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As part of the continuing effort at NASA/Lewis to improve both the durability and

reliability of hot section Earth-to-Orbit engine components, significant enhancements must

be made in existing finite element and finite difference methods, and advanced techniques,

such as the boundary dement method, must be explored. Despite this considerable effort,

the accurate determination of transient thermal stresses in these hot section components

remains one of the most difficult problems facing engine design/analysts. For these prob-

lems, the temperature distribution is strongly influenced by the external hot gas flow,

the internal cooling system, and the structural deformation. Currently, experimentally-

determined film coefficients and ambient temperatures are required for use as boundary

conditions for the thermal stress analysis of the structural component. The determina-

tion of these coefficients is obviously an expensive and time-consuming task. Recently an

attempt was made by Gladden (1989) to use a finite difference-based Navier-Stokes code

to approximate the thermal boundary conditions, and to then input these into a finite

element structural analysis package. However, the most effective way to deal with this

problem is to develop a completely integrated solid mechanics, fluid mechanics, and heat

transfer approach.

In the present work, the boundary element method (BEM) is chosen as the basic

analysis tool principally because the critical surface variables (i.e., temperature, flux, dis-

placement, traction) can be very precisely determined with a boundary-based discretization

scheme. Additionally, model preparation is considerably simplified compared to the more

familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow

is captured through the use of an analytical fundamental solution, eliminating the depen-

dence of the solution on the discretization pattern. The price that must be paid in order

to realize these advantages is that any BEM formulation requires a considerable amount

of analytical work, which is typically absent in the other numerical methods.

This report details all of the research accomplishments of a multi-year program, com-

mencing in March 1986, aimed toward the development of a boundary element formulation

for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section com-

ponents. It should be noted that this work represents approximately four man-years of

funding from NASA/Lewis. Most of that effort expended under this program has been

directed toward the examination of fluid flow, since boundary element methods for flu-

ids are at a much less developed state. However, significant strides have been made, not

only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure

interaction problem.

Early in the research program, a two-dimensional boundary element formulation was

developed for the time-dependent response of a thermoelastic solid. This effort resulted

in the first time domain, boundary-only implementation for this class of problems. Since

volume discretization is completely eliminated and surface transient thermal stresses can
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be captured very accurately, the new approach provides distinct advantages over standard

finite element methods.

Meanwhile, the initial fluid formulations that were developed, based upon Stokes fun-

damental solutions, provided solutions in the low-to-moderate Reynolds number range.

For creeping flow, these reduce to boundary-only techniques. As the fluid velocities are in-

creased, volume discretization is required, however the solutions are typically very precise,

particularly in the determination of surface quantities. At very high speed, these formu-

lations are less effective, because the Stokes fundamental solutions no longer embody the

character of the flow field which becomes dominated by convection.

This led to the development of convective viscous integral formulations based upon Os-

een fundamental solutions. Since the new convective kernel functions, that were developed

as a part of this effort, contain more of the physics of the problem, boundary element so-

lutions can now be obtained at very high Reynolds number. Flow around obstacles can be

solved approximately with an efficient linearized boundary-only analysis or more exactly

by including all of the nonlinearities present in the neighborhood of the obstacle. This

perhaps represents the major accomplishment of the present program.

The other significant development has been the creation of a comprehensive fluid-

structure interaction capability within a boundary element computer code. This new

facility is implemented in a completely general manner, so that quite arbitrary geometry,

material properties and boundary conditions may be specified. Thus, a single analysis

code can be used to run structures-only problems, fiuids-only problems, or the combined

fluid-structure problem. In all three cases, steady or transient conditions can be selected,

with or without thermal effects. Nonlinear analyses can be solved via direct iteration or

by employing a modified Newton-Raphson approach.

Most of the boundary element formulations developed under this grant have been

incorporated in the computer code BEST-FSI (Boundary Element Solution Technique for

Fluid Structure Interaction). A few of the general features of this code are enumerated

in Table 1.1, while Table 1.2 lists some of the major capabilities relating to the analysis

of fluid-structure interaction. An effort has been made to develop a reliable, user-friendly

code. However, it should be emphasized that the current version of BEST-FSI is primarily

a research code. Additional work is needed to produce a practical engineering analysis tool.

In particular, significant improvements could be made regarding computational efficiency,

since the primary emphasis during the grant was on development of new boundary element

capability.

This document is intended to serve multiple purposes. First, it serves as a report

summarizing the work developed under this grant. Section 2 provides all of the relevant

theoretical background, while numerous applications are discussed in Section 3. It should

be noted that all of those examples were run on Sun SPARC workstations. The remainder

of the report focuses on the documentation of the computer code BEST-FSI. Section 4

presents a brief introduction for a first-time boundary element user. Complete details of

the input data required to execute BEST-FSI are contained in Section 5. Each data item

is described individually and examples of use are provided. Then, in Section

sample problems are examined. After each problem is defined, the entire input

6, several
dataset is
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presented,along with selectedBEST-FSI output. The interface betweenBEST-FSI and
the graphics packagePATRANTM is discussed in Section 7. Finally, all references are

collected in Section 8.

In addition to this User Manual, source code for BEST-FSI has been delivered to

NASA. The code is written in FORTRAN 77 and contains considerable documentation in

the form of comment lines. This version of BEST-FSI is suitable for use on Sun SPARC-

stations. A series of test problems have also been delivered to aid in the verification

process and to provide additional assistance to a user during the preparation of BEST-FSI

datasets. Included ave complete input datasets and BEST-FSI output files.
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TABLE 1.1

GENERAL FEATURES OF BEST-FSI

- Two-dimensional problems

- Conforming element approach to provide inter-element continuity of the field vari-

ables, along with efficient solutions

- Substructured regions (super-elements) to permit multiple materials and more ef-

ficient solutions

- Automatic adaptive numerical integration schemes

- Cyclic and planar symmetry

- Local or global boundary condition specification

- Sliding, frictional spring and resistance-type interfaces

Exterior domains

- Block banded solver routines based upon LINPACK

- Restart capability for low cost re-analysis

- Free-format, keyword-driven input

- Automatic error checks of input data

- Automatic check of equilibrium and heat balance

- PATRAN TM interfaces for pre- and post-processing
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TABLE 1.2

ANALYSIS CAPABILITIES OF BEST-FSI

- Steady thermoelasticity

- Transient (quasistatic) thermoelasticity

- Steady incompressible thermoviscous flow

- Stokes-based formulations

- Oseen-based formulations

- Full Navier-Stokes formulations

- Unsteady incompressible thermoviscous flow

- Stokes-based formulations

- b-_ll Navier-Stokes formulations

- Convective heat transfer

- Buoyancy effects

- Fluid-structure Interaction (involving any of the above formulations)
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[20 llTHEORETICALBACKGROUNDI

This section contains a detailed presentation of all of the boundary element formu-

lations developed under this gra_t. First, in Section 2.1 a brief review of the applicable

literature is provided. The remaining sections described the methodology employed for

the analysis of thermoelastic deformation, incompressible thermoviscous flow, convective

incompressible thermoviscous flow, convective potential flow, compressible thermoviscous

flow, and fluid-structure interaction.
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2.1 ][ LITERATURE REVIEW

Very little has appeared in the literature on the analysis of coupled thermoviscous fluid-

structure problems via the boundary element method. However, a number of publications

have addressed the fluid and structure separately.

In general, the solid portion of the problem has been addressed to a much greater

degree. For example, a boundary-only steady-state thermoelastie formulation was initially

presented by Cruse et al (1977) and Rizzo and Shippy (1977). Recently, the present

authors developed and implemented the quasistatic counterpart (Dargush, 1987; Dargush

and Banerjee, 1989b, 1990a, 1990b), which is presented in detail in Section 2.2. Others,

notably Sharp and Crouch (1986) and Chandouet (1987), introduce volume integrals, to

represent the equivalent thermal body forces. A similar domain based approach was taken

earlier by Banerjee and Butterfield (1981) in the context of the analogous geomechanicai

problem.

An extensive review of the applications of integral formulations to viscous flow prob-

lems was included in a previous annual report (Dargush et al, 1987), and will not be

repeated here. Interestingly, only a few groups of researchers are actively pursuing the

further development of boundary elements for the analysis of viscous fluids. The work re-

ported in Piva and Morino (1987) and Piva et al (1987) focuses heavily on the development

of fundamental solutions and integral formulations with little emphasis on implementation.

On the other hand, Tosaka and Kakuda (1986, 1987), Tosaka and Onishi (1986) have im-

plemented single region boundary element formulations using approximate incompressible

fundamental solutions. This latter group has developed sophisticated non-linear solution

algorithms, and consequently, are able to demonstrate moderately high Reynolds num-

ber solutions. Meanwhile, Dargush and Banerjee (1991a, 1991b) present general purpose

steady and time-dependent boundary element methods for moderate Reynolds number

flOWS.

The most recent work from the above researchers has been collected into a volume en-

titled Developments in BEM - Volume 6: Nonlinear Problems of Fluid Dynamics, edited

by Banerjee and Morino. Contributions from Wu and Wang, and Bush and Tanner are also

included, along with two chapters from the present co-authors. The volume, published by

Elsevier Applied Science Publishers became available in mid-1990, and provides a state-of-

the-art review of boundary element fluid dynamics. However, it should be noted that the

convective thermoviscous formulations of Section 2.4 are not included. These represent a

significant further advancement which permit solutions for high Reynolds number flows.

Interestingly, the basis for much of this latter development is actually work done early in

this century by Oseen (1911, 1927).

For analysis of the interaction problem, a boundary element thermoelastic solid repre-

sentation must be coupled with a suitable thermoviscous fluid formulation. Only Dargush

and Banerjee (1988,1989a) have tackled this problem. These two papers provide a sum-

mary of the early work performed under this grant.
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2.2 ]I THERMOELASTIC DEFORMATION

[2.2.1I INT °D °TI° I

In the current section, a surface-only time-domain boundary element method (BEM)

will be described for a thermoelastic body under quasistatic loading. Thus, transient heat

conduction is included, but inertial effects are ignored. This BEM was first developed as

part of the work performed during the second year (1987) of this grant. Since that time a

number of improvements and extensions have been incorporated. During 1989, the algo-

rithms for numerical integration have been made more efficient as well as more accurate,

and a comprehensive PATRAN interface has been added to aid in the post-processing of

the boundary element results. Additionally, a streamlined approach for uncoupled ther-

moelasticity was introduced (Dargush and Banerjee, 1989b). In 1990, boundary elements

with a quartic variation of the field variables were implemented. These elements are par-

ticularly well suited for problems involving the bending of components (Deb and Banerjee,

1989).

Details of the integral formulation for 2D plane strain is presented below. (Problems

of plane stress can be handled via a simple change in material parameters.) Separate

subsections present the governing differential equations, the integral equations, and an

overview of the numerical implementation. Similar formulations have also been developed

for three-dimensional (Dargush and Banerjee, 1990a) and axisymmetric problems (Daxgush

and Banerjee, 1992).

[ 2.2.2 ][ GOVERNINGEQUATIONS ]

With the solid assumed to be a linear thermoelastic medium, the governing differential

equations for transient thermoelasticity can be written

02uj a=ul O0
(_ +.)_ + ._ - (3_+ _.)_ = 0

00 k 020

where

ul displacement vector

0 temperature
t time

xi Lagrangian coordinate

BEST-FSI User Manual
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k thermal conductivity

p mass density

c_ specific heat at constant deformation

A,u Lamd constants

a coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated by repeated

indices. For two-dimensional problems considered herein, the Latin indices i and j vary
from one to two.

Note that (2.2.1b) is the energy equation and that (2.2.1a) represents the momentum

balance in terms of displacements and temperature. The theory portrayed by the above

set of equations, formally labeled uncoupled quasistatic thermoelasticity, can be derived

from thermodynamic principles. (See Boley and Weiner (1960) for details.) In developing

(2.2.1), the dynamic effects of interia have been ignored.

l 2.2.3 ][ INTEGRALREPRESENTATIONS 1

Utilizing equation (2.2.1) for the solid along with a generalized form of the reciprocal

theorem, permits one to develop the following boundary integral equation:

where

s

Ua, tc_

O,q

ga_, f ,_;_

ca,_

c_c_(_)ua(_,t) = _s [gao * t#(X,t) - f_o * u_(X,t)]dS(X ).

indices varying from 1 to 3

surface of solid

generalized displacement and traction

0]r
ta= [tl t2 q]T

temperature, heat flux

generalized displacement and traction kernels

constants determined by the relative smoothness of S at

and, for example

_0 tg_z * to = gaB(x, t; _, r)ta(x, 7")dr

(2.2.2)

denotes a Riemann convolution integral. The kernel functions g_,z and f¢,¢ axe derived from

the fundamental infinite space solutions of (2.2.1).

In principle, at each instant of time progressing from time zero, this equation can be

written at every point on the boundary. The collection of the resulting equations could then

be solved simultaneously, producing exact values for all the unknown boundary quantities.

In reality, of course, discretization is needed to limit this process to a finite number of
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equations and unknowns. Techniques useful for the discretization of (2.2.2) are the subject

of the following section.

[ 2.2.4 J NUMERICAL IMPLEMENTATION ]

[ 2.2.4.1 J[ INTRODUCTION ]

The boundary integral equation (2.2.2), developed in the last section, is an exact state-

ment. No approximations have been introduced other than those used to formulate the

boundary value problem. However, in order to apply (2.2.2) for the solution of practical

engineering problems, approximations are required in both time and space. In this section,

an overview of a general-purpose, state-of-the-art numerical implementation is presented.

Many of the features and techniques to be discussed, in this section, were developed previ-

ously for elastostatics (e.g., Banerjee et al, 1985, 1988), and elastodynamics (e.g., Ba_erjee

et al, 1986; Ahmad and Ba_erjee, 1988), but are here adapted for thermoelastic analysis.

[ 2.2.4.2 ][ TEMPORAL DISCRETIZATION I

Consider, first, the time integrals represented in (2.2.2) as convolutions. Clearly, with-

out any loss of precision, the time interval from zero to t can be divided into N equal

increments of duration At.

By assuming that the primary field variables, t z and u_, are constant within each at

time increment, these quantities can be brought outside of the time integral. That is,

N chat

g_ • t_(x,t/= ,=1__t_(x) -,../'--1)_tg_o_x- _,_- _)e_ 12.23,)

"Jc:"* f_,(X-¢,t- ,-)d_ (2a.zb)

where the superscript on the generalized tractions and displacements, obviously, represents

the time increment number. Notice, also, that, within an increment, these primary field

variables are now functions of position only. Next, since the integrands remaining in

(2.2.3) are known in explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as

n_t_N+l-.ty = g_a(X - _, t - r)dr
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Fff_+l-"(X - _) = _,_I)A_f_(X - _, t - ,-)dr. (Z2.4b)

These kernel functions, G_,(X- _) and F_,,(X- _), are detailed in Appendix 2.2. Combining
(2.2.3) and (2.2.4) with (2.2.2) produces

N

which is the boundary integral statement after the application of the temporal discretiza-
tion.

2.2.4.3 SPATIAL DISCRETIZATION ]

With the use of generalized primary variables and the incorporation of a piecewise

constant time stepping algorithm, the boundary integral equation (2.2.5) begins to show

a strong resemblance to that of elastostatics, particularly for the initial time step (i.e.,

N = 1). In this subsection, those similarities will be exploited to develop the spatial

discretization for the uncoupled quasistatic problem with two-dimensional geometry. This

approximate spatial representation will, subsequently, permit numerical evaluation of the

surface integrals appearing in (2.2.5). The techniques described here, actually, originated

in the finite element literature, but were later applied to boundary elements by Lachat and

Watson (1976).

The process begins by subdividing the entire surface of the body into individual ele-

ments of relatively simple shape. The geometry of each element is, then, completely defined

by the coordinates of the nodal points and associated interpolation functions. That is,

with

intrinsic coordinates

N_ shape functions

z,_ nodal coordinates

x(i)=x,(¢) =N_(i)_i_ (2.zs)

and where w is an integer varying from one to w, the number of geometric nodes in the

element. Next, the same type of representation is used, within the element, to describe

the primary variables. Thus,

u_(_) = ,_(ff)u_ (2.2.7a)

t2(_) = N.(_)t2. (_.2.7b)

in which u_ and t_ are the nodal values of the generalized displacement and tractions,

respectively, for time step n. Also, in (2.2.7), the integer w varies from one to _, the total
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number of functional nodesin the element. From the above,note that the same number

of nodes, and consequently shape functions, are not necessarily used to describe both the

geometric and functional variations. Specifically, in the present work, the geometry is

exclusively defined by quadratic shape functions. In two-dimensions, this requires the use

of three-noded line elements. On the other hand, the variation of the primary quantities

can be described, within an element, by linear, quadratic or quartic shape functions. For

each quartic element, two additional quarter-point nodes are automatically generated by

the program. It should be noted that the introduction of quartic elements provides the

foundation for the development of a p-adaptive boundary element capability.

Once the spatial discretization has been accomplished and the body has been subdi-

vided into M elements, the boundary integral equation can be rewritten as

J)

where
M

S= U S._.
m=l

In the above equation, t_ and u_ are nodal quantities which can be brought outside the

surface integrals. Thus,

N M

n_l rn=l m

The positioning of the nodal primary variables outside the integrals is, of course, a key

step since now the integrands contain only known functions. However, before discussing

the techniques used to numerically evaluate these integrals, a brief discussion of the sin-

gularities present in the kernels G_ and F_ is in order.

The fundamental solutions to the uncoupled quasistatic problem contain singularities

when the load point and field point coincide, that is, is when r = 0. The same is true of G_o

and F_',, since these kernels are derived directly from the fundamental solutions. Series

expansions of terms present in the evolution functions can be used to deduce the level of

singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-

tioned. First, as would be expected F_ has a stronger level of singularity than does the

corresponding G_O, since an additional derivative is involved in obtaining Floa from G,0.1

Second, the coupling terms do not have as a high degree of singularity as do the corre-

sponding non-coupling terms. Third, all of the kernel functions for the first time step could

actually be rewritten as a sum of steady-state and transient components. That is,

El __s6 tr 1- +
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Then, the singularity is completely containedin the steady-state portion. Furthermore,

the singularity in G_½ and F_ is precisely equal to that for elastostatics, while G_e and F_e

singularities are identical to those for potential flow. (For two-dimensions, the subscript

e equals three.) This observation is critical in the numerical integration of the Fo_ kernel

to be discussed in the next subsection. However, from a physical standpoint, this means

that, at any time t, the nearer one moves toward the load point, the closer the quasistatic

response field corresponds with a steady-state field. Eventually, when the sampling and

load points coincide, the quasistatic and steady-state responses are indistinguishable. As

a final item, after careful examination of Appendix 2.2, it is evident that the steady-state

components in the kernels G_Z and F_, with n > 1, vanish. In that case, all that remains

is a transient portion that contains no singularities. Thus, all singularities reside in the

*°G_z and °°Fo_ components of G _ and F _ respectively.

[ 22 4J[ N MERIOALINTEGRATIONJ
Having clarified the potential singularities present in the coupled kernels, it is now

possible to consider the evaluation of the integrals in equation (2.2.9). That is, for any

element m, the integrals

aN+ (()- (()dS(X(()) 2.1(2. Oa)

fs.FN+I-"(X (()- OdS(X (()) (2 2.10b)

will be examined. To assist in this endeavor, the following three distinct categories can be
identified.

(1) The point ( does not lie on the element m.

(2) The point _ lies on the element m, but only non-singular or weakly singular integrals
are involved.

(3) The point ( lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the inte-

gration occurring in equation (2.2.9) will be of the category (1) variety. In this case,

the integrand is always non-singular, and standard Gaussian quadrature formulas can be

employed. Sophisticated error control routines are needed, however, to minimize the com-

putational effort for a certain level of accuracy. This non-singular integration is the most

expensive part of a boundary element analysis, mad, consequently, must be optimized to

achieve an efficient solution. In the present implementation, error estimates, based upon

the work of Stroud and Secrest (1966), are employed to automatically select the proper

order of the quadrature rule. Additionally, to improve accuracy in a cost-effective man-

ner, a graded subdivision of the element is incorporated, especially when ( is nearby. For

two-dimensional problems, the integration order varies from two to twelve, within each of

up to four element subdivisions.
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Turning next to category (2), onefinds that again Gaussianquadrature is applicable,
however,a somewhatmodified schememust be utilized to evaluate the weakly singular
integrals. This is accomplishedin two-dimensionalelementsvia suitable subsegmentation
along the length of the elementsothat the product of shapefunction, Jacobianand kernel
remainswell behaved.

Unfortunately, the remaining strongly singular integralsof category (3) exist only in
the Cauchy principal value senseand cannot, in general,be evaluatednumerically, with
sufficientprecision. It shouldbenoted that this apparent stumbling block is limited to the
strongly singular portions, "'F_jand SSFae,of the F_Z kernel. The remainder of F_a, including

*_F_ and trFd6, can be computed using the procedures outlined for category (2). However,
as will be discussed in the next subsection, even category (3) S'F_3 and °°Fo6 kernels can be

accurately determined by employing an indirect 'rigid body' method originally developed

by Cruse (1974).

2.2.4.5 ]L ASSEMBLY J

The complete discretization of the boundary integral equation, in both time and space,

has been described, along with the techniques required for numerical integration of the ker-

nels. Now, a system of algebraic equations can be developed to permit the approximate

solution of the original quasistatic problem. This is accomplished by systematically writ-

ing (2.2.9) at each global boundary node. The ensuing nodal collocation process, then,

produces a global set of equations of the form

",,"r [ ])
rl_.|

where

[ON+l--]

[FN+I-,,]

{t "_}

{0)

P

Q

Am

unassembled matrix of size (d + 1)P × (d + 1)Q, with coefficients determined

from (2.2.10a)

assembled matrix of size (d+ 1)P x (d+ 1)P, with coefficients determined from

(2.2.10b) and c_o included in the diagonal blocks

global generalized nodal traction vector with (d + 1)Q components

global generalized nodal displacement vector with (d + 1)P components

null vector with (d + 1)P components

total number of global functional nodes

d dimensionality of the problem.
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In the above, recall that the terms generalized displacement and traction refer to the

inclusion of the temperature and flux, respectively, as the (d + 1) component at any point.

Consider, now, the first step. Thus, for Y = 1, equation (2.2.11) becomes

[al]{t '} - '} = {0}.

However, at this point the diagonal block of [F 1] has not been completely determined due to

the strongly singular nature of **F_j and °°F0_. Following Cruse (1974) and, later, Banerjee

et al (1986) in elastodynamics, these diagonal contributions can be calculated indirectly

by imposing a uniform 'rigid body' generalized displacement field on the same body, but

under steady-state conditions. Then, obviously, the generalized tractions must be zero,

and

["F]{1} = {0}, (2.2.13)

where {I} is a vector symbolizing a unit uniform motion. Using (2.2.13), the desired

diagonal blocks, °'F_ and "°Foo, can be obtained from the summation of the off-diagonal

terms of [°°F]. The remaining transient portion of the diagonal block is non-singular, and

hence can be evaluated to any desired precision. After summing the steady-state and

transient contributions, (2.2.12) is once again written as

[Gt]{t I } - [F'l{u 1} = {0}, (2.2.14)

but now the evaluation of [F 1] is complete.

In a well-posed problem, at time At, the set of global generalized nodal displacements

and tractions will contain exactly (d + I)P unknown components. Then, as the final stage

in the assembly process, equation (2.2.14) can be rearranged to form

[A1]{z 1} = [Bl]{yl}, (2.2.15)

in which

{z 1} unknown components of {u'} and {t 1}

{yl} known components of {u l} and {t 1}

[A1], [B 1] associated matrices

I 2"2"4"6 ][ SOLUTION ]

To obtain a solution of (2.2.15) for the unknown nodal quantities, a decomposition

of matrix [A_] is required. In general, [A1] is a densely populated, unsymmetric matrix.

The out-of-core solver, utilized here, was developed originally for elastostatics from the

LINPACK software package (Dongarra et al, 1979) and operates on a submatrix level.

Within each submatrix, Ganssian elimination with single pivoting reduces the block to

upper triangular form. The final decomposed form of [A1] is stored in a direct-access file
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for reuse in subsequent time steps. Backsubstitution then completes the determination of

{zl}. Additional information on this solver is available in Banerjee et al (1985).

After turning from the solver routines, the entire nodal response vectors, {u 1} and

{tl}, at time _t are known. For solutions at later times, a simple marching algorithm is

employed. Thus, from (2.2.11) with N = 2,

[GI]{P} - [Eli{Q} + [G1]{t z} - [Fl]{u 2} = {0}. (2.2.16)

Assuming that the same set of nodal components are unknown as in (2.2.14) for the first

time step, equation (2.2.16) is reformulated as

2}= [B'l{y2} - [a l{t1}+ (ZZlT)

Since, at this point, the right-hand side contains only known quantities, (2.2.17) can be

solved for {z2}. However, the decomposed form of [A'] already exists on a direct-access file,

so only the relatively inexpensive backsubstitution phase is required for the solution.

The generalization of (2.2.17) to any time step N is simply

N-1

[A1]{z_} = IB1]{y_v}-

in which the summation represents the effect of past events. By systematically storing

all of the matrices and nodal response vectors computed during the marching process,

surprisingly little computing time is required at each new time step. In fact, for any

time step beyond the first, the only major computational task is the integration needed

to form [Gx] and [FN]. Even this process is somewhat simplified, since now the kernels

are non-singular. As a result, reduced subsegmentation and gaussian integration order is

appropriate. Also, as time marches on, the effect of events that occurred during the first

time step diminishes. Consequently, the terms containing [G N] and [F _] will eventually

become insignificant compared to those associated with recent events. Once that point is

reached, further integration is unnecessary, and a significant reduction in the computing

effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this

section, has involved surface quantities exclusively. A complete solution to the well-posed

linear uncoupled quasistatic problem, with homogeneous properties, can be obtained in

terms of the nodal response vectors, without the need for any volume discretization. In

many practical situations, however, additional information, such as, the temperature at

interior locations or the stress at points on the boundary, is required. The next subsection

discusses the calculations of these quantities.

I 2.2.4.7 ][ INTERIOR QUANTITIES I

Once equation (2.2.18) is solved, at any time step, the complete set of primary nodal

quantities, {u"} and {tg}, is known. Subsequently, the response at points within the body
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can be calculated in a straightforward manner. For any point _ in the interior, the gener-

alized displacement can be determined from (2.2.9) with cza = _0_. That is,

N M

rf+ - _)N_,(()dS(X(())
r_ = l

(2.2.19)

Now, all the nodal variables on the right-hand side are known, and, as long as, _ is not on the

boundary, the kernel functions in (2.2.19) remain non-singular. However, when _ is on the

boundary, the strong singularity in **F0,, prohibits accurate evaluation of the generalized

displacement via (2.2.19), and an alternate approach is required. The apparent dilemma

is easily resolved by recalling that the variation of surface quantities is completely defined

by the elemental shape functions. Thus, for boundary points, the desired relationship is

simply

u_(_) = N_(¢),_ (2.2.20)

where N,_(¢) are the shape functions for the appropriate element and ¢ are the intrinsic

coordinates corresponding to _ within that element. Obviously, from (2.2.20), neither

integration nor the explicit contribution of past events axe needed to evaluate generalized

boundary displacements.

In many problems, additional quantities, such a heat flux and stress, are also important.

The boundary integral equation for heat flux, can be written

N M

E_s i (X(_) - :,)N,_(_)dS(X(_))

,oi. }.-- _., (2.2.21)

where

_(x(¢) - ¢) = -k av_(x(o - ¢)
0_i (2.2.21a)

k DFZs(X(¢) - _) (2.2.21b)D_(x(¢) - _) = - a_

This is valid for interior points, whereas, when _ is on the boundary, the shape functions

can again be used. In this latter case,

N.(Oq{ = ,,,(()q{(() (_.2.22_)

a___()0_ = iaxi N_ q_ (0, C2.2.22b)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from

_' _ { e E_+'-"(X(O- _)N_(OdS(X(O)_ (_) =
ri=l _'1=1

(_._._3)
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in which

2#. _i OG'_t { 8G_'_ OG_

with t, representing the Poisson ratio and _ = (3,_ + 2#)a. Equation (2.2.23) is, of course, de-

veloped from (2.2.19). Since strong kernel singularities appear when (2.2.23) is written for

boundary points, once again an alternate procedure is needed to determine surface stress.

This alternate scheme exploits the interrelationships between generalized displacement,

traction, and stress and is the straightforward extension of the technique typically used in

elastostatic implementation (Cruse and Van Buren, 1971). Specifically, the following can

be obtained

ny(_)aN(_) = Nw(()t N (2.2.24a)

D r

trO(_) - T \ k,,_._J t,_t,J } = -//6ijN, o(_)uaNw (2.2.24b)

Oxj N cON,_ N

in which uN,, is obviously the nodal temperatures, and,

D_kl = ,_6ij6kl + 2#6ik6jt.

Equations (2.2.24) form an independent set that can be solved numerically for _(() and

uN(_) completely in terms of known nodal quantities u_ and t_, without the need for kernel

integration nor convolution. Notice, however, that shape function derivatives appear in

(2.2.24c), thus constraining the representation of stress on the surface element to something

less than full quadratic variation. The interior stress kerneI functions, defined by (2.2.23),

are also detailed in Appendix 2.2.

{ 2.2.4.8 ]l ADVANCED FEATURES I

The thermoelastic formulation has been implemented as a segment of the general pur-

pose boundary element computer program, BEST-FSI. Consequently, many additional

features, beyond those detailed above, are available for the analysis of complex engineer-

ing problems. Perhaps, the most significant of these items, is the capability to analyze

substructured problems. This, not only extends the analysis to bodies composed of several

different materials, but also often provides computational efficiencies. An individual sub-

structure or geometric modehng region (GMR) must contain a single material. During the

integration process, each GMR remains a separate entity. The GMR's are then brought

together at the assembly stage, where compatibility relationships axe enforced on common

boundaries between regions. Typically, compatibility ensures continuous displacement and

temperature fields across an interface, however, recent enhancements to the code permit
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sliding between regions, spring contacts and interfacial thermal resistanceto model air
gapsor coating resistances.In the latter instances, discontinuities appear at the interface.

In any case, the mutti-GMR assembly process produces block-banded system matrices that
are solved in an efficient manner.

As another feature, a high degree of flexibility is provided for the specification of bound-

ary conditions. In general, time-dependent values can be defined in either global or local

coordinates. Not only can generalized displacements and tractions be specified, but also

spring and convection boundary conditions are available. Another recent addition permits

time-dependent ambient temperatures. A final item, worthy of note, is the availability of

a comprehensive symmetry capability which includes provisions for both planar and cyclic

symmetry.

During the past three years, an interface to the well-known PATRAN graphics package

was developed and enhanced. This interface allows the user an option to view deformed

shapes, temperatures and stress boundary profiles or contours. A number of PATRAN-

produced illustrations are included throughout this manual. Several examples axe pre-

sented in Section 3 to demonstrate the validity and applicability of this boundary-only
formulation.
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APPENDIX 2.2

[ KERNEL FUNCTIONS

This appendix contains the detailed presentations of all the kernel functions utilized in

the formulations contained in Section 2.2. Two-dimensional (plane strain) kernels are pro-

vided, based upon continuous source and force fundamental solutions. For time-dependent

uncoupled quasistatic thermoelasticity the following relationships must be used to deter-

mine the proper form of the functions required in the boundary element discretization.

That is,

G_e(X - _) = a,_p(X - _, nat) for n = 1

G_a(z - _) = G_(X - _, nat) - G_X - _, (n - 1)At) for n > 1,

with similar expressions holding for all the remaining kernels. In the specification of these

kernels below, the arguments (X- _, t) are assumed. The indices

i,j,k,l vaxy from 1 to d

(,,3 vary from 1 to (d+ 1)

e equals d + 1

where d is the dimensionaiity of the problem. Additionally,

z_ coordinates of integration point

_i coordinates of field point

Yi = Xi --_i r 2 = YiYi.

For the displacement kernel,

v. - 8_u(1 k V) L_ r2 J -- (_)(3 --

Gia = 0

r Z

Goo= [os(v)]

whereas, for the traction kernel,

1 1
Fiy- 4rr( 1 u) [--(2Yi_knk)-- ('iJYknTYinJ)(1-2v)

Fig=0

1 ( 3 )[[yjyknk_ (nj)fT(,)]

1 yknk
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In the above,

r

k

Oce

Jz x

4 (1--e-n2/4)

hi(,) _1(_)
#4(_)- 2 + 2

2 2

£(.) = _-e/..

For the interior stress kernels,

21_v 6 aG_' (SG#i+_)_f6ifG# e

where
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[2.3 l[ INCOMPRESSIBLE THERMOVISCOUS FLOW

2.3.1LINTRODUCTIONI
In the following, steady and time-dependent formulations are presented for relative]y

slow incompressible flow. The primary variables in each case are velocity, temperature,

traction and heat flux. This is the set of variables for which boundary conditions axe

most readily defined, and for which the extension to three-dimensions is most easily ac-

complished. As will be seen, the individual formulations have much in common. The

major differences involve the fundamental solutions that axe employed, and the treatment

of the contributions of past events. Both formulations have been implemented within the

computer code BEST-FSI.

I 2.3.2 ][ GOVERNINGEQUATIONS ]

Application of the Principles of the Conservation of Mass, Momentum and Energy for

an incompressible thermoviscous fluid lead to the development of the following differential

equations:

where

x, Eulerian coordinate

t time

v_ velocity vector

p pressure

0 temperature

p mass density

tt viscosity

k thermal conductivity

e, specific heat

$i body force

¢ body source,

-- = 0 (2.a.la)
vgzi

_2v_ ap Dv_

It_gzjOzj ,gzi P"_- + .fl = 0 (2.3.1b)

020 DO

koz.rOx j pcc-'_ + ¢ = 0 (2.3.1c)

and the operator
D 0 0

(_.3.2)
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represents a material time derivative. By introducing a constant free stream velocity Ui

and a velocity perturbation u_, such that

v_ = U_ + ui, (2.3.3)

the governing equations can be rewritten as

0Ui

-- = 0 (2.3.4a)
0zi

02ul Op aui Oui Oui

820 90 . 00 90
k_ - p_,_-- ,_,,_j0_-S- '_'"J 0_-S+ ¢ : o. (2.34c)

Note that in equations (2.3.4) only the terms pu_,_, and ,c_u:_ are actually nonlinear,
although in some instances the body forces and sources may also contain nonlinearities. A

number of distinct integral formulations are possible, depending upon which of the linear

terms are included in the differential operator. All terms excluded from the differential

operator, must then be grouped together as effective body forces and sources, y_ and ¢',

respectively. Integral formulations based upon Stokes kernels are detailed in the next
subsection.

2.3.3 J[ INTEGRAL REPRESENTATIONS J

2.3.3.1 ] STEADY I

In this first formulation the time-dependent terms vanish, and the entire contribution

of the convective terms are considered as effective body forces and sources. Thus,

Oui 9ui
.r = -,u_ 0_---_..- "J _ + s, (2.3.5a)

00 0O
¢' = -pc, us_ - pc,_ _ + ¢. (2.3.5b)

As a result, the well-known fundamental solutions for incompressible Stokes flow and

steady-state heat conduction are applicable. The integral formulation, which can be de-

rived directly from the governing differential equation (Dargush and Banerjee, 1990b), can
be written

_o_,,o= J_[ao_to- ro_o - Co_t_]ds+ J,, [z_o,_.r,o+ aodo] dv (2.3.6)
where

BEST-FSI User Manual

u_={u, u2 0} (2.3.7a)

to = {tz t2 q} (2.3.7b)

fo= {Y, /2 ¢} (2.3.7_)
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are generalized velocities, tractions, and body forces. In (2.3.7b), ti are the surface tractions

defined by

t_ = rijnj - phi (2.3.8a)

with n_ representing the local unit outward normal to the surface s, and r0 the fluid

stresses, while the heat flux is defined via

00
q = -k-z-ni.

ClXi

Furthermore,

°1 o] o]CaB = Ga_ = Fail = J
coo ' G go ' Foo

OGaz

= [P(Uk+ pc (Uk + u )O]

=  rL,nk.

(2.3.Sb)

(2.3.9a, b, c)

(2.3.9d)

(2.3.10a)

(2.3.10b)

In the terminology of Lighthill (1952), _ is the momentum flux tensor or fluctuating

Reynolds stress. Here, a_ is labeled the generalized convective stress tensor, while t 0 is

the generalized convective traction. Both e_,, and t 0 contain terms which are nonlinear in

the generalized velocities.

In (2.3.9a), c_(_) and c0e(_) are constants. When _ is inside S, ci_ = 60 and coo = 1. If

is on the boundary then the values are determined by the relative smoothness of s at

_. For _ outside the region V, both cO and coo are zero. Meanwhile, the kernel functions

Gij,Goo, Fir and Foe are provided in Appendix 2.3.1.

[ 2.3.3.2 ][ TIME-DEPENDENT [

For this next formulation, the effective body forces and sources are identical to those

provided in (2.3.5), however, the time-dependent terms are now included in the linear

operator. The required fundamental solution for the viscous portion was first given by

Oseen (1927), while the transient heat conduction fundamental solution is well-known

(Carslaw and Jaeger, 1959). By applying standard methodology (Banerjee and Butterfield,

1981; Dargush and Banerjee, 1990c), the following governing integral equations can be
derived

ca_ua= fs[gaz*ta-faP*u_-ga_*t_]dS + /jv [d_pk*a_a-t-ga_* fa-g=#Pu:]dV (2.3.11)

Note that (2.3.11) is similar to (2.3.6) for the steady case, except that Riemann convolution

integrals over time have been introduced, along with an initial condition volume integral

involving u_. Once again a_o and t ° contain terms which are nonlinear in the generalized

velocities. Kernel functions; Go_ and F_e, developed from the instantaneous point force and
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source adjoint fundamental solutions g_z and f_z, are provided in Appendix 2.3.2. It should

be noted that these functions are considerably more complicated than the corresponding

steady kernels.

2.3.4 ][ NUMERICALIMPLEMENTATION [

2.3.4.1[ INTRODUCTION]

Analytical solutions are possible for only the simplest geometries and boundary con-

ditions. More generally, approximations must be introduced in both time and space to

expose the practical utility of these integral equations. Consequently, in this section, state-

of-the-art boundary element technology is applied to steady and unsteady incompressible

thermoviscous flows. Recent boundary element developments in the fields of elastodynam-

ics (Banerjee et al, 1986; Ahmad and Banerjee, 1988) and thermoelasticity (Dargush and

Banerjee, 1989b, 1990a) are directly applicable for these problems. The presentation below

will concentrate on those aspects of the numerical implementation which differ from that

detailed in Section 2.2. The current implementation is limited to the two-dimensional case,

although certainly both of the integral formulations presented in the previous subsection

are equally valid in three dimensions.

[ 2.3.4.2 ] TEMPORAL AND SPATIAL DISCRETIZATION ]

For time-dependent problems, the total time interval from zero to r is subdivided into

N equal increments of duration At. Then, the field variables t_, u_, t_, and _7,o are assumed

constant within each Ar time increment. As a result,

N friar N

Z J(n ga_dt = _'_ ,rl_N--n+l (2.3.12)go_ * ta _ tn -1)tX'r /_ "o_cfB

with similar expressions holding for the remaining convolution integrals. This is identical

to the treatment discussed in Section 2.2 for thermoelasticity.

The methodology employed for spatial discretization of the bounding surface also fol-

lows that described in Section 2.2. Thus, linear, quadratic or quartic shape functions are

utilized to portray the functional behavior of the field variables over surface elements with

three geometric nodes, as shown in Figure 2.3.1.

However, in axtdition to the surface description, the domain must be discretized into

cells in the regions where the nonlinear convective effects are important, or where nonzero

initial conditions are present. Shape functions are once again introduced to approximate

the geometric and functional variation with each volume cell. Thus, for any point X within
an individual cell

xi(() = M_,((:)xiw (2.3.13)
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and

where

M,_, M,_ shape functions

zi,_ nodal coordinates

_i°_w nodal generalized convective stress .

(2.3.14)

The current implementation utilizes six and eight-noded cells for the geometric repre-

sentation, along with linear, quadratic, or quartic functional variation. Typical cells are

depicted in Figure 2.3.2. For the quadratic cell, both serendipity (8-noded) and lagrangian

(9-noded) variations are included. Serendipity quartic cells were found to have unsatisfac-

tory performance and consequently are not available.

As a result of the spatial discretization, the boundary integral equation for time-

dependent thermoviscous flow can now be written

eaauN = E [ aw js" ae _ _ - aw FS-n+l NwdS -t_ V a._ N_d
n=l m=l m J S_

L L

U °

while for steady conditions this reduces to

c¢,pua=_[ _ G_NwdS - ua_ fs Fa_NwdS - t_ L Ga_N_dS ]
m----1 t(w._

+ E ¢"_"_° naOkM, dV , (2.3.155)
l=l

where M and L are the total number of surface elements and volume cells, respectively,
and

M

s = U (2.s.16a)
m=1

L

v = U v,. (2.s.,6b)
1=1

The positioning of the nodal variables outside of the integrals is a key step, since now the

integrands of (2.3.15) contain only known functions, which can be evaluated numerically.

Up to this juncture, the region of interest has been assumed to be composed of a single

volume v with surface S. However, this need not be the case. In general, space may

be subdivided into a number of individual non-overlapping geometric modeling regions

(GMRs). Each GMR occupies a certain volume of space, say vg, bounded by the surface

sg. For a point _ within Vg, the integration required by (2.3.15) need only be conducted

over s 9 and vg, since the contribution to u,_(_) from the other GMRs outside Sg will be zero.

As a result, integration costs can be dramatically reduced by introducing multiple GMRs

for thermoviscous flow problems. Additionally, there is no inherent requirement that all
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GMRs utilize the same physical model. For example, one GMR could employ the steady

formulation of equation (2.3.6), while a second region includes the transient kernel effects

contained in the formulation of (2.3.11). In any case, compatibility must, of course, be

maintained across all GMR-to-GMR interfaces. Examples of the mixed GMR formulation

are contained in Section 3. This approach also provides for fluid structure interaction

which will be explored in Section 2.7.

[ 2-3.4.3 J[ INTEGRATION I

The evaluation of the integrals appearing in (2.3.15 is the next process to be examined.

Due to the singular nature of the kernel functions Goa, Fa_ arid Daak considerable care must

be exercised during numerical integration. This is particularly true for incompressible

viscous flow, in which the final solution is extremely sensitive to errors in integration

coefficients. In general, the integration algorithms must be much more sophisticated than

those developed for thermoelasticity. In the present implementation, discussed in detail in

Honkala (1992), a number of different integration schemes are employed depending upon

the order of the kernel singularity, the proximity of the field point _ to the element, and
the size of the element.

Once again consider the following three distinct categories for the surface integrals:

(1) The point _ does not lie on the element m.

(2) The point _ lies on the element m, but the kernels involve only weakly singular inte-

grands of the In r type.

(3) The point _ lies on the element m, and the integral has a strong ! singularity.

In practical problems involving many elements, it is evident that most of the integration

occurring in equation (2.3.15) will be of the Category (1) variety. The integrand is non-

singular and standard Gaussian quadrature can be employed. However, for near-singular

cases when _ is close to element m very high order formulas are needed to capture the

kernel behavior. For these instances, it is beneficial to identify the point X ° on the element

nearest to _, and then subdivide the inter_al of integration about X °. Within each of

the two subsegrnents a nonlinear transformation is used to further reduce the order of

Gaussian quadrature needed for high precision. This nonlinear transformation is similar

to that proposed by Mustoe (1984) and Telles (1987), however it should be emphasized

that subsegmentation is still required.

Turning next to Category (2), one finds that, unlike elasticity or potential flow, stan-

dard Gaussian formulas alone are inadequate. Instead the terms involving In r must be

isolated and integrated with special log-weighted Gaussian integration. The remaining

non-singular terms comprising Gaz are then evaluated utilizing standard quadrature.

The strongly singular integrals of Category (3) exist only in the Cauchy principal

value sense and cannot be evaluated numerically with sufficient precision. Fortunately,

the indirect 'rigid body' or 'equipotential' method, originally developed by Cruse (1974),
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is applicable, and leads to the accurate determination of the singular block of the sec-

ond integral in (2.3.15). The remainder of that integral is non-singular. Consequently,

subsegmentation along with standard Gaussian quadrature is adequate.

Similar care is needed for the volume integrals, which involve the kernel D_k con-

taining a !-type singularity. However, for two-dimensional volume integration, this kernel

is only weakly singular, and can be evaluated in the following direct manner. First, the

nearest node, say A, in cell I to the point _ is determined. The cell is then subdivided

into triangles radiating from A as shown in Figure 2.3.3. Next, each triangle is mapped

onto a unit square. The apex corresponding to A is stretched to form one side of the

square. This process essentially eliminates the _ singularity. Finally, the square is further

subsegmented in both radial and circumferential directions depending upon the closeness

of _ and the size of cell t. Standard Gaussian quadrature is applied to each subsegment.

This cell integration scheme was based on work by Mustoe (1984) for elastoplasticity. In

the present incompressible viscous flow implementation, tolerances have been tightened so

that additional subsegmentation is performed, along with higher order quadrature formu-

las. Additionally, it has been found that circumferential subsegmentation is much more

beneficial than the radial breakup.

In time-dependent problems, beyond the first time step, additional integration is re-

quired. This integration involves the kernels G_Z, F2_ and D_ak for n > 1. Prom Table 2.3.1,

these are all nonsingular. As a result, a much less sophisticated integration scheme is em-

ployed to obtain the required level of accuracy with fewer subsegments and gauss points.

If the initial velocities are not uniform, then the nonsingular initial condition integral of

equation (2.3.15a) must also be evaluated at each time step. This is accomplished in a

manner similar to the integration of D_ k.

Table 2.3.1 - Kernel Singularities

Kernel Singularity Order

G_a In r

a_O for n > 1 non-singular

-1r

F_ for n > 1 non-singular

D_k lr

D,_#k for n > 1 non-singular

[ 2.3.4-4 Jl ASSEMBLY ]

Once the spatial discretization and numerical integration algorithms are completely

defined, a system of nonlinear algebraic equations can be developed to permit an approx-

imate solution of the thermoviscous boundary value problem. The method of collocation

is employed by writing (2.3.15) at each functional mode.
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where

t n

U n

ton

O-on

U o

G n

For each time step N of a transient problem, this nodal collocation process yields

F _

D n

r N

P

M

Q=_A_
rn= l

Am

N

Z [GN-n+ltn -- FN-n+lun -- GN-n+lt°n + DN-n+lcr°n] -- rNu° = 0
n=l

(2.2.17)

nodal traction vector for time step n with 3Q components

nodal velocity vector for time step n with 3P components

nodal convective traction vector for time step n with 3Q components

nodal convective stress vector for time step n with 6P components

nodal initial velocity vector with 3P components

unassembled matrix of size 3P x 3Q calculated from the first

integral of (2.3.15) during time step n

assembled matrix of size 3P x 3P calculated from the second

integral of (2.3.15) during time step n, plus the coa contribution
in F _

assembled matrix of size 3P x 6P calculated from the first volume

integral of (2.3.15)

assembled matrix of size 3P x 3P calculated from the initial condition

integral of (2.3.15)

total number of functional nodes

number of functional.nodes in element m .

All of the coefficient matrices in (2.3.17) contain independent blocks for each GMR in

multiregion problems. However, for any well-posed problem, the boundary conditions and

interface relations remove all but 3P unknown components of u g and tN. Furthermore, by

solving (2.3.17) at each increment of time, all of the components of un, tn, t °n and ,_ for

n < N are known from previous time steps. Then, (2.3.17) can be rewritten at time N&r

as

g(x) = AX N -- vlcr °N + Glt °N - By N

N--I

-- Z [GN-n+ltn -- FN--n+lun -- GN-n+lton + DN-n+lo'°n] + rNu° = 0
rl=l

in which

X N

yN

nodal vector of unknowns with 3P components

nodal vector of knowns with 3Q components

(2.3.18)
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while A and B are the associated coefficient obtained from F l and Gh The A matrix now

includes the compatibility relationships enforced on GMR interfaces. As a result, the GMR

blocks in A are no longer independent, however A does remain block banded.

The terms included in the summation of (2.3.18) represent the contribution of past

events. This, along with the terms By N and rNu °, can be simply evaluated once at each

time step N with no need for iteration. Let,

N-1

bN = -BYN -- E [ GN-n+lt'_ -- FN-'_+lUn -- GN-n+lt°n + DN-'*+la°n] ÷ r%°- (2.3.19)

r,=l

Then (2.3.18) becomes the following nonlinear set of algebraic equations

g(x) = Ax N - Dla °_ + Glt °N + b N = O. (2.3.2o)

A closer examination of b N is in order. For example with N --- 1

b I =-By 1+Flu °, (2.3.21a)

while for the second time step

b 2 - _By 2 _ G2t I + F2u I ÷ G2t °l _ D2_ oI + r2u ° (2.3.21b)

Obviously, for each step N, one new set of matrices G N, F N, D N and r N must be determined

via integration and assembly. Integration, particularly the volume integration needed for

D N and T _, can be quite expensive.

As an alternative to the convolution approach defined above, a time marching recur-

ring initial condition algorithm can be employed. This has been utilized by a number of

researchers for transient problems of heat conduction, acoustics, and elasticity (Banerjee

and Butterfield, 1981). For this latter approach, at time step N the entire contribution of

past events is represented by an initial condition integral which utilizes u N-_ as the initial

velocity. Thus,

g(x) : Ax N - Dla °N + Glt °N "Jr b N = 0 (2.3.22)

with

b N = -By N + Flu N-1. (2.3.23)

Obviously, (2.3.22) is identical to (2.3.20). Only the evaluation of bN is different. The

advantage of the recurring initial condition approach is that no integration is needed beyond

the first time step. However, volume integration is required throughout the entire domain

because of the presence of u N-l, even for linear problems in which volume integration

would not normally be required.

In order to take full advantage of both methods, the present work utilizes the con-

volution approach in linear regions, and the recurring initial condition algorithm for the

remaining nonlinear GMRs which are filled with volume cells. Since b _ can be computed

independently for each GMR, this new dual approach provides no particular difficulty.
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[2.3.4.5Jl soL Tio J

An iterative algorithm, along the lines of those traditionally used for BEM elastoplas-

ticity (Banerjee and Butterfield, 1981; Banerjee et al, 1987), can be employed to solve the

boundary value problem. However, convergence is usually achieved only at low Reynolds

number. More generally the interior equations must be brought into the system matrix, as

in (2.3.20), and a full or modified Newton-Raphson algorithm must be employed to obtain

solutions even at moderate Reynolds number. (Similar 'variable stiffness' algorithms have

also been introduced by Banerjee and Raveendra (1987) and Henry and Banerjee (1988)

for elastoplasticity.) Symbolically, at any iteration k,

where

(2.3.24)

x k+l = x k + Ax k (2.3.25)

and the derivatives on the lefthand side of (2.3.24) are evaluated at x k. With the full

Newton-Raphson approach, ! = k and the system matrix must be formed and decomposed

at each iteration. The out-of-core solver used in the present implementation was devel-

oped originally for elastostatics (Banerjee et al, 1985) from the LINPACK software package

(Dongarra et al, 1979), and operates on a submatrix level. Within each submatrix, Gaus-

sian elimination with single pivoting reduces the block to upper triangular form. The final

decomposed compacted form of the system matrix is stored in a direct access file for later

reuse. Backsubstitution completes the determination of Ax k. Iteration continues until

ll( ,#)kll
[l(xN)kl [ < _ (2.3.26)

where e is a small tolerance, and Hx[[ is the Euclidean norm of x. For the modified Newton-

Raphson algorithm, the system matrix is not formed at every iteration, and only backsub-

stitution is needed to determine Ax k.

[ 2.3.4.6 ] CALCULATION OF ADDITIONAL BOUNDARY QUANTITIES J

Once the iterative process has converged, a number of additional boundary quantities

of interest can be easily calculated. For example, lift and drag can be calculated by numer-

ically integrating the known nodal traction and shape function products over the surface

elements of interest. Low order Gaussian quadrature is adequate for this integration, since

all the functions are very well behaved.

Furthermore, at each boundary node, the pressure p, stress a_, and strain rates _ can

be determined by simultaneously solving the following relationships:
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_- _-_zj(_) = --_-u_ (2.3.27¢)

"ii(___.._)+ p(_}= 0, (2.3,27d)
2

Itshould be emphasized that (2.3.27)representsa set ofnine independent equations which

axe written at the boundary point _,and can be solved easilyforp,_o and _ at that point.

Afterward, boundary vorticityand dilatationcan be obtained, respectively,from

Ou2 Ou I
-- Oxl Oz2 (2.3.28a)

Oul Ou2 (2.3.28b)= +

Of course, for incompressible flow, the dilatation should be zero, but (2.3.28b) can be used

as a check.

A comprehensive PATRAN interface has also been developed. Consequently, any of

the quantities computed above may be displayed graphically in the form of profiles or

contours.

L J[0oNcL DIN ]

The formulations presented in this section, based upon Stokes fundamental solutions,

are suited primarily for low Reynolds number regimes. For creeping flows, all of the

nonlinear terms vanish, resulting in a very efficient, very precise boundary-only solution.

The resulting boundary element method is clearly superior to any of the domain based

methods for problems of this nature, under both steady and transient conditions.

At somewhat higher velocities, the nonlinear convective effects cannot be ignored.

Consequently, the surface integral involving t ° and the volume integral containing _o in

equations (2.3.6) and (2.3.11) are required. Since volume integration is quite computation-

ally intensive, a boundary element approach becomes less attractive. This is particularly

true when discretization is required throughout the domain, as is the case for confined

flows. Still, for a given mesh, the boundary element formulation provides a higher degree

of accuracy than finite difference or finite element methods, especially in the determination

of boundary quantities.
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APPENDIX 2.3.1

I STEADY KERNEL FUNCTIONS

1 [WVj

r,3_ -1 [2Y'Y_-y_"_]
2=r L ,.3 j

cOG0 _ 1 [SjkYi + 6,kyj 5qYk

Go_= 2_ [In,]

2_rr L r ]

2_-k_"L " J

_li = Zi -- (i

r2 ---- YiYi
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APPENDIX 2.3.2

TIME-DEPENDENT KERNEL FUNCTIONS

aC_S(_-X't)=a_,__l [_ 1._(_)} + _{s_(,D}- _{2e -":/4 - s_(,D}

2yiyjyknk ]

where

Yi : _i -- zi r 2 = YiYi

_3rr_ e = . I p

sl(i'#) = _-(1 - e-'7'/'1)

E,.(z)= J<':.q:--a,,.

Then,
G_(_ - X) = G_(_ - X, nat) for n = 1

G_(_ - X) = Gi_(_ - X, nLXr) - ai_(( - X, (n - I)A_') for n > 1

with similar relationships for F_(_ - X) and oo,5/_o=_x - X).
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Figure 2.3.1 Two Dimensional Boundary Elements
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Figure 2.3.2 Two Dimensional Volume Cells

GEOMETRIC NODES (*,-) -

FUNCTIONAL NODES

LINEAR (*)

QUADRATIC

SERENDIPITY (*,.)

LAGRANGIAN (*,.,4)

QUARTIC (*,.,O)

6

3

6

7

15

8

4

8

9

25

BEST-FSI User Manual March, 1992 Page 2..31



Figure 2.3.3 Integration Subsegmentation
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2.4 11 CONVECTIVE INCOMPRESSIBLETHERMOVISCOUS FLOW I

12.4.1J INTROO CT ONI

At high fluid velocities, the convective terms in Navier-Stokes equations tend to dom-

inate. As a result, boundary element formulations employing Stokes kernels are inappro-

priate, since these fundamentM solutions model the effects of viscosity but not convection.

Instead, more of the physics of the problem must be brought into the linear operator. This

concept was clearly understood by Oseen in the early portion of the twentieth century. In

his 1927 monograph, Oseen developed exact integral expressions for Navier-Stokes equa-

tions using a convective fundamental solution. Unfortunately since this was well before

the advent of the computer, he was unable to do much with his formulations beyond some

approximate solutions at very low Reynolds number. In the present section, the work of

Oseen is resurrected to form the basis for an attractive boundary element method for high

speed flows.

[ 2.4.2 ][ GOVERNINGEQUATIONS 1

The differential equations, governing the behavior of an incompressible thermoviscous

fluid in the presence of a free stream velocity Ui, can be written:

cO2ui Op cgui Oui

pUjox-_j -p-_ +]; = 0, (2.4.1a)_ 02_jOxj Ozi

Oui
m = 0, (z4 lb)
0zl

0_0 perU ozjO0 pc_-_O0 ¢1kox_oz3 _x--- + = o. (2.4.1c)

where ui once again represents the velocity perturbation. In (2.4.1), the effective body

forces and sources axe defined as

1"= -puj_ + l, (2.4.2_)

00
¢' = -_,uj x--- + ¢. (2.4.2b)

ozj

These equations are of course identical to those presented in (2.3.4), except that now the

convective terms pUjOu_/3zj and pc¢Us3g/_x _ are included in the linear differential operator.
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Fundamental solutions basedupon (2.4.1) will contain the characterof the flow field at
high velocities.

[ 2.4.3 J[ FUNDAMENTAL SOLUTIONS J

It is instructive to begin with a look at the fundamental solution of the steady form

of the heat equation defined above as (2.4.1c). In a static medium (i.e., U_ = 0), the

fundamental solution G must satisfy

k a_a +6(=-_)=0
OzjOxj

(2.4.3)

in which _ is the generalized delta function. The solution to (2.4.3) in two-dimensional

space is the well-known potential flow Green's function

Ill F

a(x, ¢) = - (24.4)

with

y, = x_ - _ (2.4.5a)

r 2 = yiyi (2.4.5b)

Thus, G(z, _) represents the temperature response at z due to a unit point heat source at

5. This response is plotted in the zl - x2 plane for a source at the origin in Figure 2.4.1.

Radial symmetry is evident.

However, if the medium is moving at velocity u_, then the fundamental solution a v

must instead satisfy
02G u OGu

- pc Uj-z=--- + 6(z - =0
¢,_:jc,=j u=j

(2.4.8)

Now, the Green's function (e.g. Carslaw and Jaeger, 1959) is given by

e-Uh_/2_ r r

in which a = k/pc_. This response is plotted in Figures 2.4.2a-d for various magnitudes of

an =l-directional velocity. Obviously, in a moving medium, radial symmetry is lost and

a pronounced front-and-back effect develops. That is, at a given distance from the heat

source, it is hottest directly downstream.

It should be emphasized that the so-called convective fundamental solution defined in

(2.4.7) actualy embodies both the processes of conduction and convection. At low velocity,

conduction dominates producing a nearly radially symmetric response. On the other hand,

in a high speed medium, the response is concentrated in a very narrow band downstream

of the source. Thus, as illustrated in Figure 2.4.2, G u captures the transition from elliptic

toward hyperbolic behavior.
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The corresponding convective viscous fundamental solution Gv was first presented by

Oseen (1911), as the solution to

P 8zkaz_ Ozi PUk'_zk + _ij_(= -- _) = 0 (2.4.8a)

= o (2.4ab)
vqz_

The G.v. tensor is given in explicit form in Appendix 2.4. However, the component G_u,

which represents the velocity in the zl-direction due to a unit point force in the =l-direction,

is displayed in Figures 2.4.3a-d. For very small U_, the solution of (2.4.8) approaches

the Stokes kernels detailed in Appendix 2.3.1. This is shown in Figure 2.4.3a. Notice

that, unlike the heat conduction response of Figure 2.4.2a, the static viscous fundamental

solution is not radially symmetric. This is due to the vectorial nature of the flow, and

is directly attributed to the v_ys/r 2 terms in Gij. However, as the flow velocity increases

(i.e., Figures 2.4.3b-d), a stronger sense of upstream and downstream develops, and the

response once again becomes concentrated in a narrow band ahead of the applied force.

At high speed, outside of this band, the response is essentially zero. This behavior is not

only important from a physical standpoint, but also can be beneficial in the development

of efficient boundary element algorithms.

I 2"4:4 ]l INTEGRAL REPRESENTATIONS ]

The convective fundamental solutions depicted in Figures 2.4.2 and 2.4.3 capture the

proper character of high Reynolds number incompressible thermoviscous flows, and as a

result, can provide the basis for an attractive boundary element formulation. The corre-

sponding integral equations, under steady conditions, can be developed directly from the

governing differential equations (2.4.1). This result is,

c_gUc, [Garlic _ _ wu u f2_u _Uo] u uo u" a_ a -- _'a_a J ClS + [Dal_kO'ka + dV,

where

(2.4.9)

Vo --aka -- [pu_ui pc,uke] (2.4.10a)

tuo_ uo (2.4.10b)c_ -- _kc_nk"

the superscript U on the kernel functions is a reminder that these are based upon convective

fundamental solutions. All of the kernels appearing in (2.4.9) are detailed in Appendix 2.4.

In most cases the body forces, f_, are either zero or can be accounted for via a particular

integral so that the second volume integral in (2.4.9) is not needed.

In examining (2.4.9), it should be noted that the nonlinearities are contained in the

surface integral involving my tUo and the remaining volume integral, D u _rU° Specifically,
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only tu° and uoako are nonlinear, and these are both formed from the product of pertur-

bations. For high speed flows, these perturbations are only significant in the vicinity of

objects and in the wake. As a result, volume discretization is only needed in those areas.

Elsewhere, the linearized Oseen approximation is adequate.

Equation (2.4.9) is identical to the integral equation developed by Oseen (1927), ex-

cept for the treatment of the nonlinear convective terms. In deriving (2.4.9), an additional

integration-by-parts operation was invoked to completely eliminate the appearance of ve-

locity gradients.

If one is interested in the transient thermoviscous response in a medium with a more

or less steady free stream velocity, then a time-dependent formulation is also possible. For

this ease, the time derivatives are retained in the linear operator, and the following integral

equation results:

fS U Uo= , to • .o - •to ]

r

jv[ uo u u o+ _ * ak,_ + g_ * f_, - gaapua] dV (2.4.11)

This integral equation and the corresponding fundamental solutions have not appeared

in the literature. The functions gU are quite involved, but can be expressed in terms of

incomplete exponential integrals.

[2.4.5]l NUMERICAL IMPLEMENTATION [

The integral representations for convective thermoviscous flow are quite similar in form

to those presented in Section 2.3.3. Consequently, there is a great deal of overlap in the

algorithms employed for their respective numerical implementation. At present, the major

difference occurs in the schemes utilized for integration.

As discussed previously, the convective fundamental solutions have a much different

character than the more familiar Stokes based kernels. The standard boundary element

integration schemes are unable to accurately capture the localized nature of the convective

kernels, particularly at large Reynolds number. In general, subsegmentation must be

much more intense for singular and near-singular cases. For example, in convective near-

singular integration, first the location x ° on the element nearest to the load point _ is

identified. Then, a graded subsegmentation pattern is defined about X ° based upon criteria

including the distance of _ to x ° and the free stream velocity. For higher speed flow,

smaller subsegments are generated. Gaussian integration order is also typically higher for

the convective surface integration. Similar adjustments are required for volume integration
as well.

Some progress has been made in the development of alternate integration strategies

for singular integration. For example, partial analytical treatment of the G v kernel has

proved to be more cost effective. Also, the standard 'rigid body' technique has been
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extended to other known solution fields in order to indirectly calculate some of the singular

contributions.

However, additional effort is still needed to develop integration algorithms designed

specifically for high speed convective kernels. In particular, the response depicted in Figure

2.4.3d must be anticipated. Thus, there is no need to integrate an element which lies outside

the narrow band of nonzero response. Furthermore, elements located partially or wholely

within the band should be subsegmented accordingly.

The remainder of the numerical implementation follows that discussed in Section 2.3.4.

Thus, assembly, solution, and the calculation of additional boundary quantities are ac-

complished in the same manner as for the Stokes kernel approach. While this is perfectly

legitimate, full advantage has not yet been taken of the character of the convective re-

sponse. For example, at very high speeds, as the behavior becomes hyperbolic, the system

equations form a nearly-sequential, banded set. The present assembler and solver, which

were designed for elliptic systems, do not recognize this structure, and consequently, are

quite inefficient.
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APPENDIX 2.4 I

KERNEL FUNCTIONS

c,_= _ L\--6_-) 0 V a=_ v _ _

(1)
(OGkj OGij

Fij = p \'_xi + Oz} ]nk + Gpjni + pUkGijnk

OGij 1 _ _ e-_Kl(a) 02¢
\ 2cU_ )

OziOzk + OztOzkJ

where
Yi = zi -- _i, r2 = ylYi

c= _ U2 = U_U_
P

B = u_uk/2c

a = Ur/2c

¢ = -In(a) - e-ago(a)

--= + U
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Figure 2.4.2a Kernel for Convective Heat Equation

CO_MPCINENT GTT

INCOMPRESSIBLE CONVECTIVF IHERMOVISCOUS FLOW (RE - 0.0}

.541- A

.449- B

.358. C

.266. D

.174. E

.0625 • F

-,00929 . G

Figure 2.4.2b Kernel for Convective Heat Equation

COMPONENT GTI"

iNCOMPRESSIBLE CONVECTIVE THERMOVISCOUS FLOW (RE - 10.0J

.370- A

313 - O

.256. C

.199. D

.142 = E

.0653 . F

,0284 - G
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Figure 2.4.2c Kernel for Convective Heat Equation

COMPONENT GTt"

I--'X

INCOt_IPRESSIBLE CONVECTIVE I_ERMOVISCOUS FLOW (RE - 100.0)

.154- &

.t30. B

.106- C

D827- 0

.0590 - E

.0354 - F

.0_16 - G

Figure 2.4.2d Kernel for Convective Heat Equation

COMPONENT GTT

I--X

INCOMPRESSIBLE CONVECTIVE TIIERMOVISCOUS FL OW (RE - 1000 0)
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.0519 - A

.0439 - B

,0359 - C

0279 - O

.0200 - E

.0t20 = F

00399- G
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Figure 2.4.3a Kernel for Incompressible Viscous Flow

COMPONENT GI I

r

INCOMPRESSIBLE CONVECTIVE 1HERMOVISCOUs FLOW (RE - 00)

.346. A

.293. B

.240. C

,187. D

.133 = E

.0800 . F

0266 . G

Figure 2.4.3b Kernel for Incompressible Viscous Flow

COMPONENT (311

I--'X

INCOMPRESSIBLE CONVECTIVE ]HERMOVISCOUS FLOW (FiE. 100)

BEST-PSI User Manual March, 1992

249 . A

_210 . B

.171 = C

.133 - 0

.0936 . E

0548 = F

0159 = G
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Figure 2.4.3c Kernel for Incompressible Viscous Flow

COMPONENT G11

.121- A

.102 = B

.0820. C

.0634 = D

.0441 = E

.0249 = F

--X

INCOMPRESSIBLE CONVECTIVE IHERMOVISCOUS FLOW (RE = 1000)

.00568. G

Figure 2.4.3d Kernel for Incompressible Viscous Flow

COMPONENT GI I

--X

INCOMPRESSIBLE CONVECTIVE ]_IERMOVISCOUS FLOW (RE - 1000.0)

.0469 - A

.0394 - B

.0320. C

0245 - D

.0171 - E

00959 = F

.00214 - G
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[ 2.5 I[ CONVECTIVE POTENTIAL FLOW

12. .1][ INTROD OTIONJ

Compressible potential flow is one of the most important fields of aerodynamic analysis.

One reason is that for sufficiently large Reynolds numbers the important viscous effects

are often confined to an infinitesimal thin boundary layer adjacent to the surface of a body

and its wake. Outside the wake and the vortical region near the boundary the flow is

essentially irrotational. This fact was first observed by Prandtl in 1904.

The boundary element method is a very useful tool for solving compressible potential

flow problems. One of the advantages is that BEM can be easily applied to solve flow

problems over complex configurations. A major technical obstacle involved with other

methods seems to be the difficulty in generating suitable grids for flows with complex

configurations in presence of shock waves. Another advantage of the boundary element

method is that the solutions can be obtained by only using surface elements. Results

elsewhere can then be in terms of the solutions on surface elements. Thus the boundary

element method could be computationally attractive.

In the present section, a reduced equation will be discussed which is valid only in

the inviscid and irrotational flow regimes. This formulation requires much less computer

time than is needed to solve the full Navier-Stokes equations. In the following sections,

the time-dependent governing equation for compressible potential flow is presented, along

with fundamental solutions and boundary integral equations. An extensive discussion of

the linearized steady state potential flow problem governed by the P-G equation indi-

cates how methodologies have been developed which allow boundary element formulations

to be successfully applied to the elliptic (linearized subsonic) and hyperbolic (linearized

supersonic) flow problems.

[ 2.5.2 t[ GOVERNING EQUATIONS J

The linearized governing differential equation of convective potential flow for isotropic,

homogeneous space can be written as

1 D2¢ a_¢

c2 Dt 2 OziSxi
= O, (2.5.1)

where

¢ velocity potential defined as v, =

c local speed of sound

D/I_ = c_/& + viO/c_zi material time derivative.
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After linearization, (2.5.1) becomes

1 2 J 02¢,

c2oDt2 OxiOz_
(2.5.2)

¢' velocity perturbation potential defined as u/=

ui velocity perturbation

Ui reference velocity

Co speed of sound

7 ratio of specific heat at constant pressure to that at constant volume

pseudo mass source rate per unit mass which is defined by

_ "tc_-1.(a¢'& + U_u_+ _1u2.)_-_z_°uJ_ _c_u'2.Ou_& _(U_uj + 2u_uj)-g-_z_ '1. au_ (2.5.3a)

and

Do 0 O_i---- _ + Ui • (2.5.3b)

The equation governing compressible potential flow has different character in different

flow regimes. For a transient problem, the governing equation is hyperbolic for all Mach

numbers and solutions can be obtained using a time marching procedure. The situation is

very different when a steady flow is assumed. In this case, the equation is elliptic when the

flow is subsonic and hyperbolic when the flow is supersonic. One of the most important

distinctive features of supersonic flow is the fact that shock waves occur in the flow field.

L 2.5.3 ]l FUNDAMENTAL SOLUTIONS I

Equation (2.5.2) is a well known convective scalar wave equation. But, the fundamental

solution in the convective form does not appear to exist in the literature although some

discussions can be found in Goldstein (1976) and Morse and Feshbach (1978).

[ 2.5.3.1 J[ COMPRESSIBLE POTENTIALFLOW

Consider, first, the effect of an instantaneous point source. Let

= 6(x-_)6(t - v). (2.5.4)

It is instructive to begin with a look at the fundamental solution in a static medium

(i.e. ui = 0). In that case, the fundamental solution g must satisfy

1 a2g a29 = 6(_ - _)_(t - _). (2.5.5)
c_ ot_ OziOz,
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The solution to (2.5.5) is the well-knownscalarwaveGreen'sfunction

where

g(_ - e, t - r) =

_(t' - r/co) , for 3D ;
4_rr

1 H(F- r/co)

27r_, for2D,

r2 = YlYl -

F=t--r

(2.5.6)

(2.s.7)

Thus, g represents the velocity potential response at location z and time t due to a instan-

taneous point mass source at _ and at time r.

The other fundamental solution that is needed is that due to a unit step mass source

acting, again, at point _ in an infinite medium. This mass source is, then,

(b = 6(x - _)H(t) . (2.5.8)

The response of (2.5.8) can be obtained from (2.5.6) by integrating over r. Thus,

t { _4-_rH(t--r/e°)c°sh-lr/c°)' eo.__t, forf°r2D.3D;
f0 = (2.5.9)

G(z-_,I) = g(z -_,t - r)dr 1H( t
r

The steady state response can be derived directly from (2.5.9). Letting t --* 0% this

simplifies to

1 for 3D
G'(_-_) = G(_-_,oo) = __' (2.5.10)

---_--_lnr , for 2D
2_

[ 2.5.3.2 1[ CONVECTIVECOMPRESSIBLEPOTENTIALFLOW I

Now, if the medium is moving at velocity u_, the fundamental solution gv must instead

satisfy

1 D_g v BZg U
e_ Dt _ aziBzl =/i(z - _)b(t - r). (2.5.11)

Three-dimensional Flow

Performing on (2.5.11) the Laplace transform with respect to r with homogeneous

initial conditions and triple exponential Fourier transform, defined by the relations

](z,s) = £ {f(z,t)} = e-'tf(x,t)dt (2.5.12a)

_{f(z, t)} =///oo f(z, t)e -ic'_ dV(z), (2.5.12b)f- (_, t)
Jdd-oo
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with az = _iz_, one obtains the following results by assuming a free-stream velocity in the

zl-direction only (gt = V, U2 = Us = o)

(s + ia_Uk) _
t_2 +

c_
1

-(#i_1 sgl\2 2 2 s2 ,
1

Moo < 1 ; (2.5.13)

Moo > 1,

with a2 = alai. Making use of the theorem on convolution for the exponential Fourier

transforms defined by the relation

1 fffLf.(ot,t)eiCWda 'f(x, t) = Y-l[f*(c_, g)] - (27r)S/2
(2.5.14)

and taking into consideration

_-1 _ =4 r e kr

-I o +o;o .1.+ _/y_- (y_+ yD
(2.5.15)

,
the Green's function in the Laplace transform domain is given by (for a general free-stream

velocity u/case)

i Co e_Sro/Co

4_r _,/(Ukyk) 2 + c2o_2r 2

"g-if= co H ((Ukyk)_ _ c2a2r2, _o(.o.o.o.o.o.o.o.o.o.__ ( c_ )o- /e k ,o'_"] cosh x/(gkyk) _ -- c_o_2r2
2. _/(ukw)_ - c2o3:r2 o '

Moo < 1;

M_ > 1,

(2.5._)

where

-U_y_ + x/(U_y_) _ + c_o#2r_
ro = co_3_ , Moo < 1 ;

(2.5.17a)

B 2 = l1 - M_I is a compressibility parameter; (2.5.X7b)

U
Moo _--- __

Co

is the Mach Number. (2.5.17c)

It is now possible to perform the inverse Laplace transform on Eqs. (2.5.16)

_. fe+ioo . -

I(z,t) = z>{](z,s)) = ._.,._-'I_,= e"Sf(z,s)ds, (2.S.lS)
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and taking into account that

z:-l{e -_'} = 6(t -/0, k > 0, (2.5.19)

the following fundamental solutions in real time and space domain are obtained:

co 6(¢ - to/Co)

gu(z - _,,t - r) = 47r _/(Uky_)2 + c_o_2r2 ' Moo < 1

co H(Ukyk - co_r)

4_r _(Ukyk)2 -- c2o_2r2 [di(t'-- ro/co) + _(t' -- rl/co)] , Moo > 1

where ro and rl are two values of r given by

(2.5.20)

Uky_ + _/(Ukyk) 2-- c_r2
to,1 = coil2 , Moo > 1. (2.5.21)

The solution for a unit step source can be obtained from (2.5.20) by integrating over

r, thus:

- _, t) = _ gV(_ _ _, t - _-)GU (z dr

co H(t - to/Co) Moo < 1 ; (2.5.22)

4_r x/(Ukyk)2 + e2ol_2r2 '

co H(Uky..________-_co/_r_.__))[H(t - to/Co) + g(t - rl/co)] Moo < 1.
47rx/(U_yk)2 -- c_ofl2r2

The steady state response can be derived from (2.5.22) by letting t _ oo. The result

simplifies to:

at:'(= - _) = av(= - ,_,_o)

co 1

4r x/(Uky_)_+e_fl2r2 ' Moo < 1;

= co H (U_yk - Co_) (2.5.23)

2r _(Ukyk)2-- c_fl=r_ ' Moo > 1.

The nature of the above solutions change substantially depending on whether Moo is

greater or less than I. A flow is subsonic if Moo < 1 and supersonic if Mo_ > 1. The governing

equation is either elliptic or hyperbolic depending on whether the flow is subsonic or super-

sonic. For the supersonic case, the surface bounding the region reached by a disturbance

starting from a given point is called the Mach surface or characteristic surface which is

defined by the Heaviside function in (2.5.23). The properties of supersonic flow described

above give it a character that is quite different from that of the subsonic flow. If a sub-

sonic flow meets any obstacle, the presence of this obstacle affects the flow in a space, both

upstream and downstream and the effects of the obstacle is zero only asymptotically at an

infinite distance from it. A supersonic flow, however, is incident "blindly" on an obstacle;

the effect of the latter extends only downstream, and in all the remaining upstream part,

the flow does not see the obstacle (Figure 2.5.1).
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Finally it is of interest to note that a 1/r singularity appears in above equations.

Two-dimensional Flow

Similar to the three-dimensional case, the response for an instantaneous point source is

considered first. It is not difficult to get the convective fundamental solution from (2.5.6)

by the Galilean transformation y_ ~ y_ - u_t'. Thus,

where

1 H(t'- rdCo)

gu(= _ ¢,t - ,) = _ _,_ = _ ,

r_ = (y_- u,t')(_, - u_e) .

The convective response for a unit step source is

1 ft H(t'- ru/Co)

VV- - r_lco

2 2 r2 2 c2o]32t+ UkykH(t - to/Co) In CoZ_o +
2_ x/(Uk_)2 + co2f_2r2 '

I-n(t -- l'l/Co) sin -1 c2o_2t - Ukyk _

in which the variables ro and rl are defined by (2.5.17a) and (2.5.21).

to

(2.5.24)

(2.s.25)

Moo<l;

Moo> 1,

(2.5.26)

The steady state response can be obtained from (2.5.26). Letting t ---,co, this simiplifies

Gv,(= _ _) = cu(= - _, _)

{ -1.-_--ln _/(UkY_)2 +---c_°[32r2 Moo < 1 ;
= _r_ co_ ' (2.5.27)

_H(Ukyk - coflr) M_ 1.?>

In the case of steady two-dimensional flow, the characteristic surfaces will now be

replaced by characteristic lines (or simply characteristics) in the plane of the flow. Through

any point O in this plane there pass two characteristics (AA' and BB' in Fig 2.5.2), which

intersect the stream line through this point at Mach angle a. The downstream branches

OA and OB of the characteristics may be said to leave the point O; they hound the region

AOB of the flow where perturbations starting from o can take effect.

These functions have a lnr singularity for the subsonic case and are also weakly singular

for supersonic flow.
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I 2. .3-3II INCOMPRESSIBLEPO E  I*L LOWI

For incompressible potential flow, the governing equation is simply

Oziazi

This is the well-known Laplace equation, and the fundamental solutions are

1
_b = 4_'---_' for 3D;

-_lnr, for2D.

(2.,5.28)

[ 2.5.4 ]1 BOUNDARY INTEGRAL REPRESENTATIONS

I 2.5.4.1 [ COMPRESSIBLE POTENTIAL FLOW ]

The desired integral representation for convective compressible potential flow can be

derived directly from the governing differential equation.

The governing equation (2.5.2) must, of course, hold for all points of the flow region

at every instant of time. Therefore, the left-hand side of (2.5.2) multiplied by an arbitrary

function _, and integrated over time and space must remain equal to zero. That is,

" c2oDt 2 + OziOzi j dVdt = O. (2.5.30)

Next, the divergence theorem can be applied, repeatedly, to the applicable terms in (2.5.30)

to transfer spatial, as welt as, temporal derivatives from ¢ to _. As a result, equation

(2.5.30) is transformed into

T 1

- Lkc_ DI _ a_zi/¢ dVdt = O,

(2.5.31)

with m defined as the unit normal to surface S at z. To complete the derivation of the

integral equation for any point _ interior to s at time r, the last volume integral appearing

in (2.5.31) must reduced to ¢(L r). This is accomplished, if

1 Do2# 82i - 6(z - _)_(t - r) = 0. (2.5.32)
c_ Dt 2 clziazi
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Green's function _ defined by (2.5.32) is the adjoint of the original Green's function pre-

sented in Section 2.5.3. That is

(2.5.33)

Substituting (2.5.32) and (2.5.33) into (2.5.31) produces the desired integral equation,

_o_l,,,I: ff /_E,_- _,,-,_,'_l_,,_- fu___,,_,_,,_l_I_,
+ [gv(__ x, ,- t)_(x, 0] dv(_ldt (2.5.34/

-_of. [._°""5- _'_',<.,o,- ,u¢e-., .)oo_,o_]_¢_),
where

u',(x,O = ,,(x,t)- v, Do¢(Z,t)
c_ pt

fv(_ - z, r - t) = OgU(_ - z, r - t) U, DogV(_ - z, "c - t)
On _ Dt

(2.5.35a)

, (2.5.aSh)

and c(_) is constant. When _ is inside s, c(Q = 1. If _ is on the boundary then the values

are determined by the relative smoothness of s at ¢. For _ outside the region v, c(_) is zero.

The boundary integral equation (2.5.34) can be rewritten in a more compact notation

_=,_fI_,o_- ,_,_I_ +J,,I_._I_v. _2._._._
The symbol • in (2.5.36) once again symbolizes a Riemann convolution integral. If body

source is absent and small perturbation approximation is introduced, the volume integral

in (2.5.36) no longer remains, which simplifies to

f

_¢ = .]s[gv • u',,- f • ¢]dS.

While for steady conditions this reduces further to

(2._.z7)

c¢ = fs [GU'u_ - FU°4a] aS, (2.5.z8)

where

U.Ui

u" = u, e°2 u_ (2.5.39a)

FU , = OG u" U, Ui OG v" (2.5.39b)
On e_ ax_

But, generally, it is not convenient to apply boundary values u_, in solving the physical

problems. This topic is discussed later in the next section.
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1254 Jl ,NOOMPRESS,BL POTENTIAL LOWJ

A derivation of the integral representation for the incompressible potential theories

would follow the same lines as that just presented, and therefore, will not be repeated.

That is,

= / [g_. -/¢] _s, (2.5.40)
Js

where

o¢
vn = --hi (2.5.41a)

0xi

f = ag n: (2.5.41b)
""

Notice that incompressible potential flow is a steady, non-convective process and with

= 0, the convolution, convective terms and volume integrals vanish in (2.5.40).

[ 2.5.5 J l NUMERICAL IMPLEMENTATION [

[ 2.5.5.1 ][ INTRODUCTION J

In this section, a numerical implementation for convective potential flow will be de-

tailed. Unlike the formulations presented in Sections 2.2-2.4, this capability is not available

in the current version of BEST-FSI. Instead the implementation was accomplished in a

separate single-GMR boundary element code. As a result, some of the generality is not

present. However, it is expected that future versions of BEST-FSI will include these two-

dimensional steady subsonic and supersonic flow formulations.

I 2.5.5.2 ][ SPATIAL DISCRETIZATION I

The methodology employed for spatial discretization follows that described in Section

2.3. As a result the boundary integral equation for steady state convective compressible

potential flow can now be written

This equation is based on small perturbation approximation.
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The integrands remaining in (2.5.42) are known in explicit form from the fundamental

solutions,

a(_ - _) = au'(_ - _) (2.s.4aa)

F(.-_)= oaV°ff- *)n_(.)- U,,U_oav'(_- .)
azi co2 0zi (2.5.436)

The positioning of the nodal variables outside of the integrals is a key step, then the

integrands of (2.5.42) contain only known functions, which can be evaluated numerically.

The following method is applied here to transform u', into boundary values u_ and ¢.

The shape function can be used to write

(2.5.44a)

= "_-ui(z) • (2.5.44b)

Solving above equations, one obtains

£
1 U _ Uln2(z))j_legN_._(u.(_) = _,(_)._(.) = - v;_(¢.(_) - _.(x)) - _(_.l(x) __ , (2.5 45)

in which

-1 _9z2
nl(z) = J -_ (2.5.46a)

n_(x) = _j-1 __, (2.5.46b)

and Y is the determinant of the jacobian matrix. Rearranging (2.5.45), one gets

urn(x) = (1- _)un(z)--_o_(U2nl(x)- Uln_(z))J-ION-_').¢,_. (2.5.47)

Substituting (2.5.47) into (2.5.42) produces

c_b= _ {U__/S. (a-U2n_GNwdS-q_,,, [FN_+ _(U:_nI-UIn.Oj-I_._-G] dS} .(2.5.48),.,,=I _ )

[ 2.5.5.3 ][ INTEGRATION ]

The evaluation of the integrals appearing in (2.5.48) is the next process to be examined.

At present, a difference occurs in the schemes utilized for integration due to the distinctive

nature of kernel functions G and F for subsonic and supersonic. Considerable care must

be exercised during integration. This is particularly true for supersonic flow, in which the

F kernel contains a delta function. Consequently, the integration algorithm must be much

more sophisticated than those developed for subsonic flow. In the present implementation,

discussed in detail in the next two subsections, a number of different integration schemes

are developed depending upon the order of the kernel singularity (Table 2.5.1) and the

nature of the kernels involved.
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TABLE 2.5.1Kernel Singularities
SingularityOrder

Kernel Subsonic Supersonic

G In r H(r)

F _ 6(r)

Subsonic Flow

The integration schemes for subsonic flow are quite similar to those presented in Section

2.4. Consequently, most common items will not be discussed further. However, analytical

integration is discussed in a little more detail due to the nature of the G kernel.

The kernel to be integrated can be written as

+ _2C02r2
CoS , Moo < 1. (2.5.49)

The integration of the nearby subsegment of the singular point for the above function

can be done by following an analytical scheme. This small subsegment can be considered

as a fiat line tangential to the singular point. The length of this segment can determined

by a limitation of S, say, S', i.e.

0 < S < S', (2.5.50)

so that the desired integral is

fs.c(z-_)n_(¢)as(z)= ---1]f"2_r/9 (In S + A) Nw(¢.(S)){IS, (2.s.sl)

where

A = In _/1 + k_M_/_ '_ is constant,

k = Ukyk/Ur is constant for fiat segmentation.

Case I: Node 1 is Singular Point

The shape functions for a quadratic element can be stated as

where

N,(¢(S))=2 - 1)=2:/:- 3S/L+
N2(((S)) = -4((_"- 1)-----4S21L 2 + 4SIL

N,(,(S))=2,((-1) = 2S'/L'- S/L,

and L is the length of the element.
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Equation (2.5.51) becomes

1• G(z - _)Yl(() dS = -_(2C2/L 2 - 3CI/L + Co)

1
s" G(z - _)Y2(() dS = - 2-_(-4C2/L2 + 4C1/L)

1 C,/L)Is" G(z-_)gs(i)dS- 2rfl(2C2/L2- ,

where

Co= S_(lnS+A)dS= _ InS* +A+n+l

The constant k can be expressed as

k = (V2nl - Uln2)/U.

n=0,1,2.

(2.s.55a)

(2.5.ash)

(2.5.s5c)

(2.5.56)

(2.5.57)

Case II: Node 3 is Singular Point

The shape functions for a quadratic element can be stated as

NI(((S)) = 2( (C-1) = 2S2/L2- S/L

N2(((S))= -4(((- i)= -S2/L 2+ 4S/L

N3(((S)) = 2 ((-1) (C -1) = 2S2/L2- 3S/L + l.

It is not difficult to get the desired integrals:

Is.G(z- _)NI(()dS =

s.G(_ - _)N2(OaS = ---

L. G(_ - _)N3(0dS = ---

"I

- 2-_(2C2[L2 - C1/L)

1-x(-4C2/L2 + 4el/L)
_rp

21_(2C2/L2 - 3C1/L + Co).tp

But notice here the constant k is

t: = (Uln2 - U_nl)/U.

(2.5.ss)

(2.5.59a)

(2.5.s9_)

(2.s.59,)

(2.s.6o)

Case III: Node 2 is Singular Point

In this case, the shape functions for a quadratic element can be stated as

where

BEST-FSI User Manual

NI(_(S)) = _((C -1) = I s2/Lz - 2S/L

N2(((S))= (1- ()(1+ _)= 1- S_/L2

= = +  s/L,

(,= -S/LI ; (2 = S/L2,

March, 1992

(2.5._1)



L1 distance between node 1 and node 2

L2 distance between node 2 and node 3.

Substituting (2.5.61) and (2.5.62) into (2.5.51)

i.e._

where

_(C2/L2 +

S*l"

c_,= Jo ..(l. _+ A,)dS= --

The constants A, and k_ are

A_ = ]n_/1 + k_M£/Z2

kl = (Uln2 - V_nl)/V ,

In S" +
n+l

_ = (U_m - Uln2)/U .

(2.5.63)

(2.5.64a)

(2.5.646)

(2.5.64c)

For the F kernel the numerical integration discussed in Section 2.4 together with the

indirect 'equipotential' method, is applicable. These lead to the accurate determination of

the coefficient involving the F integrals.

Supersonic Flow

For supersonic flow (from Table 2.5.1), the integration of the G kernel is weakly singular.

As a result, a much less sophisticated integration scheme can be employed to obtain the

required level of accuracy with relatively few subsegments and gauss points.

However, the integration of the F kernel (which is a delta function) must be taken

care of properly. The numerical integration is no longer possible and analytical integration

must be carried out. In order to explain this scheme easily, the problem is simplified to

one involving only zl-direction free-stream velocity U1. Thus, the G kernel can be written

as

C(z -_[) = 2-_[H(/gy2- Yl) - H($y2 + y,)]. (2.5.67)

From (2.5.43b),the F kernel can be obtained as:

In above equation the arguments of" the delta function m - _y2 and ut + _u2 represent the

two characteristic hnes of the Mach cone. Thus, for any element m, the required integral

can be written as

1

Jfs,,, F(z-,_)N_dS = 1 _ (n,,+ lgnl)NJf(y_ - ,y2)dS- _ /s (n_-,8nl)N,,,,5(y_ +,lgy_)dS.
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Only the first integral in the above equation will be examined. To assist in this endeavor,

the following two distinct cases can be identified.

(1) The characteristic line does not cross the element m.

(2) The characteristic line crosses the element m.

In the first case, the integral is zero according the definition of the delta function.

Turning next to case (2), the characteristic line and element m may have one or two

intersections (for a quadratic element), which can be located by solving the following

equation

- = o. (2.5.70)

In the local coordinate system, the above equation becomes

a( 2 +b(+ c = 0. (2.5.71)

By imposing the shape function the coordinates y_ can be expressed as

Yl = zi(() - _ = g_(()z/,_ - _. (2.5.72)

The coefficients of (2.5.71) can be then defined as

a = 2Zl - 4z2 + 2zs

b = -3zl + 4z2 - zs (2.5.73)

where
Z_ = ZI_ -- _Z2w

= _l - _2. (2.5.74)

Of the two roots of equation (2.5.71) (1 and (2, only the solutions 0 <_(_ _< 1 are relevant.

Once the intersections are found, the desired integral is obtained as

1 Js[.(n2 1 2-_ a_l)Yw_(_]l -_y2)dS--- _--a_'_[n2((i)+_?nl(Ci)]N,,_(Ci)J((i ) 0_<(i < 1, (2.5.75)
i=1

where J is the jacobian (determinant) of the transformation. Following the same procedure,

the second integral in (2.5.69) can be determined easily.

Similar to subsonic flow, the singular term of integration of the F kernel can be obtained

by the 'equipotential' method.

[ 25 4IIASSEMBLYI
Once the spatial discretization and integration algorithms are completed, a system

of linear algebraic equations can be developed to permit an approximate solution of the

compressible potential flow problem. The method of collocation is employed by writing

(2.5.48) at each functional node:

[G]{..} - [F]{¢) = {0}, (2.5.76)
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where

{¢)

[FI
[G]

nodal potential with P components

nodal normal velocity with Q components

assembled matrix of size P x P calculated from (2.5.48)

unassembled matrix of size p x Q calculated from (2.5.48)
P total number of functional nodes

Q = E :I
Am number of functional nodes in element m.

I 2"5"5"5 t l SOLUTION

For subsonic flow, it is a simple operation to rearrange (2.5.76) The known ¢ and un

values form one vector {y} of size (Q x 1), while the unknown ¢ and u, values comprise

another P x 1 vector {z}. Whence (2.5.76) can be rewritten as

[A]{x} -[B](y} = {0}, (2.5.77a)

which can be solved for {x}. The result that is all ¢ and u, components (i.e., both ¢ and

u, on every boundary element) are now known on S.

Because of the hyperbolic nature of the governing equation, the supersonic problem is

more like an initial value problem rather than a boundary value problem. Consequently, a

marching procedure must be performed in space. Initial data ¢ and -_ are prescribed along

the line z = 0 (see Figure 2.5.3) and the solution is advanced in the x direction subject

to wall boundary conditions and an appropriate condition at the upper boundary y,_.

By using this procedure, the quantities on the boundary can be determined sequentially.

Thus the unknown vector {x} reduces to (P - N) x 1, where N is the number of points on

the initial data surface (inlet surface) for which both ¢ and _ are specified. On the other

hand, the values u,., on the outlet surface remain undetermined, because their G-coefficients

axe all zero. That means that the points at the outlet can only receive influences from

other points within the upstream Mach cone. Now the equations can be written as:

a(N+l)(N+l)

a(N'+2)(N+l)i

L aP(N+l)

• b(N+I)(N+I)

b(N+2)(N+I)

bP(N+I)

a(N+2)(N-t-2) .. • _ ZN+2

: "'. _ i
_lp(N+2) .., _1 p Xp

I)(N'+2)(N'b2) ''' 00 f _/N+I a(N..l-1)ngn ]

• "" fiN+2 -- _ a(N+2)nzn

aPngn )

=0.

(2.5.77b)

These are not simultaneous equations as in the elliptic case, but are successive requiring

specification of all boundary quantities at the inlet. The solution therefore does not require

BEST-FSI User Manual March, 1992 Page 2.58



anyelimination. The boundary conditionsat exit arenot requiredbut aredeterminedfrom
the remaining boundary solutions.

[ 2.5.5.6 ][ INTERIORVALUES ]

Onceequation (2.5.77) is solved,the completeset of primary nodal quantities, {0} and
{u,}, is known. Consequently,the responseat points within the body can be calculated
in a straightforward manner. For any point _ in the interior, the velocity potential can be
determinedfrom (2.5.48)with c = 1:

M Vn --I ONw

Meanwhile the boundary integral equation for velocity, can be written

M

(2.5.79)

where

(2.5.80.)

C_(z(_) - _) = aF(z(C)O_-_)N_(()+_(U_nl(z) - Uln2(x))J -laN_(C)°_?'(z(C)-_)a_0_i . (2.5.80b)

Actually, for supersonic flow, it is difficult to evaluate C_ since aF is involved. Fortunately,

a local finite difference method can be applied.

Equations (2.5.78) and (2.5.79) are valid for interior points, whereas, when _ is on the

boundary, the shape functions can again be used. In this latter case, the velocity potential

has the relationship

@(_) = N,_(_)@,_. (2.5.81)

Meanwhile the velocity on the boundary satisfies

= (2.5.82a)

(2.5.82b)

which can be solved simultaneously for boundary velocity.
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Figure 2.5.1 3D Mach Surface

B I A

A' _ B

Figure 2.5.2 2D Mach Lines
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initial data surface

j"

_,_, marching direction
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body surface

Figure 2.5.3 Coordinate System for Marching Problem
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2.6 J[ COMPRESSIBLE THERMOVISCOUS FLOW

[2.0.1ILINTRODUCTIONI

Boundary element formulations for convective incompressible flows have been presented

in Section 2.4. However for more general high speed flows, compressibility of the fluid

must also be considered. In particular, shock-related phenomena that characterizes such

flow are not present in the incompressible flow. To correct this deficiency, a compressible

thermoviscous integral formulation is presented in this section. It should be note that, while

Oseen derived some of the fundamental solutions required for the incompressible case, no

such solutions axe available for compressible flow. Consequently, considerable time and

effort was required to derive these new approximate infinite space Green's functions.

Details of the integral formulations for compressible thermoviscous flow are presented

below. Separate subsections present the governing differential equations, the infinite space

fundamental solutions and the integral equations.

[ 2.6.2 J[ GOVERNING EQUATIONS ]

Application of the Principles of Conservation of Mass, Momentum and Energy for a

compressible thermoviscous fluid leads to the following differential equations:

where

,vi

p

p

0

A,#

ep
k

Dv_ 82vj

DO 020
pcp --_

_ ___ _--.

local velocity vector

mass density

thermodynamic pressure

thermodynamic temperature

coe_cients of viscosity

specific heat at constant pressure

thermal conductivity

mass source rate per unit volume

body force vector

heat source rate per volume

Dp cgvi
Dt + °b-_, - ¢ = °

O2v_ Op

,_+_ -/,=0

Dp +---¢-@-4,= 0,
Dt p

(2.6.1a)

(2.6.1b)
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D/I_ material time derivative defined as _ = _ + v,y_.,

and ¢ is the viscous dissipation defined by

where for compressible flow

Ovl

¢ = njox--,_ (_.6.2)

{Ov_ Ovjh av_

By introducing reference values for each of the primary variables and the perturbations

except for temperature 8, the governing (2.6.1) can be rewritten as

Do_ 0u_ -
Ot _P°_ - ¢ = o (2.e.4,)

Doui _ (,_ 02Uj 02Ui Off

Doe _ k 020 Do_
Po%'--_ _ -- Dt _ = O, (2.6.4c)

in which

and

_Doui
1, = -p,,j _ - o--_ + A

00 . DoO O_
¢ = -°_PU_Oz-_. - °%-_ + u_ox, - -PC +e+ _'P

(2.6.5a)

(2.6.5_)

-- = -- + u, (2.6.6)
Dt o_ .'

U,, po, po constant reference variables

ui,_,_ perturbations.

An alternative formulation for the mass conservation equation (2.6.4a) can be devel-

oped noting that speed of sound c = _ depends on the relationship between pressure and

density. Thus the second equation of (2.6.4) becomes

Doui "A " 02uj O2ui c 2 0_

po--_ - _ + u)_; u_ + _ = 1,. (_.6.46_)

Differentiating (2.6.4b') with respect to _:_, one obtains

Do lt Oui'_ 0 _ { Oui_ C_ O_p O]i (2.6.7)

in which o = (A + 2u)/oo.

Substituting (2.6.4a) into (2.6.7), the governing equation for density is obtained as

1 D_D 0_ 0 O" (D._) 1 _[_ 0 _ _] 10]ic_D_ oxbow, : o_,o_, = _ - (_ + _u)_ 6 - -_o_'--7 (2._.S)
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Once again, the relationship between pressure and density (c 2 = _) is applied in (2.6.8).

The resulting governing equation for pressure then becomes

1 Do2# 02# rl 02 (_._) [____o 02 ] 0_ (2.6.9)d Dr2 0=_0=_ c2 ox_o=_ = - (_ + 2u)_ _ - 0=---_-"

The final form of the governing differential equations for compressible thermoviscous flow

can now be rewritten as

1 Do2/_ 02# _ = 0 (2.6.10a)
c_ Dt 2 Oz_Oz,

Dou_ _ (,X " 02uj 02u_ c1_
po--_ + u_o=-TGj -u_ + b-_ - _ =0 (z6.10b)

DoO _ k 020 Do# $ = 0, (2.6.10c)
poCp-_- o-77d_ox,D*

where

= - (A + 2#)_ (b- _xi -v c20ziOxi " (2.6.11)

Note here, the third term which is the viscous effect in the pressure equation is included

in body source _ since its contribution can be assumed to be small (the coefficient _ is

small). Now, the first two equations of (2.6.10) are one way coupled. The first equation is

independent of the others, while the mass and momentum balance operators are coupled

by the inclusion of both velocity (u_) and pressure (_). The derivation of the fundamen-

tal solutions and integral formulation based upon equations (2.6.10) are detailed in the

following sections.

I 2-0.3]IF  OAME TALSOL T,O S1
Consider, first, the coupled set of equations (2.6.10a) and (2.6.10b). The first equation

now is just the scalar wave equation for which the fundamental solution is presented in

Section 2.5.3. However, the equations (2.6.10b) require further investigation. Introduce

the Helraholz decomposition of the velocity and body force, such that

Then, (2.6.10b) becomes

Ow OWk OWi
ui = _ + eljk Oxj with Oxi 0 (2.6.12a)

Of OFk with OF_
1' = 7_, + _'J_0,-7 o=--S= o. (2.6.12b)
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0 r Dow Oew ] O [ DoWI O_WtO=i 2_) _ ox_ - _ Oz_Orj

For generality, the bracketed terms must vanish independently. Thus

Dow 02w .
-- (_ + 2#)_ +p- f = 0Po--"_-

DoWi OWi

P"--A-- - _'_o=_ F, = o.
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F_] = 0. (2.6.18)

(2.6.14a)

(2.6.14b)
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Notice that equation (2.6.14b) is completely independent of tv and :_, and, consequently can

be solved separately. In fact, this is the vortical component of flow, which is dominated

by viscosity and convection. This component behaves in an identical manner for both

compressible and incompressible flow. On the other hand, the dilatational component

must respond elastically within a convective medium, i.e.

(vort) U_dil)Ui ---- U i "_ (z6.1s)

where

Croft) OWk_ (i,_comp) (2.6.16a)

a(,_O _w (2.6.16b)
i ----Oz'-'_"

Combining appropriate derivatives of (2.6.10a), (2.6.14a) and (2.6.10c), yields the following

differential equations for w and 0:

" o' o" ( 1_ o2 _

(2.6.17a)

(2.6.17b)

Actually, the solutions of (2.6.17) that are required for the boundary element formu-

lation are those due to instantaneous point mass sources and point forces. Fhzrthermore,

the pressure response and the velocity field corresponding to these sources and forces must

be determined at same time. In all cases, the results can be determined directly from the

solution of the equation

(zs.xs)

where the scalar variable _u is introduced along with the usual generalized delta function

(6). The subscript, U, is merely a reminder that Bu is a uniformly moving medium solution.

Consequently, the fundamental solutions of the equation (2.6.10) can be obtained from the

variable _v

8zkOz_ - A+2_ _Dt2 Oz_:_ _ D_ Oz_ OziOz#

u 1 (1Do 02 )0_U

 (1oo
gU°°= k c_ Dt _ Oz'-_zi' DODt
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In a condensednotation, equation (2.6.18)canbe written as

LZu - S(x - _)_(t - _-)= O. (2.6.20)

For solving the above equation, the Laplace transform with respect to t and triple expo-

nential Fourier transform with respect x are applied again, which leads to

_" - 1= 0. (2.6.21)

Now L° is a algebraic function

: [o:+'+-
The result in the transform domain is obviously

1

=_= [4=+_} [42+_] Eo2+_

(2.6.22)

(2.6.23)

Backsubstituting the above equation into (2.6.19), the corresponding fundamental so-
lutions in the transform domain can be obtained as:

(2.6.24a)

(2.6.24b)

:u(_o'_" = (i°0(i4s) [°2 + s + "(s O ) 1(A-_2.) °2 '_kU'] [a2 + (s + ia_Uk)2]

1 (i4i)(ioj)

1 i41

c2 J

= 1 [a2+ s+ "_(s + iokUk) _°kUk]'_v

1 s + iakUk

1 1

= k 42 + s + iekUk " (2.6.24d)
K:

The response for unit step body forces and sources can be obtained from the above

solutions by multipling by a factor _. That is,

G U =(o,) :7;-_"s k_'_1 " (2.6.2s)
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The steady state solutions in the Fourier transform domain can be obtained from

(2.6.24) by letting s --. 0. Thus,
(/-_U8_ * U */ \
•._a_/ = _ga_).= o • (2.6.26)

Governing Equations

Before the Oseen's kernels are introduced, it is easy to start from the corresponding

Stokes' kernels. The entire contribution of the convective terms are considered as effective

body forces and sources. Thus, the governing equations (2.6.10) become

1 02_ a2_ (_ = 0 (2.6.27a)
e20t_ Oz_Oxl

Ou, "A " 02uj 02ul a_
po-_- _ + u_ogSg_ _,_ + -g_ - /, = o (z6.27b)

ae _ k a_e a_ $ = o (2.6a7c)
poep-_ Oz_Ox_ Ot

where

(_+ 2u)_j ¢ - _ (z6.2s.)
Oul _Dui

1, = -Po_j_ - P---_-+ f, (2.6.28b)

= -_ 0=_--- P_;_+ _ (_._.2s_)
O0 . DoO O_

= -poC,,v_o=--;- Pc"--_-+ '%_ - -%+ # + ¢ (2 6 _s_)P

The fundamental solutions of the above equations in Laplace and Fourier transform

domains can be obtained from (2.6.24) by letting Ui = 0, i.e.

( u(_il)_ * 1 (ietl)(iotj) (2.6.29,,)

(giU) ° = 1 iai (2.6.29b)

g =

1 1 (2.6.29d)
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Three-dimensional Flow

Taking the inversions of the exponential Fourier transform and Laplace transform, and

also, taking into consideration

£-_7-' _ = 4_----T

_-_--_ _ - s_

[! +_]==erSc--=£-1_--1 a21 1 r
_rtr 2_kt

£-1_-1 [ .le_ 1 ] = _ (2.6.30)s - -_,_- _ ... _k(r,t)

1],
where

°:l_(r't)=lec_t/k[e--cr/kerfer--'-C_+eCr/kerfcr2_t]2L 2_/k' , (2.6.31)

the solution can be written as

(_z) . 02¢,( r, t')
g,_ tz - _, t - _) - Oz_Sz i (2.6.32a)

gip(x _,t-r) 1 0 { 1 [ r , ( _!'(t'-_/e))]}- = --po--a_ _ _I_ - _,,(_,t ) - _t(t' - _/_) x- _ (2.6.32b)

c 2

g,_(_- _,t - ,) = _ [_(r, t') - H(t'- r/_)_"-'/°)] (Z63_)

1 e_r_t4_t, (2.6.32d)
goo(z - _, t - r) = 8VoCv(_r,_t,pIi

where

1 r

¢,(r,t) --- 4-_porerf _--_-_ (2.0.33a)

tr = t - _'. (2.6.33b)

Similarly, the solutions for unit step body forces and sources can be obtained via

equation (2.6.25). Taking into account that

£-_-_ _ --i_r

[1 1 ] 1 2 r= "7--4ti erfc_ (2.6.34)£-1._.-1 s 2 a 2 + a_r 2_/kt

£-1._'-1[ ,1 1 ] = 4_rH(t- r/c)(t- r/c )S2 Of2 _-1-c-_
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oneobtains

where

where

. a I 1 [ " c2t .2 r rG_p(z t) _2poa=,t _ [er/c_ +47, e fe_ - '_,(r,0

[ " --(,-.., O]4xpocpr

1 r

6:ee(z- _,t) = 4-_f_-_-_,

".(r,t)- 4.port (1-4i2erfc_) "

The corresponding steady state response is given by

G:y">(_-,_)= G_]")(z- ,',oo)_ a_:,
OziOzj

Ozi

G_;(z- _)= Gop(_- &oo)= o

1

G:o(_ - _) = Goo(_- _, oo)= 4-_ '

r

4_(r) = 8_r(A + 2p)'

(2.6.35a)

(2.6.356)

(2.6.35e)

(z6.ss,0

(2.6.36)

(2.6.37a)

(2.6.37b)

(2.6.37c)

(2.6.37d)

(2.6.38)

Two-dimensional Flow

Similar to three-dimensions, subjecting (2.6.29) to the inverse exponential Fourier

transform and Laplace transforms by taking into consideration

[1] H(t) lnr£-'7-1 s-_ = 2"--7

(2.6.39)

= ___e-_/4*,

Ls a 2+ _J

_:-'_-_[_ _ ]=_z(t-r/_)_°'h-_a-;,_7-_-,. r
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where

one obtains

= re2t] k •

_("0=2 Jo ; -2 . ,, _ kj+_°(?)]
(2.6.40a)

-e_t/k H_7. _

J0 _/,, (_),
(2.6.40b)

In the above, Ko(m_) is incomplete MacDonald function and Ko(_) is the modified

Bessel function. The solution then becomes

(,_,) O_¢n ( r , t')
gij (z--_,_-- I") -- Ozi_zj (2.6.41a)

2_poazi _E1 _ -%(r,t')- Y(t'- r/c) cosh -] -_--wn(r,t' )

(2.6.41b)

c 2

-- r ' H(t t r/c)_(r, tg]ge_,(.- _,t - ,-) = 2_-t [_''( ,t ) - -

.qee(z- .',t - r) = 1-_--e_'/4"t',
4xkt"

where

(2.6.41d)

(2.6.41e)

n r + _EI . (2.6.42)

Similarly, the fundamental solutions for unit step body forces and body sources can be

obtained using (2.6.25) and taking into consideration

[,J,£-1jr-1 _ =_--£1nr

£__ly___l[1 1 ] t [ (r 2) (r2)]s_o2+__ = _ El _'_ -E2 4=_ (2.6.43)

1] I, ,1L:-_ --_ _ = H(t - _/_) _h_] a _ V'_ - _2/_

Thus,
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1 [7_(r,t)- 1-- _E_ ( _ffj) - H(_- d_) (,_(,,O --¢o_h-_ -_) ]G_(z - _,t) = 2_rpocp

GOO(Z -_,t) = E1 _ ,

where

,[On(r,t)-'= 4-_po 21nr + Z, _-_ - E2 _t "

The corresponding steady state response is

where

02og
vtJ_o(= - _)= a,_(=- e,oo)_ a=-_-;j

at.(= - _) = c_p(=- _, o_)= 0%'7

c',p(_- _) = cop(= - _,o_)= o

c$o(=- _) = Gee(=- _,_) = - _ Inr,

1 2p)r2(ln r- 1).'_'_(")= s,,(_ +

(2.6.44c)

(2.6.44d)

(ze.45)

(2.6.46a)

(2.6.46b)

(2.6.46c)

(2.6.46d)

(2.6.47)

[ 2.6.3.2 [[ CONVECTIVE COMPRESSIBLE FLOW [

Governing Equations

In operator notation, the governing equations for compressible thermoviscous flow

(2.6.10) are simply

U ]c, -- 0, (2.6.48)La_u_ +

in which

ufl = {u_, p, O}T (2.6.49a)

]_3 _-- {]i, _, _}T, (2.6.490

The subscript i varies from one to three for three-dimensional and one to two for two-

dimensional problems, respectively. Meanwhile, the linearized differential operator L_Va is

defined by

[L_ L_ L_ J
02 02

= 0

0

O

Ozi

1 D2o 82
c2 Dr2 + OziOz_

Do

Dt

0

0

Do 02

(2.6.so)
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The superscript U denotes that convective terms are involved in the differential operator.

The fundamental solutions in Laplace and Fourier transform domain were presented in

(2.6.24). Meanwhile the fundamental solutions for unit step body forces and sources can

be obtained from (2.6.25).

The steady state solutions in the Fourier transform domain are

(GU,(,uO'_" _ 1 (i_)(iaj) (2.6.51a)

(Gu q . _ 1 ial
--ip ]

1 io_kUk (2.6.51e)[++ [o=+,=+]
1 1

(GUt)° = k o_2+ ia___" (2.6.51a)

Three-dimensionai Flow

It is not difficult to get the convective fundamental solutions for instantaneous body

force and source from (2.6.32) by introducing a Galileari coordinate transform:

• O:¢.(r_, t')
g_("")(z - _, t - r) = 0=_0=_ (2.6.52a)

gi_(z-"t--r)-- 1 a { 1 [ _ )]}po Oxi _ erfc - a,7(ru,t' ) - H(t +-ru/c) (1 - e _.'(¢-'We)

(z6 s2b)

g_,(=- _,t - ,) = 4,_,= o/) ] (zs.s_)

9_(x - _,t -- r) = 1 -,:/4,t'
8pocpOrxt,)s/_ e

(2.6.52d)

where

2 (v, v,t')(p, v,t'). (2.0.53)

The solutions for unit step body forces and sources can be obtained from (2.6.52) by

integrating over r or performing the inversion of Fourier and Laplace transform on (2.6.25).

By taking into consideration

£-:_.-1 1 .]
. "+ k'U*.)a z +
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+ Ur + U_/k L - e J 2v_ r_ 24kt]

_ __[ ia( __ I.

£ _r l-_(s+iakUk) c_2+_ r- ut . l

8_Ur _, Ur - Ukyk

eCUr+u_)/k2erfcr +£t r + Ut . r.[___
U,r+U_, _ 24kt --'-_u er'e2,_ }

+ _r+ u_

_-_-_ s-_+/dakUk- T) _ + k

I ff ak(,rt,, I") dr4_

_8( 1 1 _a + c_
Uru + Uzt - U_y_

_ H(1 - M)H(t -- ro/e) [n_-_o +_ro/c -- U;,,9'_
- 4_rU

+ H(M_- 1)H(U_y _ -c_3r)x
4wU Uru + Uz¢_- U_II_--1

Uru + U2t - U_.II_:.- H(_ - rl/c) ln _ U_r_/c - U_It_]

_:-_'-_ _(, + ,_u_ - _-_+ (_+_u_) 2

-- 4'ffru
(2._._4)

one obtains
0_ u O@_.

• -- " e (u'-u'u_)12ner'fc_ - r - U_ o
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"]}Uir + Uyi •Fe(ur+u_y_)/2ner/c r + Ut r + Uterfc__4- Ur + U_yk [ 2_ r.

Ur_ + U_t - Uky_1 8 H(1 - M)H(t - to/c) [n Uro + U2ro/c - Ukyk4rpoU c_zl

+ H(M - 1)g(Uky_ -- c_3r) x

Uru + U2t - Ukyk , Ur_ + UZt - Ukyk ]

. .. Urn, + U2t - Ukyk
a_(.-¢,t)- 1 H(1-M)H(t-r_/c)m _--_

41rkU Uro + U role - Ukyk

+ H(M - 1)H(Ukyk - c/_r)x

H(t " Uru+U2t--UkYk -H(t_-rt/e)ln Ur_'+U2t'-UkYk ]

_Trkr L 2_/Kt 2_/1¢t J '

(2.6.55c)

(2.6.,_5d)

where

v,.

Ur + Ukyk e(Ur+Uky_)12r_er]c - _ ., - ru
4-

{ -U_y_ +_,/(U,y_)2+e2fl_r 2 M< 1;

e_ _ ' (2._.56e)
to---- Ukyk --_/(Ukyk) 2 -- C2_ 2r2 M> 1

Uky_ + _/(Ukyk) _ - c2_ 2r2 (5.56d)

_ = l1 - M_I (2.6.56e)

M = U is Maeh Number. (2.6.56f)
e

The corresponding steady state solutions can be obtained from (2.6.51) by taking into
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consideration

where

5-_[1__!_11 1 v_-u_
ti_v_ _-_1-- -4-;P In-----y---

---V--

Ukyk
smh

I _.,/u2:- (u_y_)_

t 2["](VkYk-- c_r)cosh- _r2 -- (V_:yk)"'

Pk(x - _) =" eU't"d_M_ ]

1

Ts, M<I;

Qk(z-() = [ 2H(U_y__eOr)Tk , M> 1;

• --¢$;/kM

U_/kM 2 1__ _ ,dz

T,(z-() = e J _/z2 + !__R2

g2r2 - (U_I4D_V.
R= _z _+ -- U _

U_y_

M<I;

M>I.

Thus,

t3

March, 1992
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(_.s.B7)

(2.6.58a)

(2.6.58b)

(_._._s_)

(2._._sd)

(2.6.59a)

(2.6.59b)
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where

a_'(, - _) = e_(, - _,_) = 4_rkU [P': - Q'] (2.6.59c)

(2.6.59d)

@_. 1 [ Ur-Uky, +El(Ur-Uayk_ ]4,_-poUl, 2, \ _ ./j. (2.s.6o)

Two-dimensional Flow

The convective fundamental solutions for an pulse body force and source can be ob-

tained from (2.6.41) by Galilean coordinate transform:

OziOzj

g_(x-_,t-v)-- 27rpolo_'iO{I_E, ( r_ )__ 7.(ru, t')-H(t'-ru/c)L[C°sh-ldlru

c 2

g_(=- ,',t - _-)= 2-_ b,,(",,,¢) - H(¢ - "_,/_)'_,d",,,t')]

g_o(z__.t_v)= 1 er2/4_t,
" ,

(2.6.61a)

(2.6.61b)

(2.6._1e)

where the functions 7_, _= and ¢o were defined in (2.6.40) and (2.6.42), respectively.

The convective solutions for unit step body force and source can be obtained from

(2.6.61) by integrating over r. That is,

a_('_')(,,- _,t) -

': f]

dv

- _,t) = :_1,_u,_,/_¢_(,,t),G_]e(x

4r(A+2_u) /Sij- eu,_,/2ne,7(r,t)_(a, Uka¢ _ U,O¢_'_
\ U Oz_ U 8zj U Oxi ]

(2.8.62,,)

(:._._)

(_._._d)

where

(_.e.ea)
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The steady state solutions can be obtained by taking into consideration that

F 1

.T__I [. 1 [ 1 U _-2k /Ur_

L

.T_ I [ ial 1

L iakUk
+ --T-

• - c2 _kUk = Qko

iakUk - T a2 + ---T--

._'--i r iai 1

• --- c2 ictkU_LiakUk - "_ a2 +

Ui eU, u_/akKo(Ur )- 27rg 2 -_ -_
I _u_

4_u (Um -_Ukyk) Pka

_ U_2rU2 [eU_u_12kKo(_k)+k__Q_o ]

1
4_ku (uy_ U_U- -ff k_k) Ok1

._'--- 1

1 -2--_ --'-----_ , M<I;

(iakUk)_ =
°t2 + _'5 1H(Ukyk - c#r) , M > 1.

+

I ic_ 1( i_kUk )2
i_-ZUk _2 + c2

H(1 - M)

27rU

Ui -1 1
= -_;:

a 2 + ( iakUk)2
C2

Uyi -- U_Ukyk tan_ 1 Ukyk

x/U2r2 - ( Vkyk ) _ _x/U2r _ - ( V_y_ )2

I 11' Ic2 (iakUk) _ = c_ a=+
iakU_ -- T a: + c_

H(1 - M)k U_y_/_M_ _/U__(U_u_)_ .
2--_c_Z e 9(e E, [ U.y_ , i_ .. _ _ (U_yD_) )

I iai 1c= (ia_Uk) 2
ia_U_ - -ff a _ + e2

H(1-M)[,Ue2_rU _( e_/Ua_'-(U'u')aE1 ,---0 "g- -k_--_/U=r2--(Uky')2))

x/U2r = _ (Uky_)2 _ \----_ kM '
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(2.6.64)

where R(z) and 9(z) are the real part and imaginary part of z, respectively, and

Pko=feusc/2kKo(-_k)dz

Qko=eU_'YJ'/kM_/e(U/2k-c/kM)XKo(_-k) dz

Qkl = eU_Y'/kM2 / le(uI2k-c/kM)xKl (-_k ) dx

R=Ix_+U2r_-v(Ukuk)2

Uj, yk
Z_" v j

(2.6.65)

Thus,

c_"(_'%-_ = 2_(_+ _.) - --_-)

f'J U azk U a¢ i U 0zi ]

(2.6.86_)

u, , [MU____/Q,o+ 1 u,Gip (z-,) - 2,_lcU _ (Uyi - "-'_'Uky_,) (P,_I -Q.I)] - p-_G.Ui u.(z - ,)

Uyi- -_u_ [ Uk_k

+ eUj-_,/,M2 _ (e-_v2r2-(u_YhpE 1 f Uky_ + "

(_._.6_5)

a_'(:_-_) = 2j#Q.o + a_'(_:-_)

2_poCp,8

(2.6,_)

o.Goe(x - _) = eU"y"t2"Ko , (2 6 66d)

where

Since the algebraic form of these two-dimensional kernels is complicated it is best to

examine the behavior graphically. For this exercise, a forty-by-forty grid of sampling points
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was generated as shown in Figure 2.6.1. The source point is fixed at the origin, located as

the central point in the grid. The character of the kernel is displayed in Figures 2.6.2-2.6.7.

First, the component Gll is plotted for various free stream velocities, expressed in terms

of Mach numbers, in Figure 2.6.2. (Note that Gll is the velocity in the xrdirection at the

sampling point due to a unit point force in the zl-direction at the origin.) For very small U_,

the solution of (2.6.66a) approaches the Stokes kernels as illustrated in Figure 2.6.2a. As the

magnitude of the free stream velocity increases (i.e., Figures 2.6.2b-d), a pronounced sense

of flow direction becomes evident with the nonzero response concentrated in a narrow band

behind the applied force. However, the response is always a near-hyperbolic behavior in a

quickly moving stream. This behavior is not only important from a physical standpoint,

but also can be beneficial in the development of an efficient boundary element algorithm.

On the other hand, the character of G_, representing the pressure response due to a

unit source, is much different. At a zero Mach number, the pressure is radially symmetric

as seen in Figure 2.6.4a. Increasing the Mach number to 0.9 produces a transition to the,

by now, familiar convective form. However, at M = 1, the field suddenly becomes singular.

Figure 2.6.4c shows a distinctive Mach cone at M = 1.1. It should be noted that the

analytical kernels produce absolutely straight lines defining the cone. Unfortunately, the

graphics package is unable to accurately portray the discontinuity. As the Mach number

increases further, the included angle of the cone decreases. The response at M = 8 is

displayed in Figure 2.6.4d.

Figure 2.6.3 shows the coupling term Gpl, which measures the pressure due to unit

point force in the z_-direction. This term also exhibits the shock-related Mach cone.

Finally, Figure 2.6.7 shows the heat transfer fundamental solution defined in (2.6.66d).

It should be emphasized that the so-called convective fundamental solution actually em-

bodies both the processes of conduction and convection. At low velocity, conduction

dominates producing a nearly radially symmetric response. On the other hand, in a high

speed medium, the response is concentrated in a very narrow band downstream of the

source. Thus, as illustrate in Figure 2.6.7, GsV_captures the transition from elliptic toward

hyperbolic behavior.

[ 2.6.4 ][ BOUNDARY INTEGRAL REPRESENTATIONS ]

The desired integral representation can be derived directly from the differential equa-

tions of transient convective compressible thermoviscous flow.

The governing equations (2.6.48) multiplied by an arbitrary function _, and integrated

over time and space, must remain equal to zero. That is,

< On, L_Vzu#+ fa >= for/v g_.r(Lv_ua + ]_)dV dt = O, 6.6s)

where the standard notation for the inner product of two functions has been introduced.
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Returning to the explicit forms of the differential operators, this becomes

_"L-"°--_-+(;'+"_+"o-+o+ a=,

[ 1 D°215 o21_ ]+gg"r c2 D_l2 + axiOxi + it, (2.6.69)

[ Dou,_ O'u, Doup ]}+On [-pocp--_ + _ + --_ + D dv ,_t= o,

Next, the divergence theorem can be applied repeatedly to applicable terms in (2.6.69)

to transfer spatial as well as temporal derivatives from u s to _. Thus the first term of

(2.6.69) becomes

Jo { -- +' 1

+/of,.,°_+';+",_','_j".+_o.,_"..
the second term is

/07v{[1o" g_ e2 Dt_ + OziOxi

= i_ Lon : ot J - t on c2 up

T 1 r Doup T } (2.6.71)

-{ ,°,,-},,v,,,,+/o/,[-°:2-_+%_]-"
the third term is

=Jo_ "'L'_"'-'oo°""""-_+"'+J- '_" TM ,_vd,
('_.6.72)

+ ZTfv{_/o} dVdt -- fv{POCp_',ITo - '_uplT} dv

+/fSv{ r[,,<>+--_D°''-,+, _,',,-,1<,o__j [_] ,,,,}<_<_,.
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Combining equations (2.6.70), (2.6.71) and (2.6.72), equation (2.6.69) becomes

T { r out (ou, o_

_r.,.,-_,-,,,,+,.(_+<,,,-,'_,r,.,+,o,,..qL 8zj u_

[o._. u.o__..] [o_ v,._.j,.,1

+,,[k_ne_PocpU.u,_Oup._n+U,.iupjl_ [k____n] ue}dSdt

j.{ ,-°... )1 Do_l,_u.I T _ 7irc--_ --I° + po%_udT _ _u.lT dV- P°geymlT + c2 Dt

i;L{' °°"..... "" ._7"".
ro,,_,.:_,.,+o,,..,__]+ [Oli C2 7 O'--XiOI i " "lip

+[,...__+,.0.,._}_j ue dVdt=O,

(2.6.73)

or

where

(z_.r3O

BEST-FSI User Manual

ti = O-'_zjn' + l'l _ Oz_ + Ozi g ns -- upni

8u_ U_ Doup
tp = On c"_ Dt

k Due Our,

March, 1992
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(2.6.74b)

(2._.r4_)

(2.6.74d)
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On c _ Dt

]e-, = k Og_ .- (2.6.74f)
On

In order to complete the derivation of the integral equation for the perturbed velocity

and temperature at any point _, interior to s, at time r < T, the last volume integral in

(2.6.73) must be reduced to -u_(_, r). This is accomplished, if

~

< L_ago-r, ua >= -u-r(_, r), (2.6.75)

or after making use of the properties of the delta function

La_ + 6_6(_ - _)6(_- _-)= o, (2.6.76)

where the differential operator L_,, has the definition

L_p

' Do , 0 2 02

6j,pN + (_ + u_ + 6_,ua--,0="

0

Ozi

0

1 D2o 02
+

c2 D_2 OziO=i

0

Do

Dt

Do 0 2

(2.6.7T)

Formally, Loa is called the adjoint of the original compressible thermoviscous flow

operator L,,v0 in (2.6.50), and _ defined by (2.6.76) is the adjoint Green's function. This

function #_ can be obtained simply by transposing the fundamental solution gv presented

in the previous section. That is,

_(_ - _, t - ,-) = o_,,(_- z, _-- 0

L.-,(,,,- e, t - _) = y_o(,_- ,, ,-- t).

(2.6.78a)

(2.6.78b)

Substituting (2.6.78) into (2.6.73) produces the desired integral equation,

(z6._9)

in which, for simplicity, the initial conditions have been assumed zero. The • in (2.6.79)

once again symbolizes a Riemann convolution integral.
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t 2.°.5II OONOL DINGR MAR SJ

In this section, new fundamental solutions were derived for compressible thermoviscous

convective and unconvective flows for both three-dimensional and two-dimensional; steady

and unsteady cases. The contour plots of Figures 2.6.2 through 2.6.7 suggest that this

latest effort has produced physically meaningful kernel functions.

Although the numerical implementation of the compressible formulation has not yet

been undertaken, some of the characteristics of the boundary element approach should

be noted: For high speed flows, the nonlinearities will once again be concentrated in a

thin layer near the surface and in the wake. Thus, all of the discussion concerning high

Re incompressible flow is valid here as well. Furthermore, with the compressibility comes

the hyperbolic phenomenon of shock. In a boundary element approach, the discontinuity

can be captured analytically through the fundamental solution. It is not necessary to use

a mesh to model the, generally unknown, location of the shock front. This is a distinct

advantage for boundary elements over the domain-based methods.
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Figure 2.6.1 Grid For Fundamental Solution Contour Plots
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Figure 2.6.2 Fundamental Solution G_I

Figure 2.6.2(a)
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Figure 2.6.3 Fundamental Solution Gtp
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Figure 2.6.4 Fundamental Solution G_
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Figure 2.6.5 Fundamental Solution G0,

Figure 2.6.5(a)
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Figure 2.6.6 Fundamental Solution Coy
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Figure 2.6.7 Fundamental Solution Gae
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l 2.7 ll FLUID-STRUCTURE INTERACTION I

[2.7.1II 'NTROD OTIO ]

In the previous sections, boundary element formulations have been developed sepa-

rately for a thermoelastic structural component and for a thermoviscous fluid. However,

the ultimate goal of this ongoing grant is to develop a single computer program to deter-

mine the temperatures, deformation and stresses of a component exposed to a hot gas flow

path, without the need for experimentally determined ambient fluid temperatures and film

coefficients. While further work is still required for the fluid phase, sufficient progress has

been made to demonstrate the utility of the overall concept. Consequently, in this section,

problems of fluid-structure interaction will be examined.

[ 2.7.2 ][ FORMULATION ]

The Geometric Modeling Region (GMR) provides the vehicle for achieving interaction

between the solid and fluid. Recall that it is possible to employ fluid formulations in dif-

ferent GMRs. Now, some of the regions will use the thermoelastic solid boundary element

model, while others utilize one of the thermoviscous fluid formulations. Compatibility

must be enforced across all GMR interfaces, no matter which model is used for adjoin-

ing regions. A boundary element approach is ideal for these problems, since the integral

equations are written directly on the interracial surfaces.

For demonstration purposes, consider the problem of flow past a blade as sketched in

Figure 2.7.1. The blade itself is labeled GMR1, and is modeled as a thermoelastic solid.

A boundary mesh is all that is required for this structure. Surrounding the blade is a

thin layer of cells. This is a nonlinear thermoviscous fluid region, named GMR2, in which

the complete Navier-Stokes equations are solved. GMR2 is enclosed by inner and outer

surfaces composed of boundary elements. The mesh utilized for the inner surface of GMR2

matches that employed for the blade in GMR1. Finally, the outer region GMR3, which

extends to infinity, employs the convective Oseen kernels. The boundary element model

for GMR3 consists merely of the surface elements required to describe the interface to

GMR2. Since no cells are present, the nonlinear volume and surface integrals axe ignored.

Thus, an approximation is introduced. However, as mentioned previously, outside of the

boundary layer and wake these nonlinear contributions are negligible. (Recall that each

region is the counterpart of a substructure or superelement commonly used in the finite

element technology, however GMR1 and GMR3 do not require any volume discretization.)

The interface between GMR2 and GMR3 poses no particular problem. Total velocity

and temperature from both regions are equated at each interface node, while the tractions
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and flux must be equal in magnitude but of opposite direction. The latter conditions for

the compatibility of traction and flux are also true for the solid-fluid interface between

GMR1 and GMR2. Total temperature must, of course, be equal on this interface as well.

However, the solid integral formulations of Section 2.2 are written in terms of displacement,

while those for fluids use velocity. Consequently, a change in variable must be introduced

to ensure complete interface compatibility. For that purpose, consider the following matrix

form of the integral equation for a thermoviscous fluid:

(2.7.1)

The contributions from nonlinearities and past time steps are all contained in Rz, as are

any terms associated with the translation from perturbed velocity to total velocity v_.

Meanwhile, a similar expression written for a thermoelastic solid becomes

r.-,<,o"...., )+{.,,..}, (2

where u, is the total displacement. This must be rewritten in terms of total velocity v,,
where

Oui
v, = --. (2.7.3)ar

After invoking properties of the convolution integrals that are present in the original inte-

gral equation (2.2.2), the appropriate representation for the solid can be written

aeo ] t q J LFoj (2.7.4)

in which d_ij, &s_ and F0j are now modified kernel functions and R0 is the corresponding

right-hand-side contribution. However, at this point, the fluid formulation (2.7.1) and the

solid formulation (2.7.4) are completely compatible, and are in an ideal form to solve quite

general interaction problems.

[ 2.7.3 ][ NUMERICALIMPLEMENTATION

The boundary element code, BEST-FSI, was generalized so that any combination of

solid and fluid regions could be accommodated. Also, the modified thermoelastic kernels

of equation (2.7.4) were implemented. The entire BEST-FSI input is free format and

keyword driven. Output is provided on a region-by-region basis, and thus contains only

information pertinent to the region type. Displacements, temperatures, stresses and strains

are detailed for solid GMRs, while velocities, temperatures, stresses, pressures, strain rates

and vorticities are output for fluid regions. In all cases, a complete PATRAN interface is

available, so that any quantities can be plotted.
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I 3"0 ]1 APPLICATIONS

Boundary element formulations were detailed in the previous section for the analysis

of thermoelastic solids and thermoviscous fluids. In this section, these new formulations

are applied to solve numerous example problems. The individual subsections correspond

to those presented in Section 2. (Thus, Section 2.4 and 3.4 both concern convective in-

compressible thermoviscous flow.)

It should be noted that all of these numerical applications were completed on a Sun

SPARC workstation. Results presented in Sections 3.2, 3.3, 3.4, and 3.7 were obtained

with BEST-FSI. On the other hand, convective potential flow results provided in Section

3.5 were obtained by executing a separate single-region boundary element code. The

convective potential flow and compressible thermoviscous flow formulations are not yet

available in BEST-FSI.
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[3.2 l[ THERMOELASTIC DEFORMATION

I 3.2.1][SUDDE, ,EATINGOFALUMINUMBI,OOI I
As a first example, transient heating of an aluminum block is examined under plane

strain conditions. The block, shown in Figure 3.2.1, initially rests in thermodynamic

equilibrium at zero temperature. Then, suddenly, the face at Y = 1.0 in. is elevated

to IO0°F, while the remaining three faces are insulated and restrained against normal

displacements. Thus, only axial deformation in the Y-direction ispermitted. Naturally,

as the diffusiveprocess progresses,temperature builds along with the lateralstresses_

and _. To complete the specificationof the problem, the followingstandard setof material

propertiesare used to characterizethe aluminum:

E = 10 x 106psi,

a = 13 x lO-6/°F,

k = 25in.lb./sec.in.°F,

The two-dimensional boundary element idealization consists of the simple four element,

eight node model included in Figure 3.2.1. A time step of 0.4 see. is selected, corresponding

to a non-dimensional time step of 0.5. Additionally, a finite element analysis of this same

problem was conducted using a modified thermal version of the computer code CRISP

(Gunn and Britto, 1984). The finite element model is also a two-dimensional plane strain

representation, however, sixteen linear strain quadrilaterals are placed along the diffusion

length. In the FE run, a time step of 0.2 see. is employed.

Temperatures, displacements, and stresses are compared in Table 3.2.1, Notice that

the boundary element analysis, with only one element in the flow direction, produces a

better time-temperature history than does a sixteen element FE analysis with a smaller

time step. Both methods exhibit greatest error during the initial stages of the process.

This is the result of the imposition of a sudden temperature change. Meanwhile, the

comparison of the overall axial displacement indieates agreement to within 3% for the

BE analysis and 5% for the FE run. A steady-state analysis via both methods produces

the exact answer to three digit accuracy. The last comparison, in the table, involves

lateral stresses at an integration point in the FE model. The boundary element results

are quite good throughout the range, however, the FE stresses exhibit considerable error,

particularly during the initial four seconds. Actually, these finite element stress variations

are not unexpected in light of the errors present in the temperature and displacement

response. Recall that in the standard finite element process, stresses are computed on

the basis of numerical differentiation of the displacements, whereas in boundary elements,

the stresses at interior points are obtained directly from a discretized version of an exact

integral equation. Consequently, the BE interior stress solution more nearly coincides with

the actual response.
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'Ihble 3.2.1

Sudden Heating of Aluminum Block

Temperature (°F)

Time at Y = o

(sec.) Exact FE BEM

0.8 4.7 3.4 3.8

1.6 22.0 19.8 20.7

2.4 38.3 36.4 37.7

3.2 51.5 50.0 51.5

4.0 61.9 60.7 62.2

4.8 70.1 69.1 70.5

5.6 76.5 75.7 76.9

6.4 81.5 80.9 81.9

7.2 85.5 84.9 85.8

8.0 88.6 88.2 88.8

Axial Displacement (_ in.) Lateral Stress (ksi)

at Y = 1.0 at Y = 0.5312

Exact FE BEM Exact FE BEM

910 860 920 -5.6 -3.9 -5.4

1290 1250 1320 -9.1 -7.7 -9.2

1570 1540 1610 -11.3 -10.3 -11.7

1780 1760 1840 -13.1 -12.2 -13.5

1950 1930 2000 -14.4 -13.8 -14.8

2090 2070 2130 -15.5 -15.0 -15.9

2200 2180 2230 -16.3 -15.9 -16.7

2280 2270 2310 -17.0 -16.7 -17.3

2340 2330 2370 -17.5 -17.2 -17.8

2400 2390 2410 -17.9 -17.7 -18.1
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[3.2.2I O,RO LA DISKJ

Next, transient thermal stresses in a circular disc are investigated. The disc of radius

'a' initially rests at zero uniform temperature. The top and bottom surfaces are thermally

insulated, and all boundaries are completely free of mechanical constraint. Then, suddenly,

at time zero, the temperature of the entire outer edge (i.e., r = a) is elevated to unity and,

subsequently, maintained at that level.

The boundary element model of the disc with unit radius is shown in Figure 3.2.2. Only

four quadratic elements are employed, along with quarter symmetry. Ten interior points are

also included strictly to monitor response. In addition, the following non-dimensionalized

material properties are arbitrarily selected for the plane stress analysis:

E = 1.333 pct= 1.0

v=0.333 k= 1.0

a = 0.75

Results obtained under quasistatic conditions for a time step of 0.005 are compared, in

Figures 3.2.3, 3.2.4 and 3.2.5, to the analytical solution presented in Timoshenko and

Goodier (1970). Notice that temperatures, as well as radial and tangential stresses are

accurately determined via the boundary element analysis. In particular from Figure 3.2.5,

even the tangential stress on the outer edge is faithfully reproduced. An extremely fine

firrite element mesh would be required to obtain a comparable level of accuracy, particularly,

for the surface stresses.
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t3.3 ][ INCOMPRESSIBLE THERMOVISCOUS FLOW

13.3.1l OO, VERGINOOHANN I J

The two-dimensional incompressible flow through a converging channel also possesses

a well known analytical solution which is purely radial (Millsaps and Pohlhausen, 1953).

A comprehensive finite element study of this problem has been made by Gartling et al

(1977).

The boundary element model is shown in Figure 3.3.1. The mesh contains 96 cells

and is divided into two regions. The boundary conditions were modeled using an exact

specification of the boundary conditions appearing in the analytical solution (Fig. 3.3.1).

Viscosity is unity, and tractions and density are incremented to reach higher Reynolds

numbers. The Reynolds number for this problem is defined as

Re- pRiV2(Ri) (3.3.1)
V

where V2(RI) is the maximum velocity in the region, which is -24.0 for the problem solved

here.

Figure 3.3.2 illustrates the results for two Reynolds numbers, indicating good accuracy

along the entire width of the channel. Not only are the velocities accurate, but the pressures

and tractions are very accurate also.

It has been observed that finite element versions of this problem have several pecu-

liarities which prevent the analytical solution from being reproduced. First of all, since

velocities are often specified at the inlet and at the wall and centerline, ambiguous bound-

ary condition specification results. Also, typically a parabolic "fully developed" velocity

profile is usually specified at the inlet. However, the nonlinear solution has a flattened

velocity distribution across the width of the channel (see Fig. 3.3.2). Hence, the analyt-

ical solution cannot be reproduced exactly if the "fully developed" profile is specified at

the inlet. Also, the finite element modelers of this problem usually leave out the traction

distribution at the exit and specify zero tractions there. This also gives rise to non-radial

flOW.

The reason for so much interest in the converging flow problem is that it is one of

the few problems possessing an analytical solution. However, by specifying a model which

does not correspond to this problem, as in the finite element case, one cannot accurately

compare results to the analytical solution. Any such comparisons are merely qualitative.

In this light, the boundary element model here has utilized an exact model of the boundary

condition and a meaningful comparison can be made.
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Figure 3.3.1 Converging Channel - Problem Definition
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[ 3.3.21[ RA sIE TOO E TEFLOWI

Consider as the first transient analysis the case of developing Couette flow between

two plates, parallel to the x-z plane, a distance h apart. Initially, both of the plates, as

well as the fluid, are at rest. Then, beginning at time t = 0, the bottom plate is moved

continuously with velocity V in the x-direction. Due to the no-slip condition at the fluid-

plate interface, Couette flow begins to develop as the vorticity diffuses. Eventually, when

steady conditions prevail, the x-component of the velocity assumes a linear profile.

The following exact solution to this unsteady problem is provided by Schlicting (1955):

vxCy, t) = Y erfc[2nrh + rll - erfc[2(n q- 1171 --

L n=O r6----O

(3.3.2a)

where

(3.3.2b)

y h

fz -7 _
erfc(z) = 1-- erf(z) = 1 -- rl/21o e d%

(3.3.3a, b)

(3.3 3c)

All of the nonlinear terms vanish, since both v_ and Ov=/Oz are zero.

The two-dimensional boundary element model, utilized for this problem, is displayed

in Figure 3.3.3. Four quadratic surface elements are employed, with one along eeuch edge

of the domain. A number of sampling points are included strictly to monitor response.

Notice that the region of interest is arbitrarily truncated at the planes z = 0 and z = t.

All of the boundary conditions are also shown in Figure 3.3.3. For the presentation of

BEST-FSI results, all quantities are normalized. Thus,

Y (3.3.4a)

ct

T = h----_ (3.3.4b)

and the horizontal velocity is vx/v. Figure 3.3.4 provides the velocity profiles at four

different times, using a time step AT = 0.025 and the convolution approach. There is some

error present at small times near the top plate, where the velocity is nearly zero. Results at

Y = 0.5 versus time are shown in Figure 3.3.5 for several values of the time step. Obviously,

the correlation improves with a reduction in time step and AT = 0.025 provides accurate

velocities throughout the time history. However, even for a very large time step, the BEST-

FSI solution shows no signs of instability. Error, evident in the initial portion, diminishes

with time, and all values of AT produce the correct steady response. Further reduction of

AT beyond 0.025 yields little benefit. Instead, mesh refinement in the y-direction is needed,

primarily to capture the short time behavior. Figure 3.3.6 shows the BEST-FSI results

for a model with just two, equal length, elements along each vertical side. The correlation
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with the analytical solution is now excellent. The time step selected for the refined model

was based upon the general recommendation that

AT _ 0'05t_m_'_
, (3.3.5)

C

where tm_, is the length of the smallest element.

The convolution approach, defined by equation (2.3.18), was used to obtain the results

presented in Figures 3.3.4-3.3.6. Alternatively, the recurring initial condition algorithm

can be invoked. In that case, complete volume discretization is required even for this

linear problem. For the model of Figure 3.3.4, a single volume cell _:onnectiug the eight

nodes is all that is required. The BEST-FSI results for different values of AT are shown

in Figure 3.3.7. The solutions are good for the two smaller time step magnitudes, however

there is a slight degradation in accuracy from the convolution results.

Interestingly, the solution in (3.3.2a) is identical to that for one-dimensional transient

heat conduction in an insulated rod with one end maintained at temperature v, while

the other remains at zero. However, in a corresponding boundary element analysis, the

numerical integrations defined in (2.3.153) must be calculated much more precisely for

unsteady viscous flow than for heat conduction in order to obtain comparable levels of

accuracy.
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Figure 3.3.3
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Figure 3.3.5
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l 333JI  Low ETWEEN OTA ' GOYLI OERSI

As the next example, the developing flow between rotating cylinders is analyzed. The

inner cylinder of radius ri is stationary, while the outer concentric cylinder with radius

to is given a tangential velocity v, beginning abruptly at time zero. The steady solution

appears in Schlicting (1955). However, even for the transient ease, the flow is purely

circumferential. Thus, the governing Navier-Stokes equations reduce to

[ 02vo iOvo vo) Ov_u _,_-_-_+, a_ ;__- p-_--: 0 (3.3.8o)

Op v_ (3.3.6b)
Or ÷ r =0

in polar coordinates (r, 0, z). As discussed in Batchelor (1967), separation of variables can

be used to obtain the following solution (Honkala, 1992)

_(.,t)=o (3.3.ro)

where

oo

v_(r, t) = clr + e2 + Z Dn{Jl(Anr)Yl()_nro) - Yt(Anr)Jx(_nro)}e -x_"a
r

rl_-I

(3.3.7b)

Yr o
0 2 _ --0 Ir_

D. = 2 J?(__,,o) (Y'(A"_°)F'".-... + J_(A,,o)F2,}

F2n = cl[r_oY_(Anro) - r_Y2(Anri)] - e_[Yo( Anro) - Yo( Anri)]

(3.3.8a, b)

(3.3.sc)

(3.3.8d)

(3.3.8e)

and Am is the nth root of the equation

J_(_.-,)Y_(.x,-,,)- 3_O,,'o)Y_(a,'_)= o. (3.3.9)

Figure 3.3.8 depicts the boundary element model representing the region between the

two cylinders. A thirty degree segment is isolated, with cyclic symmetry boundary condi-

tions imposed along the edges 0 = 0° and _ = 30°. The inner radius is unity, while an outer

radius of two is assumed. Unit values are also taken for the viscosity, density and v. The

model consists of six quadratic elements and two quadratic cells. The cells, of course, are

not needed for linear analysis utilizing the convolution approach.

Results of the BEST-FSI analysis are compared to the exact solution in Figure 3.3.9

for convolution and in Figure 3.3.10 for the recurring initial condition algorithm. In both

diagrams, results with and without the nonlinear convective terms are plotted. The re-

sults are quite good throughout the time history with the convolution approach, while

some noticeable error is present at early times for the recurring initial condition solutions.

The linear and nonlinear velocity profiles are nearly identical, as expected from the exact
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solution expressed in (3.3.7b). However, unlike the previous exarnple, the nonlinear terms

do not simply vanish from the integral equation written in cartesian form. Instead, the

nonlinear surface and volume integrals must combine in the proper manner to produce

the correct solution. Consequently, this problem provides a good test for the entire BEM

formulation.

Relative run times are shown in Table 3.3.1 for the different anaJ.ysis types. Obviously,

the nonlinear convolution approach is very expensive, since this involves volume integration

at each time step. As a result, in the general implementation, convolution is only utilized

in linear GMRs.

Table 3.3.1 - Flow Between Rotating Cylinders

(Run Time Comparisons)

Analysis Type

Linear

Nonlinear

Linear

Nonlinear

Time Marching Algorithm

Convolution

Convolution

Recurring Initial Condition

Recurring Initial Condition

Relative CPU Time

1.0

25.8

1.5

1.8
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Figure 3.3.8
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i 334][ORIVENCAVITY LOWI

The two-dimensional driven cavity has become the standard test problem for incom-

pressible computational fluid dynamics codes. In a way, this is unfortunate because of the

ambiguities in the specification of the boundary conditions. However, numerous results

are available for comparison purposes.

The incompressible fluid of uniform viscosity is confined within a unit square region.

The fluid velocities on the left, right and bottom sides are fixed at zero, while a uniform

nonzero velocity is specified in the x-direction along the top edge. Thus, in the top corners,

the x-velocity is not clearly defined. To alleviate this difficulty in the present analysis, the

magnitude of this velocity component is tapered to zero at the corners.

Results are presented for the four region, 324 cell boundary element model shown in

Figure 3.3.11. Notice that a higher level of refinement is used near the edges. Spatial

plots of the resulting velocity vectors are displayed in Figures 3.3.12a and b for Reynolds

numbers (Re) of 400 and 1000, respectively. Notice that, in particular, the shift of the vortical

center follows that described by Burggraf (1966) in his classic paper. A more quantitative

examination of the results can be found in Figure 3.3.13 where the horizontal velocities

on the vertical centerline obtained from the present BEST-FSI analysis are compared to

those of Ghia et al (1982). It is assumed that the latter solutions are quite accurate since

the authors employed a 129 by 129 finite difference grid. As is apparent, from the figure,

all of the solutions are in excellent agreement. Finally, it should be noted that the simple

iterative algorithm fails to converge much beyond Re = 100. Beyond that range the use of

a Newton-Raphson type algorithm is imperative.

In this driven cavity problem, complete volume discretization is required, since the

nonlinear convective terms are nonzero throughout the entire domain. As a result, the

evaluation of the volume integrals appearing in (2.3.6) is computationally expensive due

to the singular nature of the kernels. Consequently, it is important to investigate the

relative merits of a boundary element approach. To aid in this study, a finite element

formulation was developed based primarily on the work of Gartling et al (1977). This

finite element implementation (Honkala, 1992) utilizes a penalty function approach for

incompressibility, along with a Newton-Raphson solution algorithm. An identical sixty-

four lagrangian cell model was selected for both the boundary element and finite element

analysis. Results are plotted in Figure 3.3.14 for Re = 100. The boundary element results,

though more expensive, are significantly more accurate. In fact, at this level of refinement,

the finite element results show some oscillation. Clearly, for a given mesh, the boundary

integral formulation captures more of the physics.
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Figure 3.3.12 Driven Cavity - Velocity Vectors
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b) Re =I000
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I 335I[TRANSIENTDR,YENOAVITYFLOWJ

The next example involves the initiation of flow in the same square cavity. An in-

compressible fluid of uniform density and viscosity is at rest within a unit square region.

The velocities of the vertical sides and the bottom are fixed at zero throughout time. At

time zero, the horizontal velocity of the top edge is suddenly raised to a value of 1000

and maintained at that level. A gradual transition of velocities is introduced near the top

corners to provide continuity.

The four region, 324 cell model shown in Figure 3.3.15 is employed for the boundary

element analysis. The resulting velocity vector plots at several times are shown in Figure

3.3.16 for this case having a Reynolds number of 1000. The recurring condition algorithm

was used. As in the previous two time-dependent examples, the results lead directly to

the steady solution after a sufficient number of time steps. This steady solution correlates

closely with the results of Ghia et al (1982).

It should be noted that Tosaka and Kakuda (1987) have run the transient driven cavity

at Re = 10, 000. However, their results show signs of instability even at relatively small times,

and are compared to the steady solution of Ghia et al which also is not correct at this

much higher Reynolds number. A valid solution in this Re range would necessitate the use

of an extremely refined mesh, far beyond that employed by Tosaka and Kakuda or Ghia

et al.
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3.4 [] CONVECTIVE INCOMPRESSIBLETHERMOVISCOUS FLOW I

l 3.4-11[B RGERS LOWI
The classic uniaxial linear Burgers problem provides an excellent test of the convective

thermoviscous formulations. The incompressible fluid flows in the x-direction with uniform

velocity U. Meanwhile, the y-component of the velocity and temperature axe specified as

Uo and To, respectively, at inlet. Both are zero at the outlet. The length of the flow field

is L. The analytical solution (Schlicting, 1955) is

Yu = Cuo

where

T = ITo

,={,- [,<<
with RL = UL.

The boundary element model employs eighteen quadratic surface elements encompass-

ing the rectangular domain. The elements are graded, providing a very fine discretization

near the exit, where vu and T vary substantially for large RL. Results are shown in Figure

3.4.1 for the thermal problem and in Figure 3.4.2 for the viscous problem. Excellent cor-

relation with the analytical solution is obtained in both instances for this boundary-only

analysis, even for the highly convective case of RL = 1000. The portion of the flow field

just ahead of the outlet is examined more closely in Figure 3.4.3. The convective Oseen

solution obviously produces a precise solution. This problem can also be solved by utilizing

the Stokes kernels and volume cells. As seen in Figure 3.4.3, this latter approach is not

quite as accurate. It should be noted that traditionally finite difference and finite element

methods have a difficult time dealing with the convective terms present in this problem.

Generally, ad hoc upwinding techniques must be introduced to produce stable, accurate

solutions. On the other hand, with the convective boundary element approach the kernel

functions contain an analytical form of upwinding. As a result, very precise BEM results
can be obtained.
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L3.4.2Jl FLOWOVERAOYLINDERI

As the next convective fluids example, the oft-studied case of incompressible flow over

a circular cylinder is considered. Initially for this problem, both the steady convective

and non-convective formulations axe utilized in the same analysis. The boundary element

model is displayed in Figure 3.4.4. Note that half-symmetry is imposed. In the inner

region, the Stokes kernels are employed along with a complete volume discretization. Thus,

the complete Navier-Stokes equations are represented. The outer region uses the Oseen

kernels with a boundary-only formulation. The small non-linear contributions that would

be present in the outer region away from the cylinder are ignored. For those more familiar

with finite elements, each region can be thought of as a substructure or superetement.

However, the outer region does not require a volume mesh.

The steady-state velocity vector plot at n, = 40 is shown in Figure 3.4.5. The re-

circulating zone, behind the cylinder, is clearly visible. Additionally, the resulting drag

coefficient (co) of 1.8 obtained from the BE analysis is within the band of experimental

scatter as presented by Panton (1984) for the circular cylinder.

Similarly, a transient analysis can be conducted. Now a full mesh as shown in Figure

3.4.6 is employed. The inner region uses a time-dependent nonlinear Stokes formulation,

while linear Oseen kernels provide the basis for the outer infinite region. Results are shown

in Figure 3.4.7a for Re = 100 at a time for which the flow is nearly fully developed. Mema-

while, Figure 3.4.7b present the solution at the same time, but with a different angle of

attack for the oncoming fluid. The results are virtually identical. This illustrates the

relative insensitivity of boundary element solutions to the cell discretization pattern. The

reason for this behavior, which is particularly important in modeling hyperbolic phenom-

ena, is that so much of the boundary element formulation is analytical. Another item

to note from these results is the completely symmetric flow patterns that were obtained.

Asymmetry would have to be induced by perturbing either the geometry, the free stream

velocity or the boundary conditions.

While all of this is encouraging, the development of a simplified procedure involving

fax less volume discretization is desirable. For example, a completely linear Oseen analysis,

which ignores all nonlinear convective terms in both regions, produces a very similar solu-

tion, except in the vicinity of the cylinder. Vector plots from the nonlinear analysis and

the boundary-only linear Oseen analysis are superimposed in Figure 3.4.8. Although it is

difficult to distinguish between the two analyses in that plot, both produce a recirculatory

zone behind the cylinder. Thus, the main features of the problem are captured by the

boundary-only analysis. However, the linear solution, in general, overstates the velocities

and velocity gradients in the neighborhood of the cylinder. Consequently, a drag coefficient

of 3.4 is calculated, which is much higher than that found experimentally. This trend, of

overpredicting the experimental drag, continues even to much higher Reynolds numbers

as shown in Figure 3.4.9. Qualitatively, however, the behavior of the BEM Oseen solution

is consistent with the experimental curve for Reynolds Numbers up to 100,000.

A much improved solution can be obtained by introducing a row of ceils encompassing

BEST-FSI User Manual March, 1992 Page 3.31



the cylinder. The full nonlinear Navier-Stokes equations are solved within this inner region

which includes an inner and outer ring of surface elements. Exterior to the outer ring is a

linear Oseen region. This exterior region consists simply of one matching ring of surface

elements. Its volume extends outward to infinity, where the velocity reaches its free stream

value. Figure 3.4.10 illustrates a typical mesh, along with the resulting velocity vectors.

As Reynolds number is increased, the significant nonlinear effects concentrate nearer to the

cylinder, so that the thickness of the inner region may be reduced. Figure 3.4.9 also displays

the drag obtained by utilizing just a single row of cells. Results are quite encouraging.
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Figure 3.4.4
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Figure 3.4.5

FLC_ OVER A CYLINDER

VELOCITY VECTORS AT Re = 40
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Figure 3.4.7a FULL CYLINDER (ANGLE OF A'I_rACK = 0 °)

I ---_._7/ \,_,' :-- " , _-

1,_'= ....

Figure 3.4.7b FULL CYLINDER (ANGLE OF ATTACK = i0°)
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f343 L LOWPASTAI FOILSI

For illustrative purposes, a boundary-only thermoviscous analysis was conducted for

convective flow around a pair of NACA-0018 airfoils. The boundary element model of the

blades is shown in Figure 3.4.11. A hot fluid at unit temperature flows from left to right

with a unit magnitude of the free stream velocity. Meanwhile, the airfoils are assumed to

be stationary with their outer surface maintained at zero temperature.

It should be emphasized that this problem was run as a boundary-only analysis, how-

ever, a number of sampling points were included in the fluid surrounding the airfoils in

order to graphically portray the response. First the thermal solution is examined. Figure

3.4.12a depicts the temperature distribution in the fluid at a Peclet (Pc) number of ten,

where Pe = UL/_, with fluid velocity U, thermal diffusivity _ and airfoil chord length L.

Meanwhile, Figures 3.4.12b-d show the response at progressively higher Peclet number. At

Pe = 10000, quartic surface elements were required in order to obtain an accurate solution.

The strong convective character is quite noticeable at larger Pe as the effect of the cold

airfoils is swept downstream. Also, in Figures 3.4.12c and d there is virtually no interaction

between the airfoils. This type of behavior is expected from a physical standpoint. It oc-

curs in the analysis because of the banded nature of the convective fundamental solutions

illustrated previously (e.g., Figure 2.4.2). However, interaction will take place if the angle

of attack is altered. Figure 3.4.12e shows the response at a 30 ° angle for Pe = 1000.

The velocity distribution around the airfoils follows a similar pattern. For these results

displayed in Figure 3.4.13, Reynolds number is defined by Re = pUL/I_. In these plots, the

magnitude of the velocity, obtained from a boundary-only solution, is contoured. These

results feature somewhat more interaction particularly upstream of the airfoils. It should

be emphasized that even though a linearized solution algorithm is employed the so-called

phenomenon of boundary layer separation can still occur. Figure 3.4.14 focuses on the

rear portion of the upper blade. The contour line demarks the transition from positive to

negative streamwise velocity, and thus very nearly identifies the point of separation.

Next, a second row of blades is added. The modeling effort for this extension is quite

trivial, since there is actually no discretization required beyond that needed to describe

the airfoil surfaces. For this problem, four vertical sections of one hundred sampling points

were included for display purposes. Velocity vectors across those sections are plotted in

Figures 3.4.15 and 3.4.16 for Reynolds numbers of 10000 and 100000, respectively. The

vertical spacing between the airfoils increases as one examines a through c in these

two diagrams. The velocity profiles are noticeably affected by that spacing. However, in

all of the plots significant velocity gradients are present. It is interesting to consider the

level of refinement that would be necessary in a domain based finite difference or finite

element analysis in order to capture similar gradients.
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Figure 3.4.12a
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Figure 3.4.12b
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Figure 3.4.12c
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Figure 3.4.12e
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Figure 3.4.13a
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IVELOC_TYI

Figure 3.4.13c
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Figure 3.4.13e
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( 3.5 ][ CONVECTIVE POTENTIAL FLOW

[ 3.5.1JIO_E-DIME_SIO_ALWAVEPROPAGATIO_]

The uniaxial linear acoustic wave problem provides an excellent test of the convective

compressible potential flow formulations. The variables ¢ and -_ are specified as _o and

-Uo, respectively, at the inlet. Both are undefined at the outlet. The length of the flow

field is L. The analytical solution is then simply

¢ = ¢)o + uox (3.5.1a)

-- : _o. (_.5.1b)
Oz

The boundary element model utilized here employs six quadratic elements encompassing

rectangular domain. Results axe shown in Figure 3.5.1. As can be seen, excellent correla-

tion with the analytical solution is obtained for this initial problem.
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[ 3521[F OWOV RAWEDGE1

Consider some examples of flow produced by a two-dimensional wedge (half angle

0 = 15°) moving at a Mach number of Mo_ = 0.1,2.0. The wedge and the associated flow are

shown in Figure 3.5.2, while the BEM model with half symmetry is displayed in Figure

3.5.3. At a large distance from the wedge, the unperturbed flow will generally be assumed

to be uniform and directed along the xl-axis, i.e.

_)i = gi OT

Ct= O.

ui=O

On the other hand the velocity components normal to the surface of wedge are equal to

zero, i.e.

v, = 0 or u, = -tr,. (3.5.a)

with the tangential component at the wedge left unspecified.

For the subsonic case (M_¢ = 0.1), the maximum velocity occurs at the outlet where

the smallest cross section exists as shown in Figures 3.5.4 and 3.5.5. For the supersonic

case (M= = 2.0), the flow is conical. This means that flow properties along rays from

vertex of the wedge are constant. The boundary conditions are the surface tangency

requirement at the wedge surface and freestream conditions outside the shock wave. With

the marching procedure, the wedge-flow problem can be solved without difficulty. The

application of boundary conditions however requires careful consideration. There must

be enough space included in the computational domain so that the shock wave can form

naturally and not be affected by the boundary conditions which are maintained at v-_=.

The result is shown in Figure 3.5.6 to 3.5.10. The "shock front" is inclined at the Mach

angle a = sin-z(1/M_) to the z axis. It is interesting to note that the velocity of flow behind

the "shock front" decreases. The air-suddenly slows down and compresses. The velocity

gradient is perpendicular to the shock line, i.e., is at angle a to the y axis (Figure 3.5.11).

Excellent correlation with the analytical solution is obtained for this linear problem. Figure

3.5.9 shows the discontinuity of the pressure waves. The pressure coefficient Cp is calculated

on the basis of the 'exact isentropic' relation between the pressure and the external surface

speed. It should be noted that ui here is assumed to be much smaller than Ui otherwise

the small perturbation approximation would not be sufficient to compute the motion. One

difficulty which immediately arises is that the Mach angle for the air in the region behind

"shock front" is appreciably different from the Mach angle for air in the region in front

of shock line whenever the speed v differs appreciably in the two regions. The question

then arises: What should be the angle between the x axis and the Mach line dividing two

regions? Should it be the angle a = sin-l(1/Mc,) appropriate for the front region or the

angle appropriate for the air in the back region (which is greater than a)? Detailed study

of an exact solution indicates that the angle between the z axis and the actual "shock

front" is intermediate between the two discussed in the previous sentence and that the

air as it flows across this front undergoes a practically instantaneous change of state to a
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new speed, density, and pressure appropriate to the back region. This explains why in the

linearized solution, the front angle is less than those from finite element nonlinear solutions

(Zienkiewicz and Taylor, 1991; Brueckner and Heinrich, 1991). So, in problems involving

perturbations which are not small, for more exact representation, the volume integral for
non-linear terms should be taken into consideration.
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Figure 3.5.2 Wedge Flow with Attached Shock
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Figure 3.5.4 Subsonic Wedge Flow - Velocity Vectors

Moo = 0.1
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Figure 3.5.5 Subsonic Wedge Flow - Mach Contours
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Figure 3.5.6 Wedge Flow - Potential Contours
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Figure 3.5.8 Supersonic Wedge Flow - Mach Contours
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Figure 3.5.10 Supersonic Wedge flow - Velocity Vectors

Moo = 2.0
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Figure 3.5.11 Supersonic Wedge Flow - Vector Diagram
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135311 LowTHrouGHACHANNEL

In the next example, the supersonic flow in a channel with compression and expansion

ramps is solved. The mesh and boundary condition for the case Moo = 1.3 are given in

Figure 3.5.12. It can be seen that for the subsonic case at M_o = 0.1, the maximum velocity

is located at the narrowest section as shown in Figures 3.5.13 and 3.5.14.

Steady-state potential and local Mach number contours for the supersonic case ob-

tained using a marching procedure are shown in Figures 3.5.15 and 3.5.16, respectively.

All clearly show the generation of an oblique shock wave at the compression ramp, its

reflection off the top wall of the channel and its interaction with the expansion shock pro-

duced by the downstream ramp. The velocity vectors calculated in this region of flow are

shown in Figure 3.5.17 and further illustrate the effects described above.

Finally, in Figure 3.5.18 and 3.5.19, the potential and pressure coefficient distribution

along both upper and lower surface are displayed. Similarly to the wedge flow problem,
excellent results have been obtained for the linearized case.
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Figure 3.5.13 Subsolfic Channel Flow - Velocity Vectors

Moo = O. 1
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Figure 3.5.14 Subsonic Channel Flow - Mach Contours
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Figure 3.5.15 Channel Flow - Potential Contours

Moo = 1.3
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Figure 3.5.16 Supersonic Channel Flow - Mach Contours

_hloo = 1.3
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Figure 3.5.18 Channel Flow - Potential Distribution
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Figure 3.5.19 Channel Flow - Pressure Coefficient Distribution
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Attention is next confined to the case of steady state flow around a circular cylinder,

in a frame of reference fixed with the cylinder. For transonic flows (the Mach number M

is very close to unity), the linearized equation of perturbation potential is not applicable.

Neither is the above BEM because the transonic flow is a truly nonlinear problem, and

the P-G equation is not valid. For the subsonic case, the flow lines are similar to those of

heat transfer. For the supersonic case (Moo=3), the mesh needs to be refined behind the

cylinder in order to capture the shock. The shock front, shown in Figures 3.5.20 and 3.5.21,

emanates from the cylinder. In front of the shock wave, the flow is uniform: behind it, the

flow is modified. The surface of the shock wave extends to infinity, and at a great distance

from the cylinder, the shock is weak. It intersects the incident steamlines at an angle

approaching the Mach angle. The velocity shock is a band which includes compression

and expansion regions as shown in Figure 3.5.21.
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Figure 3.5.20 SupersonicCylinder Flow - Potential Contours

Moo = 3.0

.f
f

Figure 3.5.21 Supersonic Cylinder Flow - Mach Contours
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3.6 l[ COMPRESSIBLE THERMOVISCOUS FLOW

The compressible thermoviscous flow formulations detailed in Section 2.4 have not as

yet been implemented in a boundary element code. Application examples will be included
in future releases of this manual.
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]3.71L FLUID-STRUCTUREINTERACTION]

L l[ j

For the first example, a thick-walled stainless steel cylinder rests under plane strain

conditions in a stream of hot gas. The cylinder has an outer diameter of 1.0 in. and a

thickness of 0.125 in. The inner surface of the cylinder is maintained at a temperature of

0°F, while the gas temperature in the free stream is 1000°F. The following thermoelastic

properties axe assumed for the solid cylinder

E = 20. x 106psi, v = 0.30

o_= 9.6 x 10-Sin./in.°F

k = 6.48 in.lb./see.in.°F

p = 7.34 x 10-41b.sec.2/in. 4 c_ = 3.83 x 105in.lb.in./lb.sec.2°F.

Additionally, the thermoviscous properties of the hot gas axe taken as

/_ = 5.30 × 10-glb.sec/in. e

k = 7.28 x lO-3in.lb./sec.in.°F

p = 3.69 x 10-81b.sec.2/im 4 ep = 9.49 x 105in.lb.in./lb.sec.2°F.

Fluid velocities of 144 in./sec., 1440 in./sec, and 14400 in./sec., corresponding to Reynolds

Numbers of 103, 104 and 105, axe examined. In all cases, the hot gas flows from left to right,

and only the steady response is considered.

At Re = 1000, the maximum temperature in the cylinder is only 98°F, and the peak

compressive axial stress is 36 ksi. However, when the fluid velocity is increased to attain

an Re = 10,000 a much more significant response is obtained. The temperature contours

are shown in Figure 3.7.1a, the deformed shape is depicted in Figure 3.7.1b, and Figure

3.7.1c illustrates the axial stress distribution. It should be noted that in Figure 3.7.1b the

deformation has been scaled by a factor of 100. The effects of convection axe quite evident

in all three diagrams. With Reynolds number increased to 100,000 these effects become

even more pronounced, as seen in Figures 3.7.2. Now the peak metal temperature has

reached 918°F.
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Figure 3.7.1 STEADY RESPOL_SE OF A THICK CYLINDL_, (Re = 10,000)
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Figure 3.7.1 STK_DY RESPONSE OF A THICK CYLINDER (Re = I{5,000)
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Figure 3.7.9. STEADY RESPOI_SE OF A THICK CYLINDER (Re =10O,000)
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Figure 3.7.2 STEADY RESPONSE OF A THICK CYLINDER (Re = i00,000)
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In this second example, an NACA0018 airfoil with an internal cooling passage is ex-

posed to the flow of a hot gas. The boundary element model for the airfoil is shown in

Figure 3.7.3. Each dash represents an individual quadratic surface element. Throughout

this problem, the outer gaseous region is modeled as a linear steady convective domain.

Thus, a boundary-only exterior GMR is employed for the fluid. The hot gas at 1000°F

flows from left to right, while the inner surface of the airfoil is maintained at 200°F. Ma-

terial properties from the previous example are once again used to characterize both the
solid and fluid.

For the first set of investigations, the behavior of the airfoil is determined under steady-

state conditions. Figure 3.7.4a displays the deformed shape at a Reynolds number of 1000

(based upon chord length). The solid line represents the final deformed shape, except that

displacements have been scaled by a factor of twenty-five. Meanwhile, Figures 3.7.4b and

c present the profiles of temperature and axial stress, respectively, along the upper surface

of the airfoil. At this relatively slow speed fiow, the airfoil is only effected near its leading

edge. More significant response is shown in Figures 3.7.5a-c for Re = 10,000 and Figures

3.7.6a-c for Re = 100,000. In the latter case, the temperature at the stagnation point is

nearly that of the free stream. All three cases considered so far have assumed an angle of

attack of 0 ° with respect to the x-axis. Consequently, the response of the upper and lower

surfaces is identical. Next, the angle of attack (a) is modified to 5 ° and 10 °. Results for

these cases are shown in Figures 3.7.7 and 3.7.8, respectively. Considerable asymmetry

between upper and lower surfaces is now evident, although peak values of temperature and

stress are essentially unaffected.

Thermal barrier coatings axe often employed to reduce the metal temperatures and

stresses in hot section components. The benefit of such coatings can easily be evaluated

with the present boundary element formulation. Consider, for example, a coating material

with thermal conductivity k = 0.50 in.lb./sec.in.°F sprayed to a thickness of .0095in. This is

equivalent to an interfacial thermal resistance of .021 sec.in°F/in.lb., which can be specified

on the fluid-to-solid GMR interface. Results are displayed in Figure 3.7.9 for Re = 100,000

at a = 10°. Peak airfoil temperature is reduced from 976°F to 738°F by introducing this

particular thermal barrier coating.

Finally, it is of considerable interest to examine the transient response of the airfoil.

At time zero, the airfoil is in thermal equilibrium at a temperature of 200°F. Suddenly,

it is subjected to the hot gas stream with Re = 100,000 and a = 10°. The response of the

upper surface at 1 msec., 2msec., 5 msec., and 10 msec. is shown in Figures 3.7.10-3.7.13.

For this transient case, the peak stress occurs slightly offset from the tip of the airfoil.

Additionally, the stress au_ reaches a maximum at approximately 2 msec., while a,, and

the temperature continue to climb to their steady-state values. This is true of the axial

stress only because of the assumption of plane strain. In a full three-dimensional analysis,

azz would also have a higher peak during transient state.
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Figure 3.7.4 AIRFOIL (STEADY; Re = 1O00; a = O°)
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Figure 3.7.5 AIRFOIL (STEADY; Re = i0,000; _ = 0 O)
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Figure 3.7.6 AIRFOIL (STEADY; Re = i00,000; a = 0°)
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Figure 3.7.7b-e - AIRFOIL (STEADY; Re= i00,000; a = 5 °)
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Figure 3.7.Sb°e - AIRFOIL (STEADY. Re = 100,00D; s = I0°)
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L4"0 II GUIDE TO USING BEST-FSI I

Since BEST-FSI employs the boundary element method rather than the more familiar

finite difference or finite element methods, it may appear to be a little difficult for a

beginner to get started. This section is therefore written to provide some guidance to such

a user. It is hoped to expand this section of the manual fully with wider user participation.
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4.1 1[ GETTING STARTED

Generally the first time user is motivated by a specific problem in a given technical

area. It is suggested that the new user first read the analysis section of the manual to get

some flavor of the BEM in that area. Then the structure and organization of the input

data in Section 5 can be examined in conjuction with a sample problem dataset given in

Section 6. Additionally Section 3 may contain a brief description of a specific engineering
example in the technical area of interest to the user.

It may also be helpful to use a specific test data given in Section 6 and modify it to

create a new test problem. In order to do this the user must of course study the relevant
parts of Section 5.
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BEST-FSI uses PATRAN TM as its graphics interface. A graphics interface is essential to

generate data for a realistic practical example and the subsequent processing of the results.

PATRAN is a general purpose graphics input and output system which allows a user to

interaetively prepare input data for the surface and volume discretizations. It essentially

generates the nodal coordinates and connectivities of a given diseretization scheme. After

the analysis, it allows the user to display the results in a graphics oriented mode. PATRAN

was developed and is maintained by PDA TM Engineering of California.

PATBEST, which is the data preparation interface for BEST-FSI takes the output

(neutral) file from a PATRAN work session and translates the nodal coordinates and con-

nectivities of the model generated by PATRAN into a format of nodal coordinates and

connectivities consistent with BEST-FSI input data.

Post-processing data is generated internally within BEST-FSI according to a set of user-

defined options. This data is then utilized by PArRAN to provide results for visualization.

It is planned to include interfaces to other popular modelling graphics packages, such

as SUPERTABTM/CADESrM and MOVIESTAR.BYU TM, in the near future.
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l 4.3 I I AVAILABILTY OF BEST-FSI

BEST-FSI is written in FORTRAN 77 and is therefore adaptable to any computer

which has such a compiler. An executable version of the code had been developed on

IBM TM and CRAY TM mainframes, HP 9000 TM (Series 300 and 800), SUN-3 TM, SUN-4 TM,

and SUN Sparcstation TM systems. Depending upon the demand, it is intended to add IBM

RISC System/6000 TM, Alliant TM, Silicon Graphics IRIS TM, DECstation 3100 TM, and all

VAX/VMS TM systems to this list.
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[ 4.4 ]l FILE SYSTEM IN BEST-FSI I

BEST-FSI makes use of unit 5 as its input data file and unit 6 as its output file. In

addition to these an extensive set of disk files are used during the execution of the code.

For the complete range of analysis used in BEST-FSI it is necessary to have 60 simultaneous

open files in the system. Not all of these files are necessary for the simpler linear analyses

where usually only 1/3 of the total are used. The files are either of sequential or direct

access type and are defined as FT** based on IBM terminology.

For the efficient execution of BEST-FSI, it is desirable to have at least 8 megabytes of

system memory. Additionally, BEST-FSI makes extensive use of disk files during execution

of the code. While most of these files are of temporary nature, some are required for restart

analyses. In any case, it is recommended that workstation-based users have at least 300

MB of disk space free in order to run practical problems.
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4.5 J SPECIAL FEATURES OF BEST-FSI I

f ,.5.1IfDE 'NITIONSI

The following definitions are used throughout the manual.

Points, Nodes or Nodal Points - are generic names for all points in a data set for which

coordinates are defined. These points may be source points and/or geometric points which

are used in the boundary and volume discretizations, or they may be used to define a

sampling point. All points defined in a data set by the user should have unique node
numbering.

Geometric Points - are points used in the geometrical definition of the body of interest.

Specifically, geometric points are used in the description of the geometry of a boundary

element, or volume cell. Geometric points may or may not be source points.

Source Points - refers to boundary source points, or boundary and volume source points

in an analysis. Source points are used in the functional representation of variables across

a boundary element, or a volume cell. In a system equation, unknowns are retained at

source points.

Functional Nodes - same as source points

Boundary Source Points- are points in a discretization of the boundary surface (or interface)

which are used in the functional representation of the field variables across the boundary

elements. At every boundary source point (and only at boundary source points) unknowns

in the boundary system equation are retained corresponding to the unknown boundary

conditions at these points. Likewise, known boundary conditions (implicitly or explicitly

defined) are required at these points. Boundary conditions specifications for points other

than boundary source points will result in a fatal error. Boundary source points are selected

by BEST-FSI based on the type of functional variation of the primary variables across the

boundary element which is defined in the data set by the user. (see SURF and TYPE

cards under **GMR input in Chapter 5)
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Volume Source Points - are points in a volume discretization which are used to represent the

functional variation of certain variables through the volume of the body via volume cells.

These are required only in nonlinear analysis or when the body is subjected to certain

types of body forces. In the case of nonlinear analysis, unknowns are retained at volume

source points which have to be solved for, along with the unknowns at the boundary

source points. This entails writing additional equations at each volume source point. In

the case of body forces, the variables are known quantities and additional equations are

therefore unnecessary. Volume source points are selected by BEST-FSI based on the type

of functional variation selected by the user. For the volume cell approach see VOLU and

TYPE cards under **GMR input in Chapter 5.

Sampling Points - are (user defined) points in the interior of the body or on the surface of

the body for which results are requested. Results at sampling point are calculated after

the system equation is solved. Sampling points are input on a separate list (see SAMP

card in **GMR input in Chapter 5) and are totally independent of the point list used

for boundary and volume discretization. A sampling point may coincide with a boundary

discretization point. Sampling points should use unique node numbering.

Volume Cells - Certain analyses require an integration of some variable over all or part of

the volume of the body. In this cases the volume is divided into smaller parts called volume

cells, where interpolation functions (of some order) are used to represent the variation of

the variable to be integrated across the volume cell.

Geometric Modeling Region (GMR) - in a boundary element analysis the body under

investigation may be fictitously divided in a number of smaller parts for convienence in

mesh modelling and efficiency in computation. Each part is called a geometric modelling

region and is modelled as an individual boundary element model. The nodes and elements

of each region must match up at common interfaces and are connected by relations defined

by the user.
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Most of the currently available experience of developing mesh for a given problem is

based on more than two decades of the finite element or finite difference analyses. It is

possible to take only the boundary part of a given finite element mesh system to generate

the boundary element mesh system. Unfortunately this often leads to an inefficient BEM

analysis because of use of too many elements. In two-dimensional linear problems due to

their low computing costs this can easily be tolerated. However, for nonlinear problems

where some volume discretization is required care must be exercised to control the number

of source point.
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L 5.0 ]l BEST-FSIINPUT

The basic input required by BEST-FSI is the definition of Geometry, Material Prop-

erlies and Boundary eondilions. While this is the same definition required by a finite

element structural analysis program, a somewhat d_fferent set of information is required

to accomplish the definition for a boundary element program.

The input to BEST-FSI is intended to be as simple as possible, consistent with the

demands of a general purpose analysis program. Meaningful keywords are used for the

identification of data types. Free field input of both keywords and numerical data is

permitted, however there are a number of general rules that must be followed.
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I General Rules for Input Data I

BEST-FSI Input

1. Upper Case

All alphanumeric input must be provided in upper case.

Proper Usage:

**CASE

TITLE TRANSIENT FLUID - TEST CASE

FLUID INCOMPRESSIBLE TRANSIENT

SYMMETRY QUARTER

Improper Usage:

fluid incomp

SYMMETRY quarter

2. Parameter Positioning

Parameters may appear anywhere on an input line, as long as they appear in the

proper order and are separated by at least one blank space.

Proper Usage:

FLUID INCOMPRESSIBLE STEADY

ELEMENT I 6 8

Improper Usage:

FLUIDINCOMPRESS IBLE STEADY

ELEMENT, i, 6, 8

3. Length of Input Line

An input line cannot exceed a maximum of 80 characters including blank spaces.
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General Rules for Input Data J

BEST-FSI Input

4. Keyword Truncation

Any keywords that are longer than four letters may be truncated to the first four
letters.

Proper Usage:

SYMMETRY QUAR

SYMM QUAR

ELEM 1 6 8

Improper Usage:

SYMMETRY QUA

5. Floating Point Numbers

Any real parameters may be input in either FORTRAN E or F format, however, the

representation used must contain no more than 16 total characters. Additionally,

there is a limit of 8 characters to the left of the decimal point.

Proper Usage:

EMOD 30.E+7

ALPHA I.E-06

POINTS

0.004 i.ii0 0.0

Improper Usage:

EMOD 300000000.0

ALPHA 1.-6

POINTS

4.0-3 1.110 0
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General Rules for Input Data I

BEST-FSI Input

6. Comments

Comments can be inserted in the data file by placing a dollar sign ($) anywhere on

an input line. The remainder of that input line is then ignored by the BEST-FSI

input processor.

Proper Usage:

ELEMENT 1 6 8 $ ELEMENTS ON THE OUTER RIM

$
$ MODIFIED 03/08/88 GFD

POINTS 25 26 27

7. Blank Lines

Blank Lines can be inserted anywhere in the data file and are useful for aesthetic

purposes.

8. Units

A consistent system of units must be used for input of all types (material properties,

geometry, boundary conditions, time steps). Output will be in the same consistent

system of units. The selection of appropriate units is the user's responsibility.

9. ** Keywords

Certain keywords are prefixed by the symbol **. These identify the beginning

of a block of data of a particular type, and serve to direct the program to the

appropriate data processing routine. There should be no blank spaces between

the ** symbol and the pertinent keyword. Additionaily, the ** data blocks must

appear in the following specific order:

**CASE

**MATERIAL

**GMR

**INTERFACE

**BCSET

**BODY

There may be multiple data blocks of each type, except for the **CASE block.
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I General Recommendations for Input Data J

BEST-FSI Input

1. Ordering of Input Items

While there is some flexibility in the ordering of lines within a BEST-FSI data set,

it is strongly recommended that the user follow the order provided in the manual.

Examples of proper ordering are provided throughout this chapter.

2. Documenting Data Sets

The $ keyword is provided to permit comments anywhere in the input data set.

This should be used generously to fully document the analysis. Blank spaces can

also be used to improve readability. The format, displayed in the examples of this

chapter and in Section 6.0, is recommended.
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General Limits of BEST-FSI ]

BEST-FSI Input

It should be noted that there are certain limits which must be observed in the prepa-

ration of input for BEST-FSI. These limits are of two main types:

1 - Limits on the maximum number of entities of various types within a single analysis.

2 - Limits on the user specified numbering of certain entities.

The present limits are summarized below. It is anticipated that certain of these limits may

be relaxed in future versions of BEST-FSL

ENTITY" LIMIT

GLOBAL PARAMETERS

total geometric modeling regions

total points (including non-source points)

total boundary source points

total volume source points for fluids

total boundary elements

enclosing elements

cyclic symmetry interfaces

15

3000

1200

1200

600

100

20

REGION (GMR) PARAMETERS

surfaces in any region

points in any region

boundary source points in any region

volume source points in any region

boundary elements in any region"

volume cells in any region

15

1000

600

600

300

200
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ENTITY*

BEST-FSI Input

LIMIT

OTHER PARAMETERS

table points

temperature points for material properties

20

21

USER SPECIFIED NUMBERING

points

elements

99999

99999

Definition of the terminology used in this table can be found in Section 4.5.

Total boundary elements in a region include user specified boundary elements plus

elements artificially created in symmetric regions when the symmetry option is invoked.
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BEST-FSI Input

Individual Data Items I

The remainder of this chapter provides detailed information on each of the data items

available within BEST-FSI. The individuM _tems are grouped in sections, under the asso-

ciated ** keyword, as follows:

5.1 CASE CONTROL INFORMATION (**CASE)

5.2 MATERIAL PROPERTY DEFINITION (**MATE)

5.3 GEOMETRY DEFINITION (**GMR)

5.4 INTERFACE DEFINITION BETWEEN SUBREGIONS (**INTE)

5.5 BOUNDARY CONDITION DEFINITION (**BCSE)

5.6 BODY FORCE DEFINITION (**BODY)
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] 5"1 II CASE CONTROL

This input section provides BEST-FSl with information controlling the overall execu-

tion. It provides the title and determines which of the major program branches will be

executed. It also defines the times at which solutions of the given problem are to be eval-

uated. This section must be input exactly once for each analysis and must be input before

any other data.

A list of keywords recognized in the case control input are given below, and a detailed

description follows. It is recommended that the user supply the relevant keywords in the

order provided by this list.

SECTION

5.1.1

KEYWORD

Case Control Input Card

**CASE

5.1.2 Title

5.1.3

5.1.4

5.1.5

5.1.6

TITL

Times for Output

TIME

TIME STEP

Dimensionality of the Problem
PLAN

Type of Analysis

FLUI

Analysis Type Modifiers

CONV

THER

BUOY

PURPOSE

Start of casecontrol input

Title ofjob

Times of solution output

(static and steady-state analysis)

Time step for transient solution algorithms

Plane strain flag

Fluid dynamic analysis

Convective form of kernel functions

Thermoviscous fluid dynamics

Include buoyancy in thermoviscous

fluid dynamics

BEST-FSI User Manual March, 1992 Page 5.9



SECTION

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

Case Control

KEYWORD PURPOSE

Algorithm Control
ITER

NEWT

INCR DENS

RECU

TOLE

MAXI

Iterative algorithm

Newton-Raphson algorithm

Incremental density algorithm for FLUI only

Recurring initial condition algorithm for

FLUI only

Convergence tolerance

Maximum number of iterations for

nonlinear algorithms

Geometric and Loading Symmetry Control

SYMM HALF Symmetry about Y-Z plane

SYMM QUAR Symmetry about X-Z and Y-Z planes

Restart Facility
REST WRIT

REST READ

REST VELO

Save integration files for future runs

Use integration files from previous run

Restart fluid dynamics run from last solution

Output Options

ECHO

PRIN BOUN

PPdN NODA

PRIN LOAD

PRIN ALL

PRIN LIMI

PRIN FEAT

PATR

Produce echo of input data

Printout displacement and traction results

Print boundary displacement, stress, strain

at nodal points

Print load calculation

Print maximum printed output file

Print current BEST-FSI limits

Print current implementation status

of BEST-FSI special features

Produce PATRAN result files

Miscellaneous Control Options

CHEC

FILE

Check input data only

Specify directory for creation and storage of

scratch files
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[5.1.1]I cAsEOONT_OLINP_TCARD}
Case Control

**CASE

Status- REQUIRED

Full Keyword - **CASE control

Function - Identifies the beginning of the case control input section.

Input Variables - NONE

Additional Information - NONE

Examples of Use -

1. Request a plane stress elastic analysis.

* *CASE

TITLE PLANE STRESS ANALYSIS OF A BAR

PLANE STRESS

ELASTIC

2. Request a three-dimensional steady-state heat transfer analysis.

**CASE

TITLE

NEAT

HEAT CONDUCTION IN A MOLD
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[ 51_ILTITLE]
Case Control

TITL CASETITLE

Status - REQUIRED

Full Keyword * TITLE

Function - Defines title :for analysis.

Input Variables -

CASETITLE (Alphanumeric)

Additional Information - NONE

Examples of Use -

1. Describe the analysis.

- REQUIRED - 72 chars, max. length

* *CASE

TITLE TURBINE BLADE A7311 -

ELASTIC

THERMOELASTIC ANALYSIS
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I 513][TIMES ORO TP T]
Case Control

TIME TI T2 T3 ... TN

Status- OPTIONAL

FullKeyword - TIMES

Function - Identifies times at which output is required (only for static analysis).

Input Variables -

T1 (Real)

T2 ... TN

- REQUIRED

(Real) - OPTIONAL

Additional Information -

This input may be continued on more than one card, if required. Each card

must begin with the keyword TIME. A maximum of twenty output times may

be selected. A minimum of one output time must be chosen.

This card is only functional for static analysis. The 'TIME STEP' card (see

next page) is used for transient analysis.

Acoustic Eigenfrequency analysis and Free Vibration analysis do not require a

'TIME' or a 'TIME STEP' card.

Examples of Use -

1. Conduct an elastic analysis at times 1.0, 2.5 and 6.0 and output the results.

**CASE

TITLE ROTOR - ELASTIC ANALYSIS

TIMES 1.0 2.5 6.0

ELASTIC
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Case Control

TIME STEP NSTEP DELTA

Status - OPTIONAL (required for transient analysis algorithms)

Full Keyword - TIME STEP

Function - Identifies the number of time steps in a transient solution algorithm and

the size of the time steps.

Input Variables -

NSTEP (Integer) - REQUIRED

Sets the number of time steps for which the transient analysis is to be carried
out.

DELTA (Real) - REQUIRED

Defines the size of the time step.

Additional Information -

In the present version, only a constant time step size (DELTA) is permitted.

Examples of Use -

1. Conduct a transient elastodynamic analysis of a spherical tank using a linear
time variation of field variables.

**CASE

TITLE SPHERICAL TANK

TRANSIENT

TIME STEP l0 0.01

- SUDDEN PRESSURIZATION
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Case Control

L JI I

PLAN ETYPE

Status- REQUIRED

Full Keyword - PLANE

Function - Identifies a two-dimensional problem.

Input Variables -

ETYPE (Alphanumeric) - OPTIONAL

Allowable values axe STRA.

STRAin - specifies a plane strain problem.

Additional Information -

If ETYPE is not specified, STRAIN is assumed.

Examples of Use -

1. Request a plane strain elastic analysis of a dam.

**CASE

TITLE KOYNA DAM - PLANE STRAIN ELASTIC ANALYSIS OF A DAM

PLANE STRAIN

ELASTIC

2. Request a two-dimensional steady-state heat conduction analysis of a cylinder.

* *CASE

TITLE

PLANE

HEAT

CYLINDER - HEAT CONDUCTION
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][TY'EO ANALYSISJ
Case Control

FLUI ATYPE BTYPE

Status - OPTIONAL

Full Keyword - FLUID

Function - Identifies a fluid dynamics analysis.

Input Variables -

ATYPE (Alphanumeric) - OPTIONAL (Default is INCO)

Allowable values are INCO

INCOMPRESSIBLE - Identifies a viscous, incompressible fluid analysis

BTYPE (Alphanumeric) - OPTIONAL (Default is STEADY)

STEADY - Identifies a steaxiy-state analysis

TRANSIENT - Identifies a transient analysis

Additional Information-

In the present version, only two-dimensional incompressible viscous flow is avail-
able.

An incompressible thermoviscous flow may be selected by also including a
THERMAL card in case control.

Examples of Use -

1. Conduct a steady viscous fluid analysis for flow around a cylinder. Use ten

psuedotime steps with a maximum of five iterations per step.

* *CASE

TITLE STEADY FLOW AROUND A CYLINDER

PLANE

FLUID INCOMPRESSIBLE STEADY

TIME STEP I0 1.0

NEWTON

MAXI 5

INCREMENT DENSITY

RESTART WRITE

2. Perform transient thermoviscous analysis for flow past a turbine blade.
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**CASE

TITLE TRANSIENT FLOW PAST A TURBINE BLADE

PLANE

FLUID INCOMP TRANSIENT

TIME STEP 20 0.0120

THERMAL

NEWTON

MAXI 6

RECURRING

3. Examine steady Stokes flow in a converging channel.

Case Control

**CASE

TITLE CONVERGING CHANNEL

PLANE

FLUID STEADY INCOMP

TIME STEP 1 1.0

ITE_TIVELINEAR

MAXII

RESTART WRITE
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5.1.6 ANALYSIS TYPE MODIFIERS ]

Case Control

C0NV

Status- OPTIONAL

Full Keyword - CONVECTIVE

Function- Selects the convective form of the kernel functions for two-dimensional

steady-state heat transfer and fluid dynamics.

Input Variables - NONE

Additional Information -

When this option is selected, the uniform free stream velocity must be specified

on a VREF card in the **GMR section for each region.

In the current version, this option is only available for PLANE analysis in

conjunction with FLUID INCOMP STEADY case control cards.

If the actual velocity field is approximately equal to the free stream velocity,

then volume integration may not be required with this option. A boundary-only

analysis can be conducted.

Examples of Use -

1. Perform convection heat transfer analysis of the region exterior to an airfoil.

* *CASE

TITLE AIRFOIL - CONVECTIVE HEAT TRANSFER

PLANE

HEAT STEADY

CONVECTIVE

RESTART WRITE
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Case Control

THER

Status - OPTIONAL

Full Keyword - THERMAL

Function - In conjunction with the FLUI card, thisselectsa thermoviscous fluiddy-

namics analysis.

Input Variables - NONE

Additional Information -

This keyword isonly applicablefor two-dimensional fluiddynamics analysis.

When this option is selected,a heat conduction analysis is performed along

with the viscous flow analysis.As a result,each source point has three degrees

of freedom (VI,V2,T)for a two-dimensional problem.

Examples of Use -

1. Perform a thermoviscous flow analysisin a channel.

* *CASE

TITLE CHANNEL - THERMOVISCOUS FLOW

PLANE

FLUID INCOMP TRANSIENT

TIME STEP 4 0.05

THERMAL

NEWTON SKIP 5

MAXI 10
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Case Control

BUOY TYPE

Status - OPTIONAL

FullKeyword - BUOYANCY

Function- In conjunction with both the FLUI and THER cards, this permits the

inclusionof buoyancy terms based upon the Boussinesq approximation.

Input Variables-

TYPE (Alphanumeric)- oPTIONAL

Allowable value isKERN.

KERN - The linearized buoyancy effect is included in the kernel functions.

Additional Information-

If the keyword KERN is absent, then the entire buoyancy contributionis intro-

duced as a body force through the volume, and volume cells must be included.

In either case, the gravitational acceleration must be specified through an iner-

tial body force (INER) definition.

Buoyancy is only available for steady incompressible thermoviscous flow.

Examples of Use -

1. Examine the buoyancy-driven flow in a lake.

*'CASE

TITLE LAKE ERIE (THERMALLY-INDUCED FLOW)

FLUID INCOMP STEADY

THERMAL

BUOYANCY KERNEL
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5.1.7[ ALGORIT.MOONTROL]
Case Control

ITER

Status- OPTIONAL

Full Keyword - ITERATIVE

Function - Selects the iterative algorithm.

Input Variables- NONE

Additional Information -

The iterative algorithm is generally not recommended for problems involving a

high degree of nonlinearity.

Examples of Use -

1. Examine unsteady Navier-Stokes flow around an airfoil at low Reynolds num-

ber.

**CASE

TITLE AIRFOIL G-45

FLUID INCOMP

TIME STEP 15 0. 015

ITERATIVE

MAXI i0

(NAVIER-STOKES FLOW)
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Case Control

NEWT ITYPE NSKIP

Status - OPTIONAL

Full Keyword - NE_rr0N-RAPHS0N

Fhnction - Selects the Newton-Raphson algorithm.

Input Variables-

ITYPE (Alphanumeric) - OPTIONAL

Allowable value is MODI.

MODI - Selects the Modified Newton-Raphson algorithm

A full Newton-Raphson algorithm is assumed if ITYPE = MODI is not input.

NSKIP (Integer) - OPTIONAL (default is NSKIP = 1)

Additional Information -

The Newton-Raphson algorithm is recommended for all nonlinear analysis.

In some cases, the use of the Modified Newton-Raphson algorithm can reduce

analysis cost for nonlinear problems, however convergence is slower than for the

full Newton-Raphson approach.

Setting NSKIP = 1 is equivalent to a full Newton-Raphson approach.

Examples of Use -

1. Analyze viscous flow in a container, selecting a modified Newton-Raphson

algorithm.

**CASE

TITLE CONTAINER - VISCOUS

FLUID INCOMP STEADY

TIME STEP 4 1.0

NEWTON MODI 4

MAXI 20

INCREMENT DENSITY

RESTART WRITE

FLOW
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Case Control

INCR DENS

Status - OPTIONAL

Full Keyword - INCREMENT DENSITY

Function - Selects an incremental density algorithm for incompressible viscous fluid

dynamics.

Input Variables- NONE

Additional Information -

This option is only applicable for incompressible viscous fluiddynamics, and

typically only for steady-state problems. Often the incremental density al-

gorithm provides a convenient method for slowly building toward a desired

Reynolds number.

The densityvalues must be defined as R function of time with a convective body

force data set.See the **BODY section.

Examples of Use -

I. Analyze the thermoviscous flow of a hot fluidover a gradual step. Increment

the fluiddensity to achieve the desiredReynolds number.

**CASE

TITLE FLOW OVER A STEP RE=50

FLUID INCOMP STEADY

TIME STEP 8 1.0

NEWTON

INCREMENT DENSITY

MAXI I0

RESTART WRITE

BEST-FSI User Manual March, 1992 Page S.23



Case Control

RECU

Status - OPTIONAL

FullKeyword - RECURRING-INITIAL-CONDITIO_

Function- Selects a recurring initialcondition algorithm for transientviscous fluid

dynamics analysis.

Input Variables - NONE

Additional Information -

Two approaches are available for transient fluid dynamics problems. The de-

fault is the convolution approach which requires integration at each time step.

This is preferred for linear (Stokes flow) analysis. However, if the RECU card

is present then the recurring initial condition approach is utilized. In this case,

the entire fluid domain must be discretized.

A combined recurring initial condition and convolution approach is also possi-

ble. To trigger this option, the user should simply include the RECU keyword.

Then, in each region for which the recurring initial condition approach is de-

sired, complete volume discretization is required. The remaining regions, which

must be void of volume cells, will employ a convolution approach. This com-

bined approach is particularly attractive when a large portion of the flow field

is linear.

Examples of Use -

1. Perform a transient viscous fluid dynamic analysis for flow in a diverging chan-

nel.

* *CASE

TITLE CHANNEL - CASE 2

FLUID INCOMP STEADY

TIME STEP i0 0.25

NEWTON SKIP 2

MAXI i0

RECURRING

RESTART WRITE

(TRANSIENT ANALYSIS}
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Case Contml

TOLE RTOL

Status - OPTIONAL

Full Keyword -TOLERANCE

Function - Sets the convergence tolerance for nonlinear algorithms.

Input Variables -

RTOL (Real) - REQUIRED

Defines the convergence tolerance.

Additional Information -

For fluids, convergence is tested at the end of the i*h iteration by computing

N hv.- _-lv.I 2
DNORM = Z [ 7-1V'-_

n=l

where N is the total number of volume source point.

Convergence is assumed when DNORM < RTOL. If the TOLE card is not

included in ease eontrot, RTOL defaults to 0.005.

Examples of Use -

1. Tighten the convergence tolerance for a problem of thermoviseous flow past an

airfoil.

**CASE

TITLE AIRFOIL - THERMOVISCOUS STEADY FLOW

FLUID STEADY INCOMP

TIME STEP 8 1.0

THERMAL

NEWTON

MAXI 8

TOLERANCE i. E-4

BEST-FSI User Manual March, 1992 Page 5.25



Case Control

MAXI NITER

Status- OPTIONAL

Full Keyword - MAXIMUM (ITEBATION)

Function - Define the maximum number of iterations per time step for nonlinear algo-
rithms.

Input Variables -

NITER (Integer) - REQUIRED

Sets the number of maximum iterations per time step.

Additional Information -

The default is a maximum of 20 iterations.

Examples of Use -

1. Fluid dynamic example with a limit of 10 iterations.

* *CASE

TITLE STEADY FLOW AROUND A CYLINDER

FLUID INCOMPRESSIBLE STEADY

TIME STEP I0 i. 0

NEWTON

INCREMENT DENSITY

TOLERANCE 0.02

MAXI i0
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CaseControl

SY_I STYPE

Status- OPTIONAL

Full Keyword - SYMMETRY

Function - Identifies a problem with geometric and loading symmetry.

Input Variables -

STYPE (Alphanumeric) - REQUIRED

Allowable values are HALF, QUAR, and OCTA.

HALF - Half symmetry, about the Y-Z plane (or about the R- 0 plane in

axisymmetric analysis).

QUAR - Quarter symmetry, about the X-Z and Y-Z planes.

Additional Information -

To model the problem geometry, in all cases, use the part of the geometry which

is on the positive side of the axis (axes) of symmetry.

If the SYMM card is used the plane of symmetry does not have to be modelled,

and therefore, boundary elements should not appear on the plane of symmetry

(see the figure on the following page).

The use of the SYMM card automatically invokes the condition of zero velocity

(and zero flux) on and perpendicular to the plane of symmetry. Therefore

velocity (and/or flux) in the perpendicular direction does not have to be set to

zero at the plane or at any other point for the purpose of preventing (arbitrary)

rigid-body motion (in this direction) as is usually required.

Examples of Use -

1. Perform an elastic analysis on a hollow cylinder utilizing a model of only the

first (positive) quadrant.

* _ CASE

TITLE HOLLOW CYLINDER WITH INTERNAL PRESSURE

ELASTIC

SYMMETRY QUAR
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Case Control

\ = I
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I I
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J

Figure for **CASE: SYMM card

Two-dimensional Quarter symmetry model
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[5.1.9l[RES ART AC,LITYI
Case Control

REST RTYPE ISTEP

Status - OPTIONAL

Full Keyword - RESTART

Function - Enables the restart facility.

Input Variables -

RTYPE (Alphanumeric) - REQUIRED

Allowable values are WRIT, READ, HOLE, SOLV, GMR, VELO

WRITe - Saves all of the integration files generated during the current

run for later reuse.

READ - Bypasses the integration phase for the current run. Instead,

the integration files from a previous run are utilized.

VELO - Restart a fluid dynamics from a previously determined solu-

tion.

ISTEP (Integer) - REQUIRED only if RESTART VELO is specified.

Defines the time step number of a solution from a previous fluid dynamics run,

which will be used as the initial state for the current analysis.

Additional Information -

Integration is generally the most expensive part of any boundary element anal-

ysis. Consequently, when the same model is to be run with several sets of

boundary conditions, the restart facility should be used.

In the case of lineax problems, a complete analysis must first be run with

RESTart WRITe specified. The files FT031, FT032, FT033, FT034, FT035,

FT036, FT037, FT038 and FT039 are then retained after completion of the

run. These files contain all the integration coefficients that were computed.

Subsequent runs can then be made, with different sets of boundary conditions,

by using RESTart READ. In this case, the integration phase will be skipped.

Instead; the integration coefficients will be read from the files FT031, FT032,

FT033, FT034, FT035, FT036, FT037, FT038 and FT039. Additional files are

retained for nonlinear analysis.

Geometry and material properties must be the same for both the RESTart

WRITe and RESTart READ data sets. However, no checking is done by BEST-

FSI. This is the user's responsibility.

The restart facility is not available for transient analyses.

RESTART VELO is only available for fluid dynamics. It is the user's respon-

sibility to ensure that the requested solution exists in the restart :file FT080,
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Case Control

which must have been saved with a RESTART WRITE or READ during a

previous analysis.

Generally, RESTART VELO is used in conjunction with either RESTART

WRITE or RESTART READ.

Examples of Use -

1. Save the integration files generated during an elastic analysis of an axle.

** CASE

TITLE AXLE - LOAD CASE IA

TIMES I. 0

ELASTIC

RESTART WRITE

2. Rerun an elastic analysis of the same axle with a different set of boundary

conditions by using existing integration files.

* *CASE

TITLE AXLE - LOAD CASE IB

TIMES 1.0

ELASTIC

RESTART READ

3. Restart an incompressible fluid dynamics analysis using the solution obtained

during the tMrd time step of the previous run.

* *CASE

TITLE DRIVEN CAVITY - STEADY RE= I000

FLUID INCOMP STEADY

TIME STEP 5 1 •0

NEWTON SKIP 2

MAXI i0

RESTART READ

RESTART VELO 3

PRINT INTERIOR VELO
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I_110IIo_TP_ToPTionsI
Case Control

ECHO

Status - OPTIONAL

Full Keyword - ECH0

Function - Requests a complete echo print of allcard images in the input data set.

Input Variables - NONE

Additional Information -Default isno echo print.

Examples of Use -

1. Request a plane strainelasticanalysiswith an echo of the input data set.

* *CASE

TITLE DAM - PLANE STRAIN ASSUMPTION

PLANE STRAIN

ELASTIC

RESTART WRITE

ECHO
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Case Control

PRIN PTYPE

Status- OPTIONAL

Full Keyword - PRINTOUT-CONTROL

Function - Requests specific printed output.

Input Variables -

PTYPE (Alphanumeric) - REQUIRED

Allowable values ave BOUN, NODA, LOAD, ALL, LIMI, and FEAT.

BOUN - For printing the displacements and tractions, or corresponding

quantities such as velocity, temperature, pressure, and flux at all

boundary source points

NODA - For printing the displacements, stresses, and strains at all geom-

etry nodes on the boundary. (available only for linear elasticity,

and consolidation. A similar nodal table is also available for fluid

dynamics.)

LOAD - For printing the resultant load value on each boundary element

and the total load equilibrium of each region, excluding resultant

body force.

ALL - For printing BOUN, NODA, and LOAD information with a single

request.

LIMI - To printout the current limits of BEST-FSI.

FEAT - To printout a table reporting the current implementation status

of BEST-FSI special features in file "BEST-FSI.FEATURES".

An integer value may be included after the keyword FEAT (e.g.

PRINT FEATURES 80) to indicate the number of lines per page

used in the table. The default is 66 which corresponds to the

number of lines printed per page by a standard line printer.

Additional Information -

For printing two or more types of output, a separate PRIN request must be

included for each type.

If a PRIN, BOUN, NODA or LOAD request does not appear in the case control

input then all three types of output (BOUN, NODA, and LOAD) will be printed

by default.

Examples of Use -

1. In the elastic analysis of a rotor, print out the resultant boundary element

loads.
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Case Control

* *CASE

TITLE ROTOR - ELASTIC ANALYSIS

TIMES i. 0 2.5 6.0

ELASTIC

PRINT LOAD
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CaseControl

PATR

Status- OPTIONAL

Full Keyword - PATRAN

Function - Requests the generation of PATRAN post-processing result files.

Input Variables- NONE

Additional Information -

A Patran INTERFACE NEUTRAL file is created for MODEL INPUT of

BEST-FSI geometry data into Patran. This file is called PATRAN.GEOM.

Upon completion of each time step in an analysis, several files of the form

PATRAN.XXX.n are created for PATRAN post-processing. The parameter n

is the time step number, and XXX is any of the following:

NOD - Boundary nodal temperatures or pore pressures in the format of

a PATRAN Nodal Results Data File

DIS - Boundary nodal displacements or velocities in the format of a

PATRAN Displacement Results Data File

ND1 - Interior point displacements/velocities/temperatures/pore pres-

sures in the format of a PATRAN Nodal Results Data File

ND2 - Interior point stresses in the format of a PATRAN Nodal Results

Data File

NDS - Boundary nodal displacements, stresses and strains in the format

of a PATRAN Nodal Results Data File

ELB - Boundary element velocities, stresses and strain rates in the for-

mat of a PATRAN Beam Results Data File

Column assignments within each file are defined in Table 5.1.1 by analysis type.

Examples of Use -

1. Create PATRAN result files for the steady-state thermoelastic response of a

turbine blade.

**CASE

TITLE TURBINE BLADE A7311 - THERMOELASTIC

CTHERMAL STEADY

RESTART READ

ECHO

PATRAN
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Case Control

TABLE 5.1.1

PATRAN Post-processing File Column Definition

GENERAL FILE DEFINITION:

Filename

PATRAN.NOD.n

PATRAN.DIS.n

PATRAN.NDI.n

PATRAN.ND2.n

PATRAN.NDS.n

PATRAN.ELB.n

PATRAN File Type

NODAL

DISPLACEMENT

NODAL

NODAL

NODAL

BEAM

SPECIFIC FILE DEFINITION:

NOMENCLATURE

0: temperature

p: pore pressure

u,: displacement

t_: traction

v_: velocity

q_: flux

a,_: stress

e_j: strain

Contents

Boundary Source Points

Boundary Source Points

Volume Source Points and Sampling Points

Volume Source Points and Sampling Points

Boundary Source Points

Boundary Elements
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Analysis

Type

FLUID

(Viscous)

FLUID

(Thermoviscous)

Filename

PATRAN.DIS.n

PATRAN.NDI.n

PATRAN.NDS.n

PATRAN.ELB.n

PATRAN.NOD.n

PATRAN.DIS.n

PATRAN.NDI.n

PATRAN.NDS.n

PATRAN ELB._

No.

of

Dimensions

2

2

2

2

1

(7

[13

Vl

o

u1

(_
[_12

(_Oxt

Case Control

Columns

2 3 4 5 6

8 9 10 11 12)

14 15 16 17 18]

V2

V2

Dv Dv _v Ov

_11 f22 _12 p)

v2 Q t2 _
#xl ox_

W ff12)8x_ fill f22

V2

v2 0

f22)

P]

v2 0 tl t2 q

fill f22 ff12 p]
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l 111][ MISOEL A EO SCONTROLOPTIONS
Case Control

CHEC

Status- OPTIONAL

Full Keyword - CHECK

Function- Perform only input data checking, and printout an error summary. No

analysis is performed.

Input Variables - NONE

Additional Information -

This option is often useful for checking the input data for a new model. In addi-

tion to the error summary, all of the relevant material, geometry and boundary

condition information is processed and printed in tabular form. Of particular

interest is the identification of the boundary and volume source points, since

these are determined by the program based upon the element and cell functional

variation.

Examples of Use -

1. Check the input data for a thermoelastic turbine blade model.

**CASE

TITLE TURBINE BLACE A7311 - THERMOELASTIC

CTHERMAL STEADY

RESTART WRITE

CHECK $ DATA CHECKING ONLY

STORE SINGLE
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FILE DNAME

Status - OPTIONAL

Full Keyword - FILE-CONTROL

Function- Specifies the directory in which the scratch files (FTNNN) reside during
execution of BEST-FSI

Input Variables -

DNAME (Alphanumeric) REQUIRED

Allowable values are DIRNAMEALL or DIRNAMEFTNNN

DIRNAMEALL - All scratch files (FTNNN) all be created, accessed and stored

in directory specified by DIRNAME.

DIRNAMEFTNNN - Scratch file (FTNNN) will be created, accessed and stored

in directory specified by DIRNAME.

Additional Information -

Default storage location for scratch files (FTNNN) is the current directory

BEST-FSI is being run from

FT file numbers have to be specified in a 3 digit format. For example FT009 is

correct while FT9 or FT09 are incorrect.

When specifying an individual FT file, only that file will be created in the

specified directory, the rest will be created in the current directory.

FILE directive can be used multiple times, e.g.

FILE/home/scrl/ALL

FILE/home/temp/FT035

will cause all FT files except FT035 to be created in/home/scrl directory. But
if a combination such as

FILE/home/temp/FT035

FILE/home/scrl/ALL

is used, this will cause all FT files to be created in/home/scrl directory.

Examples of Use -

1. Specify the directory/home/scrl to receive FT037 and/home/scr2 to receive

FT038. The rest of the FT files will be created in the current directory (UNIX

systems).

**CASE

TITLE MOLD COMPONENT 6 - STEADY CONDITIONS

HEAT

PRECISION LOW
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Case Control

NEUTRAL RESULTS

FILE /home/scrl/FT037

FILE /home/scr2/FT038

2. Specify the directory/home/scrl to receive all FT files except FT037, which

will be created in/home/scr2 directory (UNIX systems).

**CASE

TITLE MOLD COMPONENT 6 - STEADY CONDITIONS

HEAT

PRECISION LOW

NEUTRAL RESULTS

FILE /home/scrl/ALL

FILE /home/scr2/FT037
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I 5"2 ]l MATERIAL PROPERTY DEFINITION I

This input section defines the linear and, when required, the nonlinear properties of

the various materials used in an analysis. A complete set of material property input must

be provided for each material used. At least one set must be input for every analysis. A

consistent set of units must be used for all properties.

A list of keywords recognized in the Material input are given below and a detailed
description fotlows.

SECTION KEYWORD PURPOSE

5.2.1 Material Property Input Card

**MATE

5.2.2 Material Identification

ID

5.2,3 Mass Parameter

DENS

5.2.4 Isotropic Elastic Parameters

EMOD

POIS

5.2.5 Isotropic Thermal Parameters

COND

SPEC

BETA

Beginning of a material property

input set

Identifier of a material type

material mass density

Young's modulus

Poisson's ratio

conductivity of material

specific heat

buoyancy constant for fluid
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SECTION KEYWORD

5.2.6 Isotropic Viscous Properties
VISC

PURPOSE

Material Property Definition

viscosity for fluid dynamics

Note: Refer to the following table for a list of required material properties

corresponding to a particular type of analysis.
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Material Property Definition

A list of material properties required for different types of analysis are defined below:

REQUIRED MATERIAL PROPERTIES J

TYPE OF ANALYSIS

1. Isotropic Elastic Stress Analysis

,

.

.

Concurrent Thermoelastic Analysis

2a. Steady-state

2b. Transient (Quasistatic)

Viscous Fluid Dynamic Analysis

3a. Steady-state

3b. Transient

MATERIAL PROPERTIES

EMOD, POIS

(TEMP: optional)

(ALPH: if thermal body force is present)

(DENS: if centrifugal body force is present)

(DENS: if inertial body force is present)

TEMP, EMOD, POIS, ALPH, COND

TEMP, EMOD, POIS, ALPH,

COND, DENS, SPEC

VISC, DENS

VISC, DENS

Thermoviscous Fluid Dynamic Analysis

4a. Steady-state VISC, DENS, COND

(BETA: if buoyancy force is present)

4b. Transient VISC, DENS, COND, SPEC
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MATERIAL PROPERTY INPUT CARD ]

Material Property Definftfon

Status - REQUIRED

Full Keyword - MATERIAL PROPERTY

Function - Signals the beginning of a material property definition.

Input Variables- NONE

Additional Information -

A complete set of material property input must be provided for each material

used.

All materials for a problem must be defined before any geometry is specified.

Examples of Use -

1. Define the elastic material properties for a carbon steel.

* *MATE

ID STEEL

EMOD 30.3+6

POIS 0.30
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[5.2.2]l MATERIALIDENT, IOATIONj
Material Property Definition

ID NAME

Status- REQUIRED

Full Keyword - ID

Function - Provides an identifier for a set of material properties related to a given ma-

terial, thereby allowing later reference to the material property definition.

Input Variables-

NAME (Alphanumeric) - REQUIRED

Additional Information-

The specified name must be unique compared to all other material names in-

cluded in the problem.

The NAME must be eight or less alphanumeric characters. Blank characters

embedded within the NAME are not permitted.

Examples of Use -

1. Define the thermal properties for an aluminum alloy 3003.

**MATERIAL

ID ALUM3003

COND 25.0

DENS 0.I

SPEC 2000.
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5.2.3][MAssPARAMETERSJ
Material Property Definition

DENS DEN1

Status - (see required material property table)

Full Keyword - DENSITY

Function - Defines the material mass density.

Input Variables -

DEN1 (Real) - REQUIRED

Additional Information - NONE

Examples of Use -

1. Define material properties for a free vibration analysis.

**MATE

ID STEEL

EMOD 30.E+6

POIS 0.30

DENS 7. 324E-4

$ PSI
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[0_4II,soT_oPicELASTICPARAMETERS]
Material Property Definition

FaMOD EMI

Status - (see required material property table)

Full Keyword - EMODULUS

Function - Defines values of Young's modulus

Input Variables -

EM1 (Real) - REQUIRED

Additional Information - NONE

Examples of Use -

1. Specify a elastic material.

* *MATERIAL

ID MAT1

EMOD 1. E6

POIS 0.3 6

DENS 0.15
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Material Property Definition

POIS P0I

Status - (see required material property table)

_Mll Keyword - POISSON

Function - Defines the (temperature independent) value of Poisson's ratio.

Input Variables -

POI (Real) - REQUIRED

Allowable values - -1.0 < POI < 0.5

Additional Information - NONE

Examples of Use -

1. Specify room temperature elastic properties of carbon steel.

**MATE

ID STEEL

EMOD 30.E6

POIS 0.30
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5.2.5 ISOTROPIC THERMAL PARAMETERS [

Material Property Definition

C0ND CDI

Status - REQUIRED (for concurrent thermoelastic, thermoviscous fluid dynamic, or

heat conduction analysis)

Full Keyword - CONDUCTIVITY

Function - Defines the isotropic conductivity.

Input Variables -

CD1 (Real) - REQUIRED

Additional Information - NONE

Examples of Use -

1. Specify thermal properties of aluminum for steady-state heat conduction.

* *MATE

ID ALUM

CONDUCTIVITY 25.0

1. Specify thermoelastic properties for a quasistatic analysis.

* *MATE

ID M200

TEMP 50.0.0

EMOD 1.0E+6

POIS 0.24

ALPH 1. E- 5

COND 5.86

DENS 0.05

SPEC 215.
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Material Property Definition

SPEC SP1

Status- REQUIRED (for transient concurrent thermoelasticity, thermoviscous fluid

dynamic, or heat conduction)

Full Keyword - SPECIFIC

Fhnction - Defines the specific heat.

Input Variables -

SP1 (Real) - REQUIRED

Additional Information -

The user must be careful in selecting appropriate units for specific heat. The

CONDuctivity divided by the product of DENSity times SPECific equals the

diffusivity. The diffusivity must have units of (length**2)/time.

Examples of Use -

1. Material model for transient heat conduction.

**MATE

ID STEEL

COND 5.8 $ IN.-LB./(SEC.IN.F)

DENS 0.283 $ LB/(IN3)

SPEC 1000. $ IN.-LB./(LB.F)
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MaterialPropertyDefinition

BETA BT1

Status - REQUIRED (for buoyancy effects in thermoviscous fluid dynamics)

F_ll Keyword - BETA

Function - Defines the coefficient of thermal expansion for the fluid.

Input Variables-

BT1 (Real) - REQUIRED

Additional Information - NONE

Examples of Use -

1. Specify the thermoviscous properties of a liquid.

* *MATE

ID LIQUID1

VISC 5.3E+3

DENS 0. 0266

COND 2 i. 4

SPEC 0.3

BETA 1. E- 3
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15 0I ISOTROPICFISCO SPARAM TERSI
Matedal Property Definition

VISC VSCl

Status - REQUIRED (for fluid dynamic analysis)

Full Keyword - VISCDSITY

Function - Defines the value of the fluid viscosity.

Input Variables -

VSC1 (Real) - REQUIRED

Additional Information - NONE

Examples of Use -

1. Specify an incompressible thermoviscous fluid.

* *MATERIAL

ID MAT1

VISC 5.3E+3

DENS 0.0266

COND 21.4

SPEC 0.3
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5.3 J[ DEFINITION OF GEOMETRY j

In the current version of BEST-FSl, surface geometry is defined using and three noded

line elements for 2-D problems. These lines can be defined to have either linear, quadratic

or quartie variation of the primary field variables. An entire model may be assembled from

several geometric modelling regions (GMR). Each generic modelling region is defined in a

single block of input introduced with a **GMR card.

The information provided in a single GMR input block consists of five main types:

1 - Region identification

2 - Nodal point definition

3 - Surface connectivity definition

4 - Volume cell connectivity

5 - Sampling point definition (if desired)

A list of keywords recognized in the GMR input are given below and a detailed description
follows.

SECTION KEYWORD PURPOSE

5.3.1 Geometry Input Card
**GMR

5.3.2 Region Identification

ID

MATE

TREF

TINT

VREF

VINT

EXTE

SOLID

start of geometric modelling region input

region ID

material property(set) for region

reference (initial) temperature of region

temperature used to determine material

properties for integration

reference (initial) velocity of region

convective velocity used for integration

region is an infimte body

identifies a solid region in a fluid

dynamic analysis
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Definition of Geometry

SECTION KEYWORD PURPOSE

5.3.3 Nodal Point Definition

POIN

(coordinates)

nodal points for boundary and volume

discretization

5.3.4 Surface Element Definition

SURF

TYPE LINE

TYPE QUAD

TYPE QUAR

ELEM

beginnining of surface discretization

linear surface variation of

field quantities

quadratic surface variation of

field quantities

quartic surface variation of

field quantities

element list

(element connectivity)

NORM defines outer normal of surface

5.3.5 Enclosing Element Definition

ENCL enclosing element list

(enclosing element connectivity)

5.3.6 Volume Cell Definition

VOLU

TYPE LINE

TYPE QUAD

TYPE QUAR

CELL

(cell connectivity)

FULL

beginning of volume discretization

linear variation of cell quantities

quadratic variation of cell quantities

quartic variation of celI quantities

volume cell definition

region completely filled with cells

5.3.7 Sampling Points

SAMP

(coordinates)

start of definition of sampling points
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L531l[ G OMET YI P TCA O]
Definition of Geometry

**GMR

Status- REQUIRED

FLdl Keyword - GMKEGION

Function - This card signals the beginning of the definition of a geometric modelling

region.

Input Variables - NONE

Additional Information -

At least one GMR must be defined for an analysis. If more than one GMR is

defined, then the input for each is initiated with a **GMR card.

GMR definitions must all precede all Interface, Boundary Condition set, and

Body Force Definitions. Each GMR must be a closed region of two-dimensional

or three-dimensional space. However, under the following two circumstances,

the region may be open :

1 - In planar symmetry problems, the body may be sliced into symmetric parts

and only one of these parts requires discretization. The interior section

exposed by the plane cutting the body does not represent a boundary, and

therefore it does not require discretization.

2 - In GMRs with boundaries extending to infinity, a GMR may have open

boundaries. However, this must be indicated through the use of the EXTE

card or by enclosing the open boundary with Enclosing elements (see the

ENCL card ). Note : One of the above devices MUST be used in an infinite

region.

A GMR may have multiple internal boundaries in addition to a single external

boundary.

Examples of Use -

**GMR

ID REGI

MATE STEEL

TREF 70.0

TINT 70.0

POINT

1 i0.0 0.0

2 i0.0 1.0

2.0

2.0
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[5.3.2][ E IONIOENTI IOA IONI
Definition of Geometry

ID NANE

Status - REQUIRED

Full Keyword - ID

Function - This card provides the identifier for the GMR.

Input Variables-

NAME (Alphanumeric) - REQUIRED

Additional Information -

The NAME must be eight or ]ess alphanumeric characters. Blank characters

embedded within the NAME are not permitted.

The name provided on this card is used to reference the GMR in other portions

of the input as well as in the BEST-FSI output file.

The NAME must be unique compared to all the other GMR names defined in

the problem.

Examples of Use -

**GMR

ID REGI

MATE STEEL
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Definitionof Geometry

MATE NAME

Status - REQUIRED

Full Keyword -MATE

Function - This card identifiesthe material property set for the GMR.

Input Variables-

NAME (Alphanumeric) - REQUIRED

Additional Information -

The material narne referencemust have been previously defined in the material

property input (identifiedas NAME on the ID card in **MATE input).

Examples of Use -

* *GMR

ID GMRI

MATE STEEL
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Definitionof Geometry

TINT TENP

Status - OPTIONAL

Full Keyword - TINTEGRATION

Function - Defines the temperature at which the material properties will be evaluated

for use in integration of this GMR.

Input Variables -

TEMP (Real) - REQUIRED

Additional Information -

If temperature dependent material properties were input in **MATE, the ma-

terial properties used in the integration of the GMR will be calculated based

on the temperature specified on this card using linear interpolation.

For problems in which the temperature changes in time and/or space, it is

recommended that the reference temperature be chosen as the (time/volume

weighted) average temperature over the GMR.

If this card is not input then the reference temperature is used (see TREF card).

Examples of Use -

1. Specify the integration temperature at which the material properties are eval-
uated.

**GMR

ID REGI

MATE MAT1

TINT 70.0
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Definition of Geometry

TREF TEMP

Status - OPTIONAL (used in temperature dependent problems)

FullKeyword -TREFERENCE

Function- This card defines the reference (or initial) temperature (i.e. the datum

temperature of the zero stress-strain state) of the region at the beginning

of a temperature dependent problem.

Input Variables-

TEMP (Real) - REQUIRED

Additional Information -

If this card is not input, the initial temperature is assumed as zero.

Examples of Use -

1. Specify the initial temperature of the region REG1.

**GMR

ID REGI

MATE MAT1

TREF 70.0

TINT i00.0
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Definition of Geometry

VINT VELX VELY

Status- OPTIONAL

Full Keyword - VllfrEGRATION

Function - Defines the convective velocity which will be used for kernel evaluation in

convective heat transfer and fluid dynamics analysis.

Input Variables-

VELX (Real) - REQUIRED

Reference velocity in the x-direction

VELY (Real) - REQUIRED

Reference velocity in the y-direction

Additional Information -

If this card is not specified in a convective analysis, then the convective velocity

for the current region is assumed to be zero.

Examples of Use -

1. Specify a non-zero integration convective velocity for the region named OUTER.

**GMR

ID OUTER

MAT MAT1

VINT i. 0 0.0 $ FREE STREAM VELOCITY

VREF i. 0 0.0
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Definition of Geometry

VREF VELX VELY

Status - OPTIONAL

Full Keyword - I/REFERENCE

Function - Defines the referencevelocityor initialvelocityof a region in a fluiddy-

namics problem.

Input Variables -

VELX (Real) - REQUIRED

Reference velocity in the x-direction

VELY (Real) - REQUIRED

Reference velocity in the y-direction

Additional Information -

If this card is not present in a fluid dynamics or convective heat transfer analysis,

then the reference velocity is assumed to be zero.

Examples of Use -

1. Specify the components of the reference (initial) velocity of the region called

GMR2.

**GMR

ID GMR2

MAT MAT1

TINT 460.0

TREF 0.0

VREF 0.8 0.0
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Definitionof Geometry

EXTE

Status- OPTIONAL

Full Keyword - EXTERIOR

Function - This card identifies that the present GMR is a part of a infinite region.

Input Variables - NONE

Additional Information -

The entire outer boundary of the GMR must extend to infinity.

Infinite elements should not be used in the GMR.

In an analysis of a problem of a body of infinite extent, it is not neccessary

to fix the boundary of the body for the sole purpose of preventing rigid body

motions. Basically, the mathematics of the problem assumes zero displacement

at infinity.

When the entire outer boundary of a GMR is at infinity (e.g cavity in an

infinite space) the outer boundary can not and should not be modeled. Instead

the EXTE card should be inserted in the GMR input to indicate this fact. The

purpose of this card is to account for the contributions of the unmodeled infinite

boundary in the calculation of the diagonal terms of the F matrix (Rigid body

translation technique).

An alternative method to account for infinite boundaries is to model the infi-

nite boundary with enclosing elements (see ENCL card). However, this is not

recommended in problems when the entire outer boundary extends to infinity,

since the use of enclosing elements would be more expensive then using the

EXTE card.

Examples of Use -

1. Specify that the region GMR1 is part of an infinite region.

**GMR

ID GMRI

MAT MAT1

TREF 70.0

EXTERIOR

POINTS

i

2

0.0 212.00

41.36 207.93
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Definition of Geometry

SOLI

Status - OPTIONAL

b'kdl Keyword - SOLID

Function - Identifies a solid region within a fluid dynamics analysis.

Input Variables - NONE

Additional Information -

The SOLID keyword permits the analysis of fluid-structure interaction prob-

lems. The FLUID keyword must be selected in **CASE. All regions axe then

assumed to be fluid, unless the SOLID keyword appears.

When this option is selected, a suitable elastic or thermoelastic material model

must also be selected with the MATE card.

Examples of Use -

1. Analyze the fluid-structure interaction problem, associated with flow past a
turbine blade.

**GMR

ID FLUID

MATE GASI

**GMR

ID BLADE

MATE HASTX

SOLID
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I 5.3.3 ] NODAL POINT DEFINITION

Definition of Geometry

POIN

Status - REQUIRED (for defining the GMR)

Full Keyword - POINTS

Function - This card initiates the definition of nodal points for the boundary element

and volume cell discretization of the GMR.

Input Variables - NONE

Additional Information -

Sampling Points for which results are requested (at any point on or in the body)

is input under the Sampling Point section.
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Definition of Geometry

(NONE) NNODE X Y

Status- REQUIRED

Full Keyword - NO KEYWORD REQUIRED

Function- This card defines the node number and the Cartesian coordinates for a

single nodal point.

Input Variables -

NNODE (Integer) - REQUIRED

User node number for the node.

X,Y (Real) - REQUIRED

Cartesian coordinates of the node. For 2-D problems only two coordinates x

and y need to be input.

Additional Information -

This card is input once for each point.

User node numbering must be unique.

All node numbers must be less than or equal to 99999.

Nodal coordinates for both surface and volume discretization should be input

here. If a node is not referenced in the surface or volume discretization, then it

is ignored.

Nodal points used for hole and insert elements CANNOT be defined here. In-

stead, the nodal points for holes and inserts must be defined under their re-

spective section.

Sampling Points for which results are requested (at any point on or in the body)

is input under the Sampling Point section.

Examples of Use -

1. Define a set of nodal point coordinates in GMR1 for a 2-D analysis.

**GMR

ID GMRI

MAT MAT 1

TREF 70.0

POINTS

1 0.0 0.0

2 0.5 0.0

3 1.0 0.0

4 1.0 0.5

5 1.0 1.0

6 0.5 1.0

7 0.0 1.0

8 0.0 0.5
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L5.3.4Jl ELEMENTDE INIT,ONJ
Definition of Geometry

SURF NAME

Status - REQUIRED (minimum of one per GMR)

Full Keyword - SURFACE

Function - This card initiates the definition of a surface of the current GMR.

Input Variables-

NAME (Alphanumeric) - REQUIRED

The name of the surface being defined.

Additional Information -

The NAME must be eight or less alphanumeric characters. Blank characters

embedded within the NAME are not permitted.

The names assigned to the various surfaces in the problem must be unique.

Examples of Use -

1. Define a 2-D quaclratic surface named SIDE

SURFACE SIDE

TYPE QUAD

ELEMENT

i001 1 2 3

1002 3 4 5

1003 5 6 7

1004 7 8 1

NORMAL +
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TYPE ATYPE

Status - REQUIRED (if REFNAME not input)

Full Keyword - TYPE

Function - This card defines the variation of field quantities over the elements of the

current surface.

Input Variables -

ATYPE (Alphanumeric) - REQUIRED

Allowable values are LINE, QUAD and QUAR

LINEar - linear shape function

QUADratic - quadratic shape function

QUARtic - quartic shape function

Additional Information -

See figure on subsequent pages.

A TYPE card must be defined for each surface.

All of the elements of a single surface must have the same type of variation.

Different surfaces of the same GMR may have different variation.

A surface may consist of a single element. By contrast a single surface may

define the entire boundary of a GMR.

Examples of Use -

1. Specify that the field quantities vary quadratically over the elements of the
surface SURF1.

SURFACE SURF1

TYPE QUAD
ELEMENT

i01 1 2 3

102 3 4 5

BF_T-FSI User Manual March, 1992 Page 5.66



Definition of Geometry

2D BOUNDARY ELEMENT FUNCTIONAL VARIATION

LINE

QUAD

QUAR

Figure for **GMR: TYPE card

(Se¢ element connectivity card for geometrical input)

/-
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ELEM

Status - REQUIRED (if REFNAME not input)

Full Keyword - ELEI_IE_/T$

b_anction - Signals the beginning of the connectivity definition for surface elements of
the current surface.

Input Variables- NONE

Additional Information- NONE
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(NONE) NEL NODE1 ... NODEN

Status - REQUIRED (minimum of one card ifTYPE isinput)

Full Keyword - NO KEYWORD REQUIRED

Function - Each card defines the connectivity for a single surface element.

Input Variables -

NEL (Integer) - REQUIRED

User element number.

NODE1 ... NODEN (Integer) - REQUIRED

User node numbers of the two or three nodes (for 2-D) for defining the geometry

of the element. Every surface domain must have two or three nodes, regardless

of whether TYPE = LINE, QUAD or QUAR. (The shape functions for geometry

is always quadratic)

Additional Information -

This card is input once for each element.

The input card need not specify whether a two or three node element is being

defined. For 2-D, the input must be consecutive, starting with an end node,

and adjacent elements must be defined in the same direction. The direction is

defined with the NORM card.

User element numbers must be unique and less than or equal to 99999.

All of the nodes referenced in the surface element connectivity must have been

defined previously in POINts.

Whenever a GMR is of infinite extent either the EXTE card must be used or

ENCLosing elements must be defined.

Examples of Use -

1. Specify the connectivity definition for elements of the surface SIDE using four

3-noded quadratic elements.

SURFACE SIDE

TYPE QUAD

ELEMENT

i01 1 2 3

102 3 4 5

103 5 6 7

104 7 8 1

NORMAL +
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2-DBOUNDARY ELEMENT FAMILY FORGEOMETRICAL INPUT

1

Linear 2-noded Element

1

Quadratic 3-noded Element

Figure for "'GMR: Element connectivity card

(see TYPE card for functional variation)
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NORM SIGN

Status - REQUIRED - (for 2-D)

Full Keyword - NOKMAL

Function - Defines the outer normal direction in the current GMR.

Input Variables -

SIGN (symbol) - REQUIRED

Allowable symbols are " + " or " - "

+ defines the outward normal as up when numbering an element from right to

left while looking down the z axis (see figure).

- defines the outward normal as down when numbering an element from right

to left while looking down the z axis (see figure).

Additional Information -

All elements of a GMR must follow the same convention.

Examples of Use -

1. Define the direction of the outward normal to the surface SURF1 as positive.

SURFACE SURF1

TYPE QUAD

ELEMENTS

1 1 2 3

2 3 4 5

3 5 6 7

4 7 8 1

NORMAL +
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'( 3

x 9

input shown is for
FLAG = +

on NORM card for 2-D

13

12

I0 9
X

input shown is for
FLAG = -

on NOP_ card for 2-D

Figure for **GMR: NOP_ card

Two-dimensional outer normal convention

(In 2-D, all elements in a single GMR must use the
same convention)
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ENCL

Status- OPTIONAL

Full Keyword - ENCLOSING

Function - Signals the beginning of the connectivity definition for enclosing elements

of the GMR. Enclosing elements are used in GMRs of infinite extent in

order to create a fictitious boundary required for correct calculation of the

matrix coefficients.

Input Variables - NONE

Additional Information -

In a GMR of infinite extent, it is neccessary to use the EXTE card if enclosing
elements are not used.

The nodes in an enclosing element do not become boundary source points (part

of the system equation) unless they are also part of a regular boundary. The only

purpose of enclosing elements is to define an arbitrary surface for integration

so that the contribution of the unmodelled infinite boundary can be taken into

account in the calculation of the diagonal terms of the F matrix ( Rigid Body

Translation Technique).

The geometry of the surface defined by the enclosing elements is arbitrary since

the contribution (for a particular source point) of any surface enclosing the

region is equivalent. Therefore, the discretization of enclosing elements should

be crude, utilizing the minimum number of enclosing elements neccessary to

enclose the region. It is, however, recommended that the surface defined by the

enclosing elements does not pass too close (relative to the size of the enclosing

element) to a boundary source point belonging to a regular element contained

in that particular region.

In an analysis of a problem of a body of infinite extent, it is not neccessary to fix

the boundary of the body for the sole purpose of preventing rigid body transla-

tion. Basically, the mathematics of the problem assumes zero displacement at

infinity.

Examples of Use -

1. Define enclosing elements for a two-dimensional body.

ENCL

55 95 105 115

56 115 125 135
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(NONE) NEL NODE1 .... NODEN

Status - REQUIRED (minimum of one card if ENCL is input)

Full Keyword - NO KEYWORD REQUIRED

Function - Each card defines the connectivity for a single enclosing element.

Input Variables -

NEL (Integer) - REQUIRED

User element number (required for user's purpose only)

NODE1 ... NODEN (Integer) - REQUIRED

User number for the node for defining the geometry of the enclosing element.

N = 3 (for 2-D)

Additional Information -

Only THREE noded enclosing elements are allowed in 2-D.

All of the connectivity for enclosing elements must be defined such that their

normals are positive.

Examples of Use -

1. Define enclosing elements.

ENCLOSING ELEMENTS

I001 1 2 3

1002 3 4 5

etc ....

BEST-FSI User Manual March, 1992 Page 5.74



5.3.6 [ VOLUME CELL DEFINITION

Definition of Geometry

VOLU NAME

Status- OPTIONAL

Full Keyword - VOLUME

Function - This card initiates the definition of a volume for the current GMR.

Input Variables -

NAME (Alphanumeric) - OPTIONAL

The name of the volume being defined. (For user's use only)

Additional Information -

In the present version of BEST-FSl, only one volume discretization per GMR is

allowed. This means only one type (see next card definition) of cells can exist

in a single GMR.

Examples of Use -

1. Define three, 8-Noded quadratic volume cells for two-dimensional analysis.

VOLUME

TYPE QUAD

CELL

I001 1 2 3 103 203 202 201 i01

1002 3 4 5 105 205 204 203 103

1003 5 6 7 107 207 206 205 105

FULL

$(end of volume cell input)
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TYPE ATYPE BTYPE

Status - REQUIRED (if VOLU is input)

_-_all Keyword - TYPE

Function - This card defines the variation of field quantities over the volume cells of

the current GMR.

Input Variables -

ATYPE (Alphanumeric) - REQUIRED

Allowable values are LINE, QUAD, or QUAR.

LINEar - Linear shape functions

QUADratic - Quadratic shape functions

QUARtic- Quartic shape functions

BTYPE (Alphanumeric) - OPTIONAL (for fluid dynamics only)

Allowable values are LAGR and SERE. The Default is SERE.

LAGRangian - Lagrangia_ type shape functions

SEREndipity - Serendipity type shape functions

Additional Information -

Only one TYPE card for cells is allowed per GMR.

QUARtic variation is only available for two-dimensional fluid dynamics. The

program automatically generates the extra source points required for a quartic

functional variation.

Examples of Use -

1. Specify that the variation of field quantities over the volume cells in GMR1 is

quadratic iii nature.

**GMR

ID GMRI

VOLUME

TYPE QUA/)
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CELL

Status - REQUIRED (if VOLU is input)

Full Keyword - CELLS

Function - Signals the beginning of the definition of volume cell input connectivity.

Input Variables - NONE

Additional Information -

Cell connectivity information is input on data cards following this card.
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(NONE) NCELL N1 N2 .... NK

Status - REQUIRED (If VOLU is input)

Full Keyword - NO KEYWORD REQUIRED

Function - Defines a volume cell in terms of previously defined nodal points.

Input Variables -

NCELL (Integer) - REQUIRED

User identification for cell being defined.

N1,N2,...,NK (Integer) - REQUIRED

User nodal point numbers for cell nodes.

K = 3, 4, 6, or 8 for 2-D

Additional Information -

If necessary, this card may be input more than once for each cell. The cell

number must be repeated on each card.

2-D: Cell numbering must begin at the corner and be numbered consecu-

tively in either direction.

Nodal points of the surface discretization may also be used in the volume

discretization (i.e., a cell face may match up with a boundary element). This

is recommended when possible, since it somewhat reduces the computation

required. Nodal points of the volume discretization lying on the surface must

be nodal points of the surface mesh.

Examples of Use -

1. Define a set of volume cells consisting of a cell number and the connectivity

information. There are three 8-noded volume cells with quaclratic variation.

VOLUME

TYPE QUAD

CELL

501 1 2 3 103 203 202 201 I01

502 3 4 5 105 205 204 203 103

503 5 6 7 107 207 206 205 105
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2

Linear 3-noded Cell

3

1
5 6

Quadratic 6-noded Cell

Linear 4-noded Cell

4

5 /o -_

Quadratic 8-noded Cell

Figure for**GMR: Volume Cell Connectivity

Two-dimensional Volume Cells
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FULL

Status - OPTIONAL

F_ll Keyword - FULL region of cells

Function - Identifies the GMR is completely filled with cells and that the Indirect Tech-

nique should be used to accurately calculate the coefficient corresponding

to a singular point in the volume integration.

Input Variables - NONE

Additional Information-

The GMR must be completely filled by cells.

If FULL is not used, all relevant coefficients are calculated by numerical volume

integration.

For highly accurate results, it is recommended that a GMR be completely filled

with cells and that the FULL card option be exercised.

If the FULL card is included in a GMR for a transient analysis with the RECUr-

ring initial condition option, then convolution is avoided for that GMR. The

effect of past events is determined by evaluating an initial condition volume

integral at each time step.

Examples of Use -

1. Specify that the GMR (GMR1) is completely filled with volume cells.

VOLUME

TYPE QUAD

CELL

501 1 2 3 103 203 202 201 i01

502 3 4 5 105 205 204 203 103

503 5 6 7 107 207 206 205 105

FULL
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Definition of Geometry

SAMP

Status - OPTIONAL

Full Keyword - SAMPLING-POINTS

Function - This card signalsthe fact that a set of sampling points for which resultsare

requested at any point on or in the body, will be provided for the current

GMR.

Input Variables - NONE

ITYPI (Alphanumeric) - REQUIRED

Additional Information -

This card is used to define points at which velocities, stresses, strains, temper-

atures, pressures and fluxes are to be calculated. The print flag for sampling

points may be set in **CASE input. If, however, nothing is specified in **CASE

for sampling points, this flag is set by default depending upon analysis type.

This card is followed by data cards defining the node number and coordinates

of the sampling points.

Examples of Use -

1. Request result information at three interior points

SAMPLING- POINTS

i001 0.333 0.25

1002 0.25 0.i

1003 0.2 0.5
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(NONE) NNODE X Y

Status - REQUIRED (if SAMP is input)

Full Keyword - NO KEYWORD REQUIRED

Function - Defines the coordinates of the sampling points for which output will be

reported.

Input Variables -

NNODE (Integer) - REQUIRED

User number for the node.

X,Y (Real) - REQUIRED Cartesian coordinates of the nodal point. For

2-D problems only x and y coordinates are needed.

Additional Information -

This card is input once for each point.

User nodal point numbers must be unique, including the surface nodal points

and any additional nodal points created for the volume discretization, or dis-

cretization.

Point numbers must be less than or equal to 99999.
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I 5.4 ][ DEFINITION OF GMR COMPATIBILITY

When a body is modelled as an assembly of several GMRs suitable conditions must

be specified to define the connections among the various regions. In the present version of

BEST-FSl compatibility is defined between the interface surfaces of each pair of contacting

regions. Four types of compatibility are allowed:

1 - Bonded contact : Continuity of all velocity components is imposed across the

interface.

2 - Sliding contact : Continuity is required only for the component of velocity normal

to the interface. The tractions, in both GMRs, in the tangent plane to the interface

are set to zero.

3 - Resistance contact : Thermal resistance is imposed between regions.

4- Cyclic contact : Symmetric elements within a cyclic symmetric part can have

imposed symmetric deformation on these elements.

Continuity of temperature or pressure, when applicable, is imposed across the interface in

a similar manner.

A single nodal point location may be part of at most two GMRs. A single nodal point

may be referenced in more than one interface definition data set as long as only two GMRs

are involved. A single location must have a unique node number in each GMR. Various

acceptable and unacceptable arrangements of GMRs are illustrated in the figure following

the **INTE card.

The interface compatibility must be specified in such a way that there is one to one

correspondence between the source points (field variable nodes) of the two GMR's that are

involved. The input required to specify a single interface between two GMRs is described

in the following pages, and a list of keywords recognized in the interface input are given

below.

SECTION KEYWORD PURPOSE

8.4.1 Interface Definition Input Card

**INTE

5.4.2 Definition of interface surface 1

GMR

SURF

ELEM

Start of interface compatibility condition

name of first GMR

surface on first GMR

element of surface
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SECTION KEYWORD

5.4.3 Definition of interface surface 2

GMR

SURF

ELEM

5.4.4 Type of interface conditions

BOND

SLID

RESI

5.4.5 Cyclic Symmetry interface definition

CYCL

ANGL

DIR

5.4.6 Additional Interface Control Options

TDIF

VDIF

PURPOSE

Definition of GMR Compatibility

name of second GMR

surface on second GMR

element of surface

bonded interface connection

sliding interface connection

thermal resistence across interface

cyclic symmetry interface definition

angle for cyclic interface

axis of rotation for cyclic interface

reference temperature difference across
interface

reference velocity difference across interface
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I 5.4.1 II INTERFACE DEFINITION INPUT CARD

**INTE

Status - OPTIONAL

Full Keyword - INTERFACE

Function - Indicates the beginning of an interface definition.

Input Variables - NONE

Additional Information -

A **INTE card must begin each interface definition. The complete definition

of the connection between two GMRs may require more than one data set, since

each data set can refer to only one surface.

The data set initiated with this card may be repeated as many times as required.

The interface surface reference below must be such that the nodes and elements

of one GMR can be superimposed on the nodes and elements of the other GMR

by translation and/or rotation, without any deformation.

Note that each of the two GMR's involved in the interface definition must

contain elements that lie on the interracial surface.

The interface data sets must follow all GMR definitions, and must precede any

boundary condition data sets.

Examples of Use -

1. Defines the interface of two GMR's (default is perfectly bonded connection).

** INTERFACE

GMR REGI

SURFACE TOP

ELEMENT 3 4 5

GMR REG2

SURFACE BOTTOM

ELEMENT 103 104 105
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3

2

1

1

2

Acceptable Connections

Unacceptable Connection

Figure for **INTE : card Connections among GMRs
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I IL I

GMR IDGMR

Status - REQUIRED

Full Keyword - GMK

Function - Identifies the first GMR for which the interface surface is to be defined.

Input Variables-

IDGMR (Alphanumeric) - REQUIRED

IDGMR is the identifier for the GMR as input during the geometry definition

(NAME on ID card in **GMR input).

Additional Information -

A given interface surface must lie entirely on the surface of a single GMR. If an

interface compatibility condition is to be applied with more than one GMR, a

separate interface compatibility must be defined for each case.

Examples of Use -

1. Identifies the first GMR, say GMR1, of which the interface surface is a part.

**INTERFACE

GMR GMRI

SURFACE SURF1

ELEMENTS i01 102 103 104
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SURF IDSUR

Status - REQUIRED

FullKeyword - SUKFACE

b-hnction - Identifies the surface within the (first) selected GMR which embodies the

interface surface (NAME on SURF card in **GMR input).

Input Variables-

IDSUR (Alphanumeric) - REQUIRED

Additional Information -

An interface surface must be contained entirely within a single surface. If the

interface compatibility condition is to be applied to more than one surface, then

a separate interface compatibility must be defined for each surface involved.

The SURF card may conclude the required input for a interface definition. If

the SURF card is not followed by a ELEM card, then BEST-FSI will apply the

interface compatibility condition to all of the elements in the surface IDSUR.

Examples of Use -

1. Identifies the interface surface, say SURF1, as part of the first GMR.

* * INTERFACE

GMR GMRI

SURFACE SURF1

ELEMENTS 10 9

GMR2

SURFACE SURF2

ii0
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ELEM EL1 EL2 ... ELN

Status- OPTIONAL

Full Keyword - ELEMENTS

Function - Specifies the elements of the surface IDSUR to which an interface compat-

ibility condition is to be applied.

Input Variables-

EL1,EL2,...,ELN (Integer) - REQUIRED

User element numbers of the elements of surface IDSUR which forms the inter-

face surface.

Additional Information -

The effect of this card is to restrict the application of the compatibility condition

to a portion of the surface IDSUR.

This input may be continued on more than one card. Each card must begin

with the keyword ELEM.

If the ELEM card is specified, BEST-FSl will apply the interface compatibility

condition only to the elements specified on this list.

In the present version of BEST-FSI, interface compatibility can not be specified

at individual nodes.

Examples of Use -

1. Specifies three elements, 120, 121 and 122, for interfacial compatibility on the

surface identified by the preceding SURFACE card.

* * INTERFACE

GMR GMRI

SURFACE SURF1

ELEMENTS 120

GMR GMR2

121 122
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[ 5.4.3 1[ DEFINITIONOFINTERFACESURFACE2 [

GMR IDGMR

Status - REQUIRED

Full Keyword - GMR

Function - Identifies the second GMR for which the interface surface is to be defined.

Input Variables -

IDGMR (Alphanumeric) - REQUIRED

IDGMR is the identifier for the GMR as input during the geometry definition

(NAME on ID card in **GMR input).

Additional Information-

A given interface surface must lie entirely on the surface of a single GMR. If an

interface compatibility condition is to be applied with more than one GMR, a

separate interface compatibility must be defined for each case.

Examples of Use -

1. Identifies the second GMR, say GMR2, of which the GMR surface is a part.

* * INTERFACE

GMR GMRI

SURFACE SURF1

ELEMENTS i01 102

GMR GMR2

SURFACE" SURF2

ELEMENTS 201 202
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SURF IDSUR

Status - REQUIRED

Full Keyword - SURFACE

Function - Identifies the surface within the (second) selected GMR which embodies

the interface surface (NAME on SURF card in **GMR input).

Input Variables -

IDSUR (Alphanumeric) - REQUIRED

Additional Information -

An interface surface must be contained entirely within a single surface. If the

interface compatibility condition is to be applied to more than one surface, then

a separate interface compatibility must be defined for each surface involved.

The SURF card may conclude the required input for a interface definition. If

the SURF card is not followed by a ELEM card, then BEST-FSI will apply the

interface compatibility condition to all of the elements in the surface IDSUR.

Examples of Use -

1. Identifies the interface, say SURF2, as part of the second GMR.

**INTERFACE

GMRGMRI

SURFACE SURF1

ELEMENTS i01 102

GMRGMR2

SURFACE SURF2

ELEMENTS 201 202
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ELEM EL1 EL2 ... ELN

Status - OPTIONAL

Pull Keyword - ELEMENTS

Function - Specifies the elements of the surface IDSUR to which an interface compat-

ibility condition is to be applied.

Input Variables-

EL1,EL2,...,ELN (Integer) - REQUIRED

User element numbers of the elements of surface IDSUR which forms the inter-

face surface.

Additional Information -

The effect of this card is to restrict the application of the compatibility condition

to a portion of the surface IDSUR.

This input may be continued on more than one card. Each card must begin

with the keyword ELEM.

If the ELEM card is specified, BEST-FSI will apply the interface compatibility

condition only to the elements specified on this list.

In the present version of BEST-FSI, interface compatibility can not be specified

at individual nodes.

Examples of Use -

1. Specifies three elements, 210, 211 and 212, for interracial compatibility on the

surfa_ce identified by the preceding SURFACE card.

* * INTERFACE

GMR GMRI

SURFACE SURF 1

ELEMENTS i01 102 103

GMR GMR2

SURFACE SURF2

ELEMENTS 210 211 212
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Definition of GMR Compatibility

BOND

Status - OPTIONAL

Full Keyword - BONDED

Function - Identifies a fully bonded interface.

Input Variables - NONE

Additional Information -

When this card is input continuity of all variables is imposed across the interface.

This is the default condition when the type of interface is not explicitly defined.

Examples of Use -

1. Defines a perfectly bonded interface of three boundary elements.

**INTERFACE

GMR REGI

ELEMENT 3 4 5

GMR REG2

ELEMENT 103 104 105

BOND
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SLID

Status- OPTIONAL

Full Keyword - SLIDISG

Ftmction - Identifies a sliding interface.

Input Variables- NONE

Additional Information -

When this card is input only normal velocity compatibility is imposed across the

interface. The two GMRs are free to move in the plane tangent to the interface,

however, the surfaces remain in contact even under tension. This freedom may

require the specification of additional boundary conditions to restrain rigid body

motion.

Examples of Use -

1. Defines a sliding interface of five boundary elements.

**INTERFACE

GMR REGI

ELEMENT i01 102 103 104 105

GMRREG2

ELEMENT 210 212 213 214 215

SLID

BEST-FSI User Manual March, 1992 Page 5.94



Definition of GMR Compatibility

RESI R1

Status - OPTIONAL

Full Keyword - RESISTANCE

Function - Identifies an interface with thermal resistance between the corresponding

surfaces. The flux across this interface is linearly related to the temperature

difference between the two surfaces.

Input Variables-

R1 (Real) - REQUIRED

Thermal resistance coefficient (R)

Additional Information -

The RESistance option utilizes the relationship:

1

ql = _(0t - 02)

where

01 local temperature of GMR 1.

02 local temperature of GMR 2.

qt local heat flux from GMR 1.

The user is responsible for providing R in the proper units, consistent with the

specification of material properties, geometry and boundary conditions.

The resistance R should be a positive real number (R > 0). If zero is input, the

coefficient will be automaticMly reset to 1.0E--10.

Examples of Use -

1. Defines thermal resistance at the interface between two regions which were at

the same initial temperature (otherwise, a TDIF card should be inserted after

the RESI card).

* * INTERFACE

GMR GMRI

SURFACE SURFI

ELEMENTS 12

GMR GMR2

SURFACE SURF2

ELEMENTS 21

RESI i. 0

BEST-FSI User Manual March, 1992 Page 5.95



Definitionof GMRCompatibility

CYCL

Status - OPTIONAL

Full Keyword - CYCLIC

F_nction - Identifies a cyclic symmetry boundary condition.

Input Variables - NONE

Additional Information -

This type of interface condition establishes a relationship between two boundary

surfaces. In order for this condition to be applied the two boundary surfaces

involved must be such that one can be exactly superimposed on the other

by a rotation about a specified axis passing through the origin of the global

coordinate system. Further, the imposed boundary conditions of the problem

must be such that the deformed shape of one boundary surface can be exactly

superimposed on the other by the same rotation. This option is intended for

the analysis of (periodic) structures subjected to periodic loading.

Rigid body translation along the cyclic axis and rigid body rotation about that

same axis are not automatically prevented by invoking the CYCLIC option.

Consequently, these motions must be constrained explicitly by the user.

Since a cyclic interface condition involves all components of displacement and

traction, no other boundary condition may be applied to the elements that are
involved.

Local coordinate systems are established for each node on the second boundary

surface. As a result, no other local system may be defined for these nodes.

Furthermore, in the current version, it is recommended that displacement (or

velocity) boundary conditions not be applied to any of the second surface nodes.

In the present version of BEST-FSI, a boundary surface to which a cyclic inter-
face is applied may not intersect another interface.

A cyclic interface condition is time independent.

Examples of Use -

1. Activate option for cyclic symmetry boundary condition.

* *INTERFACE

GMR GMRI
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Definitionof GMRCompatibility

SURFACE SURF1

ELEMENT 3

GMR GMRI

SURFACE SURF1

ELEMENT 5

CYCLIC

ANGLE 2 0

DIRECTION 0. 0. I.
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Definitionof GMRCompatibility

ANGL THETA

Status - REQUIRED (if CYCL is specified)

Full Keyword - ANGLE

Function - Specifies the angle of rotation between the two surfaces referenced in the

cyclic symmetry condition.

Input Variables -

THETA (Real) - REQUIRED

THETA is the rotation angle (in degrees). A positive rotation is counterclock-

wise when looking along the positive axis direction.

Additional Information - NONE

Examples of Use -

1. Specifies an angle of 20 degrees between the two surfaces referenced in the

cyclic symmetry condition.

** I NTERFACE

GMR GMRI

SURFACE SURF1

ELEMENT 3

GMR GMRI

SURFACE SURF1

ELEMENT 5

CYCLIC

ANGLE 2 0

DIRECTION 0. 0. 1.
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Definition of GMR Compatibility

DIRE X Y Z

Status - OPTIONAL

Full Keyword - DIRECTION

Function - Defines the positive direction of the axis of rotation, if CYCL is specified.

Input Variables -

X,Y,Z (Real) - REQUIRED

Components of a vector along the positive direction of the axis of rotation.

Additional Information -

This card may be omitted. In this case the rotation axis defaults to the positive

z-axis.

Examples of Use -

1. Defines that the positive direction of the axis of rotation is along the z-axis.

**I_ERFACE

GMR GMRI

SURFACESURFI

ELEMENT3

GMR_RI

SURFACESURFI

ELEMENT5

CYCLIC

_GLE20

DIRECTION 0. 0° i°
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Definition of GMR Compatibility

5.4.6 1[ ADDITIONAL INTERFACE CONTROL OPTIONS ]

TDIF

Status - OPTIONAL

_tll Keyword - TDIFFERENECE

Function - Signals that there is a difference in the reference temperatures of the

two regions involved in the current interface.

Input Variables- NONE

Additional Information -

The TDIF card must be included in the interface definition for any temperature-

dependent problem for which the reference temperatures of the adjoining re-

gions are different. In such situations, failure to include this card will produce
incorrect results.

It is expected that in future releases of BESTol_|, the necessary checks will be

done automatically, and the TDIF card will no longer be needed.

Examples of Use -

1. Indicates that a difference in reference temperatures exists between the GMR's,

REG1 and REG2, involved in the current interface.

* * INTERFACE

GMR REGI

SURFACE TOP

ELEMENTS I01 102

GMR REG2

SURFACE BOTTOM

ELEMENTS 209 210

RESI 1.0

TDI F
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Definitionof GMRCompatibility

VDIF

Status- OPTIONAL

Full Keyword - VDIFFEP_NECE

Fkmction - Signals that there is a difference in the reference velocities of the two

regions involved in the current interface.

Input Variables- NONE

Additional Information -

This card is applicable only for fluid dynamic analysis.

The VDIF card must be included in the interface definition for any fluid dy-

namics problem for which the reference velocities of the adjoining regions are

different. In such situations, failure to include this card will produce incorrect

results.

It is expected that in future releases of BEST-I_I, the necessary checks will be

done automatically, and the VDIF card will no longer be needed.

Examples of Use -

1. Indicates that a difference in reference velocities exists between the two GMR's,

REG1 and REG2, involved in the current interface.

* * INTERFACE

GMR REGI

SURFACE SURF 1

ELEMENTS 25 26

GMR REG2

SURFACE SURF2

ELEMENTS 227 228

VDIF
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I 5.5 1[ DEFINITION OF BOUNDARY CONDITIONS}

This section describes the boundary condition input set (BCSET) for the input of

boundary conditions applied at the surface of the given structure (or body). The input is

designed to allow the specification of time dependent boundary conditions in both local

and global coordinate systems. In order to allow the generality required, the input system

is necessarily somewhat complex. Considerable simplification is possible for problems with

less general requirements.

In the boundary element method, the primary load variable is traction (or flux), which

acts over a surface area, not point forces (or sources) as in the finite element method. This

means that in defining the region of application of a boundary condition in BEST-FSI it is

necessary to specify both the nodal points and the elements involved.

A variety of options are provided for the definition of boundary conditions on the

surface of the part. Each distinct set of boundary condition data defines either numerical

values of variables over some portion of the surface of the part (or body), or establishes a

relationship among variables. As many sets of boundary condition data may be used, as are

required to completely specify the problem. A nodal point or element may be referenced

in more than one set of boundary condition data.

A common process to much of the boundary condition input is the specification of

the time dependent variables over the surface. To simplify the subsequent discussion of

the various boundary condition types, the recurring definition of space/time variation is

described only once in section 5.5.6.

SECTION KEYWORD PURPOSE

5.5.1 Boundary Condition Set Card

**BCSET start of the B.C. definition

5.5.2 Boundary Condition Identification

ID name of B.C. set

5.5.3 Identification of Boundary Condition Type

VALU for specified B.C. value input

RELA for B.C. relation between boundary quantities

LOCA for local definition of B.C.
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SECTION KEYWORD

Definition of Boundary Conditions

PURPOSE

5.5.4 Definition of Surface for Application of Boundary Conditions
GMR

SURF

ELEM

POIN

TIME

identifies a GMR

identifies the surface for this B.C. set

identifies surface elements

identifies surface points

defines the time for input

5.5.5 Value Boundary Condition for Surface Elements

TRAC traction B.C. input

VELO velocity B.C. input

FLUX flux B.C. input

TEMP temp B.C. input

5.5.6 Definition of Space/Time variation

SPLI

T

source (field variable) point list

nodal value of B.C.

5.5.7 Relation Boundary Condition

CONV convection relation (between

temperature and flux)
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Definition of Boundary Conditions

[ 5.5.1 ][ BOUNDARYCONDITIONSETCARD ]

**BCSE

Status - REQUIRED

Fkfll Keyword - **BCSET

Function - Identifies the beginning of a boundary condition data set.

Input Variables - NONE

Additional Information -

As many boundary condition data sets may be input as are required. Each

must begin with this card.

The boundary condition data sets must follow all GMR and INTERFACE def-

initions, and must precede any BODYFORCE data.

Examples of Use -

1. Fix the normal (local) displacement of all elements for on surface SIDE1 of

GMR REG2 for all time ( no TIME card required)

**BCSET

ID UIFIX

VALUE

LOCAL

GMR REG2

SURFACE SIDE1

DISP 1

SPLIST ALL

TI0.0
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Detin/tion of Boundary Conditions

ID NAME

Status - REQUIRED

Full Keyword - ID

Function - Defines the identifier for the current boundary condition data set.

Input Variables-

NAME (Alphanumeric) - REQUIRED

User specified name of for the current data set.

Additional Information -

The NAME must be unique compared to all other boundary condition data set

names defined in the problem.

The NAME must be eight or less alphanumeric characters. Blank characters

embedded within the NAME are not permitted.

Examples of Use -

1. Define a set of displacement type boundary conditions with the name DISP1.

* *BCSET

ID DISPI

SURFACE SURF1

ELEMENTS 104

POINT 108

DISP 1

SPLIST 108

T 1 0.0

**BCSET
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Definitionof BoundaryConditions

5.5.3 _[ IDENTIFICATION OF BOUNDARY CONDITION TYPE [

VALU

Status- OPTIONAL

Full Keyword - VALUE

Function- Identifies the boundary condition as one which will define the numerical

values of field variables.

Input Variables - NONE

Additional Information -

This card must not be used for relational boundary condition sets.

If VALU, RELA, or VARI do not appear in a boundary condition set, a value-

type set is assumed.

Examples of Use -

1. Used here to indicate that the value of a local traction type of boundary

condition is specified.

**BCSET

ID TRACI2

VALUE

LOCAL

GMR GMRI

SURFACE SURF1

ELEMENTS 17

TRAC 1

SPLIST ALL

T 1 -100.0

Send of input data
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Definitionof BoundaryConditions

RELA

Status- OPTIONAL

FullKeyword - RELATION

Function- Identifiesthe boundary condition as one which will define a relationship

between fieldvariables(e.g.spring or convection boundary conditions).

Input Variables- NONE

Additional Information -

This card isrequired for allboundary condition setswhich definea relationship

between fieldvariables.Therefore, this card must be included for SPRING or

CONVECTION boundary conditions.

Examples of Use -

I. The RELATION card isused in the followingexample to indicatespecification

of convection type of boundary condition.

**BCSET

ID BCSI

RELATION

GMR GMRI

SURFACE SURF1

ELEMENTS 1

CONV I. 2 6

* *BCSET

ID BCS2

2 3 4

-i00.0 $ H = 1.26, TEMP (AMBIENT) = - i00.0
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Definition of Boundary Conditions

LOCA

Status - OPTIONAL

F_tllKeyword - LOCAL

Function - Indicatesthat input for the current boundary condition set willbe in local

coordinates.

Input Variables- NONE

Additional Information -

In the present version of BEST-FSI this option is intended for the specifica-

tion of displacement, tractionor spring constants normal to a (not necessarily

plane) surface. Specificationof conditions other than zero traction or flux in

the tangent plane of the surfaceisunreliable.

In the localcoordinate system the outer normal directionisthe firstcoordinate

direction.

Once a local boundary condition is specified on a node, the rest of the required

boundary conditions on that node must be specified in local coordinates.

Once a local boundary condition is specified on a node of an element, the rest

of the required boundary conditions on that element must be spedfied in local
coordinates.

Local boundary conditions are not applicable to scalar problems (i.e. heat

conduction; acoustics).
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Definition of Boundary Conditions

Pressure T = lOU.O

1_9CSET

lO BCI

VALU£

LOC_G

GlaIR Glln|

9oFtr SUIIF 1

£LEIIF.HT 2 3

T_AC 1

SFLIST AI,G

T 1 -100.0

Figure for **BCSET'. LOCAL card

Local traction boundary condition input
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5.5.4

Definition of Boundary Conditions

J] DEFINITION OF SURFACE FOR APPLICATION OF ]

BOUNDARY CONDITIONS

In the boundary element method, the primary load variable is traction (or flux), which

acts over a surface area, not nodal forces (or sources) as in the finite element method. This

means that in defining the region of application of a boundary condition in BEST-FSI it is

necessary to specify both the nodal points and the elements involved.

If no boundary condition is specified (for a particular component) at a node, the

primary load variable (of that component) is assumed to be zero.

The input lines involved in defining the element and nodes for a particular boundary
condition set are described in this section.
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Definition of Boundary Conditions

IDGMR

Status - REQUIRED

Fhll Keyword - GMR

Function - Identifies the GMR of the surface on which the boundary condition is to

be defined.

Input Variables -

IDGMR (Alphanumeric) - REQUIRED

IDGMR is the identifier for the GMR as input during the geometry definition

(NAME on ID card in **GMR input).

Additional Information -

A given boundary condition set can involve only a single GMR. If a boundary

condition is to be applied to more than one GMR, a separate boundary condition

set must be defined for each GMR.

Examples of Use -

1. Identifies the GMR name REG1 in connection with the specification of bound-

ary conditions.

* *BCSET

ID TRACI

VALUE

GMRI REGI

SURFACE SURF1

EL_4ENTS 101 102

TRAC I

SPLIST ALL

T 1 I00.0

$ end of input data
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Definition of Boundary Conditions

SURF IDSUR

Status- OPTIONAL

Full Keyword - SUKFACE

Function- Identifiesthe surface within the selected GMR on which the boundary

condition isto be defined (NAME on SURF card in **GMR input).

Input Variables-

IDSUR (Alphanumeric) - REQUIRED

Additional Information -

Either this keyword or the HOLE keyword must be input for each boundary
condition set.

A boundary condition set can involve only a single surface. If a boundary

condition is to be applied to more than one surface, then a separate boundary
condition set must be defined for each surface involved.

It is recommended that, whenever possible, surfaces be made to coincide with

the regions over which boundary conditions are to be applied. This considerably

simplifies the definition of surface for application of boundary condition.

If the SURF card is not followed by an ELEM or POIN card, then BEST.FSI will

apply the boundary condition to all of the elements in the surface IDSUR.

Examples of Use -

1. Identifies the surface name SURF1 relevant to the specification of boundary
conditions.

**BCSET

ID TRACI

GR[R GMRI

SURFACE SURF1

ELEMENTS 101

TRAC 1

SPLIST ALL

T 1 100.0

102 103
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Definition of Boundary Conditions

Element 2 ment 3

J • i
1 2 3 4 5

traction at NODE 3 is applied only over
element 3

* JBCSET

IP nCl

GflR CflR|

SUnF _URF|

F, LEt IP,llT 3
PO[llr 3

TI_,C 2

gPLIST J_I,L

r 1 1o,0.0

Element 2 / I _ Element 3

I 2 3 4 5

traction at NODE 3 is applied over both
elements 2 and 3

*aBCSET

ID nCl

VBLUE

Gtl_ c14n1

SUnP _URFI

£LE[IEtlT 2 3

POItlT 3

TnAC 2

SPLIgT _LL

T 1 100.0

Figure for **BCSET: SURF, EL_, and POIN card

2-D Boundary subset definition
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Definition ofBoundary Conditions

ELEM EL1 EL2 ... ELN

Status- OPTIONAL

Full Keyword - ELE_IE_TS

Function - Specifies the elements of the surface IDSUR to which a boundary condition

is to be applied.

Input Variables -

EL1,EL2,...,ELN (Integer) - REQUIRED

User element numbers of the elements of surface IDSUR which are to be in-

cluded within the boundary condition set.

Additional Information-

The effect of this card is to restrict the application of the boundary condition

to a portion of the surface IDSUR.

This input may be continued on more than one card. Each card must begin

with the keyword ELEM.

ff the ELEM card is not followed by a POIN card, then BEST-FSI will apply the

boundary condition to all of the source points in the specified elements.

Examples of Use -

1. Specifies three elements on the surface SURF1 on which traction boundary

conditions are given.

* *BCSET

ID DISP2

SURFACE SURF1

ELEMENTS 101

DISP 2

SPLIST ALL

T 1 0.0

* *BCSET

102 103
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Definition of Boundary Conditions

POIN P1 P2 ... PN

Status- OPTIONAL

Full Keyword - POII_TS

Function - Restricts the application of a boundary condition to a subset of the source

points lying on the surface IDSUR.

Input Variables -

P1,P2,...,PN (Integer) - REQUIRED

Additional Information -

This card restricts the application of the boundary condition to the source

points specified.

This card may be repeated as often as required. Each card must begin with the

keyword.

If the POIN card is specified, then BEST-FSI will apply the boundary condition

to and only to the source points specified in this list.

Examples of Use -

1. Time-dependent input (in the x-direction) for points 5, 6, 7, and 8 over ele-
ments 102 and 103.

**BCSET

ID BCI

VALUE

GMR REG3

SURFACE BOTTOM

ELEMENT 102 103

POINT 5 6 7 8

TIME 2.0 5.0 10.0

TRAC 1

SPLIST 6 7 5 8

T 1 100.0 100.0 100.0 100.0

T 2 200.0 200.0 300.0 300.0

T 3 500.0 600.0 700.0 200.0
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Definition of Boundary Conditions

TIME T1 T2 ... TN

Status - OPTIONAL

Full Keyword - TIMES

Function - Specifies the times at which the variable involved in the boundary condition

set will be specified.

Input Variables -

T1 (Real) - REQUIRED

First time point for boundary condition specification.

T2,...,TN (Real) - OPTIONAL

Subsequent time points for boundary condition specification.

Additional Information -

This input may be continued on more than one card if required. Each card

must begin with the keyword TIME.

The time values input on this card need not agree with the times at which

output was requested in the case control input. Different sets of time points

may be used for different boundary conditions in the same analysis.

The time points must be specifed in ascending order.

Boundary condition values at other than input times are calculated by linear

interpolation.

ff a time card does not appear, the variables involved in the boundary condition

are assumed to be time independent. Consequently, only a single time point may

be specified for the SPACF.JTIME VARIATION (as defined in section 5.5.6).
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Definition of Boundary Conditions

300.

200.

IO0.

Oo

I< explicitly defined

4-

implied

1 t I 1 i I

0. I. 2. 3. 4. 5. 6. 7.

TIME

Example=
J'GCSET

ID Tn_C|

V/_I,UE

OtlR olml

gulp SURFI

ELEPIP,PtT 3

'TlltR 1.0 Z.Q 3.0

sPLIsY ^t,G

T I lO0.O

T 3 ?_0.0

T 4 !00.0

T S 100.0

T S 300.0

3.5 4.0 5.0

Figure for **BCSET: (all specified values)

VALUE vs. TIME for boundary condition input
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Definition of Boundary Conditions

[ 5.5.5 [[ VALUE BOUNDARY CONDITIONS FOR SURFACE ELEMENTS [

TKAC IDIR

Status - OPTIONAL

Full Keyword - TRACTION

Function - Indicatesthat the IDIR component of tractionwillbe specifiedforallnodes

of the current boundary condition set.

Input Variables -

IDIR (Integer) - REQUIRED

Defines the component directionin which traction is specified.For cartesian

coordinates:

1 - x direction

2 - y direction

For local coordinates:

1 - outer normal direction

Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

Up to two sets of traction and/or displacement specifications may be included

in the same boundary condition data set. All must refer to the same boundary

condition set. Only one condition (displacement or traction) may be applied in

a given component direction.

The default condition is always to set traction to zero. After all boundary

condition data sets have been processed, any boundary conditions not otherwise

specified will be treated as zero traction conditions.

The TRACTION input line must be immediately followed by the space/time

variation.

Examples of Use -

1. Defines a traction of magnitude 100.0 units in the positive y direction.
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Definitionof BoundaryConditions

**BCSET

ID TRACI

VALUE

GMR REGI

SURFACE SURF1

ELEMENTS 105

POINTS 112

TRAC 2

SPLIST 112

T 1 100.0

Examples of Use -

106

113 114

113 114

i00.0 i00.0

2. Defines a traction of magnitude 100.0 units in the direction of the outward

normal.

**BCSET

VALUE

LOCAL

GMR GMRI

SURFACE SURF1

ELEMENTS 101 102

TRAC 1

SPLISTALL

T 1 100.0

$ end of data set
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Definition of Boundary Conditions

VEL0 IDIR

Status - OPTIONAL

Full Keyword - VELOCITY

Function - Indicates that the IDIR component of velocity will be specified for all nodal

points contained in the current boundary condition set.

Input Variables -

IDIR (Integer) - REQUIRED

Defines the component direction in which velocity is specified. For global coor-

dinates:

1 - x direction

2 - y direction

For local coordinates:

1 - outer normal direction

Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

Up to two sets of traction and/or velocity specifications may be included in

the same boundary condition data set. All must refer to the same boundary

condition set. Only one condition (velocity or traction) may be applied in a

given component direction.

The default condition is always to set traction to zero. After all boundary

condition data sets have been processed, amy boundary conditions not otherwise

specified will be treated as zero traction conditions.

The VELOCITY input line must be immediately followed by the space/time

variation.

Examples of Use -

1. Defines a rigid boundary wall on elements 11 and 12 belonging to surface

SURF1 which is also part of geometric region GMR1.

*'BCSET

ID BOTTOM

VALUE

GMR GMRI

SURFACE SURF 1

ELEMENTS Ii 12
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DefinitionofBoundaryConditions

VELO 1

S PL I ST ALL

T 1 0.0

VELO 2

SPLIST ALL

T 2 0.0

$ provide next set, if any, of boundary conditions
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Definitionof BoundaryConditions

FLUX

Status- OPTIONAL

Full Keyword - FLUX

Function - Indicates that the flux will be specified for all nodes of the current boundary

condition set.

Input Variables - NONE

Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

The specification of flux may be included with up to two sets of traction and/or

velocity specifications in the same boundary condition data set for thermovis-

cous analyses. All must refer to the same boundary condition set.

When applicable, the default condition is to set flux to zero.

The FLUX input line must be immediately followed by the space/time variation.

Examples of Use -

1. Defines zero flux conditions across three elements.

**BCSET

I D ENTER1

VALUE

GMR GMRI

SURFACE SURF1

ELEMENTS 2 2 2 3

FLUX

SPLIST ALL

T 1 0.0

24
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Definition of Boundary Conditions

TEHP

Status - OPTIONAL

Full Keyword - TEMPERATURE

Function - Indicates that the temperature will be specified for all nodes of the current

boundary condition set.

Input Variables- NONE

Additional Information -

This card can only be used in a boundary condition data set containing the

VALU card.

The specification of temperature may be included with up to two sets of trac-

tion and/or velocity specifications in the same boundary condition data set for

thermoviscous analyses. All must refer to the same boundary condition set.

When applicable, the default condition is to set flux to zero.

The TEMP input line must be immediately followed by the space/time varia-

tion.

Examples of Use -

1. Indicates that a constant temperature is specified on the relevant elements.

* * BCSET

ID TOP

VALUE

GMR GMR2

SURFACE SURF2

ELEMENTS 218

VELO 1

SPLIST ALL

T 1 0.0

TEMP

SPLIST ALL

T 1 0.0

219
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Definitionof Boundary Conditions

SPLI NI N2 ... NN

Status - REQUIRED

FullKeyword- SPLIST (source point list)

Function - Defines the order in which nodal values of the variablewillbe input.

Input Variables -

N1 (Integeror Alphanumeric) - REQUIRED

User nodal point number of firstnode for which data willbe input. Optional

values are ALL or SAME, described under Additional Information.

N2,...,NN (Integer) - REQUIRED (if ALL or SAME are not used)

Users nodal point number of all remaining nodes that are defined by the defi-

nition of surface for application of Boundary Conditions (section 5.5.4).

Additional Information -

This input may be continued on more than one card if required. Each card

must begin with the keyword SPLI.

If N1 = ALL, then BEST-FSI assigns the same value of the input variable to all

nodes defined by the definition of surface for application of Boundary Condition

(section 5.5.4).

If N1 = SAME, then the nodal point ordering is taken to be the same as that

defined for the immediately preceding boundary condition specification within

the same boundary condition set. N1 = SAME may not be used for the first

boundary condition specification within a boundary condition set.

If the node number input is used (i.e. if ALL or SAME are not used) then the

total number of points in SPLI must equal the number of nodes defined by the

SURF, ELEM, and POINT cards (section 5.5.4).
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Definition of Boundary Conditions

IT Vl V2 ... VN

Status- REQUIRED

Full Keyword - T

Function - Identifies a data card containing values of a variable specified in a boundary

condition at time point IT.

Input Variables -

IT (Integer) - REQUIRED

Time point as specified on the TIME card in the definition of the surface for

application of boundary condition (section 5.5.4 and 5.5.6). IT = 1 refers to

the first time point, IT = 2 the second, etc.

V1,V2,...,VN (Real) - REQUIRED

Nodal values of the variable in the nodal point order defined on the SPLI card.

Additional Information -

This input may continue for as many cards as required. Each additional card

must begin with T and the time point IT. The input for each new time point

must begin on a new card.

If N1 = ALL on the SPLI card, then only a single value of the variable is input

for each time point.

The results of various uses of the SPLI and T cards are shown in the figure on the following

page.
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Definition of Boundary Conditions

If the card "LOAD COMP" is specified in the case input, i.e. the boundary

conditions are complex values, then the real part and imaginary part of nodal

values are input in the form V1R VII V2R V2I ...... VNR VNI.

The results of various uses of the SPLI and T cards are shown in the figure below.

2

/ Note differences in traction i.put of

102

3 4/ nodes 3 and 4 over elements 101 and 102

,0,l=]
.105

Case I Ini:_lt T i-

TIME D.t} [ Nodes ] and 4
T_C i
SPUIST At,L,
T t 100.0 t

Case 2 Input

TIME O.O T [TRhC I Node 3

SPLIST 3 4 ] ........... NOde 4T 1 100.0 50.0

t

Case 3 Input
TIME 0.0 1.0 2.0 4.0

31"_AC1 T _._

spblsr ALb
T I 50.0
T 2 150.0
T ] 150.0
T 4 50.0

Nodes 3 and 4

t

Case 4 Input
TIME 0.0 1.0 2.0 4.0
TRhC 1
SPLIST 3 4 T_'_---------- Node 3

T I 75.0 50.0 [, //-...,-.T 2 100.0 25.0 " "'_'" Node 4
T ] 75.O 50.O
T 4 75.0 25.0 t

Figure for BCSET: TIME and SPLIST cards

TIME-SPACE vat Jation
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t 5.5.71[RELATIONBOUNDARYCONOITIO I
Definition of Boundary Conditions

CONV FCOEFF TAMBT

Status - OPTIONAL

Full Keyword - CONVECTION

Function - Identifies a boundary condition in which surface temperature minus ambi-

ent temperature is linearly related to flux via a film coefficient for all nodal

points defined in the current boundary condition.

Input Variables-

FCOEFF (Real) - REQUIRED

Convective film coefficient (,%)

TAMBT (Real) - OPTIONAL

Ambient temperature of convective fluid (T_)

Additional Information -

The CONV card can only be used if the RELA card has been input for the

current boundary condition data set.

The CONVection option utilizes the relationship:

Q = -H • (To- r)

The film coefficient must be time independent.

If a TIME card was not included in the current boundary condition set, then

the ambient temperature is time independent and TAMBT must be specified

in the CONV card.

If a TIME card was included in the current BCSET, then T card(s) must follow

the CONV card to define the time variation of ambient temperature.

No spatial variation of film coefficient nor ambient temperature is permitted

within an individual BCSET.

The film coefficient should be set to a positive value. If zero is input, the

coefficient will be automatically reset to 1.0E-10.

Examples of Use -

1. Defines a film coefficient of 1.26 units and a surface to ambient temperature

difference of 100 units.
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Definition of Boundary Conditions

**BCSET

ID BCSI

RELATI ON

GMR GMR 1

SURFACE SURF1

ELEMENTS 1 2

CONV 1.26

**BCSET

ID BCS2

3 4

-i00.0

2. Define a time dependent convection boundary condition set, with a film coef-
ficient of 10.43 units.

**BCSET

ID CONVI

RELATION

GMR GMRI

SURFACE SURF1

ELEMENTS 1 2 14

TIME 0.0 4.0 13.0 25.0

CONV 10.43

T 1 0.0

T 2 100.0

T 3 200.0

T 4 300.0

BEST-FSI User Manual March, 1992 Page 5.128



I 5.6 II BODY FORCE DEFINITION

This section describes the input for body forces.

The following body forces are included in BEST-FSI: inertial and convective. The input

cards required to define these loads are described below.

SECTION KEYWORD PURPOSE

5.6.1 Body Force Input Card

**BODY

5.6.2 Inertial body force

INER

DIRE

TIME

ACCE

5.6.3 Convective Body Force

CONV

TIME

GMR

DENS

start of body force input

inertial body force input

direction of acceleration

time of input

accleration input

convective body force input

times for input

identifies GMR

fluid density input
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I 5.6.1]IBODYFOROEI P TOA D

**BODY

Status- OPTIONAL

Full Keyword - BODY FOKCE

Function - Identifies the beginning of body force input.

Input Variables - NONE

Additional Information -

If more than type of body force is present, a separate block starting with

**BODY should be defined for each type.

Examples of Use -

I. Request a three-dimensional centrifugal and thermal input.

**BODY FORCE

CENT

DIRE 0.0 0.0 1.0

POINT 0.0 0.0 0.0

TIME I. 2. 3. 4.

SPEED 45 . 80 • i00 .

**BODY FORCE

THER

TIME 0. 5.

GMR REGI

TEMP

1 0.0 500.

2 0.0 500.

3 0.0 300.

120.
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Body Force Definition

_3

300.

200.

I00.

0o

O.

!

1. 2.

> <

explicitly defined

I I i

3. 4. 5.

TIME

implied

I I

6. 7.

Example: *aBOOY fORCE

CEHTRI_UG_L

POINT O.0 0,0

_IHg 1.0 2.0 3.0 3.5 4.0 5.0

S_ED 100.0 200.0 200.0 100.0 100.0 300.0

Figure for**SODY: (all body force values)

VALUE vs. TIME for body force input

BEST-FS1 User Manual March, 1992 Page 5.131



5.6.2

INER

J[ INERTIALBODYFORCE ]

Status - OPTIONAL

Full Keyword - INERTIA FORCE

Function - Indicates that an inertia force will be applied.

Input Variables - NONE

Additional Information-

Only one (time dependent) inertia load condition may be defined for an analysis.

It is applied to the entire body.

Examples of Use -

1. Request a two-dimensional inertial input

**BODY FORCE

INER

DIRE 1.0 0.0

TIME 1.0

ACCE 300.
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DIKE X Y

Status- OPTIONAL

Full Keyword - DIRECTI0_

Function - Defines a vector parallel to the direction of inertia force.

Input Variables -

X,Y (Real) - REQUIRED

Cartesian components of a vector parallel to the inertia force.

Additional Information -

Only one direction can be defined in an analysis.

If this card is omitted, the inertia force is assumed to be parallel to the z-axis

of the global system in the negative direction (i.e. gravity loading).

Examples of Use -

1. Defines an inertial force in the positive Y-direction for a two-dimensional anal-

ysis.

**BODY FORCE

INER

DIRE 0. i.

TIME 1.0

ACCE i0.0
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TIME T1 T2 ... TN

Status - REQUIRED (if INER is input)

Full Keyword - TIMES

Function - Defines the times at which the acceleration of the body will be defined.

Input Variables-

T1,T2,...,TN (Real) - REQUIRED

Times at which acceleration will be defined.

Additional Information -

This card may be input as many times as required. Each card begins with the

keyword TIME.

A maximum of 20 time values may be specified.

Examples of Use -

1. Specifies accelerations at three times.

t'BODY FORCE

INER

DIRE 0. I.

TIME i. 0 2.0 3.0

ACCE i0.0 15.0 20.0
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ACCE ACCl ACC2 .... ACCN

Status- OPTIONAL

Full Keyword - ACCELEKATION

Function - Defines the accelerationof the body.

Input Variables -

ACCI,ACC2,...,ACCN (Real) -REQUIRED

Acceleration at times specified on TIME card.

Additional Information -

This card may be input as often as required. Each card begins with the keyword

ACCE.

DEFAULT: Gravity loading of 386.4 in/sec/sec.

Examples of Use -

1. Specifies an acceleration of 100.0 units in an inertial body force loading at a

single time step.

**BODY FORCE
INER

DIRE 0. i.

TIME I.

ACCE i00.
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5.6.3

C0NV

][ CONVECTIVEBODYFORCE ]

Status - OPTIONAL

Full Keyword - CONVECTIVE

Function- Indicates that convective body force will be applied in a fluid dynamics

analysis by using an incremental density algorithm.

Input Variables- NONE

Additional Information -

This type of body force is only applicable to steady-state fluid dynamic analy-

sis. Furthermore, the INCREMENT DENSITY card must be included in case

control.

Examples of Use -

1. Indicates that convective body force field is present.

**BODY FORCE

CONVECTIVE

TIME 0.0 1.0 2.0 3.0

GMR GMRI

DENSITY 0.0 I. 0 10.0 i00.0

GMR GMR2

DENSITY 0.0 1.0 I0.0 100.0

BEST-FSI User Manual March, 1992 Page 5.136



TIME T1 T2 .... TN

Status - REQUIRED (if CONV is input)

Full Keyword - TIMES

Function - Defines the times at which the fluid densities will be defined.

Input Variables -

TI,T2,...,TN (Real) - REQUIRED

Times at which fluid densities will be defined.

Additional Information -

If all times do not fit on one card, TIME may be continued on a second card im-

mediately following the first time card, starting with the keyword TIME. Only

one time definition is allowed for fluid density input, and therefore densities for

each GMR must be defined according to this one definition.

A maximum of 20 time values may be specified.

Examples of Use -

1. Specifies times at which densitites are to be given.

**BODY FORCE

CONVECTIVE

TIMES 0.0 1.0 2.0

GMR GMRI

DENSITY 5.0 i0.0 15.0
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GMR GMRNAME

Status - REQUIRED (if CONV is input)

Full Keyword - GMtt

Function - Identifies the GMR in which fluid densities will be defined.

Input Variables -

GMRNAME (Alphanumeric) - REQUIRED

Allowable values for GMRNAME are IDGMR or ALL.

IDGMR = the identifier of a specific GMR for which fluid densities are being

defined. (NAME on ID card in **GMR input).

ALL = indicates the fluid densities of all GMR's in the problem are identical

and will be defined under one definition.

Additional Information -

The fluid density must be defined for every region containing cells.

If ALL is used as the argument of this card, then this GMR card and the DENS

card (see next page) are input only once.

If the fluid densities differ in different regions then this GMR card (with IDGMR

as the argument) and the DENS card (see next page) must be repeated for every

region containing cells.

All GMR's (for which fluid density input is desired) must be contained under

a single **BODY FORCE input.

Examples of Use -

The following two examples have identical meaning.

**BODY FORCE

CONV

TIMES 0.5 1.0

GM-R REGI

DENSITY 5 .0 15.0

GMR REG2

DENSITY 5.0 15.0

GMR REG3

DENSITY 5.0 15.0

GMR REG4

DENSITY 5.0 15.0

* *BODY FORCE

CONY

TIME 0.5 i. 0

GMR ALL

DENSITY 5.0 15.0
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DENS DEN1 DEN2 ... DENN

Status - OPTIONAL

FullKeyword - DENSITY

Function - Defines the fluidmass density for the GMR.

Input Variables -

DEN1, DEN2,...,DENN (Real) - REQUIRED

Density at times specified on TIME card.

Additional Information -

This card may be input at often as required. Each card must begin with the

keyword DENS.

When convective body forces are defined, the value of density specified in the

material section is ignored.

Examples of Use -

Lists densities at the times specified on the TIME card.

**BODY FORCE

CONVECTIVE

TIMES 0.0 i. 0 2 .0 3 . 0

GMR GMRI

DENSITY 0.0 1.0 I0.0 i00.0

GMR GMR2

DENSITY O. 0 i. 0 I0.0 I00.0
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16.0 [[ EXAMPLE PROBLEMS J

In this section example problems are presented to illustrate data preparation for BEST°

FSI. An attempt has been made to keep the problem geometry as simple as possible so

the user is not burdened with undue complexity. It is hoped that an analyst who is using

an analysis procedure for the first time will find these example problems invaluable in the

learning process.

Each problem includes the following items:

1) A Brief Problem Description

2) Geometry and Boundary Element Model

3) Input Data for running the problem in BEST-FSI

4) Selected Output from BEST-FSl

It should be noted that since the boundary element models illustrated utilize coarse

meshes, the BEST-FSI results may differ somewhat from the theoretical values. However,

with a finer mesh, the theoretical values should be obtained. Also, the results may vary

somewhat depending on the computer system being used to run BEST-FSl.

An estimated RUN TIME is cited for each problem to give the user a feeling for

the computer time needed to run the problem. All RUN TIMES are related to problem

ELAS605, a simple elastic cube in tension, which will be considered to have a run time

of 1 unit using BEST-3D. A different problem which has a RUN TIME of 8 would take

approximately eight times longer to run that the ELAS605 problem. However, these times

will vary somewhat depending on the computer system being used to run BEST-3Dand

BEST.FSI.
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FLUIDS EXAMPLE PROBLEM FLUI601 /Problem Description

EXAMPLE PROBLEM: FLUI601

ANALYSIS TYPE: FLUID DYNAMICS

2-D, STEADY STATE, THERMO-VISCOUS STOKES FLOW, INCOMPRESSIBLE

PROBLEM DESCRIPTION:

FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS

MOVING WITH A VELOCITY OF i. LOWER PLATE IS FIXED.

A UNIFORM PRESSURE OF i00 IS PRESENT EVERYWHERE.
THIS IS OFTEN CALLED "COUETTE FLOW".

BOUNDARY ELEMENT MODEL:

RECTANGULAR REGION, 4 ELEMENTS.

REFERENCE FOR ANALYTICAL SOLUTION:

MORTON DENN, PROCESS FLUID MECHANICS (1980), PG. 176-177.

X-VELOCITY AND TEMPERATURE ARE LINEARLY DISTRIBUTED BETWEEN
PLATES.

SOLUTION POINTS TO VERIFY:

(X-VELOCITY AND TEMPERATURE)

NODE ANALYTICAL BEST-FSI
4 .500 .500

19 .900 .900

RUN TIME:

0.i X BASE PROBLEM

MISCELLANEOUS:

TRACTION BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,
FROM THE ANALYTICAL SOLUTION. AMBIGUOUS BOUNDARY CONDITIONS
AT THE CORNERS ARE AVOIDED.

THE UNIFORMLY APPLIED PRESSURE DOES NOT AFFECT THE SOLUTION

VELOCITIES, BUT IS INCLUDED TO TEST INTEGRATION ACCURACY.
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FLUIDS EXAMPLE PROBLEM FLUI601 ] Geometry

NODES

¥

]8

]8

]7

]G

]5

]4

]3

]2

]l
X

:j
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FLUIDS EXAMPLE PROBLEM FLUI6011 Input Data

**CASE

TITLE PARALLEL FLOW: STOKES

PLANE

FLUID INCOMPRESSIBLE STEADY

TIME STEP 1 1.0
MAXI 1

THERMAL

ITERATIVE LINEAR
PRECISION MAXIMUM

(LINEAR) FLOW

$ INCLUDE HEAT TRANSFER ANALYSIS ALSO

$ ONLY SOLVE STOKES FLOW

**MATE

ID MAT1

TEMP 460.0

VISC 1.0
COND 1.0

**GMR
ID GMRI

MAT MAT1

TINT 460.0

POINTS
1

2

3
4

5

6

7

8
SURFACE SURF1

TYPE QUAD
ELEMENTS

1
2

3

4

NORMAL +

SAMPLING POINTS
ii

12

13
14

15

16

17

18

19

0.0000

1.0000

2.0000

2.0000

2.0000
1.0000

0.0000

0.0000

1
3

5

7

1.0000

1.0000

1.0000

1.0000
1.0000

1.0000
1.0000

1.0000

1.0000

0.0000

0.0000

0.0000

5.0000

i0.0000
i0.0000

i0.0000

5.0000

1.0000

2.0000

3.0000

4 0000

5 0000

6 0000
7 0000

8 0000

9 0000

* *BCSET

ID BOTTOM

VALUE

GMR GMRI
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SURFACE SURF1
ELEMENTS 1

VELO 1

SPLIST ALL
T 1 0.0000

VELO 2
SPLIST ALL

T 1 0.0000

TEMP

SPLIST ALL
T 1 0.0000

* *BCSET
ID EXIT

VALUE

GMR GMRI

SURFACE SURF1
ELEMENTS 2

TRAC 1

SPLIST ALL
T 1 -100. 0000

TRAC 2

SPLIST ALL
T 1 0. 1000

**BCSET
ID TOP

VALUE

GMR GMRI
SURFACE SURF1

ELEMENTS 3

VELO 1

SPLIST ALL

T 1 1.0000

VEL0 2

SPLIST ALL
T 1 0.0000

TEMP

SPLIST ALL
T 1 1.0000

**BCSET

ID ENTRANCE

VALUE
GMR GMRI

SURFACE SURF1
ELEMENTS 4

TRAC 1

SPLIST ALL
T 1 100. 0000

TRAC 2

SPLIST ALL
T 1 -0.1000

$ END OF DATA

FLUIDS EXAMPLE PROBLEM FLUI601 / Input Data
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FLUIDS EXAMPLE PROBLEM FLUI601 / Selected Output

JOB TITLEz PARALLEL FLOW: STOKES (LINEAR) FLOW

BOUNDARY SOLUTION AT TIME = 1.000000 FOR REGION = GMRI

ELEMENT NODE NO. X VELOCITY ¥ VEIaOCITY TEMPERATURE X TRACTION Y TRACTION FLUX

1 0.00000E+00 0.00000E+0O 0.0D000E+00 -0.1000DE+00 0.10000E*03 0.10000E+00

2 0.00000E+00 0.000O0E+O0 0.00000E+00 -0.10000E+00 0.1000DE+03 0.100O0E÷00

3 0.00G00E÷00 0.00000E+00 0.O0000E+00 -0.10000E+00 0.100O0E+03 O.10000E*00

3 0.00000E+00 0.00000E+00 0.00000E+00 -0.10000E÷03 0.10000E÷00 0.00000E+00

4 0.50DDOE+00 0.16170E-08 0.SO000E+0D -D.10000E+D3 0.1OO00E÷00 O.0000DE+OD

5 0.I0000E+01 0.00000E+00 0.10000E+01 -0.I0000E+03 0.10O00E+0O 0.00000E+00

5 0.10000E+01 0.00000E+00 0.10000E+01 0.10000E+0O -0.10000E÷03 -0.10000E+00

6 0._0000E_Ol _.a0OO0E+00 0.1O000E_01 0.I0000E+_0 -Q.IGOQOE+03 -0.10000E*00

7 0.10000E+01 0.00000E÷00 0.10000E+01 0.10000E+0D -0.10000E+03 -0.10000E*00

7 0.10000E+0I D.00000E+00 0.Z0000E+01 O.10000E÷03 -0.10000E+00 0.00000E+00

8 0.50000E+00 -0.16170E-08 0.50000E+00 0.10000E+03 -0.10O00E+00 0.00000E+00

1 D.00000E+O0 0.00000E+00 0.00000E+00 0.10000E÷D3 -0.10000E+00 0.00000E÷00

JOB TITLE: PARALLEL FLOW: S_C)KES {LINEAR) FLOW

INTERIOR VELOCITY AT TIM_ = 1.000000 FOR REGION = GMRI

NODE X VELOCITY ¥ VELOCITY TEMPERATURE

1 0.000000E÷00 0.000000E+00 0.000000E÷00

2 0.000000E+00 0.000000E+00 0.000000E*00

3 0.000000E+00 0.000000E+00 0.000000E+00

4 0.500000E+00 0.161705E-08 0.500000E+00

5 0.100000E+01 O.000000E+00 0.100000E÷01

6 0.100000E+01 0.000O00E+00 0.1D0000E+01

7 O.1000DOE+01 O.OOO0OOK+00 O.100000E*01

8 0.500000E÷00 -0.161701E-08 0.500000E+00

11 0.100000E+00 -0.198781E-09 O.100000E+O0

12 0.200000_+00 -0.@79798E-09 0.200000E+00

13 0.300O00E÷00 -0.220993E-07 0.300000E*00

14 O.4OO0O0E+00 0.943855E-08 0.4000O_E+00

15 0.500000E+00 0.906079E-14 0.500000E+0O

16 0.600000E+00 -0.9_3853E-08 0.600000E÷00

17 0.700000E+00 0.220994E-07 0.700000E,00

18 0.8000DDE+00 0.879830E-09 0.800000E+00

19 0.900000E+00 0.198821E-09 0.900000E+00
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FLUIDS EXAMPLE PROBLEM FLUI602 / Problem Description

EXAMPLE PROBLEM: FLUI602

ANALYSIS TYPE: FLUID DYNAMICS

2-D, STEADY STATE, THERMO-VISCOUS FLOW, INCOMPRESSIBLE,

NEWTON RAPHSON ITERATION ON NONLINEAR TERMS.

PROBLEM DESCRIPTION:

FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS

MOVING WITH A VELOCITY OF i. LOWER PLATE IS FIXED.

NO REFERENCE PRESSURE PRESENT. THIS IS OFTEN CALLED

"COUETTE FLOW m , BUT IS USED HERE TO TEST NONLINEAR

ITERATION.

BOUNDARY ELEMENT MODEL:

TWO GMR, TEN CELLS TOTAL.

REFERENCE FOR ANALYTICAL SOLUTION:

MORTON DENN, PROCESS FLUID MECHANICS (1980), PG. 176-177.

X-VELOCITY IS A LINEAR DISTRIBUTION BETWEEN PLATES.

SOLUTION POINTS TO VERIFY:

GMR NODE

(X-VELOCITY AFTER THIRD TIME STEP)

ANALYTICAL BEST-FSI

1 24 .5000 .4999

1 26 .6000 .5997

2 240 .9000 .9000

RUN TIME:

23 X BASE PROBLEM

MISCELLANEOUS:

TRACTION BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,

FROM THE ANALYTICAL SOLUTION. AMBIGUOUS BOUNDARY CONDITIONS

AT THE CORNERS ARE AVOIDED. TIGHT ITERATION TOLERANCES AND

MAXIMUM INTEGRATION PRECISION ARE USED TO TEST ACCURACY OF

NONLINEAR SOLVER.

THIS ALSO TESTS THE INTERFACE BETWEEN TWO GMR'S, EACH WITH

A DIFFERENT FREE-STREAM VELOCITY.
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FLUIDS EXAMPLE PROBLEM FLUI602 [ Geometry

Y

d

X

GEOMETRY

730

730

_2

L/iu

r-Gu

_31

777'72l

_3

L_

_l<lZ-

!45

740

737

!9

74

0

GMR2

NODES

GMRI

NODES
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FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

**CASE

TITLE (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES
PLANE

FLUID INCOMPRESSIBLE STEADY

TIME STEP 3 1.0

MAXI i0

THERMAL

NEWTON
INCREMENT DENSITY

TOLERANCE I.E-9

PRECISION MAXIMUM

$ THIS SPECIFIES 3 TIME STEPS,

$ EACH OF 1.0 TIME UNITS LONG.

$ EACH TIME STEP HAS A MAXIMUM

$ OF 10 ITERATIONS.

$ DENSITY IS INCREMENTED TO INCREASE THE

$ EFFECT OF THE NONLINEAR CONVECTIVE TERMS.
$ THIS REFERENCES THE **BODF CARDS WHICH

$ SPECIFY HOW DENSITY IS INCREMENTED.

**MATE
ID MAT1

TEMP 460.0

VISC 1.0
DENS 1.0

COND 1.0

SPEC 1.0

**GMR

ID GM_I

MAT MAT1

TINT 460.0

VREF 0.0

P0 INT S
I

2
3

4
5

6

7
8

9

I0
Ii

12
13

14

15
16

17

18

19

2O

21

22

0.0

0.0000 0.0000

0.5000 0.0000

1.0000 0.0000

1.5000 0.0000
2.0000 0.0000

0.0000 1.0000

1.0000 1.0000
2.0000 1.0000

0.0000 2.0000

0.5000 2.0000
1.0000 2.0000

1.5000 2.0000
2.0000 2.0000

0.0000 3.0000

1.O000 3.0000
2.0000 3.0000

0.0000 4.0000

0.5000 4.0000

1.0000 4.0000

1.5000 4.0000
2.0000 4.0000

0.0000 5.0000
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23

24

25

26
27

28

29

SURFACE SURF1

TYPE QUAD
ELEMENTS

ii

12

13

14

15

25

26

22

23

24

NORMAL +
VOLUME

TYPE QUAD
CELL

1
2

3

4
5

6

1.0000

2.0000

0.0000

0.5000

1.0000
1.5000

2.0000

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

5.0000

5.0000

6.0000

6.0000
6.0000

6.0000

6.0000

1 2 3

3 4 5

5 8 13

13 16 21
21 24 29

29 28 27

27 26 25

25 22 17

17 14 9

9 6 1

1 2 3 7 ii i0 9 6
3 4 5 8 13 12 ii 7

9 i0 ii 15 19 18 17 14

ii 12 13 16 21 20 19 15

17 18 19 23 27 26 25 22
19 20 21 24 29 28 27 23

* *GMR

ID GMR2

MAT MATI

TINT 460.0
VREF 0.8

PO INTS

225

226

227

228

229
230

231

232

233
234

235

236
237

238

239

240

241

242

243

244

0.0

0.0000

0.5000

1.0000

1.5000
2.0000

0.0000

1 0000

2 0000

0 0000
0 5000

1 0000
1 5000

2 0000

0 0000

1 0000

2.0000

0.0000

0.5000

1.0000
1.5000

6.0000

6.0000
6.0000

6.0000

6.0000

7.0000

7.0000

7.0000

8.0000
8.0000

8.0000
8.0000

8.0000

9.0000

9.0000

9.0000

10.0000

I0.0000

10.0000
I0.0000
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245

SURFACE SURF2

TYPE QUAD
ELEMENTS

216

217

218
219

220

221
227

228

NORMAL +

VOLUME

TYPE QUAD
CELL

207

208

209

210

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

2.0000 i0.0000

229 232 237

237 240 245

245 244 243

243 242 241

241 238 233

233 230 225

225 226 227

227 228 229

225 226 227 231 235 234 233 230

227 228 229 232 237 236 235 231

233 234 235 239 243 242 241 238
235 236 237 240 245 244 243 239

**INTERFACE

GMR GMRI

SURF SURF1
ELEM 25

GMR GMR2

SURF SURF2
ELEM 227

VDIF

26

228

$
$ BOUNDARY CONDITIONS ON GMRI:

$
**BCSET

ID BOTTOM

VALUE

GMR GMRI
SURFACE SURF1

ELEMENTS ii 12

VELO 1

SPLIST ALL
T 1 0.0000

VELO 2

SPLIST ALL

T 1 0.0000

TEMP

SPLIST ALL
T 1 0.0000

* *BCSET

ID EXIT1

VALUE

GMR GMRI
SURFACE SURF1

ELEMENTS 13

TRAC 1

14 15
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SPLIST ALL

T 1 0.0000
TRAC 2

SPLIST ALL

T 1 0.1000

FLUX
SPLIST ALL

T 1 0.0000

* *BCSET

ID ENTER1

VALUE

GMR GMRI

SURFACE SURF1

ELEMENTS 22

TRAC 1

SPLIST ALL

T 1 0. 0000
TRAC 2

SPLIST ALL

T 1 -0. i000

FLUX
SPLIST ALL

T 1 0. 0000

23 24

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

$
$ BOUNDARY CONDITIONS ON GMR2:
$
**BCSET

ID EXIT2

VALUE

GMR GMR2

SURFACE SURF2

ELEMENTS 216 217
TRAC 1

SPLIST ALL

T 1 0.0000

TRAC 2

SPLIST ALL

T 1 0.1000
FLUX

SPLIST ALL

T 1 0.0000

**BCSET

ID TOP

VALUE

GMR GMR2
SURFACE SURF2

ELEMENTS 218

VELO 1

SPLIST ALL

T 1 I. 0000

VELO 2

SPLIST ALL

T 1 0. 0000

TEMP

219
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SPLIST ALL
T 1 1.0000

**BCSET
ID ENTER2

VALUE

GMR GMR2
SURFACE SURF2

ELEMENTS 220

TRAC 1

SPLIST ALL
T 1 0.0000

TRAC 2

SPLIST ALL
T 1 -0. 1000

FLUX

SPLIST ALL
T 1 0. 0000

221

FLUIDS EXAMPLE PROBLEM FLUI602 / Input Data

**BODF

CONVECTIVE

TIMES

GMR GMRI
DENSITY

GMRGMR2

DENSITY

$

0.01.02.03.0

0.01.010.0100.0

0.0 1.0 I0.0 i00.0

AT TIME T=3.0, THE D_SITY HAS A_AINED A VALUE OF 100.0

$ END OF DATA
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FLUIDS EXAMPLE PROBLEM FLUI602 / Selected Output

NoDE

JOB TITLE: (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES

INTERIOR VELOCITY AT TIME = 3.000000 FOR REGION : GMRI

X VELOCITY Y VELOCITY TEMPERATURE

1 0.000000E+00 0.000000E+00 0.000000E÷00

2 0.O00000E+00 0.000000E+00 0.000000E÷00

3 0.000000E+00 0.000000E+00 0,000000E+00

7 0.999988E-01 0.I08385E-06 0.I00351E+00

II 0.199997E+00 -0.539313E-06 0.200696E*00

I0 0.199996E+00 -0.150204E-06 0.200697E+00

9 0.199996E+00 0.609698E-06 0,200699E+00

6 0.999991E-01 -0.367394E-06 0.I00350E÷00

4 0.000000E+00 0.000000E+00 O.000000E+00

5 0.000000E+00 0.000000E+00 0.000000E+O0

8 0.999991E-01 0,561417E-07 0.I00350E+00

13 0.199997E+00 -0.862773E-07 0.200693E+00

12 0.199997E+00 -0.422776E-06 0.200694E+00

15 0.299993E+00 -0.214891E-06 0.301005E+00

19 0.399988E+00 -0.765140E-06 0.402284E+00

18 0.399988E+00 -0.605515E-06 0.401285E+00

17 0.399988E+00 -0.738825E-08 0.401287E*00

14 0.299993E÷00 -0.862877E-06 0,301005E+00

16 0.299994E+00 -0.378700E-06 0.301004E+00

21 0.399988E+00 -0.493718E-06 0.401282E+00

20 0.399988E+00 -0.845648E-06 0.401283E+00

23 0.499984E+00 -0.595487E-06 0.501465E+00

27 0.599985E+00 -0.631671E-06 0.601499E÷00

26 0.599985E+00 -0.232570E-06 0.601499E+00

25 0.599985E÷00 0.351934E-07 0.601500E+00

22 0.499984E400 -0.I03572E-05 0.501469E+00

24 0.499984E+00 -0.578257E-06 0.501463E*00

29 0.599985E+00 -0.988109E-06 0.601495E+00

28 0.599985E+00 -0.717437E-06 0.601497E÷00

1 JOB TITLE: (PARALLEL FLOW) NON-LINEAR NAVIER-STOKES

INTERIOR VELOCITY AT TIME = 3.000000 FOR

NODE
X VELOCITY Y VELOCITY TEMPERATURE

REGION = GMR2

225 0.599985E+00 0.351934E-07 0.601500E+00

226 0.599985E+00 -0.232570E-06 0.601499E÷00

227 0.599985E+00 -0.631671E-06 0.601499E+00

231 0.699988E+00 -0.608461E-06 0.701335E+00

235 0.799995E+00 -0.626972E-06 0.800929E+00

234 0.799995E+00 -0.234223E-06 0.800929E_00

233 0.799994E÷00 -0.167461E-06 0.800929E+00

230 0.699987E+00 -0.752627E-06 0.701339E÷00

228 0.599985E+00 -0.717437E-06 0.601497E+00

229 0.599985E+00 -0.988109E-06 0.601495E+00

232 0.699988E+00 -0.415274E-06 0.701331E+00

237 0.799995E+00 -0.I19037E-05 0.800928E+00

236 0.799994E+00 -0.723639E-06 0.800929E+00

239 0.900000E+00 -0.I09554E-05 0.900433E+00
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FLUIDS EXAMPLE PROBLEM FLUI602 / Selected Output

243 0.100000E+01 0.O00000E*00 O.100000E*01

242 0.100000E+01 0.000000E*00 0.100000E÷01

241 0.100000E+01 0.000000E+00 0.100000E+01

238 0.900000E)00 -0,132977E-05 0.900432E_00

240 0.900000E+00 -0.514231E-06 0.900434E400

245 0.10000DE÷01 O.000000E+00 0.100000E+01

244 O.100000E+Ol 0.000000E+00 0,100000E+01
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FLUIDS EXAMPLE PROBLEM FLUI603 / Problem Description

EXAMPLE PROBLEM: FLUI603

ANALYSIS TYPE: FLUID DYNAMICS

2-D, TRANSIENT, THERMO-VISCOUS STOKES FLOW, INCOMPRESSIBLE

PROBLEM DESCRIPTION:

DEVELOPING FLOW BETWEEN TWO PARALLEL PLATES. THE UPPER PLATE IS

IS INSTANTLY APPLIED AT TIME T:0. AND IS MOVING WITH A VELOCITY

OF i. LOWER PLATE IS FIXED.
THIS IS OFTEN CALLED "DEVELOPING COUETTE FLOW'.

BOUNDARY ELEMENT MODEL:

12 BOUNDARY ELEMENTS, NO INTERIOR CELLS.

REFERENCE FOR ANALYTICAL SOLUTION:

SCHLICHTING, BOUNDARY LAYER THEORY (1979), PG. 91-92,
INVOLVING AN INFINITE SERIES.

THE DEVELOPING VISCOUS FLOW IS SIMILAR TO THE DEVELOPING
TEMPERATURE PROFILE IN HEAT CONDUCTION.

SOLUTION POINTS TO VERIFY:

TIME NODE

(Y-VELOCITY)

ANALYTICAL BEST-FSI

2.0 15 .0124 .0166

2.0 22 .3173 .2992
I0.0 15 .2627 .2573

i0.0 22 .6547 .6486

RUN TIME:

3 X BASE PROBLEM

MISCELLANEOUS:

Y-VELOCITY IS FIXED ON INLET AND OUTLET.

CONDITIONS ARE AVOIDED AT THE CORNERS.

AMBIGUOUS BOUNDARY
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FLUIDS EXAMPLE PROBLEM FLUI603 / Geometry
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FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

**CASE

TITLE TRANSIENT PARALLEL FLOW: STOKES (LINEAR) FLOW
PLANE

FLUID INCOMPRESSIBLE TRANSIENT $ THIS SPECIFIES TEN TIME STEPS,

TIME STEP i0 1.0 $ EACH ONE TIME UNIT LONG. SINCE THIS IS

MAXI 1 $ A LINEAR PROBLEM, ONLY ONE ITERATION PER

$ TIME STEP IS REQUIRED.
THERMAL

ITERATIVE LINEAR

* *MATE

ID MAT1

TEMP 460.0

VISC 1.0

COND i. 0

DENS i. 0
SPEC i. 0

**GMR

ID GMRI
MAT MAT1

TINT 460.0

POINTS
1

2

3

4
5

6

8

9

I0

Ii

13

14

15
16

18
19

20

21

23

24
25

26

27

28

SURFACE SURF1

TYPE QUAD
ELEMENTS

6

7

0.0000

1.0000
2.0000

0.0000

2.0000
0.0000

2.0000

0.0000
2.0000

0.0000
2.0000

0.0000

2.0000

0.0000

2.0000
0.0000
2 0000

0 0000

2 0000

0 0000
2 0000

0 0000

1 0000
2 0000

0.0000

0.0000
0.0000

1.0000

1.0000
2.0000

2.0000

3.0000
3 0000

4 0000

4 0000

5 0000

5 0000

6 0000

6 0000
7 0000

7 0000

8 0000

8 0000

9 0000
9 0000

10 0000

10 0000
10 0000

1 2 3

3 5 8
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8 8

9 13

i0 18
ii 23

12 28

13 26

14 21

15 16

16 ii

17 6

NORMAL +

SAMPLING POINTS
7

12

17
22

1.0000

1.0000

1.0000
1.0000

FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

i0 13

15 18

20 23

25 28

27 26
24 21

19 16

14 ii

9 6

4 1

2.0000

4.0000
6.0000

8.0000

**BCSET

ID BOTTOM
VALUE

GMR GMRI

SURFACE SURF1
ELEMENTS 6

VELO 1

SPLIST ALL

T 1 0. 0000

TRAC 2

SPLIST ALL

T 1 0. 0000

TEMP

SPLIST ALL

T 1 0. 0000

* *BCSET

ID EXIT

VALUE
GMR GMRI

SURFACE SURF1
ELEMENTS 7

TRAC 1

SPLIST ALL
T 1 0. 0000

VELO 2

SPLIST ALL
T 1 0. 0000

FLUX

SPLIST ALL
T 1 0.0000

8 9 i0 Ii

* *BCSET

ID TOP
VALUE

GMR GMRI

SURFACE SURF1

ELEMENTS 12
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VELO 1

SPLIST ALL

T 1 i. 0000

TRAC 2

SPLIST ALL

T 1 0. 0000
TEMP

SPLIST ALL

T 1 I. 0000

FLUIDS EXAMPLE PROBLEM FLUI603 / Input Data

**BCSET

ID ENTRANCE

VALUE

GMR GMRI

SURFACE SURF1

ELEMENTS 13

TRAC 1

SPLIST ALL

T 1 0.0000
VEL0 2

SPLIST ALL

T 1 0.0000
FLUX
SPLIST ALL

T 1 0.0000

$ END OF DATA

14 15 16 17
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FLUIDS EXAMPLE PROBLEM FLUI603 / Selected Output

JOB TITLEI TRANSI_T PARALLEL FDOWI STOKES (LINEAR) FLOW

BOUNDARY SOLUTION AT TIME = 2.000000 FOR REGION = GMRI

ELEMENT NODE NO. X VELOCITY Y VELOCITY TEMPERAq_IRE X TRACTION Y TRACTION FLUX

1 0.00000E+00 0.00000E+00 0.00000E÷00 -0.44523E-02 0.00000E+00 -0.51950E-05

2 O.00000E+00 0.I0840E-13 0.00000E÷00 -0.25984E-02 0.00000E+00 0.38557E-04

3 0.O0000E÷00 0.00000E+00 0.00000E+00 -0.44523E-02 0.00000E+00 -0.51950E-05

3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.73689E-03 0.00000E÷00

5 0.23464E-02 0.00000E*00 0.44977E-04 0.00000E+00 0.20111E-02 0.00000E+00

8 0.40676E-02 0.00000E+00 0.23187E-03 0,00000E÷00 0.16017E-0_ 0.00000E+00

8 0.40676E-02 0.00000E+00 0.23187E-03 O.O0000E+00 0.16017E-02 0.00000E+O0

i0 0.54336E-02 0.00000E+00 0.10192E-02 O.O0000E+00 0.22512E-02 O.00000E÷00

13 0.78373E-02 0.0O000E+00 0.41377E-02 0.00000E+00 0.69760E-02 0.00000E+00

13 0.78373E-02 0.00000E+00 0.41377E-02 0.00000E+00 0.69760E-02 0.00000E+00

15 0_16623E-01 O,00ODOE+00 0.15159E-01 0.DO00OE+00 O.219B7E-01 0.0000DE+00

18 0.46134E-01 0.0000OE÷00 0.48516E-01 O.00000E+00 0.57779E-01 0.0O000E+00

i0

i0

I0

18 0.4613&E-01 0,00000E+00 0,48516E-01 0.00000E+00 0.57779E-01 0.00000E*00

20 0.126_0E+00 0.00000E+00 0.13279E*00 0.00000E+00 0.13105E400 0.00000E+00

23 0.29802E+00 0.00000E+00 0.30638E÷00 0.00000E+00 0.22857E+00 0.00000E+00

23 0.29802E+00 0.00000E+O0 0.30638E_00 0.00000E+00 0.22857E+_0 0.00000E+0O

25 0.59051E+00 0.00000E+00 0.59578E+00 0.00000E+00 0.35270E+00 0.00000E*00

28 0.20000E*01 O.O0000E+00 0.2OOO0E_01 0.O0000E*00 0.36991E+00 O.O0000E+O0

28 0.10000E+01 0.00000E+00 0.10000E÷01 0.54071E÷00 0.00000E+00 -0.56559E+00

27 0.10000E÷01 -G.II061E-12 0.I0000E÷01 0.47462E+00 0.00000E+00 -0,44176E*00

26 0.10000E+01 0.00000E+00 0.10000E*01 0,54071E+00 0.00000E+00 -0.56559E+00

13

13

13

26 0.10000E+01 0.0Q000E+00 0.10000E+0I 0.00000E*00 -0.36991E+00 0.00000E+Q0

24 0.59051E+00 0.00000E+00 0.59578E+00 0.00000E÷00 -0.35270E+00 0.00000E+00

21 0.29802E+00 O.0Q000E+O0 0.30638E+00 0.00000E+00 -0.22857E+00 0.00000E+00

14

14

14

22 0.29802E+00 0.00000E+00 0,30638E_00 0.00D00E+00 -0.22857E+00 0.00000E+D0

19 0.12630E÷00 0.00000E+00 0.13279E÷00 0.00000E+00 -0.13105E+00 0.00000E+00

16 0.46134E-01 0.00000E÷00 0.48516E-01 0.00000E+00 -0.57779E-01 0.00000E+00

15

15

15

16 0.46134E-01 0.00000E+00 0.48516E-01 0.00000E+00 -0.57779E-01 0.00000E+00

14 0.16623E-01 0.00000E+00 0.15159E-01 0.00000E÷00 -0.21987E-01 0.00000E+00

II 0.78373E-02 0.0O000E+00 0.41377E-02 0.00000E*00 -0.69760E-02 0.00000E+00
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FLUIDS EXAMPLE PROBLEM FLUI603 / Selected Output

JOB TITLEI TRANSIENT PARALLEL FLOW: STOKES (LINEAR) FLOW

BOUNDARY SOLUTION AT TIME = 2.000000 FOR REGION = GMRI

ELEMENT NODE NO.

16 ii

16 9

16 6

X VELOCITY Y VELOCITY TEMPERATURE X TRACTION Y TRACTION FLUX

0.78373E-02 0.00000E+00 0.41377E-02 0.00000E+00 -0.69760E-02

0.54336E-02 0.00000E*00 0.10192E-02 0.00000E_00 -0.22512E-02

0.40676E-02 0.00000E.00 0.23187E-03 0.00000E+00 -0.]6017E-02

0.0O000E+00

0.00000E+00

0.00000E+00

17

17

17

6 0.40676E-02 0.00000E+00 0.23187E-03 0.00000E+00 -0.16017E-02 0.00000E÷00

4 0.23_64E-02 0.00000E+00 0.44977E-04 0.00000E+00 -0.20111E-02 0.00000E+00

1 0.00000E_00 0.00000E+00 0.00000E+00 0.00000E+00 -0.73689E-03 0.0Q000E+00

JOB TITLE: TRANSIENT PARALLEL FLOW: STOKF2 (LINEAR) FLOW

INTERIOR VELOCITY AT TIME = 2.000000 FOR REGION = GMRI

NODE X VELOCITY Y VELOCITY TEMPERATURE

1 0.000000E+00 0.000000E+00 0,000000E+00

2 0.000000E+00 0,I08400E-13 0.000000E+00

3 0.000000E+00 0.000000E+00 0.000000E+00

4 0.234635E-02 0.000000E+00 0.449766E-04

5 0.234635E-02 0.000000E+00 0.449766E-04

6 0.406761E-02 0.000000E_00 0.231874E-03

8 0.406761E-02 0.000000E+00 0.231874E-03

9 0.543061E-02 0.000000E*00 0.I01922E-02

I0 0.5_3361E-02 0.0000OOE+00 0.I01922E-02

Ii 0.783732E-02 0.000000E+00 0.413767E-02

13 0.783732E-02 0.000000E+00 0.413767E-02

14 0.166229E-01 0.000000E+00 0.151592E-01

15 0.166229E-01 0.000000E+00 0.151592E-01

16 0.461342E-01 0.000000E+00 0.485159E-01

18 0.461342E-01 0.000000E+00 0.485159E-01

19 0.126305E÷00 0.000000E+00 0.132787E+00

20 0.126305E+00 0.000000E+00 0.132787E+00

21 0.298025E+00 0.000000E÷00 0.306377E÷00

23 0.298025E+00 0.00000OE+00 0.306377E+00

24 0.590507E+00 0.000000E+00 0.595779E+00

25 0.590507E+00 0.000000E_00 0.595779E+00

26 0.100000E+01 0.000000E+00 0.100000E+01

27 0.100000E+01 -0.II0610E-12 0.100000E+01

28 0.100000E+01 0.000000E+00 0.100000E_01

7 0.402738E-02 0.553125E-14 0.346103E-03

12 0.752621E-02 0.460987E-14 0.550220E-02

17 0.457630E-01 -0.753553E-13 0.566311E-01

22 0.299224E÷00 0°126423E-12 0.324723E+00
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FLUIDS EXAMPLE PROBLEM FLUI604 / Problem Description

EXAMPLE PROBLEM: FLUI604

ANALYSIS TYPE: FLUID DYNAMICS

2-D, STEADY STATE, VISCOUS STOKES FLOW, INCOMPRESSIBLE

PROBLEM DESCRIPTION:

CONVERGING FLOW BETWEEN TWO NON-PARALLEL PLATES.

A REFERENCE PRESSURE OF 192 PSI IS APPLIED.

THIS IS OFTEN CALLED "HAMMEL FLOW', "JEFFERY FLOW',

"CONVERGING CHANNEL FLOW'.

OR

BOUNDARY ELEMENT MODEL:

20 QUADRATIC ELEMENTS AROUND BOUNDARY, 5 ON EACH SIDE.

GLOBAL BOUNDARY CONDITIONS SPECIFIED EVERYWHERE.

REFERENCE FOR ANALYTICAL SOLUTION:

MORTON DENN, PROCESS FLUID MECHANICS (1980), PG. 217-218.

ALSO: GARTLING, ET. AL., IJNME, VOL. ii (1977), PG. 1155-1174.

THE ANALYTICAL SOLUTION INVOLVES RADIAL FLOW ONLY, WITH THE

MAXIMUM FLUID VELOCITY ALONG THE CENTER.LINE.

THIS PROBLEM HAS ATTRACTED A GREAT DEAL OF ATTENTION BECAUSE

THE CORRESPONDING NONLINEAR PROBLEM POSESSES AN ANALYTICAL

SOLUTION. HOWEVER, ONLY THE LINEAR (STOKES) SOLUTION IS

DETERMINED HERE.

SOLUTION POINTS TO VERIFY:

(Y-VELOCITY)

NODE ANALYTICAL BEST-FSI

1 -24.00 -23.35

86 -1.50 -1.51

RUN TIME:

0.3 X BASE PROBLEM

MISCELLANEOUS:

TRACTION BOUNDARY CONDITIONS ARE FIXED ON INLET AND OUTLET,

FROM THE ANALYTICAL SOLUTION. THESE ESTABLISH THE FLOW RATE.

AMBIGUOUS BOUNDARY CONDITIONS AT THE CORNERS ARE AVOIDED.
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FLUIDS EXAMPLE PROBLEM FLUI604 / Geometry
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FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

**CASE
TITLE (CHAN ) NAVIER-STOKES

PLANE
FLUID INCOMPRESSIBLE STEADY

TIME STEP 1 1.0

MAXI 1
ITERATIVE LINEAR

**MATE

ID MAT1

TEMP 460.0

VISC I. 0
COND 1.0

**GMR
ID GMRI

MAT MAT1

TINT 460.0

POINTS
1

2

3
4

5

6

7

8

9

i0

ii

12

17
18

28

29

34

35
45

46

51

52

62
63

68

69

79

80

85

86

87

88
89

0.0000
0.0131

0.0261

0.0391
0.0520

0.0647
0.0773

0.0896

0.1017

0.1135

0.1250

0.0000

0.3125

0.0000

0.5000
0 0000

0 6875

0 0000

0 875O

0 0000
1 0625

0 0000

1 2500

00000
1.4375

0.0000

1.6250

0.0000

1.8125

0.0000

0.2093

0.4181

0.6257

0.2500

0.2497

0.2486

0.2469
0.2445

0.2415

0.2378

0.2334

0.2284

0.2228

0.2165

0.6250

0.5413
1.0000

O.8660

1.3750

1.1908

1.7500
1.5155

2.1250

1.8403

2 5000

2 1651
2 8750

2 4898

3 2500

2 8146

3 6250

3.1393

4.0000

3.9945
3.9781

3.9508
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90
91

92

93

94

95

96

SURFACE SURF1

TYPE QUAD
ELEMENTS

26

27

28

29
30

31

32

33

34

35
36

37

38

39
40

41

42

43

44

45

NORMAL ÷

FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

0.8316

1.0353

1.2361

1.4335

1.6269

1.8160
2.0000

1 2 3
3 4 5

5 6 7

7 8 9
9 I0 Ii

ii 17 28

28 34 45

45 51 62

62 68 79

79 85 96

96 95 94

94 93 92
92 91 90

90 89 88

88 87 86

86 80 69
69 63 52

52 46 35

35 29 18

18 12 1

3.9126

3.8637

3.8042

3.7343

3.6542

3.5640

3.4641

* *BCSET

ID EXIT
VALUE

GMR GMI_I
SURFACE SURF1

ELEMENTS 26

POINTS 1
POINTS 11

TRAC 1
SPLIST 1

SPLIST ii

T 1 0.0000

T 1 -158.8274

T 1 -96. 0005

TRAC 2
SPLIST 1

SPLIST Ii

T 1 0. 0000

T 1 149.0797
T 1 498.8307

* *BCSET

ID WALL

VALUE

GMR GMRI

27 28 29 30

2 3 4 5 6 7 8

2 3 4 5

-39.8638 -77.6465

-169.3377 -169.1868

2 3 4

6.3021

209.2443

6 7 8

-111.3215

-157.3417

5 6 7

25.0361
276.2438

9 i0

9 I0

-138.9692

-133.0780

8 9 i0

55.6887

348.2084

97.4192

423.1136

$ NO-SLIP BOUNDARY CONDITION AT THE WALL
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SURFACE SURF1

ELEMENTS 31 32 33
VELO 1

SPLIST ALL

T 1 0.0000

VELO 2
SPLIST ALL

T 1 0.0000

**BCSET

ID INLET
VALUE

GMR GMRI

SURFACE SURF1

ELEMENTS

POINTS
POINTS

TRAC 1

SPLIST

SPLIST

T 1
176.6371

T 1

29.8720
T 1

TRAC 2
SPLIST 96

SPLIST 86

T 1 -498. 8312

T 1 -554.7829

T 1 -573.7505

36 37 38
96 95 94

86

96 95

86

-286.5001

-147.8771

0.0000

95

**BCSET
ID CENTERLINE

VALUE

GMR GMRI

SURFACE SURF1
ELEME_]TS 41 42

VELO 1

SPLIST ALL
T 1 0. 0000

TRAC 2

SPLIST ALL
T 1 0.0000

FLUIDS EXAMPLE PROBLEM FLUI604 / Input Data

34 35

94

39 40
93 92 91 90 89

93 92 91 90 89

-259.9573 -232.7506

-118.7465 -89.3195

88 87

88 87

-204.9528

-59.6699

$ END OF DATA

94 93 92 91 90 89 88 87

-512.8684 -525.5074 -536.7214 -546.4866

-561.5933 -566.9043 -570.7053 -572.9889

$ SYMMETRY BOUNDARY CONDITION ALONG CENTERLINE

43 44 45
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FLUIDS EXAMPLE PROBLEM FLUI604 / Selected Output

JOB TITLE: (CHAN ) NAVIER-STOKES

BOUNDARY SOLUTION AT TIME = 1.000000 FOR REGION = G_I

ELEMENT NODE NO. X VELOCITY Y VELOCITY X TRACTION ¥ TRACTION

41

41

41

86 0.00000E*00 -0.15434E+01 0.57444E+03 0.00000E+00

80 0.00000E+00 -0.16946E*01 0.57500E+03 0.00000E+00

69 0.00000E÷00 -0.18794E+01 0.57477E÷03 0.00000E+00

42 69

42 63

42 52

O.00000E÷00 -0.18794E_01 0.57477E+03 0.00000E÷00

0.00000E+00 -0.21190E*01 0.57455E+03 0.00000E*0G

0.00000E+00 -0.24339E*01 0.57406E+03 0.00000E_00

43 52

43 _5

43 35

0.00000E+00 -0.24339E+01 0.57406E403 0.00000E+00

0.00000E_00 -0,28614E+01 0,5_339E+03 O.00000E+00

0.00000E÷00 -0.34754E+01 0.57171E÷03 0.00000E+00

44

44

44

35 0.00000E÷00 -0.34754E+01 0.57171E*03 0.00000E+00

29 0.000O0E+00 -0,44301E÷01 0.56985£+03 0.00000E+00

28 0.00000E+00 -0.60816E+01 0.55862E+03 0.00000E÷00

45

45

45

18 0.00000E÷00 -0.60816E+01 0.55862E+03 0.00000E+00

12 0.00000E÷00 -0.99308E+01 0.54571E*03 0.00000E+00

1 0.00000E÷00 -0.23311E+02 0.39956E+03 0.00000E+00
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PATBEST INTERFACE I

PATRAN is a general purpose, Mechanical Computer Aided Engineering (MCAE) soft-

ware system that uses interactive graphics to create engineering design data and to evaluate

analysis results. It utilizes an open-ended "gateway" architecture that facilitates access

to most design, analysis and manufacturing software programs. PATRAN is developed,

supported, and maintained by PDA Engineering of California.

PATBEST is the pre-processing interface for BEST-FSI. It was developed by the Com-

putational Mechanics division of the Department of Civil Engineering, State University of

New York at Buffalo. It is named PATBEST indicating the direction of the transla-

tion; PATRAN to BEST-FSI. This translator converts a PATRAN generated model into

a BEST-FSI data set containing nodal coordinates, elements, GMR's and boundary con-

ditions.
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7.1I[PROGRAMDESCRImONJ

PATBEST is written in standard Fortran 77, therefore will run on all systems that

support Fortran 77. Great care has been taken to maintain portability. All variables

within the program are declared explicitly and the code is compiled with range checking.

The code is divided into two sections. The first section reads the PATRAN neutral file

and stores into a database. The second section then queries the database to write out the

BEST-FSI data set.
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17.2II STAR'I D

To start up a PATBEST session, enter the appropriate RUN PATBEST command for

your installation, i.e. for UNIX based computers it would be "patbest". The PATBEST

translator will then prompt you for a PATRAN neutral file, you can enter a name or hit

"return". By hitting "return", the program will accept the default, which is the latest

PATRAN.OUT file in your directory. After the correct PATRAN neutral file is selected,

you will be asked to select the BEST-FS/data file, which after completion of PATBEST

will contain the results of the translation.
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I 7.3 [l PATRAN INPUT REQUIREMENTS I

This section defines the PATRAN directives used to build a BEST-FSI data set. The

geometry for the data set is built within PATRAN and the boundary conditions can be

applied from within PATRAN. The interface compatibility between regions for a perfectly

bonded interface is automatically generated by PATBEST. The user can further alter the

interface conditions to satisfy his/her own needs. The case control, the material sets and

the body force input must be input by the user directly in the BEST-FSI data set.
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[ 731][GEO ET Y' P TI
Table 7.1 lists the PATRAN directives to build BEST-FSI elements and volume cells for

two dimensional problems.

Multiple GMR models are created by using the PATRAN named component directive.

Nodes or elements on the GMR interface should not have a common I.D.

The permissible element types and cell types that are supported for BEST-FSI are shown

in the following figures.

TABLE 7.1

PATBEST/PATRAN Element Library (Two-dimensional)

PATRAN CFEG CODE

BAR/2

BAR/3

TRI/3

QUAD/4

TRI/6

QUAD/8

BEST-FSI Element Name

Linear 2 noded surface element

Quadratic 3 noded surface element

Linear 3 noded volume cell

Linear 4 noded volume cell

Quadratic 6 noded volume cell

Quadratic 8 noded volume cell
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PATBEST/PATRAN Element Types

1

LineaE 2-noded Element

Quadratic 3-noded Element

Two-dimensional (surface) boundary elements

BEST-FSI User Manual March, 1992 Page 7.6



PATBEST/PATRAN Element Types

2

Linear 3-noded Cell

3

5 6 1

Quadratic 6-noded Cell

Linear 4-noded Cell

6

2

8

Quadratic 8-noded Cell

Two-dimensional Volume Cells
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I 7.3.2II Bo  DA YOONOITIO IN  TJ

Table 7.2 lists the PATRAN directives to create BEST-FSI boundary conditions. Unlike

finite element programs, all boundary conditions in BEST-FSI are applied to elements

instead of nodes. Unfortunately, PATRAN is limited in the types of boundary conditions

that can be applied to elements. In order to get around this problem, a set-id is associated

with pressure boundary conditions within PATRAN . PATBEST will convert these to the

appropriate BEST-FSI boundary condition sets.

BEST-FS] assumes a default value of zero for the traction and/or flux for any component

not specified, on any element (or points on an element) therefore, any traction or flux

component of zero value does not have to be explicitly specified.

BEST-FSI User Manual March, 1992 Page 7.8



TABLE 7.2

PATBEST/PATRAN Boundary Conditions Library

PATRAN DFEG CODE

PRES/E with set-id 1

PRES/E with set-id 3

PRES/E with set-id 31

PRES/E with set-id 32

PRES/E with set-id 34

PRES/E with set-id 6

TEMP/E

HEAT/E

CONV/E

BEST-FSI Boundary Condition

Traction (non-zero) boundary condition

Velocity (non-zero) boundary condition

Velocity boundary condition with zero X component

Velocity boundary condition with zero Y component

Velocity boundary condition with zero X & Y components

Spring (non-zero) boundary condition

Temperature boundary condition

Flux boundary condition

Convection boundary condition

IMPORTANT: PATRAN DFEG command with PRES/E option will not work with zero

data values. When specifying a zero value boundary condition (set-id 31-36) you must

input a non-zero value, however, this value will have no consequence on the resulting

boundary condition set.
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7.4 ]l PATBEST FILES

PATBEST requires as input a PATRAN neutral file. It generates three output files;

a BEST-FSI input file, which contains the nodes and connectivity information, a log file

containing a running log of all PATBEST processing information, arid a result file from

interactive data generation session. The default names are :

PATRAN neutral file

BEST-FSI raw data file

PATBEST log file

prompted file name or latest patran.out.*

prompted file name or best.dat

patbes.log
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