.3.27d)
It should be emphasized that (2.3.27) represents a set of nine independent equations which

are written at the boundary point ¢, and can be solved easily for p, o;; and 24 at that point.
Afterward, boundary vorticity and dilatation can be obtained, respectively, from

3112 8u1

3u1 3“2
= — + —. .3.28
A=t (2.3.285)

Of course, for incompressible flow, the dilatation should be zero, but (2.3.28b) can be used
as a check.

A comprehensive PATRAN interface has also been developed. Consequently, any of
the quantities computed above may be displayed graphically in the form of profiles or
contours.

2.3.5 CONCLUDING REMARKS

The formulations presented in this section, based upon Stokes fundamental solutions,
are suited primarily for low Reynolds number regimes. For creeping flows, all of the
nonlinear terms vanish, resulting in a very efficient, very precise boundary-only solution.
The resulting boundary element method is clearly superior to any of the domain based
methods for problems of this nature, under both steady and transient conditions.

At somewhat higher velocities, the nonlinear convective effects cannot be ignored.
Consequently, the surface integral involving 13 and the volume integral containing ¢g, in
equations (2.3.6) and (2.3.11) are required. Since volume integration is quite computation-
ally intensive, a boundary element approach becomes less attractive. This is particularly
true when discretization is required throughout the domain, as is the case for confined
fiows. Still, for a given mesh, the boundary element formulation provides a higher degree
of accuracy than finite difference or finite element methods, especially in the determination
of boundary quantities.
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APPENDIX 2.3.1

STEADY KERNEL FUNCTIONS

BG.-_,- _

1 vy
G,‘j = m [-—r—-z,-‘!— - 6,~J~ln T'J

Foo— _ L [ 20aY;Yknk
YT 2ar r3

8z

BEST-FSI User Manual

1 [y + Sikyi bk 28y
dzur| r r r r3

1
Gas = m[(ﬂ r]

27r| r

Fao — 1 [yknk]

0Gge _ 1 [yk]

8z 27kr|r
vi=zi—&
= gy
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APPENDIX 2.3.2

TIME-DEPENDENT KERNEL FUNCTIONS

G- X,t) = 4—;; [%{sl(ﬂ)} - 5:‘_1‘{31;") _ E1(24 ) }]
Pt = %) = ge={ S o) = /) 4 B (s ()~ HOO) + Bt () — e )

_ 2yiyigknk (261(n) - e-—q’le}]

8G,; Sinthi Siny; §is .3
95 (6 ,0) = | 2 er() + P () — P2 2 ()

.
2y, y; Yx i —?
- T (0 (7) — =14

where

vi=&i—zi r2 =y
n= (T;x‘ﬁ c=plp
si(m) = (1 - e )

“

E\(2) = [ -du.

Then,
G%(€ — X) = Gyj(€ — X, nAT) for n=1
GL(€ — X) = Gii(€ — X, nA7) = Gy5(§ — X, (n— nNar)y for n>1

with similar relationships for F(¢ - X) and f%}(f - X).
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Figure 2.3.1 Two Dimensional Boundary Elements

GEOMETRIC NODES (*,e) 3

FUNCTTIONAL NODES

LINEAR (¥*) 2
QUADRATIC (*,s)
QUARTIC (*r'lo) 5
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Figure 2.3.2 Two Dimensional Volume Cells

GEOMETRIC NODES (*,-) - 6 8

FONCTIONAL NODES

LINEAR (*) 3 4
QUADRATIC

SERENDIPITY (*,-)

LAGRANGIAN (*,.,4) 7 9
QUARTIC (*,.,0) 15 25
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Figure 2.3.3 Integration Subsegmentation

Nearest Node .

Each triangle mapped
to a unit square
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2.4 || CONVECTIVE INCOMPRESSIBLE

THERMOVISCOUS FLOW

2.4.1 INTRODUCTION

At high fluid velocities, the convective terms in Navier-Stokes equations tend to dom-
inate. As a result, boundary element formulations employing Stokes kernels are inappro-
priate, since these fundamental solutions model the effects of viscosity but not convection.
Instead, more of the physics of the problem must be brought into the linear operator. This
concept was clearly understood by Oseen in the early portion of the twentieth century. In
his 1927 monograph, Oseen developed exact integral expressions for Navier-Stokes equa-
tions using a convective fundamental solution. Unfortunately since this was well before
the advent of the computer, he was unable to do much with his formulations beyond some
approximate solutions at very low Reynolds number. In the present section, the work of
Oseen is resurrected to form the basis for an attractive boundary element method for high
speed flows.

2.4.2 GOVERNING EQUATIONS

The differential equations, governing the behavior of an incompressible thermoviscous
fluid in the presence of a free stream velocity Ui, can be written:

82u; dp Ou; Bu; ,
“a:jaz,- oz, ' Jéz_,-"’az + i =0, (2.4.1a)
Auy
— =0 2.4.16
2 o, (2415)
2 )
9’0 8 % L w=o. (2.4.1c)

k=22 pe Ui — pec
97,0z, 0z, Pt

where u; once again represents the velocity perturbation. In (2.4.1), the effective body
forces and sources are defined as

du;
f: = —pu; az; + f:' (2.4.20)
o9
’
= — iad . 4.2b
¥ = e+ (24.2)

These equations are of course identical to those presented in (2.3.4), except that now the
convective terms pU;du;/dz; and pe U;80/9z; are included in the linear differential operator.
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Fundamental solutions based upon (2.4.1) will contain the character of the flow field at
high velocities.

243 FUNDAMENTAL SOLUTIONS

It is instructive to begin with a look at the fundamental solution of the steady form
of the heat equation defined above as (2.4.1c). In a static medium (i.e., U; = 0), the
fundamental solution G must satisfy

3G
km“l‘é(.‘t—f) =0 (2.443)
in which ¢ is the generalized delta function. The solution to (2.4.3) in two-dimensional
space is the well-known potential flow Green’s function

Inr
Gz,§)= -5+ (2.4.4)
with
Vi=Ti— & (2.4.5a)
r? = yigi (2.4.5))

Thus, G(z,£) represents the temperature response at z due to a unit point heat source at
¢. This response is plotted in the z; — z; plane for a source at the origin in Figure 2.4.1.
Radial symmetry is evident.

However, if the medium is moving at velocity U;, then the fundamental solution GY
must instead satisfy

iRleid oGY
9z,0a; - pccha—zj +é6(z-£)=0 (2.4.6)

k

Now, the Green’s function (e.g. Carslaw and Jaeger, 1959) is given by

e~ Uy /2x

GY(z,6) = g Ko [(UkUk)llz (27’;;)] , (24.7)

in which & = k/pc.. This response is plotted in Figures 2.4.2a-d for various magnitudes of
an z,-directional velocity. Obviously, in a moving medium, radial symmetry is lost and
a pronounced front-and-back effect develops. That is, at a given distance from the heat
source, it is hottest directly downstream.

It should be emphasized that the so-called convective fundamental solution defined in
(2.4.7) actualy embodies both the processes of conduction and convection. At low velocity,
conduction dominates producing a nearly radially symmetric response. On the other hand,
in a high speed medium, the response is concentrated in a very narrow band downstream
of the source. Thus, as illustrated in Figure 2.4.2, GU captures the transition from elliptic
toward hyperbolic behavior.
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The corresponding convective viscous fundamental solution Gy, was first presented by
Oseen (1911), as the solution to

*GY.  8GY. aGY
e AR - bk "} . _ = N
Hozidzy O ez © bz = £) =0 (2.4.8a)
8GY;
=0 4.8b
Az (2.4.8b)

The GY tensor is given in explicit form in Appendix 2.4. However, the component Gf],
which represents the velocity in the z;-direction due to a unit point force in the z,-direction,
is displayed in Figures 2.4.3a-d. For very small U;, the solution of (2.4.8) approaches
the Stokes kernels detailed in Appendix 2.3.1. This is shown in Figure 2.4.3a. Notice
that, unlike the heat conduction response of Figure 2.4.2a, the static viscous fundamental
solution is not radially symmetric. This is due to the vectorial nature of the flow, and
is directly attributed to the yy;/r? terms in Gy;. However, as the flow velocity increases
(i.e., Figures 2.4.3b-d), a stronger sense of upstream and downstream develops, and the
response once again becomes concentrated in a narrow band ahead of the applied force.
At high speed, outside of this band, the response is essentially zero. This behavior is not
only important from a physical standpoint, but also can be beneficial in the development
of efficient boundary element algorithms.

2.4.4 INTEGRAL REPRESENTATIONS

The convective fundamental solutions depicted in Figures 2.4.2 and 2.4.3 capture the
proper character of high Reynolds number incompressible thermoviscous flows, and as a
result, can provide the basis for an attractive boundary element formulation. The corre-
sponding integral equations, under steady conditions, can be developed directly from the
governing differential equations (2.4.1). This result is,

Caplic = js [GYgta — Fogtia — Gagta®] 45 + L [DY50%2 + Gopfal dV, (2.4.9)

where
oV = [puku; peuxd) (2.4.10a)
tYe = o onk. {2.4.100)

the superscript U on the kernel functions is a reminder that these are based upon convective
fundamental solutions. All of the kernels appearing in (2.4.9) are detailed in Appendix 2.4.
In most cases the body forces, fa, are either zero or can be accounted for via a particular
integral so that the second volume integral in (2.4.9) is not needed.

In examining (2.4.9), it should be noted that the nonlinearities are contained in the
surface integral involving GY;t5° and the remaining volume integral, DY, 02, Specifically,
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only tJ° and of7 are nonlinear, and these are both formed from the product of pertur-
bations. For high speed flows, these perturbations are only significant in the vicinity of
objects and in the wake. As a result, volume discretization is only needed in those areas.
Elsewhere, the linearized Oseen approximation is adequate.

Equation (2.4.9) is identical to the integral equation developed by Oseen ( 1927), ex-
cept for the treatment of the nonlinear convective terms. In deriving (2.4.9), an additional
integration-by-parts operation was invoked to completely eliminate the appearance of ve-
locity gradients.

If one is interested in the transient thermoviscous response in a medium with a more
or less steady free stream velocity, then a time-dependent formulation is also possible. For
this case, the time derivatives are retained in the linear operator, and the following integral

equation results:
copta = [ (o810 = S5 o — gl +127] d
+ /V [dagk * ks + 9ap * fo — gappul] dV (2.4.11)
This integral equation and the corresponding fundamental solutions have not appeared

in the literature. The functions g5, are quite involved, but can be expressed in terms of
incomplete exponential integrals.

2.4.5 NUMERICAL IMPLEMENTATION

The integral representations for convective thermoviscous flow are quite similar in form
to those presented in Section 2.3.3. Consequently, there is a great deal of overlap in the
algorithms employed for their respective numerical implementation. At present, the ma jor
difference occurs in the schemes utilized for integration.

As discussed previously, the convective fundamental solutions have a much different
character than the more familiar Stokes based kernels. The standard boundary element
integration schemes are unable to accurately capture the localized nature of the convective
kernels, particularly at large Reynolds number. In general, subsegmentation must be
much more intense for singular and near-singular cases. For example, in convective near-
singular integration, first the location X° on the element nearest to the load point ¢ is
identified. Then, a graded subsegmentation pattern is defined about X° based upon criteria
including the distance of ¢ to X° and the free stream velocity. For higher speed flow,
smaller subsegments are generated. Gaussian integration order is also typically higher for
the convective surface integration. Similar adjustments are required for volume integration
as well.

Some progress has been made in the development of alternate integration strategies
for singular integration. For example, partial analytical treatment of the GY; kernel has
proved to be more cost effective. Also, the standard ‘rigid body’ technique has been
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extended to other known solution fields in order to indirectly calculate some of the singular
contributions.

However, additional effort is still needed to develop integration algorithms designed
specifically for high speed convective kernels. In particular, the response depicted in Figure
2.4.3d must be anticipated. Thus, there is noneed to integrate an element which lies outside
the narrow band of nonzero response. Furthermore, elements located partially or wholely
within the band should be subsegmented accordingly.

The remainder of the numerical implementation follows that discussed in Section 2.3.4.
Thus, assembly, solution, and the calculation of additional boundary quantities are ac-
complished in the same manner as for the Stokes kernel approach. While this is perfectly
legitimate, full advantage has not yet been taken of the character of the convective re-
sponse. For example, at very high speeds, as the behavior becomes hyperbolic, the system
equations form a nearly-sequential, banded set. The present assembler and solver, which
were designed for elliptic systems, do not recognize this structure, and consequently, are

quite inefficient.
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APPENDIX 2.4

KERNEL FUNCTIONS

1 U,'U' - c U,' 84; 8¢ 6‘ Ug qu
Gij= o (52 ) e PKolo) - = () o2 - = (2 :
7T 2ap [( Uz)e Ko(a) U(U) z; U(U)Bz,+ ( U )81:5]

3 3G.J . L B U; U U -8 U;ijk) -8 c U; 62¢
Dije = dzy ~ 2xp [ ( 2cU2 ) Koo} - ( ) ( U2 )€ Kile) - (_[']_) U ] b2,z
¢

U, 8¢ i 82
- (5)(3) s+ () (B) 522 ]

where
yi=zi— &, r? = yiys
c= %‘ U2 =y,u;
B = Uxyx/2¢
a=Urf2c

¢ = —In{a) — e PK,(a)

== () () () &) omee (§) e

¢ bi; 2uiy; UN (b5 2wmy; Uy U\ /Uy

—_ (% iYj v i _ =WilY;  YiUiY g Yi¥i\ -5

9z.0z; ("2) * ( r? ) * (20) ( r r? 2cr) Kife) - (2c) ( 2cr? )e Kela)
U
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Figure 2.4.2a  Kernel for Convective Heat Equation

COMPONENT GTT

541 = A

449 - B

A58 - C

266 = D

G A74 = E

0825« F

X
-00929 = G

INCOMPRESSIBLE CONVEGTIVE THEAMOVISCQOUS FLOW (RE - 0.0}

Figure 2.4.2b  Kernel for Convective Heat Equation

COMPONENT GTT

370 - A

A3 =8

256 = C

142 = E

0853 = F

x ’ 284 = G

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 10.9)
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Figure 2.4.2c  Kernel for Convective Heat Equation

COMPONENT GTY

A54 = A

130~ B

.0827 « D

0590 = E

0354 - F

0118 - G

INCOMPRE SSIBLE CONVECTIVE THERMOVISCOUS FLOW {(RE = 100.0)

Figure 2.4.2d  Kemel for Convective Heat Equation

COMPONENT GTT

0519 « A

0439 - B

0358 - C

0279 D

0200 = E

0120 = F

x 00399 = G

INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE - 1000.0)
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Figure 2.4.3a  Kernel for Incompressible Viscous Flow

COMPONENT Gi1

348 = A

293. 8

240« C

187 - 0

A3« E

Wr——’ﬂmr 0800 - F

0266 = G

INCOMPRE SSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 0.0)

Figure 2.4.3b  Kernel for Incompressible Viscous Flow

COMPONENT G11

249 « A

B

\n 210- 8

A7t = G
43 - 0
0936 = E

0546 =« F

X 0189 « G

SNCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 10.0)
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Figure 2.4.3c  Kernel for Incompressible Viscous Flow

COMPONENT G111
121 = A
02= B
0826 « C
: /’(_1/5/( 0634 = D
0441 = E
0249 = F
X , 00566 = G
INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 100.0)
Figure 24.3d  Kernel for Incompressible Viscous Flow
COMPONENT G11
0469 =« A
0394 - B
E .0320= C
0245 = D
Q171 = E
00959 = F
x 00214 = G
INCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE = 1000.0)
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2.5 || CONVECTIVE POTENTIAL FLOW

2.5.1 INTRODUCTION

Compressible potential flow is one of the most important fields of aerodynamic analysis.
One reason is that for sufficiently large Reynolds numbers the important viscous effects
are often confined to an infinitesimal thin boundary layer adjacent to the surface of a body
and its wake. QOutside the wake and the vortical region near the boundary the flow is
essentially irrotational. This fact was first observed by Prandtl in 1904.

The boundary element method is a very useful tool for solving compressible potential
flow problems. One of the advantages is that BEM can be easily applied to solve flow
problems over complex configurations. A major technical obstacle involved with other
methods seems to be the difficulty in generating suitable grids for flows with complex
configurations in presence of shock waves. Another advantage of the boundary element
method is that the solutions can be obtained by only using surface elements. Results
elsewhere can then be in terms of the solutions on surface elements. Thus the boundary
element method could be computationally attractive.

In the present section, a reduced equation will be discussed which is valid only in
the inviscid and irrotational flow regimes. This formulation requires much less computer
time than is needed to solve the full Navier-Stokes equations. In the following sections,
the time-dependent governing equation for compressible potential flow is presented, along
with fundamental solutions and boundary integral equations. An extensive discussion of
the linearized steady state potential flow problem governed by the P-G equation indi-
cates how methodologies have been developed which allow boundary element formulations
to be successfully applied to the elliptic (linearized subsonic) and hyperbolic (linearized
supersonic) flow problems.

2.5.2 GOVERNING EQUATIONS

The linearized governing differential equation of convective potential flow for isotropic,
homogeneous space can be written as

1 D%¢ 8%

2 Dt2 Bz;01; (25.3)

where
¢  velocity potential defined as »; = 22
¢ local speed of sound
D/Dt = 8/8t + v;8/82; material time derivative.
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After linearization, (2.5.1) becomes

1 D3¢ 8%

::g th - axiaz; - d)’ (2.5'2)

¢’ velocity perturbation potential defined as u; = g_;t:

u; velocity perturbation

U; reference velocity

¢o speed of sound

ratio of specific heat at constant pressure to that at constant volume

v
v pseudo mass source rate per unit mass which is defined by
- y—1 8¢ . 1 5 Ouy 2‘% _2_ - 1..311,'
Y=~ z ( Bt + Uguy + ke )Barj cgu, Ve cg(U,u_, + 2“'“‘7)82_.,- , (2.5.3a)
and D a a
e — nm— 1 mpe—
o= 5 Ui (2.5.3b)

The equation governing compressible potential flow has different character in different
flow regimes. For a transient problem, the governing equation is hyperbolic for all Mach
numbers and solutions can be obtained using a time marching procedure. The situation is
very different when a steady flow is assumed. In this case, the equation is elliptic when the
flow is subsonic and hyperbolic when the flow is supersonic. One of the most important
distinctive features of supersonic flow is the fact that shock waves occur in the flow field.

2.5.3 FUNDAMENTAL SOLUTIONS

Equation (2.5.2) is a well known convective scalar wave equation. But, the fundamental
solution in the convective form does not appear to exist in the literature although some
discussions can be found in Goldstein (1976) and Morse and Feshbach (1978).

2.53.1 COMPRESSIBLE POTENTIAL FLOW

Consider, first, the effect of an instantaneous point source. Let
p="6(x—-£)b(t—T). (2.5.4)

It is instructive to begin with a look at the fundamental solution in a static medium
(i.e. U; =0). In that case, the fundamental solution ¢ must satisfy

18% &%
2 N2 Jzilzx

=8z - £t —-T). (2.5.5)
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The solution to (2.5.5) is the well-known scalar wave Green’s function

§t'—r/eo) , for 3D;

4rr
glz—¢&t—71)= 1 H{t! - r/co) (2.5.6)

2,\/m, for 2D,

vi=z: =&
r? = gy . (2.5.7)

t'=t—r1

where

Thus, ¢ represents the velocity potential response at location =z and time ¢ due to a instan-
taneous point mass source at £ and at time r.

The other fundamental solution that is needed is that due to a unit step mass source
acting, again, at point £ in an infinite medium. This mass source is, then,

b= 6(z — E)H(t). (2.5.8)
The response of (2.5.8) can be obtained from (2.5.6) by integrating over r. Thus,
1
t —H(t—rfc,) for 3D;
G(I—E.t)=/ gz —§t—r)dr= 41" ) (2.5.9)
0 ﬁ—H(t —r/e,)cosh™! % , for 2D.

The steady state response can be derived directly from (2.5.9). Letting t — oc, this
simplifies to

L , for 3D
Gz -§) =Gz -§ )= 4"'1' (2.5.10)
—z—wlnr , for 2D.

2.5.3.2 CONVECTIVE COMPRESSIBLE POTENTIAL FLOW

Now, if the medium is moving at velocity U;, the fundamental solution ¢V must instead
satisfy
}__ DggU 82gU

Z DI Baga; ~ CEOE-T). (2.5.11)

Three-dimensional Flow
Performing on (2.5.11) the Laplace transform with respect to r with homogeneous
initial conditions and triple exponential Fourier transform, defined by the relations

f(z,8) = L{f(z,t)} = -/Ow e~ f(z,t)dt (2.5.12q)
e t) = F{f(z,t)} = ///_w f(z, e " dV(z), (2.5.12b)
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with az = a;z;, one obtains the following results by assuming a free-stream velocity in the
z,-direction only (U, = U, Uy = Us = 0)

F = L 2
toe U
ol 4 (B+1:2k k)
[
. H
2 2 .
. sU s My <1;
— (ﬁml - ?731_) + a% + a§+ _c2ﬂ2 ! had (2-5~13)
o 2]
= ]
2 2
. 8U1 2 2 § ’ Mm > 1 f
(ﬁtm + cgﬂ) + o3 + a3 27

with a? = a;a;. Making use of the theorem on convolution for the exponential Fourier
transforms defined by the relation

1 o :
flz, 1) = F-f* (o)) = W/j] f(a, ) da, (2.5.14)
and taking into consideration
—1 1 _ __1_ —kr
F [a2+k2] = It

_ 1 H 2 _ (42
7 | rrerraa) - o WU o (/7 - G2+ ) (25.15)

vi —(vi + 43

Lrger. 1 Az ¢ { Tt
Ff* (cio = )] = e 7 (2]

the Green’s function in the Laplace transform domain is given by (for a general free-stream
velocity U; case)

Co —sr, [Ca

B ey = Moo <1
prig (2.5.16)
eo H ((Ung)? — c20%r%) (%) s
Co P h 2 _c282p2], Mo >1,
2 = e cosh { o3 V (Ukyx)? — c26%r
where
_U TUeue)? + 23272
,= e VUM H ey (2.5.17a)
co
g% =|1- M&] is a compressibility parameter ; (2.5.17b)
My = CE is the Mach Number . (2.5.17c)
o
It is now possible to perform the inverse Laplace transform on Egs. (2.5.16)
_ 1 c+ico
fety= £ et = 5 [ e Fz ), (2.5.18)
278 f oo
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and taking into account that
L7He %} = 8(t - k), E>0, (2.5.19)
the following fundamental solutions in real time and space domain are obtained:

Co 8(t' = ro/eo)
47/ (Ukye)? + c3p%r2

Mo <1;

dY(z-€6t—-1)= e H(Ungn — cofir) , ‘ (2.5.20)
PEy (AT [6(t"— rofco) + 8(t" —rifeo)], Moo >1,
where r, and r, are two values of r given by
_ Uy = /(Uyi)? — c25%r2 ’ My >1. (2.5.21)

Tol =
! coﬁz

The solution for a unit step source can be obtained from (2.5.20) by integrating over
r, thus:

t

GUiz—¢,t)= ] gV(z — €t —r)dr
4]

o H(t-— ro/Co)
47 \/(Ukyk)2 + Cgﬁzf'i’ ’
o H(Uky ~ eofr)
47 \/(Usys)? - 28%r
The steady state response can be derived from (2.5.22) by letting ¢ — c0. The result

simplifies to:

My < 1; (2.5.22)

= [H(t = rofco) + H(t = r1/¢o)] . Moo < 1.

GV (z-£)=GY(z-¢£,00)
Co 1

ar V(Ukye)? + c28%¢2 Mo <1 ( |
) 2.5.23
H(Ukyx —
co H (Uyx — cofr) st

27 \f(Urge)? — 2652’

The nature of the above solutions change substantially depending on whether My, is
greater or less than 1. A flow is subsonic if M, < 1 and supersonic if M, > 1. The governing
equation is either elliptic or hyperbolic depending on whether the fiow is subsonic or super-
sonic. For the supersonic case, the surface bounding the region reached by a disturbance
starting from a given point is called the Mach surface or characteristic surface which is
defined by the Heaviside function in (2.5.23). The properties of supersonic flow described
above give it a character that is quite different from that of the subsonic flow. If a sub-
sonic flow meets any obstacle, the presence of this obstacle affects the flow in a space, both
upstream and downstream and the effects of the obstacle is zero only asymptotically at an
infinite distance from it. A supersonic flow, however, is incident ”"blindly” on an obstacle;
the effect of the latter extends only downstream, and in all the remaining upstream part,
the flow does not see the obstacle (Figure 2.5.1).
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Finally it is of interest to note that a 1/r singularity appears in above equations.

Two-dimensional Flow

Similar to the three-dimensional case, the response for an instantaneous point source is
considered first. It is not difficult to get the convective fundamental solution from (2.5.6)
by the Galilean transformation y; ~ v — Ust’. Thus,

1 H@E' —ru/co)

U
g (z-§t—71)=— ; (2.5.24)
VIR
where
r2 = (g — Uit")(w — Ust). (2.5.25)
The convective response for a unit step source is
t r_
GY(z—¢1) = 2i j H —rufc) 4
o \fer - s2/e3
( H(t —rofco) , c20+/t?—rifcl+ e20%t + Uryi
3 in , Mo <1;
L1 vV (Ukyk)? + c28%r2
H(Uryx — coPr) 1 2Bt — Usyx Gl
=0 — == _—— L H(t-r sin + =
21I'ﬂ ( o/Co) 1 \/(ﬁkyk)ﬂ = c§ﬂ2r2 2
202 ' MOO >1 )
-l
—H(t—-rifco) sin~! Coft ke _T
\ VUiw)? —c2p%r2 2
(2.5.26)

in which the variables r, and r; are defined by (2.5.17a) and (2.5.21).
The steady state response can be obtained from (2.5.26). Letting ¢ — oo, this simiplifies
to

GV z—€6) = GY(z -, )

2 23242
‘Tlﬂ‘fn\’(”“”") + e Me <1
= T €o (2.5.27)

1
ﬁH(Ukyk — ¢ofr) , Moo > 1.

In the case of steady two-dimensional flow, the characteristic surfaces will now be
replaced by characteristic lines (or simply characteristics) in the plane of the flow. Through
any point O in this plane there pass two characteristics (44’ and BB in Fig 2.5.2), which
intersect the stream line through this point at Mach angle . The downstream branches
04 and OB of the characteristics may be said to leave the point O; they bound the region
AOB of the flow where perturbations starting from O can take effect.

These functions have a inr singularity for the subsonic case and are also weakly singular
for supersonic flow.
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2.5.3.3 INCOMPRESSIBLE POTENTIAL FLOW

For incompressible potential flow, the governing equation is simply

8%
81;82,-

=0. (2.5.28)

This is the well-known Laplace equation, and the fundamental solutions are

%, for 3D;
= (2.5.29
-2%_ Inr, for 2D. )

2.5.4 BOUNDARY INTEGRAL REPRESENTATIONS

25.4.1 COMPRESSIBLE POTENTIAL FLOW

The desired integral representation for convective compressible potential flow can be
derived directly from the governing differential equation.

The governing equation (2.5.2) must, of course, hold for all points of the flow region
at every instant of time. Therefore, the left-hand side of (2.5.2) multiplied by an arbitrary
function §, and integrated over time and space must remain equal to zero. That is,

1 D2¢ 32¢ . B
/f [ z Dzt 52,02, +w] dVdt=0. (2.5.30)

Next, the divergence theorem can be applied, repeatedly, to the applicable terms in (2.5.30)
to transfer spatial, as well as, temporal derivatives from ¢ to §. As a result, equation
(2.5.30) is transformed into

Tr[./86 UiDo 8§ Ui Doj
ff[g(a—:c,‘c—zﬁ') ‘ (Bz, z m)“*‘f’] asdt
+ [ to9) avaes L / (B els - 3520 av (2531)

1 D35
_-/Ov/v[(é-l_)? 828 =)¢] dVdt=0,

with n; defined as the unit normal to surface 5 at z. To complete the derivation of the
integral equation for any point ¢ interior to S at time 7, the last volume integral appearing
in (2.5.31) must reduced to ¢(¢, r). This is accomplished, if

ol 00—t -r) =0, (2.5.32)
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Green’s function § defined by (2.5.32) is the adjoint of the original Green’s function pre-
sented in Section 2.5.3. That is

jz-&t-r)=g"(—-2z,7-1). (2.5.33)

Substituting (2.5.32) and (2.5.33) into (2.5.31) produces the desired integral equation,

T
(OB, 7) = '/o /S V(€ - 2,7 — (2, 8) = V(€ — 2,7 = (2, )] dS()dt

T -
+ f j (g€ — 2,7 — t)¥(=,1)] dV(z)at (2.5.34)
oJV
[} v Tk Do )
L[ [Py 0)- - e P v,
where
u,(z,t) = un(z,t) — %‘-&%&%ﬂ (2.5.35a)
V(e —z,7~ n Lo V(g —=,7-
-z, r—t)= 89" (¢ 3n” f) _ %D g (Em" 1) (2.5.35)

and c(¢) is constant. When ¢ is inside 5, c(§) = 1. If £ is on the boundary then the values
are determined by the relative smoothness of S at ¢. For ¢ outside the region V, ¢(£) is zero.
The boundary integral equation (2.5.34) can be rewritten in a more compact notation

o= [ wut 1) a5t [ ¥ 9] 0V, (2530
s v

The symbol + in (2.5.36) once again symbolizes a Riemann convolution integral. If body
source is absent and small perturbation approximation is introduced, the volume integral
in (2.5.36) no longer remains, which simplifies to

ch = fs[gU sul, — fUx¢ldS. (2.5.37)
While for steady conditions this reduces further to
| ch = fs [GV*u, — FU?4) dS, (2.5.38)
where
u, = up — U'c‘zv Lo (2.5.39)

_aGYr  ULU; 8GY*
T on 2 Oz;

FUs (2.5.395)

But, generally, it is not convenient to apply boundary values uj, in solving the physical
problems. This topic is discussed later in the next section.
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2.5.4.2 INCOMPRESSIBLE POTENTIAL FLOW

A derivation of the integral representation for the incompressible potential theories
would follow the same lines as that just presented, and therefore, will not be repeated.
That is,

6= [ lown— 78] ds, (2.5.40)
s
where
d
Un = a—iﬂa‘ (2.5.41a)
_9%

Notice that incompressible potential flow is a steady, non-convective process and with
¥ =0, the convolution, convective terms and volume integrals vanish in (2.5.40).

2.5.5 NUMERICAL IMPLEMENTATION

2.5.5.1 INTRODUCTION

In this section, a numerical implementation for convective potential flow will be de-
tailed. Unlike the formulations presented in Sections 2.2-2.4, this capability is not available
in the current version of BEST-FSI. Instead the implementation was accomplished in a
separate single-GMR boundary element code. As a result, some of the generality is not
present. However, it is expected that future versions of BEST-FSI will include these two-
dimensional steady subsonic and supersonic flow formulations.

2.5.5.2 SPATIAL DISCRETIZATION

The methodology employed for spatial discretization follows that described in Section
2.3. As a result the boundary integral equation for steady state convective compressible
potential flow can now be written

M
@80 = 3 [ [ 610~ MO d5(ele) - [ F0) - OM 08 ds(a(e)] - (2542

m=1 m m
This equation is based on small perturbation approximation.
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The integrands remaining in (2.5.42) are known in explicit form from the fundamental
solutions,

Gz - &) =GU*(¢ - 2) (2.5.43a)
8 Us/e nUi 8 Usfe _
Flz-§)= —q—a(f-i-—z)m(z) - ch i 3(:1' z) . (2.5.43b)

The positioning of the nodal variables outside of the integrals is a key step, then the
integrands of (2.5.42) contain only known functions, which can be evaluated numerically.

The following method is applied here to transform uj, into boundary values u, and ¢.
The shape function can be used to write

Ui(2) - tn(z) = —U:—;"u.;(z) (2.5.44a)
9“;—2((—)% = %?u,-(z) . (2.5.44b)
Solving above equations, one obtains
unl(z) = vil2Ins(z) = -% (4(z) = un(z)) ~ Uin(Uzn,(x) - Um;(:r))J'la—Né‘”?(Q - (2.5.45)
in which
ny(z) = J“%‘? (2.5.46a)
na(z) = —J7* % , (2.5.46b)
and 7 is the determinant of the jacobian matrix. Rearranging (2.5.45), one gets
ul(z) = (1 - f—f) wn(z) = %(Um(z) _ Ulnz(z))J'lg-A-%c—)-ebw. (2.5.47)

Substituting (2.5.47) into (2.5.42) produces

-y U2\ G, ds Un Uyng)g—1 8N
c¢-21 s | 1- 2 S =9 | FN+ =3 (Uzny = Uing)J —BC—G dS » (2.5.48)
m= m [ m o

2.5.5.3 INTEGRATION

The evaluation of the integrals appearing in (2.5.48) is the next process to be examined.
At present, a difference occurs in the schemes utilized for integration due to the distinctive
nature of kernel functions G and F for subsonic and supersonic. Considerable care must
be exercised during integration. This is particularly true for supersonic flow, in which the
F kernel contains a delta function. Consequently, the integration algorithm must be much
more sophisticated than those developed for subsonic flow. In the present implementation,
discussed in detail in the next two subsections, a number of different integration schemes
are developed depending upon the order of the kernel singularity (Table 2.5.1) and the
nature of the kernels involved.
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TABLE 2.5.1 Kernel Singularities
Singularity Order

Kernel Subsonic Supersonic
G Inr H(r)
F 5(r)

Lo

Subsonic Flow

The integration schemes for subsonic flow are quite similar to those presented in Section
2.4. Consequently, most common items will not be discussed further. However, analytical
integration is discussed in a little more detail due to the nature of the G kernel.

The kernel to be integrated can be written as

My <1. (2.5.49)

Urva)? 4 B2c273
G(x—E)z—ﬁln\/( "y"go;ﬁ il

The integration of the nearby subsegment of the singular point for the above function
can be done by following an analytical scheme. This small subsegment can be considered
as a flat line tangential to the singular point. The length of this segment can determined
by a limitation of S, say, $*, i.e.

0<S<s*, (2.5.50)

so that the desired integral is

1 5
/s Gz~ ONA)dS(a) = ~51 /0 (In S+ A) No(¢(S))dS (2.5.51)

where

A=In1+k2M2 /52 is constant, (2.5.52a)

k= Ugyr/Ur is constant for flat segmentation. (2.5.52%)

Case I: Node 1 is Singular Point
The shape functions for a quadratic element can be stated as
M) =2 (¢ - 3) -1 =257 35/L 41
N2({(S)) = ~4((¢ ~ 1) = —45?/L? + 4S/L (2.5.53)
No() = % (¢ - 3) =25%/12 - sy
where
¢=S5/L, (2.5.54)
and L is the length of the element.

BEST-FSI User Manual March, 1992 Page 2.54



Equation (2.5.51) becomes

j Gz — E)N1(¢)dS = _ﬁ(zc,,/L2 ~3C1/L + Co)
a
[ 6l — N0 85 = — 55 (~4Go/L* +4C1/1)
1
[ 6tz - N0 85 = 5 5 0C/1* - Gu/ D),

where

n+1

n+1

5 w1 1
Cn=/ S"(InS + A)dS = n (lnS‘+A+———-) n=0,1,2.
0

The constant k can be expressed as

k= (U2n1 - Ul‘ng)/U.

Case II: Node 3 is Singular Point
The shape functions for a quadratic element can be stated as

NS =% (c - %) =25%/L? - S/L
N2(((S) = —K(¢ — 1) = =S7/L? +45/L
N3(((8) =2 (( - %) (C—1)=25%/L2-3S/L+1.

It is not difficult to get the desired integrals:
1
,/s- G(Z - f)N]_(C) ds = —m(zczfl}z - C]/L)
1
/ G(z — £)N3(¢)dS = #zi(zcz/ﬁ _3C/L+Co).
ol L7

But notice here the constant k is

k= (U]ﬂ2 - Ugﬂl)/U .

Case III: Node 2 is Singular Point

In this case, the shape functions for a quadratic element can be stated as

Ny(U(S)) = 3¢ = 1) = 38%/L° - 35/

NC(S) = (1 =01 +¢) =1-5*/12

N3({(S) = %C(C +1)= %Sz/L"' + %S/L,
where

G =—5/L; {2 =S/L2,
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L, distance between node 1 and node 2
L, distance between node 2 and node 3.
Substituting (2.5.61) and (2.5.62) into (2.5.51)

1 ol s*
fs Gz —EN(()dS = 203 { jo Gz — E)NL(C1(S)) dS + /0 G(z - E)NL(C2(S)) ds} . (2.5.63)

1e.,
[ cte-om@ds = -5 [2eynr+ciyny + dez - ey (2.5.64a)
5 7I'ﬂ _2 2 ]
[ 6tz - ONa(0)dS =~ [(1~ eby/23) + (1 - G/ 13)] (25.64)
G- 3 .
[ cte-eNs@vs = 55 Myt -clyoa+ 2z e, s
5. T3 |2 2 ]
where - -
. S*n . 1
C:, =L s"(ln6‘+ Ai) ds = Y (lnS + A + n—I“f) . (2.5.65)

The constants A; and k; are

A;=1lny/1 + k2M2 /52 2.5.66a
T (= =}

kl = (Ulﬂz - Ugﬂl)/U, k’z = (Uzﬂl - Ulﬂg)/U . (25666)

For the F kernel the numerical integration discussed in Section 2.4 together with the
indirect ‘equipotential’ method, is applicable. These lead to the accurate determination of
the coefficient involving the F integrals.

Supersonic Flow
For supersonic flow (from Table 2.5.1), the integration of the G kernel is weakly singular.

As a result, a much less sophisticated integration scheme can be employed to obtain the
required level of accuracy with relatively few subsegments and gauss points.

However, the integration of the F kernel (which is a delta function) must be taken
care of properly. The numerical integration is no longer possible and analytical integration
must be carried out. In order to explain this scheme easily, the problem is simplified to
one involving only z;-direction free-stream velocity U;. Thus, the ¢ kernel can be written
as 1

G(z-¢) = 27 [H(By2 — 1) - H(By2 + 11)] . (2.5.67)

From (2.5.43b), the F kernel] can be obtained as:
Flz-§= % [(nz + Bn1)é(y1 — Byz) — (n2 — Bn1)é(ys + Byz)] - (2.5.68)

In above equation the arguments of the delta function y — Sy, and w1 + By: represent the
two characteristic lines of the Mach cone. Thus, for any element m, the required integral

can be written as

/ Flz—§N.dS = + / (n2 + By )Nub(ys — Bya) dS — j (n2 = By )N 6(y; + Bua) dS.
Sm 2 /s, 2Js,
(2.5.69)
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Only the first integral in the above equation will be examined. To assist in this endeavor,
the following two distinct cases can be identified.

(1) The characteristic line does not cross the element m.

(2) The characteristic line crosses the element m.

In the first case, the integral is zero according the definition of the delta function.

Turning next to case (2), the characteristic line and element m may have one or two
intersections (for a quadratic element), which can be located by solving the following

equation
1 — Py =0. (2.5.70}

In the local coordinate system, the above equation becomes
al?’+5+c=0. (2.5.71)
By imposing the shape function the coordinates y; can be expressed as
¥ = 2:i() — & = Nu(Q)ziw — & - (2.5.72)
The coefficients of (2.5.71) can be then defined as
a= 2z —4z2+ 223
b= -3z +429— 23 (2.5.73)
c=22—17,

where
2o = Tyw — BT
n==E& - P2
Of the two roots of equation (2.5.71) ¢; and (2, only the solutions 0 < ¢; < 1 are relevant.
Once the intersections are found, the desired integral is obtained as

(2.5.74)

2

3 [ at mNabn — B)ds = 50D eG4 mEI MGG 0SGEL (8T

i=1

where J is the jacobian (determinant) of the transformation. Following the same procedure,
the second integral in (2.5.69) can be determined easily.
Similar to subsonic flow, the singular term of integration of the F kernel can be obtained

by the ‘equipotential’ method.

2.5.5.4 ASSEMBLY

Once the spatial discretization and integration algorithms are completed, a system
of linear algebraic equations can be developed to permit an approximate solution of the
compressible potential fiow problem. The method of collocation is employed by writing
(2.5.48) at each functional node:

[Gl{un} - [F1{4} = {0}, (2.5.76)
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where
{¢} nodal potential with P components
{un} nodal normal velocity with Q components
[F] assembled matrix of size P x P calculated from (2.5.48)
[6] unassembled matrix of size P x @ calculated from (2.5.48)
P total number of functional nodes
Q= Ef:l Am
Am number of functional nodes in element m.

2.5.5.5 SOLUTION

For subsonic flow, it is a simple operation to rearrange (2.5.76) The known ¢ and u,
values form one vector {y} of size (@ x 1), while the unknown ¢ and u, values comprise
another P x 1 vector {z}. Whence (2.5.76) can be rewritten as

[Al{z} - [BH{y]} = {0}, (2.5.77a)

which can be solved for {z}. The result that is all ¢ and u, components (i.e., both ¢ and
u, on every boundary element) are now known on s.

Because of the hyperbolic nature of the governing equation, the supersonic problem is
more like an initial value problem rather than a boundary value problem. Consequently, a
marching procedure must be performed in space. Initial data ¢ and 22 are prescribed along
the line z = 0 (see Figure 2.5.3) and the solution is advanced in the z direction subject
to wall boundary conditions and an appropriate condition at the upper boundary ymasz.
By using this procedure, the quantities on the boundary can be determined sequentially.
Thus the unknown vector {z} reduces to (P - N) x 1, where N is the number of points on
the initial data surface (inlet surface) for which both ¢ and -gn'? are specified. On the other
hand, the values u, on the outlet surface remain undetermined, because their G-coefficients
are all zero. That means that the points at the outlet can only receive influences from
other points within the upstream Mach cone. Now the equations can be written as:

AINFL(N+HD) 0 E 0 IN+1
AN42)(N+1)  G(N+2)N+2) .- 0 ZN+2
AP(N+1) QP(N+2) ... aGpp Tp (2.5.77)
bN+1)(N+1) 0 o 0 YN+ 8(N4+1)nZn
bivayvery bvezyNgzy .. O YN+2 i G(N42)nZn o
: ' . : . n=1 :
bp(N4) bp(Ni2) ... bpg vQ Gpntn

These are not simultaneous equations as in the elliptic case, but are successive requiring
specification of all boundary quantities at the inlet. The solution therefore does not require
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any elimination. The boundary conditions at exit are not required but are determined from
the remaining boundary solutions.

2.5.5.6 INTERIOR VALUES

Once equation (2.5.77) is solved, the complete set of primary nodal quantities, {¢} and
{un}, is known. Consequently, the response at points within the body can be calculated
in a straightforward manner. For any point £ in the interior, the velocity potential can be
determined from (2.5.48) with e=1:

M
U2 Un 19N,
¢ = Z {UMLM (1 - —) GN, ds — ¢,,,,Lm [FN‘,, + -c—g—(Uzﬂ]_ - Ulﬂg)J —OTG] dS'} . (2578)

2
me=1 i

Meanwhile the boundary integral equation for velocity, can be written

M
@)= 3 [om [ Be(0) - ) dS(a(0) - 4. [, et -estec] (2579)
where
2 —
Bi(z(() - &) = (1 - I—Z,ﬂ) Qg(ié%—f—)l\fu(() (2.5.80a)
6iz(6) ~ ) = ZLED =D N, () 4 Z2(0Umi(2) - Uima(e) ™ WA 26D E) (2.5.800)

Actually, for supersonic flow, it is difficult to evaluate C; since ££ is involved. Fortunately,
a local finite difference method can be applied.

Equations (2.5.78) and (2.5.79) are valid for interior points, whereas, when ¢ is on the
boundary, the shape functions can again be used. In this latter case, the velocity potential
has the relationship

$(€) = Nu({)dw - (2.5.81)

Meanwhile the velocity on the boundary satisfies

up(€) = wi(€)n:(€) (2.5.82a)
NLK) 9
a o= ui(€) (2.5.82b)

which can be solved simultaneously for boundary velocity.
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Figure 2.5.1 3D Mach Surface

Figure 2.5.2 2D Mach Lines
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initial data surface

Mg >1 ~——3 marching direction

TIE T TR v SRR TR R RS SST v ™ =

body surface

Figure 2.5.3 Coordinate System for Marching Problem
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2.6 || COMPRESSIBLE THERMOVISCOUS FLOW

2.6.1 INTRODUCTION

Boundary element formulations for convective incompressible flows have been presented
in Section 2.4. However for more general high speed flows, compressibility of the fluid
must also be considered. In particular, shock-related phenomena that characterizes such
flow are not present in the incompressible flow. To correct this deficiency, a compressible
thermoviscous integral formulation is presented in this section. It should be note that, while
Oseen derived some of the fundamental solutions required for the incompressible case, no
such solutions are available for compressible flow. Consequently, considerable time and
effort was required to derive these new approximate infinite space Green’s functions.

Details of the integral formulations for compressible thermoviscous flow are presented
below. Separate subsections present the governing differential equations, the infinite space
fundamental solutions and the integral equations.

2.6.2 GOVERNING EQUATIONS

Application of the Principles of Conservation of Mass, Momentum and Energy for a
compressible thermoviscous fluid leads to the following differential equations:

Dp v,

E+pa:i —¢$=0 (2.6.18)
Dv; 8%v; ?v; 8p
P Dt B (/\ + ”) 8.‘:{6:_1' - "32:_-,'31'_,' + -3-1'.'_, - f' =0 (2‘6.11,)
2
P_e_k_g_f__P_P+p¢_¢_¢=o, (2.6.1¢c)

PrDt ~ “8z8z; Dt ' p

where
v; local velocity vector
p mass density
p thermodynamic pressure
¢ thermodynamic temperature
A u coefficients of viscosity
¢, specific heat at constant pressure
k¥ thermal conductivity
¥ mass source rate per unit volume
fi body force vector
¢ heat source rate per volume
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D/Dt material time derivative defined as £ = & + vz,

and @ is the viscous dissipation defined by

dv;
&=r50—, (2.6.2)
d Btj
where for compressible flow
dv; 81)] vk
P et A6y 8.

By introducing reference values for each of the primary variables and the perturbations
except for temperature 6, the governing (2.6.1) can be rewritten as

Dop Ou; 5
-7 e P =0 (2.6.4a)
Dou; 0?u; 8%u; 8 i _
o At 8.9z, '0z;0z; Oz fi= (2.6.40)
D¢ 20 D,p -
-_° _ - —¢=0 .6.4
Po oy ~ ¥ o Dt P (2.6.4c)
in which
- dp Su;
=y 6.5
A pa£1+¢ (2.6.50)
= Bu.; Dou,
" 88 . Do % p
¢= —pcpu,-b—;—i —pcpﬁo+u..-a—z:— ;1ﬁ+¢+¢, (2650)
d D a 7]
° — - —
bt = o Vo, (2.6.6)

Ui, po,po  constant reference variables

u;,p,p perturbations.

An alternative formulation for the mass conservation equation (2.6.4a) can be devel-
oped noting that speed of sound ¢ = \/% depends on the relationship between pressure and

density. Thus the second equation of (2.6.4) becomes

Dou; 8%y 8%y, 2 3p =
Po (““)az.ar, Boasom; ¥ Ba 1 (2.6.45)
Differentiating (2.6.4b’) with respect to z;, one obtains
D, [ Bus & du; » 8% _ 8f
Dt (”"azi) - "az,-azj (p"Bz.') te 8z;8z; 8z’ (26.7)

in which n = (A+ 2p)/po.
Substituting (2.6.4a) into (2.6.7), the governing equation for density is obtained as

1 D% &% n 8 [(D.p 1 [D, 8 1- 18f;
Bl LA _1 = |22 LA I R L 2.6.8
c? Dt2  Qz;8z; c? Bz;8z; ( Dt c? | Dt (A +24) Oz;0z; 4 ¢? Oz, ( )
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Once again, the relationship between pressure and density (¢? = 5}’;) is applied in (2.6.8).
The resulting governing equation for pressure then becomes

1D% 8% 5 8 (Dyp D, # 1. 8k
-c—ith B 32,’31‘,‘ B ;5(9.“:,'3.13,' T’T - T)t— N (A +2“)8.":,'(9:t,' v- _3: ) (2‘6‘9)

The final form of the governing differential equations for compressible thermoviscous flow
can now be rewritten as

1D % -
6—2—5?2—— m—ﬂ—o (2.6.106)
Doy 8%u; 8%u; ap -
o=2t — (A o ey | 6.
P m ( +F) B:iaxj 'ua.‘tjazj + 3::,- f’ (2 6 106)
D0 86 D .
P~k Geger ~ Dt =0, (2.6.10¢)
Where D 8 85; 8 (Dop
0= =22 - A DS L S A o 4
Q= Dt ('\+2y)6z;6z;] "b 62,‘ + e2 81.‘31; ( Dt ) ’ (2'6'11)

Note here, the third term which is the viscous effect in the pressure equation is included
in body source Q since its contribution can be assumed to be small (the coefficient J is
small). Now, the first two equations of (2.6.10) are one way coupled. The first equation is
independent of the others, while the mass and momentum balance operators are coupled
by the inclusion of both velocity (u;) and pressure (5). The derivation of the fundamen-
tal solutions and integral formulation based upon equations (2.6.10) are detailed in the
following sections.

2.6.3 FUNDAMENTAL SOLUTIONS

Consider, first, the coupled set of equations (2.6.10a) and (2.6.10b). The first equation
now is just the scalar wave equation for which the fundamental solution is presented in
Section 2.5.3. However, the equations (2.6.10b) require further investigation. Introduce
the Helmholz decomposition of the velocity and body force, such that

ow o Wk ] Wi

= g + Eijk—e;;;“ with o 0 (2.6.12q}
- 8f 8F), . aF;

L= T ik — t =0. 0.
ft Bz, + €55k 34'-'j with z; 0 (2 6 12b)

Then, (2.6.10b) becomes

8 Dow 8w . a D, W 82w,
— lpo =22 — - il - -F|=o0. 6.1
T | A W, T f] O B [ Dt Hoz6x, (26.13)
For generality, the bracketed terms must vanish independently. Thus
Dyw Fvw
po_l—)i_ - (A + 2#)83‘_63‘. +p-— f =0 (26140)
DWW, oW,
Po—pr ~ “az,-azj -F=0. (2.6.14%)
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Notice that equation (2.6.14b) is completely independent of w and 5, and, consequently can
be solved separately. In fact, this is the vortical component of flow, which is dominated
by viscosity and convection. This component behaves in an identical manner for both
compressible and incompressible flow. On the other hand, the dilatational component
must respond elastically within a convective medium, i.e.

s = w4 u{* (2.6.15)

where
ul = ey %I::k = yfineome) (2.6.16a)
ul®) = %' (2.6.16b)

Combining appropriate derivatives of (2.6.10a), (2.6.14a) and (2.6.10c), yields the following
differential equations for w and 8:

i # \D # ], 4 (1D_ &\, _1g
ZDt2 Bz:0z; ) |n Dt 0x;8z;] A+2u \e2 D2 029z A4+ 2u

(2.6.17a)
1DE @ \(1D. & \,_ 108 11D & g
62 th 31:{31'; k Dt {-)zka:ck . k Dt k 02 th 8::,-8.1:,-

(2.6.17b)

Actually, the solutions of (2.6.17) that are required for the boundary element formu-
lation are those due to instantaneous point mass sources and point forces. Furthermore,
the pressure response and the velocity field corresponding to these sources and forces must
be determined at same time. In all cases, the results can be determined directly from the

solution of the equation

1 D} d? ) 1 D, 8? 1D, 82 _
(c2 Di? ~ B2:0z:) \nDt _ 3z;0z;) \x Dt _ dzxdzx Bu -8z -Eot-r)=0,  (2618)

where the scalar variable gy is introduced along with the usual generalized delta function
(5). The subscript, U, is merely a reminder that g is a uniformly moving medium solution.
Consequently, the fundamental solutions of the equation (2.6.10) can be obtained from the
variable gy

Bgy ™ _ 1 (Lﬂg_ _ _iz_) (lP_" @ ) 8*fy (2.6.19a)
8Ok A+ 2u \e2 Dt2 dzidzy kDt Bz;0z;) 8zi0z;
o, = % (%% _ 5:%;) Dgf” (2.6.19¢)
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In a condensed notation, equation (2.6.18) can be written as
Loy - 8(z — )6t —7) = 0. (2.6.20)

For solving the above equation, the Laplace transform with respect to t and triple expo-
nential Fourier transform with respect = are applied again, which leads to

'3 -1=0. (2.6.21)
Now L* is a algebraic function
- 2 . .
I'= [a2+ —(3+’;"U") ] [a2 4 St ':"U"J [02 MEA L ':"U"] . (2.6.22)

The result in the transform domain is obviously

—— 1 1
ﬁU - L= - [02+ §:+iakU;!’] {az_i_ aii:kui] [az+ ’iiztuh] ) (2'6'23)

Backsubstituting the above equation into (2.6.19), the corresponding fundamental so-
lutions in the transform domain can be obtained as:

To@y _ 1 Gaiiog) [ 5 s+ioli] [ 5 (8+iaxlUk)?] 5
(g‘i ) O+ o |7 T = ot = f
1 (ia;)(iaj)
S ! (2.6.24a)
A2 2 [azu, M}
n
—— 8+ 1ol . —
g+ 5]
1 iy
__ ' . , 2.6.24b
A+2p [a’ L takUk] [02 + (s + :;kUkV] ( )
1 . 8+ sa U] ——
(gg,) = ;(s + takUk) a? + —n_k—k] Bu
1 8+ o Us
= — - - (2.6.24c)
k [02 + (s+ :akUk)2] [az Lot zakUk]
c? K
—— 1 5+ il )? s+ iaxUp] -
(ggﬂ) =E[02+( 2 )][(1’2+ T’k k].BU
1 1
S N S 2.6.24d)
" (
k oty s + l:k k

The response for unit step body forces and sources can be obtained from the above
solutions by multipling by a factor i. That is,

(Gg{ﬁ) =§(ggﬁ) . (2.6.25)
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The steady state solutions in the Fourier transform domain can be obtained from
(2.6.24) by letting s — 0. Thus,

(GY)" = (ggﬁ)ﬂo. (2.6.26)

2.6.3.1 UNCONVECTIVE COMPRESSIBLE FLOW

Governing Equations
Before the Oseen’s kernels are introduced, it is easy to start from the corresponding

Stokes’ kernels. The entire contribution of the convective terms are considered as effective
body forces and sources. Thus, the governing equations (2.6.10) become

18% 8% -
s - Q= 6.
332 Bz.0z; 0 (2.6.27a)
Bu; aqu' 8%y, 8p -
be 8t B (/\ + “) 8::,-8.1:_,- - “8:_,-8@,- + 6—::, - f’ =0 (2'6‘2”))

a9 5% ap -
pocP-a—t - km - Et- - ¢ - 01 (2‘6'276)

where
= a 92 - Af;
1= ~a—t - (A + 2#)3_.‘;,'-5?,'] - 3—4!:,- (2.6.280)
r 2 3!5,' -Du,- ]
fi = —pov; dz; - P Dt + fi (2.6.28%)
T . Bﬁ _8u,—
Y=-v; 3z, ”ax,- + 9 (2.6.28¢c)
.80 DB O p
¢ = —polpli 5z, oy + v 3z, pw +P+4¢. (2.6.28¢)

The fundamental solutions of the above equations in Laplace and Fourier transform
domains can be obtained from (2.6.24) by letting U; =0, i.e.

U@y _ __ 1 (fa:)(ior;)
(65°°) =333 o a2+ 2) (2.6.29)
—— i ia;
(gy) = - {(2.6.290)
)TN N ) @ B)
1 s
vy — - 2.6.29
) i p D (2025
_— 1 1
@ =15 (2.6.29d)
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Three-dimensional Flow
Taking the inversions of the exponential Fourier transform and Laplace transform, and
also, taking into consideration

c-1p-1 L _H@®
sa’ 47r

C—I}-—l[' 1 ]: 1 —r2/ake
a2+ 2] 8/kn33

[1 1 1 r
Y =t B L _r
i _sa’+§] 4”erfc2m

- 2.6.30
1 1 }: i) ( )

ol
47r

k

2 A2y 2
s —F @ + 5

1 1 1
-1g-1 |1 =1 g
LoF [saz+§] 41"H( r/e)

where V oo | —or/k r—ct r+ct
ag(r,t) = Eec t/ [e o/kerfo W/ + e /*erfe 2\/513] , (2.6.31)
the solution can be written as
ggd;‘l)(z —ft—1)= a;‘if:g;j) (2.6.32a)

gip(z — €t —T)= 19 { 1 [crfcz;\/nT —ap(r,t')y— H{t' = r/e) (1 - eﬁnﬁ("“"/c))] }(2.6.32!7)

Po Oz arr
c2 2
gop(z — €t —T1) = yyr [a,‘(r, t)— H{t' —r/c)e~! ""/c)] (2.6.32c)
- 1 —r?/ant’
gﬂa(z E!t T) - BPOCP(TICt’)alQe ’ (2.632d)
where
$n(r,t) = - rf o (2.6.33a)
KA 47rp,,re 2/t D.doa
t'=t-r7. (2.6.338)

Similarly, the solutions for unit step body forces and sources can be obtained via
equation (2.6.25). Taking into account that

1 t
P s o L L
LF [3202] dnr

1 1 1 r
“1p-1]-" = 4442
LT°F it %] 41”_4h c‘:rfc%/H (2.6.34)

1 1 1
“lr-1 | - e — -— —
colr [32 o %;] 4’“_H(t rie)(t —r/e),
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one obtains
i od
Gz - 1) = 53—

32.‘31'3'

(2.6.35a)

7 a 1 T Ez_t.g r
Gz —€ )= 2 3;'{m[erfc——-2\/n_t+4 " erfc——-—zx/ﬁ - ag(r,t)

—H({t—r[c) (%z-(t —rfe)+ 1~ e‘ni('-'/c)) ] } (2.6.355)

—£)= - r  _H(t- 2 (t-r/fe) _
Gop(z —£,t) = P [a,:(r,t) erfc2v,E H(t—rfc) (e 1)] (2.6.35¢)
1 r
Gag(z — £,1) = m;erfcm , (2.6.35d)
where ,
. a2 r
&, (r, 1) = pr (1 44 erfc2m) (2.6.36)
The corresponding steady state response is given by
. . 2@3
G50z ) = Gz - €,00) = 55 (2.6.37a)
Ml
Gi(z—€) = Gip(z —§,00) = B2, (2.6.37b)
oo(2 — &) = Gap(z —§,00) =0 (2.6.37¢)
Gip(z — €) = Gop(z — §,00) = m" (2.6.37d)
where
O(r)= — o (2.6.38)

81r(). +2u)°

Two-dimensional Flow
Similar to three-dimensions, subjecting (2.6.29) to the inverse exponential Fourier
transform and Laplace transforms by taking into consideration

colF! [ L = A1) lnr
| sa® 2r

[ 1 1 2
11 _ —r? f4kt
g k] = e

[ 1 1 r?
—-1p-1 |2 _
L=F 5 a2+,';] =5 (m)

—

2.6.39)
1 1 1 (
Ll | = — 1
5 - .CE o + f;] 21_‘7):(1‘ )
(1 1 1 ot

-1l © == - -1

LoYF 8a2+§] 21‘H(t r/c) cosh -
1 1 1

LiF -s_%02+§;] 2ﬂ_I:I’(t rfc)wi(r,t),
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where

2
L [T gt 1 au 2ct cr er
nirt)= e [ 2 dr = 5% Ko (10 =, T ) + K, (T)

k k
(2.6.40a)
one obtains
t/k
H(t — rfc)wg(r,t) = e""/"j e""Md = H(t —r/c)eS /* K, (cosh _‘;"t_ _‘Z’_) _
o V- (§)’
(2.6.40b)

In the above, K,(a,p) is incomplete MacDonald function and K,(a) is the modified
Bessel function. The solution then becomes

Bh(r, t!
9Nz —gt-1)= —79%% (2.6.41a)
a (1 2 , p ot /

gip(z —&,t—~7)= 2l’po 3z, { E (#) —Yg(r,t) = H(t' = r/c) [cosh ! - — wy(r,t )]}

(2.6.41b)
2
gop(z — €t — 1) = 2;_& [r=(r, ') — H(t' — r/e)u(r,t)] (2.6.41d)
ges(z — €, t—7) = ;’kt;e"""“' , (2.6.41¢)
where . . ,

$nlrit) = o [lnr+ =B (;—m)] . (2.6.42)

Similarly, the fundamental solutions for unit step body forces and body sources can be
obtained using (2.6.25) and taking into consideration

LiFt [ 1 ] = ilnr

§2a2 2
1 1 t r2 r2
“lpe=-1]2 . - | -2

&eF [32 a? + i] T dx [E (4kt) Ex (m)] (2.6.43)

ciF-t 1_1 —l—H(t —rfe) [t cosh™ - 12 - r2fe2
l?’_ 02 + 82 2 )

Thus,
G- 6.0) = (2.6.44a)
e 0z;0z;

e ~e0= a5 (i) -0+ 5 [ (32) - (35)]
—H(t —r/c) [—:1 cosh-‘ — /12 = +2/¢? + cosh™ 1——-w,, rt)]} (2.6.44b)
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_ 1 r2 -1 E-'t_
Geplz — &, 1) = Srpacy [‘y,;(r,t) - §E1 (m) —H{t—r/c) (u,‘(r,t) —cosh ” )] (2.6.44¢)
1 r2
Goe(z —&,t) = B (m ; (2.6.44d)
where . ) )
r r
Qn(r,t) = Frys [211‘11’-}- E, (H) - F, (‘4‘;];)] B (2645)
The corresponding steady state response is
R ' a2¢u
s (DL ey i — — n
Gy (-8 = Gyj(z — §,00) 3z:0z; (2.6.46a)
oG _ o :
Gip(z =€) = Giplz — £, 00) = 5= (2.6.46b)
Gop(z — £) = Gop(z —€,00) =0 (2.6.46¢)
Ghalz — £) = Gonlz — €,00) = 5 lnr, (2.6.46d)
where |
®i(r) = ré(lnr—1). (2.6.47)

T 8x(A + 2u)

2.6.3.2 CONVECTIVE COMPRESSIBLE FLOW

Governing Equations
In operator notation, the governing equations for compressible thermoviscous flow

(2.6.10) are simply

Ligus + fa = 0, (2.6.48)
in which

ug = {ui, p, 0}7 (2.6.49a)

fa={fi @, 8}, (2.6.49b)

The subscript i varies from one to three for three-dimensional and one to two for two-
dimensional problems, respectively. Meanwhile, the linearized differential operator LY, is
defined by

- T U 134 U
Lij Ly L
U o _ U v u
Log= | Lp; Le  Lpo
WA A
[ D, 82 82 0 ]
—biipo— + (A ——— b ——— - 0
biipopy + A+ W g5z, ¥ 0 ores 3z
1 D? 8
= 0 _-_— g — 0
62 .th + 8:,’3.‘!;
DD Do 82
- 0 Dt —pocPa * kaz‘-az.- j
(2.6.50)
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The superscript U denotes that convective terms are involved in the differential operator.
The fundamental solutions in Laplace and Fourier transform domain were presented in
(2.6.24). Meanwhile the fundamental solutions for unit step body forces and sources can

be obtained from (2.6.25).
The steady state solutions in the Fourier transform domain are

() =3 +l 2% o2 ([;TZ)E&] (2.6.51a)
]

(GU") = ,\+2p[ 24 M]T‘;*’g‘%%} (2.6.518)

(Ge)" = ;, [ 24 (m,:u:;k]U[Z, fo ] (2.6.51¢)

(6w) = ;cl—a”l;_ah[_fh (2.6.51d)

Three-dimensional Flow
It is not difficult to get the convective fundamental solutions for instantaneous body
force and source from (2.6.32) by introducing a Galilean coordinate transform:

U (dil) 32¢q("u: t')
9; (g-&t-7)= ~dzdz; (2.6.52a)
18 20,

gf.;(z ~§,t— 1') o {47”_ [ f 2 {“‘“’.'t/ aﬂ(rupt ) H(tf - Tu/C) (1 —e * (¢ “/C))]}
(2.6.52b)
gop(z — &t —7) = - [a (ru,t) = H(t' —r /c)e‘iz(""vﬂ)] (2.6.52¢)

ép 1 4“_‘"'“ s\"u;y u .0.

U ) - 1 -r2 Jant’
900(”' E;t T) e SPOCP(N"t’)3/2e ) (2652d)
where

ré = (- Uit )(w — Ust'). (2.6.53)

The solutions for unit step body forces and sources can be obtained from (2.6.52) by
integrating over  or performing the inversion of Fourier and Laplace transform on (2.6.25).
By taking into consideration

1

ATy

1 Urin f2k [ ~Ur/2k r—Ut Ur/2k r4 Ut]
= erje—m==—+e¢ erfc
Brr ¢ f o /kt ! i
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1

a? (az+s———-+.ik Uk)

1 Ur—Uy; [ —(Ur—U r—Ut r-=-Ut ru
= 1 — e~ Ur—Usmn)/Zker g - er
SrUr{Ur-Ukyk f 2kt Ty s 2kt

Uir+ Uy. [1 —C(Ur+Ukyk)lchfCr -+ Ut _ r-+4 Uterf Ty
2vkt ru 2vkt

ot Tt
8

Ur 4+ Urtte
. 1
L—l -1 10 i
F s(s+iakUk) o+ s+iagplUs

k

1 U{T - Uy' [ —(U"—Uhyk)lzk r-Ut r=-Ut Ty ]
= 4 erjc - erjc

81rUr{ Ur — Ukt f 2vkt Ty f 2kt

U,-r+Uy¢ [(Ur‘+Ukyk)/k2 r+Ut f+Ut Tu ]
—_— e er - rfe
fevm ~ v P ovm

Ur 4+ Uy
1 1
L£oiF? -
s(s + taUx — %) a?y s + 1o Ug
k
1 t
= 4—1/0 ag(ry, 7)dr
1 1
C—l}'-—l
s(s + iokUx) (s+ iakUk)z
H(l1- M) Ury + U%t — Uy
T 4aU H{t —rofe)ln Uro + U2rofc— Ukyx
H(M - 1)
R H(Usyx = efr)x

Ury+ U% — Uiy Ury+ Ut — Uy ]

H(t - —H( -
x [ (t = o/ G o To— Unpn =i/ G o Jo— Ui

1 1
£—1 T"_]' ;
s(s + il — §) 0 (8 +ieli)’

t 2
_ [fHE —ru/)) Lireruso) dr.
0 4nry

(2.6.54)
one obtains
. 92l s

Uil _ ¢ #) = 7. -0 6.55

GU (t E! ) 3:1:an azJ (2 5 a)
1 Ur—-Uy | - r-Ut r-Ut ru

Ufr _ = s s (Ur-Usyx)/2n -

Giplz =4,1) SwpoUr{ Ur— Uy [e erfe 2/t Tu erch\/n'?
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U{r+ Uyt (Ur+Ukyk)/27J r + Ut 1‘+ Ut Tu
Tr+ Uen [e erfc N o erfc2\/ﬁ

1 8 Uru-}-U?t—Ukyk
- - H{(1 - -
4mp U Oz; { (1= M)H(t ~ ro/c)In Uro + Uryfc — Ury

+ H(M — 1)H(Uryx — cfr)x

Ury + U - Uk yr
g [H(’ ~ o G e = U

2 _
—H({t-ryfc)In Uru + U - Vs ]

Ur, +U21"1/C— Uyk

t 2
+ U/ [a,,(ru, T)— -'_—I-H(*r - ru/c)es'r_(""“/c)J dr} (2.6.55b)
0 u

v 1 _ ~ Ury + U — Upyy
Gap(z - ¢ ) = Akl H(1 - M)H(t ~ru/e)In Uro+U2rofc — Uy

+ H(M — 1)H(Upyx — cBr)x
2y _
{H(t —rof€¢)n Ury + U™ - Ui

2y _
—H(t - rife)ln -2 et U~ Uk ]

Ure + Ulryfe — Urys Uri+U2r /e — Un

t
+U / [a,,(r.,, ) — riH(r - ru/c)e‘ni(*-'ufc)] dr} (2.6.55¢)
a u
1 r—-Ut r+ Ut
Gl(z-¢,t) = Ukin /2w [eU'”"e ¢ + V" er g ] , 2.6.55d
6o( £1) 81'rlc1v'e rf 2kt rf 2wt ( )
where
ez -€,t)= - ! ./ticrf M _dr (2.6.56
" e 47p, Jo Ty 2\/7)(1—7) -6.56a)
1 Uir— Uy (Ur—U, r—Ut r-Ut r
. —&t) = 1 — e~ (Ur—Usys)/2n - u
Yinlz —&,1) 81rpoUr{Ur— Uryx [ ¢ erfe 2/t Ty erf?ﬁ
Uir+ Uy, r+ Ut r+4+Ut T,
— TR 1] e(Ur+lin)/2n _ u
Ur + Uy [ ¢ erfe 2Vt ru erch\/th
(2.6.56b)
- T 1 23242
Ukyk+\/(U£fk) + c23%r  M<1:
¢
ro= s (2.6.56¢)
Ukye — /(Uryx)? — c2B%r M1
cf3?
_ Uy + /(Ukgi)® = 26272
ro= o (5.564d)
ﬂ? =|1- MZ' (2.6.56¢)
U .
M= < is Mach Number . (2.6.56f)

The corresponding steady state solutions can be obtained from (2.6.51) by taking into
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consideration

- 1 1 1 Ur—- Ukyk
1S R
F Liag U a"’] 4xU In 2
F1 _..._—l = _.l_e(ka-Ur)ﬂk
2, teUk 477
a4+ ——
L k
— 1 1 1 Ur — Ukyk
1 —
F ioxUx o , toulUx |~ 42U = ( 2k )
a*"+—
k
[ 6.57
1 1 1 _ 1, (2.6.57)
. T, doalUx | 4nU "
| zakU _— t
1 1 1
F-1 = F
LiakUk 9 (iakUk)z 47U
o+
¢
1 1 1
F = —Qk
2 . 2 ’
ol & ot 4 Gkl | dme
| & o2
where
- Ukyx
sinh™! .
B/T — (Tewn)? M<t;
Flz-¢)= U (2.6.58a)
- Yk
9H (Usyhe — cBr) cosh ™! x . M>1.
B/U?r? — (Uryi)?
Pu(z €)= eUrvi/eM? /‘ Flz_e_(f,-g)m/k-unfzk dz (2.6.585)
Tk ] M < 1,
Qu(z—§) = (2.6.58¢)
2H(Ukye — )T, M > 1;
U A2 e—z/kM
Ti(z — £) = o/ / ——dr (2.6.58d)
N
U2r? — (Ukyr)?
R= \/z2+ —r (2.6.58¢)
_ Uk
= (2.6.58f)
Thus,
2pUs
Us(dil) oy _ UG _ 9,
GL (2 -6 =G (- §,00)= B2:03,; (2.6.59a)
1 8 Ur — Uy
Us —_ =Gy -—_ = ——— —_— ] - - .6.59b
Gl (z — €) = Gip(z — £, 00) prr [E; ( 7 ) P,+Qn F] (2.6.59b)
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Gog(z €)= Gz = £,%0) = = [P = Q] (2.6.59¢)

1
Ghg( = €) = Ggolz — £,00) = s——e(Crve=tni2x, (2.6.59d)
where
1 Ur=-U Ur -0,
Us kY kYK
= EF | — =" .
¢, pr— In o T H ( 2 )] (2.6.60)

Two-dimensional Flow
The convective fundamental solutions for an pulse body force and source can be ob-
tained from (2.6.41) by Galilean coordinate transform:

U(din) 82 ¢q(ry,t’)
9; (=& 1- )“—az.-azj (2.6.61a)

2 ’
Fa-ft-r)= -2 {%El ('_u) — g(rus ) = HE — rufc) [cosh-‘ i'—u —w,,(ru,t')] }

2np, Bz; 4nt’
(2.6.61b)
Goplz =t —7) = o k [7n(rwt )= H(t — rufeywn(ru,t)] (2.6.61c)
goa(z — &t —7) = eru/ant (2.6.61d)

4rkt’

where the functions 74, ws and ¢, were defined in (2.6.40) and (2.6.42), respectively.
The convective solutions for unit step body force and source can be obtained from
(2.6.61) by integrating over r. That is,

U(‘-’“)( £1) = 1 §ii — UiU; Ukyk/2n¢ (r,t)—( 6 ..U_ka¢1 Us ad"’ - U; 9¢r
dar(A+2p)\ 7 U? YU bz, Uodz; U bz
(2.6.62a)
t
Gilz - &)= f gz - €, 1) dr (2.6.62b)
0
t
Goplz — £,1) =_/0 g6p(z —€,7)dr (2.6.62¢)
Goolz —§,1) = #e”“y*”"wn(r,t) , (2.6.62d)
where
r — = _l_.h r _1_ Uy /20 _ l i
oplz —&,1) = 2mpll [lnru + 5€ Yn(r,t) 2E1 i
Ur Ut Ur
¥n(r,t) = Ko (5;7—) + K, (1 — 5) (2.6.63)
Ur Ut Ur
tﬁn(r,t) = Ko (K) -+ Ko (lnT, x)
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The steady state solutions can be obtained by taking into consideration that

1 1 Ur
-1 = | = —gUsmn/2k
d o+ ic Uy P K, (21:)
L k
1 1 1
—1 _
d iagly o, touli | ZwUPk"
o4 —=
L k
-1 iai 1 _ Ug’ U;yk/2k Ur l U U
T e 7 il | = w3k )~ gmew \V% T g Uk ) Po
o? 4 ——
| P
1 1 1
-1
d 2 5 toli 20 Ok
1o U — — + 3
-1 iai 1 _ U.i Uk!lkfth Ur U
d . 2 o, il | 7 22U [ 9%k + kquk"
iU — — o+ T J
1 U;
~ AnkU (U!h - T]_Ukyk) Qi
r T o222
——l-ln V(Uryx)? + 202 C M<1;
1 _{_ 2B cB
(ieeiUx) 1
L o2 -2——1;H(Ukyk —efr), M>1.
o 1 U; 1
F| = : LY N . —
tog U o4 (;akg'k)2 U2 ot (mkgk)z
i = —a
_HQA-M) Ui — B Ukyx -1 Uy

an
27U\ JU?r2 — (Uiye)? B/ U?r2 — (Uryi)?

-1 1 1 _ ke [ 1 ]
p) > 7| T 2 . GeUr)®
iUy — CI- a’ + ——(tak(jk) ‘ a? + gm_:?ri
[
H(1 - M)k 2 : - 3 u 3
+ (2102;3) eVsur/ kMg (eﬁ%’ Urrt =) gy (——-—k;;; + k;\i? U2 — (Ukyk)z))
io; 1
Ft s
. [ (iakUk)z
iog Uy — T + —a
-M)| U VAU )? U :
= %—U—— 3 Ve kM ?r?(eﬁ% U=V g ( 5? % U21‘2—(Ukyk)2))

Upi = BUs¥e v (o cs VT —Gmr g, (Ut | 8 g z)
t T O Sl B (77 + prVUr - Gw)?) ) |
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(2.6.64)

where ®(z) and 9(z) are the real part and imaginary part of z, respectively, and

UR
P, = /eu”/z"KO ( ok ) dr

1 UR
Pkl = /EeUm/ZkK1 ( 2]:) dr

Qo = eDur/EM? / (Ul 2k—c/kM) ¢ (T;f) i

_ UwnskM® [ 1 wszk—cirmy, (UR
Qxi=e /Re K, (2k dz

U — (Usge)?
= \/ Pt

(2.6.65)

_ Ukyr
U )

Thus,

. 1 U;U Ur
Us(dily, ¢ = RSt | Uik /27
GPe-0= gty (60 - S ) i (57)

(5,68 Uiden U; 9,
b U 3.‘:1‘ U 3Ij U 8;,-

(2.6.664a)

1 U; U
~Impokl [ 2Qflo + 5 (Uy, Ukyk) (P — qu)] Ung,‘(:: -§

+ H(1 _[JJW) {eukyk/’?Mzﬁ (e;"n%ﬂ/ U"’"(ka)zEl ( Ukyk U2r2 — Ukyk ))

Gz - ) =

2mp, nM? rrM z

Uy; — 53Ut an—1 Uryr
U?rZ — (Urys)? B/U?r? — (Ui )?

+ cUk-Uk/'?Mzg‘ (e M2V Uzrz_(u"y"):E ( Ukyk #‘Mﬁ-‘i U2r2 — (Ukyk)z)) ] }

oMz Y
(2.6.664)
. 1
GY1(s =€) = s Quo+ —— G = ©)
PoCp
H(Q - M) y,y./xm? 2 U O P Ueys , i 2,2 2
- 2 poteh [ Q[ ewnr E; _.th2+xM2 Uzr —(Ukyk)
(2.6.66¢)
1 Ur
5z =€) = Ui, (-2?) , (2.6.66d)
where . U
By _ £} = Uxyx /20 ur
$nlz—§) SmoU [Inr+e K, (2ﬂ)] . (5.67)

Since the algebraic form of these two-dimensional kernels is complicated it is best to
examine the behavior graphically. For this exercise, a forty-by-forty grid of sampling points
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was generated as shown in Figure 2.6.1. The source point is fixed at the origin, located as
the central point in the grid. The character of the kernel is displayed in Figures 2.6.2-2.6.7.
First, the component Gy, is plotted for various free stream velocities, expressed in terms
of Mach numbers, in Figure 2.6.2. (Note that Gy, is the velocity in the z;-direction at the
sampling point due to a unit point force in the z;-direction at the origin.) For very small U,
the solution of (2.6.66a) approaches the Stokes kernels as illustrated in Figure 2.6.2a. As the
magnitude of the free stream velocity increases (i.e., Figures 2.6.2b-d), a pronounced sense
of flow direction becomes evident with the nonzero response concentrated in a narrow band
behind the applied force. However, the response is always a near-hyperbolic behavior in a
quickly moving stream. This behavior is not only important from a physical standpoint,
but also can be beneficial in the development of an efficient boundary element algorithm.
On the other hand, the character of G,,, representing the pressure response due to a
unit source, is much different. At a zero Mach number, the pressure is radially symmetric
as seen in Figure 2.6.4a. Increasing the Mach number to 0.9 produces a transition to the,
by now, familiar convective form. However, at M = 1, the field suddenly becomes singular.
Figure 2.6.4c shows a distinctive Mach cone at M = 1.1. It should be noted that the
analytical kernels produce absolutely straight lines defining the cone. Unfortunately, the
graphics package is unable to accurately portray the discontinuity. As the Mach number
increases further, the included angle of the cone decreases. The response at M = 8 is
displayed in Figure 2.6.4d.
Figure 2.6.3 shows the coupling term Gy, which measures the pressure due to unit
point force in the z;-direction. This term also exhibits the shock-related Mach cone.
Finally, Figure 2.6.7 shows the heat transfer fundamental solution defined in (2.6.664d).
It should be emphasized that the so-called convective fundamental solution actually em-
bodies both the processes of conduction and convection. At low velocity, conduction
dominates producing a nearly radially symmetric response. On the other hand, in a high
speed medium, the response is concentrated in a very narrow band downstream of the
source. Thus, as illustrate in Figure 2.6.7, G54 captures the transition from elliptic toward
hyperbolic behavior.

2.6.4 BOUNDARY INTEGRAL REPRESENTATIONS

The desired integral representation can be derived directly from the differential equa-
tions of transient convective compressible thermoviscous flow.

The governing equations (2.6.48) multiplied by an arbitrary function g, and integrated
over time and space, must remain equal to zero. That is,

T
< Joy LYgup+ fa >= fo fv Foy(LYgup + fa)dV dt = 0, (2.6.68)

where the standard notation for the inner product of two functions has been introduced.
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Returning to the explicit forms of the differential operators, this becomes

T I 2 2
- Dyu; 8u.; 8%uy du -
iy [~ A L -=F+f
/a /V {9’7 Po D +( +‘u)3z,-6zj +‘u8.~:jazj a.":;' +f

[ 1p% . 8%

+9py [— i 2 Dtz + Bz.02; +fp] (2.6.69)
0 Dou 3 D, _

+gey | ~PoCp Dto +k3-‘r¢';ai t Dt:p +fe] }dth:O,

Next, the divergence theorem can be applied repeatedly to applicable terms in (2.6.69)
to transfer spatial as well as temporal derivatives from ug to §oy. Thus the first term of
(2.6.69) becomes

82u.- ou
//{”’*[ P"pr +(’\“L"‘)a a +”azjaz, 72t f]}dv‘“

n +u au,+_(2u__, L )
[ o ),

93 3Gy 8
- I:A 89.":'” ni+u (89;'7 + ag;n) n; + po ng.-,] u,} dS dt (2.6.70)
2 3 i

+/T/ {gi,ﬂ}dth—L{poﬁiyuilg} dv

T 25 2z ~
Dby ot 80y |, 4 [ :
+LL{ [P Di +(A+u )8 i82j+“82j825j u + 7, up $dV dt;

the second term is
T 2 2
. 1 Dju, 8%u 5
// {g [ ZD% oo +f,,] }det

dup, Un Dou, oy  Up Dogpry
/]{ [ _czl)t]&[é?n_c2 Dt | P dSdt

(2.6.71)
j/{gmfp}dth——/{ °"P|T Dogpy piT} 4V
Dt
j./ ogm+ 2 i dVdt;
oa 'a P ]
the third term is
T 2
G Doug 8%ug Doup =
[l Lo i 1)
_[/ { [ — potplUnug — 9'_‘2-4- Uﬂup} - [ aghn,-] ug} dV dt
on oz,
(2.6.72)

j j {6y fo} dV dt - j {pocpisruslT — GoyuplT} dV

o 8 D,
//{[ﬁop I)gth+kaz.£:99;-] ua—[ ;th]up}di/dt.
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Combining equations (2.6.70), (2.6.71) and (2.6.72), equation (2.6.69) becomes

fT/ - ABU.J - 8“5+8Uj L )
o Jv Giv 6:¢:jn' H dz; = Ox; Tt T UpTh

3 . 8~,' 8
_ [A-—g;:;ni +p (_g_"f. + g‘”) nj +PoUngw] U,

az,; dz; O
+3 9up _ Un Dotp] _ [8dpy _ Un Dofipy u
9 | an c2 Dt dn c2 Dt P

- 3“9 du 359-7
+ g6+ [kg—n— — pocplUnug — a—: + U,.,up] - [kﬁ ug p dSdt
T —_ P —
+ / /V {Finfi + Gorfo + oy fo} dV dt (2.6.73)
o
- 1 D,g 1. Dou - -
"/ {Pogwm!T ;5 Z)im uplg - c_ggP'Y Btplg' + Pocpgh“ﬂg‘ - gh“plg} av

Dodi 8%
//{[ og”’(“ )a f,f; +“ar-§;;-]“"
J 7 J

+ 39i-y _ _l_Dggp'r 5? gm _ Dogdoy u
8::; 62 th 3.’5,‘3.1:; P

099“/ 62‘9-9'7 dV dt
=0,
[ PoCp Dt 3:,‘32.' UB}

or
T
/D fs { [5irts = Fevms] + ot — Govip) + [Grto = Goyusl} dSat
T
+ [ [ e+ oSyt Gonso} ava
1 Doj 1. Deou i
/ {Pogry + = 'To)tﬂuplg - c_ggp'v Btp Ig' + Pccpg'ﬂ-yuﬁlg‘} av
- (2.6.73)
Dogivy gJ'y Giy )
// {[ T+ )a 2:02; +“az,-az,-]“‘
391'7 1 Dogm 82 Gpy _ Dogevy u
dz; ¢ Dt? 8zx;0r; Dt P
ogh 3 Goy _
[ 31:‘_3:'_ ug}dth_O.
where
o BUJ‘ . Bu,- Buj . .
t;= 3z, ni+u (3::_, + 92, nj — Upn; (2.6.74a)
_Ou, U, Doup
tp= 52 - 22 (2.6.74b)
to = k%ﬂ — pocpUnug — é‘;up + Unup (2.6.74¢c)
F 8§~ 8§iy | 845y
iy = A——T oUngs 2.6.74d
fiy Aaxjn.+p axj+8x, nj + polngiy ( )
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;oo 3§p'y Un Dogm'
fv= 5 T Ty (2.6.74¢)

- y0in
foy = k=22 (2.6.74f)

In order to complete the derivation of the integral equation for the perturbed velocity
and temperature at any point ¢, interior to S, at time 7 < T, the last volume integral in
(2.6.73) must be reduced to —u, (¢, 7). This is accomplished, if

< Lpafory up >= —u4(€, 7)), (2.6.75)
or after making use of the properties of the delta function
Laodory + 65:6(z — £)8(t —7) = 0, (2.6.76)

where the differential operator Lz, has the definition

1

[Ls Lip Lje
I:Bo = i’P" iPP f’F'e
L iﬂi flﬂp i‘OO
" Do 32 2 7
6'“'05 + (,\ + “)Bx.-é)::j + éjipazkazk 0 0
_ K2 1D & D,
8z; 2 D2 ' 8z;0z; Dt
D 8?
L 0 0 pCP-IT: + kaz,-az.- J

(2.6.77)

Formally, L.s is called the adjoint of the original compressible thermoviscous flow
operator LY, in (2.6.50), and ju, defined by (2.6.76) is the adjoint Green’s function. This
function §., can be obtained simply by transposing the fundamental solution ¢¥, presented
in the previous section. That is,

§°’T(z - E’t - T) = g'[yju(E -z, T t) (26‘780)
f-Q’Y(z_‘frt_r)=f-lyja(£—xir_t)' (2.6786)

Substituting (2.6.78) into (2.6.73) produces the desired integral equation,
Capltip = /S[ygp *1p— fap+upldS + /V [966 * fs) aV (2.6.79)

in which, for simplicity, the initial conditions have been assumed zero. The * in (2.6.79)
once again symbolizes a Riemann convolution integral.
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2.6.5 CONCLUDING REMARKS

In this section, new fundamental solutions were derived for compressible thermoviscous
convective and unconvective flows for both three-dimensional and two-dimensional; steady
and unsteady cases. The contour plots of Figures 2.6.2 through 2.6.7 suggest that this
latest effort has produced physically meaningful kernel functions.

Although the numerical implementation of the compressible formulation has not yet
been undertaken, some of the characteristics of the boundary element approach should
be noted: For high speed flows, the nonlinearities will once again be concentrated in a
thin layer near the surface and in the wake. Thus, all of the discussion concerning high
Re incompressible flow is valid here as well. Furthermore, with the compressibility comes
the hyperbolic phenomenon of shock. In a boundary element approach, the discontinuity
can be captured analytically through the fundamental solution. It is not necessary to use
a mesh to model the, generally unknown, location of the shock front. This is a distinct
advantage for boundary elements over the domain-based methods.
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Figure 2.6.1 Grid For Fundamental Solution Contour Plots
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Figure 2.6.2 Fundamental Solution G4
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Figure 2.6.3 Fundamental Solution Gy,
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Figure 2.6.4 Fundamental Solution G,
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Figure 2.6.5 Fundamental Solution G,,
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Figure 2.6.6 Fundamental Solution Gy,
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Figure 2.6.7
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2.7 || FLUID-STRUCTURE INTERACTION

2.7.1 INTRODUCTION

In the previous sections, boundary element formulations have been developed sepa-
rately for a thermoelastic structural component and for a thermoviscous fluid. However,
the ultimate goal of this ongoing grant is to develop a single computer program to deter-
mine the temperatures, deformation and stresses of a component exposed to a hot gas flow
path, without the need for experimentally determined ambient fluid temperatures and film
coefficients. While further work is still required for the fluid phase, sufficient progress has
been made to demonstrate the utility of the overall concept. Consequently, in this section,
problems of fluid-structure interaction will be examined.

2.7.2 FORMULATION

The Geometric Modeling Region (GMR) provides the vehicle for achieving interaction
between the solid and fluid. Recall that it is possible to employ fluid formulations in dif-
ferent GMRs. Now, some of the regions will use the thermoelastic solid boundary element
model, while others utilize one of the thermoviscous fluid formulations. Compatibility
must be enforced across all GMR interfaces, no matter which model is used for adjoin-
ing regions. A boundary element approach is ideal for these problems, since the integral
equations are written directly on the interfacial surfaces.

For demonstration purposes, consider the problem of flow past a blade as sketched in
Figure 2.7.1. The blade itself is labeled GMR1, and 1s modeled as a thermoelastic solid.
A boundary mesh is all that is required for this structure. Surrounding the blade is a
thin layer of cells. This is a nonlinear thermoviscous fluid region, named GMR2, in which
the complete Navier-Stokes equations are solved. GMR2 is enclosed by inner and outer
surfaces composed of boundary elements. The mesh utilized for the inner surface of GMR2
matches that employed for the blade in GMRI1. Finally, the outer region GMR3, which
extends to infinity, employs the convective Oseen kernels. The boundary element model
for GMR3 consists merely of the surface elements required to describe the interface to
GMR2. Since no cells are present, the nonlinear volume and surface integrals are ignored.
Thus, an approximation is introduced. However, as mentioned previously, outside of the
boundary layer and wake these nonlinear contributions are negligible. (Recall that each
region is the counterpart of a substructure or superelement commonly used in the finite
element technology, however GMR1 and GMR3 do not require any volume discretization.)

The interface between GMR2 and GMRS3 poses no particular problem. Total velocity
and temperature from both regions are equated at each interface node, while the tractions
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and flux must be equal in magnitude but of opposite direction. The latter conditions for
the compatibility of traction and flux are also true for the solid-Auid interface between
GMR1 and GMR2. Total temperature must, of course, be equal on this interface as well.
However, the solid integral formulations of Section 2.2 are written in terms of displacement,
while those for fluids use velocity. Consequently, a change in variable must be introduced
to ensure complete interface compatibility. For that purpose, consider the following matrix
form of the integral equation for a thermoviscous fluid:

Cij 0 T vi | G;_.,' 0 T t; _ Fis 0 T Vi + Rj 271
0 o] OS]0 Goo| \af L0 Fa) VoSt ReS (27.1)
The contributions from nonlinearities and past time steps are all contained in Ry, as are

any terms associated with the translation from perturbed velocity to total velocity w;.
Meanwhile, a similar expression written for a thermoelastic solid becomes

CI'J' 0 T u{}_ G,‘j 0 T t,'}__ F," 0 ]T{u,'}_*_ RJ' (272)
0 Cge é - Gaj Gap q ng Fee ] Ry |’ o
where u; is the total displacement. This must be rewritten in terms of total velocity v;,

where
_ 8u,-

—_ —a‘_T""
After invoking properties of the convolution integrals that are present in the original inte-
gral equation (2.2.2), the appropriate representation for the solid can be written

T : T T ;
6 ST AT AT B {E) o
0 cos 6 Gs; Gep q Fo; Fys 6 Ry
in which G,;,Gs; and Fy; are now modified kernel functions and £j is the corresponding
right-hand-side contribution. However, at this point, the fluid formulation (2.7.1) and the

solid formulation (2.7.4) are completely compatible, and are in an ideal form to solve quite
general interaction problems.

(2.7.3)

Uy

2.7.3 NUMERICAL IMPLEMENTATION

The boundary element code, BEST-FSI, was generalized so that any combination of
solid and fluid regions could be accommodated. Also, the modified thermoelastic kernels
of equation (2.7.4) were implemented. The entire BEST-FSI input is free format and
keyword driven. Output is provided on a region-by-region basis, and thus contains only
information pertinent to the region type. Displacements, temperatures, stresses and strains
are detailed for solid GMRs, while velocities, temperatures, stresses, pressures, strain rates
and vorticities are output for fluid regions. In all cases, a complete PATRAN interface is
available, so that any quantities can be plotted.
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3.0

APPLICATIONS

3.1

INTRODUCTION

Boundary element formulations were detailed in the previous section for the analysis

of thermoelastic solids and thermoviscous fluids. In this section, these new formulations
are applied to solve numerous example problems. The individual subsections correspond
to those presented in Section 2. (Thus, Section 2.4 and 3.4 both concern convective in-
compressible thermoviscous flow.)

It should be noted that all of these numerical applications were completed on a Sun

SPARC workstation. Results presented in Sections 3.2, 3.3, 3.4, and 3.7 were obtained
with BEST-FSL On the other hand, convective potential flow results provided in Section
3.5 were obtained by executing a separate single-region boundary element code. The
convective potential flow and compressible thermoviscous flow formulations are not yet

available in BEST-FSI.

BEST-FSI User Manual

March, 1992

Page 3.1



3.2 || THERMOELASTIC DEFORMATION

3.2.1 SUDDEN HEATING OF ALUMINUM BLOCK

As a first example, transient heating of an aluminum block is examined under plane
strain conditions. The block, shown in Figure 3.2.1, initially rests in thermodynamic
equilibrium at zero temperature. Then, suddenly, the face at ¥ = 1.0 in. is elevated
to 100°F, while the remaining three faces are insulated and restrained against normal
displacements. Thus, only axial deformation in the ¥ -direction is permitted. Naturally,
as the diffusive process progresses, temperature builds along with the lateral stresses Oz
and o... To complete the specification of the problem, the following standard set of material
properties are used to characterize the aluminum:

E = 10 x 10%psi, v =10.33,
a =13 x 10-6/°F,
k = 25inlb./sec.in®F,  pe. = 200in.lb./in3°F

"The two-dimensional boundary element idealization consists of the simple four element,
eight node model included in Figure 3.2.1. A time step of 0.4 sec. is selected, corresponding
to a non-dimensional time step of 0.5. Additionally, a finite element analysis of this same
problem was conducted using a modified thermal version of the computer code CRISP
(Gunn and Britto, 1984). The finite element model is also a two-dimensional plane strain
representation, however, sixteen linear strain quadrilaterals are placed along the diffusion
length. In the FE run, a time step of 0.2 sec. is employed.

Temperatures, displacements, and stresses are compared in Table 3.2.1. Notice that
the boundary element analysis, with only one element in the fiow direction, produces a
better time-temperature history than does a sixteen element FE analysis with a smaller
time step. Both methods exhibit greatest error during the initial stages of the process.
This is the result of the imposition of a sudden temperature change. Meanwhile, the
comparison of the overall axial displacement indicates agreement to within 3% for the
BE analysis and 5% for the FE run. A steady-state analysis via both methods produces
the exact answer to three digit accuracy. The last comparison, in the table, involves
lateral stresses at an integration point in the FE model. The boundary element results
are quite good throughout the range, however, the FE stresses exhibit considerable error,
particularly during the initial four seconds. Actually, these finite element stress variations
are not unexpected in light of the errors present in the temperature and displacement
response. Recall that in the standard finite element process, stresses are computed on
the basis of numerical differentiation of the displacements, whereas in boundary elements,
the stresses at interior points are obtained directly from a discretized version of an exact
integral equation. Consequently, the BE interior stress solution more nearly coincides with
the actual response.
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Time

(sec.)

0.8
1.6
2.4
3.2
4.0

4.8
5.6
6.4
7.2
8.0

88.6
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Table 3.2.1

Sudden Heating of Aluminum Block

Temperature (°F)

at Y =0
Exact FE BEM
47 3.4 3.8
22.0 198 20.7
383 364 37.7
51.5 50.0 51.5
61.9 60.7 622
70.1 69.1 T70.5
76.5 75.7 T76.9
81.5 80.9 819
85.5 84.9 85.8
88.2 88.8

Axial Displacement (u in.)

atY =10
Exact FE BEM

910 860 920
1290 1250 1320
1570 1540 1610
1780 1760 1840
1950 1930 2000
2090 2070 2130
2200 2180 2230
2280 2270 2310
2340 2330 2370
2400 2390 2410

March, 1992

Lateral Stress (ksi)

at ¥ =0.5312
Exact FE BEM
-56 -39 -54
91 -7.7  -9.2
-11.3 -10.3 -11.7
-13.1 -12.2 -13.5
-14.4 -13.8 -14.8
-15.5 -15.0 -15.9
-16.3 -15.9 -16.7
-17.0 -16.7 -17.3
-17.5 -17.2 -17.8
-17.9 -17.7 -18.1
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3.2.2 CIRCULAR DISK

Next, transient thermal stresses in a circular disc are investigated. The disc of radius
‘a’ initially rests at zero uniform temperature. The top and bottom surfaces are thermally
insulated, and all boundaries are completely free of mechanical constraint. Then, suddenly,
at time zero, the temperature of the entire outer edge (i.e., r = ¢) is elevated to unity and,
subsequently, maintained at that level.

The boundary element model of the disc with unit radius is shown in Figure 3.2.2. Only
four quadratic elements are employed, along with quarter symmetry. Ten interior points are
also included strictly to monitor response. In addition, the following non-dimensionalized
material properties are arbitrarily selected for the plane stress analysis:

E=1333  pc. =10
v =0.333 k=10
a=0.75

Results obtained under quasistatic conditions for a time step of 0.005 are compared, in
Figures 3.2.3, 3.2.4 and 3.2.5, to the analytical solution presented in Timoshenko and
Goodier (1970). Notice that temperatures, as well as radial and tangential stresses are
accurately determined via the boundary element analysis. In particular from Figure 3.2.5,
even the tangential stress on the outer edge 1s faithfully reproduced. An extremely fine
finite element mesh would be required to obtain a comparable level of accuracy, particularly,
for the surface stresses.
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Figure 3.2.2
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Figure 3.2.4
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3.3 || INCOMPRESSIBLE THERMOVISCOUS FLOW

3.3.1 CONVERGING CHANNEL

The two-dimensional incompressible flow through a converging channel also possesses
a well known analytical solution which is purely radial (Millsaps and Pohlhausen, 1953).
A comprehensive finite element study of this problem has been made by Gartling et al
(1977).

The boundary element model is shown in Figure 3.3.1. The mesh contains 96 cells
and is divided into two regions. The boundary conditions were modeled using an exact
specification of the boundary conditions appearing in the analytical solution (Fig. 3.3.1).
Viscosity is unity, and tractions and density are incremented to reach higher Reymnolds
numbers. The Reynolds number for this problem is defined as

R. = oR;Va(Ry)

5 (3.3.1)

where V;(R;) is the maximum velocity in the region, which is —24.0 for the problem solved
here.

Figure 3.3.2 illustrates the results for two Reynolds numbers, indicating good accuracy
along the entire width of the channel. Not only are the velocities accurate, but the pressures
and tractions are very accurate also.

It has been observed that finite element versions of this problem have several pecu-
liarities which prevent the analytical solution from being reproduced. First of all, since
velocities are often specified at the inlet and at the wall and centerline, ambiguous bound-
ary condition specification results. Also, typically a parabolic “fully developed” velocity
profile is usually specified at the inlet. However, the nonlinear solution has a flattened
velocity distribution across the width of the channel (see Fig. 3.3.2). Hence, the analyt-
ical solution cannot be reproduced exactly if the “fully developed” profile is specified at
the inlet. Also, the finite element modelers of this problem usually leave out the traction
distribution at the exit and specify zero tractions there. This also gives rise to non-radial
flow.

The reason for so much interest in the converging flow problem is that it is one of
the few problems possessing an analytical solution. However, by specifying a model which
does not correspond to this problem, as in the finite element case, one cannot accurately
compare results to the analytical solution. Any such comparisons are merely qualitative.
In this light, the boundary element model here has utilized an exact model of the boundary
condition and a meaningful comparison can be made.
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Figure 3.3.1 Converging Channel - Problem Definition
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3.3.2 TRANSIENT COUETTE FLOW

Consider as the first transient analysis the case of developing Couette flow between
two plates, parallel to the x-z plane, a distance h apart. Initially, both of the plates, as
well as the fluid, are at rest. Then, beginning at time ¢ = 0, the bottom plate is moved
continuously with velocity V in the x-direction. Due to the no-slip condition at the fluid-
plate interface, Couette flow begins to develop as the vorticity diffuses. Eventually, when
steady conditions prevail, the x-component of the velocity assumes a linear profile.

The following exact solution to this unsteady problem is provided by Schlicting (1955):

vz(y,t) =V {Z erfc[2nm +n] — Z erfe[2(n +1)m — r)]} (3.3.2a)
n=0 n=0
vy(y,t) =0 (3.3.2b)
where
_ - h__ (3.3.3a,b)
7= (aut/p) =l e
2 ' 2
erfe(z)=1—erf(z)=1- ;T/_z_/ e” " dy. (3.3.3c)

All of the nonlinear terms vanish, since both v, and 8v;/8z are zero.

The two-dimensional boundary element model, utilized for this problem, is displayed
in Figure 3.3.3. Four quadratic surface elements are employed, with one along each edge
of the domain. A number of sampling points are included strictly to monitor response.
Notice that the region of interest is arbitrarily truncated at the planes z = 0 and z = £.
All of the boundary conditions are also shown in Figure 3.3.3. For the presentation of
BEST-FSI results, all quantities are normalized. Thus,

Y = (3.3.4a)

T= (3.3.4b)

Tla ==

and the horizontal velocity is v./V. Figure 3.3.4 provides the velocity profiles at four
different times, using a time step AT = 0.025 and the convolution approach. There is some
error present at small times near the top plate, where the velocity is nearly zero. Results at
¥ = 0.5 versus time are shown in Figure 3.3.5 for several values of the time step. Obviously,
the correlation improves with a reduction in time step and AT = 0.025 provides accurate
velocities throughout the time history. However, even for a very large time step, the BEST-
FSI solution shows no signs of instability. Error, evident in the initial portion, diminishes
with time, and all values of AT produce the correct steady response. Further reduction of
AT beyond 0.025 yields little benefit. Instead, mesh refinement in the y-direction is needed,
primarily to capture the short time behavior. Figure 3.3.6 shows the BEST-FSI results
for a model with just two, equal length, elements along each vertical side. The correlation
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with the analytical solution is now excellent. The time step selected for the refined model
was based upon the general recommendation that

2 .
o % (3_3'5)

]
C

AT

where £, is the length of the smallest element.

The convolution approach, defined by equation (2.3.18), was used to obtain the results
presented in Figures 3.3.4-3.3.6. Alternatively, the recurring initial condition algorithm
can be invoked. In that case, complete volume discretization is required even for this
linear problem. For the model of Figure 3.3.4, a single volume cell connecting the eight
nodes is all that is required. The BEST-FSI results for different values of AT are shown
in Figure 3.3.7. The solutions are good for the two smaller time step magnitudes, however
there is a slight degradation in accuracy from the convolution results.

Interestingly, the solution in (3.3.2a) is identical to that for one-dimensional transient
heat conduction in an insulated rod with one end maintained at temperature V, while
the other remains at zero. However, in a corresponding boundary element analysis, the
numerical integrations defined in (2.3.15a) must be calculated much more precisely for
unsteady viscous flow than for heat conduction in order to obtain comparable levels of
accuracy.
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Figure 3.3.3

TRANSIENT COUETTE FLOW

Boundary Element Model

v

2" 0

v, = 0

t, =0

X

X

X X X X X

® Corner node
o t™idnada
X Sampling point

.759-

.58

.25

Figure 3.3.4

TRANSIENT COUETTE FLOW

Velocity Profile

Rnhalytical

BEST (aT=8.025)

BEST-FSI User Manual

.25

.58

.75

Horizontal Velocity

March, 1952

Page 3.13



Figure 3.3.5
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Figure 3.3.7
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3.3.3 FLOW BETWEEN ROTATING CYLINDERS

As the next example, the developing flow between rotating cylinders is analyzed. The
inner cylinder of radius r; is stationary, while the outer concentric cylinder with radius
ro is given a tangential velocity V, beginning abruptly at time zero. The steady solution
appears in Schlicting (1955). However, even for the transient case, the flow is purely
circumferential. Thus, the governing Navier-Stokes equations reduce to

2 a
} (a v 1dvg ve) _ 2% g (3.3.6a)

ar? " rdr 12 3t
op  vs _
—5t 2 =0 (3.3.66)

in polar coordinates (r,6,z). As discussed in Batchelor (1967), separation of variables can
be used to obtain the following solution (Honkala, 1992)

v (rt)=0 (3.3.7a)
ve(r, ) = cyr + f-r?- + i Do{1(Anm)Y1(Anrs) = Yi{Anr)J1(Anro) fe—rne (3.3.75)
n=1
where
= LT c2 = —cyr? (3.3.8a,b)

2 2
ro_rl'

1r2 z\an(A,,r,-)

Dn=7 J2(Anrs) = T2(Anro) MGaro)Fin + Ji(Anro) Fon} (3.3.8¢)
Fipn = —¢ [rng(z\nro) - T.?Jz(knr,')] + CQ[JO(AnrO) - Ja(An"z')] (3.3.8d)
Fop=1¢; [T3Y2(Anro) - T?Yz()tﬂri)] - CQ[YO(AnrO) = Yo(Anri)) (3.3.8¢)

and A, is the nth root of the equation
Jl(/\r.;)Yl(/\ro) - JI(ATO)YI(AT,‘) =0. (339)

Figure 3.3.8 depicts the boundary element model representing the region between the
two cylinders. A thirty degree segment is isolated, with cyclic symmetry boundary condi-
tions imposed along the edges 8 = 0° and 9 = 30°. The inner radius is unity, while an outer
radius of two is assumed. Unit values are also taken for the viscosity, density and V. The
model consists of six quadratic elements and two quadratic cells. The cells, of course, are
not needed for linear analysis utilizing the convolution approach.

Results of the BEST-FSI analysis are compared to the exact solution in F igure 3.3.9
for convolution and in Figure 3.3.10 for the recurring initial condition algorithm. In both
diagrams, results with and without the nonlinear convective terms are plotted. The re-
sults are quite good throughout the time history with the convolution approach, while
some noticeable error is present at early times for the recurring initial condition solutions.
The linear and nonlinear velocity profiles are nearly identical, as expected from the exact
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solution expressed in (3.3.7b). However, unlike the previous example, the nonlinear terms
do not simply vanish from the integral equation written in cartesian form. Instead, the
nonlinear surface and volume integrals must combine in the proper manner to produce
the correct solution. Consequently, this problem provides a good test for the entire BEM
formulation.

Relative run times are shown in Table 3.3.1 for the different analysis types. Obviously,
the nonlinear convolution approach is very expensive, since this involves volume integration
at each time step. As a result, in the general implementation, convolution is only utilized

in linear GMRs.

Table 3.3.1 - Flow Between Rotating Cylinders
(Run Time Comparisons)

Analysis Type Time Marching Algorithm Relative CPU Time

Linear Convolution 1.0
Nonlinear Convolution 25.8
Linear Recurring Initial Condition 1.5
Nonlinear Recurring Initial Condition 1.8
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3.34 DRIVEN CAVITY FLOW

The two-dimensional driven cavity has become the standard test problem for incom-
pressible computational fluid dynamics codes. In a way, this is unfortunate because of the
ambiguities in the specification of the boundary conditions. However, numerous results
are available for comparison purposes.

The incompressible fluid of uniform viscosity is confined within a unit square region.
The fluid velocities on the left, right and bottom sides are fixed at zero, while a uniform
nonzero velocity is specified in the x-direction along the top edge. Thus, in the top corners,
the x-velocity is not clearly defined. To alleviate this difficulty in the present analysis, the
magnitude of this velocity component is tapered to zero at the corners.

Results are presented for the four region, 324 cell boundary element model shown in
Figure 3.3.11. Notice that a higher level of refinement is used near the edges. Spatial
plots of the resulting velocity vectors are displayed in Figures 3.3.12a and b for Reynolds
numbers (Re) of 400 and 1000, respectively. Notice that, in particular, the shift of the vortical
center follows that described by Burggraf (1966) in his classic paper. A more quantitative
examination of the results can be found in Figure 3.3.13 where the horizontal velocities
on the vertical centerline obtained from the present BEST-FSI analysis are compared to
those of Ghia et al (1982). It is assumed that the latter solutions are quite accurate since
the authors employed a 129 by 129 finite difference grid. As is apparent, from the figure,
all of the solutions are in excellent agreement. Finally, it should be noted that the simple
iterative algorithm fails to converge much beyond Re = 100. Beyond that range the use of
a Newton-Raphson type algorithm is imperative.

In this driven cavity problem, complete volume discretization is required, since the
nonlinear convective terms are nonzero throughout the entire domain. As a result, the
evaluation of the volume integrals appearing in (2.3.6) is computationally expensive due
to the singular nature of the kernels. Consequently, it is important to investigate the
relative merits of a boundary element approach. To aid in this study, a finite element
formulation was developed based primarily on the work of Gartling et al (1977). This
finite element implementation (Honkala, 1992) utilizes a penalty function approach for
incompressibility, along with a Newton-Raphson solution algorithm. An identical sixty-
four lagrangian cell model was selected for both the boundary element and finite element
analysis. Results are plotted in Figure 3.3.14 for Re = 100. The boundary element results,
though more expensive, are significantly more accurate. In fact, at this level of refinement,
the finite element results show some oscillation. Clearly, for a given mesh, the boundary
integral formulation captures more of the physics.
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3.3.5 TRANSIENT DRIVEN CAVITY FLOW

The next example involves the initiation of flow in the same square cavity. An in-
compressible fluid of uniform density and viscosity is at rest within a unit square region.
The velocities of the vertical sides and the bottom are fixed at zero throughout time. At
time zero, the horizontal velocity of the top edge is suddenly raised to a value of 1000
and maintained at that level. A gradual transition of velocities is introduced near the top
corners to provide continuity.

The four region, 324 cell model shown in Figure 3.3.15 is employed for the boundary
element analysis. The resulting velocity vector plots at several times are shown in Figure
3.3.16 for this case having a Reynolds number of 1000. The recurring condition algorithm
was used. As in the previous two time-dependent examples, the results lead directly to
the steady solution after a sufficient number of time steps. This steady solution correlates
closely with the results of Ghia et al (1982).

It should be noted that Tosaka and Kakuda (1987) have run the transient driven cavity
at Re = 10,000. However, their results show signs of instability even at relatively small times,
and are compared to the steady solution of Ghia et al which also is not correct at this
much higher Reynolds number. A valid solution in this Re range would necessitate the use
of an extremely refined mesh, far beyond that employed by Tosaka and Kakuda or Ghia
et al.
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3.4 || CONVECTIVE INCOMPRESSIBLE

THERMOVISCOUS FLOW

3.4.1 BURGERS FLOW

The classic uniaxial linear Burgers problem provides an excellent test of the convective
thermoviscous formulations. The incompressible fluid flows in the z-direction with uniform
velocity U. Meanwhile, the y-component of the velocity and temperature are specified as
U, and T,, respectively, at inlet. Both are zero at the outlet. The length of the flow field
is L. The analytical solution (Schlicting, 1955) is

Vy =¢U,
T =(T,
where
(= {1 —~ exp [RL (% - 1)]}/{1 ~ezp[-R.]}
with Ry = UL.

The boundary element model employs eighteen quadratic surface elements encompass-
ing the rectangular domain. The elements are graded, providing a very fine discretization
near the exit, where V, and T vary substantially for large R;. Results are shown in Figure
3.4.1 for the thermal problem and in Figure 3.4.2 for the viscous problem. Excellent cor-
relation with the analytical solution is obtained in both instances for this boundary-only
analysis, even for the highly convective case of R, = 1000. The portion of the flow field
just ahead of the outlet is examined more closely in Figure 3.4.3. The convective Oseen
solution obviously produces a precise solution. This problem can also be solved by utilizing
the Stokes kernels and volume cells. As seen in Figure 3.4.3, this latter approach is not
quite as accurate. It should be noted that traditionally finite difference and finite element
methods have a difficult time dealing with the convective terms present in this problem.
Generally, ad hoc upwinding techniques must be introduced to produce stable, accurate
solutions. On the other hand, with the convective boundary element approach the kernel
functions contain an analytical form of upwinding. As a result, very precise BEM results
can be obtained.

BEST-FSI User Manual March, 1992 Page 3.28



Figure 3.4.1
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Figure 3.4.3

VISCOUS BURGERS PROBLEM
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3.4.2 FLOW OVER A CYLINDER

As the next convective fluids example, the oft-studied case of incompressible flow over
a circular cylinder is considered. Initially for this problem, both the steady convective
and non-convective formulations are utilized in the same analysis. The boundary element
model is displayed in Figure 3.4.4. Note that half-symmetry is imposed. In the inner
region, the Stokes kernels are employed along with a complete volume discretization. Thus,
the complete Navier-Stokes equations are represented. The outer region uses the Oseen
kernels with a boundary-only formulation. The small non-linear contributions that would
be present in the outer region away from the cylinder are ignored. For those more familiar
with finite elements, each region can be thought of as a substructure or superelement.
However, the outer region does not require a volume mesh.

The steady-state velocity vector plot at Re = 40 1s shown in Figure 3.4.5. The re-
circulating zone, behind the cylinder, is clearly visible. Additionally, the resulting drag
coefficient (Cp) of 1.8 obtained from the BE analysis is within the band of experimental
scatter as presented by Panton (1984) for the circular cylinder.

Similarly, a transient analysis can be conducted. Now a full mesh as shown in Figure
3.4.6 is employed. The inner region uses a time-dependent nonlinear Stokes formulation,
while linear Oseen kernels provide the basis for the outer infinite region. Results are shown
in Figure 3.4.7a for Re = 100 at a time for which the flow is nearly fully developed. Mean-
while, Figure 3.4.7b present the solution at the same time, but with a different angle of
attack for the oncoming fluid. The results are virtually identical. This illustrates the
relative insensitivity of boundary element solutions to the cell discretization pattern. The
reason for this behavior, which is particularly important in modeling hyperbolic phenom-
ena, is that so much of the boundary element formulation is analytical. Another item
to note from these results is the completely symmetric flow patterns that were obtained.
Asymmetry would have to be induced by perturbing either the geometry, the free stream
velocity or the boundary conditions.

While all of this is encouraging, the development of a simplified procedure involving
far less volume discretization is desirable. For example, a completely linear Oseen analysis,
which ignores all nonlinear convective terms in both regions, produces a very similar solu-
tion, except in the vicinity of the cylinder. Vector plots from the nonlinear analysis and
the boundary-only linear Oseen analysis are superimposed in Figure 3.4.8. Although it is
difficult to distinguish between the two analyses in that plot, both produce a recirculatory
zone behind the cylinder. Thus, the main features of the problem are captured by the
boundary-only analysis. However, the linear solution, in general, overstates the velocities
and velocity gradients in the neighborhood of the cylinder. Consequently, a drag coefficient
of 3.4 is calculated, which is much higher than that found experimentally. This trend, of
overpredicting the experimental drag, continues even to much higher Reynolds numbers
as shown in Figure 3.4.9. Qualitatively, however, the behavior of the BEM Oseen solution
is consistent with the experimental curve for Reynolds Numbers up to 100,000.

A much improved solution can be obtained by introducing a row of cells encompassing
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the cylinder. The full nonlinear Navier-Stokes equations are solved within this inner region
which includes an inner and outer ring of surface elements. Exterior to the outer ring is a
linear Oseen region. This exterior region consists simply of one matching ring of surface
elements. Its volume extends outward to infinity, where the velocity reaches its free stream
value. Figure 3.4.10 illustrates a typical mesh, along with the resulting velocity vectors.
As Reynolds number is increased, the significant nonlinear effects concentrate nearer to the
cylinder, so that the thickness of the inner region may be reduced. Figure 3.4.9 also displays
the drag obtained by utilizing just a single row of cells. Results are quite encouraging.
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Figure 3.4.4
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Figure 3.4.5

FLOW OVER A CYLIWDER
VELOCITY VECTORS AT Re = 40
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FLOW OVER A CYLINDER - FULL MESH

Figure 3.4.6
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Figure 3.4.7a FULL CYLINDER (ANGLE OF ATTACK = 0°)

Figure 3.4.7b FULL CYLINDER (ANGLE OF ATTACK = 10°)
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Figure 3.4.10
FLON OVER A CYLINDER
NONLIREAR SOLUTION WITE A SINGLE ROW OF CELLS
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3.4.3 FLOW PAST AIRFOILS

For illustrative purposes, a boundary-only thermoviscous analysis was conducted for
convective flow around a pair of NACA-0018 airfoils. The boundary element model of the
blades is shown in Figure 3.4.11. A hot fluid at unit temperature flows from left to right
with a unit magnitude of the free stream velocity. Meanwhile, the airfoils are assumed to
be stationary with their outer surface maintained at zero temperature.

It should be emphasized that this problem was run as a boundary-only analysis, how-
ever, a number of sampling points were included in the fluid surrounding the airfoils in
order to graphically portray the response. First the thermal solution is examined. Figure
3.4.12a depicts the temperature distribution in the fluid at a Peclet (Pe) number of ten,
where Pe = UL/x, with fluid velocity U, thermal diffusivity « and airfoil chord length L.
Meanwhile, Figures 3.4.12b-d show the response at progressively higher Peclet number. At
Pe = 10000, quartic surface elements were required in order to obtain an accurate solution.
The strong convective character is quite noticeable at larger Pe as the effect of the cold
airfoils is swept downstream. Also, in Figures 3.4.12c and d there is virtually no interaction
between the airfoils. This type of behavior is expected from a physical standpoint. It oc-
curs in the analysis because of the banded nature of the convective fundamental solutions
illustrated previously (e.g., Figure 2.4.2). However, interaction will take place if the angle
of attack is altered. Figure 3.4.12e shows the response at a 30° angle for Pe = 1000.

The velocity distribution around the airfoils follows a similar pattern. For these results
displayed in Figure 3.4.13, Reynolds number is defined by Re = pUL/u. In these plots, the
magnitude of the velocity, obtained from a boundary-only solution, is contoured. These
results feature somewhat more interaction particularly upstream of the airfoils. It should
be emphasized that even though a linearized solution algorithm is employed the so-called
phenomenon of boundary layer separation can still occur. Figure 3.4.14 focuses on the
rear portion of the upper blade. The contour line demarks the transition from positive to
negative streamwise velocity, and thus very nearly identifies the point of separation.

Next, a second row of blades is added. The modeling effort for this extension is quite
trivial, since there is actually no discretization required beyond that needed to describe
the airfoil surfaces. For this problem, four vertical sections of one hundred sampling points
were included for display purposes. Velocity vectors across those sections are plotted in
Figures 3.4.15 and 3.4.16 for Reynolds numbers of 10000 and 100000, respectively. The
vertical spacing between the airfoils increases as one examines a through ¢ in these
two diagrams. The velocity profiles are noticeably affected by that spacing. However, in
all of the plots significant velocity gradients are present. It is interesting to consider the
level of refinement that would be necessary in a domain based finite difference or finite
element analysis in order to capture similar gradients.
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Figure 3.4.12a
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Figure 3.4.12¢
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Figure 3.4.12¢
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Figure 3.4.13a
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Figure 3.4.13¢
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Figure 3.4.13e
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ANGLE = 0)

Figure 3.4.15a
VELOCITY PROFILES

NACA-Q018 AIRFOILS (RE = 10000
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Figure 3.4.15b
VELOCITY PROFILES

NACA-0018 AIRFOILS (RE = 10000; ANGLE = 0)
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Figure 3.4.16b
VELOCITY PROFILES
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3.5 || CONVECTIVE POTENTIAL FLOW

3.5.1 ONE-DIMENSIONAL WAVE PROPAGATION

The uniaxial linear acoustic wave problem provides an excellent test of the convective
compressible potential flow formulations. The variables ¢ and 22 are specified as ¢, and
—u,, respectively, at the inlet. Both are undefined at the outlet. The length of the flow
field is L. The analytical solution is then simply

¢ = ¢o + uor (3.5.1(1)
dp

The boundary element model utilized here employs six quadratic elements encompassing
rectangular domain. Results are shown in Figure 3.5.1. As can be seen, excellent correla-
tion with the analytical solution is obtained for this initial problem.
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Figure 3.5.1 One-dimensional Wave Propagation
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3.5.2 FLOW OVER A WEDGE

Consider some examples of flow produced by a two-dimensional wedge (half angle
8 = 15°) moving at a Mach number of Me =0.1,2.0. The wedge and the associated flow are
shown in Figure 3.5.2, while the BEM model with half symmetry is displayed in Figure
3.5.3. At a large distance from the wedge, the unperturbed flow will generally be assumed
to be uniform and directed along the z;-axis, i.e.

v, = U or t; =0 (3.5.24)
¢’ =0. (3.5.28)

On the other hand the velocity components normal to the surface of wedge are equal to

Zero, 1.€.
vy, =0 or u, = —-Uyn. (3.5.3)

with the tangential component at the wedge left unspecified.

For the subsonic case (M = 0.1), the maximum velocity occurs at the outlet where
the smallest cross section exists as shown in Figures 3.5.4 and 3.5.5. For the supersonic
case (Mo = 2.0), the flow is conical. This means that flow properties along rays from
vertex of the wedge are constant. The boundary conditions are the surface tangency
requirement at the wedge surface and freestream conditions outside the shock wave, With
the marching procedure, the wedge-flow problem can be solved without difficulty. The
application of boundary conditions however requires careful consideration. There must
be enough space included in the computational domain so that the shock wave can form
naturally and not be affected by the boundary conditions which are maintained at ymac-
The result is shown in Figure 3.5.6 to 3.5.10. The “shock front” is inclined at the Mach
angle a = sin”'(1/Ms) to the z axis. It is interesting to note that the velocity of flow behind
the “shock front” decreases. The air suddenly slows down and compresses. The velocity
gradient is perpendicular to the shock line, i.e., is at angle & to the y axis (Figure 3.5.11).
Excellent correlation with the analytical solution is obtained for this linear problem. Figure
3.5.9 shows the discontinuity of the pressure waves. The pressure coefficient C, is calculated
on the basis of the ‘exact isentropic’ relation between the pressure and the external surface
speed. It should be noted that u; here is assumed to be much smaller than U; otherwise
the small perturbation approximation would not be sufficient to compute the motion. One
difficulty which immediately arises is that the Mach angle for the air in the region behind
“shock front” is appreciably different from the Mach angle for air in the region in front
of shock line whenever the speed v differs appreciably in the two regions. The question
then arises: What should be the angle between the z axis and the Mach line dividing two
regions? Should it be the angle o = sin~!(1/Mo.) appropriate for the front region or the
angle appropriate for the air in the back region (which is greater than a)? Detailed study
of an exact solution indicates that the angle between the z axis and the actual “shock
front” is intermediate between the two discussed in the previous sentence and that the
air as it flows across this front undergoes a practically instantaneous change of state to a
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new speed, density, and pressure appropriate to the back region. This explains why in the
linearized solution, the front angle is less than those from finite element nonlinear solutions
(Zienkiewicz and Taylor, 1991; Brueckner and Heinrich, 1991). So, in problems involving
perturbations which are not small, for more exact representation, the volume integral for
non-linear terms should be taken into consideration.
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Figure 3.5.4

Subsonic Wedge Flow - Velocity Vectors

Figure 3.5.5

Subsonic Wedge Flow - Mach Contours
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Figure 3.5.6

Wedge Flow - Potential Contours

Moo = 2.0

Figure 3.5.7

Wedge flow - Potential Distribution
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Figure 3.5.8 Supersonic Wedge Flow - Mach Contours
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Figure 3.5.10  Supersonic Wedge flow - Velocity Vectors

—
-
8
|
(%
(=}

H
H
l
1
|

—_— '——______——'_"—. _— —_____——""_.——_ — _-___.__'—’__ — h—._____-—‘—"—/
—_ — T P e . >
e = e e e T o T

O e B e S
— —_— ——- -______-—-—__ — —— ---_.___—'__ - — -___-_-—-—— / A -
[ ._‘____—-—“—_ —_— ___-—‘—"—— _ ____——-—-_‘— -, // //:/’-//
e L — e T T e /_.r—// R

— e _— s — gt

— e —_ o —_ — -
— R —_— I — —— . e —
e e T e /// P

S— - ___"__-— ——— - ___-'—-_ D — - - -
— - — L — //—‘/ - -
__-——-'_-_- _— ___.——-—‘-__ —_— —— /// -

— T e T - -"// . -
-_ e — T — e - —

— — — —_ s -

— —_ = —_— /__,,,_/ - I
e - -

— — — -
et — —_— - -

— e~ -
—_ = -:._////—' -
—_— T e
— L -~

|
|

\
\

d

cosa sinasinf
M= Mogpy—— = —7.
> cos(a + 8)' “ cos{ar + 0)

Figure 3.5.11  Supersonic Wedge Flow - Vector Diagram

BEST-FSI User Manual March, 1992 Page 3.63



3.5.3 FLOW THROUGH A CHANNEL

In the next example, the supersonic flow in a channel with compression and expansion
ramps is solved. The mesh and boundary condition for the case M, = 1.3 are given in
Figure 3.5.12. It can be seen that for the subsonic case at M., = 0.1, the maximum velocity
is located at the narrowest section as shown in Figures 3.5.13 and 3.5.14.

Steady-state potential and local Mach number contours for the supersonic case ob-
tained using a marching procedure are shown in Figures 3.5.15 and 3.5.186, respectively.
All clearly show the generation of an cblique shock wave at the compression ramp, its
reflection off the top wall of the channel and its interaction with the expansion shock pro-
duced by the downstream ramp. The velocity vectors calculated in this region of flow are
shown in Figure 3.5.17 and further illustrate the effects described above.

Finally, in Figure 3.5.18 and 3.5.19, the potential and pressure coefficient distribution
along both upper and lower surface are displayed. Similarly to the wedge fiow problem,
excellent results have been obtained for the linearized case.
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Figure 3.5.13

Subsonic Channel Flow - Velocity Vectors
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Figure 3.5.15

Channel Flow - Potential Contours
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Figure 3.5.16

Supersonic Channel Flow - Mach Contours
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Figure 3.5.17  Supersonic Channel Flow - Velocity Vectors
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Potential

Figure 3.5.18  Channel Flow - Potential Distribution
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3.5.4 FLOW AROUND A CYLINDER

Attention is next confined to the case of steady state flow around a circular cylinder,
in a frame of reference fixed with the cylinder. For transonic flows (the Mach number M
is very close to unity), the linearized equation of perturbation potential is not applicable.
Neither is the above BEM because the transonic flow is a truly nonlinear problem, and
the P-G equation is not valid. For the subsonic case, the flow lines are similar to those of
heat transfer. For the supersonic case (M,,=3), the mesh needs to be refined behind the
cylinder in order to capture the shock. The shock front, shown in Figures 3.5.20 and 3.5.21,
emanates from the cylinder. In front of the shock wave, the flow is uniform: behind it, the
flow is modified. The surface of the shock wave extends to infinity, and at a great distance
from the cylinder, the shock is weak. It intersects the incident steamlines at an angle
approaching the Mach angle. The velocity shock is a band which includes compression
and expansion regions as shown in Figure 3.5.21.

BEST-FSI User Manual March, 1992 Page 3.70



Figure 3.5.20  Supersonic Cylinder Flow - Potential Contours
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Figure 3.5.21  Supersonic Cylinder Flow - Mach Contours
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3.6 || COMPRESSIBLE THERMOVISCOUS FLOW

The compressible thermoviscous flow formulations detailed in Section 2.4 have not as
yet been implemented in a boundary element code. Application examples will be included
in future releases of this manual.
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3.7 || FLUID-STRUCTURE INTERACTION

3.7.1 STEADY RESPONSE OF A THICK CYLINDER

For the first example, a thick-walled stainless steel cylinder rests under plane strain
conditions in a stream of hot gas. The cylinder has an outer diameter of 1.0 in. and a
thickness of 0.125 in. The inner surface of the cylinder is maintained at a temperature of
0°F, while the gas temperature in the free stream is 1000°F. The following thermoelastic
properties are assumed for the solid cylinder

E = 29. x 10%psi, v =030

o= 9.6 x 107%n./in.°F

k = 6.48 in.lb./sec.in.°F

p=1734x 10~4b.sec.?fin.* c. =383 x 105in.1b.in./lb.sec.2°F.

Additionally, the thermoviscous properties of the hot gas are taken as

u =5.30x 10~51b.sec/in.?
& =7.28 x 10~3in.Ib./sec.in.’F
p = 3.69 x 10~8Ib.sec.?/in.* cp = 9.49 x 10%n.1b.in./1b.sec.*°F.

Fluid velocities of 144 in. /sec., 1440 in. /sec. and 14400 in./sec., corresponding to Reynolds
Numbers of 103,10 and 10°, are examined. In all cases, the hot gas flows from left to right,
and only the steady response is considered.

At Re = 1000, the maximum temperature in the cylinder is only 98°F, and the peak
compressive axial stress is 36 ksi. However, when the fluid velocity is increased to attain
an Re = 10,000 a much more significant response is obtained. The temperature contours
are shown in Figure 3.7.1a, the deformed shape is depicted in Figure 3.7.1b, and Figure
3.7.1c illustrates the axial stress distribution. It should be noted that in Figure 3.7.1b the
deformation has been scaled by a factor of 100. The effects of convection are quite evident
in all three diagrams. With Reynolds number increased to 100,000 these effects become
even more pronounced, as seen in Figures 3.7.2. Now the peak metal temperature has

reached 918°F.
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Fjgure 3.7.1 STEADY RESPONSE OF A THICK CYLINDER (Re = 10,000)
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Figure 3.7.1 STEADY RESPONSE OF A THICK CYLINDER (Re = 1G,000)
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Figure 3.7.2  STEADY RISPOWNSE OF A THICK CYLINDER (Re =100,000)
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Figure 3.7.2 STEADY RESPONSE OF A THICK CYLINDER (Re = 100,000}
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3.7.2 AIRFOIL EXPOSED TO HOT GAS FLOWPATH

In this second example, an NACA0018 airfoil with an internal cooling passage is ex-
posed to the flow of a hot gas. The boundary element model for the airfoil is shown in
Figure 3.7.3. Each dash represents an individual quadratic surface element. Throughout
this problem, the outer gaseous region is modeled as a linear steady convective domain.
Thus, a boundary-only exterior GMR is employed for the fluid. The hot gas at 1000°F
flows from left to right, while the inner surface of the airfoil is maintained at 200°F. Ma-
terial properties from the previous example are once again used to characterize both the
solid and fluid.

For the first set of investigations, the behavior of the airfoil is determined under steady-
state conditions. Figure 3.7.4a displays the deformed shape at a Reynolds number of 1000
(based upon chord length). The solid line represents the final deformed shape, except that
displacements have been scaled by a factor of twenty-five. Meanwhile, Figures 3.7.4b and
c present the profiles of temperature and axial stress, respectively, along the upper surface
of the airfoil. At this relatively slow speed flow, the airfoil is only effected near its leading
edge. More significant response is shown in Figures 3.7.5a-c for Re = 10,000 and Figures
3.7.6a-c for Re = 100,000. In the latter case, the temperature at the stagnation point is
nearly that of the free stream. All three cases considered so far have assumed an angle of
attack of 0° with respect to the x-axis. Consequently, the response of the upper and lower
surfaces is identical. Next, the angle of attack (@) is modified to 5° and 10°. Results for
these cases are shown in Figures 3.7.7 and 3.7.8, respectively. Considerable asymmetry
between upper and lower surfaces is now evident, although peak values of temperature and
stress are essentially unaffected.

Thermal barrier coatings are often employed to reduce the metal temperatures and
stresses in hot section components. The benefit of such coatings can easily be evaluated
with the present boundary element formulation. Consider, for example, a coating material
with thermal conductivity & = 0.50 in.Ib. /sec.in.°F sprayed to a thickness of .0095in. This is
equivalent to an interfacial thermal resistance of .021 sec.in°F/in.1lb., which can be specified
on the fluid-to-solid GMR interface. Results are displayed in Figure 3.7.9 for Re = 100,000
at a = 10°. Peak airfoil temperature is reduced from 976°F to 738°F by introducing this
particular thermal barrier coating.

Finally, it is of considerable interest to examine the transient response of the airfoil.
At time zero, the airfoil is in thermal equilibrium at a temperature of 200°F. Suddenly,
it is subjected to the hot gas stream with Re = 100,000 and o = 10°. The response of the
upper surface at 1 msec., 2msec., 5 msec., and 10 msec. is shown in Figures 3.7.10-3.7.13.
For this transient case, the peak stress occurs slightly offset from the tip of the airfoil.
Additionally, the stress s, reaches a maximum at approximately 2 msec., while ¢,, and
the temperature continue to climb to their steady-state values. This is true of the axial
stress only because of the assumption of plane strain. In a full three-dimensional analysis,
.. would also have a higher peak during transient state.
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Figure 3.7.4
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Figure 3.7.5 AIRFOIL (STEADY; Re = 10,000; o
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Figure 3.7.6  AIRFOIL (STEADY; Re = 100,000; « = 0°)
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Figure 3.7.7b-e - AIRFOIL (STEADY; Re= 100,000; a = 5°)
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Figure 3.7.8b-e - AIRFOIL {STEADY: Re = 100,000; o = 10°)
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4.0

GUIDE TO USING BEST-FSI

Since BEST-FSI employs the boundary element method rather than the more familiar

finite difference or finite element methods, it may appear to be a little difficult for a
beginner to get started. This section is therefore written to provide some guidance to such
a user. It is hoped to expand this section of the manual fully with wider user participation.

BEST-FSI User Manual March, 1992
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4.1 || GETTING STARTED

Generally the first time user is motivated by a specific problem in a given technical
area. It is suggested that the new user first read the analysis section of the manual to get
some flavor of the BEM in that area. Then the structure and organization of the input
data in Section 5 can be examined in conjuction with a sample problem dataset given in
Section 6. Additionally Section 3 may contain a brief description of a specific engineering
example in the technical area of interest to the user.

It may also be helpful to use a specific test data given in Section 6 and modify it to
create a new test problem. In order to do this the user must of course study the relevant
parts of Section 5.
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4.2 || GRAPHICS INTERFACE

BEST-FSI uses PATRANTM as its graphics interface. A graphics interface is essential to
generate data for a realistic practical example and the subsequent processing of the results.
PATRAN is a general purpose graphics input and output system which allows a user to
interactively prepare input data for the surface and volume discretizations. It essentially
generates the nodal coordinates and connectivities of a given discretization scheme. After
the analysis, it allows the user to display the results in a graphics oriented mode. PATRAN
was developed and is maintained by PDAT™ Engineering of California.

PATBEST, which is the data preparation interface for BEST-FSI takes the output
(neutral) file from a PATRAN work session and translates the nodal coordinates and con-
nectivities of the model generated by PATRAN into a format of nodal coordinates and
connectivities consistent with BEST-FSI input data.

Post-processing data is generated internally within BEST-FSI accerding to a set of user-
defined options. This data is then utilized by PATRAN to provide results for visualization.

It is planned to include interfaces to other popular modelling graphics packages, such
as SUPERTABTM /CADEST™ and MOVIESTAR.BYU™, in the near future.
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4.3 || AVAILABILTY OF BEST-FSI

BEST-FSI is written in FORTRAN 77 and is therefore adaptable to any computer
which has such a compiler. An executable version of the code had been developed on
IBM™ and CRAY?™ mainframes, HP 9000T™ (Series 300 and 800), SUN-37M, SUN-4TM
and SUN Sparcstation™ systems. Depending upon the demand, it is intended to add IBM
RISC System /60007, Alliant”M, Silicon Graphics IRIST™, DECstation 31007¥, and all
VAX/VMST™ systems to this list.
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4.4 || FILE SYSTEM IN BEST-FSI

BEST-FSI makes use of unit 5 as its input data file and unit 6 as its output file. In
addition to these an extensive set of disk files are used during the execution of the code.
For the complete range of analysis used in BEST-FSI it is necessary to have 60 simultaneous
open files in the system. Not all of these files are necessary for the simpler linear analyses
where usually only 1/3 of the total are used. The files are either of sequential or direct
access type and are defined as FT** based on IBM terminology.

For the efficient execution of BEST-FSI, it is desirable to have at least 8 megabytes of
system memory. Additionally, BEST-FSI makes extensive use of disk files during execution
of the code. While most of these files are of temporary nature, some are required for restart
analyses. In any case, it is recommended that workstation-based users have at least 300
MB of disk space free in order to run practical problems.
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4.5 || SPECIAL FEATURES OF BEST-FSI

4.5.1 DEFINITIONS

The following definitions are used throughout the manual.

Points, Nodes or Nodal Points - are generic names for all points in a data set for which
coordinates are defined. These points may be source points and /or geometric points which
are used in the boundary and volume discretizations, or they may be used to define a
sampling point. All points defined in a data set by the user should have unique node
numbering. '

Geometric Points - are points used in the geometrical definition of the body of interest.
Specifically, geometric points are used in the description of the geometry of a boundary
element, or volume cell. Geometric points may or may not be source points.

Source Points - refers to boundary source points, or boundary and volume source points
in an analysis. Source points are used in the functional representation of variables across
a boundary element, or a volume cell. In a system equation, unknowns are retained at
source points.

Functional Nodes - same as source points

Boundary Source Points - are points in a discretization of the boundary surface (or interface)
which are used in the functional representation of the field variables across the boundary
elements. At every boundary source point (and only at boundary source points) unknowns
in the boundary system equation are retained corresponding to the unknown boundary
conditions at these points. Likewise, known boundary conditions (implicitly or explicitly
defined) are required at these points. Boundary conditions specifications for points other
than boundary source points will result in a fatal error. Boundary source points are selected
by BEST-FSI based on the type of functional variation of the primary variables across the
boundary element which is defined in the data set by the user. (see SURF and TYPE
cards under **GMR input in Chapter 5)
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Volume Source Points - are points in a volume discretization which are used to represent the
functional variation of certain variables through the volume of the body via volume cells.
These are required only in nonlinear analysis or when the body is subjected to certain
types of body forces. In the case of nonlinear analysis, unknowns are retained at volume
source points which have to be solved for, along with the unknowns at the boundary
source points. This entails writing additional equations at each volume source point. In
the case of body forces, the variables are known quantities and additional equations are
therefore unnecessary. Volume source points are selected by BEST-FSI based on the type
of functional variation selected by the user. For the volume cell approach see VOLU and
TYPE cards under **GMR input in Chapter 5.

Sampling Points - are (user defined) points in the interior of the body or on the surface of
the body for which results are requested. Results at sampling point are calculated after
the system equation is solved. Sampling points are input on a separate lst (see SAMP
card in **GMR input in Chapter 5) and are totally independent of the point list used
for boundary and volume discretization. A sampling point may coincide with a boundary
discretization point. Sampling points should use unique node numbering.

Volume Cells - Certain analyses require an integration of some variable over all or part of
the volume of the body. In this cases the volume is divided into smaller parts called volume
cells, where interpolation functions (of some order) are used to represent the variation of
the variable to be integrated across the volume cell.

Geometric Modeling Region (GMR) - in a boundary element analysis the body under
investigation may be fictitously divided in a number of smaller parts for convienence in
mesh modelling and efficiency in computation. Each part is called a geometric modelling
region and is modelled as an individual boundary element model. The nodes and elements
of each region must match up at common interfaces and are connected by relations defined
by the user.
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4.5.2 MESH SIZE

Most of the currently available experience of developing mesh for a given problem is
based on more than two decades of the finite element or finite difference analyses. It is
possible to take only the boundary part of a given finite element mesh system to generate
the boundary element mesh system. Unfortunately this often leads to an inefficient BEM
analysis because of use of too many elements. In two-dimensional linear problems due to
their low computing costs this can easily be tolerated. However, for nonlinear problems
where some volume discretization is required care must be exercised to control the number
of source point.
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5.0 BEST-FSI INPUT

The basic input required by BEST-FSI is the definition of Geometry, Material Prop-
erties and Boundary conditions. While this is the same definition required by a finite
element structural analysis program, a somewhat different set of information is required
to accomplish the definition for a boundary element program.

The input to BEST-FSI is intended to be as simple as possible, consistent with the
demands of a general purpose analysis program. Meaningful keywords are used for the
identification of data types. Free field input of both keywords and numerical data is
permitted, however there are a number of general rules that must be followed.
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BEST-FSI Input

General Rules for Input Data

1. Upper Case

All alphanumeric input must be provided in upper case.

Proper Usage:

**CASE
TITLE TRANSIENT FLUID - TEST CASE
FLUID INCOMPRESSIBLE TRANSIENT
SYMMETRY QUARTER

Improper Usage:

fluid incomp
SYMMETRY quarter

2. Parameter Positioning

Parameters may appear anywhere on an input line, as long as they appear in the
proper order and are separated by at least one blank space.

Proper Usage:

FLUID INCOMPRESSIBLE STEADY
ELEMENT 1 6 8

Improper Usage:

FLUIDINCOMPRESSIBLE STEADY
ELEMENT, 1, 6, 8

3. Length of Input Line

An input line cannot exceed a maximum of 80 characters including blank spaces.
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BEST-FSI Input

General Rules for Input Data

4. Keyword Truncation
Any keywords that are longer than four letters may be truncated to the first four

letters.

Proper Usage:

SYMMETRY QUAR
SYMM QUAR
ELEM 1 6 8

Improper Usage:

SYMMETRY QUA

5. Floating Point Numbers
Any real parameters may be input in either FORTRAN E or F format, however, the
representation used must contain no more than 16 total characters. Additionally,
there is a limit of 8 characters to the left of the decimal point.

Proper Usage:

EMOD 30.E+7
ALPHA 1.E-06
POINTS

0.004 1.110 0.0

Improper Usage:

EMOD 300000000.0
ALPHA 1.-6
POINTS

4.0-3 1.110 ©
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BEST-FSI Input

General Rules for Input Data

6. Comments
Comments can be inserted in the data file by placing a dollar sign ($) anywhere on
an input line. The remainder of that input line is then ignored by the BEST-FSI
input processor.

Proper Usage:

ELEMENT 1 6 8 $§ ELEMENTS ON THE OUTER RIM
$
$ MODIFIED 03/08/88 GFD

POINTS 25 26 27

7. Blank Lines
Blank Lines can be inserted anywhere in the data file and are useful for aesthetic
purposes.

8. Units
A consistent system of units must be used for input of all types (material properties,
geometry, boundary conditions, time steps). Output will be in the same consistent
system of units. The selection of appropriate units is the user’s responsibility.

9. ** Keywords
Certain keywords are prefixed by the symbol **. These identify the beginning
of a block of data of a particular type, and serve to direct the program to the
appropriate data processing routine. There should be no blank spaces between
the ** symbol and the pertinent keyword. Additionally, the ** data blocks must
appear in the following specific order:

**CASE
**MATERIAL
*GMR
**INTERFACE
**BCSET
**BODY

There may be multiple data blocks of each type, except for the **CASE block.
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BEST-FSI Input

General Recommendations for Input Data

1. Ordering of Input Items
While there is some flexibility in the ordering of lines within a BEST-FSI data set,
it is strongly recommended that the user follow the order provided in the manual.
Examples of proper ordering are provided throughout this chapter.

2. Documenting Data Sets
The $ keyword is provided to permit comments anywhere in the input data set.
This should be used generously to fully document the analysis. Blank spaces can
also be used to improve readability. The format, displayed in the examples of this
chapter and in Section 6.0, is recommended.
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BEST-FSI Input

General Limits of BEST-FSI

[t should be noted that there are certain limits which must be observed in the prepa-
ration of input for BEST-FSI . These limits are of two main types:

1 - Limits on the maximum number of entities of various types within a single analysis.
2 - Lamits on the user specified numbering of certain entities.

The present limits are summarized below. It is anticipated that certain of these limits may

be relaxed in future versions of BEST-FSL

ENTITY* LIMIT

GLOBAL PARAMETERS

total geometric modeling regions 15
total points (including non-source points) 3000
total boundary source points 1200
total volume source points for fluids 1200
total boundary elements 600
enclosing elements 100
cyclic symmetry interfaces 20

REGION (GMR) PARAMETERS

surfaces in any region 15
points in any region 1000
boundary source points in any region 600
volume source points in any region 600
boundary elements in any region** 300
volume cells in any region 200
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BEST-FSI Input

ENTITY"

OTHER PARAMETERS

table points
temperature points for material properties

USER SPECIFIED NUMBERING

points
elements

+ Definition of the terminology used in this table can be found in Section 4.5.

LIMIT

20
21

99999
99999

= Total boundary elements in a region include user specified boundary elements plus
elements artificially created in symmetric regions when the symmetry option is invoked.
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BEST-FSI Input

Individual Data Items

The remainder of this chapter provides detailed information on each of the data items
available within BEST-FSI. The individual items are grouped in sections, under the asso-
ciated ** keyword, as follows:

5.1 CASE CONTROL INFORMATION (**CASE)

5.2 MATERIAL PROPERTY DEFINITION (**MATE)

5.3 GEOMETRY DEFINITION (**GMR)

5.4 INTERFACE DEFINITION BETWEEN SUBREGIONS (**INTE)
5.5 BOUNDARY CONDITION DEFINITION (**BCSE)

5.6 BODY FORCE DEFINITION (**BODY)
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5.1 CASE CONTROL

This input section provides BEST-FSI with information controlling the overall execu-
tion. It provides the title and determines which of the major program branches will be
“executed. It also defines the times at which solutions of the given problem are to be eval-
uated. This section must be input exactly once for each analysis and must be input before

any other data.

A list of keywords recognized in the case control input are given below, and a detailed
description follows. It is recommended that the user supply the relevant keywords in the

order provided by this list.

SECTION KEYWORD

5.1.1 Case Control Input Card
**CASE

5.1.2 Title
TITL

5.1.3 Times for Output
TIME
TIME STEP

5.14 Dimensionality of the Problem
PLAN

5.1.5 Type of Analysis
FLUI

5.1.6 Analysis Type Modifiers

CONV
THER
BUOY

BEST-FSI User Manual

PURPOSE

Start of case control input

Title of job

Times of solution cutput
(static and steady-state analysis)
Time step for transient solution algorithms

Plane strain flag

Fluid dynamic analysis

Convective form of kernel functions
Thermoviscous fluid dynamics
Include buoyancy in thermoviscous
fluid dynamics
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SECTION

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

KEYWORD

Algorithm Control

ITER
NEWT
INCR DENS
RECU

TOLE
MAXI

Restart Facility

REST WRIT
REST READ
REST VELO

Output Options

ECHO
PRIN BOUN
PRIN NODA

PRIN LOAD
PRIN ALL
PRIN LIMI
PRIN FEAT

PATR

Miscellaneous Control Options

CHEC
FILE

BEST-FSI User Manual

Case Control
PURPOSE

Iterative algorithm

Newton-Raphson algorithm

Incremental density algorithm for FLUI only
Recurring initial condition algorithm for
FLUI only

Convergence tolerance

Maximum number of iterations for

nonlinear algorithms

Geometric and Loading Symmetry Control
SYMM HALF
SYMM QUAR

Symmetry about Y-Z plane
Symmetry about X-Z and Y-Z planes

Save integration files for future runs
Use integration files from previous run
Restart fluid dynamics run from last solution

Produce echo of input data

Printout displacement and traction results
Print boundary displacement, stress, strain
at nodal points

Print load calculation

Print maximum printed output file

Print current BEST-FSI limits

Print current implementation status

of BEST-FSI special features

Produce PATRAN result files

Check input data only
Specify directory for creation and storage of
scratch files
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5.1.1 CASE CONTROL INPUT CARD

**xCASE

Status - REQUIRED

Full Keyword - **CASE control

Function - Identifies the beginning of the case control input section.
Input Variables - NONE

Additional Information - NONE

Examples of Use -

1. Request a plane stress elastic analysis.

**CASE
TITLE PLANE STRESS ANALYSIS OF A BAR
PLANE STRESS
ELASTIC

2. Request a three-dimensional steady-state heat transfer analysis.

**CASE
TITLE HEAT CONDUCTION IN A MOLD
HEAT -

BEST-FSI User Muanual March, 1992
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Case Control

5.1.2 TITLE

TITL  CASETITLE

Status - REQUIRED
Full Keyword - TITLE
Function - Defines title for analysis.
Input Variables -
CASETITLE (Alphanumeric) - REQUIRED - 72 chars. max. length
Additional Information - NONE
Examples of Use -

1. Describe the analysis.

**CASE
TITLE TURBINE BLADE A7311 - THERMOELASTIC ANALYSIS

ELASTIC
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Case Control

5.1.3 TIMES FOR OUTPUT

TIME T1T2T3 ... 1IN

Status - OPTIONAL
Full Keyword - TIMES
Function - Identifies times at which output is required (only for static analysis).
Input Variables -
Tl (Real) - REQUIRED
T2.. TN (Real) - OPTIONAL
Additional Information -

This input may be continued on more than one card, if required. Each card
must begin with the keyword TIME. A maximum of twenty output times may
be selected. A minimum of one output time must be chosen.

This card is only functional for static analysis. The “TIME STEP’ card (see
next page) is used for transient analysis.

Acoustic Eigenfrequency analysis and Free Vibration analysis do not require a
‘TIME’ or a ‘TIME STEP’ card.
Examples of Use -

1. Conduct an elastic analysis at times 1.0, 2.5 and 6.0 and output the results.

**CASE
TITLE ROTOR - ELASTIC ANALYSIS
TIMES 1.0 2.5 6.0
ELASTIC
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Case Control
TIME STEP NSTEP DELTA

Status - OPTIONAL (required for transient analysis algorithms)
Full Keyword - TIME STEP

Function - Identifies the number of time steps in a transient solution algorithm and
the size of the time steps.

Input Variables -
NSTEP (Integer) - REQUIRED

Sets the number of time steps for which the transient analysis is to be carried
out.

DELTA (Real) - REQUIRED
Defines the size of the time step.

Additional Information -
In the present version, only a constant time step size (DELTA) is permitted.
Examples of Use -

1. Conduct a transient elastodynamic analysis of a spherical tank using a linear
time variation of field variables.

**CASE
TITLE SPHERICAL TANK - SUDDEN PRESSURIZATION
TRANSIENT

TIME STEP 10 0.01
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Case Control

51.4 DIMENSIONALITY OF THE PROBLEM (Default is 3-D geometry)

PLAN ETYPE

Status - REQUIRED
Full Keyword - PLANE
Function - Identifies a two-dimensional problem.
Input Variables -

ETYPE (Alphanumeric) - OPTIONAL

Allowable values are STRA.

STRAIn - specifies a plane strain problem.

Additional Information -

If ETYPE is not specified, STRAIN is assumed.
Examples of Use -

1. Request a plane strain elastic analysis of a dam.

**CASE
TITLE KOYNA DAM - PLANE $TRAIN ELASTIC ANALYSIS OF A DAM
PLANE STRAIN
ELASTIC

2. Request a two-dimensional steady-state heat conduction analysis of a cylinder.

**CASE
TITLE CYLINDER - HEAT CONDUCTION
PLANE
HEAT
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Case Control

5.1.5

TYPE OF ANALYSIS

FLUI

ATYPE BTYPE

Status - OPTIONAL
Full Keyword - FLUID
Function - Identifies a fluid dynamics analysis.

Input Variables -

ATYPE (Alphanumeric) - OPTIONAL (Default is INCO)
Allowable values are INCO
INCOMPRESSIBLE - Identifies a viscous, incompressible fluid analysis

BTYPE (Alphanumeric) - OPTIONAL (Default is STEADY)
STEADY - Identifies a steady-state analysis
TRANSIENT - Identifies a transient analysis

Additional Information -

In the present version, only two-dimensional incompressible viscous flow is avail-
able.

An incompressible thermoviscous flow may be selected by also including a
THERMAL card in case control.

Examples of Use -

1. Conduct a steady viscous fluid analysis for flow around a cylinder. Use ten

psuedotime steps with a maximum of five iterations per step.

**CASE

TITLE STEADY FLOW ARCUND A CYLINDER
PLANE

FLUID INCOMPRESSIBLE STEADY

TIME STEP 10 1.0

NEWTON

MAXI 5

INCREMENT DENSITY

RESTART WRITE

2. Perform transient thermoviscous analysis for flow past a turbine blade.
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Case Control

**CASE
TITLE TRANSIENT FLOW PAST A TURBINE BLADE
PLANE
FLUID INCOMP TRANSIENT
TIME STEP 20 0.0120
THERMAL
NEWTON
MAXI 6
RECURRING

3. Examine steady Stokes flow in a converging channel.

**CASE
TITLE CONVERGING CHANNEL
PLANE
FLUID STEADY INCOMP
TIME STEFP 1 1.0
ITERATIVE LINEAR
MAXT 1
RESTART WRITE
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Case Control

5.1.6

ANALYSIS TYPE MODIFIERS

CONV

Status - OPTIONAL
Full Keyword - CONVECTIVE

Function - Selects the convective form of the kernel functions for two-dimensional

- steady-state heat transfer and fluid dynamics.

Input Variables - NONE
Additional Information -

When this option is selected, the uniform free stream velocity must be specified
on a VREF card in the **GMR section for each region.

In the current version, this option is only available for PLANE analysis in
conjunction with FLUID INCOMP STEADY case control cards.

If the actual velocity field is approximately equal to the free stream velocity,
then volume integration may not be required with this option. A boundary-only
analysis can be conducted.

Examples of Use -

1. Perform convection heat transfer analysis of the region exterior to an airfoil.

**CASE

TITLE AIRFOIL - CONVECTIVE HEAT TRANSFER
PLANE

HEAT STEADY

CONVECTIVE

RESTART WRITE
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Case Control

THER

Status - OPTIONAL

Full Keyword - THERMAL

Function - In conjunction with the FLUI card, this selects a thermoviscous fluid dy-
namics analysis.

Input Variables - NONE

Additional Information -
This keyword is only applicable for two-dimensional fluid dynamics analysis.

When this option is selected, a heat conduction analysis is performed along
with the viscous flow analysis. As a result, each source point has three degrees
of freedom (V,,T) for a two-dimensional problem.

Examples of Use -

1. Perform a thermoviscous flow analysis in a channel.

**CASE
TITLE CHANNEL - THERMOVISCOUS FLOW
PLANE
FLUID INCOMP TRANSIENT
TIME STEP 4 0.05
THERMAL
NEWTON SKIP 5
MAXT 10

BEST-FSI User Manual March, 1992 Page 5.19



Case Control
BUOY TYPE

Status - OPTIONAL
Full Keyword - BUOYANCY

Function - In conjunction with both the FLUI and THER cards, this permits the
inclusion of buoyancy terms based upon the Boussinesq approximation.

Input Variables -
TYPE (Alphanumeric) - OPTIONAL
Allowable value is KERN.
KERN - The linearized buoyancy effect is included in the kernel functions.
Additional Information -

If the keyword KERN is absent, then the entire buoyancy contributionis intro-
duced as a body force through the volume, and volume cells must be included.

In either case, the gravitational acceleration must be specified through an iner-
tial body force (INER) definition.

Buoyancy is only available for steady incompressible thermoviscous flow.
Examples of Use -

1. Examine the buoyancy-driven flow in a lake.

**CASE
TITLE LAKE ERIE (THERMALLY-INDUCED FLOW)
FLUID INCOMP STEADY
THERMAL
BUOYANCY KERNEL
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5.1.7 ALGORITHM CONTROL

ITER

Status - OPTIONAL

Full Keyword - ITERATIVE

Function - Selects the iterative algorithm.
Input Variables - NONE

Additional Information -

The iterative algorithm is generally not recommended for problems involving a
high degree of nonlinearity.

Examples of Use -

1. Examine unsteady Navier-Stokes flow around an airfoil at low Reynolds num-

ber.

**CASE
TITLE AIRFOIL G-45 (NAVIER-STOKES FLOW)
FLUID INCOMP
TIME STEP 15 0.015
ITERATIVE
MAXTI 10
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NEWT ITYPE  NSKIP

Status - OPTIONAL
Full Keyword - NEWTON-RAPHSON
Function - Selects the Newton-Raphson algorithm.

Input Variables -

ITYPE (Alphanumeric) - OPTIONAL

Allowable value is MODI.

MODI - Selects the Modified Newton-Raphson algorithm

A full Newton-Raphson algorithm is assumed if ITYPE = MODI is not input.
NSKIP (Integer) - OPTIONAL (default is NSKIP = 1)

Additional Information -
The Newton-Raphson algorithm is recommended for all nonlinear analysis.

In some cases, the use of the Modified Newton-Raphson algorithm can reduce
analysis cost for nonlinear problems, however convergence is slower than for the
full Newton-Raphson approach.

Setting NSKIP = 1 is equivalent to a full Newton-Raphson approach.

Examples of Use -

1. Analyze viscous flow in a container, selecting a modified Newton-Raphson
algorithm.

**CASE
TITLE CONTAINER - VISCOUS FLOW
FLUID INCOMP STEADY
TIME STEP 4 1.0
NEWTON MODI 4
MAXI 20
INCREMENT DENSITY
RESTART WRITE
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INCR DENS

Status - OPTIONAL
Full Keyword - INCREMENT DENSITY

Function - Selects an incremental density algorithm for incompressible viscous fluid
dynamics.

Input Variables - NONE
Additional Information -

This option is only applicable for incompressible viscous fluid dynamics, and
typically only for steady-state problems. Often the incremental density al-
gorithm provides a convenient method for slowly building toward a desired

Reynolds number.

The density values must be defined as a function of time with a convective body
force data set. See the **BODY section.

Examples of Use -

1. Analyze the thermoviscous flow of a hot fluid over a gradual step. Increment
the fluid density to achieve the desired Reynolds number.

**CASE
TITLE FLOW OVER A STEP RE=50
FLUID INCOMP STEADY
TIME STEP 8 1.0
NEWTON
INCREMENT DENSITY
MAXI 10
RESTART WRITE
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RECU

Status - OPTIONAL
Full Keyword - RECURRING-INITIAL-CONDITION

Function - Selects a recurring initial condition algorithm for transient viscous fAuid
dynamics analysis.

Input Variables - NONE
Additional Information -

Two approaches are available for transient fluid dynamies problems. The de-
fault is the convolution approach which requires integration at each time step.
This is preferred for linear (Stokes flow) analysis. However, if the RECU card
is present then the recurring initial condition approach is utilized. In this case,
the entire fluid domain must be discretized.

A combined recurring initial condition and convolution approach is also possi-
ble. To trigger this option, the user should simply include the RECU keyword.
Then, in each region for which the recurring initial condition approach is de-
sired, complete volume discretization is required. The remaining regions, which
must be void of volume cells, will employ a convolution approach. This com-
bined approach is particularly attractive when a large portion of the flow field
is linear.

Examples of Use -

1. Perform a transient viscous fluid dynamic analysis for flow in a diverging chan-
nel.

**CASE
TITLE CHANNEL - CASE 2 (TRANSIENT ANALYSIS)
FLUID INCOMP STEADY
TIME STEP 10 0.25
NEWTON SKIP 2
MAXI 10
RECURRING
RESTART WRITE
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TOLE RTOL

Status - OPTIONAL
Full Keyword - TOLERANCE

Function - Sets the convergence tolerance for nonlinear algorithms.

Input Variables -
RTOL (Real) - REQUIRED

Defines the convergence tolerance.

Additional Information -

For fluids, convergence is tested at the end of the it iteration by computing

N
iV = im1Val?

n=1
where N is the total number of volume source point.

Convergence is assumed when DNORM < RTOL. If the TOLE card is not
included in case control, RTOL defaults to 0.005.

Examples of Use -

1. Tighten the convergence tolerance for a problem of thermoviscous flow past an

airfoil.

**CASE
TITLE AIRFOIL - THERMOVISCOUS STEADY FLOW
FLUID STEADY INCOMP
TIME STEP 8 1.0
THERMAL
NEWTON
MAXI 8
TOLERANCE 1.E-4
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MAXI NITER

Status - OPTIONAL
Full Keyword - MAXIMUM (ITERATION)

Function - Define the maximum number of iterations per time step for nonlinear algo-
rithms.

Input Variables -
NITER (Integer) - REQUIRED
Sets the number of maximum iterations per time step.
Additional Information -
The default is a maximum of 20 iterations.
Examples of Use -

1. Fluid dynamic example with a limit of 10 iterations.

**CASE
TITLE STEADY FLOW AROUND A CYLINDER
FLUID INCOMPRESSIBLE STEADY
TIME STEP 10 1.0
NEWTON
INCREMENT DENSITY
TOLERANCE 0.02
MAXI 10
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5.1.8 GEOMETRIC AND LOADING SYMMETRY CONTROL

SYMM STYPE

Status - OPTIONAL
Full Keyword - SYMMETRY
Function - Identifies a problem with geometric and loading symmetry.

Input Variables -

STYPE (Alphanumeric) - REQUIRED
Allowable values are HALF, QUAR, and OCTA.

HALF - Half symmetry, about the Y-Z plane (or about the R—6 plane in
axisymmetric analysis).

QUAR - Quarter symmetry, about the X-Z and Y-Z planes.
Additional Information -

To model the problem geometry, in all cases, use the part of the geometry which
is on the positive side of the axis (axes) of symmetry.

If the SYMM card is used the plane of symmetry does not have to be modelled,
and therefore, boundary elements should not appear on the plane of symmetry
(see the figure on the following page).

The use of the SYMM card automatically invokes the condition of zero velocity
{and zero flux) on and perpendicular to the plane of symmetry. Therefore
velocity (and/or flux) in the perpendicular direction does not have to be set to
zero at the plane or at any other point for the purpose of preventing (arbitrary)
rigid-body motion (in this direction) as is usually required.

Examples of Use -

1. Perform an elastic analysis on a hollow cylinder utilizing a model of only the
first (positive) quadrant.

**CASE
TITLE HOLLOW CYLINDER WITH INTERNAL PRESSURE

ELASTIC
SYMMETRY QUAR
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Figure for **CASE: SYMM card
Two-dimensional Quarter symmetry model
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5.1.9

RESTART FACILITY

REST

RTYPE  ISTEP

Status - OPTIONAL
Full Keyword - RESTART
Function - Enables the restart facility.

Input Variables -

RTYPE (Alphanumeric) - REQUIRED
Allowable values are WRIT, READ, HOLE, SOLV, GMR, VELO

WRITe - Saves all of the integration files generated during the current
run for later reuse.
READ - Bypasses the integration phase for the current run. Instead,
the integration files from a previous run are utilized.
VELO - Restart a fiuid dynamics from a previously determined solu-
tion.

ISTEP (Integer) - REQUIRED only if RESTART VELO is specified.

Defines the time step number of a solution from a previous fluid dynamics run,
which will be used as the initial state for the current analysis.

Additional Information -

Integration is generally the most expensive part of any boundary element anal-
ysis. Consequently, when the same model is to be run with several sets of
boundary conditions, the restart facility should be used.

In the case of linear problems, a complete analysis must first be run with
RESTart WRITe specified. The files FT031, FT032, FT033, FT034, FT035,
FT036, FT037, FT038 and FT039 are then retained after completion of the
run. These files contain all the integration coefficients that were computed.
Subsequent runs can then be made, with different sets of boundary conditions,
by using RESTart READ. In this case, the integration phase will be skipped.
Instead; the integration coefficients will be read from the files FT031, FT032,
FT033, F'T034, FT035, FT036, FT037, FT038 and FT039. Additional files are
retained for nonlinear analysis.

Geometry and material properties must be the same for both the RESTart
WRITe and RESTart READ data sets. However, no checking is done by BEST-
FSI. This is the user’s responsibility.

The restart facility is not available for transient analyses.

RESTART VELO is only available for fluid dynamies. It is the user’s respon-
sibility to ensure that the requested solution exists in the restart file FT080,
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which must have been saved with a RESTART WRITE or READ during a
previous analysis.

Generally, RESTART VELO is used in conjunction with either RESTART
WRITE or RESTART READ.

Examples of Use -

1. Save the integration files generated during an elastic analysis of an axle.

**CASE

TITLE AXLE - LOAD CASE 1A
TIMES 1.0

ELASTIC

RESTART WRITE

2. Rerun an elastic analysis of the same axle with a different set of boundary
conditions by using existing integration files.

**CASE
TITLE AXLE - LOAD CASE 1B
TIMES 1.0
ELASTIC

RESTART READ

3. Restart an incompressible fluid dynamics analysis using the solution obtained
during the third time step of the previous run.

**CASE
TITLE DRIVEN CAVITY - STEADY RE= 1000
FLUID INCOMP STEADY
TIME STEP 5 1.0
NEWTON SKIP 2
MAXI 10
RESTART READ
RESTART VELC 3
PRINT INTERICR VELO
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5.1.10 OUTPUT OPTIONS

ECHO

Status - OPTIONAL
Full Keyword - ECHO

Case Control

Function - Requests a complete echo print of all card images in the input data set.

Input Variables - NONE

Additional Information - Default is no echo print.

Examples of Use -

1. Request a plane strain elastic analysis with an echo of the input data set.

**CASE

TITLE DAM - PLANE STRAIN ASSUMPTION

PLANE STRAIN
ELASTIC
RESTART WRITE
ECHO
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PRIN PTYPE

Status - OPTIONAL

Case Control

Full Keyword - PRINTOUT-CONTROL

Function - Requests specific printed output.

Input Variables -

PTYPE (Alphanumeric) - REQUIRED
Allowable values are BOUN, NODA, LOAD, ALL, LIMI, and FEAT.

BOUN -

NODA -

LOAD -

ALL -

LIMI -
FEAT -

For printing the displacements and tractions, or corresponding
quantities such as velocity, temperature, pressure, and flux at all
boundary source points

For printing the displacements, stresses, and strains at all geom-
etry nodes on the boundary. (available only for linear elasticity,
and consolidation. A similar nodal table is also available for fluid
dynamics.)

For printing the resultant load value on each boundary element
and the total load equilibrium of each region, excluding resultant
body force.

For printing BOUN, NODA, and LOAD information with a single
request.

To printout the current limits of BEST-FSL.

To printout a table reporting the current implementation status
of BEST-FSI special features in file “BEST-FSLFEATURES”.
An integer value may be included after the keyword FEAT (e.g.
PRINT FEATURES 80) to indicate the number of lines per page
used in the table. The default is 66 which corresponds to the
number of lines printed per page by a standard line printer.

Additional Information -
For printing two or more types of output, a separate PRIN request must be

included for each type.

If a PRIN, BOUN, NODA or LOAD request does not appear in the case control
input then all three types of output (BOUN, NODA, and LOAD) will be printed

by default.

Examples of Use -

1. In the elastic analysis of a rotor, print out the resultant boundary element

loads.
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**CASE
TITLE ROTOR - ELASTIC ANALYSIS
TIMES 1.0 2.5 6.0
ELASTIC
PRINT LOAD
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PATR

Status - OPTIONAL

Case Control

Full Keyword - PATRAN
Function - Requests the generation of PATRAN post-processing result files.
Input Variables - NONE
Additional Information -

A Patran INTERFACE NEUTRAL file is created for MODEL INPUT of
BEST-FSI geometry data into Patran. This file is called PATRAN.GEOM.

Upon completion of each time step in an analysis, several files of the form
PATRAN.XXX.n are created for PATRAN post-processing. The parameter n
is the time step number, and XXX is any of the following:

NOD -

DIS -

ND1 -

ND2 -

NDS -

Boundary nodal temperatures or pore pressures in the format of
a PATRAN Nodal Results Data File

Boundary nodal displacements or velocities in the format of a
PATRAN Displacement Results Data File

Interior point displacements/velocities/temperatures/pore pres-
sures in the format of a PATRAN Nodal Results Data File

Interior point stresses in the format of a PATRAN Nodal Resuits
Data File

Boundary nodal displacements, stresses and strains in the format

. of a PATRAN Nodal Results Data File

ELB -

Boundary element velocities, stresses and strain rates in the for-
mat of a PATRAN Beam Results Data File

Column assignments within each file are defined in Table 5.1.1 by analysis type.

Examples of Use -

1. Create PATRAN result files for the steady-state thermoelastic response of a
turbine blade.

**CASE

TITLE TURBINE BLADE A7311 - THERMOELASTIC
CTHERMAL STEADY

RESTART READ

ECHC
PATRAN
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TABLE 5.1.1
PATRAN Post-processing File Column Definition

GENERAL FILE DEFINITION:

Filename PATRAN File Type Contents

PATRAN.NOD.n NODAL Boundary Source Points

PATRAN.DIS.n DISPLACEMENT Boundary Source Points

PATRAN.ND1.n NODAL Volume Source Points and Sampling Points
PATRAN.ND2.n NODAL Volume Source Points and Sampling Points
PATRAN.NDS.n NODAL Boundary Source Points

PATRAN.ELB.n BEAM Boundary Elements

SPECIFIC FILE DEFINITION:

NOMENCLATURE
. temperature
p: pore pressure
u;: displacement
t;: traction

;! velocity

g:l flux

oij: stress

€5 strain
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No.
Analysis Filename of Columns
Type Dimensions 1 2 3 4 L] 6
(7 8 9 10 11 12)
[13 14 15 16 17 18]
FLUID PATRAN.DIS.n 2 v vo
(Viscous)
PATRAN.ND1.n 2 v vy
PATRAN.NDS.n 2 v vy ggf gg_g g’% g‘if
( W 011 022 712 P)
PATRAN.ELB.n 2 v vo t iy ;—';f ;—’:g
( % g—.;f w o 022 0’12)
[p]
FLUID PATRAN.NOD.n 2 6
(Thermoviscous)
PATRAN.DIS.n 2 v vq
PATRAN.NDIH 2 " V2 8
PATRAN.NDS.n 2 v vz é %L g—;: ;—':;
%‘;f w 3@,% %; o11 022)
012 P
PATRAN ELB.n 2 1] vg ] 131 i2 q
(g2 %8 & £ o« g
[ %; 011 O22 012 p}
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5.1.11 MISCELLANEOUS CONTROL OPTIONS

CHEC

Status - OPTIONAL
Full Keyword - CHECK

Function - Perform only input data checking, and printout an error summary. No
analysis is performed.

Input Variables - NONE
Additional Information -

This option is often useful for checking the input data for a new model. In addi-
tion to the error summary, all of the relevant material, geometry and boundary
condition information is processed and printed in tabular form. Of particular
interest is the identification of the boundary and volume source points, since
these are determined by the program based upon the element and cell functional
variation.

Examples of Use -
1. Check the input data for a thermoelastic turbine blade model.

**CASE
TITLE TURBINE BLACE A7311 - THERMCELASTIC
CTHERMAL STEADY
RESTART WRITE
CHECK § DATA CHECKING ONLY
STORE SINGLE
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FILE DNAME

Status - OPTIONAL
Full Keyword - FILE-CONTROL

Function - Specifies the directory in which the scratch files (FTNNN) reside during
execution of BEST-FSI

Input Variables -
DNAME (Alphanumeric) - REQUIRED

Allowable values are DIRNAMEALL or DIRNAMEFTNNN

DIRNAMEALL - All scratch files (FTNNN) all be created, accessed and stored
in directory specified by DIRNAME.

DIRNAMEFTNNN - Scratch file (FTNNN) will be created, accessed and stored
in directory specified by DIRNAME.

Additional Information -

Default storage location for scratch files (FTNNN) is the current directory
BEST-FSI is being run from

FT file numbers have to be specified in a 3 digit format. For example FT009 is
correct while FT9 or FT09 are incorrect.

When specifying an individual FT file, only that file will be created in the
specified directory, the rest will be created in the current directory.

FILE directive can be used multiple times, e.g.

FILE /home/scrl/ALL

FILE /home/temp/FT035
will cause all F'T files except FT035 to be created in /home/scrl directory. But
if a combination such as

FILE /home/temp/FT035

FILE /home/scrl1/ALL

is used, this will cause all FT files to be created in /home/scrl directory.

Examples of Use -
1. Specify the directory /home/scrl to receive FT037 and /home/scr2 to receive
FTO038. The rest of the FT files will be created in the current directory (UNIX

systems).

**CASE
TITLE MOLD COMPONENT 6 - STEADY CONDITIONS
HEAT
PRECISION LOW
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NEUTRAL RESULTS
FILE /home/scrl/FT037
FILE /home/scr2/FT038

2. Specify the directory /home/scrl to receive all FT files except FT037, which
will be created in /home/scr2 directory (UNIX systems).

**CASE
TITLE MOLD COMPONENT & - STEADY CONDITIONS
HEAT
PRECISION LOW
NEUTRAL RESULTS
FILE /home/scrl/ALL
FILE /home/scr2/FT037
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5.2 || MATERIAL PROPERTY DEFINITION

This input section defines the linear and, when required, the nonlinear properties of
the various materials used in an analysis. A complete set of material property input must
be provided for each material used. At least one set must be input for every analysis. A
consistent set of units must be used for all properties.

A list of keywords recognized in the Material input are given below and a detailed

description follows.

SECTION KEYWORD

5.2.1 Material Property Input Card
**MATE

5.2.2 Material Identification
ID

5.2.3 Mass Parameter
DENS

5.2.4 Isotropic Elastic Parameters
EMOD
POIS

5.2.5 Isotropic Thermal Parameters
COND
SPEC
BETA

BEST-FSI User Manual

PURPOSE

Beginning of a material property
input set

Identifier of a material type

material mass density

Young’s modulus
Poisson’s ratio

conductivity of material
specific heat
buoyancy constant for fluid
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SECTION KEYWORD PURPOSE

5.2.6 Isotropic Viscous Properties
VISC viscosity for luid dynamics

Note: Refer to the following table for a list of required material properties
corresponding to a particular type of analysis.
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A list of material properties required for different types of analysis are defined below:

REQUIRED MATERIAL PROPERTIES

TYPE OF ANALYSIS MATERIAL PROPERTIES

1.  Isotropic Elastic Stress Analysis EMOD, POIS
(TEMP: optional)
(ALPH: if thermal body force is present)
(DENS: if centrifugal body force is present)
(DENS: if inertial body force is present)

2. Concurrent Thermoelastic Analysis
2a. Steady-state TEMP, EMOD, POIS, ALPH, COND
2b. Transient (Quasistatic) TEMP, EMOD, POIS, ALPH,

COND, DENS, SPEC
3.  Viscous Fluid Dynamic Analysis
3a. Steady-state VISC, DENS
3b. Transient VISC, DENS

4.  Thermoviscous Fluid Dynamic Analysis

4a. Steady-state VISC, DENS, COND
: (BETA: if buoyancy force is present)

4b. Transient VISC, DENS, COND, SPEC
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5.2.1 MATERIAL PROPERTY INPUT CARD

**MATE

Status - REQUIRED

Full Keyword - MATERTAL PROPERTY

Function - Signals the beginning of a material property definition.
Input Variables - NONE

Additional Information -

A complete set of material property input must be provided for each material
used.

All materials for a problem must be defined before any geometry is specified.

Examples of Use -

1. Define the elastic material properties for a carbon steel.

**MATE
ID STEEL
EMOD 30.3+6
POIS 0.30
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5.2.2 MATERIAL IDENTIFICATION

ID NAME

Status - REQUIRED
Full Keyword - ID

Function - Provides an identifier for a set of material properties related to a given ma-
terial, thereby allowing later reference to the material property definition.

Input Variables -
NAME (Alphanumeric) - REQUIRED
Additional Information -

The specified name must be unique compared to all other material names in-
cluded in the problem.

The NAME must be eight or less alphanumeric characters. Blank characters
embedded within the NAME are not permitted.
Examples of Use -
1. Define the thermal properties for an aluminum alloy 3003.

**MATERIAL
ID ALUM3003
COND 25.0
DENS 0.1
SPEC 2000.
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523 MASS PARAMETERS

DENS DEN1

Status - (see required material property table)
Full Keyword - DENSITY
Function - Defines the material mass density.
Input Variables -

DEN1 (Real) - REQUIRED
Additional Information - NONE

Examples of Use -

1. Define material properties for a free vibration analysis.

**MATE
ID STEEL
EMOD 30.E+6 $ PSI
POIS 0.30

DENS 7.324E-4
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5.2.4 ISOTROPIC ELASTIC PARAMETERS

EMQOD EM1

Status - (see required material property table)
Full Keyword - EMODULUS
Function - Defines values of Young’s modulus

Input Variables -

EM1 (Real) - REQUIRED
Additional Information - NONE

Examples of Use -

1. Specify a elastic material.

**MATERIAL

ID MAT1
EMOD 1.E6
POIS 0.386
DENS 0.15
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POIS POI

Status - (see required material property table)
Full Keyword - POISSON
Function - Defines the (temperature independent) value of Poisson’s ratio.
Input Variables -
POl (Real) - REQUIRED
Allowable values - -1.0 < POI < 0.5

Additional Information - NONE
Examples of Use -

1. Specify room temperature elastic properties of carbon steel.

**MATE
ID STEEL
EMOD 30.E6
POIS 0.30
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5.2.5 ISOTROPIC THERMAL PARAMETERS

COXND CD1

Status - REQUIRED (for concurrent thermoelastic, thermoviscous fluid dynamic, or
heat conduction analysis)

Full Keyword - CONDUCTIVITY
Function - Defines the isotropic conductivity.

Input Variables -

CD1 (Real) - REQUIRED
Additional Information - NONE
Examples of Use -

1. Specify thermal properties of aluminum for steady-state heat conduction.

**MATE
ID ALUM
CONDUCTIVITY 25.0

1. Specify thermoelastic properties for a quasistatic analysis.

**MATE
ID M200

TEMP 500.0
EMOD 1.0E+6
POIS 0.24
ALPH 1.E-5
COND 5.86
DENS 0.05
SPEC 215.
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SPEC SP1

Status - REQUIRED (for transient concurrent thermoelasticity, thermoviscous fluid
dynamic, or heat conduction)

Full Keyword - SPECIFIC
Function - Defines the specific heat.
Input Variables -

SP1 (Real) - REQUIRED
Additional Information -

The user must be careful in selecting appropriate units for specific heat. The
CONDuctivity divided by the product of DENSity times SPECific equals the
diffusivity. The diffusivity must have units of (length«+2)/time.

Examples of Use -

1. Material model for transient heat conduction.

**MATE
ID STEEL
COND 5.8 $ IN.-LB./(SEC.IN.F)
DENS 0.283 $ LB/ (IN3)
SPEC  1000. § IN.-LB./ (LB.F)
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BETA BT1

Material Property Definition

Status - REQUIRED (for buoyancy effects in thermoviscous fluid dynamics)
Full Keyword - BETA

Function - Defines the coefficient of thermal expansion for the fluid.

Input Variables -
BT1 (Real)
Additional Information - NONE

Examples of Use -

1. Specify the thermoviscous properties of a liquid.

**MATE
ID
VISC
DENS
CCOND

SPEC

BETA

LIQUID1

5.3E+3
0.0266
21.4
0.3

1.8-3

BEST-FSI User Manual

- REQUIRED

March, 1992

Page 5.50



Material Property Definition

5.2.6 ISOTROPIC VISCOUS PARAMETERS

VISC VSC1

Status - REQUIRED (for fluid dynamic analysis)
Full Keyword - VISCOSITY '
Function - Defines the value of the fluid viscosity.
Input Variables -

VSC1 (Real) - REQUIRED
Additional Information - NONE
Examples of Use -

1. Specify an incompressible thermoviscous fluid.

**MATERIAL
ID MATI1
VISC 5.3E+3
DENS 0.0266
COND 21.4
SPEC 0.3
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5.3 || DEFINITION OF GEOMETRY

In the current version of BEST-FSI, surface geometry is defined using and three noded
line elements for 2-D problems. These lines can be defined to have either linear, quadratic
or quartic variation of the primary field variables. An entire model may be assembled from
several geometric modelling regions (GMR). Each generic modelling region is defined in a
single block of input introduced with a **GMR card.

The information provided in a single GMR input block consists of five main types:

1 - Region identification

2 - Nodal point definition

3 - Surface connectivity definition

4 - Volume cell connectivity

5 - Sampling point definition (if desired)

A list of keywords recognized in the GMR input are given below and a detailed description
follows.

SECTION KEYWORD PURPOSE

5.3.1 Geometry Input Card
**GMR start of geometric modelling region input

5.3.2 Region Identification

ID region ID

MATE material property(set) for region

TREF reference (initial) temperature of region

TINT temperature used to determine material
properties for integration

VREF reference (initial) velocity of region

VINT convective velocity used for integration

EXTE region is an infinite body

SOLID identifies a solid region in a fluid

dynamic analysis
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SECTION KEYWORD
5.3.3 Nodal Point Definition
POIN
(coordinates)

5.3.4 Surface Element Definition
SURF
TYPE LINE
TYPE QUAD
TYPE QUAR

ELEM

Definition of Geometry
PURPOSE

nodal points for boundary and volume
discretization

beginnining of surface discretization
linear surface variation of

field quantities

quadratic surface variation of

field quantities

quartic surface variation of

field quantities

element list

(element connectivity)

NORM

5.3.5 Enclosing Element Definition
ENCL

defines outer normal of surface

enclosing element list

(enclosing element connectivity)

5.3.6 Volume Cell Definition
VOLU
TYPE LINE
TYPE QUAD
TYPE QUAR
CELL

{cell connectivity)

FULL

5.3.7 Sampling Points
SAMP

(coordinates)

BEST-FSI User Manual

beginning of volume discretization
linear variation of cell quantities
quadratic variation of cell quantities
quartic variation of cell quantities
volume cell definition

region completely filled with cells

start of definition of sampling points
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5.3.1 GEOMETRY INPUT CARD

**GMR

Status - REQUIRED
Full Keyword - GMREGION

Function - This card signals the beginning of the definition of a geometric modelling
region.

Input Variables - NONE
Additional Information -

At least one GMR must be defined for an analysis. If more than one GMR is

defined, then the input for each is initiated with a **GMR card.

GMR definitions must all precede all Interface, Boundary Condition set, and

Body Force Definitions. Each GMR must be a closed region of two-dimensional

or three-dimensional space. However, under the following two circumstances,

the region may be open :

1 - In planar symmetry problems, the body may be sliced into symmetric parts
and only one of these parts requires discretization. The interior section
exposed by the plane cutting the body does not represent a boundary, and
therefore it does not require discretization.

2 - In GMRs with boundaries extending to infinity, a GMR may have open
boundaries. However, this must be indicated through the use of the EXTE
card or by enclosing the open boundary with Enclosing elements (see the
ENCL card ). Note : One of the above devices MUST be used in an infinite
region.

A GMR may have multiple internal boundaries in addition to a single external

boundary.

Examples of Use -

**GMR

ID REG1

MATE STEEL

TREF 70.0

TINT 70.0

POINT
1 10.0 0.0 2.0
2 1¢.0 1.0 2.0
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5.3.2 REGION IDENTIFICATION

ID NAME

Status - REQUIRED
Fuli Keyword - ID
Function - This card provides the identifier for the GMR.
Input Variables -

NAME (Alphanumeric) - REQUIRED
Additional Information -

The NAME must be eight or less alphanumeric characters. Blank characters
embedded within the NAME are not permitted.

The name provided on this card is used to reference the GMR in other portions
of the input as well as in the BEST-FSI output file.

The NAME must be unique compared to all the other GMR names defined in
the problem.

Examples of Use -

**GMR
ID REG1
MATE STEEL
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MATE NAME

Status - REQUIRED
Full Keyword - MATE
Function - This card identifies the material property set for the GMR.
Input Variables -
NAME (Alphanumeric) - REQUIRED

Additional Information -

The material name reference must have been previously defined in the material
property input (identified as NAME on the ID card in **MATE input).

Examples of Use -

* *GMR
ID GMR1
MATE STEEL
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TINT TEMP

Status - OPTIONAL
Full Keyword - TINTEGRATION
Function - Defines the temperature at which the material properties will be evaluated
for use in integration of this GMR.
Input Variables -
TEMP (Real) - REQUIRED
Additional Information -

If temperature dependent material properties were input in **MATE, the ma-
terial properties used in the integration of the GMR will be calculated based
on the temperature specified on this card using linear interpolation.

For problems in which the temperature changes in time and/or space, it 1s
recommended that the reference temperature be chosen as the (time/volume
weighted) average temperature over the GMR.

If this card is not input then the reference temperature is used (see TREF card).

Examples of Use -

1. Specify the integration temperature at which the material properties are eval-
uated.

**GMR
ID REG1
MATE MAT1
TINT 70.0
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TREF TEMP

Status - OPTIONAL (used in temperature dependent problems)
Full Keyword - TREFERENCE

Function - This card defines the reference (or initial) temperature (i.e. the datum
temperature of the zero stress-strain state) of the region at the beginning

of a temperature dependent problem.
Input Variables -
TEMP (Real) - REQUIRED
Additional Information -
If this card is not input, the initial temperature is assumed as zero.
Examples of Use -

1. Specify the initial temperature of the region REG1.

*tGMR
ID REG1
MATE MAT1
TREF 70.0
TINT 100.0
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VINT VELX VELY

Status - OPTIONAL
Full Keyword - VINTEGRATION
Function - Defines the convective velocity which will be used for kernel evaluation in
convective heat transfer and fluid dynamics analysis.
Input Variables -
VELX (Real) - REQUIRED
Reference velocity in the x-direction
VELY (Real) - REQUIRED
Reference velocity in the y-direction
Additional Information -
If this card is not specified in a convective analysis, then the convective velocity
for the current region is assumed to be zero.
Examples of Use -

1. Specify a non-zero integration convective velocity for the region named OUTER.

**GMR
ID OUTER

MAT MAT1
VINT 1.0 0.0 § FREE STREAM VELOCITY
0.0

VREF 1.0
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VREF VELX VELY

Status - OPTIONAL
Full Keyword - VREFERENCE
Function - Defines the reference velocity or initial velocity of a region in a fluid dy-
namics problem.
Input Variables -
VELX (Real) - REQUIRED

Reference velocity in the x-direction

VELY (Real) - REQUIRED

Reference velocity in the y-direction
Additional Information -

If this card is not present in a fluid dynamies or convective heat transfer analysis,
then the reference velocity is assumed to be zero.

Examples of Use -

1. Specify the components of the reference (initial) velocity of the region called
GMR2.

**GMR
ID GMR2
MAT MAT1
TINT 460.0
TREF 0.0
VREF 0.8 0.0
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EXTE

Status - OPTIONAL
Full Keyword - EXTERIOR
Function - This card identifies that the present GMR is a part of a infinite region.
Input Variables - NONE
Additional Information -
The entire outer boundary of the GMR must extend to infinity.
Infinite elements should not be used in the GMR.

In an analysis of a problem of a body of infinite extent, it is not neccessary
to fix the boundary of the body for the sole purpose of preventing rigid body
motions. Basically, the mathematics of the problem assumes zero displacement
at infinity.

When the entire outer boundary of a GMR is at infinity (e.g cavity in an
infinite space) the outer boundary can not and should not be modeled. Instead
the EXTE card should be inserted in the GMR input to indicate this fact. The
purpose of this card is to account for the contributions of the unmodeled infinite
boundary in the calculation of the diagonal terms of the F matrix (Rigid body
translation technique).

An alternative method to account for infinite boundaries is to model the infi-
nite boundary with enclosing elements (see ENCL card). However, this is not
recommended in problems when the entire outer boundary extends to infinity,
since the use of enclosing elements would be more expensive then using the

EXTE card.

Examples of Use -
1. Specify that the region GMR1 is part of an infinite region.

**GMR

ID GMR1

MAT MATI1

TREF 70.0

EXTERIOR

POINTS
1 0.0 212.00
2 41.36 207.93
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SOLI

Status - OPTIONAL

Full Keyword - SOLID

Function - Identifies a solid region within a fluid dynamics analysis.
Input Variables - NONE

Additional Information -

The SOLID keyword permits the analysis of fluid-structure interaction prob-
lems. The FLUID keyword must be selected in **CASE. All regions are then
assumed to be fluid, unless the SOLID keyword appears.

When this option is selected, a suitable elastic or thermoelastic material model
must also be selected with the MATE card.

Examples of Use -

1. Analyze the fluid-structure interaction problem. associated with flow past a
turbine blade.

**GMR
ID FLUID
MATE GAS1

**GMR
ID BLADE
MATE HASTX
SOLID
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5.3.3

NODAL POINT DEFINITION

POIN

Status - REQUIRED (for defining the GMR)
Full Keyword - POINTS

Function - This card initiates the definition of nodal points for the boundary element

and volume cell discretization of the GMR.

Input Variables - NONE
Additional Information -

Sampling Points for which results are requested {at any point on or in the body)
is input under the Sampling Point section.

BEST-FSI User Manual
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(NONE) NNODE X Y

Status - REQUIRED
Full Keyword - NO KEYWORD REQUIRED

Function - This card defines the node number and the Cartesian coordinates for a
single nodal point.

Input Variables -
NNODE (Integer) - REQUIRED
User node number for the node.
X,Y (Real) -REQUIRED
Cartesian coordinates of the node. For 2-D problems only two coordinates x
and y need to be input.

Additional Information -
This card is input once for each point.
User node numbering must be unique.
All node numbers must be less than or equal to 99999.

Nodal coordinates for both surface and volume discretization should be input
here. If a node is not referenced in the surface or volume discretization, then it
is ignored.

Nodal points used for hole and insert elements CANNOT be defined here. In-
stead, the nodal points for holes and inserts must be defined under their re-
spective section.

Sampling Points for which results are requested (at any point on or in the body)
is input under the Sampling Point section.
Examples of Use -
1. Define a set of nodal point coordinates in GMR1 for a 2-D analysis.

**GMR
ID GMR1
MAT MAT 1
TREF 70.0
POINTS
1 0.0 0.0
2 0.5 0.0
3 1.0 0.0
4 1.0 0.5
5 1.0 1.0
6 0.5 1.0
7 0.0 1.0
8 0.0 0.5
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534 SURFACE ELEMENT DEFINITION

SURF NAME

Status - REQUIRED (minimum of one per GMR)
Full Keyword - SURFACE
Function - This card initiates the definition of a surface of the current GMR.

Input Variables -
NAME (Alphanumeric) - REQUIRED
The name of the surface being defined.
Additional Information -

The NAME must be eight or less alphanumeric characters. Blank characters
embedded within the NAME are not permitted.

The names assigned to the various surfaces in the problem must be unique.

Examples of Use -

1. Define a 2-D quadratic surface named SIDE

SURFACE SIDE

TYPE QUAD
ELEMENT
1001 1 2 3
1002 3 4 5
1003 5 6 7
1004 7 8 1
NORMAL +
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TYPE ATYPE

Status - REQUIRED (if REFNAME not input)
Full Keyword - TYPE

Function - This card defines the variation of field quantities over the elements of the
current surface.

Input Variables -

ATYPE (Alphanumeric) - REQUIRED

Allowable values are LINE, QUAD and QUAR
LINEar - linear shape function
QUADratic - quadratic shape function
QUARtic - quartic shape function

Additional Information -

See figure on subsequent pages.

A TYPE card must be defined for each surface.

All of the elements of a single surface must have the same type of variation.
Different surfaces of the same GMR may have different variation.

A surface may consist of a single element. By contrast a single surface may
define the entire boundary of a GMR.

Examples of Use -

1. Specify that the field quantities vary quadratically over the elements of the
surface SURF1.

SURFACE SURF1

TYPE QUAD

ELEMENT
101 i 2 3
102 3 4 5
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2D BOUNDARY ELEMENT FUNCTIONAL VARIATION

LINE

QUAD

QUAR

Figure for **GMR: TYPE card

(Sec clement connectivity card for geometrical input)

BEST-FSI User Manual March, 1952 Page 5.67



Definition of Geometry

ELEM

Status - REQUIRED (if REFNAME not input)
Full Keyword - ELEMENTS

Function - Signals the beginning of the connectivity definition for surface elements of
the current surface.

Input Variables - NONE
Additional Information - NONE
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(NONE) NEL NODEL ... NODEN

Status - REQUIRED (minimum of one card if TYPE is input)
Full Keyword - NO KEYWORD REQUIRED
Function - Each card defines the connectivity for a single surface element.

Input Variables -
NEL (Integer) - REQUIRED
User element number.
NODE]1 ... NODEN (Integer) - REQUIRED

User node numbers of the two or three nodes (for 2-D) for defining the geometry
of the element. Every surface domain must have two or three nodes, regardless
of whether TYPE = LINE, QUAD or QUAR. (The shape functions for geometry
is always quadratic)

Additional Information -

This card is input once for each element.

The input card need not specify whether a two or three node element is being
defined. For 2-D, the input must be consecutive, starting with an end node,
and adjacent elements must be defined in the same direction. The direction is

defined with the NORM card.
User element numbers must be unique and less than or equal to 99999.

All of the nodes referenced in the surface element connectivity must have been
defined previously in POINts.

Whenever a GMR is of infinite extent either the EXTE card must be used or
ENCLosing elements must be defined.

Examples of Use -

1. Specify the connectivity definition for elements of the surface SIDE using four
3-noded quadratic elements.

SURFACE SIDE

TYPE QUAD
ELEMENT
101 1 2 3
102 3 4 5
103 5 6 7
104 7 8 1
NORMAL +
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2-D BOUNDARY ELEMENT FAMILY FOR GEOMETRICAL INPUT

P

1
Linear 2-noded Element

Quadratic 3-noded Element

Figure for *GMR: Element connectivity card
(see TYPE card for functional variation)
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NORM SIGN

Status - REQUIRED - (for 2-D)
Full Keyword - NORMAL

Function - Defines the outer normal direction in the current GMR.

Input Variables -
SIGN (symbol) - REQUIRED

Allowable symbols are “ + ” or “ -7

+ defines the outward normal as up when numbering an element from right to
left while looking down the = axis (see figure).

_ defines the outward normal as down when numbering an element from right
to left while looking down the = axis (see figure).

Additional Information -

All elements of a GMR must follow the same convention.

Examples of Use -

1. Definte the direction of the outward normal to the surface SURF1 as positive.

SURFACE SURF1

TYPE QUAD
ELEMENTS
1 1 2 3
2 3 4 5
3 5 6 7
4 7 8 1
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input shown is for
FLAG = +
on NORM card for 2-D

Y
input shown is for
FLAG = -
on NORM card for 2-D
Y
Figure for **GMR: NORM card
Two-dimensional outer.normal convention
(In 2-D, all elements in a single GMR must use the
same convention)
BEST-FSI User Manual March, 1992
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5.3.9

ENCLOSING ELEMENT DEFINITION

ENCL

Status - OPTIONAL
Full Keyword - ENCLOSING

Function - Signals the beginning of the connectivity definition for enclosing elements

of the GMR. Enclosing elements are used in GMRs of infinite extent in
order to create a fictitious boundary required for correct calculation of the
matrix coefficients.

Input Variables - NONE
Additional Information -

In a GMR of infinite extent, it is neccessary to use the EXTE card if enclosing
elements are not used.

The nodes in an enclosing element do not become boundary source points (part
of the system equation) unless they are also part of a regular boundary. The only
purpose of enclosing elements is to define an arbitrary surface for integration
so that the contribution of the unmodelled infinite boundary can be taken into
account in the calculation of the diagonal terms of the F matrix ( Rigid Body
Translation Technique).

The geometry of the surface defined by the enclosing elements 1s arbitrary since
the contribution (for a particular source point) of any surface enclosing the
region is equivalent. Therefore, the discretization of enclosing elements should
be crude, utilizing the minimum number of enclosing elements neccessary to
enclose the region. It is, however, recommended that the surface defined by the
enclosing elements does not pass too close (relative to the size of the enclosing
element) to a boundary source point belonging to a regular element contained
in that particular region.

In an analysis of a problem of a body of infinite extent, it is not neccessary to fix
the boundary of the body for the sole purpose of preventing rigid body transla-
tion. Basically, the mathematics of the problem assumes zero displacement at
infinity.

Examples of Use -

1. Define enclosing elements for a two-dimensional body.

ENCL
55 g5 105 115
56 115 125 135
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(NONE) NEL NODE1 .... NODEN

Status - REQUIRED (minimum of one card if ENCL is input)
Full Keyword - NO KEYWORD REQUIRED
Function - Each card defines the connectivity for a single enclosing element.

Input Variables -
NEL (Integer) - REQUIRED

User element number (required for user’s purpose only)

NODEI . . NODEN (Integer) - REQUIRED

User number for the node for defining the geometry of the enclosing element.
N=3 (for 2-D)

Additional Information -
Only THREE noded enclosing elements are allowed in 2-D.
All of the connectivity for enclosing elements must be defined such that their
normals are positive.

Examples of Use -

1. Define enclosing elements.

ENCLCSING ELEMENTS
1001 1 2 3
1002 3 4 5
etc....
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5.3.6 VOLUME CELL DEFINITION

VOLU NAME

Status - OPTIONAL
Full Keyword - VOLUME

Function - This card initiates the definition of a volume for the current GMR.

Input Variables -
NAME (Alphanumeric) - OPTIONAL

The name of the volume being defined. (For user’s use only)

Additional Information -

In the present version of BEST-FSI, only one volume discretization per GMR is
allowed. This means only one type (see next card definition) of cells can exist

in a single GMR.

Examples of Use -

1. Define three, 8-Noded quadratic volume cells for two-dimensional analysis.

VOLUME

TYPE QUAD

CELL

1001 1 2 3 103 203 202 201 101
1002 3 4 5 105 205 204 203 103
1003 5 & 7 107 207 206 205 105
FULL

$(end of volume cell input)
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TYPE ATYPE BTYPE

Status - REQUIRED (if VOLU is input)
Full Keyword - TYPE

Function - This card defines the variation of field quantities over the volume cells of
the current GMR.

Input Variables -
ATYPE (Alphanumeric) - REQUIRED
Allowable values are LINE, QUAD, or QUAR.
LINEar - Linear shape functions
QUADratic - Quadratic shape functions
QUARtic- Quartic shape functions
BTYPE (Alphanumeric) - OPTIONAL (for fluid dynamics only)
Allowable values are LAGR and SERE. The Default is SERE.
LAGRangian - Lagrangian type shape functions
SEREndipity - Serendipity type shape functions
Additional Information -
Only one TYPE card for cells is allowed per GMR.
QUARtic variation is only available for two-dimensional fluid dynamics. The

program automatically generates the extra source points required for a quartic
functional variation.

Examples of Use -

1. Specify that the variation of field quantities over the volume cells in GMR1 is
quadratic in nature.

**GMR
ID GMR1

VOLUME
TYPE QUAD
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CELL

Status - REQUIRED (if VOLU is input)

Full Keyword - CELLS

Function - Signals the beginning of the definition of volume cell input connectivity.
Input Variables - NONE

Additional Information -

Cell connectivity information is input on data cards following this card.
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(NONE) NCELL N1 N2 .... NK

Status - REQUIRED (If VOLU is input)
Full Keyword - NO KEYWORD REQUIRED
Function - Defines a volume cell in terms of previously defined nodal points.

Input Variables -

NCELL (Integer) - REQUIRED
User identification for cell being defined.
N1,N2,...,.NK (Integer) - REQUIRED
User nodal point numbers for cell nodes.
K=3,4,6,0r 8 for 2-D

Additional Information -

If necessary, this card may be input more than once for each cell. The cell
number must be repeated on each card.

2-D: Cell numbering must begin at the corner and be numbered consecu-
tively in either direction.

Nodal points of the surface discretization may also be used in the volume
discretization (i.e., a cell face may match up with a boundary element). This
is recommended when possible, since it somewhat reduces the computation
required. Nodal points of the volume discretization lying on the surface must
be nodal points of the surface mesh.

Examples of Use -

1. Define a set of volume cells consisting of a cell number and the connectivity
information. There are three 8-noded volume cells with quadratic variation.

VOLUME

TYPE QUAD

CELL
501 1 2 3 103 203 202 201 101
502 3 4 5 105 205 204 203 103
503 5 6 7 107 207 206 205 105
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k|
2
3
1 ™
5 ¢« 6 1
Linear 3-noded Cell Quadratic 6-noded Cell
3 2 4 3
r ‘ 5
6
2
4 8
; 7 e
Linear 4-noded Cell Quadratic 8-noded Cell

Figure for**GMR: Volume Cell Connectivity
Two-dimensional Volume Cells
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FULL

Status - OPTIONAL
Full Keyword - FULL region of cells

Function - Identifies the GMR is completely filled with cells and that the Indirect Tech-
nique should be used to accurately calculate the coeflicient corresponding
to a singular point in the volume integration.

Input Variables - NONE
Additional Information -
The GMR must be completely filled by cells.

If FULL is not used, all relevant coefficients are calculated by numerical volume
integration.

For highly accurate results, it is recommended that a GMR be completely filled
with cells and that the FULL card option be exercised.

If the FULL card is included in a GMR for a transient analysis with the RECUr-
ring initial condition option, then convolution is avoided for that GMR. The
effect of past events is determined by evaluating an initial condition volume
integral at each time step.

Examples of Use -
1. Specify that the GMR (GMR1) is completely filled with volume cells.

VOLUME

TYPE QUAD

CELL
501 1 2 3 103 203 202 201 101
502 3 4 5 105 205 204 203 103
503 5 € 7 167 207 206 205 105

FULL
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5.3.7 SAMPLING POINT DEFINITION

SAMP

Status - OPTIONAL

Full Keyword - SAMPLING-POINTS

Function - This card signals the fact that a set of sampling points for which results are
requested at any point on or in the body, will be provided for the current

GMR.
Input Variables - NONE
ITYP1 (Alphanumeric) - REQUIRED

Additional Information -

This card is used to define points at which velocities, stresses, strains, temper-
atures, pressures and fluxes are to be calculated. The print flag for sampling
points may be set in **CASE input. If, however, nothing is specified in **CASE
for sampling points, this flag is set by default depending upon analysis type.

This card is followed by data cards defining the node number and coordinates
of the sampling points.

Examples of Use -

1. Request result information at three interior points

SAMPLING-POINTS
1001 0.333 0.2
1002 0.25 0.1
1003 0.2 0.5

5
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(NONE) NNODE X Y

Status - REQUIRED (if SAMP is input)
Full Keyword - NO KEYWORD REQUIRED

Function - Defines the coordinates of the sampling points for which output will be
reported.

Input Variables -
NNODE (Integer) - REQUIRED

User number for the node.

X,Y (Real) - REQUIRED Cartesian coordinates of the nodal point. For
2-D problems only x and y coordinates are needed.

Additional Information -
This card is input once for each point.

User nodal point numbers must be unique, including the surface nodal points
and any additional nodal points created for the volume discretization, or dis-

cretization.

Point numbers must be less than or equal to 99999.
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5.4 || DEFINITION OF GMR COMPATIBILITY

When a body is modelled as an assembly of several GMRs suitable conditions must
be specified to define the connections among the various regions. In the present version of
BEST-FSI compatibility is defined between the interface surfaces of each pair of contacting
regions. Four types of compatibility are allowed:

1 - Bonded contact : Continuity of all velocity components is imposed across the
interface.

2 - Sliding contact : Continuity is required only for the component of velocity normal
to the interface. The tractions, in both GMRs, in the tangent plane to the interface
are set to zero.

3 . Resistance contact : Thermal resistance is imposed between regions.

4 - Cyclic contact : Symmetric elements within a cyclic symmetric part can have
imposed symmetric deformation on these elements.

Continuity of temperature or pressure, when applicable, is imposed across the interface in
a similar manner.

A single nodal point location may be part of at most two GMRs. A single nodal point
may be referenced in more than one interface definition data set as long as only two GMRs
are involved. A single location must have a unique node number in each GMR. Various
acceptable and unacceptable arrangements of GMRs are illustrated in the figure following

the **INTE card.

The interface compatibility must be specified in such a way that there is one to one
correspondence between the source points (field variable nodes) of the two GMR’s that are
involved. The input required to specify a single interface between two GMRs is described
in the following pages, and a list of keywords recognized in the interface input are given
below.

SECTION KEYWORD PURPOSE

5.4.1 Interface Definition Input Card
**INTE Start of interface compatibility condition

5.4.2 Definition of interface surface 1

GMR name of first GMR
SURF surface on first GMR
ELEM element of surface
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SECTION KEYWORD

5.4.3 Definition of interface surface 2
GMR
SURF
ELEM

5.4.4 Type of interface conditions
BOND
SLID
RESI

5.4.5 Cyclic Symmetry interface definition
CYCL
ANGL
DIR

5.4.6 Additional Interface Control Options
TDIF

VDIF

BEST-FSI User Manual

Definition of GMR Compatibility
PURPOSE

name of second GMR
surface on second GMR

element of surface

bonded interface connection
sliding interface connection
thermal resistence across interface

cyclic symmetry interface definition
angle for cyclic interface
axis of rotation for cyclic interface

reference temperature difference across
interface
reference velocity difference across interface
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Definition of GMR Compatibility

5.4.1

INTERFACE DEFINITION INPUT CARD

*xINTE

Status - OPTIONAL
Full Keyword - INTERFACE

Function - Indicates the beginning of an interface definition.
Input Variables - NONE
Additional Information -

A **INTE card must begin each interface definition. The complete definition
of the connection between two GMRs may require more than one data set, since
each data set can refer to only one surface.

The data set initiated with this card may be repeated as many times as required.

The interface surface reference below must be such that the nodes and elements
of one GMR can be superimposed on the nodes and elements of the other GMR
by translation and/or rotation, without any deformation.

Note that each of the two GMR’s involved in the interface definition must
contain elements that lie on the interfacial surface.

The interface data sets must follow all GMR definitions, and must precede any
boundary condition data sets.

Examples of Use -

1. Defines the interface of two GMR’s (default is perfectly bonded connection).

** INTERFACE
GMR REG1
SURFACE TOP
ELEMENT 3 4 5
GMR REGZ
SURFACE BOTTOM
ELEMENT 103 104 105
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3
1
2 3 4
2
3
2
1

Acceptable Connections

3

Unacceptable Connection

Figure for **INTE : card Connections among GMRs
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5.4.2 DEFINITION OF INTERFACE SURFACE 1

GMR IDGMR

BEST-FSI User Manuai March, 1992

Status - REQUIRED

Full Keyword - GMR
Function - Identifies the first GMR for which the interface surface is to be defined.

Input Variables -
IDGMR  (Alphanumeric) - REQUIRED

IDGMR is the identifier for the GMR as input during the geometry definition
(NAME on ID card in **GMR input).

Additional Information -

A given interface surface must lie entirely on the surface of a single GMR. If an
interface compatibility condition is to be applied with more than one GMR, a
separate interface compatibility must be defined for each case.

Examples of Use -
1. Identifies the first GMR, say GMRI, of which the interface surface is a part.

** INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 101 102 103 104
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SURF IDSUR

Status - REQUIRED
Full Keyword - SURFACE
Function - Identifies the surface within the (first) selected GMR which embodies the
interface surface (NAME on SURF card in **GMR input).
Input Variables - '
IDSUR (Alphanumeric) - REQUIRED

Additional Information -

An interface surface must be contained entirely within a single surface. If the
interface compatibility condition is to be applied to more than one surface, then
a separate interface compatibility must be defined for each surface involved.

The SURF card may conclude the required input for a interface definition. If
the SURF card is not followed by a ELEM card, then BEST-FSI will apply the
interface compatibility condition to all of the elements in the surface IDSUR.

Examples of Use -
1. Identifies the interface surface, say SURF1, as part of the first GMR.

**INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 109 110
GMR GMR2
SURFACE SURF2
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ELEM EL1 EL2 ... ELN

Status - OPTIONAL

Full Keyword - ELEMENTS

Function - Specifies the elements of the surface IDSUR to which an interface compat-

ibility condition is to be applied.

Input Variables -
EL1,EL2,..,.ELN (Integer) - REQUIRED
User element numbers of the elements of surface IDSUR which forms the inter-
face surface.

Additional Information -

The effect of this card is to restrict the application of the compatibility condition
to a portion of the surface IDSUR.

This input may be continued on more than one card. Each card must begin
with the keyword ELEM.

If the ELEM card is specified, BEST-FSI will apply the interface compatibility
condition only to the elements specified on this list.

In the present version of BEST-FSI , interface compatibility can not be specified
at individual nodes.

Examples of Use -

1. Specifies three elements, 120, 121 and 122, for interfacial compatibility on the
surface identified by the preceding SURFACE card.

** INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 120 121 122
GMR GMRZ
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59.4.3 DEFINITION OF INTERFACE SURFACE 2

GMR IDGMR

Status - REQUIRED
Full Keyword - GMR
Function - Identifies the second GMR for which the interface surface is to be defined.

Input Variables -

IDGMR (Alphanumeric) - REQUIRED

IDGMR is the identifier for the GMR as input during the geometry definition
(NAME on ID card in **GMR input).

Additional Information -

A given interface surface must lie entirely on the surface of a single GMR. If an
interface compatibility condition is to be applied with more than one GMR, a
separate interface compatibility must be defined for each case.

Examples of Use -
1. Identifies the second GMR, say GMR2, of which the GMR surface is a part.

** INTERFACE
GMR GMR1
SURFACE SURF1l
ELEMENTS 101 102
GMR GMR2 |
SURFACE SURF2
ELEMENTS 201 202
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SURF IDSUR

Status - REQUIRED
Full Keyword - SURFACE

Function - Identifies the surface within the (second) selected GMR which embodies
the interface surface (NAME on SURF card in **GMR input).

Input Variables -
IDSUR (Alphanumeric) - REQUIRED
Additional Information -

An interface surface must be contained entirely within a single surface. If the
interface compatibility condition is to be applied to more than one surface, then
a separate interface compatibility must be defined for each surface involved.

The SURF card may conclude the required input for a interface definition. If
the SURF card is not followed by a ELEM card, then BEST-FSI will apply the
interface compatibility condition to all of the elements in the surface IDSUR.

Examples of Use -
1. Identifies the interface, say SURF2, as part of the second GMR.

** INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 101 102
GMR GMR2
SURFACE SURF2
ELEMENTS 201 202
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ELEM EL1 EL2 ... ELN

Status - OPTIONAL
Full Keyword - ELEMENTS

Function - Specifies the elements of the surface IDSUR to which an interface compat-
ibility condition is to be applied.

Input Variables -

EL1,EL2,.,ELN (Integer) - REQUIRED
User element numbers of the elements of surface IDSUR which forms the inter-
face surface.

Additional Information -

The effect of this card is to restrict the application of the compatibility condition
to a portion of the surface IDSUR.

This input may be continued on more than one card. Each card must begin
with the keyword ELEM.

If the ELEM card is specified, BEST-FSI will apply the interface compatibility
condition only to the elements specified on this list.

In the present version of BEST-FSI , interface compatibility can not be specified
at individual nodes.

Examples of Use -

1. Specifies three elements, 210, 211 and 212, for interfacial compatibility on the
surface identified by the preceding SURFACE card.

**INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 101 102 103
GMR GMR2
SURFACE SURF2
ELEMENTS 210 211 212
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5.4.4 TYPE OF INTERFACE CONDITION

BOND

Status - OPTIONAL
Full Keyword - BONDED
Function - Identifies a fully bonded interface.
Input Variables - NONE
Additional Information -
When this card is input continuity of all variables is imposed across the interface.

This is the default condition when the type of interface is not explicitly defined.

Examples of Use -
1. Defines a perfectly bonded interface of three boundary elements.

** INTERFACE
GMR REG1
ELEMENT 3 4 5
GMR REG2
ELEMENT 103 104 105
BOND
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SLID

Status - OPTIONAL

Full Keyword - SLIDING

Function - Identifies a sliding interface.
Input Variables - NONE

Additional Information -

When this card is input only normal velocity compatibility is imposed across the
interface. The two GMRs are free to move in the plane tangent to the interface,
however, the surfaces remain in contact even under tension. This freedom may
require the specification of additional boundary conditions to restrain rigid body

motion.

Examples of Use -

1. Defines a sliding interface of five boundary elements.

**INTERFACE
GMR REGl
ELEMENT 101 102 103 104 105
GMR REG2
ELEMENT 210 212 213 214 215
SLID
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RESI R1

Status - OPTIONAL
Full Keyword - RESISTANCE

Function - Identifies an interface with thermal resistance between the corresponding
surfaces. The flux across this interface is linearly related to the temperature
difference between the two surfaces.

Input Variables -
R1 (Real) -REQUIRED
Thermal resistance coefficient (R)
Additional Information -
The RESIstance option utilizes the relationship:

1
n= ﬁ(al —62)

where
6 local temperature of GMR 1.
6, local temperature of GMR 2.
@ local heat fux from GMR 1.

The user is responsible for providing R in the proper units, consistent with the
specification of material properties, geometry and boundary conditions.

The resistance R should be a positive real number (R > 0). If zero is input, the
coefficient will be automatically reset to 1.0E-10.

Examples of Use -
1. Defines thermal resistance at the interface between two regions which were at
the same initial temperature (otherwise, a TDIF card should be inserted after
the RESI card).

** INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENTS 12
GMR GMR2
SURFACE SURF2
ELEMENTS 21
RESI 1.0
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5.4.5

CYCLIC SYMMETRY PARAMETER DEFINITION

CYCL

Status - OPTIONAL

Full Keyword - CYCLIC

Function - Identifies a cyclic symmetry boundary condition.
Input Variables - NONE

Additional Information -

This type of interface condition establishes a relationship between two boundary
surfaces. In order for this condition to be applied the two boundary surfaces
involved must be such that one can be exactly superimposed on the other
by a rotation about a specified axis passing through the origin of the global
coordinate system. Further, the imposed boundary conditions of the problem
must be such that the deformed shape of one boundary surface can be exactly
superimposed on the other by the same rotation. This option is intended for
the analysis of (periodic) structures subjected to periodic loading.

Rigid body translation along the cyclic axis and rigid body rotation about that
same axis are not automatically prevented by invoking the CYCLIC option.
Consequently, these motions must be constrained explicitly by the user.

Since a cyclic interface condition involves all components of displacement and
traction, no other boundary condition may be applied to the elements that are
involved.

Local coordinate systems are established for each node on the second boundary
surface. As a result, no other local system may be defined for these nodes.
Furthermore, in the current version, it is recommended that displacement (or
velocity) boundary conditions not be applied to any of the second surface nodes.

In the present version of BEST-FSJ, a boundary surface to which a cyclic inter-
face is applied may not intersect another interface.

A cyclic interface condition is time independent.

Examples of Use -

1. Activate option for cyclic symmetry boundary condition.

**INTERFACE

GMR GMR1
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SURFACE SURF1

ELEMENT 3

GMR GMR1

SURFACE SURF1
ELEMENT 5

CYCLIC

ANGLE 20

DIRECTION 0. 0. 1.
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ANGL THETA

Status - REQUIRED (if CYCL is specified)
Full Keyword - ANGLE

Function - Specifies the angle of rotation between the two surfaces referenced in the
cyclic symmetry condition.

Input Variables -

THETA (Real) - REQUIRED

THETA is the rotation angle (in degrees). A positive rotation is counterclock-
wise when looking along the positive axis direction.

Additional Information - NONE

Examples of Use -

1. Specifies an angle of 20 degrees between the two surfaces referenced in the
cyclic symmetry condition.

**INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENT 3
GMR GMR1
SURFACE SURF1
ELEMENT 5
CYCLIC
ANGLE 20
DIRECTION 0. 0. 1.
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DIRE XY 2

Status - OPTIONAL
Full Keyword - DIRECTION

Function - Defines the positive direction of the axis of rotation, if CYCL is specified.

Input Variables -

X,Y,Z (Real) - REQUIRED
Components of a vector along the positive direction of the axis of rotation.

Additional Information -

This card may be omitted. In this case the rotation axis defaults to the positive

Z-axis.
Examples of Use -

1. Defines that the positive direction of the axis of rotation is along the z-axis.

**INTERFACE
GMR GMR1
SURFACE SURF1
ELEMENT 3
GMR GMR1
SURFACE SURF1
ELEMENT 5
CYCLIC
ANGLE 20
DIRECTION 0. 0. 1.
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5.4.6 ADDITIONAL INTERFACE CONTROL OPTIONS

TDIF

Status - OPTIONAL
Full Keyword - TDIFFERENECE

Function - Signals that there is a difference in the reference temperatures of the
two regions involved in the current interface. '

Input Variables - NONE

Additional Information -

The TDIF card must be included in the interface definition for any temperature-
dependent problem for which the reference temperatures of the adjoining re-
gions are different. In such situations, failure to include this card will produce
incorrect results.

It is expected that in future releases of BEST-FSI, the necessary checks will be
done automatically, and the TDIF card will no longer be needed.

Examples of Use -
1. Indicates that a difference in reference temperatures exists between the GMR’s,
REG1 and REG2, involved in the current interface.

**INTERFACE
GMR REG1
SURFACE TOP
ELEMENTS 101 102
GMR REG2
SURFACE BOTTOM
ELEMENTS 209 210
RESI 1.0
TDIF
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VDIF

Status - OPTIONAL
Full Keyword - VDIFFERENECE

Function - Signals that there is a difference in the reference velocities of the two
regions involved in the current interface.

Input Variables - NONE

Additional Information -
This card is applicable only for fluid dynamic analysis.

The VDIF card must be included in the interface definition for any fluid dy-
namics problem for which the reference velocities of the adjoining regions are
different. In such situations, failure to include this card will produce incorrect

results.

It is expected that in future releases of BEST-FSI , the necessary checks will be
done automatically, and the VDIF card will no longer be needed.

Examples of Use -
1. Indicates that a difference in reference velocities exists between the two GMR’s,

REG1 and REG2, involved in the current interface.

** INTERFACE
GMR REG1
SURFACE SURF1
ELEMENTS 25 26
GMR REG2
SURFACE SURF2
ELEMENTS 227 228
VDIF
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5.5 || DEFINITION OF BOUNDARY CONDITIONS

This section describes the boundary condition input set (BCSET) for the input of
boundary conditions applied at the surface of the given structure (or body). The input is
designed to allow the specification of time dependent boundary conditions in both local
and global coordinate systems. In order to allow the generality required, the input system
1s necessarily somewhat complex. Considerable simplification is possible for problems with
less general requirements.

In the boundary element method, the primary load variable is traction (or flux), which
acts over a surface area, not point forces (or sources) as in the finite element method. This
means that in defining the region of application of a boundary condition in BEST-FSI it is
necessary to specify both the nodal points and the elements involved.

A variety of options are provided for the definition of boundary conditions on the
surface of the part. Each distinct set of boundary condition data defines either numerical
values of variables over some portion of the surface of the part (or body), or establishes a
relationship among variables. As many sets of boundary condition data may be used, as are
required to completely specify the problem. A nodal point or element may be referenced
in more than one set of boundary condition data.

A common process to much of the boundary condition input is the specification of
the time dependent variables over the surface. To simplify the subsequent discussion of
the various boundary condition types, the recurring definition of space/time variation is
described only once in section 5.5.6.

SECTION KEYWORD PURPOSE
9.5.1 Boundary Condition Set Card
**BCSET start of the B.C. definition
5.5.2 Boundary Condition Identification
ID name of B.C. set
5.5.3 ldentification of Boundary Condition Type
VALU for specified B.C. value input
RELA for B.C. relation between boundary quantities
LOCA for local definition of B.C.
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SECTION KEYWORD PURPOSE
5.5.4 Definition of Surface for Application of Boundary Conditions
GMR identifies a GMR
SURF identifies the surface for this B.C. set
ELEM identifies surface elements
POIN identifies surface points
TIME defines the time for input
5.5.5 Value Boundary Condition for Surface Elements
TRAC traction B.C. input
VELO velocity B.C. input
FLUX flux B.C. input
TEMP temp B.C. input
5.5.6 Definition of Space/Time variation
SPLI source (field variable) point list
T nodal value of B.C.

5.5.7 Relation Boundary Condition
CONV convection relation (between

temperature and flux)
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9.5.1 BOUNDARY CONDITION SET CARD

**BCSE

Status - REQUIRED

Full Keyword - **BCSET

Function - Identifies the beginning of a boundary condition data set.
Input Variables - NONE

Additional Information -

As many boundary condition data sets may be input as are required. Each
must begin with this card.

‘The boundary condition data sets must follow all GMR and INTERFACE def-
initions, and must precede any BODYFORCE data.

Examples of Use -

1. Fix the normal (local) displacement of all elements for on surface SIDE1 of
GMR REG?2 for all time ( no TIME card required)

**BCSET

ID UIFIX

VALUE

LOCAL

GMR REG2
SURFACE SIDEl
DISP 1
SPLIST ALL
T 10.0
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5.5.2 BOUNDARY CONDITION IDENTIFICATION

NAME

Status - REQUIRED
Full Keyword - ID

Function - Defines the identifier for the current boundary condition data set.

Input Variables -

NAME (Alphanumeric) - REQUIRED
User specified name of for the current data set.

Additional Information -

The NAME must be unique compared to all other boundary condition data set
names defined in the problem.

The NAME must be eight or less alphanumeric characters. Blank characters
embedded within the NAME are not permitted.

Examples of Use -

1. Define a set of displacement type boundary conditions with the name DISP1.

**BCSET
ID DISP1
SURFACE SURF1
ELEMENTS 104
POINT 108
DISP 1
SPLIST 108
T 1 0.0
**BCSET
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5.5.3 IDENTIFICATION OF BOUNDARY CONDITION TYPE

VALU

Status - OPTIONAL
Full Keyword - VALUE

Function - Identifies the boundary condition as one which will define the numerical
values of field variables.

Input Variables - NONE
Additional Information -

This card must not be used for relational boundary condition sets.

If VALU, RELA, or VARI do not appear in a boundary condition set, a value-
type set is assumed.

Examples of Use -

1. Used here to indicate that the value of a local traction type of boundary
condition is specified.

**BCSET
ID TRAC12
VALUE
LOCAL
GMR GMR1
SURFACE SURF1
ELEMENTS 17
TRAC 1
SPLIST ALL
T 1 -100.0
$end of input data
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RELA

Status - OPTIONAL
Full Keyword - RELATION

Function - Identifies the boundary condition as one which will define a relationship
between field variables (e.g. spring or convection boundary conditions}.

Input Variables - NONE
Additional Information -

This card is required for all boundary condition sets which define a relationship
between field variables. Therefore, this card must be included for SPRING or

CONVECTION boundary conditions.

Examples of Use -

1. The RELATION card is used in the following example to indicate specification
of convection type of boundary condition.

**BCSET
ID BCsl
RELATION
GMR GMR1
SURFACE SURF1
ELEMENTS 1 2 3 4
CONV 1.26 -100.0 § H = 1.26, TEMP (AMBIENT) = - 100.0
**BCSET
ID BCs2
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LOCA

Status - OPTIONAL
Full Keyword - LOCAL

Function - Indicates that input for the current boundary condition set will be in local
coordinates.

Input Variables - NONE
Additional Information -

In the present version of BEST-FSI this option is intended for the specifica-
tion of displacement, traction or spring constants normal to a {(not necessarily
plane) surface. Specification of conditions other than zero traction or flux in
the tangent plane of the surface is unreliable.

In the local coordinate system the outer normal direction is the first coordinate
direction.

Once a local boundary condition is specified on a node, the rest of the required
boundary conditions on that node must be specified in local coordinates.

Once a local boundary condition is specified on a node of an element, the rest
of the required boundary conditions on that element must be specified in local
coordinates.

Local boundary conditions are not applicable to scalar problems (i.e. heat
conduction; acoustics).
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Pressure T = 100.0

44pCSET
1D BCl
VALUE
LOCAL
GhR Gimn1
SURF SURF1
ELENENT 2 3
ThAC 1
SPLIST ALL
T1 -100.0

Figure for **BCSET: LOCAL card
Local traction boundary condition input
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5.5.4 DEFINITION OF SURFACE FOR APPLICATION OF

BOUNDARY CONDITIONS

In the boundary element method, the primary load variable is traction (or flux), which
acts over a surface area, not nodal forces (or sources) as in the finite element method. This
means that in defining the region of application of a boundary condition in BEST-FSI it is
necessary to specify both the nodal points and the elements involved.

If no boundary condition is specified (for a particular component) at a node, the
primary load variable (of that component) is assumed to be zero.

The input lines involved in defining the element and nodes for a particular boundary
condition set are described in this section.
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GMR IDGMR

Status - REQUIRED
Full Keyword - GMR

Function - Identifies the GMR of the surface on which the boundary condition is to
be defined.

Input Variables -

IDGMR (Alphanumeric) - REQUIRED
IDGMR is the identifier for the GMR as input during the geometry definition
(NAME on ID card in **GMR input).

Additional Information -

A given boundary condition set can involve only a single GMR. If a boundary
condition is to be applied to more than one GMR, a separate boundary condition
set must be defined for each GMR.

Examples of Use -

1. Identifies the GMR name REG1 in connection with the specification of bound-
ary conditions.

**BCSET
ID TRAC1
VALUE
GMR1 REG1
SURFACE SURF1
ELEMENTS 101 102

TRAC 1
SPLIST ALL
T 1 100.0

$ end of input data
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SURF IDSUR

Status - OPTIONAL
Full Keyword - SURFACE
Function - Identifies the surface within the selected GMR on which the boundary
condition is to be defined (NAME on SURF card in **GMR input).
Input Variables -
IDSUR (Alphanumeric) - REQUIRED
Additional Information -

Either this keyword or the HOLE keyword must be input for each boundary
condition set.

A boundary condition set can involve only a single surface. If a boundary
condition is to be applied to more than one surface, then a separate boundary
condition set must be defined for each surface involved.

It is recommended that, whenever possible, surfaces be made to coincide with
the regions over which boundary conditions are to be applied. This considerably
simplifies the definition of surface for application of boundary condition.

If the SURF card is not followed by an ELEM or POIN card, then BEST-FSI will
apply the boundary condition to all of the elements in the surface IDSUR.

Examples of Use -

1. Identifies the surface name SURF1 relevant to the specification of boundary
conditions.

**BCSET
ID TRAC1
GMR GMR1
SURFACE SURF1
ELEMENTS 101 102 103

TRAC 1
SPLIST ALL
T 1 100.0
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' #ABCSET
] 1 ncl
Element 2 | Element 3 VALUE
! GHMR GMR1
} ¢ | . |- SURF SUREL
1 2 3 5 FLEMENT 3 &—r
poINT 3
TRAC 2
SPLIST ALL
traction at NODE 3 is applied only over T1 100.0
element 3
' +4pCSET
Element 2 ' Element 3 ID BCl
' VALUE
| - | GR GhRl
T ! U SURF SURF1
1 -2 3 4 5 ELEMENT 2 3 &———
porut 3
TRAC 2
SPLIST ALL
traction at NODE 3 is applied over both T1 100.0

elements 2 and 3

Figure for **BCSET: SURF, ELEM, and POIN card
2-D Boundary subset definition
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ELEM EL1 EL2 ... ELN

Status - OPTIONAL
Full Keyword - ELEMENTS

Function - Specifies the elements of the surface IDSUR to which a boundary condition
is to be applied.

Input Variables -
EL1L,EL2,...ELN (Integer) - REQUIRED

User element numbers of the elements of surface IDSUR which are to be in-
cluded within the boundary condition set.

Additional Information -

The effect of this card is to restrict the application of the boundary condition
to a portion of the surface IDSUR.

This input may be continued on more than one card. Fach card must begin
with the keyword ELEM.

If the ELEM card is not followed by a POIN card, then BEST-FSI will apply the
boundary condition to all of the source points in the specified elements.

Examples of Use -

1. Specifies three elements on the surface SURF1 on which traction boundary
conditions are given.

**BCSET

ID DIsPp2

SURFACE SURF1

ELEMENTS 101 102 103
DISP 2

SPLIST ALL

T 1 0.0

**BCSET
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POIN P1 P2 ... PN

Status - OPTIONAL
Full Keyword - POINTS

Function - Restricts the application of a boundary condition to a subset of the source
points lying on the surface IDSUR.

Input Variables -
P1,P2,...PN (Integer) - REQUIRED
Additional Information -

This card restricts the application of the boundary condition to the source
points specified.

This card may be repeated as often as required. Each card must begin with the
keyword.

If the POIN card is specified, then BEST-FSI will apply the boundary condition
to and only to the source points specified in this list.

Examples of Use -

1. Time-dependent input (in the x-direction) for points 5, 6, 7, and 8 over ele-
ments 102 and 103.

**BCSET

ID BC1

VALUE

GMR REG3
SURFACE BOTTOM
ELEMENT 102 103
POINT 5 6 7 8
TIME 2.0 5.0 10.0
TRAC 1
SPLIST 6 7 5 8
T 1 100.0 100.0 100.0 100.0
T 2 200.0 200.0 300.0 300.0
T 3 500.0 600.0 700.0 200.0
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TIME T1 T2 ... TN

Status - OPTIONAL
Full Keyword - TIMES

Function - Specifies the times at which the variable involved in the boundary condition
set will be specified.

Input Variables -
T1 (Real) - REQUIRED

First time point for boundary condition specification.

T2,..,TN (Real) - OPTIONAL

Subsequent time points for boundary condition specification.
Additional Information -

This input may be continued on more than one card if required. Each card
must begin with the keyword TIME.,

The time values input on this card need not agree with the times at which
output was requested in the case control input. Different sets of time points
may be used for different boundary conditions in the same analysis.

The time points must be specifed in ascending order.

Boundary condition values at other than input times are calculated by linear
interpolation.

If a time card does not appear, the variables involved in the boundary condition
are assumed to be time independent. Consequently, only a single time point may
be specified for the SPACE/TIME VARIATION (as defined in section 5.5.6).
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300 T P T
g 200.
100. b - - —
< explicitly defined < implied
0 1 1 i 1 1 3
0. 1 2 3. 4 5 6 7
TIME

Example: semesSET

1D TRACT
VALUE
GiR Ghnt
suny surrl
ELEIFNT 3
TIME 1.0 2.0 3.0 3.5 4.0 5.0
TRAC %
EPLIST ALL
1 100,
200.
200,
100,
100.
J00.

T
NA S w N
DAPOSI

Figure for **BCSET: (all specified values)
VALUE vs. TIME For boundary condition input
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5.5.5

VALUE BOUNDARY CONDITIONS FOR SURFACE ELEMENTS

TRAC

IDIR

Status - OPTIONAL
Full Keyword - TRACTION

Function - Indicates that the IDIR component of traction will be specified for all nodes

of the current boundary condition set.

Input Variables -

IDIR (Integer) - REQUIRED

Defines the component direction in which traction is specified. For cartesian
coordinates:

1 - x direction
2 - y direction
For local coordinates:

1 - outer normal direction

Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

Up to two sets of traction and/or displacement specifications may be included
in the same boundary condition data set. All must refer to the same boundary
condition set. Only one condition (displacement or traction) may be applied in
a given component direction.

The default condition is always to set traction to zero. After all boundary
condition data sets have been processed, any boundary conditions not otherwise
specified will be treated as zero traction conditions.

The TRACTION input line must be immediately followed by the space/time
variation.

Examples of Use -

1. Defines a traction of magnitude 100.0 units in the positive y direction.
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Definition of Boundary Conditions

**BCSET
ID TRACI
VALUE
GMR REG1
SURFACE SURF1
ELEMENTS 105 106
POINTS 112 113 114
TRAC 2
SPLIST 112 113 114
T 1 100.0 106.0 100.0

Examples of Use -

9 Defines a traction of magnitude 160.0 units in the direction of the outward

normal.

**RBRCSET
VALUE
LOCAL
GMR  GMR1
SURFACE SURF1
ELEMENTS 101 102
TRAC 1
SPLIST ALL
T 1 100.0
$ end of data set
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Definition of Boundary Conditions
VELQ IDIR

Status - OPTIONAL
Full Keyword - VELOCITY

Function - Indicates that the IDIR component of velocity will be specified for all nodal
points contained in the current boundary condition set.

Input Variables -

IDIR  (Integer) - REQUIRED
Defines the component direction in which velocity is specified. For global coor-
dinates:

1 - x direction
2 - y direction
For local coordinates:
1 - outer normal direction
Additional Information -

This card can only be used in a boundary condition data set containing the
VALU card.

Up to two sets of traction and/or velocity specifications may be included in
the same boundary condition data set. All must refer to the same boundary
condition set. Only one condition (velocity or traction) may be applied in a
given component direction.

The default condition is always to set traction to zero. After all boundary
condition data sets have been processed, any boundary conditions not otherwise
specified will be treated as zero traction conditions.

The VELOCITY input line must be immediately followed by the space/time
variation.

Examples of Use -

1. Defines a rigid boundary wall on elements 11 and 12 belonging to surface
SURF1 which is also part of geometric region GMR1.

**BCSET

ID BOTTOM
VALUE

GMR GMR1
SURFACE SURF1
ELEMENTS 11 12
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Definition of Boundary Conditions

VELO 1
SPLIST ALL
T 1 0.0
VELO 2
SPLIST ALL
T 2 0.0
§ provide next set, if any, of boundary conditions
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Definition of Boundary Conditions
FLUX

Status - OPTIONAL
Full Keyword - FLUX

Function - Indicates that the flux will be specified for all nodes of the current boundary
condition set.

Input Variables - NONE
Additional Information -

This card can only be used in a boundary condition data set containing the
VALU card.

The specification of flux may be included with up to two sets of traction and/or
velocity specifications in the same boundary condition data set for thermovis-
cous analyses. All must refer to the same boundary condition set.

When applicable, the default condition is to set flux to zero.
The FLUX input line must be immediately followed by the space/time variation.
Examples of Use -

1. Defines zero flux conditions across three elements.

**BCSET
ID ENTER1
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 22 23 24

FLUX
SPLIST ALL
T 1 0.0
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TEMP

Status - OPTIONAL
Full Keyword - TEMPERATURE

Definition of Boundary Conditions

Function - Indicates that the temperature will be specified for all nodes of the current

boundary condition set.
Input Variables - NONE
Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

The specification of temperature may be included with up to two sets of trac-
tion and/or velocity specifications in the same boundary condition data set for
thermoviscous analyses. All must refer to the same boundary condition set.

When applicable, the default condition is to set flux to zero.

The TEMP input line must be immediately followed by the space/time varia-

tion.

Examples of Use -

1. Indicates that a constant temperature is specified on the relevant elements.

**BCSET
ID TOP
VALUE
GMR GMR2

SURFACE SURF2
ELEMENTS 218 213

VELO 1
SPLIST ALL
T 1 0.0
TEMP
SPLIST ALL
T 1 0.0
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Definition of Boundary Conditions

5.5.6

DEFINITION SPACE/TIME VARIATION

SPLI

N1 N2 ... NN

Status - REQUIRED
Full Keyword - SPLIST (source point list)
Function - Defines the order in which nodal values of the variable will be input.

Input Variables -

N1 (Integer or Alphanumeric) - REQUIRED

User nodal point number of first node for which data will be input. Optional
values are ALL or SAME, described under Additional Information.

N2,.,NN (Integer) - REQUIRED (if ALL or SAME are not used)

Users nodal point number of all remaining nodes that are defined by the defi-
nition of surface for application of Boundary Conditions (section 5.5.4).

Additional Information -

This input may be continued on more than one card if required. Each card
must begin with the keyword SPLI.

If N1 = ALL, then BEST-FSI assigns the same value of the input variable to all
nodes defined by the definition of surface for application of Boundary Condition
(section 5.5.4).

If N1 = SAME, then the nodal point ordering is taken to be the same as that
defined for the immediately preceding boundary condition specification within
the same boundary condition set. N1 = SAME may not be used for the first
boundary condition specification within a boundary condition set.

If the node number input is used (i.e. if ALL or SAME are not used) then the
total number of points in SPLI must equal the number of nodes defined by the
SURF, ELEM, and POINT cards (section 5.5.4).
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Definition of Boundary Conditions

ITviv2a ... VN

Status - REQUIRED
Full Keyword - T

Function - Identifies a data card containing values of a variable specified in a boundary

condition at time point IT.

Input Variables -

IT (Integer) - REQUIRED

Time point as specified on the TIME card in the definition of the surface for
application of boundary condition (section 5.5.4 and 5.5.6). IT = 1 refers to
the first time point, IT = 2 the second, etc.

V1,V2,...,VN (Real) - REQUIRED

Nodal values of the variable in the nodal point order defined on the SPLI card.

Additional Information -

This input may continue for as many cards as required. Each additional card
must begin with T and the time point IT. The input for each new time point
must begin on a new card.

I N1 = ALL on the SPLI card, then only a single value of the variable is input
for each time point.

The results of various uses of the SPLI and T cards are shown in the figure on the following

page.
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Definition of Boundary Conditions

If the card “LOAD COMP?” is specified in the case input, i.e. the boundary
conditions are complex values, then the real part and imaginary part of nodal
values are input in the form VIR V1I V2R V2I ...... VNR VNI

The results of various uses of the SPLI and T cards are shown in the figure below.

1 2
102
/ Note differences in traction input of
3 q nodes 3 and 4 over elements 101 and 102
104
101 ] 103
5 6
-105
7 8
Case 1 Input T
Lasi nput
TIME 0.0 | —————————— HNodes 3 and 4
TRAC 1
SPLIST ALL
T1 100.0 ' t
Case 2 Input
T
"11‘11:;:-2: L 0.0 —_——— e Node )
seLisr3y 4 emeeee L Node 4
T1 100.0 50.0

Case 3 Input

TIM 0.0 1.0 2.0 4.0

TRAC 1 T

SPLIST ALL

T1 50.0 Nodes 3

T2 150.0 s 3 and 4

T 1 150.0 t
T4 50.0

Case 4 Input

TIME 0.0 1.0 2,0 4.0
TRAC 1

SPLIST 3 4

T1 75.0 50,0

T2 100,0 25.0

T3 75.0 50,0

T4 75.0 25,0

Figure for BCSET: TIME and SPLIST cards
TIME-SPACE variation
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Definition of Boundary Conditions

5.5.7

RELATION BOUNDARY CONDITION

CONV

FCOEFF TAMBT

Status - OPTIONAL
Full Keyword - CORVECTION

Function - Identifies a boundary condition in which surface temperature minus ambi-

ent temperature is linearly related to flux via a film coefficient for all nedal
points defined in the current boundary condition.

Input Variables -

FCOEFF (Real) - REQUIRED

Convective film coefficient (h)

TAMBT (Real) - OPTIONAL

Ambient temperature of convective fluid (Tu)

Additional Information -

The CONV card can only be used if the RELA card has been mnput for the

current boundary condition data set.

The CONVection option utilizes the relationship:
Q=-Hx(T,-T)

The film coefficient must be time independent.

If a TIME card was not included in the current boundary condition set, then
the ambient temperature is time independent and TAMBT must be specified

in the CONYV card.

If a TIME card was included in the current BCSET, then T card(s) must follow
the CONV card to define the time variation of ambient temperature.

No spatial variation of film coefficient nor ambient temperature is permitted
within an individual BCSET.

The film coefficient should be set to a positive value. If zero is input, the
coefficient will be automatically reset to 1.0E-10.

Examples of Use -

1. Defines a film coefficient of 1.26 units and a surface to ambient temperature

difference of 100 units.
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Definition of Boundary Conditions

**BCSET
ID BCS1
RELATION
GMR GMR1
SURFACE SURF1
ELEMENTS 1 2 3 4
CONV 1.26 -100.0
**BCSET
ID BCs2

2. Define a time dependent convection boundary condition set, with a film coef-
ficient of 10.43 units.

**BCSET
ID CONV1
RELATION
GMR GMR1
SURFACE SURF1
ELEMENTS 1 2 14
TIME 0.0 4.0 13.0 25.0

CONV 10.43
T 1 0.0
T 2 100.0
T 3 200.0
T 4 300.0
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5.6 {| BODY FORCE DEFINITION

This section describes the input for body forces.

The following body forces are included in BEST-FSI: inertial and convective. The input
cards required to define these loads are described below.
SECTION KEYWORD PURPOSE

5.6.1 Body Force Input Card
*BODY start of body force input

5.6.2 Inertial body force

'INER inertial body force input
DIRE direction of acceleration
TIME time of input
ACCE accleration input

5.6.3 Convective Body Force

CONV convective body force input
TIME times for input

GMR identifies GMR

DENS fluid density input
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5.6.1 BODY FORCE INPUT CARD

**BODY

Status - OPTIONAL
Full Keyword - BODY FORCE

Function - Identifies the beginning of body force input.

Input Variables - NONE
Additional Information -

If more than type of body force is present, a separate block starting with

**BODY should be defined for each type.

Examples of Use -

1. Request a three-dimensional centrifugal and thermal input.

**BODY FORCE
CENT
DIRE 0.0 0
POINT 0.0 0
TIME 1. 2. 3. 4.
SPEED 45. 80. 10

[= ]
. e
[= =)

**BODY FORCE

THER

TIME 0. 5.

GMR REG1

TEMP

i 0.0 500.

2 0.0 500.
3 0.0 300.
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Body Force Definition

0. L.  p——— ===
200 “TmpIied
3 T
2
100. | _
S explicitly defined implied
0 1 1 | 1 1 1 .
0. 1 2, 3. 4 5 6 7.
TIME

Example:  **BobY FORCE
CENTRIFUGAL

POINT 0.0 0.0
TIME 1.0 2.0 3.0 1.5 1.0 5.0
SPEED 100.0 200.0 200.0 100.0 100.0 300.0

Figure for**BODY: (all body force values)
VALUE vs. TIME for body force input
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5.6.2 INERTIAL BODY FORCE

INER

Status - OPTIONAL

Full Keyword - INERTIA FORCE

Function - Indicates that an inertia force will be applied.
Input Variables - NONE

Additional Information -

Only one (time dependent) inertia load condition may be defined for an analysis.
It is applied to the entire body.

Examples of Use -

1. Request a two-dimensional inertial input

**BODY FORCE

INER

DIRE 1.0 0.0
TIME 1.0
ACCE 300,
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DIRE XY

Status - OPTIONAL
Full Keyword - DIRECTION

Function - Defines a vector parallel to the direction of inertia force.

Input Variables -

X,Y (Real) - REQUIRED

Cartesian components of a vector parallel to the inertia force.
Additional Information -

Only one direction can be defined in an analysis.

If this card is omitted, the inertia force is assumed to be parallel to the z-axis
of the global system in the negative direction (i.e. gravity loading).

Examples of Use -
1. Defines an inertial force in the positive Y-direction for a two-dimensional anal-

ysis.

**BODY FORCE

INER

DIRE 0. 1.
TIME 1.0
ACCE 10.0
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TIME T1L T2 ... TN

Status - REQUIRED (if INER is input)
Full Keyword - TIMES
Function - Defines the times at which the acceleration of the body will be defined.

[nput Variables -
T1,T2,...,TN (Real) - REQUIRED
Times at which acceleration will be defined.
Additional Information -

This card may be input as many times as required. Each card begins with the
keyword TIME.

A maximum of 20 time values may be specified.

Examples of Use -

1. Specifies accelerations at three times.

**BODY FORCE
INER
DIRE 0O. 1.
TIME 1.0 2.0 3.0
ACCE 10.0 15.0 20.0
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ACCE ACC1 ACC2 .... ACCN

Status - OPTIONAL
Full Keyword - ACCELERATION
Function - Defines the acceleration of the body.
Input Variables -
ACC1,ACC2,...,ACCN (Real) " -REQUIRED
Acceleration at times specified on TIME card.
Additional Information -

This card may be input as often as required. Each card begins with the keyword
ACCE.

DEFAULT: Gravity loading of 386.4 in/sec/sec.

Examples of Use -

1. Specifies an acceleration of 100.0 units in an inertial body force loading at a
single time step.

**BODY FORCE
INER
DIRE O. 1.
TIME 1.
ACCE 100.
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5.6.3 CONVECTIVE BODY FORCE

CONV

Status - OPTIONAL
Full Keyword - CONVECTIVE

Function - Indicates that convective body force will be applied in a fluid dynamics
analysis by using an incremental density algorithm.

Input Variables - NONE
Additional Information -

This type of body force is only applicable to steady-state fluid dynamic analy-
sis. Furthermore, the INCREMENT DENSITY card must be included in case
control.

Examples of Use -

1. Indicates that convective body force field is present.

**BODY FORCE

CONVECTIVE

TIME 0.0 1.0 2.0 3.0

GMR GMR1

DENSITY 0.0 1.0 10.0 100.0
GMR GMR2Z

DENSITY 0.0 1.0 10.0 100.0
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TIME T1 T2 .... TN

Status - REQUIRED (if CONV is input)

Full Keyword - TIMES
Function - Defines the times at which the fluid densities will be defined.

Input Variables -
T1,T2,., TN (Real) - REQUIRED
Times at which fluid densities will be defined.
Additional Information -

If all times do not fit on one card, TIME may be continued on a second card im-
mediately following the first time card, starting with the keyword TIME. Only
one time definition is allowed for fluid density input, and therefore densities for
each GMR must be defined according to this one definition.

A maximum of 20 time values may be specified.

Examples of Use -

1. Specifies times at which densitites are to be given.

**BODY FORCE
CONVECTIVE
TIMES 0.0 1.0 2.0
GMR GMR1
DENSITY 5.0 10.0 15.0
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GMR GMRNAME

Status - REQUIRED (if CONYV is input)
Full Keyword - GMR
Function - Identifies the GMR in which fluid densities will be defined.

Input Variables -

GMRNAME (Alphanumeric) - REQUIRED
Allowable values for GMRNAME are IDGMR or ALL.

IDGMR = the identifier of a specific GMR for which fluid densities are being
defined. (NAME on ID card in **GMR input).

ALL = indicates the fluid densities of all GMR’s in the problem are identical
and will be defined under one definition.

Additional Information -

The fluid density must be defined for every region containing cells.
If ALL is used as the argument of this card, then this GMR card and the DENS
card (see next page) are input only once.

If the fluid densities differ in different regions then this GMR card (with IDGMR
as the argument ) and the DENS card (see next page) must be repeated for every
region containing cells.

All GMR’s (for which fluid density input is desired) must be contained under
a single **BODY FORCE input.

Examples of Use -

The following two examples have identical meaning.

**BODY FORCE

CONV
TIMES 0.5 1.0
GMR REG1

DENSITY 5.0 15.0
GMR REG2

DENSITY 5.0 15.0
GMR REG3

DENSITY 5.0 15.¢
GMR REG4

DENSITY 5.0 15.0

**BODY FORCE
CONV
TIME 0.5 1.0
GMR ALL
DENSITY 5.0 15.0
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DENS

DEN1 DEN2 ... DENN

Status - OPTIONAL
Full Keyword - DENSITY

Function - Defines the fluid mass density for the GMR.

Input Variables -

DEN1, DEN2,...DENN (Real) - REQUIRED
Density at times specified on TIME card.

Additional Information -

This card may be input at often as required. Each card must begin with the

keyword DENS.

When convective body forces are defined, the value of density specified in the

material section is ignored.

Examples of Use -

Lists densities at the times specified on the TIME card.

**BODY FORCE

CONVECTIVE

TIMES 0.0 1.0 2.0 3.0

GMR GMR1l

DENSITY 0.0 1.0 10.0 100.0
GMR GMR2

DENSITY 0.0 1.0 10.0 100.0
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6.0 EXAMPLE PROBLEMS

In this section example problems are presented to illustrate data preparation for BEST-
FSI. An attempt has been made to keep the problem geometry as simple as possible so
the user is not burdened with undue complexity. It is hoped that an analyst who is using
an analysis procedure for the first time will find these example problems invaluable in the
learning process.

Each problem includes the following items:

1) A Brief Problem Description

2) Geometry and Boundary Element Model

3) Input Data for running the problem in BEST-FSI
4) Selected Output from BEST-FSI

It should be noted that since the boundary element models illustrated utilize coarse
meshes, the BEST-FSI results may differ somewhat from the theoretical values. However,
with a finer mesh, the theoretical values should be obtained. Also, the results may vary
somewhat depending on the computer system being used to run BEST-FSL

An estimated RUN TIME is cited for each problem to give the user a feeling for
the computer time needed to run the problem. All RUN TIMES are related to problem
ELAS605, a simple elastic cube in tension, which will be considered to have a run time
of 1 unit using BEST-3D. A different problem which has a RUN TIME of 8 would take
approximately eight times longer to run that the ELAS605 problem. However, these times
will vary somewhat depending on the computer system being used to run BEST-3Dand
BEST-FSI.
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FLUIDS EXAMPLE PROBLEM FLUI601 / Problem Description

EXAMPLE PROBLEM: FLUI&01

ANALYSIS TYPE: FLUID DYNAMICS
2-D, STEADY STATE, THERMO-VISCOUS STOKES FLOW, INCOMPRESSIBLE

PRCBLEM DESCRIPTION:
FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS
MOVING WITH A VELOCITY OF 1. LOWER PLATE IS FIXED.
A UNIFORM PRESSURE OF 100 IS PRESENT EVERYWHERE,
THIS IS OFTEN CALLED *COUETTE FLOW".

BOUNDARY ELEMENT MODEL:
RECTANGULAR REGICN, 4 ELEMENTS.

REFERENCE FOR ANALYTICAL SOLUTION:

MORTON DENN, PROCESS FLUID MECHANICS (1980), PG. 176-177.
X-VELOCITY AND TEMPERATURE ARE LINEARLY DISTRIBUTED BETWEEN

PLATES.
SOLUTION PQINTS TO VERIFY:

(X-VELOCITY AND TEMPERATURE)

NODE ANALYTICAL BEST-FSI
4 .500 .500
19 .900 .900
RUN TIME:

0.1 X BASE PROBLEM

MISCELLANEOQUS:
TRACTION BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,
FROM THE ANALYTICAL SOLUTICN. AMBIGUOUS BOUNDARY CONDITIONS
AT THE CORNERS ARE AVOIDED.
THE UNIFORMLY APPLIED PRESSURE DOES NOT AFFECT THE SOLUTION
VELOCITIES, BUT IS INCLUDED TO TEST INTEGRATION ACCURACY.
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FLUIDS EXAMPLE PROBLEM FLUI601 / Geometry

19
18
17
16
NODES
14
13

12

Y <
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FLUIDS EXAMPLE PROBLEM FLUI601 / Input Data

**CASE
TITLE PARALLEL FLOW: STOKES {(LINEAR} FLOW
PLANE
FLUID INCCMPRESSIBLE STEADY
TIME STEP 1 1.0

MAXI 1
THERMAT, $ INCLUDE HEAT TRANSFER ANALYSIS ALSO
ITERATIVE LINEAR $ ONLY SOLVE STOKES FLOW

PRECISION MAXIMUM

**MATE
ID MAT1
TEMP 460.0
VISC 1.0
COND 1.0
* *Gbm
ID GMR1
MAT MAT1
TINT 460.0
POINTS
1 0.0000 0.0000
2 1.0060 0.0000
3 2.0000 0.0000
4 2.0000 5.0000
5 2.0000 10.0000
6 1.0000 10.0000
7 0.0000 10.0000
8 0.0000 5.0000
SURFACE SURF1
TYPE QUAD
ELEMENTS
1 1 2 3
2 3 4 5
3 5 6 7
4 7 8 1
NORMAL  +
SAMPLING POINTS
11 1.0000 1.0000
12 1.0000 2.0000
13 1.0000 3.0000
14 1.0000 4.0000
15 1.0000 5.0000
16 1.0000 6.0000
17 1.0000 7.0000
18 1.0000 8.0000
19 1.0000 9.0000
**BCSET
ID BOTTCM
VALUE
GMR GMR1
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SURFACE SURF1
ELEMENTS

VELO 1

SPLIST ALL

T 1 0.00
VELO 2

SPLIST ALL
T1 0.00
TEMP

SPLIST ALL

T 1 0.00

**BCSET
ID EXIT
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS
TRAC 1
SPLIST ALL
T 1 -100
TRAC 2
SPLIST. ALL
T 1 0.10

**BCSET
ID TOP
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 3
VELO 1
SPLIST ALL
T1 1.00
VELO 2
SPLIST ALL
T1 0.00
TEMP
SPLIST ALL
T1 1.00

**BCSET
ID ENTRANCE
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 4
TRAC 1
SPLIST ALL
T1 100.
TRAC 2
SPLIST ALL
T 1 -0.10

$ END OF DATA

BEST-FSI User Manual
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1 JOB TITLE: PARALLEL FLOW: STOKES (LINEAR)

FLUIDS EXAMPLE PROBLEM FLUI601 / Selected Output

BOUNDARY SOLUTION AT TIME = 1

ELEMENT NCDE NO. X VELOCITY Y VELOCITY
1 1 0.00000E+00 0.00000E+00
1 2 0.00000E+00 ©.00000E+00
1 3 0.00000E+00 O.00000E+0Q
2 3 0.000CCE+00 ©0.00000E+00
2 4 0.50000E+00 0.16170E-08
2 5 0.10000E+01 0.00000E+00
5 0.10000E«01 O.00000E+00Q
3 6 0.10000E+01 0.000Q0E+00
3 7 0.10000E+01 0.00000E+00
4 7 0.10000E+01 D0.0000QE+Q0
4 8 0.50000E+00 -~0.16170E-08
4 1 0.00000E+C0 0.00C0QCE+00Q
1 JOB TITLE: PARALLEL FLOW: STOKES
INTERIOR VELOCITY AT TIME = 1
NODE X VELOCITY Y VELOCITY
1 0.C00000E+00 0.000000E+00
2 0.000000E+00 0.000CCOE+00
3 0.0CC000E+00 0.000000E+00
] 0.500000E+00 0.161705E-08
5 0.100000E+01 0.000000E+00
6 0.100000E+01 0.000000E+00Q
7 0.100000E+01 0.000000E+00
a 0.500000E+00 -0.161701E-08
11 0.100000E+00 -0.198781E-09
12 0.200000E+00 -0.879798E-09
13 0.300000E+00 -0.220993E-07
14 0.4C0000E+00 0.943855E-08
15 0.500000QE+00 0.906079E-14
16 0.600000E+00 -0.9436853E-08
17 0.700000E+00 0.220994E-07
18 0.800000E+00 0.879830E-09
13 0.900000E+00 0.198821E-09

BEST-FSI User Manual

.000000

FLOW

FOR REGION =

TEMPERATURE X TRACTION Y

o o

=]

.00000E+00 -
0.50080E+00 -
.10000E+01 -

(=]

0.10000E+01
.10000E+01
.10000E+01

(=l =]

0.10000E+01
0.50000E+00
0.00000E+00

{LINEAR) FLOW
. 000000

.G0000E+00 -0.10000E+00
.00000E+00 -0.10000E+00
0.00000E+00 -0.10000E+00

o o o

0.10000E+03
0.10000E+D3
0.10000E+03 ©
0.10000E+00 -0.
0.10000E+00 -0.
0.1C0000E+00 -0.
0.10000E+03 -0.
0.10000E+03 -0.
0.10000E+03 -0.
FOR RESION

TEMPERATURE

0.000000E+D0O
0.000000E+00
0.00C000E+00C
0.500000E+00
0.100000E+01
0.100000E+01
0.100000E+01
0.500000E+00
0.100000E+Q0
0.200000E+00
0.300000E+00
0.400000E+00
0.S00000E+00
0.600000E+00
0.700000E+00
0.BO0000E+OO
0.90000GE+00D

March, 1992

GMR1

TRACTION

.10000E+03
.10000E+03
-10000E+03

0.100Q0E+QQ
0.10000E+00
-10000E+ 00

10000E+03
1000CE+03
10000E+03

10000E+Q0
100C0E+00
10000E+00

= GMR1

FLUX

0.10000E+00
0.1C0000E+Q0
G.10000E+00

0.00000E+00
0.00000E+0D
0.00000E+00

~0.10000E+Q0
-0.10000E+G0
-0.10000E+Q0

0.QC000E+0Q0
0.000C0OE+00
0.00000E+00
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FLUIDS EXAMPLE PROBLEM FLUI602 / Problem Description

EXAMPLE PROBLEM: FLUI6(02

ANALYSIS TYPE: FLUID DYNAMICS
2-D, STEADY STATE, THERMO-VISCOUS FLOW, INCCMPRESSIBLE,
NEWTON RAPHSON ITERATION ON NONLINEAR TERMS.

PROBLEM DESCRIPTION:
FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS
MOVING WITH A VELOCITY OF 1. LOWER PLATE IS FIXED.
NO REFERENCE PRESSURE PRESENT. THIS IS OFTEN CALLED
"COUETTE FLOW®, BUT IS USED HERE TO TEST NONLINEAR

ITERATION.

BOUNDARY ELEMENT MODEL:
TWO GMR, TEN CELLS TOTAL.

REFERENCE FOR ANALYTICAL SOLUTION:

MORTON DENN, PRCCESS FLUID MECHANICS (1980}, PG. 176-177.
X-VELOCITY IS A LINEAR DISTRIBUTION BETWEEN PLATES.

SOLUTION PQINTS TO VERIFY:
(X-VELOCITY AFTER THIRD TIME STEP)

GMR NODE ANALYTICAL BEST-FSI
1 24 .5000 .4999
1 26 .6000 .5997
2 240 .9000 .9000
RUN TIME:

23 X BASE PROBLEM

MISCELLANEQUS:
TRACTTON BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,
FROM THE ANALYTICAL SOLUTION. AMBIGUOQUS BOUNDARY CONDITIONS
AT THE CORNERS ARE AVOIDED. TIGHT ITERATION TOLERANCES AND
MAXIMUM INTEGRATICN PRECISION ARE USED TO TEST ACCURACY OF
NONLINEAR SOLVER. ’
THIS ALSO TESTS THE INTERFACE BETWEEN TWO GMR'S, EACH WITH
A DIFFERENT FREE-STREAM VELOCITY.
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FLUIDS EXAMPLE PROBLEM FLU1602 / Geometry
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FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

**CASE
TITLE (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES
PLANE
FLUID INCOMPRESSIBLE STEADY $ THIS SPECIFIES 3 TIME STEPS,
TIME STEP 3 1.0 $ EACH OF 1.0 TIME UNITS LONG.
MaAXI 10 $ EACH TIME STEP HAS A MAXTMUM
$ OF 10 ITERATIONS.
THERMAL
NEWTON
INCREMENT DENSITY ¢ DENSITY IS INCREMENTED TO INCREASE THE
¢ EFFECT OF THE NONLINEAR CONVECTIVE TERMS.
$ THIS REFERENCES THE **BODF CARDS WHICH
$ SPECIFY HOW DENSITY IS INCREMENTED.
TOLERANCE 1.E-9
PRECISION MAXIMUM

**MATE
ID MAT1
TEMP 460.0
VISC 1.0
DENS 1.0
COND 1.0
SPEC 1.0
**GDdR
ID GMR1
MAT MAT1
TINT 460.0
VREF 0.0 0.0
POINTS
1 0.0000 0.0000
2 0.5000 0.0000
3 1.0000 0.0000
4 1.5000 0.0000
5 2.0000 0.0000
6 0.0000 1.0000
7 1.0000 1.0000
8 2.0000 1.0000
9 0.0000 2.0000
10 0.5000 2.0000
11 1.0000 2.0000
12 1.5000 2.0000
13 2.0000 2.0000
14 0.0000 3.0000
15 1.0000 3.0000
16 2.0000 3.0000
17 0.0000 4.0000
18 0.5000 4.0000
19 1.0000 4.0000
20 1.5000 4.0000
21 2.0000 4.0000
22 0.0000 5.0000
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SURFACE SURF1
TYPE QUAD

ELEMENTS

i*Gm

ID GMR2

MAT MAT1

TINT 460.0

VREF 0.8

POINTS
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

0.

BEST-FSI User Manual

0

NP RP OO N

FPROONRFRPONRRPOOMNMRONEREHEROO

.0000
.0000
.0000
.5000
.0000
.5000
.0000

.0000
.5000
.0000
.5000
L0000
.0000
.0000
.0000
.0000
.5000
.0000
.5000
.0000
.0000
.0000
RHUHY
.0000
.5000
.0000
.5000

3
5
11
13
19
21

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

7

15
16

24

[SaN=) e Wl WE, NS) |
o
(]
o
fan]

.0000
.0000
.0000
.0000
.C000
.0000
.0000
.0000
.0000
.0000

g S RO
COSOSWWWE DM~ ~1N o O
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19

27

6

14
15
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245

SURFACE SURF2

TYPE QUAD
ELEMENTS

216
217
218
218
220
221
227
228

NORMAL, +

VOLUME

TYPE QUAD

CELL

207
208
209
210

**INTERFACE
GMR GMR1
SURF SURF1
ELEM 25
GMR GMR2
SURF SURF2
ELEM 227
VDIF

$

¢ BOUNDARY CONDITIONS ON GMR1:

$

**BCSET
ID BOTTOM
VALUE
GMR GMR1

SURFACE SURF1

ELEMENTS
VELO 1
SPLIST ALL

225
227
233
235

2.0000

229
237
245
243
241
233
225
227

226
228
234
236

228

11

T 1 0.00600

VELO 2
SPLIST ALL

T1 0.0000

TEMP
SPLIST ALL

T1 0.0000

**BCSET
ID EXIT1
VALUE
GMR GMR1

SURFACE SURFl

ELEMENTS
TRAC 1

BEST-FSI User Manual

13

12

14

227
229
235
237

15

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

232
240
244
242
238
230
226
228

231
232
239
240

10.0000

235
2317
243
245

237
245
243
241
233
225
227
229

234
236
242
244

March, 1992
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235
241
243

230
231
238
239
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FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

SPLIST ALL

T1 0.0000
TRAC 2

SPLIST ALL

T 1 0.1000
FLUX

SPLIST ALL

T 1 0.0000

**BCSET
ID ENTER1
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 22 23 24
TRAC 1
SPLIST ALL
T 1 0.0000
TRAC 2
SPLIST ALL
T1 -0.1000
FLUX
SPLIST ALL
T 1 0.0000

$
$ BOUNDARY CONDITIONS ON GMR2:
S
**BCSET
ID EXIT2
VALUE
GMR GMR2
SURFACE SURF2
ELEMENTS 216 217
TRAC 1
SPLIST ALL
T 1 0.0000
TRAC 2
SPLIST ALL
T1 0.1000
FLUX
SPLIST ALL
T 1 0.0000

**BCSET
ID TOP
VALUE
GMR GMR2
SURFACE SURF2
ELEMENTS 218 219
VELO 1
SPLIST ALL
T1 1.0000
VELO 2
SPLIST ALL
T 1 0.0000
TEMP
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SPLIST ALL
T 1 1.0000

**BCSET

ID ENTER2

VALUE

GMR GMR2

SURFACE SURF2
ELEMENTS 220
TRAC 1

SPLIST ALL

T1 0.0000
TRAC 2

SPLIST ALL

T1 -0.1000
FLUX

SPLIST ALL

T 1 0.00C0

**BODF

CONVECTIVE
TIMES
GMR GMR1
DENSITY
GMR GMR2
DENSITY

221

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

0.0 1.0 2.0 3.0
0.0 1.0 10.0 100.0
0.0 1.0 10.0 100.0

$ AT TIME T=3.0, THE DENSITY HAS ATTAINED A VALUE OF 100.0

§ END OF DATA

BEST-FSI User Manual
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FLUIDS EXAMPLE PROBLEM FLUI602 / Selected Output

1 JOB TITLE: (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES

INTERIOR VELOCITY AT TIME = 3.000000 FOR REGION = GMR1

BEST-FSI User Manual

NDDE X VELOCITY Y VELOCITY TEMPERATURE
1 0.000000E+00 0.000000E+DO 0.000000E+00D

2 0.000000E+00 0.000000E+00 0.000000E+00

3 0.000000E+00 0.000000E+Q0 0.000000CE+00

7 0.993988E-01 0.10B385E-06 0.100351E+00
11 0.199997E+00 -0.539313E-06 0.200696E+00
10 0.199996E+00 -0.150204E-06 0.200697E+00
] 0.199996E+00 0.609698E-06 0.200699E+00

6 0.%92991E-01 -0.367394E-06 0.100350E+00

4 0.000000E+00 0.000000E+00 0.000000E+00

5 0.000000E+00 0.000000E+00 0.000C0CE+DO

) 0.9599991E-01 0.561417E-07 0.100350E+C0
13 0.199997E+00 -0.862773E-07 0.200693E+00
12 0.199997E400 -0.422776E-06 0.200694E+00
15 0.299993E+00 -0.214891E-06 0.301005E+00
18 0.399988E+00 ~0.765140E-06 0.401284E+00
18 0.399988E+00 -0.605515E-06 0.401285E+00
17 0.399988E+00 -0.738825E-08 0.401287E+00
14 0.299993E+00 ~0.862877E-06 0.301005E+00
16 0.299994E+00 -0.378708BE-06 0.301004E+00
21 0.399988E+00 ~-0.493718E-06 0.401282E+Q0
20 0.3993B8E+00 -0.B45648E-0¢6 0.401283E+00
23 0.499984E+00 -0.5954B7E-06 0.501465E+00
27 0.599985E+00 -0.631671E-06 0.601499E+00
26 0.593985E+00 ~-0.232570E-06 0.60149%E+00
25 0.599985E400 0.351934E-07 0.601500E+00
22 0.499984E+00 ~0.103572E-05 0.501469E+00
24 0.499984E+00 ~0.578257E-06 0.501463E+00
29 0.599985E4+00 -0.988109E-06 0.601495E+Q0
28 0.599985E+00 -0.717437E-06 0.601497E+00

1 JOB TITLE: (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES
INTERIOR VELOCITY AT TIME = 3.000000 FOR REGION = GMR2

NODE X VELOCITY Y VELOCITY TEMPERATURE
225 0.599985E+00 0.351934E-07 0.601500E+00
2286 0.599985E+00 -0.232570E-06 0.601499E+00
227 0.599985E+00 -0.631671E-06 0.601499E+00
231 0.699988E+00 -0.608461E-06 0.701335E+00
235 0.799995E+00 -0.626972E-06 0.800929E+00
234 0.799995E+00 -0.234223E-06 0.800929E+D0
233 0.799994E+00 -0.167461E-06 0.800929E+00
230 0.699987E+00 -0.752627E-06 0.701339E+00
228 0.599985E+00 -0.717437E-06 0.601497E+00
229 0.5999B5E+00D -0.988109E-06 0.601495E+00
232 0.699988E+00 -0.415274E-06 0.701331E+00
237 0.799935E+00 ~0.119037E-05 0.800928E+00
236 0.799994E+00 -0.723639E-06 0.80G0923E+00
239 0.900000E+D0 -0.109554E-05 0.900433E+00
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242
242

238
240
245
244

0.
0.
a.
.900000E+00
.900000E+00
.100000E+01
.100000E+01

G O O O

100000E+01
100000E+01
100000E+01

BEST-FSI User Manual

FLUIDS EXAMPLE PROBLEM FLUI602 / Selected Output

.000000E+00
.000000E+00
.000000E+00Q
L132977E-05
.514231E-06
.000000E+QD
.0000C0E+Q0

0.100000E+01
0.100000E+01
0.100000E+01
0.900432E+00
0.900434E+00
0.100000E+01
C.100000E+01
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FLUIDS EXAMPLE PROBLEM FLUI603 / Problem Description

EXAMPLE PROBLEM: FLUI603

ANALYSIS TYPE: FLUID DYNAMICS
2-D, TRANSIENT, THERMO-VISCOUS STOKES FLOW, INCOMPRESSIBLE

PROBLEM DESCRIPTION:
DEVELOPING FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS
IS INSTANTLY APPLIED AT TIME T=0. AND IS MOVING WITH A VELOCITY
OF 1., LOWER PLATE IS FIXED.
THIS IS OFTEN CALLED “DEVELOPING COUETTE FLOW".

BOUNDARY ELEMENT MODEL:
12 BOUNDARY ELEMENTS, NO INTERIOR CELLS.

REFERENCE FOR ANALYTICAL SOLUTION;:
SCHLICHTING, BOUNDARY LAYER THEORY (1979), PG. 91-92,
INVOLVING AN INFINITE SERIES.
THE DEVELOPING VISCOUS FLOW IS SIMILAR TO THE DEVELOPING
TEMPERATURE PRCFILE IN HEAT CONDUCTION.

SOLUTION POINTS TO VERIFY:

{Y-VELOCITY)

TIME NODE ANALYTICAL BEST-FSI
2.0 15 .0124 .0166
2.0 22 .3173 .2992

10.0 15 .2627 .2573

10.0 22 .6547 .6486

RUN TIME:
3 X BASE PROBLEM

MISCELLANEQUS :

Y-VELOCITY IS FIXED ON INLET AND OUTLET. AMBIGUCUS BOUNDARY
CONDITICNS ARE AVOIDED AT THE CORNERS,
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FLUIDS EXAMPLE PROBLEM FLUI603 / Geometry

AY
5 7T 18
/4 5
P12 13
19 )0
1% 17 18
JM flS
1 12 13
B 10
b7 i
1 b
X
T3 >
NODES
March, 1992
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FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

**CASE
TITLE TRANSIENT PARALLEL FLOW: STOKES (LINEAR) FLOW
PLANE
FLUID INCOMPRESSIBLE TRANSIENT $ THIS SPECIFIES TEN TIME STEPS,
TIME STEP 10 1.0 $ EACH ONE TIME UNIT LONG. SINCE THIS IS
MAXT 1 $ A LINEAR PROBLEM, ONLY ONE ITERATION PER

$ TIME STEP IS REQUIRED.

THERMAL

ITERATIVE LINEAR

**MATE
ID MAT1
TEMP 460.0
VIsC 1.0
COND 1.0
DENS 1.0
SPEC 1.0
* *GMR
ID GMR1
MAT MATI1
TINT 460.0
POINTS
1 0.0000 0.0000
2 1.0000 0.0000
3 2.0000 0.0000
4 0.0000 1.0000
5 2.0000 1.0000
& 0.0000 2.0000
8 2.0000 2.0000
S 0.0000 3.0000
10 2.0000 3.0000
11 0.0000 4.0000
13 2.0000 4.0000
14 0.0000 5.0000
15 2.0000 5.0000
16 0.0000 6.0000
i8 2,0000 6.0000
19 0.0000 7.0000
20 2,0000 7.0000
21 0.0000 8.0000
23 2.0000 8.0000
24 0¢.0000 9.0000
25 2.0000 9.0000
26 0.0000 10.0000
27 1.0000 10.0000
2B 2.0000 10.0000
SURFACE SURF1
TYPE QUAD
ELEMENTS
6 1 2 3
7 3 5 8
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NORMAL +
SAMPLING POINTS

**BCSET
ID BOTTOM
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 6
VELO 1
SPLIST ALL

T1 0.0000

TRAC 2
SPLIST ALL

T1 0.0000

TEMP
SPLIST ALL

T1 0.0000

**BCSET
ID EXIT
VALUE
GMR GMR1
SURFACE SURF1

ELEMENTS 7

TRAC 1
SPLIST ALL

T1 0.0000

VELO 2
SPLIST ALL

T1 0.0000

FLUX
SPLIST ALL

T 1 0.0000

**BCSET
ID TOP
VALUE
GMR GMR1
SURFACE SURF1

ELEMENTS 12

BEST-FSI User Manual

1.0000
1.0000
1.0000
1.0000

FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

10

2.0000
4.0000
6.0000
8.0000

11
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FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

VELO 1

SPLIST ALL

T1 1.0000
TRAC 2

SPLIST ALL

T 11 0.0000
TEMP

SPLIST ALL

T1 1.0000

**BCSET
ID ENTRANCE
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 13 14 15 16 17
TRAC 1
SPLIST ALL
T1 0.0000
VELO 2
SPLIST ALL
T1 0.0000
FLUX
SPLIST ALL
T 1 0.0000

$ END OF DATA
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FLUIDS EXAMPLE PROBLEM FLUI603 / Selected Output

1 JOB TITLE: TRANSIENT PARALLEL FLOW: STOKES (LINEAR) FLOW
BOUNDARY SOLUTION AT TIME = 2.000000 FOR REGION = GMR1
ELEMENT NODE NO. X VELOCITY ¥ VELOCITY TEMPERATURE X TRACTION Y TRACTION FLUX

€ 1 0.00000E+00 0.00000E+0C 0.000Q0E+00 -0.44523E-02 0.00000E+00 -0.51350E-05
6 2 0.00000E+00 0.10840E-13 0.00000E+00 -0.25984E-02 0.00000E+00 0.38557E-04
€ 3 0.00000E+0C ©G.00000E+00 0.00000E+00 -0.44523E-02 0.00000E+00 -0.51950E-05
7 3 0.0000DE+00 0.00000E+00 0.000COE+00 0.00000E+00 0.73689E-03 0.000C0E+00
7 5 0.23464E-02 0.00000E+C0 0.44977E-04 0.00000E+00 0.20111E-902 ©0.00000E+00
7 8 0.40676E-02 0.0D000E+00 ©.23187E-03 0.00000E+0C 0.16017E-02 0.00000E+00
8 & 0.40676E-02 0.00000E+00 0.23187E-03 0.00000E+00 0.16017E-02 0.00000E+00
8 10 0.54336E-02 0.00000E+00 0.10192E-02 0.00000E+00 0.22512E-02 0.00000E+00Q
8 13 0.78373E-02 0.000GDE+00 0.41377E-02 ©0.00000E+00 0.69760E-02 0.00000E+00
9 13 0.78373E-02 0.00000E+00 0.41377E-02 0.00000E+00 0.63780E-02 0.00000E+00
15 0.16623E-01 0.000D0E+00 0.15159E-01 0.00000E+C0 0.21987E-01 0.00000E+00

9 18 6.86134E-01 0.00DDQE+0C 0.48516E-01 0.000CQE+00 0.57779E-01 0.0C000E+CO
10 18 0.46134E-01 0.0C0O0E+00 0.48516E-01 0.00000E+00 0.57779E-01 0.00000E+00
10 20 0.12630E+00 0.00000E+00 0.13279E+00 0.00000E+00 0.1310SE+00 0.00000E+Q00
10 23 0.29802E+00 0.0000CE+CQ 0.30638E+00 0.00C00E+00 0.22857E+00 0.00000E+00
11 23 0.29802E+00 0.00000E+00 0.30638E+00 0.00000E+00 0.22857E+00 0.00000E+QC
11 25 0.59051E+00 0.00000E+00 0.59578E+G0 0.00000E+00 0.35270E+00 0.00000E+00
11 28 0.10000E+01 0©.000GOE+00 0.10000E+01 0.0C0COE+00 ©.36991E+00 0.00000E+00
12 28 0.10000E+01 0.00000E+00 0.10000E+01 0.54071E+00 0.00000E+00 -0.56559E+00
12 27 0.10000E+01 -0.11061E-12 0.10000E+01 0.47462E+00 0.00C00E+00 -0.44176E+00
12 26 0.10000E+01 0.0000Q0E+00 ©.10000E+0C1 0.54071E+400 0.00000E+00 -0.56559E+00
13 26 0.10000E+01 0.000D0E+00 0.10000E+01 0.0000CE+00 -0.36991E+00 0.00000E+00
13 24 0.59051E+00 0.0D0000E+00 0.59578E+00 0.00000E+00 -0.35270E+00 0.00000E+00
13 21 0.29802E+00 0.00000E+00 0.30638E+00 0.00000E+00 -0.22857E+00 0.D0000E+00
14 21 0.29802E+00 ©0.00000E+00 0.30638E+00 0.00000E+00 -0.22857E+00 0.00000E+00
14 19 0.12630E+00 0.00000E+00 0.13279E+00 0©.00000E+00 -0.13105E+00 0.00000E+00
14 16 0.46134E-01 0.00000E+C0 0.48516E-01 0.00000E+00 -0.57779E-01 0.00000E+00
15 16 0.46134E-01 0.00D00E+00 0.48516E-01 0.00000E+CO -0.57779E-01 0.00000E+00
15 14 0.16623E-01 ©.00000E+00 0.15159E-01 0.0COCOE+00 -0.21987E-01 0.00000E+00
15 11 0.78373E-02 ©.00000E+00 0.413778-0Z 0.00Q0DE+00 ~0.69760E-02 0.0C000E+00
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JOoB

TITLE:

TRANSIENT

FLUIDS EXAMPLE PROBLEM FLUI603 / Selected Output

BOUNDARY SOLUTION AT TIME = 2

PARALLEL. PLOW: STOKES

.000000

{LINEAR) FLOW

FOR REGION = GMR1

ELEMENT NCDE NO. X VELOCITY Y VELOCITY TEMPERATURE X TRACTION ¥ TRACTION FLUX
16 11 0.78373E-02 0.00000E+400 0.41377E-02 0.00000E+00 -0.69760E-02 0.00000E+00
16 9 0.54336E-02 0.00000E+00 0.10192E-02 0.00000E+00 -0.22512E-02 0.00000E+00
16 6 0.40676E-02 0.00000E+00 0.23187E-03 0.00000E+00 -0.16017E-02 0.00000E+00
17 6 0.40676E-02 0.00000E+00 0.23187E-03 0.00000E+00 -0.16017E-02 0.00000E+D0
17 4 0.23464E-02 0.00000E+00 0.44977E-04 0.00000E+00 -0.20111E-02 0.00000E+00
17 1 0.C0000E+00 0.0Q0000E+00 ©O.00000E+00 (.00000E+00 -0.73689E-03 0.00000E+00
1 JOB TITLE: TRANSIENT PARALLEL FLOW: STOKES (LINEAR) FLOW
INTERIOR VELOCITY AT TIME - 2.000000 FOR REGION = GMR1
NODE X VELOCITY Y VELOCITY TEMPERATURE
1 0.000000E+00 0.000000E+00 0.000C00E+00
2 0.000000E+00 0.10B400E-13 0.000000E+00
3 0.000000E+0Q0 0.C0000QE+00 0.000000E+00
4 0.234635E-02 0.000000E+00 Q. 449766E-04
5 0.234635E-02 0.000000E+00 0.449766E-04
6 D.406761E-02 0.0C0C000E+00 0.231874E-03
8 0.406761E-02 0.000000E+00D 0.231874E-03
9 0.543361E-02 0.000000E+ 00 0.101922E-02
10 0.543361E-02 0.0G0CCOE+CO 0.101922E-02
11 0.783732E-02 0.000000E+00 0.413767E-02
13 0.783732E-02 0.00000CE+00D 0.413767E-02
14 0.166229E-01 0.000000E+00 0.151592E-01
15 0.166229E-01 0.00000CE+00 0.151592E-01
16 0.461342E-01 G.0000Q0E+00 0.48515%E-01
18 0.461342E-01 0.000000E+00 0.485159E~01
19 0.126305E+00 0.000000E+00 0.132787E+(00
20 0.126305E+00 0.000000E+Q0 0.132787E+00
21 0.298025E+00 0.000000E+0QQ 0.306377E+00
23 0.298025E+00 0.000000E+00 0.306377E+00
24 0.590507E+00 0.000000E+00 0.595779E+00
25 0.590507E+00 0.0C0000E+0C 0.595779E+00
26 0.100000E+01 0.000000E+00 0.100000E+01
27 0.100000E+01 -0.110610E-12 0.1000C0E+01
28 0.100000E+01 0.00C000E+00 0.100000E+C1
7 0.402738E-02 0.553125E-14 0.346183E-03
12 0.752621E-02 0.460987E-14 0.550220E-02
17 0.457630E-01 -0.753853E-13 0.566311E-01
22 0.299224E+00 0.126423E-12 0.324723E+00

BEST-FSI User Manual

March, 1992

Page 6.22



FLUIDS EXAMPLE PROBLEM FLUI604 / Problem Description

EXAMPLE PROBLEM: FLUI1604

ANALYSIS TYPE: FLUID DYNAMICS
2-D, STEADY STATE, VISCOUS STOKES FLOW, INCOMPRESSIBLE

PROBLEM DESCRIPTION:
CONVERGING FLOW BETWEEN TWO NON-PARALLEL PLATES.
A REFERENCE PRESSURE OF 192 PSI IS APPLIED.
THIS IS OFTEN CALLED *HAMMEL FLOWY, “JEFFERY FLOW", OR
*"CONVERGING CHANNEL FLOW".

BOUNDARY ELEMENT MODEL:
20 QUADRATIC ELEMENTS AROUND BOUNDARY, 5 ON EACH SIDE.
GLOBAL BOUNDARY CONDITIONS SPECIFIED EVERYWHERE.

REFERENCE FOR ANALYTICAL SOLUTION:
MORTON DENN, PROCESS FLUID MECHANICS (1980), PG. 217-218.
ATSO: GARTLING, ET. AL., IJNME, VOL. 11 (1977), PG. 1155-1174.
THE ANALYTICAL SOLUTION INVOLVES RADIAL FLOW ONLY, WITH THE
MAXIMUM FLUID VELOCITY ALONG THE CENTERLINE.
THIS PROBLEM HAS ATTRACTED A GREAT DEAL OF ATTENTION BECAUSE
THE CORRESPONDING NONLINEAR PROBLEM POSESSES AN ANALYTICAL
SOLUTION. HOWEVER, ONLY THE LINEAR (STOKES) SOLUTION IS
DETERMINED HERE.

SCLUTION POINTS TO VERIFY:

(Y-VELOCITY)
NODE ANALYTICAL BEST-FSI
1 -24.00 -23.35
B6 -1.50 -1.51

RUN TIME: ,
0.3 X BASE PROBLEM

MISCELLANEOUS:
TRACTION BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,
FROM THE ANALYTICAL SOLUTION. THESE ESTABLISH THE FLOW RATE.
AMBIGUOUS BOUNDARY CONDITIONS AT THE CORNERS ARE AVOIDED.
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FLUIDS EXAMPLE PROBLEM FLUI604 / Geometry

Lo |

9 ELEMENTS
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3
N}
O
3

Y <
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FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

**CASE
TITLE (CHAN ) NAVIER-STOKES
PLANE
FLUID INCOMPRESSIBLE STEADY
TIME STEP 1 1.0
MAXI 1
ITERATIVE LINEAR

**MATE
ID MAT1
TEMP 460.0
VIsC 1.0
COND 1.0
* *Gm
ID GMR1
MAT MAT1
TINT 460.0
POINTS
1 0.0000 0.2500
2 0.0131 0.2497
3 0.0261 0.2486
4 0.0391 0.2469
5 0.0520 0.2445
6 0.0647 0.2415
7 0.0773 0.2378
8 0.0896 0.2334
9 0.1017 0.2284
10 0.1135 0.2228
11 0.1250 0.2165
12 0.0000 0.6250
17 0.3125 0.5413
18 0.0000 1.0000
28 0.5000 0.8660
29 0.0000 1.3750
34 0.6875 1.1%08
35 0.0000 1.7500
45 0.8750 1.5155
46 0.0000 2.1250
51 1.0625 1.8403
52 0.0000 2.5000
62 1.2500 2.1651
63 0.0000 2.8750
68 1.4375 2.4898
69 0.0000 3.2500
79 1.6250 2.8146
80 0.0000 3.6250
85 1.8125 3.1393
86 0.0000 4.0000
87 0.2083 3.9945
88 0.4181 3.9781
89 0.6257 3.9508
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FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

80 0.8316 3.9126
91 1.0353 3.8637
92 1.2361 3.8042
93 1.4335 3.7343
94 1.6269 3.6542
95 1.8160 3.5640
96 2.0000 3.4641
SURFACE SURF1
TYPE QUAD
ELEMENTS
26 1 2 3
27 3 4 5
28 5 6 7
29 7 8 g
30 9 10 11
31 11 17 28
32 28 34 45
33 45 51 62
34 62 68 79
35 79 85 96
36 96 95 94
37 94 93 92
38 92 91 90
39 80 89 88
40 88 87 86
41 86 80 69
42 638 63 52
43 52 46 35
44 35 29 18
45 18 12 1
NORMAL, +
**BCSET
ID EXIT
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 26 27 28 29 30
POINTS 1 2 3 4 5 & 7 8 g 10
POINTS 11
TRAC 1
SPLIST 1 2 3 4 5 6 7 8 9 10
SPLIST 11
T1 0.0000 -39.8638 -77.6465 -111.3215 -138.9692

T 1 -158.8274 -169.3377 -169.1868 -157.3417 -133.0780
T 1 -96.0005

TRAC 2
SPLIST 1 2 3 4 5 6 7 8 9 10
SPLIST 11
T 1 0.0000 6.3021 25.0361 55.6887 §7.4192
T 1 146.0797 209.2443 276.2438 348.2084 423.1136
T1 498.8307
**BCSET $ NO-SLIP BOUNDARY CONDITION AT THE WALL
ID WALL
VALUE
GMR GMR1
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SURFACE SURF1
ELEMENTS 31
VELO 1

SPLIST ALL

T1 0.

VELO 2
SPLIST ALL

T1 0.

**BCSET

ID INLET

VALUE

GMR GMR1

SURFACE SURF1

ELEMENTS 36

PCINTS 96

POINTS 86

TRAC 1

SPLIST 96

SPLIST 86

T1 ~286.
176.6371

T 1
29.8720

T1 0.

TRAC 2

SPLIST 96

SPLIST 86

T 1 -498.8312

T 1 -554.7829

T 1 -573.7505

-147.

**BCSET
ID CENTERLINE
VALUE
GMR GMR1
SURFACE SURF1
ELEMENTS 41
VELO 1
SPLIST ALL
T1 0.
TRAC 2
SPLIST ALL
T1

¢ END OF DATA

BEST-FSI User Manual

32

0000

0000

-512.8684
-561.5933

42

0000

0.0000

FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

33 34 35

38 39 40

94 93 G2

94 93 92
-259.8573
-118.7465

94 93 92

-525.5074
-566.9043

91 90 89

91 90 89
-232.7506
-89.3195

91 90 89

-536.7214
-570.7053

88 87

88 87
-204.9528 -
-59.6699 -

88 87

-546.4866
-572.9889

$ SYMMETRY BOUNDARY CONDITION ALONG CENTERLINE

43 44 45

March, 1992

Page 6.27



FLUIDS EXAMPLE PROBLEM FLUI604 / Selected Output

1 JOB TITLE: {CHAN ) NAVIER-STOKES
BOUNDARY SOLUTION AT TIME = 1.600000 FOR REGION = GMR1

ELEMENT NODE NO. X VELOCITY Y VELOCITY X TRACTION Y TRACTION

41 86 0.00000E+00 -0.15434E+01 0.57444E+03 0.00000E+00
41 80 0.0C000E+00 -0.16946E+01 0.57500E+03 0.00000E+CO
41 69 C.00000E+00 -0.18794E+01 0.57477E+03 0.00000E+00
42 69 0.0C000E+00 -0.18794E+01 0.57477E+03 0.00000E+00
42 63 0.00000E+00 -0.21180E+0% 0.57455E+03 0.00000E+00
42 52 0.00D0CE+DD ~0.24339E+C1 0.57406E+03 0.00C00E+00
43 52 0.00000E+00 -0.24339E+01 0.57406E+03 (.00000E+00
43 46 0.00000E+00 -0.28614E+01 0.57339E+03 0.00000E+00
43 35 0.00000E400 -0.3475d4E+01 0.57171E+03  0.00000E+00
44 35 0.00000E+00 -0.34754E+01 0.57171E+03 0.C00QQE+D0
44 28 (.00000E+00 -0.44301E+01 0.56985E+03 0.00000E+00
44 18 0.C0000E+00 -0.60B16E+01 0.55862E+03 0.00000E+C0
45 18 0.00000E+00 -0.60816E+01 (.55862E+03 0.00000E+00
45 12 0.00000E+00 -0.99308E+01 0.54571E+03 (.00000E+00
45 1 C.00000E+00 -0.23311E+02 0.39956E+03 0.00000E+0D
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7.0 || PATBEST INTERFACE

PATRAN is a general purpose, Mechanical Computer Aided Engineering (MCAE) soft-
ware system that uses interactive graphics to create engineering design data and to evaluate
analysis results. It utilizes an open-ended “gateway” architecture that facilitates access
to most design, analysis and manufacturing software programs. PATRAN is developed,
supported, and maintained by PDA Engineering of California.

PATBEST is the pre-processing interface for BEST-FSI. It was developed by the Com-
putational Mechanics division of the Department of Civil Engineering, State University of
New York at Buffalo. It is named PATBEST indicating the direction of the transla-
tion; PATRAN to BEST-FSI. This translator converts a PATRAN generated model into
a BEST-FSI data set containing nodal coordinates, elements, GMR’s and boundary con-
ditions. :
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7.1 || PROGRAM DESCRIPTION

PATBEST is written in standard Fortran 77, therefore will run on all systems that
support Fortran 77. Great care has been taken to maintain portability. All variables
within the program are declared explicitly and the code is compiled with range checking.

The code is divided into two sections. The first section reads the PATRAN neutral file

and stores into a database. The second section then queries the database to write out the
BEST-FSI data set.
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7.2 || GETTING STARTED

To start up a PATBEST session, enter the appropriate RUN PATBEST command for
your installation, i.e. for UNIX based computers it would be “patbest”. The PATBEST
translator will then prompt you for a PATRAN neutral file, you can enter a name or hit
"return”. By hitting "return”, the program will accept the default, which is the latest
PATRAN.OUT file in your directory. After the correct PATRAN neutral file is selected,
you will be asked to select the BEST-FSI data file, which after completion of PATBEST
will contain the results of the translation.
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7.3 || PATRAN INPUT REQUIREMENTS

This section defines the PATRAN directives used to build a BEST-FSI data set. The
geometry for the data set is built within PATRAN and the boundary conditions can be
applied from within PATRAN . The interface compatibility between regions for a perfectly
bonded interface is automatically generated by PATBEST. The user can further alter the
interface conditions to satisfy his/her own needs. The case control, the material sets and
the body force input must be input by the user directly in the BEST-FSI data set.
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7.3.1 GEOMETRY INPUT

Table 7.1 lists the PATRAN directives to build BEST-FSI elements and volume cells for

two dimensional problems.

Multiple GMR models are created by using the PATRAN named component directive.
Nodes or elements on the GMR interface should not have a common L.D.

The permissible element types and cell types that are supported for BEST-FSI are shown
in the following figures.
TABLE 7.1

PATBEST/PATRAN Element Library (Two-dimensional)

PATRAN CFEG CODE BEST-FSI Element Name
BAR /2 Linear 2 noded surface element
BAR /3 Quadratic 3 noded surface element
TRI /3 Linear 3 noded volume cell
QUAD /4 Linear 4 noded volume cell
TRI /6 Quadratic 6 noded volume cell
QUAD /8 Quadratic 8 noded volume cell
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PATBEST/PATRAN Element Types

| ]
/ 2
1
Linear 2-ncded Element

Quadratic 3-noded Element

Two-dimensional (surface) boundary elements
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PATBEST/PATRAN Element Types

[ ]
5 & ¢

Quadratic 6-noded Cell)

LI

Linear 4-noded Cell

Linear 3-noded Cell

Quadratic 8-noded Cell

Two-dimensional Volume Cells
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7.3.2 BOUNDARY CONDITION INPUT

Table 7.2 lists the PATRAN directives to create BEST-FSI boundary conditions. Unlike
finite element programs, all boundary conditions in BEST-FSI are applied to elements
instead of nodes. Unfortunately, PATRAN is limited in the types of boundary conditions
that can be applied to elements. In order to get around this problem, a set-id is associated
with pressure boundary conditions within PATRAN . PATBEST will convert these to the
appropriate BEST-FSI boundary condition sets.

BEST-FSI assumes & default value of zero for the traction and/or flux for any component
not specified, on any element (or points on an element) therefore, any traction or flux
component of zero value does not have to be explicitly specified.
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TABLE 7.2

PATBEST /PATRAN Boundary Conditions Librar

PATRAN DFEG CODE BEST-FS1 Boundary Condition
PRES/E with set-id 1 Traction (non-zero) boundary condition
PRES/E with set-id 3 Velocity (non-zero) boundary condition
PRES/E with set-id 31 Velocity boundary condition with zero X component
PRES/E with set-id 32 Velocity boundary condition with zero Y component
PRES/E with set-id 34 Velocity boundary condition with zero X & Y compenents
PRES/E with set-id 6 Spring {non-zero) boundary condition
TEMP/E Temperature boundary condition
HEAT/E Flux boundary condition
CONV/E Convection boundary condition

IMPORTANT: PATRAN DFEG command with PRES/E option will not work with zero
data values. When specifying a zero value boundary condition (set-id 31-36) you must
input a non-zero value, however, this value will have no consequence on the resulting
boundary condition set.

BEST-FSI User Manual March, 1992 Page 7.9



7.4 || PATBEST FILES

PATBEST requires as input a PATRAN neutral file. It generates three output files;
a BEST-FSI input file, which contains the nodes and connectivity information, a log file
containing a running log of all PATBEST processing information, and a result file from
interactive data generation session. The default names are :

PATRAN neutral file prompted file name or latest patran.out.*
BEST-FSI raw data file prompted file name or best.dat
PATBEST log file patbes.log

BEST-FSI User Manual March, 1992 Page 7.10



8.0 || REFERENCES

Ahmad, S. and Banerjee, P.K. (1988), ‘Transient Elastodynamic Analysis of Three Dimen-
sional Problems by BEM,’ Int. Jour. Numerical Methods in Engineering, Vol. 26, No. 8,
pp. 1560-1580.

Banerjee, P.K., Ahmad, S. and Manolis, G.D. (1986), ‘Transient Elastodynamic Analysis
of Three-dimensional Problems by Boundary Element Method,” Earthquake Engineering
and Structural Dynamics, Vol. 14, pp. 933-949.

Banerjee, P.K. and Butterfield, R. (1981}, ‘Boundary Element Methods in Engineering
Science,” McGraw-Hill, London.

Banerjee, P.K. and Morino, L. (1990), Boundary Element Methods in Nonlinear Fluid
Dynamics, Developments in Boundary Element Methods-6, Elsevier Applied Science, Eng-
land.

Banerjee, P.K. and Raveendra, S.T. (1987), ‘A New Boundary Element Formulation for
Two-dimensional Elastoplastic Analysis,” Jour. of Engrg. Mech., ASCE, V113, No. 2, pp.
252-265.

Banerjee, P.K., Wilson, R.B. and Miller, N (1985), ‘Development of a Large BEM Sys-
tem for Three-dimensional Inelastic Analysis,’ in Advanced Topics in Boundary Element
Analysis, ed. T.A. Cruse, A.B. Pifko and H. Armen, AMD-V72, ASME, New York.

Banerjee, P.K., Wilson, R.B. and Miller, N. (1988), ‘Advanced Elastic and Inelastic Three-
dimensional Analysis of Gas Turbine Engine Structures by BEM,” Int. J. Num. Meth.
Engrg., V26, pp. 393-411.

Banerjee, P.K., Wilson, R.B. and Raveendra, S.T. (1987), ‘Advanced Applications of BEM
to Three-dimensional Problems of Monotonic and Cyclic Plasticity,” Int. Jour. Mech.
Sciences, V29, No. 9, pp. 637-653.

Batchelor, G.K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press,
Cambridge, U.K.

Boley, B.A. and Weiner, J.H. (1960), ‘Theory of Thermal Stresses,” John Wiley and Sons,
New York.

Brueckner, F.P. and Heinrich, J. (1991), ‘Petrov-Galerkin Finite Element Method for Com-
pressible Flows,’ Int. J. Num. Meth. Eng., V32, pp. 255-274.

Burggraf, O.R. (1966), ‘Analytical and Numerical Studies of the Structure of Steady Sep-
arated Flows,’ J. Fluid Mech., V24, Part 1, pp. 113-151.

Carslaw, H.S. and Jaeger, J.C. (1959), Conduction of Heat in Solids, Clarendon Press,
Oxford.

Chaudouet, A. (1987), ‘Three-dimensional Transient Thermoelastic Analysis by the BIE
Method,” Int. J. Num. Meth. Engrg., V24, pp. 25-45.

BEST-FSI User Manual March, 1992 Page 8.1



Cruse, T.A. (1974), ‘An Improved Boundary Integral Equation Method for Three Dimen-
sional Elastic Stress Analysis,” Comp. and Struct., V4, pp. 741-754.

Cruse, T.A. and VanBuren, W. (1971), ‘Three-dimensional Elastic Stress Analysis of a
Fracture Specimen with an Edge Crack,’ Int. J. Fract. Mech., V7, pp. 1-16.

Cruse, T.A., Snow, D.W. and Wilson, R.B. (1977), ‘Numerical Solutions in Axisymmetric
Elasticity,” Comp. and Struct., V7, pp. 445-451.

Dargush, G.F. (1987), BEM for the Analogous Problems of Thermoelasticity and Soil
Consolidation, Ph.D. Dissertation, State University of New York at Buffalo.

Dargush, G.F. and Banerjee, P.K. (1988), ‘Development of an Integrated BEM for Hot
Fluid-Structure Interaction,” Advanced Earth-to-Orbit Propulsion Technology Conference,
NASA CP-3012, Huntsville, May 1988.

Dargush, G.F. and Banerjee, P.K. (1989a), ‘Development of an Integrated BEM for Hot
Fluid-Structure Interaction,’ International Gas Turbine and Aeroengine Congress and Ex-
position, ASME, Paper 89-GT-128, Toronto; also in J. Eng. Gas Turbines and Power,
V112, pp. 243-250.

Dargush, G.F. and Banerjee, P.K. (1989b), ‘Development of a Boundary Element Method
for Time-dependent Planar Thermoelasticity,’ Int. J. Solids Struct., V25, pp. 999-1021.

Dargush, G.F. and Banerjee, P.K. (1989c), Development of an Integrated BEM Approach
for Hot Fluid Structure Interaction, NASA Annual Report, Grant NAG3-712.

Dargush, G.F. and Banerjee, P.K. (1990a), ‘Boundary Element Methods in Three Dimen-
sional Thermoelasticity,” Int. J. Solids Struct., V26, pp. 199-216.

Dargush, G.F. and Banerjee, P.K. (1990b), ‘Advanced Boundary Element Methods for
Steady Incompressible Thermoviscous Flow,’ in Developments in BEM-6, ed. P.K. Baner-
jee and L. Morino, Elsevier Applied Science Publishers.

Dargush, G.F. and Banerjee, P.K. (1990(3, ‘A Time-dependent Incompressible Viscous
BEM for Moderate Reynolds Number,” in Developments in BEM-6, ed. P.K. Banerjee and
L. Morino, Elsevier Applied Science Publishers.

Dargush, G.F. and Banerjee, P.K. (1991a), ‘A Boundary Element Method for Steady
Incompressible Thermoviscous Flow,’ Int. J. Num. Meth. Eng., V31, pp. 1605-1626.

Dargush, G.F. and Banerjee, P.K. (1991b), ‘A Time Dependent Incompressible Viscous
BEM for Moderate Reynolds Numbers,” Int. J. Num. Meth. Eng., V31, pp. 1627-1648.

Dargush, G.F. and Banerjee, P.K. (1992), ‘Time Dependent Axisymmetric Thermoelastic
Boundary Element Analysis,” Int. J. Num. Meth. Eng., V33, pp. 695-717.

Dargush, G.F., Banerjee, P.K. and Dunn, M.G. (1987), Development of an Integrated BEM
Approach for Hot Fluid Structure Interaction, NASA Annual Report, Grant NAG3-712.

Dargush, G.F., Banerjee, P.K. and Honkala, K.A. (1988), Development of an Integrated
BEM Approach for Hot Fluid Structure Interaction, NASA Annual Report, Grant NAG3-
712.

BEST-FSI User Manual March, 1992 Page 8.2



Dargush, G.F., Banerjee, P.K. and Shi, Y. (1991), Development of an Integrated BEM
Approach for Hot Fluid Structure Interaction, NASA Contractor Report 187236.

Deb, A. and Banerjee, P.K. (1989), ‘A Comparison Between Isoparametric Lagrangian
Elements in 2D BEM,’ Int. J. Num. Meth. Eng., V28, pp. 1539-1555.

Dongarra, J.J. et al (1979), Linpak User’s Guide, SIAM, Philadelphia.

Gartling, D.K., Nickell, R.E., Tanner, R.E. (1977), ‘A Finite Element Convergence Study
for Accelerating Flow Problems,’ Int. J. Num. Methods Eng., V11, pp. 1155-1174.

Ghia, U., Ghia, K.N. and Shin, C.T. (1982), ‘High-Re Solutions for Incompressible Flow
Using the Navier-Stokes Equations and a Multigrid Method,” J. Comp. Physics, V48, pp.
387-411.

Gladden, H.J. (1989), ‘Aerothermal Loads on Actively Cooled Components: Analyses and
Experiment,” HITEMP Review, NASA Conference Publication 10039, Cleveland, Ohio,
Oct. 31-Nov. 2, pp. 68.1-68.12.

Goldstein, M.E. (1976), Aeroacoustics, McGraw-Hill, New York.

Guan, M.J. and Britto, A.M. (1984), CRISP User’s and Programmer’s Guide, Engineering
Department, Cambridge University.

Henry, D.P. and Banerjee, P.K. (1988), ‘A Variable Stiffness Type Boundary Element
Formulation for Axisymmetric Elastoplastic Media,” Int. Jour. for Num. Methods in
Engrg., V25, pp. 1005-1027,

Honkala, K.A. (1992), Boundary Element Methods for Two Dimensional Coupled Ther-
moviscous Flow, Ph.D. Dissertation, State University of New York at Buffalo.

Latchat, J.C. and Watson, J.O. (1976), ‘Effective Numerical Treatment of Boundary Inte-
gral Equations: A Formulation for Three-dimensional Elastostatics,’ Int. J. Num. Meth.
Engrg., V10, pp. 991-1005.

Lighthill, M.J. (1952), ‘On Sound Generated Aerodynamically I. General Theory,” Proc.
Roy. Soc. A, V211, pp. 564-587.

Millsaps, K. and Pohlhausen, K. (1953), ‘Thermal Distributions in Jeffery-Hamel Flows
Between Nonparallel Plane Walls,” Journal of the Aeronautical Sciences, March, pp. 187-
196.

Morse, P.M. and Feshbach, H. (1953), Methods of Theoretical Physics, McGraw-Hill, New
York.

Mustoe, G.G.W. (1984), ‘Advanced Integration Schemes Qver Boundary Elements and
Volume Cells for Two- and Three-dimensional Nonlinear Analysis,’ in Developments in
Boundary Element Methods - III, ed. P.K. Banerjee and S. Mukherjee, Applied Science
Publishers, England.

Oseen, C.W. (1911), Uber die Stokes’sche Formel und fiber eine verwandte Aufgabe in der
Hydrodynamik II, Ark. f. mat., astr. och fysik, V7.

Oseen, C.W. (1927), Neuere Methoden und Ergebnisse in der Hydrodynamik, Akad. Ver-
lagsgellschaft, Leipzig.

BEST-FSI User Manual March, 1992 ' Page 8.3



Panton, R.L. (1984), Incompressible Flow, John Wiley and Sons, New York.

Piva, R. and Morino, L. (1987), ‘Vector Green’s Function Method for Unsteady Navier-
Stokes Equations,” Meccanica, Vol. 22, pp. 76-85.

Piva, R. Graziani, G. and Morino, L. (1987) ‘Boundary Integral Equation Method for Un-
steady Viscous and Inviscid Flows,” IUTAM Symposium on Advanced Boundary Element
Method, San Antonio, Texas.

Prandtl, L. (1904), Verhandlunger IIlrd, International Mathematiker Kongresser, Heidel-
berg, pp. 484-491 (trans. as NACA Tech. Mem. 452).

Rizzo, F.J. and Shippy, D.J. (1977), ‘An Advanced Boundary Integral Equation Method
for Three-dimensional Thermoelasticity,” Int. J. Num. Meth. Eng. V11, pp. 1753-1768.

Schlicting, H. (1955), Boundary Layer Theory, McGraw-Hill, New York.

Sharp, S. and Crouch, S.L. (1986), ‘Boundary Integral Methods for Thermoelasticity Prob-
lems,” J. Appl. Mech., V53, pp. 298-302.

Shi, Y. 31991), Fundamental Solutions and Boundary Element Formulations for Convective
Fluid Flow, Ph.D. Dissertation, State University of New York at Buffalo.

Stroud, A.H. and Secrest, D. (1966), Gaussian Quadrature Formulas, Prentice Hall, New
York.

Telles, J.C.F. (1987), ‘A Self-Adaptive Co-ordinate Transformation for Efficient Numerical
Evaluation of General Boundary Element Integrals,” Int. J. Num. Meth. Engrg., V24, pp.
959-973.

Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York.

Tosaka, N. and Kakuda, K. (1986), ‘Numerical Solutions of Steady Incompressible Viscous
Flow Problems by Integral Equation Method,” pp. 211-222 in R.P. Shaw et al, eds. Proc.
4th Intl. Symp. Innov. Num. Methods Engrg., Springer, Berlin.

Tosaka, N. and Kakuda, K. (1987), ‘Numerical Simulations of Laminar and Turbulent
Flows by Using an Integral Equation,” Boundary Element IX, eds. Brebbia, Wendland
and Kuhn, pp. 489-502.

Tosaka, N. and Onishi, K. (1986), ‘Boundary Integral Equation Formulations for Unsteady
Incompressible Viscous Fluid Flow by Time-differencing,” Engineering Analysis, V3, No.
2, pp. 101-104.

Zienkiewicz, O.C. and Taylor, R.L. (1991), The Finite Element Method, Volume 2, 4th
edition, McGraw-Hill, London.

BEST-FSI User Manual March, 1992 Page 8.4






Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reponting burcen for this coliection of intormation 1s estimated to average | hour per response, including the time for reviewing instructions, searching ex)sting datla souLrces.
gathenng and maintaining the data needed, and completing and reviewing the ccllection of information.  Send comments regarding thes burden estimate or any other aspect of this
coliection of information, including suggestions for reducing this burden, to Washinglon Heacqyuarters Services, Directorate tor information Operations and Reports, 1215 Jeffersoen
Davis Highway. Suite 1204, Arlington, VA 22202 4302, and to the Office of Managemient and Budget, Paperwork Aeduction Project (0704-0188), Washington, DC 205023

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1992 ’ Final Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

* Development of an Integrated BEM Approach for Hot Fluid Structure Interaction
BEST-FSI: Boundary Element Solution Technigue for Fluid Structure Interaction

WU-590-91-11

6. AUTHOR(S) NAG3-712
G.F. Dargush, P.K. Bancerjee, and Y. Shi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
State University of New York at Buffalo
Buffalo, New York 14214
None
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
National Acronautics and Space Administration :
Lewis Research Center NASA CR--189202
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
Project Manager, C.C. Chamis, Structures Division, NASA Lewis Rescarch Center, (216) 433-3252.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 39

3. ABSTRACT (Maximum 200 worts)

This reportis intended to serve multiple purpases. First, it serves as a report summarizing the work developed under
the grant. Section 2 provides all of the relevant theoretical background, while numerous applications are discussed in
Section 3. 1t should be noted that all of those examples were run on Sun SPARC workstations. The remainder of the
report focuses on the documentation of the computer code BEST-FSI. Section 4 presents a brief introduction for a
first-time boundary element user. Complete details of the input data required to exccute BEST-FSI are contained in
Section 5. Each data item is described individually and examples of use are provided. Then, in Scction 6, several
sample problems are examined.

14. SUBJECT TERMS 15. NUMB§§§F PAGES

Boundary clements; Flows; Structures; Compuler program

16. PRICE CODE

Al7
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

YU, GOVERNMERT PRINTING OFFICE: 930 - 750-034/50304 Prescribed by ANS| Std. 23916
298-102



National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, Ohio 44135

Officist Businass
Penalty for Private Use $300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Faes Paid
National Aeronaubics and
Space Admrustration
NASA-451







