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A bstra ct

The purpose of this thesis is to present a numerical algorithm for the dynamical opti­

mization of fluid flow systems that contain both geometric and control variables. This 

problem was formulated in an optimal control setting by specifying some performance 

functional to be minimized subject to the constraints provided by the discretized state 

equations. An algorithm was presented and applied successfully in the feedforward 

case to a simple fluid flow problem. Linear quadratic feedback control of laminar 

incompressible fluid was also studied with the eventual intention of incorporating 

feedback control into the optimization process. A feedback law was developed nu­

merically for incompressible fluid flow systems in some special cases, but after some 

numerical analysis it became clear that this method would have to be developed fur­

ther before it could be of any practical use.

Keywords: Navier-Stokes equations; computational fluid dynamics; optimization; 

optimal control; quasi-Newton methods; feedback control; Riccati equations; linear 

quadratic regulator; perturbation methods.
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C hapter 1

Introduction and Related Literature

This thesis is produced in integrated article format containing three articles. Since 

each of these articles contains an independent introduction this section will be brief 

and will contain a rather broad overview of the material, some insight into the objec­

tives of this thesis, and of course a review of the most relevant literature publications.

1.1 Background and Thesis Direction

Enhancing the performance of existing design systems is currently an important en­

gineering topic. In the automotive or aerospace industry, for example, improving 

engine performance or reducing drag can result in lower fuel consumption, which will 

effectively reduce the operating cost and reduce the emission of pollutants. With 

advances in numerical modeling practices and computer technology, the practicality 

of numerical algorithms for the optimization of even the most complex dynamical sys­

tems has become increasingly realistic. Performance enhancement can be obtained 

either by the application of a control variable or by changing the geometry of the 

system itself. In either case, the ability to construct an accurate numerical model 

for the system in question can be of great assistance in improving the system de­

sign. However, for complex dynamical systems such as most realistic fluid flow or 

heat transfer systems, exhaustively running simulations for varying combinations of 

parameters may be unreasonable from a computational perspective, since running 

even one simulation may take many hours. Moreover, by using some more advanced 

techniques we can improve the system performance more than we ever could by basic 

“guess and check” methods, and with far less computational cost.
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The ultimate goal of this thesis is to develop and test a general numerical algo­

rithm for the performance optimization of fluid flow systems containing a combination 

of geometric and control variables and also to develop a feedback control law for an 

optimized system. This problem is formulated mathematically as the minimization 

of some performance index (or cost functional) subject to the state equations, which 

are treated as dynamical constraints.

The general problem of minimizing a function over several variable system parame­

ters subject to constraints is well established. This problem can be solved numerically 

by evaluating the performance index and its gradient at a point, then minimizing ac­

cording to any well-established minimization algorithm, such as Newton’s method or 

the conjugate gradient method. However, evaluation of the gradient of the perfor­

mance index by the most obvious methods (finite differences, for example) requires 

multiple simulations of the system at each iterative step and the computational time 

required will become unfeasible when the number of system parameters is high. For 

this reason, the well-established discrete adjoint method is used to compute the gra­

dient at each iterative step. This will result in less computational time required at 

each iterative step so that the total computational time at each step is less than 

double the computational cost of a full system simulation. Unavoidably, the data 

storage requirement will be high for any numerical optimization algorithm since it 

is not possible to optimize the system without considering all system data at each 

iterative step. This is especially problematic for control of unsteady systems since 

data will have to be stored for all time steps.

The contribution to this subject from this thesis is the coupling of geometric and 

control optimization using the discrete adjoint method to improve the performance 

of the system beyond either individual optimization process. Since the primary in­

terest has been the development of the algorithm the formulation was presented in 

the most general case, assuming as little as possible about the form of the control 

or geometric variables and assuming that the problem is unsteady since the steady
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problem is merely a special case of the unsteady problem.

Though the mathematical formulation of the problem is very self sufficient it is 

important to investigate the functionality of this algorithm to identify any potential 

problems with its application that may affect its use. When the system dynamics are 

subject to multiple design variables the cost functional may exhibit several minima 

or saddle points, which can cause slow convergence or convergence to a point which is 

not a global minimum. Since the computational cost is already large, it is important 

to have some insight into this problem so that convergence problems can be avoided. 

Some simulations are performed on a simple two-dimensional sample problem to iden­

tify such problems and propose measures to avoid these difficulties.

The literature on control and geometry optimization is far more extensive than in 

the area of feedback control for fluid flow systems. This can mainly be attributed to 

the impracticality of feedback law implementation due to difficulties in data acqui­

sition, the mathematical complexity of developing the feedback laws, and numerical 

limitations in solving the nonlinear equations that result. With improvements in 

technology such as MEMS and advances in computer technology, feedback control for 

fluid flow systems is becoming less impractical and there has been more interest in 

the mathematical treatment of this problem.

The approach to feedback flow control taken in this thesis is to discretize the 

Navier-Stokes equations spatially, resulting in a coupled system of first and zeroth 

order time differential equations. In general such discretization processes for both 

fluid flow and heat transfer systems result in a linearized system with the property of 

highly non-normal (nearly parallel) eigenvectors. Such systems typically exhibit high 

transient energy growth. Though it is possible to control such systems by standard 

methods such as PID or pole placement, these methods rely on eigenvalue informa­

tion which does not reflect eigenvector information and hence this system property is 

ignored. Ignoring this property can result in eratic behaviour such as high overshoot 

or heavy oscillations. Rather, it is preferable to use a method that either accounts

3



for eigenvector properties or penalizes the control input directly, such as optimal con­

trol. Especially popular are the special optimal control methods of H°° control or H 2 

control, the latter of which will be analyzed in this thesis.

In this thesis the derivation for a linear feedback law for incompressible laminar 

fluid flow is presented according to the same performance criteria specified for the 

open loop case. Due to the unusual form that the discretized Navier-Stokes equations 

take (differential equations coupled with algebraic equations) the derivation had to be 

approached from first principles directly from variational calculus. The state-costate 

system was developed in the most general case but could only be reduced to a matrix 

algebraic Riccati system in some special cases. Despite this minor success, the equa­

tions resulting were nonlinear matrix algebraic equations which could not be solved 

numerically. Therefore an alternate method was investigated and the system Riccati 

equation was used to numerically test the results.

1.2 Summary of the Articles Contained in this The­

sis

There are three articless contained in this thesis, each assigned an individual chapter 

number. Two of these have been published in conference proceedings, one is in press, 

and at least one will be submitted for journal publication as well. All articles have 

been modified from their original version to meet the formatting requirements of this 

thesis.

The paper herein denoted Chapter 2 has been submitted to the 18th Annual Con­

ference of the CFD Society of Canada and is entitled Performance Optimization for 

Fluid Flow Systems with Variable Geometric and Control Parameters and will also 

be submitted to the journal Optimization and Engineering. This paper presents the 

mathematical formulation and accompanying algorithm for the application of a dy­
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namical optimization procedure for fluid flow or heat transfer systems th a t contain 

some combination of geometric and control variables. The discrete adjoint method is 

used to obtain the gradient information needed for the application of a minimization 

process w ith reasonable com putational and storage requirements. The algorithm is 

validated on a simple two dimensional fluid flow system and some observations are 

made regarding the convergence, accuracy, and reliability of the algorithm.

The article denoted Chapter 3 is entitled Feedback control o f heat transfer systems 

by the numerical method o f lines and has been published in the proceedings of The 

2009 A SM E  Sum m er Heat Transfer Conference. In this paper, an optimal feedback 

law was applied from first principles to  a simple one dimensional nonlinear heat trans­

fer system using a spacial discretization and solving the resulting system of ordinary 

differential equations. The purpose of this exercise was to investigate the effectiveness 

of applying a feedback law to a numerically simulated nonlinear dynamical system 

by this partial discretization method. This paper also includes simulation about an 

evolving linearization point, which was too complex to perform for the Navier-Stokes 

equations.

The article denoted Chapter 4 is entitled Feedback control o f fluid flow systems us­

ing a finite volume discretization. This article has not been subm itted for publication 

but incorporates some of the results form our paper Optimal feedback control o f the 

Navier-Stokes equations, published in The 20th International Symposium on Trans­

port Phenomenon. This article details the m athem atical formulation for feedback 

control of the Navier-Stokes equations using linear quadratic regulation. A numerical 

m ethod is presented for the generation of a feedback law and its validity is inves­

tigated by some numerical analysis as well as direct simulation. This chapter is in 

the preparation to be subm itted to the journal International Journal fo r  Numerical 

Methods in Fluids.
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1.3 Literature Review

As mentioned, the background material relating to Chapter 2 is well-established. Here 

we use a discrete adjoint method applied directly to the discretized Navier-Stokes 

equations to develop an equation for the gradient of a specified performance index 

with relatively low computational cost. Early publications on the use of the discrete 

adjoint method for performance optimization of fluid flow systems include Reuther 

and Jameson (1994) and Korivi et al (1992). The first of these details the discrete 

adjoint method in terms of an airfoil design problem for steady operating conditions 

and provides a numerical problem for validation. The second investigates numerical 

methods for solving the adjoint equations, including some detailed analysis of the 

advantages of certain numerical solution methods. For a thorough treatment of the 

subject of discrete adjoint methods and optimal desing problems we primarily referred 

to Haslinger and Makinen (2003) and Laporte and Tallec (1999). In Rumpfkeil and 

Zingg (2008), the authors presented the formulation for the discrete adjoint method 

applied to time-variant systems. This article also presented two numerical examples, 

one of which was a control problem with a time-periodic control law and the second 

of which was a geometric optimization problem. The subject of Chapter 2 is a direct 

extension of this work to systems with mixed parameter types. The text Nocedal and 

Wright (2006) details several optimization schemes relevant to this paper, including 

quasi-Newton and gradient methods.

Feedback control of fluid flow systems has been approached by many diverse angles 

and to our knowledge there is no complete textbook on the subject. The textbook 

chapter Gad-el-Hak and Bewley (2006) does however provide a recent review of cur­

rent progress in this field. One of several major obstacles in the solution to the linear 

control generation from the discretized Navier-Stokes equations is that the discretiza­

tion takes on a degenerate form, as we will see. A number of strategies have been used 

to approach this problem. An investigation of the existence and uniqueness of such 

a control is given by Cobb (1983). One approach to solving the degenerate control
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problem is model reduction. A mathematical formulation for the specific form of the 

degenerate control problem as encountered in fluid mechanics is presented in Hechme 

et al (2008). In Rediniotis et al (2002) the authors use a model reduction method 

based on a correlation matrix from either a physical or numerical experiment to ac­

quire a feedback law. Since the finite volume discretization was not easily amenable to 

the method of Hechme et al (2008) we chose instead to use a perturbation technique 

similar to what has been done in Stoyanov (2006), in which the author developed a 

feedback law for the finite-element discretized Stokes equations.

The solution to the linear quadratic regulator problem by any method requires the 

solution to a nonlinear matrix algebraic Riccati equation, the matrices involved being 

quite large, creating a formidable numerical challenge in all but the simplest of cases 

and resistant to numerical solutions by established numerical algorithms. Some recent 

algorithms have been developed for this equation tuned to address certain problems 

encountered in fluid flow control, including Penzl (1999) and Borggaard et al (2004).

The subject of optimal control is well-established and thoroughly studied, espe­

cially for the special case of linear quadratic regulation which is particularly empha­

sized in this thesis. Some important control texts which we referred to are Bryson 

and Ho (1969); Brocket (1969); Lee and Markus (1967). We also referred to Pinch 

(1993) for a comprehensive derivation of the Euler-Lagrange equations.

Since the numerical procedures developed in this thesis were highly interactive 

with the state equations we chose to hard code in Matlab the dynamical systems that 

we analyzed rather than use any computational software for fluid mechanics. Though 

this proved rather time consuming it was easier to produce and debug the control- 

related matrices when they were generated directly from the active coefficients of the 

discretized system. For the basic principles of fluid mechanics we referred primarily 

to Patankar (1980). A change of coordinates approach was taken to deal with the 

non-orthogonal mesh for the channel flow around an ellipse, for which we referred to 

both Thompson et al (1985) and Liseikin (1999) for the methodology.
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Chapter 2
Performance Optimization for Fluid Flow Systems with 

Variable Geometric and Control Parameters

2.1 Introduction

Numerical optimization methods have played an increasingly important role in shape and 
control optimization for complex dynamical systems. This is especially true for dynamical 
systems that are governed by nonlinear partial differential equations, such as most realistic 
fluid flow systems. The effective use of such methods is made possible by the increas­
ing availability of high-performance computational tools and significant developments in 
computational fluid dynamics over recent decades. Numerical methods are not reliable 
enough to produce ideal system design without physical experimentation to verify the re­
sults. However, they can help considerably to guide the initial design process or suggest 
improvements on an existing design before any expensive experiments are conducted.

Design optimization can be formulated mathematically as minimizing some perfor­
mance index (or cost function) subject to the governing state equations, which are treated 
as constraints. Many numerical methods exist for the solution of problems described as 
such by using the information from the evaluation of the function at one point to determine 
a “better” point until the minimum is reached. Some relevant examples include the gra­
dient method or Newton’s method (Nocedal and Wright, 2006), both of which require for 
the gradient to be calculated at each iterative step. For numerically modeled fluid flow sys­
tems, computing the gradient by standard finite difference techniques will generally require 
several full simulations of the system at each iterative step. Though it is possible to opti­
mize the system in this fashion, one simulation of the system is often very computationally 
expensive and so a control theory-based discrete adjoint method will be used to compute 
the gradient in this study. Such methods are well established for both control and geometry 
optimization. Early works on the subject include Reuther and Jameson (1994) and Korivi 
et al (1992). A thorough treatment of the subject can be found in Laporte and Tallec (1999) 
or Haslinger and Makinen (2003). Recently, Rumpfkeil and Zingg (2008) developed the 
discrete adjoint method for transient fluid flow systems and applied it successfully to two 
fluid flow optimization problems. The purpose of the current study is to extend this process
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to systems containing both geometric and control variables.
The objective of the current study is to couple geometry and control optimization pro­

cedures to globally optimize the performance of a dynamical system. The mathematical 
formulation of the problem is presented in a general framework and a numerical experiment 
is conducted for drag minimization of two-dimensional channel flow around an elliptical 
obstruction. The flow dynamics are governed by the Navier-Stokes equations which were 
discretized according to the finite volume method of Patankar (1980). The computational 
mesh for the numerical experiment is non-orthogonal and a coordinate transformation is 
used to solve the state equations (Thompson et al, 1985; Liseikin, 1999). A thorough 
treatment of numerical optimization techniques, especially quasi-Newton methods, can be 
found in Nocedal and Wright (2006).

2.2 Formulation

Define a dynamical system with governing equations S on a finite domain and over a fi­
nite time interval [0, tf]. The system contains several geometric design parameters Z which 
are not a function of time or space. In the case where the objective is the optimal shape 
for a system boundary, the simplest formulation of the problem is to treat the boundary as 
a series of stationary points in the computational domain. This formulation allows for the 
problem to be treated as an optimization problem over several spatial parameters where the 
spacial dependence is not explicit. The system also contains several control parameters Y 
which are treated as being independent of space and time. In the case where each control 
variable has the form Y* =  Y(f), the parameter is made independent of time by discretizing 
and treating it as several parameters Yi(t) —> Y/\ n =  1 .. .  TV, where TV is the number of 
time steps. We may also have Yi(t) = g(Y ^,t), where g(t) is pre-determined up to the 
constant parameters Y?, which may be vectors.

2.2.1 The General Case

For ease of notation, introduce W  =  [YT, Z7 ]T. To quantify the performance of the system 
we introduce the quantity J , referred to as the cost function or performance index, along

11



with its discretization over N  time steps:

J =  /(X (f),W (i))d i-> - J ] / n (X ",W ). (2.1)

The dynamical system for optimization will be governed by a (system of) nonlinear partial 
differential equation(s). The spatial discretization of this (system of) equation(s) at the 
nth time step will be denoted G*n. The transient term is assumed to be first order and 
linear (which is generally the case in fluid flow and heat transfer problems) and can be 
discretized by any number of accepted discretization procedures. Using first order implicit 
time discretization, the equations will take the form:

jv n  v n  _  Yn—1
G*n (Xn, X "“1, W ) =  —---- b G (Xn, W ) ----- —----- +  G (Xn, W ") =  0. (2.2)

CLi ¿At'

The derivation for the discrete adjoint derivative will assume this discretization. The effects 
of assuming some other time discretizations are demonstrated by Rumpfkeil and Zingg 
(2008).

We wish to minimize (2.1) subject to the constraints (2.2). This problem can be solved 
by applying a minimization algorithm to J. To do this we will need to compute the gradient 
V J  by the discrete adjoint method. We define the Lagrangian of the system by appending 
the state equations to the cost function:

N

(2.3)
7 1 = 1

using the Lagrangian multiplier functions ^ . We proceed now to set the gradient VL =  
[V^L V xL V w f] =  0. The quantity =  0 produces the state equations which are
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automatically satisfied. The quantity V XL is expanded to show its internal structure:

(VxL)T =

/  (Vx^G *1)'r (V x 1G'*2)T 0 • 0 ^ / Ip1 ^

0 (v x 2g *2)t (V x 2G*3)T ■ 0 i/>2

0 0 0 • . .  ( V X » - 1G * N ) T i f i N - 1V 0 0 0 • •• (v x » G * N ) J  J \
/ ( v ^ r f \

( V X 2 i 2f

+ =  0.

( V X n - i I N - 1) T

V ( V x n I n )
r

)

Though the system is coupled we recognize that the lower block is decoupleable from the 
rest of the system. Hence we can solve the following equation independently:

il>N =  -  ((V xnG *")- 1) 7’V x nI n . (2.5)

The rest of the system can be solved recursively according to:

t/>n ( ( V x n G 'T 'f  [(Vx"/")T + (VX"G'*"+1)IV 7 1 + 1 (2.6)

in reverse time from n = N  — 1 to n =  1. Note that this technique has already been 
presented in Rumpfkeil and Zingg (2008).

We adress now the problem of computing V w f. Rather than solve for parameters W  
such that V w f  =  0 we compute the gradient directly for the current iterative step and
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apply a minimization algorithm. The expression for the gradient in its most general form:

(Vw£)t =
f  ( V w i G - ' f  (VwiG*2)t 
| (V W2G*1)T (V W2G*2)t

V ^ pG*1)7 (V„pG*2)r

(v wig *n ) t  \ /  i p 1 \ /  a r2_m=l d W1
( v w *g *n ) t Ip2

+
Y'W d ln 
2-*m=i m P

( V i v p G * n ) T  , \  t pN )
d in

\  2-m =  1 dWT

(2.7)

In this expression, P  is equal to the number of distinct parameters. Note that in general 
most entries V WiG*j will be equal to zero but this is problem dependent.

The minimization algorithm requires several iterations of the full CFD solution, which 
itself requires many internal iterations. The procedure is illustrated in Figure 2.1.

2.2.2 Special Cases

Though the formulation and solution of the problem in its most general form has been pre­
sented it may be of interest to some readers to take special consideration of some practical 
cases.

Many fluid flow systems operate for extended periods at steady state. The formulation 
of section 2.2.1 is simplified by imposing the conditions N  — l and J^X =  0. Explicitly, 
equation (2.2) becomes:

G* (X, W ) =  G (X, W ) =  0. (2.8)

Using the same procedure as before the solution is easily developed. The recursive system 
(2.5) and (2.6) is now a much simplified explicit system:

^  =  - ( ( V xG )-1)T Vx /, (2.9)

and the gradient of the Lagrangian is finally computed:

( V w l f  =  (Vw G f t / ;  +  (V w /)T . (2.10)

Of course the treatment of the geometric parameter is no different than the treatment of 
the control parameter in this case and hence the formulation for the steady state coupled
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Figure 2.1 : Process diagram for the optimization algorithm. The term active coefficients 
refers to the coefficients in front of the dependent variables in the linearized state equations.

optimization problem is no different than the well-established problem of optimizing a 
dynamical system over multiple control parameters or, similarly, multiple geometric pa­
rameters.

Another realistic problem is the optimization of a system subject to a periodic control 
law of the form Yf t )  — g (Y ci,t), where Y c.t is a P-parameter vector and is indepen­
dent of time. The formulation for this problem cannot be simplified beyond what has been 
presented in the general case, Section 2.2.1.
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2.3 Numerical Test Problem

A numerical experiment was performed to investigate the effectiveness of the numerical 
algorithm presented in the previous section and to identify any numerical difficulties that 
may arise in practice.

2.3.1 Problem Formulation

The system is two dimensional channel flow around a rectangular ellipse. The flow is 
incompressible and isothermal laminar flow governed by the Navier-Stokes equations:

p +  v  • V v^ +  Vp =  /rV2v in ii, (2.11)

V • v  — 0 in fl, (2.12)

where the velocity vector v and the pressure p are dependent variables, time t and space 
are independent variables, the density p and viscosity p are constants and Q is the physical 
domain of the system. The gradient and divergence operators are with respect to the spatial 
variables.

The computational mesh is illustrated in Figure 2.2. A block structured grid and a 
change of coordinate transformation were used to solve the fully discretized state equations 
at each time step. The transient term was treated implicitly (as in Eq. (2.2)) and deferred 
pressure correction was used to solve the pressure decoupling problem.

The primary radius r\ of the ellipse was treated as a geometric variable but the area 
of the ellipse was fixed. Thus the secondary radius is computed according to r2 = 
and hence the geometry is a function of a single parameter. We also allow for suction 
or blowing across the surface of the ellipse. The spacial profile of the suction/blowing is 
restricted to a parabolic shape in the ^-direction with variable amplitude according to

vsv( t t )  = Z L- +  r i )(Lc +  ri ~ e  [Lc - r u Lc + n ], (2.13)
r i

where Lc is the ^-coordinate of the centre of the ellipse and a(t) is the control parameter. 
Symmetry is also assumed for the suction/blowing profile. Hence the number of control 
variables is equal to the number of time steps and there is one geometric parameter. In this
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Figure 2.2: Computational mesh for the numerical test problem.

case, equation (2.7) becomes

(Vw  L)T =

/  (V yiG*X)T 
0 (Vy2G*2)1

^ (VzG *l )T ( V z G*2)1

0
0

\

('V y nG*n ) t 
[y z G*n )t  )

(  ip1 ^
■02

+

/  ML \W 1
d i2 
d Y 2

d IN
d Y N

a/n
\  2^n=i az /

(2.14)

The cost function, in this example, is taken as the drag. Two types of drag are consid­
ered around the body of the ellipse: pressure drag from the change in momentum across the 
immersed body and skin friction drag generated from the boundary layer. The discretized 
drag equations:

DP =  f  P (dAs) ^ J 2 p M j h  (2-15)
w As A

0
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(2.16)A  = jA W r V  ■ dA s -> _ ( ^ ) „

where p is the pressure, A s is the surface area vector normal to the surface of the ellipse, 
p  is the dynamic viscosity, r  is the unit vector normal to the surface of the ellipse, and v is 
the velocity vector. The total drag is of course

Dt = Dp + Ds. (2.17)

Since equations (2.15) and (2.16) are linear with respect to the state we can rewrite equation 
(2.17) in the form:

A  =  (Qp +  <h) X  =  qX, (2.18)

where qp, qs, and q are linear transformations —» 5R, m  is the dimension of X. The cost
function is constructed:

J  = X t Q X  + Y t R Y ,  (2.19)

where Q = qTq and R  > 0, R  G 3?. By construction, X TqTqX = (qX)2 > 0 and hence 
J  > 0. This ensures that a minimum exists for the system and R  > 0 prevents a solution 
where |Y | is arbitrarily large. Hence a solution must exist for this problem.

The system was coded in Matlab and solved over 648 control volumes with 4 time steps. 
Though this is a coarse grid for realistic simulation it was sufficient for illustrative pur­
poses. For the minimization algorithm we use a quasi-Newton method for the second order 
convergence rate and we use the BFGS method (Nocedal and Wright, 2006) to estimate 
the Hessian. Calculating the gradient V ZG can be done efficiently and accurately using 
automatic differentiation (Haslinger and Makinen, 2003). However, for simplicity V ZG 
was calculated using finite differences from perturbing the computational grid. Though 
this method requires more computation and temporary data storage it is sufficient for this 
example. Note that the coefficients are calculated directly for the perturbed grid without 
having to solve any systems of equations and hence the computational cost is still fairly 
low.

2.3.2 Control Optimization

The control and geometric optimization problems were each solved separately before solv­
ing the coupled optimization problem. The convergence history from the control problem 
(treating the geometry of the ellipse as a constant) is illustrated in Figure 2.3. There are
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two significant observations which can be made from this figure:

• Newton’s method converges much faster than the gradient method (as expected).

• The discrete adjoint method reduces the cost function more than the finite difference 
method does. This suggests that it is a more accurate way to calculate the gradient 
since it has more accurately determined the minimum using the condition VL =  0.

0.025
Finite Difference Method with Gradient Method
Discrete Adjoint Method with Gradient Method
Discrete Adjoint Method with Newton s Method

0.02

0.015

0.005

Iterative Step

Figure 2.3: Convergence history for the control optimization problem.

2.3.3 Geometric Optimization

The algorithm was also applied in the case when only the geometric variable was changed 
and no suction or blowing was applied. The initial radius was taken as r\n =  0.3m and 
the algorithm converged to r\q =  0.32417m. The results are displayed in Figure 2.4. The 
oscillation visible in the initial stages with Newton’s method is most likely due to a poor 
estimate of the second derivative resulting from the large initial step lengths.

To investigate whether the equilibrium is in fact a minimum the system was simulated
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for a range of values for Z  = r\ and the cost function was recorded. The results (Figure 
2.5) show that the algorithm has indeed converged to a minimum.

0.32

0.3
10 20 
Iterative Step

Figure 2.4: Convergence history for the geometric optimization problem.

2.3.4 Coupled Geometric and Control Optimization

The convergence history for the coupled optimization algorithm is provided in Figure 2.6. 
The final converged value for the performance index from Newton’s method is substantially 
lower than that obtained in either of sections 2.3.2 or 2.3.3.

The profile for J  as a function of W  cannot be visualized as it could in section 2.3.3 
since J  is now a function of several parameters. However, there is no reason to expect 
that the optimization profile J  as a function of its parameters is as simple as it was, for 
example, in the purely geometric case (Fig. 2.5). This is most likely the reason that the 
algorithm does not converge smoothly when initialized at r\ =  0.3m and Y  =  0, as there 
may be inflection points and even local minima that will affect convergence between the
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6
x 10

Figure 2.5: Cost function evaluation for a variety of r^. The equilibrium point generated 
by the optimization algorithm is indicated by ®.

initialization point and the global minimum. To improve on this, the system is initialized 
at the equilibrium from the geometric optimization r™ — 0.32417m and Y  =  0 since it 
is clear from Figures 2.3 and 2.4 that the geometric variable has a much greater impact on 
performance than the control variable does. The convergence history using this initial data 
is produced in Figure 2.7.

2.4 Numerical Considerations

The primary benefit of using a discrete adjoint method rather than finite differences to com­
pute V J  is the reduced computational cost. In this section we briefly discuss how effective 
this method has been at accomplishing this.
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Figure 2.6: Convergence history for the coupled control and geometeric optimization prob­
lem.

2.4.1 Computational Cost

We assume that the majority of the computational time is spent solving systems of equa­
tions and that the other calculations are small in comparison. The size of the system that 
must be solved for the CFD solution is m  x m, where m  is the dimension of X. This 
system must be solved about N k  +  l times, where k is an estimate for the average number 
of iterations required for convergence at each time step and l is the number of iterations 
required to initialize the system. Calculating the Lagrangian multipliers then requires the 
solution of N  different m  x m  systems. The total number o f r a x m  systems that must be 
solved is (Nk + l + N ) s, s being the number of outer iterations required for the optimiza­
tion process to converge. We observe from this that most of the computational effort at each
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Iterative Step Iterative Step

Figure 2.7: Convergence history for the coupled control and geometeric optimization prob­
lem with ri initialized from the solution to the geometric optimization problem.

iterative step results from solving the state equations, which is regarded as an unavoidable 
computational necessity, and the discrete adjoint calculation itself provides a significantly 
smaller contribution to the total computational effort. We observe furthermore that the to­
tal computational time depends highly on s, emphasizing once again the importance of a 
high order optimization algorithm such as Newton’s method. Finally, it is observed that the 
computational cost is essentially independent of the number of system parameters.

2.4.2 Data Storage

In a typical CFD calculation we need only store the coefficients from one time step at a time. 
The optimization algorithm presented in this paper requires the solution to be stored for all 
N  time steps and hence requires approximately N  times more data storage. If the necessary 
data for the minimization algorithm could be stored progressively after each time step then 
this could be avoided. This is not possible however with the discrete adjoint method since
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the equations for the Lagrangian multipliers are coupled and must be solved in reverse 
time. This storage requirement can certainly be limiting for complex systems where a large 
number of control volumes or time steps are desired. In Rumpfkeil and Zingg (2008) the 
authors presented an example where the time step used in the discrete adjoint method was 
larger than that used in the CFD calculation, the effect being significantly less data storage.

2.5 Conclusion

The discrete adjoint method was extended to the optimization of transient fluid flow sys­
tems with a combination of geometric and control variables. The method was investigated 
and validated on a simple fluid flow system. It was observed that the performance of the 
system can be a complicated function of the coupled set of parameters and that this can 
result in poor convergence, which in turn leads to high computation costs.

Optimizing over the different types of parameters separately can give some insight into 
the problem. In the case of the example presented in Section 2.3.4, optimizing each param­
eter type separately indicated that the geometric variable was dominant. Hence, optimizing 
around this parameter first was useful to get an initialization point for the coupled opti­
mization.

Though the data storage requirements of the discrete adjoint method may be limiting for 
the most sophisticated CFD systems, the method can be applied to a variety of numerically 
modeled systems to assist in the engineering design process, or to suggest improvements 
to an existing design.
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Chapter 3
Feedback Control of Heat Transfer Systems by the 

Numerical Method of Lines

3.1 Introduction

The purpose of optimal control is to transition a dynamical system from one point or tra­
jectory to some target state while optimizing some performance index. Since some infor­
mation from the solution field is necessary to arrive at the optimal control this problem will 
require the solution over the entire time field using information from the entire spatial field 
as well.

This paper will assume that the control system cannot be solved by analytical methods. 
In this case, the entire solution field cannot be predicted a priori and hence the theoretical 
optimal control cannot be computed directly. Many literature sources in fact use iterative 
methods to determine the optimal control. There are a variety of well-established minimiza­
tion procedures available (such as gradient or conjugate gradient methods, or quasi-Newton 
methods (Nocedal and Wright, 2006) which can be applied directly to the cost functional 
(Collis et al, 2001) or in association with an adjoint system (Dede, 2007; Rumpfkeil and 
Zingg, 2008; Li et al, 2000). Though this method is proven to be effective the control pro­
duced is a open loop control.

This paper focuses on a direct approach to feedback optimal control of fluid flow and 
heat transfer systems. A common tactic in the control of nonlinear dynamical systems is 
to linearize the state about an equilibrium point and apply a linear control law, such as 
linear quadratic regulation. In this case, we can guarantee convergence of the system to 
the equilibrium under the corresponding control law in some non-zero radius, given that 
the linearized system is controllable (Lee and Markus, 1967). A similar procedure can be 
adopted for systems governed by partial differential equations with linear transient term by 
discretizing the spatial variables only. The resulting system is a linear system of differential 
equations amenable to modem control methods.

The partially discretized system can be very large and solving the resulting control 
problem generally requires careful consideration of the numerical techniques to be used. 
We see in Borggaard et al (2004) an optimal control method applied to the Stokes equa­
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tions, which is essentially a linearization of the Navier-Stokes equations about the origin, 
which simplifies the control problem by eliminating the inhomogeneity introduced by the 
Dirichlet boundary condition. This allows for the control problem to be posed as a linear 
quadratic regulator problem, which is much more reasonable from a numerical perspective 
than solving systems of differential equations as we need to do for nonlinear optimal con­
trol problems.

In Brown et al (2009) we investigate this control technique and demonstrate that when 
the linearization point is not equal to the steady state equilibrium point then the control 
problem will not minimize the cost functional at steady state. This can potentially be 
amended by linearizing about the current state instead of the origin but the inhomogeneity 
introduced by this choice of linearization point produces some numerical difficulties for 
complex systems. In this paper we will investigate the quality of the results produced when 
linearizing about the current state of the system by numerical simulation on a simple heat 
transfer system. The dynamics of this particular system depend greatly on inhomogeneous 
terms.

3.2 Optimal Control of Heat Transfer Systems

This section describes how a fully discretized system can be put into its partially discretized 
form. An optimal controller is then designed for the partially discretized system. The 
method is validated through numerical simulation on a simple one-dimensional heat trans­
fer system.

3.2.1 The Numerical Method of Lines

Consider a numerical model for a stationary heat transfer system with temperature as the 
only dependent variable. In general, the discretization will take the form:

apTp =  ^2  anbTnb +  bp (3.1)

The terms a and b are known as the active coefficients.
When dealing with nonlinear systems the usual solution method is to linearize the equa­

tions into the above form and resolve any nonlinearities iteratively. Rather than recom­
mence this process at each time step for the partially discretized equations it is preferable
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to develop them in terms of the fully discretized equations. Assume that the system is first 
order and linear with respect to the transient term. Assume furthermore that the system has 
been discretized using implicit time integration. Then without loss of generality, consider 
the specific transformation to the transient term for the system that will be studied in this 
paper:

Mi
dTip Mf

TP - T °
(3.2)

dt A t
Note that such a transformation is not invertible, but if we know how the original partial 
differential equation has been discretized then it is a simple matter to reverse this transfor­
mation. The reverse transformation is given by:

M,
T,p

At
Tp , f r)TP 
-  M p~cW

(3.3)

This results in the following equation:

dTP
dt

1
ATp

Alp
~Kt a p ^ Tp + W p ^ anbTnb + W P

MiPT °
At

(3.4)

These equations can be written in compact form:

=  C p T p  +  c n b T n b +  d p . (3.5)

The coefficients c and d will be referred to henceforth as the control active coefficients.

3.2.2 Optimal Control

Consider a heat transfer system with partial discretization of the form

T  = f ( T ( t ) ,u ( t ))

where u is the control vector. Consider the control problem of driving the temperature at 
some location in the system to specified terminal condition Tf while minimizing the cost

rtf
functional ./ =  / fo (T(t),«(f)) dt. Adjoining the state to this cost function using the 

J t 0 '  "

multiplier function if>(t):

J  = f f  [ /o (T (l) ,« ( ( ) )  +  V { ( )  { / ( T ( i ) ,  u (f)) -  T (t)} dt. (3.6)
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Note that ip(t) is assumed to be a vector of differentiable real-valued functions. The fol­
lowing quantity is known as the first variation of J :

ST +  ^ Su 
ou

dt. (3.7)

Above, ST and Su are small perturbations on T  and u respectively. To simplify the notation, 
the scalar function H was introduced. This quantity is known as the Hamiltonian and it is 
defined as:

H(T(t), u(t), ijj(t)) = f 0(T(t),u(t)) + ipT(t)f(T(t), u(t)). (3.8)

As it turns out, a necessary condition for J  to be a minimum is £ J = 0 for any ST, Su 
(Bryson and Ho, 1969; Pinch, 1993). This can be achieved by appropriate assignment of 
the multiplier functions:

¿T = _dH _  _dJo _ ^ T d l  
V OT dT ^  dT

V ( t f )  =  o, (3.9)

(3.10)

(3.11)

Equations (3.9), (3.10), and (3.11) are known as the Euler-Lagrange equations. More­
over, if T f t f )  is a desired condition, then clearly STtf — 0 and so the boundary condition 
'fiiitf) =  0 can be replaced by Tfitf).

3.2.3 The Heated Rod and its Partial Discretization

Consider a solid, horizontal, stationary rod with constant cross-sectional area experiencing 
internal conduction and external convection. Note that this system is intrinsically linear. 
Consider as well the control problem of guiding the temperature of the tip of the rod to a

rtf  1

specified final temperature 7 / at time t j  while minimizing the cost functional - u 2 dt.
J to 2*

The control is the heat input at the root. That is, u =  q. The control system is depicted in 
Figure 3.1.

Some special attention needs to be given in this case to the endpoints. Since the nodes 
at both ends are taken on the outer face of the rod these nodes do not correspond to an 
individual control volume and hence there is no mass associated with either of them. As a 
result, the transient term vanishes on these nodes.
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Figure 3.1: The configuration of the heated rod

At the west face the discrete equation is of the form:

aPiTi = (IE1T2 +  b\ + q. (3.12)

At the east face the discrete equation is of the form:

O-PriTn W n '^ n—1 T bn . (3.13)

To develop these equations into the partially discretized system substitute them into the 
equations for the neighbouring nodes. This will eliminate the terms 7\ and Tn from the 
system. The details are omitted here. The final partially dicretized system equations are 
represented here in compact form:

c e ì T ì + i  T d p i T- CuQi ^
< cpiTi +  CeìTì+i +  cwiTi-i +  dpi, i = 3 . . . n — 2; (3.14)
 ̂ CpiTi +  cwiTi-i +  dpt, i = n — 1.

3.2.4 Optimal Control of the Heated Rod System

Consider the system presented in the previous section. The Hamiltonian for the system is 
given by:

H  =  / o  +  ^ 2 / 2  +  ^ 3 / 3  +  ’  • • +  lpn—l f n —1 

=  - U 2 +  ( c p 2 ^ 2  +  C E 2 T 3  +  G?2 +  Cuu ( t ) )  1p2

+  ( C P 3 ? 3  +  CW 3T2  +  C P 3 T 4  +  C Ì4 ) "03
+  ••• +

+  (cpìTì +  cwiTi-\ +  ceìTì+1 +  di)

+ ••• +

+  (cpn-lTn-l + Cwn-lTn-2 + dn- i)  Ipn-l- (3.15)
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The third Euler-Lagrange equation (Eqn. (3.11)) gives:

=>

dH_
du = U + Cu1p2 =  o

U = Cu1p2 (3.16)

Substituting this back into the original ODE system, the equation at the first interior node 
becomes: om

=  CP2T2 +  CE2T3 +  dp2 — c„^2' (3.17)

The first set of Euler-Lagrange equations (Eqns. (3.9)) are known as the adjoint or costate 
equations. For the heated rod system, these equations become:

CPî Pi C-W{i+l)1pi+\i
Ipi =  < —I p i - l C E ( i - l )  —  tpiCpi — 1p i + i C w ( i + l ) ,

i = 2;
i = 3 , . . . ,  n — 2;
i =  n — 1.

(3.18)

There are n — 2 state equations and n — 2 adjoint equations. There are n — 2 initial 
conditions on the state equations. There is one terminal condition on variable Tn and n — 3 
terminal conditions on the adjoint multipliers. Hence, the problem is fully determined. 
However, the variable Tn does not appear explicitly in any of these equations and so the 
terminal condition on this variable must be transferred over to the term Tn_ 1. Explicitly:

T n ( t f )  — T f  —
dWnrr 1------i n - 1 H--------
CLpn dPri

dPn
Own

(3.19)

3.2.5 Quadratic Regulation

Terminally constrained control problems are not very useful in practice because they do not 
ensure good performance after the control objective has been met. That is, the control law 
does not anticipate the system behaviour after t =  tf. Rather than specifying a terminal 
temperature at the tip, it is more effective to penalize the quadratic term |  (Tn — Tf)2. 
Making this term quadratic forces it to be positive or zero, which ensures well-posedness 
of the control problem. Since this term will compete with the cost associated with u it is 
appropriate to attach a multiplier to this term, denoted a.
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J  =  f  f  (T" _ T/ )2 + \ u* d t’ (3'20)

with no terminal constraints. Expanding the above expression for J  and substituting in the 
algebraic expression for Tn simplifies to:

J — 7 (if ~  £°) +  Jt (yPiTn-i +  IhTn-i +  2 ^ )  (3-21)

where 7, /?i, and 32 are constants. Since J  > 0 then J  — 7 (ij — i0) is bounded below and 
hence minimization of J  — 7 (iy — io) is still well-posed for fixed endpoint problems where 
t f  > t0 and t f  is finite. Hence, take J  — 7 (tf — t0) as the cost functional.

The Hamiltonian for the system:

H  =  3\Tn-\ +  faTn-l +  2 ^  +  ^2/2 +  ■ ■ • +  Ipifi +  . . . +  (3.22)

The third Euler-Lagrange equation (Eqn. (3.11)) still gives u = —cu-ip2- Only the last 
costate equation differs from those developed in the previous subsection:

QJj
VVt—1 :yr- $2 ('En—2t/,n—2 CPn—l^Pn—l- (3.23)UJn- 1

Choice of the weighting parameter a  will greatly affect the results. Larger a will em­
phasize minimization of (Tn — T f )2 and smaller a will emphasize minimization of u2.

3.2.6 Numerical Results for the Linear Time-Invariant (LTI) Case

The heated rod system as described is an LTI system. The control problem was simulated 
in MATLAB according to the process diagram in Fig. 3.2. The results and observations are 
presented in this section.

The rod is initially at room temperature of 283K. The control objective is to choose 
u(T(t)) that will minimize the cost functional given by Eqn. (3.20) with Tf =288K. For 
repeatability the physical parameters of the system are mentioned here: p = 1000kg m-3, 
k = 20Wm-1K-1, Cp = 500Jkg_1K-1, h = 50Wm-2K-1, Ac = 2.5 x lO ^ n r 2, L = 
0.1m. The rod has a square cross section.

Choice of the weighting parameter a  has a drastic impact on the system behaviour. If

The new control problem is to minimize:
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Figure 3.2: Process diagram for application of a feedback control law to a CFD system

a  is large then the control objective is emphasized. This will ensure that the condition 
Tn =  Tf is met rapidly but may result in large overshoot. If a  is small then the control cost 
is emphasized. This will generally reduce the magnitude of the control law but may result 
in slow convergence or an equilibrium that is below the control objective. Some trial and 
error indicated that a  =  0.001 is a reasonable value. Figure 3.3 shows good performance.

The problem of controlling LTI fluid flow systems is rather trivial as the linearization 
is not time-dependent. The problem of controlling nonlinear systems is significantly more 
difficult. The results are presented in the following section.

3.2.7 Optimal Control of Nonlinear Systems under FVM

Dynamical systems have often been controlled with optimal control by linearizing about 
an equilibrium point and developing the control for the linearized system. This control 
is stabilizing for the nonlinear system if the linearization is controllable. Unfortunately
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Final Temperature Profile Control History

Temperature History at the First Node Temperature History at the Last Node

Figure 3.3: Numerical results for the heated rod system with external convection and inter­
nal conduction

the problem is more difficult in CFD. If the solution field was known, numerical methods 
(such as FVM) would be unnecessary, and hence the solution field must be assumed to 
be unknown for CFD problems. In effect, a linearization at the equilibrium point is not 
available. However, the resolved dynamics at each time step can be treated as a local lin­
earization for the system and the control can be generated based on that information. Since 
this linearization will evolve with time the control will no longer be the theoretical optimal 
control to the infinite-horizon control problem but rather a “best estimate” for what that 
control should be. This estimate must be updated at regular time intervals until equilibrium 
is reached.

Nonlinearity is introduced into the heated rod system described in this paper by in­
cluding a radiation term aA cTp into the governing equations. The standard procedure for 
solving the discretized equations according to the finite volume method is to solve the dis­
cretized equations iteratively, updating TP at each time step, until the solution is converged. 
Once a converged solution is reached Eqn. (3.4) can be applied to determine the partially 
discretized equations. The optimal control is then developed from the partially discretized
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Figure 3.4: Numerical results for the heated rod system with external convection, internal 
conduction and radiation

system as before.
If we linearize this system about the origin then by analysis the radiation term is small 

and can be neglected. However, the equilibrium point in this case is not the origin but is in 
the hundreds of degrees Kelvin, so this linearization will present a very poor approxima­
tion to the system. A more suitable linearization point in this case is the current state of the 
system. Hence, this problem is a good illustration for the method of this paper.

3.2.8 Numerical Results for the Nonlinear Case

The numerical simulation for the heated rod with radiation was carried out with the same 
physical parameters as were used for the linear case. The results for the nonlinear system 
are displayed in Fig. 3.4. Not surprisingly, the results are similar to what was observed in 
Fig. 3.3.

Though it is clear from Fig. 3.4 that the results have converged to the control objective,
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0.005 0.01 0.015 0.02

Figure 3.5: I ss as a function of uss for a. =  0.00001. The steady state minimum generated 
by the control problem is denoted ®.

we wish to verify that the control results have indeed minimized the cost functional at 
steady state. The cost functional at any time after steady state is reached is given by:

(3.24)

Since the integrand is constant, minimizing the cost functional at steady state is equivalent 
to minimizing the quantity:

V s =  a  (T„ss -  T f f  + (ussf  . (3.25)

Hence, it is expected that the quantity I ss should be minimized at steady state.
To investigate whether or not this is the case, we select a in such a way that Tn ^  T/ 

at steady state. Selecting a  =  0.00001 gives a steady state solution of T*s =  286.48, 
uss = 0.007, Iss =  0.000072. The steady state solution field was generated by solving the 
system to steady state for a variety of uss. The results are plotted in Fig. 3.5.
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3.3 Numerical Considerations

The control law in this paper was developed directly from variational principles. This 
method can be used for analysis of simple problems but solving the necessary differential 
equations is not possible for large systems of equations. For feedback control of large- 
scale problems we require some further work to develop the control problem into a linear 
quadratic regulator problem. This would replace the need to solve a large system of differ­
ential equations with mixed boundary values with a large algebraic Ricatti form equation 
(Brocket, 1969; Bryson and Ho, 1969). The control method would then be to initialize the 
control law offline by linearizing about the initial state and then update the law at regular 
intervals as the state evolves.

Though this problem remains numerically challenging many advanced numerical tech­
niques exist for the solution of this problem such as Penzl (1999), which is presently avail­
able from http://www.tu-chemnitz.de/sfb393/lyapack/. Unfortunately this reformulation of 
the problem can be a challenging task depending on the properties of the governing partial 
differential equations of the system.

3.4 Concluding Remarks

The mathematical formulation for the control problem presented in this paper is demon­
strated to be effective for dynamical systems governed by either linear or nonlinear partial 
differential equations. In the example presented the control system converged to a local 
steady state minimum when the current state was selected as the linearization point. Fur­
ther work is required to reduce the numerical challenges of the problem before the control 
law can be implemented as a real time feedback law.
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Chapter 4
Linear Quadratic Feedback Control of Incompressible 

Fluid Flow Systems with the Finite Volume Method

4.1 Introduction

This paper addresses the problem of optimal feedback control of dynamical systems that 
are governed by nonlinear partial differential equations. This subject has been approached 
from many different directions in recent years. A good summary of the recent progress is 
provided in Gad-el-Hak and Bewley (2006). This paper is specifically concerned with the 
application of feedback control laws to numerically simulated incompressible fluid flow 
systems where the finite volume discretization is employed. The approach taken in this pa­
per is to first discretize the system spacially using the finite volume technique and then ap­
ply the control law to the resulting system of ordinary linear differential equations. Though 
the feedback control problem has been addressed in the past for the finite element method 
in Stoyanov (2006), the discretized system takes on a more difficult form when the finite 
volume method is used. Optimal control of ordinary differential equations has been stud­
ied extensively in the literature and some early but complete texts on the subject include 
Bryson and Ho (1969) and Brocket (1969).

Application of control laws to the discretized Navier-Stokes equations presents some 
unique challenges. To illustrate this the Navier-Stokes equations are produced here:

(4.1)

V • v  =  0 in Q, (4.2)

where the velocity vector v  and the pressure p  are dependent variables, time t and space 
are independent variables, the density p and viscosity p, are constants and fl is the physical 
domain of the system. The gradient and divergence operators are with respect to the spatial 
variables.

Equations (4.1) and (4.2) are discretized spatially according to the finite-volume method. 
The control u  is applied on some subset of the computational domain fL The discretized
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control system takes the form:

E x  - A x  +  B u, E  =

where x is the state including both presure and velocity terms and E  and A  are matrices. 
Note that systems of this form with E  singular (as is the case here) are known as degenerate 
control systems. This could equivalently be treated as a coupled system of differential and 
algebraic equations, known as a differential algebraic equation. Furthermore, the form of 
A  in this case does not allow for the algebraic part to be eliminated from the equation.

One control strategy when considering laminar two-dimensional channel flow is to 
write eqs. (4.1) and (4.2) in a divergence-free basis (V • v  =  0) to eliminate the pressure. 
The Fourier transform is then applied and, with some work, the Orr-Somerfeld/Squire equa­
tions are developed (Drazin, 2002). Control techniques can then be applied to the system 
in the frequency domain (Hogberg et al, 2003). Sadly this method is limited to certain 
geometries and furthermore the treatment of the boundary conditions through this process 
can be rather tricky (Gad-el-Hak and Bewley, 2006).

Solving the control problem in a divergence-free basis is known as a centralized ap­
proach. This paper will focus on the decentralized approach, which requires the direct 
treatment of system (4.3). This problem is formulated as a linear quadratic regulator (LQR) 
problem; an objective function J  is specified to be minimized which is quadratic with re­
spect to both the state x and control u. Such problems have been studied by Borggaard 
et al (2004) and Stoyanov (2006).

The dissertation Stoyanov (2006) provides a full analysis and derivation for the linear 
quadratic regulator law when the finite element discretization technique is employed. How­
ever, it may be observed that there is a critical difference between the finite element and 
finite volume discretization: when the finite element discretization is employed, the relation 
A 2\ ~  A j2 holds but no such relationship exists for the finite volume method. Thus, the 
optimal control problem for the finite volume discretized system takes on a more general 
form than the finite element discretized system. Since many modem computational fluid 
dynamics (CFD) programs use the finite volume method it is practical to develop the LQR 
law for this condition. In the following section, the LQR control law will be developed 
from first principles proceeding in a similar way as was presented in Stoyanov (2006) but 
without the assumption A 21 =  Af2.
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4.2 Background, Formulation, and Derivation

Linear quadratic regulation has long been established as an effective means for control 
of linear and also nonlinear systems. There is a wide variety of literature on the subject. 
Hence, the amount of detail presented in this section is limited to what is relevant to this 
paper. A thorough treatment of the material on optimal control is presented in Bryson and 
Ho (1969). In this section, the LQR problem will be investigated in the general case and the 
feedback law will be derived for some special cases by methods similar to what has been 
done in Stoyanov (2006). Since these equations are too complex to solve either analytically 
or numerically, an alternative solution strategy is used to develop the feedback law and the 
solution is investigated numerically as a legitimate solution to the original LQR problem.

4.2.1 Optimal Control

The optimal control problem is formulated as the minimization problem: minimize the 
cost functional J  = f ' j  fo (x(i), u(t)) dt subject to constraints f  (x(f), u(f)) =  0, where 
/  =  0 are the state equations. This is a standard variational calculus problem and it is 
approached by first appending the state equations onto the cost functional. The resulting 
quantity, denoted L, is referred to as the Lagrangian. Explicitly:

L =  f  [f0 (x(t),u(i)) +  t/>T(i) /(x (f),u (f))] dt. (4.4)
Jto

The unknown functions ip(t) are referred to as Lagrangian multipliers. Note that ip(t) is 
assumed to be a vector of differentiable real-valued functions. Taking small perturbations 
in the direction 5u produces perturbations 5x in the state variables. Applying a small 
perturbation 5u to the Lagrangian ultimately produces the following equation, known as 
the first variation o f L:

SL = [-r/>T£x]t=tf +  J f [(V xtf  +  t/>T)  ¿x +  V UHSu dt. (4.5)

To simplify the notation, the scalar function H  was introduced. This quantity is known as 
the Hamiltonian and it is defined as:

i/(x (f), u(f), i/>(t)) =  /o(x(f), u(t)) +  t/>T(f)/(x(f), u(t)). (4.6)
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As it turns out, a necessary condition for J  to be a minimum is 6L = 0 for any òx, <5u (see, 
for instance, Bryson and Ho (1969) or Pinch (1993)). This can be achieved by appropriate 
assignment of the multiplier functions:

iPT = - V XH  = —Vx/o -  -0TVX/, 

V { t f ) =  0,
V UH  =  0.

(4.7)

(4.8)

(4.9)

Equations (4.7), (4.8), and (4.9) are known as the Euler-Lagrange equations. Moreover, 
if Xi(tf) = x* is a desired condition, then clearly 6x tf =  0 and so the boundary condition
t/>i(tf) =  0 can be replaced by Xi(tf) =  x*.

4.2.2 Linear Quadratic Regulation

The linear quadratic regulator (LQR) problem is the special case of optimal control where 
the cost functional takes on the form:

The case where E  is invertible is well-established. Pre-multiplying each side of eq. (4.11)

(4.10)

subject to the system dynamics given by equations:

E x  =  Ax +  B u  +  C. (4.11)

by E  1 will reduce the problem to an equivalent system for which E  — 1 (where /  is the 
identity matrix). The control law has an explicit analytical solution under this condition:

u  =  —R - 1 [(B t P + N t ) x  + B t k] , (4.12)

where P  is given implicitly as the solution to the algebraic Riccati equation

PA  +  ATP  -  (P B  +  N) R - 1 (B TP  + N T) + Q  = 0, (4.13)

and k is given by the expression

[(N +  PB) R~lB,T A T] k =  PC. (4.14)
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Equation (4.13) is a challenging nonlinear matrix algebraic equation which has been studied 
extensively in the literature and for which many numerical solution methods are available. 
Solving eq. (4.14) is a simple matter once the solution to eq. (4.13) is obtained.

Though optimal control problems are widely studied in the literature most applications 
have not required the formulation for inhomogeneous linear systems and the inclusion of 
the term N  in the cost functional is uncommon. Therefore, a brief derivation of eqs. (4.12­
4.14) is included here.

Assume that E  = I. The Hamiltonian of this control problem according to eq. (4.6) is

H  =  ^ x TQx  +  xit N u +  ^ u Tf?u +  /ipT (Ax +  B u  +  C ) . (4.15)

Direct substitution of H  into eq. (4.9) gives

u = - R - 1 (BT'ip + N Tx)  (4.16)

and substitution of eqs. (4.16) and (4.15) into eq. (4.7) gives

ij> =  ( - Q  +  N R ~ 1N t ) x  +  (N R T 1B t  -  A T) i/>. (4.17)

Assume now that if) takes the form =  P x  +  k. Substituting this into eq. (4.17) and 
performing some tedious algebra results in the equation

[PA + A TP  -  (P B  + N) R - 1 (B t P  +  N t ) +  Q] x(f)

=  [(N +  P B )R ~ 1B t  -  A T] k -  PC. (4.18)

Setting k  according to eq. (4.14) induces

[PA +  A TP  -  (P B  +  N) R - 1 (B TP  + N t ) +  Q] x(t) =  0. (4.19)

Since this must be true for all x(f) and x(t) is continuous and not uniformly 0, eq. (4.13) 
results.
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4.2.3 State-Costate System for the Discretized Navier-Stokes Equa­
tions

The unusual form of the discretized Navier-Stokes equations requires some special treat­
ment and cannot be generalized from the usual Riccati formulation of the LQR problem. 
In this section the state-costate system is derived from first principles.

Consider the problem of minimizing the cost functional

1 f°°
J =  g J [vT(t)Qvv (t ) + P T(t)Qpp (t) +  ut {t)Ru {t)] dr (4.20)

subject to the dynamical constraints

(4.21)

where Ind is the nd x nd identity matrix, A n  G R̂ndxnd, A 12 G 9lndxn, A21 G $lnxnd, 
Bi G 5i"dxl, B2 G 3i"xl, Ci G 3?"dxl, C2 G x 1, n is the number of computational
nodes, and d is the number of physical dimensions of the system (either 1, 2, or 3). As 
usual, the system Lagrangian is produced by appending the state to the cost functional 
using Lagrangian multiplier functions:

roo
L — f  [v TQvv  -I- p TQpp  +  ut R u] dr 

Jo
roo

+  [-<4 ii'W +  4̂ i2P  +  B iU  +  C i] dr
Jo

roo
+  fpp [A21V +  B 2u +  C2] dr. (4.22) 

Jo

The first variation of L  is produced by taking small perturbations on u:

roo
SL = [v t Qvôv +  p TQpàp +  u t Rôu]

Jo
dr

+
roo

[An Sv +  A u 6p  +  Biöu  -  Sv] dr
Jo

roo
+  xjip [A2i Sv +  B26u] dr =  0. (4.23) 

Jo
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Since the perturbations are assumed to be small the terms 8v TQvSv, 8p TQp8p, and 8u T R,8u  
are neglected. Rearranging and integrating by parts yields

SL - f 8v drv TQ v +  ipyAn  +  il^ A 2i +  ipv
p  OO

+ [pTQp +  t f A n ] 8p  dr
Jo

poo
+ [uTR + ip^Bi + ippB2] 8u d r  -  ip^8v \ ^  =  0. (4.24) 

Jo

Imposing lim ipv(t) =  0 and considering ¿v(0) =  0 forces ip„8v |!° =  0. Since equa-t—too U
tion (4.24) must be true for any value of 8u  and 8u, Sv, and 8p  are assumed to be continu­
ous then by the Fundamental Lemma of Calculus of Variations it is enough to consider the 
equation

v TQv +  ipyAn + ippAn  +  ip f Sv + [pTQv +  ip lA n ] 8p

+  [ut R + ifiBx +  ipTv B2] 8u =  0. (4.25)

To force equation (4.25) to be true for all 8u, the multipliers ip are chosen such that

vt Qv + ip1 + ip1 A n  +  ippAn  +  ip l  =  0, (4.26)

iP^Ai2 + p TQp = 0, (4.27)

ut R +  ipTBi +  ipp B2 =  0. (4.28)

Equations (4.26) and (4.27) are the costate equations. Equation (4.28) can be used to solve 
for u  in terms of the unknown multipliers:

u  = - R ~ l (Blipv + B%ipp) . (4.29)
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Substituting eq. (4.29)into eq. (4.21), the state-costate system is

ooo

(  * )
0 - / 0 0 Ipv
0 0 0 0 pOOOO

\ À J

 ̂An —B xR~lB x a X2 —B 1R~ 1B 2 \
(  V \

< Cl N
Qv A TXX 0 A h V +

0
A 21 - B 2R~ 1B'[ 0 - B 2R~lB l p c 2

\ ° A L Qp 0 ) \ ^ p ) 1 0 )

(4.30)

4.2.4 Continuous-Time Algebraic Riccati Equation for the Discretized 
Navier-Stokes Equations: The General Case

Assume that the Lagrangian multipliers take the form ipv = Pxv  +  i/>p =  P2p  +  k x. 
Then the system (4.30) becomes

v  =  A\\V  + A \2p  — B xR~l B x Pxv — B xR~1B x k x 

- B xR - 1B^P2p  -  B i R - ' B ^ h  + Ci,

0 =  Qvv  +  A xxPxv + A xxk x +  A lxP2p  +  A^xk 2 +  Pxv,

0 =  A 2Xv -  B 2R~ 1B l P xv -  B2R~l B l k x 

- B 2R~l B lP 2p  -  B2R~l B%k2 + C2,

0 =  A X2Pxv +  A X2k x +  Qpp.

(4.31)

(4.32)

(4.33)

(4.34)

Substituting eq. (4.31) into eq. (4.32):

Qvv  +  A xlPxv  +  A^fci +  À^xP2p  +  A 2Xk 2

+  Px (Ani; +  A X2p  — B xR~lB x Pxv  — B xR~l B x k x

—B xR~lB 2 P2p  -  B xR - xB?-k2 +  Ci) =  0. (4.35)

The state-costate system now consists of equations (4.33), (4.34), and (4.35). For analysis, 
eq. (4.33) is pre-multiplied by P2 and add it to eq. (4.34). The full state-costate system in
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matrix form:

( Q v 0 \  /  t; \  /  A?i
V 0 Qp J \ p )  \  Af 2 0

Pl 0 V v ) + ( Au A2i\( k'\
0 P 2 j \ p )  V^f2 0 J \ k 2 )

Pi 0 | |  An A \2
0 P2 J  y A 2\ 0

Px 0 \ /  B xR - 'B *
0 P2 ) [ B2R - l B f  B 2R~xB l

B 2R~1B l  B 2R~1B% )  {  k 2
=  0. (4.36)

Equation (4.36) takes on the familiar form of eq. (4.18). Ideally, we would like to 
reduce eq. (4.36) to a system similar to eqs. (4.13) and (4.14) but there are two obstacles 
preventing this:

1. Solving eqs. (4.13) and (4.14) does not guarantee that either of conditions (4.33) or 
(4.34) are met.

2. Solving eqs. (4.13) and (4.14) does not guarantee that the solution matrix takes the 
form

P  =

Furthermore, recall that eq. (4.18) reduces to eqs. (4.13) and (4.14) on condition that 
eq. (4.18) holds for all x  £ 5R". If a solution does exist for eq. (4.18) for all x  £ 5R” 
then the solution also satisfies eq. (4.18) for all x  in any vector space which is a subset of 
■R", and hence the solution to the system (4.13), (4.14) also satisfies eq. (4.18), regardless 
of the restrictions on x. However, the restriction x  £ R" is overly restrictive and there may 
not actually exist a solution to the system (4.13), (4.14) that has the form (4.37). Rather, 
solutions of the form (4.37) may only exist when the domain of x  is restricted to the solu­
tion space of eq. (4.33).

Let S  =  {v £ Rn, v  satisfies eq. (4.33)}. If a map can be constructed M  : w -» v 
for all w £ Rm and v £ S, m  < n, then the system (4.36) can be written in terms of w  
and p. This would ultimately allow eq. (4.36) to be written independently of the state vari­
ables. Also, eq. (4.33) would now be implicit to the system and hence solving eq. (4.36) 
would ensure both conditions (4.33) and (4.34). However, it is not clear how to construct
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this mapping in the general case since eq. (4.33) is a complicated function including p, k x, 
and k 2. Section 4.2.5 will demonstrate a special case where such a mapping can easily be 
constructed.

4.2.5 Continuous-Time Algebraic Riccati Equation for the Discretized 
Navier-Stokes Equations when B 2 =  0, C\ =  0, and C2 =  0

In this special case, we will assume that i\)v =  P\V and will with-hold any assumptions 
on i\)v for the moment. The state-costate equations (4.31)-(4.34) under this assumption are 
written as:

v  =  A \\v  +  A\2P — B \R  1BfP\V ,  (4.38)

0 =  Qvv  +  A \xPiV + A ^i^p  +  Pii), (4.39)

0 =  A 21v , (4.40)

0 =  Aj2Piv  +  Qpp. (4.41)

Pre-multiplying eq. (4.38) by A 2i:

A 2\ v =  A 2iA \ i V +  A 2iA X2p  — A 2XB i R 1B ^P xv . (4.42)

From eq. (4.40), A 2iv = 0 =>■ A 2ii) = 0. Hence:

A 2\A uv  + A2\A \2p  — A 2xB \R  lB x Piv = 0. (4.43)

From this,
P =  {A2iA i2) 1 [A2i B xR  1B X Pi — A 2iA h ] v. (4.44)

Of course in eq. (4.44) it has been assumed that ^ 21^12 is invertible. To investigate whether 
this is justifiable, the finite element case is analyzed.

Let Â21 and A X2 be the finite element versions of A21 and 4̂i2 respectively. Matrix 
Â21 corresponds to the term V • v  in the mass equation (4.1) and A l2 corresponds to the 
term V p in the momentum equation (4.2). Since V and V- are adjoint operators, the finite 
element discretization leads to the property A x2 — A!n . Hence, ^ 21^12 =  A2iÂFn .

Let n  be the number of control volumes and let d be the dimension of the system. By 
construction, Â2x G and ^21 *= îî<in><n- Assume that rank ( ^ 21) =  rank ^ 21) =
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n since if A 21 was not full rank then the numerical fluid flow problem would not be uniquely 
solveable. Furthermore, define the subspace

S = { i ) G  SRdn, v  G ker ( i 21) } , (4.45)

taking note that dim(S) =  n (d — 1). Since each column of A 2X is parallel to a row of 
A2X, then the column space of A 2l is not in S. Since the column space of A2X consists of n 
linearly independent vectors then the column space of A 2X forms a basis for the orthogonal 
complement of S, defined

S c = { v  G $Rdn, -U #  ker ( i 21) } . (4.46)

Hence, rank ^42i )  =  dim {image ^42i ^  =  rank {A2XA 2l Ĵ =  n. Since A 2XA 2X G

$R”xn and rank {A2iA 2̂ j =  n, then A 2XA 21 is invertible.
Similarly, construct

S  =  {v  G Udn, v  G ker (A21)} , (4.47)

S c =  {v  G 3?dn, v £ ker (yl21)} (4.48)

for the finite volume discretization. Discretizing by the finite volume method requires 
consideration of the governing equations in their weak (conservation) form. The pressure 
term from the momentum is discretized over a control volume of volume V :

Vpi dYi VjVpi, (4.49)

and S7pi is discretized by finite differences. Hence, the columns of ,4i2 are parallel to the 
columns of A X2. However, the discretization for the conservation of mass equation for the 
finite-volume method over a control volume is

[ i f  V • v dYi = [ [  v
J J j V i  J  J A r

n d A s
#faces

A tv  ■
t=i

(4.50)

where A s is the area of a control volume face and ri is the unit vector normal to the sur­
face of the control volume. Equation (4.50) does not take the same form as the finite 
element formulation. However, since the solution to the dynamical system is expected to
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be (approximately) independent of the discretization method, then by consistency of the 
conservation of mass equation

ker (A2i ) =  her ( ^ 21) • (4.51)

Hence, S  = S  and S c =  S c. Since the columns of A 12 span S c and S c = S c, then 
the columns of A 12 span S c and hence A2iA i2 is invertible. This can also be verified 
numerically since the assumption (4.51) will only be approximate in practice.

Substituting eq. (4.38) into eq. (4.39):

Qvv  +  A ^Piv  +  A211P2 +  P\A\\V  +  P\ (ylnu +  A\2p — B\R lB^Piv' )=0.  (4.52)

Now, substituting eq. (4.43) into eq. (4.52):

Q vv  +  A xlPxv  +  A 21ip2 +  P\A uv  +  P\A\2 {A2i A i2) [A2iB iR  l B x P\ — A 2 i ^ 4 n ]
- P 1B 1R~1B j P 1v = 0. (4.53)

Finally, substitute eq. (4.43) into eq. (4.41):

A lP lV +  Qp (A2iA i2) 1 [A2\B i R  lB^P\ — A212I11] v = 0. (4.54)

The solution to the linear quadratic regulator problem is

u  =  —Z?-1 (B x P iv ) ,  (4.55)

where Pi is determined implicitly by eqs. (4.53), (4.54) and (4.40). The multipliers ipp 
are not explicit in eq. (4.55) but it is a requirement that they exist. This problem can be 
interpreted as solving eqs. (4.53) and (4.54) where v  is restricted to the subspace S  defined 
in (4.47). If [sj] is an orthonormal basis for S  then there exist wl e  such that v  =  ^  wlsl 
for all v  € S. Defining Sv as the matrix whose columns are the ordered basis vectors s,, 
this can alternatively be written as v  =  Svw, where w  contains in the appropriate order. 
Define:

W  = {w  G ft", V w  e S} . (4.56)

Since there exists w  for all v E S  such that v  =  Svw  and dim(S) = n, then dim{W) =  n. 
Hence W  =  K". Furthermore, we will now look for a solution where =  P2w.
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Now, substitute v  =  Svw  and ipp =  P2w  into eqs. (4.53) and (4.54):

QvSvw  +  A^PiSyW  +  A21P2w  +  PiAn Svw+

P\A\2 {A2\A i2) 1 [A21-P1P  lB jP \ — A 2\A i \\ Svw

-  P1B 1R~1B'[P1Svw  = 0, (4.57)

A j2PiSvw  +  Qp ( ^ 21̂ 12) 1 [A21B 1R  1B^P\ — A2\A i i  ̂ Svw  — 0. (4.58)

These equations take the form M w  =  0. If M w = 0 for all w £ 3?", then M  =  0. Hence:

QySy +  À[XP\Sy + A ^ P 2 +  P \A \\SV

+  P\A \2 ( ^ 21̂ 12) 1 [A2\B \R  lB±Pi — A21A11] Sy

-  P1B 1R - 1B*P1Sv = 0, (4.59)

ATn PxSv +  Qp (A2lA l2)~l [A21B 1R - 1B ’[P 1 -  A 21A n \ Sv = 0. (4.60)

Equations (4.59) and (4.60) are second order non-linear matrix algebraic equations 
which cannot be solved by analytical means. Numerical solutions may be possible but 
are not easily obtained. However, if the solution to these equations is approximated by 
some other method then these equations can be used to investigate the validity of the solu­
tion.

4.2.6 Minimum-Norm Solution

Consider once more the problem of solving eqs. (4.53) and (4.54) where v  is restricted 
to S  and assume that there exists i/>* such that Pj* solves this system. Since v £ S  is not 
being considered, the control u  may be arbitrary when v  0  S  and hence the mapping Pf sc, 
where sc is the component of v  in Sc, is arbitrary as well. Hence, P* will not be unique. 

Naturally, two questions arise from this observation:

1. Does it matter which specific solution is chosen?

2. If a particular solution is desired, how can it be constructed?

Consider that the feedback law for this problem is generated from a particular linearization 
of the state equations and as the system evolves, the system dynamics will not satisfy the
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original linearization. Even in the fully linear case, one cannot expect to have v £ S  
exactly, due to numerical or especially experimental error and there is no assurance that 
the mapping of P* on any component of v  not in S  (which takes the form P*sc, sc £ S c) 
will be small (even if ||sc|| is small). Any vector v £ 3^" can be written v  =  s +  sc, 
where s and sc are linear combinations of the basis vectors s t and s£ respectively. Since 
the quantity P*sc is arbitrary and has no physical meaning, the best strategy is to eliminate 
this component is by constructing the particular solution, denoted P f ,  as follows:

p f s  = P*s, (4.61)

P f s c = 0. (4.62)

The result of such a construction is

P f  v  = P f  (s +  sc) =  P*s. (4.63)

The particular solution was constructed in this way in Stoyanov (2006) for the finite element 
case and the same construction will work here. The algebraic construction

P f  = P ;SvS f  (4.64)

where the columns of Sv are an orthonormal basis for S  (as defined earlier) was shown in 
Stoyanov (2006) to be the appropriate construction in the finite element case and so it is 
investigated here as the construction satisfying conditions (4.63) for the finite volume case 
as well.

There are two important properties of the matrix Sv:

1. sfsv =  I,
2. SvVi = Svv 2 => V\ =  v2 for all v £ 3id".

It follows that if b =  SvS f  s for some s £ S  and b £ -ft”, then Property 1 gives S fb  = S f  s, 
which by Property 2 gives b =  s. Hence, condition (4.61) is satisfied. Also, since sc is 
orthogonal to the rows of S f ,  then S f s c =  0 and hence condition (4.62) is satisfied. Hence 
eq. (4.64) is the appropriate construction to satisfy eq. (4.63).
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4.2.7 Perturbation Methods

Consider a linear dynamical system of the form

where Im is the m  x m  identity matrix, A n  £ 3?mxm, A 12 £ ?ftmxn, A 2\ £ Bi £
9f?m x l ,  B 2 £ 3Rnxl, C\ £ 5ftmxl, C2 £ Knxl. This system of equations has a differential
part and an algebraic part:

v(t) =  A n v(t) +  A 12p(t) +  B iu(t) + Ci, (4.66)

0 =  A 21v(t)  +  A 22p(t) +  B2u(t) +  C2. (4.67)

If A22 is invertible then it is possible to solve for p (t) from eq. (4.67):

p(f) =  - A 22 (^21 v(t) +  B2u(t) +  C2) . (4.68)

Substitution into eq. (4.66) gives:

v(t) =  A 0\( t )  + B0u(t) +  C0, (4.69)

where A 0 — A n  — 4̂i2̂ 221̂ 2i> Bq — B\ — A \2A22B2, and Co — C\ — A i2A22 C2. Of 
course, a critical feature of the discretized Navier-Stokes equations is that A 22 is singular. 
In fact, it is the zero matrix. However, an invertible matrix can be created artificially by 
setting, for example, A22 = e ln, where e is small. The feedback law is generated for this 
modified control system by eqs. (4.12-4.14) and is denoted u 0(v).

In Stoyanov (2006), the special case B2 =  0, C l =  0, C2 =  0, Qp — 0 is considered. In 
this case, the author shows that if the perturbation method converges (in the sense that the 
solution to the corresponding Riccati equation exists as the norm of .422 becomes arbitrarily 
small), then the solution P0 of the Riccati equation for the perturbed system also satisfies 
the Riccati equations for the unperturbed system. However, the condition A \2 =  A2i is an 
important feature of this proof and it would be necessary to at least show that ker(Aj2) — 
ker(A2i) to construct a proof by the same method, which is not justifiable for the finite 
volume method. Alternatively, the perturbation method will be used in Section 4.3 of this 
paper and the solution will be verified numerically as the solution to eqs. (4.59) and (4.60).
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Figure 4.1: Mesh generation for channel flow across a cylinder with 660 control volumes.

4.3 Drag Minimization in a Channel Around a Cylindri­
cal Obstruction

The control problem was formulated and solved for a two-dimensional fluid flow system. 
The simulation provided some insight into the nature of the problem and emphasized some 
important considerations.

4.3.1 Problem Formulation

The system for analysis is depicted in Figure 4.1 and was coded in Matlab. Dirichlet 
boundary condition was used to specify a constant velocity profile at the west edge of 
the domain. The north and south edges of the domain and the surface of the cylinder were 
treated as walls with no slip condition (v =  0). Neuman condition =  oj was applied 
to the velocity profile at the east face, where f  is the lateral spacial variable as indicated in 
Figure 4.1. The condition P  = 0 was also set at the east face. The system was solved on 
a block-structured grid using a change of coordinate method (Liseikin, 1999; Thompson 
et al, 1985). The control mechanism is the angular velocity of the cylinder.

The control problem is formulated as the minimization of the drag across the cylinder 
subject to the constraints provided by the system dynamics, which are given by eqs. (4.1)-
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(4.2). The pressure drag for the discrete problem:

Dp = p dA s -> T PiA° ■ (n c)i , (4.70)
Ja° i

where h $ is a unit vector in the ^-direction and Pi and Af are the pressure at the surface of 
the cylinder and the corresponding contact area respectively. The skin friction drag for the 
discrete problem:

Da = PV fV  dAs —> PVrVj A A*, (4.71)
J a° .

where f  is the unit vector normal to the surface of the cylinder and P is the viscosity. The 
total drag:

Dt = Dp + Ds. (4.72)

The cost functional needs to be written in a form amenable to the solution strategy of 
section 4.2.2. Since equation (4.72) is linear it can be written in the form:

Dp (Qd (4.73)

Finally, the cost functional is written in terms of D\\

J  =  J xTQx +  u t R u  dt, Q =  %)»

R e f t ,  R >  0. (4.74)

Since D \ ^  0, then x (^x ^  0 \/x. This, paired with R  0, ensures well~posedness for 
the control problem.

4.3.2 Linearization

The choice of linearization point is fundamental to this problem. From the Navier-stokes 
equations (4.1)-(4.2) the only nonlinearity is the term v • Vv. This term may be linearized
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about the origin, resulting in the linearized momentum equations:

p—  + Vp = ¿¿V2v. (4.75)

The flow may alternatively be linearized about a non-zero velocity field. The momentum 
equations in this case:

(4.76)

where V  is a lagged velocity term. Since the final flow field will not be known a priori a 
suitable choice of V  might be the initial state.

Equations (4.75) and (4.76) are known as the Stokes and Oseen equations respectively. 
Since equation (4.76) is linearized closer to the current state it will generally be more 
accurate to use this linearization. The advantage to the Stokes method is that the Dirichlet 
boundary conditions on the west face v(£ =  0, t) =  v0(f) is replaced with v(£ =  0, t) =  0, 
the effect being a purely homogeneous linearization.

4.3.3 Convergence of the Perturbation Method

Since the control law does not contribute to the conservation of mass equation the condition 
£?2 =  0 is automatically met. The Stokes linearization (4.75) was employed to satisfy con­
ditions C\ =  0, C2 =  0. Furthermore, the condition Qp =  0 was imposed by considering 
only the skin friction drag in the cost functional.

The perturbed system was generated by setting A 22 =  e ln and the solution P0 to the 
Riccati equation of the perturbed system was produced using the Iqr command in Matlab. 
The matrix P0 is a very large matrix so only the first few elements are produced here for 
several values of e. To demonstrate convergence it is sufficient to consider a coarse grid 
with only 130 control volumes. Some numerical values are displayed in Table 4.3.3, from 
which it is apparent that the method converges in the limit e —» 0.

The Iqr algorithm in Matlab is not designed for large sparse systems, and as such 
some numerical difficulties are encountered when a larger number of control volumes is 
used. Generally, when e is small enough the algorithm will begin to give a warning mes­
sage warning that the solution may be inaccurate. When e is made smaller still the Iqr 
algorithm will cease to converge. This effect is observed clearly when 216 control volumes 
are used. In this case, the warning message begins to appear at about e = — 5 x 1CT5. Table 
4.2 shows that there is clearly some agreement between the values for each e but no clear
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Index of P q

(T l) (1,2) (1,3) (1,4) (1,5) (1,6)
-IE-4 2.163E-13 1.537E-12 1.604E-12 3.082E-12 3.239E-12 3.557E-12
-IE-5 2.196E-13 1.562E-12 1.628E-12 3.119E-12 3.290E-12 3.594E-12
-IE-6 2.205E-13 1.565E-12 1.630E-12 3.123E-12 3.294E-12 3.597E-12
-IE-7 2.204E-13 1.563E-12 1.629E-12 3.123E-12 3.295E-12 3.597E-12

Table 4.1: Some elements of P0 for the rotating cylinder control problem for several values 
of e with 130 control volumes and Qp — 0.

Index of Pq

(1, 1) (1, 2) (1,3) (1,4) (1,5) (1,6)
-5E-3 2.042E-13 3.300E-13 5.428E-13 7.152E-13 9.163E-13 1.219E-12
-2E-3 2.260E-13 3.313E-13 5.786E-13 7.219E-13 9.633E-13 1.230E-12
-IE-3 2.270E-13 3.271E-13 5.75 IE-13 7.089E-13 9.698E-13 1.211E-12
-5E-4 2.395E-13 3.390E-13 6.182E-13 7.206E-13 9.791E-13 1.202E-12
-2E-4 2.52 IE-13 3.923E-13 6.289E-13 7.124E-13 9.425E-13 1.160E-12
-IE-4 2.458E-13 3.914E-13 5.594E-13 6.78 IE-13 9.022E-13 1.148E-12
-5E-5 1.021E-13 7.712E-14 3.601E-13 5.371E-13 8.199E-13 1.095E-12
-2E-5 1.751E-13 2.71 IE-13 5.913E-13 7.300E-13 1.019E-12 1.186E-12

Table 4.2: Some elements of P0 for the rotating cylinder control problem for several values 
of e with 216 control volumes and Qp = 0.

convergence pattern is observed.
To verify that the solution of the perturbed system also satisfies the Riccati equations for 
the unperturbed system, P* = P0SvS f  was substituted into eq. (4.60) and the residuals 
were calculated. The residuals were calculated using the induced norms ||-1| 15 || ||2, and 
11' 11 oo ’ as well as the Frobenius norm. To gauge the relative magnitude of these values, the 
residuals were also produced for Pi =  P f ,  where P f  — PrSvSJ  and Pr is an arbitrary 
matrix with the properties Pr =  P f  and ||Pr ||2 — ||-Po||2- The data is presented in Table 
4.3.3 and indicates that P0 is a solution to eq. (4.60).

Though the matrix P2 is redundant in this case, it is a necessary condition that such a 
matrix exists that satisfies eq. (4.59). To verify this, eq. (4.59) was solved numerically for 
P2 in the least squares sense for both cases Pi =  P(f  and Pi =  P f .  The residuals from 
substituting the solution for P2 back into eq. (4.59) are displayed in Table 4.3.3.

Though the residuals for eq. (4.59) are smaller with P f  than they are with P f ,  the 
difference is less than an order of magnitude. Since the least squares solution was used 
to determine P2 it is not unreasonable that the residuals in both cases should be small.
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¿33 II Pi = P?
ll-lli 1.342E-9 1.000E-3

IN 2 3.583E-10 3.003E-4

IHloo 6.813E-10 1.000E-3
Frobenius 3.590E-10 3.004E-4

Table 4.3: Residuals for eq. (4.60) for the rotating cylinder control problem with e =  
— l x  10~6, Qp = 0, and 130 control volumes.

II IIcC

ll'lli 4.634E-5 2.532E-4

II * II2 1.988E-5 8.546E-5

ll-lloo 3.760E-5 8.546E-5
Frobenius 1.996E-5 8.650E-5

Table 4.4: Residuals for eq. (4.59) for the rotating cylinder control problem with e =  
— l x  10-6, Qp =  0, and 130 control volumes.

However, since the residuals for P*  are smaller than the residuals for P f  but only by a 
relatively small margin the results should be regarded as inconclusive.

Convergence was also investigated for the case where the pressure drag is included in 
the cost functional but the viscous drag is neglected. This will induce Qv =  0, Qp ^  0. 
Since pit) is not included in the perturbed cost functional, eq. (4.68) is used to write it in 
terms of the velocity vector v{t). The cost functional for the perturbed system ultimately 
takes the form:

1 f ° °
J  = -  vt Qqv+ 2vTN0u + uTRudt, (4.77)

2 Jo

Qo =  ^ 2 1  (^ 2 2  ) % QpA-22 ^ 21)
N 0 =  -A2i ( ^ 2 2  ) % QpA22 -®2 )

R0 = B \  { A22 )T QpQpA^ B‘2 ■

Note that in the present case B 2 =  0. However, this matrix is included above to demonstrate 
that in the more general case we may have nonzero N0 in the perturbed cost functional.

The convergence of the perturbation method is shown in Table 4.3.3. The deviation at 
£ = - l x  1(T7 indicates that |e| should not be made smaller than 10-6 in this case.

The next question is whether the converged solution to the perturbed system P0 also 
satisfies eq. (4.60). Table 4.3.3 indicates that this is not the case. Hence, the perturbation
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Index of Pq

(1, 1) (1, 2) (1,3) (1,4) (1,5) (1,6)
-IE-4 -8.185E-11 6.732E-10 2.085E-10 1.320E-9 8.497E-10 1.383E-9
-IE-5 -8.427E-11 6.778E-10 2.063E-10 1.327E-9 8.496E-10 1.390E-9
-IE-6 -8.444E-11 6.778E-10 2.045E-10 1.326E-9 8.478E-10 1.387E-9
-IE-7 -2.800E-11 5.493E-10 1.641E-10 1.433E-9 1.027E-9 1.624E-9

Table 4.5: Some elements of P0 for the rotating cylinder control problem for several values 
of e with 130 control volumes and Qp 7̂  0.

p = p r P = P*
ll-lli 1.20E-2 2.19E-2
II-II2 1.03E-2 1.02E-2
Hoc 3.73E-2 4.57E-2

Frobenius 1.05E-2 1.14E-2

Table 4.6: Residuals for eq. (4.60) for the rotating cylinder control problem with e =  
— l x  10-6, Qp 7̂  0, and 130 control volumes.

method is invalid for Qp 7̂  0.

4.3.4 Numerical Solution to the Riccati Equation

The Iqr algorithm in Matlab has not been designed for large sparse systems. As a re­
sult, some numerical difficulties are encountered when the system becomes large, as is 
evidenced by Table 4.2. Alternative numerical algorithms have been developed for large 
sparse systems, especially using Chandrasekhar methods (Borggaard et al, 2004; Banks 
and Ito, 1991).

4.3.5 Further Numerical Considerations

The numerical results of this section were produced using the Stokes linearization (eq. (4.75)), 
which is a linearization of the Navier-Stokes equations about the origin. Defining the 
Reynolds’ number of the system:

(4.78)
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with I the width of the channel and V  the inlet velocity, it is clear that when the Reynolds 
number is small the nonlinear term in eqs. (4.1 )-(4.2) will also be small and the flow will 
ressemble Stokes flow. Hence, this linearization can be regarded as fairly accurate for low 
Reynolds’ number flow. However, when the Reynolds’ number is large the nonlinear term 
becomes much more significant and the Stokes linearization will no longer be appropriate. 
Instead, the Oseen linearization (eq. (4.76)) will be more appropriate. However, this intro­
duces some inhomogeneity into the state equations which does not comform with the form 
of eqs. (4.59) and (4.60).

4.4 Simulation

The trajectory of the control problem was also analyzed under several conditions.

4.4.1 Numerical Results for Optimal Drag Reduction by the Stokes 
Method

The problem was simulated on a mesh of 132 nodes with a Reynolds number of 2000. The 
inlet velocity is constant at lm/s and the channel is 5m long and has a 2m span. The value 
of R was kept small at R — 10~7. The problem was then simulated over 10s with 1000 
time steps. Figure 4.2 shows the final flow field though it is rather uninformative as to the 
performance of the control.

To investigate the effectiveness of the control we can calculate the performance index J  
at each time step to directly track performance. The increase in J  at a particular time step 
is given by

A J  = L(t)A t, (4.79)

L(t) =  xtQx +  u TRu.

This information is plotted in Figure 4.3. Since the control law is an infinite-horizon 
optimal control, it is expected that a minimum should be produced at steady state. But, 
Figure 4.3 suggests that a minimum is not attained at steady state. However, noting that the 
control takes on very small magnitudes, this may or may not be attributed to some small 
numerical error. To determine the steady state optimal control the integrand of the cost
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Pressure Profile (Pa), t=10s

X-Position (m) 

Velocity Field, t=10s

Figure 4.2: Final flow field for the skin friction reduction problem with R  =  10 7, Re 
2000, and 132 control volumes.

Control History

x 1Q“ '5 Incremental change in J as a function of time

Figure 4.3: Control and cost functional history for the drag control problem with R  = 10 
Re =  2000, and 132 control volumes.
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x 10

Figure 4.4: Steady state evaluation of L  for R  =  10-7, Re =  2000, and 132 control volumes 
for the drag minimization problem. The steady state solution to the optimal control problem 
is marked by ®.

functional at steady state Lss can be plotted for a range of steady state values of uss. This 
information is displayed in Figure 4.4, from which the steady state solution can be read as
uss = 0.

4.4.2 Numerical Results for Specific Velocity Control by the Stokes 
Method

The fact that the minimum occurs at uss — 0 indicates that this control problem is not 
suitable to evaluate the validity of the control law. Therefore, a second control problem is 
proposed whereby the control law should minimize the velocity at a point slightly north of 
the cylinder at position (£, rj) =  (1,1.32). Intuitively, if the cylinder is rotating counter­
clockwise it should induce the effect of slowing the flow rate above the cylinder and hence 
the solution is expected to have a non-zero steady state solution. The control problem was 
solved over 132 control volumes with 1000 times steps, R  =  10-3, and Re =  2000. The 
control history is displayed in Figure 4.5. Figure 4.6 indicates that there is a significant 
discrepancy between the steady state optimal control and the steady state control produced
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Time (s)
Incremental change in J as a function of time

Figure 4.5: Control history for the specific velocity control problem with R =  1 0  3 ,  R e  =  2 0 0 0 ,  and 1 3 2  control volumes.

by this linearization.
The inaccuracy of the feedback law evident in Figure 4.6 may be due to the use of the 

Stokes linearization. Reducing the density will result in a flow field more characteristic of 
Stokes flow. In particular, the density of the fluid should be low. For this simulation, we 
use p =  O . O O l k g / W  and p  =  O.OOlNs/m, resulting in R e  =  2 .  The control history is 
shown in Figure 4.7 and the steady state control law is shown in Figure 4.8. Once again, a 
steady state minimum has not been produced.

4.4.3 Advantages of the Oseen Linearization

Control of nonlinear systems by a linear control law is well-established. Generally in such 
cases the system is linearized about the equilibrium point before applying the control. In 
this way, the linearized system dynamics will approach the dynamics of the nonlinear sys­
tem as the system approaches equilibrium and hence if J  = \  f™L(t)  dt then the equilib­
rium point should be a minimum for L(t). In the case of the Stokes problem, the lineariza­
tion point is the origin, which is far from the equilibrium point. It is therefore expected 
that the equilibrium point obtained from the Stokes problem should not coincide with the
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Figure 4.6: Steady state evaluation of L for R  =  10-3, R e  = 2000, and 132 control 
volumes for the specific velocity control problem. The steady state solution to the optimal 
control problem is marked by 0 .

Control History

0 .0 3

0.0

0.0

4  6
Time (s)

Incremental change in J as a function of time

Time (s)

Figure 4.7: Control history for the specific velocity control problem with R  =  10-3, R e  =  
2, and 132 control volumes.
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Figure 4.8: Steady state evaluation of L for R  = 10-3, Re =  2, and 132 control volumes 
for the specific velocity control problem. The steady state solution to the optimal control 
problem is marked by <g>.

minimum steady state solution, which is certainly the case in this example.
To obtain better results, the system could be linearized about the current state (Oseen 

problem) at each time step and the feedback law could be generated based on this lineariza­
tion. If the control law is solvable and the system generated by this procedure converges 
then the equilibrium point reached should indeed be a minimum. This procedure has been 
demonstrated in Brown et al (2009). This procedure is, however, too computationally ex­
pensive in practice. Another alternative would be to linearize about the initial state and 
develop the feedback law for this Oseen problem. This will again not converge to the ac­
tual minimum at steady state but would certainly produce better results than those obtained 
from the Stokes problem since the linearization point would be closer to the actual state 
of the system. The difficulty in applying this method to the Navier-Stokes equations is the 
introduction of an inhomogeneous term into the state equation.

4.5 Conclusions

This paper has addressed the problem of linear quadratic feedback control of the finite 
volume discretized Navier-Stokes equations. Riccati equations were developed under the 
conditions B-2 = 0, C\ =  0, C2 =  0. The perturbation method was investigated as a viable 
solution alternative to direct numerical solution of the system Riccati equations by sub­
stituting the perturbed solution into the Riccati equations. The results showed that when 
Qp = 0 the solution to the perturbed system was also a solution to the second Riccati equa­
tion (4.60) and possibly also a solution to the first Riccati equation (4.59) though the results
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could not be interpreted conclusively. The solution to the perturbed system did not satisfy 
the second Riccati equation (4.60) when Qp ^  0.

Though the numerical analysis did indicate that the perturbation method may have gen­
erated the optimal solution, the simulation results did not support this theory. However, 
there are several possible reasons why the perturbation method may not have converged to 
the desired result, the most likely of which is the treatment of the Dirichlet boundary condi­
tion in the Stokes method. Though the inlet conditions correspond to the velocity variable, 
they are treated as constant and so it seems that setting the Dirichlet boundary condition to 
0 may have been erroneous, regardless of the linearization point. If the non-zero Dirichlet 
boundary condition must be included in the Stokes linearization then this method is redun­
dant, and the Oseen linearization should be used instead. A change of variable can then 
be used to transform the system into a homogeneous one. This is recommended for future 
work.
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C hapter 5

C onclusions and Future W ork

T h i s  t h e s i s  h a s  a d d r e s s e d  t h e  p r o b l e m  o f  p e r f o r m a n c e  o p t i m i z a t i o n  f o r  t i m e - v a r y i n g  
s y s t e m s  o f  m u l t i p l e  p a r a m e t e r  t y p e s  u s i n g  t w o  a p p r o a c h e s .  I n  t h e  f i r s t  a p p r o a c h ,  
t h e  d i s c r e t e  a d j o i n t  m e t h o d  h a s  b e e n  d e v e l o p e d  f o r  t h e  p u r p o s e  o f  p e r f o r m a n c e  o p ­
t i m i z a t i o n  o f  f l u i d  f l o w  o r  h e a t  t r a n s f e r  s y s t e m s  w i t h  r e s p e c t  t o  a  c o m b i n a t i o n  o f  
g e o m e t r i c  a n d  c o n t r o l  v a r i a b l e s .  T h e  m e t h o d  w a s  s u c c e s s f u l l y  a p p l i e d  t o  a  s i m p l e  
t w o  d i m e n s i o n a l  f l u i d  f l o w  s y s t e m .  T h e  s i m u l a t i o n  e m p h a s i z e d  c e r t a i n  c o m p u t a t i o n a l  
l i m i t a t i o n s  o f  t h e  m e t h o d ,  e s p e c i a l l y  d a t a  s t o r a g e  f o r  t h e  t r a n s i e n t  c a s e .  T h e  s i m u l a ­
t i o n  a l s o  i n d i c a t e d  t h a t  s o m e  i n s i g h t  i n t o  t h e  d e s i g n  p r o b l e m  c a n  b e  b e n e f i c i a l ,  s i n c e  
t h e  n u m b e r  o f  i t e r a t i v e  s t e p s  r e q u i r e d  b y  t h e  a l g o r i t h m  t o  r e a c h  t h e  o p t i m u m  c a n  
d e p e n d  s i g n i f i c a n t l y  o n  t h e  s t a r t i n g  p o i n t .  R u n n i n g  t h e  o p t i m i z a t i o n  a l g o r i t h m  o v e r  
t h e  i n d i v i d u a l  p a r a m e t e r  t y p e s  f i r s t  c a n  b e  u s e f u l  i n  d e t e r m i n i n g  a  s u i t a b l e  s t a r t i n g  
p o i n t  f o r  t h e  c o u p l e d  o p t i m i z a t i o n  a l g o r i t h m .  O v e r a l l ,  t h e  d i s c r e t e  a d j o i n t  m e t h o d  
e m p l o y e d  t o  c a l c u l a t e  t h e  g r a d i e n t  p r o v i d e s  a  s i g n i f i c a n t  i m p r o v e m e n t  t o  c o m p u t a ­
t i o n a l  t i m e  t h a n  u s i n g  a  f i n i t e  d i f f e r e n c e  a p p r o x i m a t i o n  t o  t h e  g r a d i e n t .  T h e  o n l y  
d i s a d v a n t a g e  i s  t h a t  t h e  p r o g r a m m i n g  d e t a i l s  a r e  s o m e w h a t  m o r e  c h a l l e n g i n g ,  a n d  i t  
i s  e s p e c i a l l y  i m p o r t a n t  t o  n o t e  t h a t  t h e  d e t a i l s  w i l l  d e p e n d  o n  t h e  w a y  t h e  p r o b l e m  
i s  d e s c r e t i z e d  a n d  t h e  w a y  t h e  c o n t r o l  p r o b l e m  i s  p a r a m e t e r i z e d .  T h e s e  p r o b l e m s  c a n  
b o t h  b e  a d d r e s s e d  b y  i n t e g r a t i n g  t h e  o p t i m i z a t i o n  a l g o r i t h m  i n t o  c o m m e r c i a l  s o f t ­
w a r e .

T h e  s e c o n d  s u b j e c t  a n a l y z e d  i n  t h i s  t h e s i s  w a s  t h e  a p p l i c a t i o n  o f  a  f e e d b a c k  c o n ­
t r o l  l a w  t o  t h e  N a v i e r - S t o k e s  e q u a t i o n s .  T h e  p r o p o s e d  a p p l i c a t i o n  m e t h o d  w a s  t o  
d i s c r e t i z e  t h e  N a v i e r - S t o k e s  e q u a t i o n s  s p a t i a l l y  a n d  a p p l y  t h e  f e e d b a c k  l a w  t o  t h e  
p a r t i a l l y  d i s c r e t i z e d  c o n t i n u o u s - t i m e  e q u a t i o n s .  T o  i n v e s t i g a t e  w h e t h e r  t h i s  m e t h o d  
c o u l d  i n  f a c t  p r o d u c e  r e a s o n a b l e  r e s u l t s ,  t h e  c o n t r o l  m e t h o d  w a s  a p p l i e d  d i r e c t l y  t o
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a  s i m p l e  o n e - d i m e n s i o n a l  h e a t  t r a n s f e r  s y s t e m .  T h e  n u m e r i c a l  s i m u l a t i o n s  i n d i c a t e d  
t h a t  t h e  m e t h o d  w a s  v a l i d  a n d  t h a t  g o o d  r e s u l t s  c o u l d  b e  o b t a i n e d  b y  u s i n g  a  m o b i l e  
l i n e a r i z a t i o n  p o i n t .

M a n y  i n h e r e n t  c h a l l e n g e s  e x i s t  i n  t h e  a p p l i c a t i o n  o f  f e e d b a c k  l a w s  t o  t h e  N a v i e r -  
S t o k e s  e q u a t i o n s ,  p a r t i c u l a r l y  d u e  t o  t h e  d e g e n e r a t e  f o r m  o f  t h e  d i s c r e t i z e d  e q u a t i o n s  
a n d  a l s o  t h e  l a r g e  n u m b e r  o f  e q u a t i o n s  g e n e r a t e d  b y  t h e i r  f u l l  o r  p a r t i a l  d i s c r e t i z a ­
t i o n  t h a t  a r e  n e e d e d  t o  o b t a i n  a c c u r a t e  n u m e r i c a l  s o l u t i o n s .  T h i s  p r o b l e m  w a s  a p ­
p r o a c h e d  d i r e c t l y  f r o m  f i r s t  p r i n c i p l e s  a s s u m i n g  t h e  f i n i t e - v o l u m e  d i s c r e t i z a t i o n  a n d  
f o r m u l a t e d  a s  a  l i n e a r  q u a d r a t i c  r e g u l a t o r  p r o b l e m .  T h e  c o n t r o l  f e e d b a c k  p r o b l e m  
w a s  t r a n s f o r m e d  i n t o  a  n o n l i n e a r  a l g e b r a i c  R i c c a t i - f o r m  s y s t e m ,  w h i c h  w e  c o u l d  n o t  
s o l v e  e i t h e r  a n a l y t i c a l l y  o r  n u m e r i c a l l y .  H o w e v e r ,  w e  w e r e  a b l e  t o  u s e  a  p e r t u r b a t i o n  
m e t h o d  t o  o b t a i n  a  s o l u t i o n  m a t r i x  t o  t h i s  R i c c a t i  s y s t e m  n u m e r i c a l l y  a n d  u s e  s o m e  
n u m e r i c a l  a n a l y s i s  t o  a s s e s s  t h e  v a l i d i t y .  T h o u g h  n o t  e n t i r e l y  c o n c l u s i v e ,  t h e  n u m e r ­
i c a l  r e s u l t s  i n d i c a t e d  s o m e  p r o m i s i n g  r e s u l t s  u n d e r  c e r t a i n  l i m i t i n g  c o n d i t i o n s .

T h o u g h  t h e  n u m e r i c a l  i n v e s t i g a t i o n  w a s  n o t  e n t i r e l y  c o n c l u s i v e ,  t h e  s y s t e m  p e r ­
f o r m a n c e  a s s o c i a t e d  w i t h  t h e  f e e d b a c k  l a w  w a s  e v a l u a t e d  t o  d e t e r m i n e  w h e t h e r  t h e  
c o n t r o l  l a w  w a s  v a l i d .  A  c o m p a r i s o n  w a s  m a d e  b e t w e e n  t h e  s t e a d y  s t a t e  s o l u t i o n  
o b t a i n e d  f r o m  t h e  f e e d b a c k  l a w  a n d  t h e  p e r f o r m a n c e  a t  s t e a d y  s t a t e  f o r  a  r a n g e  o f  
c o n t r o l  i n p u t s .  T h i s  c o m p a r i s o n  i n d i c a t e d  t h a t  t h e  f e e d b a c k  l a w  h a d  n o t  f u n c t i o n e d  
a s  i n d e n d e d .

T h o u g h  t h e  f i n a l  r e s u l t  o f  t h e  f e e d b a c k  c o n t r o l  p r o b l e m  d i d  n o t  i n d i c a t e  s u c ­
c e s s ,  t h e  e x a c t  c a u s e  o f  t h i s  i s  u n c l e a r .  T h e  p e r t u r b a t i o n  m e t h o d  a p p e a r s  t o  b e  v a l i d  
t h o u g h  a  m o r e  r i g o r o u s  a n a l y s i s  o f  t h i s  m e t h o d  m a y  d e t e r m i n e  t h i s  m o r e  c o n c l u s i v e l y .  
T h e r e  i s  a l s o  t h e  p o s s i b i l i t y  o f  a  s i m p l e  c o d i n g  e r r o r ,  t h o u g h t  m u c h  t i m e  h a s  b e e n  
d e d i c a t e d  t o  t e s t i n g  a n d  v a l i d a t i n g  t h e  c o d e s  n u m e r i c a l l y .  M o s t  l i k e l y ,  t h e  e r r o r  i s  i n  
t h e  l i n e a r i z a t i o n  p r o c e s s .  T h e  s y s t e m  w a s  l i n e a r i z e d  a b o u t  t h e  o r i g i n  t o  r e m o v e  t h e  
D i r i c h l e t  b o u n d a r y  c o n d i t i o n  f r o m  t h e  e q u a t i o n s  t o  p r o d u c e  a  h o m o g e n e o u s  s y s t e m .  
H o w e v e r ,  w e  m a y  c o n s i d e r  t h a t  t h e  D i r i c h l e t  b o u n d a r y  c o n d i t i o n  i t s e l f  i s  t r e a t e d  a s  a
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c o n s t a n t  a t  s t e a d y  s t a t e  e v e n  i n  i t s  p a r t i a l l y  d i s c r e t i z e d  f o r m ,  a n d  s o  t h i s  l i n e a r i z a t i o n  
m a y  h a v e  b e e n  p e r f o r m e d  i n c o r r e c t l y .  S i n c e  t h e  i n c l u s i o n  o f  t h e  D i r i c h l e t  b o u n d a r y  
c o n d i t i o n  s e e m s  u n a v o i d a l b e ,  t h e  s y s t e m  w i l l  u n a v o i d a b l y  b e  i n h o m o g e n e o u s ,  a n d  s o  
w e  m a y  a s  w e l l  u s e  t h e  O s e e n  l i e n a r i z a t i o n .  I n  f u t u r e  w o r k ,  t h e  m e t h o d  c a n  b e  m o d ­
i f i e d  t o  b e  l i n e a r i z e d  a b o u t  t h e  i n i t i a l  s t a t e  r a t h e r  t h a n  t h e  o r i g i n  u s i n g  t h e  O s e e n  
l i n e a r i z a t i o n  a n d  a  c h a n g e  o f  c o o r d i n a t e s  t o  t h e  v e l o c i t y  v a r i a b l e  a t  t h e  b o u n d a r y  t o  
m a i n t a i n  a  h o m o g e n e o u s  f o r m  o f  t h e  e q u a t i o n s .  S i n c e  t h e  v a r i a b l e  b e i n g  l i n e a r i z e d  
a p p e a r s  i n  n o n l i n e a r  t e r m s ,  t h i s  m a y  p r o v i d e  f u r t h e r  c h a l l e n g e s  w h i c h  h a v e  y e t  t o  b e  
a d d r e s s e d .
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